SIAM J. COMPUT. (© 1996 Society for Industrial and Applied Mathematics
Vol. 25, No. 1, pp. 1-51, February 1996

ASYMPTOTIC CONDITIONAL PROBABILITIES: THE UNARY CASE*
ADAM J. GROVE!, JOSEPH Y. HALPERN#, AND DAPHNE KOLLER?

Abstract. Motivated by problems that arise in computing degrees of belief, we consider the problem of computing
asymptotic conditional probabilities for first-order sentences. Given first-order sentences ¢ and 6, we consider the
structures with domain {1, . . ., N} that satisfy 8, and compute the fraction of them in which ¢ is true. We then consider
what happens to this fraction as N gets large. This extends the work on 0-1 laws that considers the limiting probability
of first-order sentences, by considering asymptotic conditional probabilities. As shown by Liogon’kii [Math. Notes
Acad. USSR, 6 (1969), pp. 856-861] and by Grove, Halpern, and Koller [Res. Rep. RJ 9564, IBM Almaden Research
Center, San Jose, CA, 1993], in the general case, asymptotic conditional probabilities do not always exist, and most
questions relating to this issue are highly undecidable. These results, however, all depend on the assumption that 6
can use a nonunary predicate symbol. Liogon’kii [Math. Notes Acad. USSR, 6 (1969), pp. 856—861] shows that if
we condition on formulas 6 involving unary predicate symbols only (but no equality or constant symbols), then the
asymptotic conditional probability does exist and can be effectively computed. This is the case even if we place no
corresponding restrictions on ¢. We extend this result here to the case where 6 involves equality and constants. We
show that the complexity of computing the limit depends on various factors, such as the depth of quantifier nesting, or
whether the vocabulary is finite or infinite. We completely characterize the complexity of the problem in the different
cases, and show related results for the associated approximation problem.

Key words. asymptotic probability, 0-1 law, finite model theory, degree of belief, labeled structures, principle
of indifference, complexity

AMS subject classifications. 03B48, 60C05, 68Q25

1. Introduction. Suppose we have a sentence 6 expressing facts that are known to be
true, and another sentence ¢ whose truth is uncertain. Our knowledge 6 is often insufficient
to determine the truth of ¢: both ¢ and its negation may be consistent with 6. In such cases, it
can be useful to assign a probability to ¢ given 6. In a companion paper [23], we described our
motivation for investigating this idea, and presented our general approach. We repeat some of
this material below, to provide the setting for the results of this paper.

One important application of assigning probabilities to sentences—indeed, the one that has
provided most of our motivation—is in the domain of decision theory and artificial intelligence.
Consider an agent (or expert system) whose knowledge consists of some facts 6, who would
like to assign a degree of belief to a particular statement ¢. For example, a doctor may want
to assign a degree of belief to the hypothesis that a patient has a particular illness, based on
the symptoms exhibited by the patient together with general information about symptoms and
diseases. Since the actions the agent takes may depend crucially on this value, we would like
techniques for computing degrees of belief in a principled manner.

The difficulty of defining a principled technique for computing the probability of ¢ given 8,
and then actually computing that probability, depends in part on the language and logic being
considered. In decision theory, applications often demand the ability to express statistical
knowledge (for instance, correlations between symptoms and diseases) as well as first-order

*Received by the editors October 13, 1993; accepted for publication (in revised form) July 7, 1994. Some of
this research was performed while Adam Grove and Daphne Koller were at Stanford University and at the IBM
Almaden Research Center. A preliminary version of this paper appeared in Proc. 24th ACM Symp. on Theory of
Computing [20]. This research was sponsored in part by an IBM Graduate Fellowship to Adam Grove, by a University
of California President’s Postdoctoral Fellowship to Daphne Koller, and by Air Force Office of Scientific Research
contract F49620-91-C-0080. The United States Government is authorized to reproduce and distribute reprints for
governmental purposes.

TNEC Research Institute, 4 Independence Way, Princeton, NJ 08540 (grove@research.nj.nec.com).

#IBM Almaden Research Center, 650 Harry Rd., San Jose, CA 95120 (halpern@almaden.ibm.com).

8Computer Science Division, University of California at Berkeley, Berkeley, CA 94720 (daphne@cs.
berkeley.edu). 1

2 ADAM J. GROVE, JOSEPH Y. HALPERN, AND DAPHNE KOLLER

knowledge. Work in the field of 0-1 laws (which, as discussed below, is closely related to
our own) has examined some higher-order logics as well as first-order logic. Nevertheless,
the pure first-order case is still difficult, and is important because it provides a foundation for
all extensions. In this paper and in [23] we address the problem of computing conditional
probabilities in the first-order case. In arelated paper [22], we consider the case of a first-order
logic augmented with statistical knowledge.

The general problem of assigning probabilities to first-order sentences has been well
studied (cf. [15] and [16]). In this paper, we investigate two specific formalisms for computing
probabilities, based on the same basic approach. Our approach is itself an instance of a much
olderidea, known as the principle of insufficient reason [28] or the principle of indifference [26].
This states that all possibilities should be given equal probability, and was once regarded as
one of the most basic principles of probability theory. (See [24] for a discussion of the history
of the principle.) We use this idea to assign equal degrees of belief to all basic “situations”
consistent with the known facts. The two formalisms we consider differ only in how they
interpret “situation.” We discuss this in more detail below.

In many applications, including the one of most interest to us, it makes sense to consider
finite domains only. In fact, the case of most interest to us is the behavior of the formulas
¢ and 6 over large finite domains. Similar questions also arise in the area of 0-1 laws. Our
approach essentially generalizes the methods used in the work on 0-1 laws for first-order
logic to the case of conditional probabilities. (See Compton’s overview [8] for an introduc-
tion to this work.) Assume, without loss of generality, that the domain is {1, ..., N} for
some natural number N. As we said above, we consider two notions of “situation.” In the
random-worlds method, the possible situations are all the worlds, or first-order models, with
domain {1, ..., N} that satisfy the constraints 6. Based on the principle of indifference, we
assume that all worlds are equally likely. To assign a probability to ¢, we therefore simply
compute the fraction of them in which the sentence ¢ is true. The random-worlds approach
views each individual in {1, ..., N} as having a distinct name (even though the name may
not correspond to any constant in the vocabulary). Thus, two worlds that are isomorphic
with respect to the symbols in the vocabulary are still treated as distinct situations. In some
cases, however, we may believe that all relevant distinctions are captured by our vocabulary,
and that isomorphic worlds are not truly distinct. The random-structures method attempts to
capture this intuition by considering a situation to be a structure—an isomorphism class of
worlds. This corresponds to assuming that individuals are distinguishable only if they dif-
fer with respect to properties definable by the language. As before, we assign a probability
to ¢ by computing the fraction of the structures that satisfy ¢ among those structures that
satisfy 0.!

Since we are computing probabilities over finite models, we have assumed that the domain
is {1, ..., N} for some N. However, we often do not know the precise domain size N. In
many cases, we know only that N is large. We therefore estimate the probability of ¢ given 6
by the asymptotic limit, as N grows to infinity, of this probability over models of size N.

Precisely the same definitions of asymptotic probability are used in the context of 0-1 laws
for first-order logic, but without allowing prior information 6. The original 0-1 law, proved
independently by Glebskil et al. [18] and Fagin [13], states that the asymptotic probability of
any first-order sentence ¢ with no constant or function symbols is either O or 1. This means
that such a sentence is true in almost all finite structures, or in almost none.

IThe random-worlds method considers what has been called in the literature labeled structures, while the random-
structures method considers unlabeled structures [8]. We choose to use our own terminology for the random-worlds
and random-structures methods, rather than the terminology of labeled and unlabeled. This is partly because we feel
it is more descriptive, and partly because there are other variants of the approach that are useful for our intended
application, and that do not fit into the standard labeled/unlabeled structures dichotomy (see [2]).

ASYMPTOTIC CONDITIONAL PROBABILITIES 3

Our work differs from the original work on 0-1 laws in two respects. The first is relatively
minor: we need to allow the use of constant symbols in ¢, as they are necessary when discussing
individuals (such as patients). Although this is a minor change, it is worth observing that it
has a significant impact. It is easy to see that once we allow constant symbols, the asymptotic
probability of a sentence ¢ is no longer either O or 1; for example, the asymptotic probability
of P(c) is % Moreover, once we allow constant symbols, the asymptotic probability under
random worlds and under random structures need not be the same. The more significant
difference, however, is that we are interested in the asymptotic conditional probability of ¢,
given some prior knowledge 6. That is, we want the probability of ¢ over the class of finite
structures defined by 6.

Some work has already been done on aspects of this question. Liogon’kii [31], and
independently Fagin [13], showed that asymptotic conditional probabilities do not necessarily
converge to any limit. Subsequently, 0-1 laws were proved for special classes of first-order
structures (such as graphs, tournaments, partial orders, etc.; see the overview paper [8] for
details and further references). In many cases, the classes considered could be defined in terms
of first-order constraints. Thus, these results can be viewed as special cases of the problem
that we are interested in: computing asymptotic conditional probabilities relative to structures
satisfying the constraints of a database. Lynch [32] showed that, for the random-worlds
method, asymptotic probabilities exist for first-order sentences involving unary functions,
although there is no 0-1 law. (Recall that the original O-1 result is specifically for first-order
logic without function symbols.) This can also be viewed as a special case of an asymptotic
conditional probability for first-order logic without functions, since we can replace the unary
functions by binary predicates, and condition on the fact that they are functions.

The most comprehensive work on this problem is the work of Liogon’kii [31].2 In
addition to pointing out that asymptotic conditional probabilities do not exist in general, he
shows that it is undecidable whether such a probability exists. (We generalize Liogon’kii’s
results for this case in [23].) He then investigates the special case of conditioning on formulas
involving unary predicates only (but no constants or equality). In this case, he proves that the
asymptotic conditional probability does exist and can be effectively computed, even if the left
side of the conditional, ¢, has predicates of arbitrary arity and equality. This gap between
unary predicates and binary predicates is somewhat reminiscent of the fact that first-order logic
over a vocabulary with only unary predicates (and constant symbols) is decidable, while if
we allow even a single binary predicate symbol, then it becomes undecidable [11], [29]. This
similarity is not coincidental; some of the techniques used to show that first-order logic over a
vocabulary with unary predicate symbols is decidable are used by us to show that asymptotic
conditional probabilities exist.

In this paper, we extend the results of Liogon’kii [31] for the unary case. We first prove
(in §3) that, if we condition on a formula involving only unary predicates, constants, and
equality that is satisfiable in arbitrarily large models, the asymptotic conditional probability
exists. We also present an algorithm for computing this limit. The main idea we use is the
following: to compute the asymptotic conditional probability of ¢ given 8, we examine the
behavior of ¢ in finite models of 8. It turns out that we can partition the models of € into a
finite collection of classes, such that ¢ behaves uniformly in any individual class. By this we
mean that almost all worlds in the class satisfy ¢ or almost none do; i.e., there is a 0-1 law
for the asymptotic probability of ¢ when we restrict attention to models in a single class. In
§3 we define these classes and prove the existence of a 0-1 law within each class. We also

%In an earlier version of this paper [21], we stated that, to our knowledge, no work had been done on the
general problem of asymptotic conditional probabilities. We thank Moshe Vardi for pointing out to us the work of
Liogon’kii [31].

4 ADAM J. GROVE, JOSEPH Y. HALPERN, AND DAPHNE KOLLER

TABLE 1
Complexity of asymptotic conditional probabilities.

Depth < 1 Restricted General case
Existence NP-complete | NEXPTIME-complete NEXPTIME-complete
Compute #P/PSPACE #EXP-complete #TA(EXP,LIN)-complete
Approximate | (co-)NP-hard | (co-)NEXPTIME-hard TA(EXP,LIN)-hard

show how the asymptotic conditional probability of ¢ given 6 can be computed using these
0-1 probabilities.

In §4 we turn our attention to the complexity of computing the asymptotic probability in
this case. Our results, which are the same for random worlds and random structures, depend
on several factors: whether the vocabulary is finite or infinite, whether there is a bound on
the depth of quantifier nesting, whether equality is used in 6, whether nonunary predicates
are used, and whether there is a bound on predicate arities. For a fixed and finite vocabulary,
there are just two cases: if there is no bound on the depth of quantifier nesting then computing
asymptotic conditional probabilities is PSPACE-complete, otherwise the computation can be
done in linear time. The case in which the vocabulary is not fixed (which is the case more
typically considered in complexity theory) is more complex. The results for this case are
summarized in Table 1. Perhaps the most interesting aspect of this table is the factors that
cause the difference in complexity between #EXP and #TA(EXP,LIN) (where #TA(EXP,LIN)
is the counting class corresponding to alternating Turing machines that take exponential time
and make only a linear number of alternations; a formal definition is provided in §4.5). If
we allow the use of equality in 8, then we need to restrict both ¢ and 6 to using only unary
predicates to get the #EXP upper bound. On the other hand, if 6 does not mention equality,
then the #EXP upper bound is attained as long as there is some fixed bound on the arity of the
predicates appearing in ¢. If we have no bound on the arity of the predicates that appear in
@, or if we allow equality in 0 and predicates of arity 2 in ¢, then the #EXP upper bound no
longer holds, and we move to #TA(EXP,LIN).

Our results showing that computing the asymptotic probability is hard can be extended to
show that finding a nontrivial estimate of the probability (i.e., deciding if it lies in a nontrivial
interval) is almost as difficult. The lower bounds for the arity-bounded case and the general
case require formulas of quantification depth 2 or more. For unquantified sentences or depth-
1 quantification, things seem to become an exponential factor easier. We do not have tight
bounds for the complexity of computing the degree of belief in this case; we have a #P lower
bound and a PSPACE upper bound. The results for depth 1 are not proved in this paper; see
[27] for details.

We observe that apart from our precise classification of the complexity of these problems,
our analysis provides an effective algorithm for computing the asymptotic conditional prob-
ability. The complexity of this algorithm is, in general, double-exponential in the number of
unary predicates used and in the maximum arity of any predicate symbol used; it is exponential
in the overall size of the vocabulary and in the lengths of ¢ and 6.

Our results are of more than purely technical interest. The random-worlds method is of
considerable theoretical and practical importance. We have already mentioned its relevance to
computing degrees of belief. There are well-known results from physics that show the close
connection between the random-worlds method and maximum entropy [25]. These results
say that in certain cases the asymptotic probability can be computed using maximum entropy
methods. Some formalization of similar results, but in a framework that is close to that of the
current paper, can be found in [33] and [22]. (These results are of far more interest when there
are statistical assertions in the language, so we do not discuss them here.)

ASYMPTOTIC CONDITIONAL PROBABILITIES 5

As we observe in [23] and [22], this connection relies on the fact that we are conditioning
on a unary formula. In fact, in almost all applications where maximum entropy has been used
(and where its application can be best justified in terms of the random-worlds method) the
knowledge base is described in terms of unary predicates (or, equivalently, unary functions
with a finite range). For example, in physics applications we are interested in such predicates
as quantum state (see [10]). Similarly, Al applications and expert systems typically use only
unary predicates [7] such as symptoms and diseases. In general, many properties of interest
can be expressed using unary predicates, since they express properties of individuals. Indeed,
a good case can be made that statisticians tend to reformulate all problems in terms of unary
predicates, since an event in a sample space can be identified with a unary predicate [36].
Indeed, in most cases where statistics are used, we have a basic unit in mind (an individual,
a family, a household, etc.), and the properties (predicates) we consider are typically relative
to a single unit (i.e., unary predicates). Thus, results concerning computing the asymptotic
conditional probability if we condition on unary formulas are significant in practice.

2. Definitions. Let ® be a set of predicate and function symbols, and let £L(®) (resp.,
L7 (P)) denote the set of first-order sentences over & with equality (resp., without equality).
To simplify the presentation, we begin by assuming that & is finite; the case of an infinite
vocabulary is deferred to §2.3. Much of the material in §§2.1 and 2.2 is taken from [23].

2.1. The random-worlds method. We begin by defining the random-worlds, or labeled,
method. Given a sentence £ € L(®), let #world% (&) be the number of worlds, or first-order
models, of £ over ® with domain {1, ..., N}. Note that the assumption that ® is finite is
necessary for #worldﬁ (&) to be well defined. Define

#worldy (¢ A)

w, P
Py 0 = oria® 6)

In [23], we proved the following proposition.

PROPOSITION 2.1. Let &, @’ be finite vocabularies, and let ¢, 6 be sentences in both L(P)
and L(®'). Then Pry®(p | 0) = Pr® (¢ | 6).

Thus, the value of Pr%’q)((p |) does not depend on the choice of ®. We therefore omit
reference to ¢ in Pr',‘\}’q)((p | 8), writing Pr}y (¢ | 0) instead.

We would like to define Prg, (¢ | 8) as the limit limy_, o, Pry (¢ |). There is a small
technical problem we have to deal with in this definition: we must decide what to do if
#worldﬁ (6) = 0, so that Pry (¢ | 6) is not well defined. In [23], we differentiate between
the case where Pry (¢ | 6) is well defined for all but finitely many N’s, and the case where it
is well defined for infinitely many N’s. As we shall show (see Lemma 3.30) this distinction
need not be made when 6 is a unary formula. Thus, for the purposes of this paper, we use the
following definition of well-definedness, which is simpler than that of [23].

DEFINITION 2.2. The asymptotic conditional probability according to the random-worlds
method, denoted Pr¥ (¢ | 6), is well defined if #world$,(8) # O for all but finitely many N. If
Pr (¢ | 0) is well defined, then we take Prly (¢ | 8) to denote limy_, o Pry (¢ |). 0

Note that for any formula ¢, the issue of whether Pr, (¢ | 0) is well defined is completely
determined by 6. Therefore, when investigating the question of how to decide whether such a
probability is well defined, it is often useful to ignore ¢. We therefore say that Pry, (x | 6) is
well defined if Priy (¢ | 0) is well defined for every formula ¢ (which is true iff Pry, (true | 0)
is well defined).

2.2. The random-structures method. As we explained in the introduction, the random-
structures method is motivated by the intuition that worlds that are indistinguishable within

6 ADAM J. GROVE, JOSEPH Y. HALPERN, AND DAPHNE KOLLER

the language should only be counted once. Thus, the random-structures method counts the
number of (unlabeled) structures, or isomorphism classes of worlds.

Formally, we proceed as follows. Given a sentence § € L(®), let #struct% (€) be the
number of isomorphism classes of worlds with domain {1, ..., N} over the vocabulary &
satisfying £. Note that since all the worlds that make up a structure agree on the truth value
they assign to &, it makes sense to talk about a structure satisfying or not satisfying &. We

#struct® (pAO
can then proceed, as before, to define Pri\’,<l> (p | 6) as —S;:':rc’” ng).
uct y (0)

conditional probability, denoted Pri,® (¢ |) in terms of Prf\;q’((p | 8), in analogy to the earlier
definition for random worlds. It is clear that #world% @) = 0iff #struct%(@) = 0, so that
well-definedness is equivalent for the two methods, for any ¢, 6.

PROPOSITION 2.3. For any 6 € L(®), Pry (x | 0) is well defined iﬁ’Pr;gD(* |) is well
defined.

As the following example, taken from [23], shows, for the random-structures method
the analogue to Proposition 2.1 does not hold; the value of Pr;‘,q) (¢ | 0), and even the value
of the limit, depends on the choice of ®. This example, together with Proposition 2.1, also
demonstrates that the values of conditional probabilities generally differ between the random-
worlds method and the random-structures method. By way of contrast, Fagin [14] showed that
the random-worlds and random-structures methods give the same answers for unconditional
probabilities, if we do not have constant or function symbols in the language.

Example 2.4. Suppose ® = {P}, where P is a unary predicate symbol. Let 6 be
J!x P(x) v —3x P(x) (where, as usual, “3!” means “exists a unique”), and let ¢ be Ix P(x).
For any domain size N, #structy(9) = 2. In one structure, there is exactly one element
satisfying P and N — 1 satisfying —P; in the other, all elements satisfy —=P. Therefore,
PrilP(p | 6) = 3.

Now, consider &' = {P, Q}, for a new unary predicate Q. There are 2N structures
where there exists an element satisfying P: the element satisfying P may or may not satisfy
Q, and of the N — 1 elements satisfying —P, any number between O and N — 1 may also
satisfy Q. On the other hand, there are N + 1 structures where all elements satisfy = P: any
number of elements between O and N may satisfy Q. Therefore, Prf(,q)/ (p10)= %, and
P |60) = 3.

We know that the asymptotic limit for the random-worlds method will be the same,
whether we use ® or ®’. Using ®, notice that the single structure where 3!x P(x) is true
contains N worlds (corresponding to the choice of element satisfying P), whereas the other
possible structure contains only one world. Therefore, Pry (¢ | 6) = 1. 0

Although the two methods give different answers in general, we shall see in the next
section that there are important circumstances under which they agree.

We define asymptotic

2.3. Infinite vocabularies. Up to now we have assumed that the vocabulary @ is finite.
As we observed, this assumption is crucial in our definitions of #world$, (&) and #struct (£).
Nevertheless, in many standard complexity arguments it is important that the vocabulary be
infinite. For example, satisfiability for propositional logic formulas is decidable in linear time
if we consider a single finite vocabulary; we need to consider the class of formulas definable
over some infinite vocabulary of propositional symbols to get NP-completeness.

How can we modify the random-worlds and random-structures methods to deal with
an infinite vocabulary Q2? The issue is surprisingly subtle. One plausible choice depends
on the observation that even if €2 is infinite, the set of symbols appearing in a given sentence
is always finite. We can thus do our computations relative to this set. More formally,
if Qyr¢ denotes the set of symbols in €2 that actually appear in ¢ A 6, we could define

Pr%’g(go |) = Prx’g“’“’(go | 6). Similarly, for the random-structures method, we could

ASYMPTOTIC CONDITIONAL PROBABILITIES 7

define Pr‘YI\‘,Q (| 6) = Pr}i‘,ﬂw (¢ | 6). The problem with this approach is that the values
given by the random-structures approach depend on the vocabulary, and it is easy to find two
equivalent sentences ¢ and ¢’ such that Q, # Q, and pri e (o | 8) # P (¢ | 9).
(A simple example of this phenomenon can be obtained by modifying Example 2.4 slightly.)
Thus, under this approach, the value of asymptotic conditional probabilities can depend on
the precise syntax of the sentences involved. We view this as undesirable, and so we focus on
the following two interpretations of infinite vocabularies.?

The first of these two alternative approaches treats an infinite vocabulary as a limit of
finite subvocabularies. Assume for ease of exposition that €2 is countable. Let €2, consist of
the first m symbols in €2 (using some arbitrary fixed ordering). We can then define Pr'I‘\}‘Q((p |
6) = limy— o0 Priy % (¢ |) (where we take Priy " (¢ | 0) to be undefined if ¢, 6 ¢ L(Q2)).*
Similarly, we can define Pri%(¢ | 6) = limy,_ oo Prj;,Q’" (¢ | 8). It follows from the results we
prove below that these limits are independent of the ordering of the symbols in the vocabulary.

The second interpretation is quite different. In it, although there may be an infinite
vocabulary €2 in the background, we assume that each problem instance comes along with
a finite vocabulary & as part of the input. Thus, in our infinite vocabulary 2, we may have
predicates that are relevant to medical diagnosis, physics experiments, automobile insurance,
etc. When thinking about medical applications, we use that finite portion @ of the infinite
vocabulary that is appropriate. In this approach, we always deal with finite vocabularies, but
ones whose size is potentially unbounded because we do not fix the relevant vocabulary in
advance.

In essence, the first approach can be viewed as saying that there really is an infinite
vocabulary, while the second approach considers there to be an infinite collection of finite
vocabularies (with no bound on the size of the vocabularies in the collection). The distinction
between these possibilities is not usually examined as closely as we have done here. This
is because the difference is rarely important. For example, propositional satisfiability is NP-
complete over an infinite vocabulary, no matter how we interpret “infinite.” In our context, the
difference turns out to be moderately significant. For random worlds, an argument based on
Proposition 2.1 shows the two approaches lead to the same answers (as does the approach that
we rejected where, when computing Pr%‘Q (¢ | 8), we restrict the vocabulary to ,,¢). On the
other hand, the two approaches can lead to quite different answers in the case of the random-
structures approach. It is important to point out, however, that the complexity of all problems
we consider turns out to be the same no matter which interpretation of “infinite” we use.

In fact, as we now show, according to the first approach the random-structures method and
the random-worlds method agree whenever we have an infinite vocabulary (and thus we have
an analogue to Fagin’s result [14] for the case of unconditional probabilities). A structure
of size N is an equivalence class of at most N! worlds, since there are at most N! worlds
isomorphic to a given world. We say that such a structure is rigid if it consists of exactly
N! worlds. It is easy to see that a structure is rigid just if every (nontrivial) permutation of
the domain elements in a world that makes up the structure produces a different world in that
structure. We say a world is rigid if the corresponding structure is.

Example 2.5. Let ® consist of a single unary predicate P, and consider the worlds over
the domain {1, 2, 3}. All worlds where the denotation of P contains exactly two elements
are isomorphic. Therefore, these worlds form a single structure S. There are three worlds in

3We note, however, that all our later complexity results concerning infinite vocabularies can be easily shown to
hold for the definition just discussed.

“4Here, we chose to take the limit on the vocabulary, and only then to take the limit on the domain size. We could,
however, have chosen to reverse the order of the limits, or to consider arbitrary joint limits of these two parameters.
The approach taken here seems to be the most well motivated in this framework.

8 ADAM J. GROVE, JOSEPH Y. HALPERN, AND DAPHNE KOLLER

S, corresponding to the possible denotations of P: {1, 2}, {1, 3}, {2, 3}. Therefore, S is not
rigid. In fact, it is easy to see that no structure over ® is rigid. Now, consider structures over
d’ = {P, Q}, where Q is a new unary predicate. The set of all worlds where the denotation
of P contains two elements no longer forms a structure over ®’. For example, one structure
S’ over @’ is the set of worlds where the denotations of P A Q, P A —=Q, and =P A Q each
contain one element. There are six worlds in &', corresponding to the possible permutations
of the three domain elements. Therefore, S’ is rigid. 0

This example demonstrates that increasing the vocabulary tends to cause rigidity. We
now formalize this intuition, and show its importance. Note that in the following definition
(and throughout the paper) all logarithms are taken to the base 2.

DEFINITION 2.6. We say that a vocabulary ® is sufficiently rich with respect to N if

(a) P contains at least ky constant symbols and ky > N 2 log N, or

(b) @ contains at least 7y unary predicate symbols and 7y > 3log N, or

(c) @ contains at least one nonunary predicate symbol. g

Fagin showed that if ® contains at least one nonunary predicate symbol, then the number
of worlds over ® of size N is asymptotically N! times the number of structures [14]. That
is, almost all structures are rigid in this case. We now generalize this result. Let rigid be an
assertion that is true only in rigid structures or rigid worlds; note that rigid cannot be expressed
in first-order logic. If F(N) and G(N) are two functions of N, we write F(N) ~ G(N) if
limy_ 00 F(N)/G(N) = 1.

THEOREM 2.7. Suppose that for every N, ® and Qp are disjoint finite vocabularies such
that Qy is sufficiently rich with respect to N. Then for any & € L(®D),

. 5, PUQy , .+ . _
lim P rigid | €)= 1.

provided that & is satisfiable for all sufficiently large domains. Hence, #worldzug” &) ~
N !#structf;ug” &).

Proof. We first prove the result under the additional assumptions that§ = true and ® = @.
We consider each of the three possibilities for sufficient richness separately, and for each case
we show that almost all structures are rigid. As we said above, the case where Qy contains
at least one nonunary predicate and § = true is Fagin’s result, so we need only consider the
remaining two cases.

Suppose & = true, ® = (J, and Qy contains xky constant symbols. Without loss of
generality, we can assume that these constants are the only symbols in 2y, because any
expansion of a rigid structure over Qy to a richer vocabulary will also be rigid. Consider
a structure S. All the worlds that make up S must agree on the equality relations between
the interpretations of the constants. That is, for any pair of constant symbols ¢ and ¢/, either
they are equal in all worlds that make up the structure or not equal in all of them. Thus, a
lower bound on the number of distinct structures over 2y is given by the number of ways of
partitioning kx objects into N or fewer equivalence classes. There is no closed form expression
for this number, but a simple lower bound is obtained by counting structures where the first N
constants denote distinct objects. There are N n—=N) such structures, because we must choose,
for each of the other constants, to which of the first N constants it is equal. It is easy to see
that if all or all but one of the elements in a structure (that is, in any of the worlds in that
structure) are denoted by some constant, then this structure is rigid. Hence, if a structure is
nonrigid, then two or more elements are not denoted by any constant. Thus, an upper bound
on the number of nonrigid structures is (N — 2)“¥. Therefore,

N —2)k~ 2\ *¥ .
P (vigid | rue) < SR =NV (12 %) < N

NKN—-N
This will tend to 0 if ky > N2log N.

ASYMPTOTIC CONDITIONAL PROBABILITIES 9

Next, suppose that £ = true, ® = (4, and Q2 contains 7y unary predicate symbols. As
before, we can assume that these predicates comprise all of Q. Consider a structure S and
a world W in the isomorphism class making up that structure. These my unary predicates
partition the domain of W into 27 cells, according to the subset of predicates satisfied by each
of the domain elements. Notice that the predicates actually partition each of the isomorphic
worlds in s in the same way (in that corresponding elements of the partition have the same
size). Thus, a lower bound on the number of distinct structures over & is the number of ways
of allocating N indistinguishable elements into 27" distinguishable cells, which is (*" V7).
Clearly, a structure is nonrigid if and only if some element of the partition contains more
than one domain element. Thus, an upper bound on the number of nonrigid structures can
be obtained by counting the number of structures over N — 1 elements, then choosing one of
the these elements to be a “double” element, representing two elements. This can be done in
(N = D" N~?) ways. Therefore,

WN-DC"N) NN

(2”N-|}:,N-1) = 28 4+ N —1°

Prj(,g” (—rigid | true) <

This tends to zero if 2°¥ /N?> — 0o as N grows, which is ensured by the assumption wy >
3logN.

Finally, we drop the assumptions that § = true and ® = . Given a structure over Qy, we
can choose the denotation for the predicates in ® in any way that satisfies . It is easy to verify
that if the original structure is rigid, all such choices lead to distinct structures. Therefore,

#structy N (rigid A £) > #structsy” (rigid) - #world® (€) .
On the other hand, clearly
#structy N (—rigid A £) < #structy” (—rigid) - #world? (€) .
The second factor is the same in both these bounds, and therefore
P, (rigid | £) > Pr™ (rigid | true) .

From our results for &€ = true and ® = @ we conclude that limy_ o Prj(,q’UQ”
(rigid | &) = 1. O

We also need to prove an analogous result for the random-worlds method. Note that
while, if we restrict to formulas in £(®), the answers given by the random-worlds method
are independent of the vocabulary, the predicate rigid has a special definition in terms of the
random-structures method, and so rigidity may well depend on the vocabulary. Thus, in the
next result, we are careful to mention the vocabulary being used.

COROLLARY 2.8. Suppose that for every N, ® and Qy are disjoint finite vocabularies
such that Qy is sufficiently rich with respect to N. Then for any & € L(D),

lim Priy®“*(rigid | §) = 1,
N—l—l>noo N (rigid | §)
provided that € is satisfiable in all sufficiently large domains.

Proof. Any rigid structure with domain size N that satisfies £ corresponds to N! worlds.
On the other hand, nonrigid structures correspond to fewer than N! worlds. It follows that
the proportion of worlds satisfying & that are rigid is at least as great as the proportion of

structures satisfying & that are rigid. Since the latter proportion is asymptotically 1, so is the
former.]

10 ADAM J. GROVE, JOSEPH Y. HALPERN, AND DAPHNE KOLLER

Our main use of this theorem is in the following two corollaries. The first shows that
when the vocabulary is infinite (and therefore sufficiently rich) the random-worlds and random-
structures methods coincide. The second corollary shows that the same thing happens when
the vocabulary is sufficiently rich because of a high-arity predicate, as long as this predicate
does not appear in the formula we are conditioning on.

COROLLARY 2.9. Suppose that Q2 is infinite and ¢, 0 € L(2). Then

@) Pry®(p | 0) ~ Pryf(p | 0),

(b) Prs%(p | 0) = Prif(p |).

Proof. Fix N, and let 2,, be the first m symbols in some enumeration of Q. We will
be interested in the limit as m — o0, so without loss of generality assume that m >
N%log N+|Qyng|. Clearly 2, — 2, g is sufficiently rich with respect to N, so by Theorem 2.7,
almost all structures are rigid. Since a rigid structure over a domain of size N consists of N'!
worlds, we get:

prti e | g1 HWOrld " (g £ 0) _ tstructiy ™ (g 1 6)
Y #world%“gug’") #s,mct%mewm ©)
= Pry ™™ (o | 6).

Since this holds for any sufficiently large m, it certainly holds at the limit. This proves part
(a). Part (b) follows easily. a

We can easily strengthen part (a) and prove that we actually have Pr',‘\}’Q (p|0) = Prf(,Q (o |
0), for all N. Since we do not need this result in this paper, we omit the proof here. We remark
that this result also holds for much richer languages; we did not use the fact that we were
dealing with first-order logic anywhere in the proof.

COROLLARY 2.10. Suppose that ¢, 0 € L(®) where ® contains some nonunary predicate
symbol that does not appear in 6. Then Pry (¢ |) = P2 (¢ | 6).

Proof. Using the rules of probability theory, we know that

PP (¢ | 0) = PriP (¢ | O Arigid)-Pril (rigid | 0)+Pri (¢ | O A—rigid) P (—rigid | 6),

if all limits exist. Because of the high-arity predicate, ® — &y is sufficiently rich with respect
toany N. Therefore, by Theorem 2.7, we deduce that Prs,® (rigid | 8) = 1 and P, (—rigid |
) = 0. Thus

Pl (¢ 1 6) =P’ (¢ | 6 Arigid) .
Using Corollary 2.8 instead of Theorem 2.7, we can similarly show
Pr2® (¢ | 6) = Prs®(¢ | 6 A rigid) .
Because of rigidity,
Pri% (¢ | 6 A rigid) = Pr;® (¢ | 6 A rigid).
The result now follows immediately. 0

3. Asymptotic probabilities. We begin by defining some notation that will be used
consistently throughout the rest of the paper. We use ® to denote a finite vocabulary, which
may include nonunary as well as unary predicate symbols and constant symbols. We take P
to be the set of all unary predicates in @, C to be the set of all constant symbols in ®, and
define ¥ = P UC. Finally, if ¢ is a formula, we use ®, to denote those symbols in & that
appear in ¢; we can similarly define C,, P, and W,,.

ASYMPTOTIC CONDITIONAL PROBABILITIES 11

Our goal is to show how to compute asymptotic conditional probabilities. Aswe explained
in the introduction, the main idea is the following. To compute Pri, (¢ | 8), we partition the
models of 6 into a finite collection of classes, such that ¢ behaves uniformly in any individual
class, that is, there is a 0-1 law for the asymptotic probability of ¢ when we restrict attention
to models in a single class. Computing Prl) (¢ | 8) reduces to first identifying the classes,
computing the relative weight of each class (which is required because the classes are not
necessarily of equal relative size), and then deciding, for each class, whether the asymptotic
probability of ¢ is zero or one. In this section we deal with the logical aspects of this process;
namely, showing how to construct an appropriate partition into classes. In the next section,
we use results from this section to construct algorithms that compute asymptotic probabilities,
and examine the complexity of these algorithms.

For most of this section, we will concentrate on the asymptotic probability according to
random worlds. In §3.5 we discuss the modifications needed to deal with random structures,
which are relatively minor.

3.1. Unary vocabularies and atomic descriptions. The success of the approach out-
lined above depends on the lack of expressivity of unary languages. In this section we show
that sentences in £L(W) can only assert a fairly limited class of constraints. For instance, one
corollary of our general result will be the well-known theorem that, if 6 € L(W) is satisfiable
at all, it is satisfiable in a “small” model, one of size at most exponential in the size of the 6.
(See [1] for a proof of this result and further historical references.)

We start with some definitions.

DEFINITION 3.1. Given a vocabulary & and a finite set of variables X', a complete de-
scription D over ® and X is an unquantified conjunction of formulas such that

e for every predicate R € ® U {=} of arity m, and for every z;,...,2, € CUX, D
contains exactly one of R(z;, ..., zm) Or = R(zy, ..., Zw) as a conjunct;
e D is consistent.” 0

We can think of a complete description as being a formula that describes as fully as
possible the behavior of the predicate symbols in & over the constant symbols in @ and the
variables in X.

We can also consider complete descriptions over subsets of ®. The case when we look
just at the unary predicates and a single variable x will be extremely important.

DEFINITION 3.2. Let P be {Py, ..., P;}. An atom over P is a complete description over
‘P and some variable {x}. More precisely, it is a conjunction of the form P;(x) A ... A P[(x),
where each P/ is either P; or —P;. Since the variable x is irrelevant to our concerns, we

typically suppress it and describe an atom as a conjunction of the form P A ... A P[. 0
Note that there are 2 = 27! atoms over P, and that they are mutually exclusive and
exhaustive. We use Aj, ..., Ay» to denote the atoms over P, listed in some fixed order.

For example, there are four atoms over P = {P;, P,}: Aj = Pi A Py, Ay = Py A =P,
A3 ==P APy, Ay =—P, A—P;.

We now want to define the notion of atomic description which is, roughly speaking, a
maximally expressive formula in the unary vocabulary W. Fix a natural number M. A size
M atomic description consists of two parts. The first part, the size description with bound M,
specifies exactly how many elements in the domain should satisfy each atom A;, except that
if there are M or more elements satisfying the atom it only expresses that fact, rather than
giving the exact count. More formally, given a formula £ (x) with a free variable x, we take
3" x £(x) to be the sentence that says there are precisely m domain elements satisfying &:

SInconsistency is possible because of the use of equality. For example, if D includes z; = z, as well as both
R(z1, z3) and = R(z3, z3), it is inconsistent.

12 ADAM J. GROVE, JOSEPH Y. HALPERN, AND DAPHNE KOLLER

I"x £(x) =aer 3x1 ... Xm (/\ (»S(xi) A N\ # x,-)) AVYED) = Vi(y = xi))) :
i J#i

Similarly, we define 32" x £(x) to be the formula that says that there are at least m domain
elements satisfying &:

F"x E(x) =get Ix1 -+ Xm (/\ (s(xo A NG # x»)) :
i j#

DEFINITION 3.3. A size description with bound M (over P) is a conjunction of 27!
formulas: for each atom A; over P, it includes either 32Mx A;(x) or a formula of the form
I"x A;(x) forsome m < M. a

The second part of an atomic description is a complete description that specifies the
properties of constants and free variables.

DEFINITION 3.4. A size M atomic description (over ¥ and X) is a conjunction of:

e a size description with bound M over P, and
e a complete description over ¥ and X. a

Note that an atomic description is a finite formula, and there are only finitely many
size M atomic descriptions over W and X (for fixed M). For the purposes of counting atomic
descriptions (as we do in §3.4), we assume some arbitrary but fixed ordering of the conjuncts in
an atomic description. Under this assumption, we cannot have two distinct atomic descriptions
that differ only in the ordering of conjuncts. Given this, it is easy to see that atomic descriptions
are mutually exclusive. Moreover, atomic descriptions are exhaustive—the disjunction of all
consistent atomic descriptions of size M is valid.

Example 3.5. Consider the following size description o with bound 4 over P = { P, P,}:

Ix A1(x) A Px Ay(x) A FF4x Asz(x) A T4 As(x).

Let W = { Py, Py, c1, 2, c3}. Itis possible to augment o into an atomic description in many
ways. For example, one consistent atomic description v, of size 4 over ¥ and @ (no free
variables) is:6

o A Ajx(cr) A Az(cr) A As(es) Act #F ca Act # ¢3 Aca = cs.
On the other hand, the atomic description
o ANA(c) ANA(@) NAs(@3)Acr#F o AcrF s Aey # 3

is an inconsistent atomic description, since o dictates that there is precisely one element in the
atom A;, whereas the second part of the atomic description implies that there are two distinct
domain elements in that atom. a0

As we explained, an atomic description is, intuitively, a maximally descriptive sentence
over a unary vocabulary. The following theorem formalizes this idea by showing that each
unary formula is equivalent to a disjunction of atomic descriptions. For a given M and set X’
of variables, let A}, » be the set of consistent atomic descriptions of size M over W and X.

DEFINITION 3.6. Let d(£) denote the depth of quantifier nesting in §. We define d(§) by
induction on the structure of £ as follows:

SIn our examples, we use the commutativity of equality in order to avoid writing down certain superfluous
disjuncts. In this example, for instance, we do not write down both ¢ # ¢3 and ¢; # c).

ASYMPTOTIC CONDITIONAL PROBABILITIES 13

e d(&) = 0 for any atomic formula &,

o d(—§) =d(§),

o d(§1 A &) =d(§ V&) =max(d (), d(62)),
e d(Vy§) =d@y§) =d(¢) + 1. 0

THEOREM 3.7. If & is a formula in L(V) whose free variables are contained in X, and
M > d(§) + [C| + |X|, then there exists a set of atomic descriptions Ay C Ay, » such that
& is equivalent to \/wEA;u V.

Proof. We proceed by a straightforward induction on the structure of £. We assume
without loss of generality that & is constructed from atomic formulas using only the operators
A, =, and 3.

First suppose that § is an atomic formula. That is, § is either of the form P(z) or of the
form z = 7/, for z, 7/ € C U X. In this case, either the formula £ or its negation appears as a
conjunct in each atomic description ¥ € Ay .. Let Ay be those atomic descriptions in which
& appears as a conjunct. Clearly, & is inconsistent with the remaining atomic descriptions.
Since the disjunction of the atomic descriptions in Az' is valid, we obtain that £ is equivalent
to \/1// e .A;" v.

If £ is of the form & A &, then by the induction hypothesis, & is equivalent to the
disjunction of a set Ag‘: c A‘A'}’ v fori = 1,2. Clearly £ is equivalent to the disjunction of
the atomic descriptions in .4 N AY. (Recall that the empty disjunction is equivalent to the
formula false.)

If £ is of the form —& then, by the induction hypothesis, &’ is equivalent to the disjunction
of the atomic descriptions in .Agf. It is easy to see that £ is the disjunction of the atomic
descriptions in A%, = Ay , — Ay

Finally, we consider the case that & is of the form 3y &’. Recall that M > d(§) +|C|+|X|.
Since d(&’) = d(§) — 1, it is also the case that M > d(§') + |C| + |X U {y}|. By the
induction hypothesis, &’ is therefore equivalent to the disjunction of the atomic descriptions
in AY. Clearly £ is equivalent to 3y Vye AY Y, and standard first-order reasoning shows that

dy Vye AY ¥ is equivalent to V¢ AY dy ¢. Since Ag‘f - Aﬁy XUy} it suffices to show that for

each atomic description ¥ € Ay, y,)» 3y ¥ is equivalent to an atomic description in Ay .

Consider some ¥ € A){’L xutyys We can clearly pull out of the scope of 3y all the conjuncts
in v that do not involve y. It follows that 3y ¥ is equivalent to ¥’ A 3y ¢, where " is a
conjunction of A(y), where A is an atom over P, and formulas of the form y = zand y # z. It
is easy to see that v/’ is a consistent atomic description over W and X of size M. To complete
the proof, we now show that ¥’ A 3y ¥” is equivalent to y’. There are two cases to consider.
First suppose that ¥ contains a conjunct of the form y = z. Let ¥"[y/z] be the result of
replacing all free occurrences of y in ¥” by z. Standard first-order reasoning (using the fact
that v¥"'[y/z] has no free occurrences of y) shows that ¥"[y/z] is equivalent to 3y ¥"[y/z],
which is equivalent to 3y ¥”. Since v is a complete atomic description which is consistent
with ", it follows that each conjunct of ¥"[y/z] (except z = z) must be a conjunct of ',
so ¢’ implies ¥"[y/z]. It immediately follows that ¢’ is equivalent to ¥’ A 3y ¢” in this
case. Now suppose that there is no conjunct of the form y = z in ¥”. In this case, 3y " is
certainly true if there exists a domain element satisfying atom A different from the denotations
of all the symbols in X U C. Notice that ¥ implies that there exists such an element, namely,
the denotation of y. However, ¥’ must already imply the existence of such an element since
¥’ must force there to be enough elements satisfying A to guarantee the existence of such an
element. (We remark that it is crucial for this last part of the argument that M > |X|+1+4|C|.)
Thus, we again have that ' is equivalent to Y’ A 3y ¢". It follows that 3y is equivalent to
a consistent atomic description in Az’ > namely V¥’', as required. O

14 ADAM J. GROVE, JOSEPH Y. HALPERN, AND DAPHNE KOLLER

For the remainder of this paper we will be interested in sentences. Thus, we restrict
attention to atomic descriptions over W and the empty set of variables. Moreover, we assume
that all formulas mentioned are in fact sentences, and have no free variables.

DEFINITION 3.8. For ¥ = P U(, and a sentence £ € L(¥), we define .A;" to be the set
of consistent atomic descriptions of size d(§) + |C| over W such that £ is equivalent to the
disjunction of the atomic descriptions in Ay’. 0

It will be useful for our later results to prove a simpler analogue of Theorem 3.7 for
the case where the sentence & does not use equality or constant symbols. A simplified atomic
description over P is simply a size description with bound 1. Thus, it consists of a conjunction
of 2'7! formulas of the form 3='x A;(x) or 3% A; (x), one for each atom over P. Using the
same techniques as those of Theorem 3.7, we can prove the following theorem.

THEOREM 3.9. If £ € L™ (P), then & is equivalent to a disjunction of simplified atomic
descriptions over P.

Proof. The proof is left to the reader. 0

3.2. Named elements and model descriptions. Recall that we are attempting to divide

the worlds satisfying 6 into classes such that:

e ¢ is uniform in each class, and

o the relative weight of the classes is easily computed.
In the previous section, we defined the concept of atomic description, and showed that a
sentence 6 € L(W) is equivalent to some disjunction of atomic descriptions. This suggests
that atomic descriptions might be used to classify models of 6. Liogon’kii [31] has shown that
this is indeed a successful approach, as long as we consider languages without constants and
condition only on sentences that do not use equality. In Theorem 3.9 we showed that, for such
languages, each sentence is equivalent to the disjunction of simplified atomic descriptions.
The following theorem, due to Liogon’kii, says that classifying models according to which
simplified atomic description they satisfy leads to the desired uniformity property. This result
will be a corollary of a more general theorem that we prove later.

PROPOSITION 3.10. [31] Suppose thatC = @. If ¢ € L(D) and ¥ is a consistent simplified
atomic description over P, then Pre,. (¢ |) is either O or 1.

If C # 0, then we do not get an analogue to Proposition 3.10 if we simply partition the
worlds according to the atomic description they satisfy. For example, consider the atomic
description v, from Example 3.5, and the sentence ¢ = R(c, ¢;) for some binary predicate
R. Clearly, by symmetry, Prg (¢ | ¥,) = 1/2, and therefore ¢ is not uniform over the worlds
satisfying .. We do not even need to use constant symbols, such as c;, to construct such
counterexamples. Recall that the size description in v, included the conjunct 3'x A;(x). So
if ¢’ = 3x (A1 (x) A R(x, x)) then we also get Pry (¢ | ¥,) = 1/2.

The general problem is that, given v, ¢ can refer “by name” to certain domain elements
and thus its truth can depend on their properties. In particular, ¢ can refer to domain elements
that are denotations of constants in C as well as to domain elements that are the denotations
of the “fixed-size” atoms—those atoms whose size is fixed by the atomic description. In the
example above, we can view “the x such that A;(x)” as a name for the unique domain element
satisfying atom A;. In any model of v, we call the denotations of the constants and elements
of the fixed-size atoms the named elements of that model. The discussion above indicates
that there is no uniformity theorem if we condition only on atomic descriptions, because an
atomic expression does not fix the denotations of the nonunary predicates with respect to the
named elements. This analysis suggests that we should augment an atomic description with
complete information about the named elements. This leads to a finer classification of models
which does have the uniformity property. To define this classification formally, we need the
following definitions.

ASYMPTOTIC CONDITIONAL PROBABILITIES 15

DEFINITION 3.11. The characteristic of an atomic description ¥ of size M is a tuple Cy,
of the form ((f1, g1), ..., (fam1, ga71)), Where
e f; = m if exactly m < M domain elements satisfy A; according to v,
e f; = x if at least M domain elements satisfy A; according to v,
e g; is the number of distinct domain elements which are interpretations of elements
in C that satisfy A; according to . O

Note that we can compute the characteristic of ¥ immediately from the syntactic form
of .

DEFINITION 3.12. Suppose Cy = ((f1, &1), ..., (fam1, gam)) is the characteristic of .
We say that an atom A; is active in ¥ if f; = *; otherwise A; is passive. Let A(y) be the set
{i : A;isactive in ¥}. 0

We can now define named elements.

DEFINITION 3.13. Given an atomic description { and amodel W of Y, the named elements
in W are the elements satisfying the passive atoms and the elements that are denotations of
constants.

The number of named elements in any model of y is

v = Y gt Y fi

i€A(Y) igA®Y)

where Cy = ((f1, &1), - .., (fami, gam1)), as before. a

As we have discussed, we wish to augment i with information about the named elements.
We accomplish this using the following notion of model fragment which is, roughly speaking,
the projection of a model onto the named elements.

DEFINITION 3.14. Let ¥ = o A D for a size description o and a complete description D
over V. A modelfragment for iy is amodel over the vocabulary ® withdomain {1, ..., v(y)}
such that:

e V satisfies D, and
e V satisfies the conjuncts in o defining the sizes of the passive atoms. O

We can now define what it means for a model W to satisfy a model fragment V.

DEFINITION 3.15. Let W be a model of v, and let iy, ...,i,y) € {1,..., N} be the
named elements in W, where i; < i < --- < i,y). The model W is said to satisfy the
model fragment V if the function F(j) = i; from the domain of V to the domain of W
is an isomorphism between)V and the submodel of W formed by restricting to the named
elements. d

Example 3.16. Consider the atomic description v, from Example 3.5. Its characteristic
Cy, is ((1,0), (3, 1), (x, 1), (*, 0)). The active atoms are thus A3 and A;. Note that g3 = 1
because ¢, and c3 are constrained to denote the same element. Thus, the number of named
elements v(y,) in a model of ¥, is 1 + 3 + 1 = 5. Therefore each model fragment for v,
will have domain {1, 2, 3, 4, 5}. The elements in the domain will be the named elements;
these correspond to the single element in A}, the three elements in A,, and the unique element
denoting both ¢, and c3 in As.

Let ® be{Py, P, ¢y, 2, c3, R} where R is a binary predicate symbol. One possible model
fragment V, for v, over ® gives the symbols in & the following interpretation:

c})*=4, c;}*:3, c;j’*=3,
P’ =1{1,2,45), P ={1,3), R™={(1,3),34)

Itis easy to verify that)V, satisfies the properties of the constants as prescribed by the description
D in v, as well as the two conjuncts 3'x A;(x) and 3*x A,(x) in the size description in v,.

16 ADAM J. GROVE, JOSEPH Y. HALPERN, AND DAPHNE KOLLER

Now, let W be a world satisfying ,, and assume that the named elements in W are
3,8,9, 14, 17. Then W satisfies V, if this 5-tuple of elements has precisely the same properties
in W as the 5-tuple 1, 2, 3, 4, 5 does in V. 0

Although a model fragment is a semantic structure, the definition of satisfaction just given
also allows us to regard it as a logical assertion that is true or false in any model over ® whose
domain is a subset of the natural numbers. In the following, we use this view of a model
description as an assertion frequently. In particular, we freely use assertions which are the
conjunction of an ordinary first-order ¥ and a model fragment V, even though the result is not
a first-order formula. Under this viewpoint it makes perfect sense to use an expression such
asPry (¢ | ¥ A V).

DEFINITION 3.17. A model description augmenting ¥ over the vocabulary ® is a conjunc-
tion of ¥ and a model fragment V for v over ®. Let M®(v) be the set of model descriptions
augmenting . (If ® is clear from context, we omit the subscript and write M () rather than
M), a

It should be clear that model descriptions are mutually exclusive and exhaustive. More-
over, as for atomic descriptions, each unary sentence 6 is equivalent to some disjunction of
model descriptions. From this, and elementary probability theory, we conclude the following
fact, which forms the basis of our techniques for computing asymptotic conditional probabil-
ities.

PROPOSITION 3.18. For any ¢ € L(P) and 0 € L(V)

Py l0)= D, D Pa@lvAV) P AVIe),
veAy WAVIEM®)

if all limits exist.

As we show in the next section, model descriptions have the uniformity property so the
first term in the product will always be either O or 1.

It might seem that the use of model fragments is a needless complication and that any
model fragment, in its role as a logical assertion, will be equivalent to some first-order sentence.
Consider the following definition.

DEFINITION 3.19. Let n = v(y). The complete description capturing V, denoted Dy, is
a formula that satisfies the following:’

e Dy is a complete description over ® and the variables {xi, ..., x,} (see Defini-
tion 3.1),

o foreachi # j, Dy contains a conjunct x; # x;, and

e V satisfies Dy when i is assigned to x; foreachi =1,...,n. a

Example 3.20. The complete description Dy, capturing the model fragment V, from
the previous example has conjuncts such as P;(x;), —=P;(x3), R(x;,x3), =R(xy, x2), and
X4 = C1. 0

The distinction between a model fragment and the complete description capturing it is
subtle. Clearly if a model satisfies V, then it also satisfies 3xy, . . ., x, Dy. The converse is not
necessarily true. A model fragment places additional constraints on which domain elements
are denotations of the constants and passive atoms. For example, a model fragment might
entail that, in any model over the domain {1, ..., N}, the denotation of constant c; is less
than that of c¢,. Clearly, no first-order sentence can assert this. The main implication of this
difference is combinatorial; it turns out that counting model fragments (rather than the complete
descriptions that capture them) simplifies many computations considerably. Although we
typically use model fragments, there are occasions where it is important to remain within

"Note that there will, in general, be more than one complete description capturing V. We choose one of them
arbitrarily for Dy,.

ASYMPTOTIC CONDITIONAL PROBABILITIES 17

first-order logic and use the corresponding complete descriptions instead. For instance, this is
the case in the next subsection. Whenever we do this we will appeal to the following result,
which is easy to prove.

PROPOSITION 3.21. For any ¢ € L(®) and model description v AV over ®, we have

Pr&((p | 'g/f N V) = Pl‘g}o((p | 'g/f Adxg, ... s Xv(y) Dy)).
Proof. The proof is left to the reader. O

3.3. A conditional 0-1 law. In the previous section, we showed how to partition 6 into
model descriptions. We now show that ¢ is uniform over each model description. That is, for
any sentence ¢ € L£(&P) and any model description ¥ A V, the probability Pry (¢ | ¥ A V)
is either O or 1. The technique we use to prove this is a generalization of Fagin’s proof of
the 0-1 law for first-order logic without constant or function symbols [13]. This result states
that if ¢ is a first-order sentence in a vocabulary without constant or function symbols, then
Pl (¢) is either O or 1.8 It is well known that we can get asymptotic probabilities that are
neither O nor 1 if we use constant symbols, or if we look at general conditional probabilities.
However, in the special case where we condition on a model description there is still a 0-1
law. Throughout this section let ¢ A V be a fixed model description with at least one active
atom, and let n = v(y) be the number of named elements according to .

As we said earlier, the proof of our 0-1 law is based on Fagin’s proof. Like Fagin,
our strategy involves constructing a theory T which, roughly speaking, states that any finite
fragment of a model can be extended to a larger fragment in all possible ways. We then prove
two propositions.

1. T is complete; that is, for each ¢ € L(®P), either T = ¢ or T |= —¢. This result, in
the case of the original 0-1 law, is due to Gaifman [16].
2. Forany ¢ € L(P),if T =g thenPry (¢ |y AV) = 1.
Using the first proposition, for any sentence ¢, either T = ¢ or T = —¢. Therefore, using
the second proposition, either Priy (¢ | ¥ A V) = 1 or Pre (—¢ | ¥ AV) = 1. The latter case
immediately implies that Pry, (¢ | ¥ A V) = 0. Thus, these two propositions suffice to prove
the conditional 0-1 law.

We begin by defining several concepts which will be useful in defining the theory T.

DEFINITION 3.22. Let X’ 2 X, let D be a complete description over ® and X, and let D’
be a complete description over ® and X”. We say that D’ extends D if every conjunct of D is
a conjunct of D’. O

The core of the definition of T is the concept of an extension axiom, which asserts that
any finite substructure can be extended to a larger structure containing one more element.

DEFINITION 3.23. Let X = {xy, ..., x;} for some k, let D be a complete description over
® and X, and let D’ be any complete description over & and X' U {x;,} that extends D. The
sentence

VX, X2, ... s Xj (D= Elxj+1D’)

is an extension axiom. 0

In the original 0-1 law, Fagin considered the theory consisting of all the extension axioms.
In our case, we must consider only those extension axioms whose components are consistent
with v, and which extend D»,.

8 As we noted in the introduction, the 0-1 law was first proved by Glebskii et al. [18). However, it is Fagin’s proof
technique that we are using here.

18 ADAM J. GROVE, JOSEPH Y. HALPERN, AND DAPHNE KOLLER

DEFINITION 3.24. Given ¢y A V, we define T to consist of ¥ A 3xq, ..., x, Dy together
with all extension axioms

Vxi, X2, ..., % (D= 3x;41 D)

in which D (and hence D’) extends Dy and in which D’ (and hence D) is consistent
with ¢. 0

We have used Dy rather than V in this definition so that T is a first-order theory. Note
that the consistency condition above is not redundant, even given that the components of an
extension axiom extend Dy,. However, inconsistency can arise only if D’ asserts the existence
of a new element in some passive atom (because this would contradict the size description
in ¥).

We now prove the two propositions that imply the 0-1 law.

PROPOSITION 3.25. The theory T is complete.

Proof. The proof is based on a result of Lo§ and Vaught [40] which says that any first-
order theory with no finite models, such that all of its countable models are isomorphic, is
complete. The theory T obviously has no finite models. The fact that all of its countable
models are isomorphic follows by a standard “back and forth” argument. That is, let/ and U’
be countable models of 7. Without loss of generality, assume that both models have the same
domain D = {1,2,3,...}. We must find a mapping F : D — D which is an isomorphism
between U and U’ with respect to ®.

We first map the named elements in both models to each other, in the appropriate way.
Recall that T contains the assertion 3xy, ..., x, Dy. Since Y = T, there must exist domain
elements di, ..., d, € D that satisfy Dy, under the model /. Similarly, there must exist
corresponding elements d, ..., d, € D that satisfy Dy under the model U’. We define the
mapping F so that F(d;) = d; fori = 1,...,n. Since Dy is a complete description over
these elements, and the two substructures both satisfy Dy, they are necessarily isomorphic.

In the general case, assume we have already defined F over some j elements
{di,d>,...,d;} € D so that the substructure of U/ over {di, ..., d;} is isomorphic to the
substructure of U’ over {d], ..., dj’.}, where d] = F(d;) fori =1, ..., j. Because both sub-
structures are isomorphic there must be a description D that is satisfied by both. Since we
began by creating a mapping between the named elements, we can assume that D extends
Dy,. We would like to extend the mapping F so that it eventually exhausts both domains. We
accomplish this by using the even rounds of the construction (the rounds where j is even) to
ensure that I/ is covered, and the odd rounds to ensure that I/’ is covered. More precisely, if j
is even, let d be the first element in D whichisnotin {dy, ..., d;}. There is amodel description
D’ extending D that is satisfied by d, ..., d;,d in /4. Consider the extension axiom in T
asserting that any j elements satisfying D can be extended to j + 1 elements satisfying D’.
Since U’ satisfies this axiom, there exists an element d’ inl{’ such thatdj, .. ., dj’., d’ satisfy D’.
We define F'(d) = d'. Itis clear that the substructure of I{ over {d,, ..., d;, d} is isomorphic
to the substructure of U’ over {d/, ..., d]’., d’}. If j is odd, we follow the same procedure,
except that we find a counterpart to the first domain element (in ¢/") which does not yet have
a pre-image in Y. It is easy to see that the final mapping F is an isomorphism between U
and U'. O

PROPOSITION 3.26. For any ¢ € L(®), if T = ¢ thenPri (¢ | ¥ AV) = L.

Proof. We begin by proving the claim for a sentence £ € T. By the construction of
T, & is either ¥ A 3xyq, ..., x, Dy or an extension axiom. In the first case, Proposition 3.21
trivially implies that Pry, (§ | ¥ A V) = 1. The proof for the case that £ is an extension
axiom is based on a straightforward combinatorial argument, which we briefly sketch. Recall
that one of the conjuncts of ¥ is a size description o. The sentence ¢ includes two types of

ASYMPTOTIC CONDITIONAL PROBABILITIES 19

conjuncts: those of the form 3"x A(x) and those of the form 32 x A(x). Let ¢’ be o with
the conjuncts of the second type removed. Let v’ be the same as ¥ except that o’ replaces
o. It is easy to show that Prfo(EI?M x A(x) | ¥/ AV) = 1 for any active atom A, and so
Py, (¥ | ' AV) = 1. Since ¢ = v, by straightforward probabilistic arguments, it suffices
to show that Prig (€ | ' A V) = 1.

Suppose £ is an extension axiom involving D and D’, where D is a complete descrip-
tion over X = {xy,...,x;} and D’ is a description over X U {x;,} that extends D. Fix
a domain size N, and some particular j domain elements dj, ..., d; that satisfy D. Ob-
serve that, since D extends Dy, all the named elements are among di, ..., d;. For a given
d & {di,...,d;}, let B(d) denote the event that dy, ..., d;, d satisfies D', conditioned on
¥’ A'V. The probability of B(d), given that d,, ..., d; satisfies D, is typically very small but
is bounded away from O by some S independent of N. To see this, note that D’ is consis-
tent with ¢ A V (because D’ is part of an extension axiom) and so there is a consistent way
of choosing how d is related to di, ..., d; so as to satisfy D’. Then observe that the total
number of possible ways to choose d’s properties (as they relate to dy, ..., d;) is indepen-
dent of N. Since D extends Dy, the model fragment defined over the elements dj, ..., d;
satisfies ¥’ A V. (Note that it does not necessarily satisfy ¥, which is why we replaced
with ¥".) Since the properties of an element d and its relation to di, ..., d; can be chosen
independently of the properties of a different element d’, the different events B(d), B(d'), . ..
are all independent. Therefore, the probability that there is no domain element at all that,
together with di, ..., d;, satisfies D’ is at most (1 — 8)V=/. This bounds the probability of
the extension axiom being false, relative to fixed di, ..., d;. There are exactly (17) ways of
choosing j elements, so the probability of the axiom being false anywhere in a model is at
most (7)(1 — B)N=J. However, this tends to 0 as N goes to infinity. Therefore, the axiom
Vxi,...,x; (D = 3x;41 D) has asymptotic probability 1 given ¥’ A V), and therefore also
given ¥ A V.

It remains to deal only with the case of a general formula ¢ € £(®) suchthat T = ¢. By
the compactness theorem for first-order logic, if 7 = ¢ then there is some finite conjunction
of assertions &1, ...,&, € T such that A]_ & = ¢. By the previous case, each such &; has
asymptotic probability 1, and therefore so does this finite conjunction. Hence, the asymptotic
probability Pri, (¢ | ¥ A V) is also 1. O

As outlined above, this concludes the proof of the main theorem of this section, which
we now state.

THEOREM 3.27. For any sentence ¢ € L(P) and model description yr AV, Pr, (¢ | ¥ AV)
is either O or 1.

Note that if ¢ is a simplified atomic description, then there are no named elements in any
model of 1. Therefore, the only model description augmenting v is simply v itself. Thus
Proposition 3.10, which is Liogon’kii’s result, is a corollary of the above theorem.

3.4. Computing the relative weights of model descriptions. We now want to compute
the relative weights of model descriptions. It will turn out that certain model descriptions
are dominated by others, so that their relative weight is 0, while all the dominating model
descriptions have equal weight. Thus, the problem of computing the relative weights of
model descriptions reduces to identifying the dominating model descriptions. There are two
factors that determine which model descriptions dominate. The first, and more significant, is
the number of active atoms; the second is the number of named elements. Let «(y) denote
the number of active atoms according to ¥.

To compute these relative weights of the model descriptions, we must evaluate
#worldf, (¥ A'V). The following lemma gives a precise expression for the asymptotic be-
havior of this function as N grows large.

20 ADAM J. GROVE, JOSEPH Y. HALPERN, AND DAPHNE KOLLER

LEMMA 3.28. Let W be a consistent atomic description of size M > |C| over ¥, and let
(¥ AV) € MP().
(@) Ifa(y) =0and N > v(y{), then #world% () = 0. In particular, this holds for all
N >2PIM.
) Ifa(y) > 0, then

N i
#Worldﬁ(w AV) ~ ()aN”"2Z.~zz bi(N=n),
n

where a = a (), n = v(Y¥), and b; is the number of predicates of arity i in ®.

Proof. Suppose that Cy = ((f1, &1), - .., (fam, gam)) is the characteristic of . Let W
be a model of cardinality N, and let N; be the number of domain elements in WV satisfying
atom A;. In this case, we say that the profile of W is (N, ..., Ny»). Clearly we must have
Ny +- -+ Nyr = N. We say that the profile (N1, ..., Nymi) is consistent with Cy, if f; # *
implies that N; = f;, while f; = * implies that N; > M. Notice that if WV is a model of v,
then the profile of W must be consistent with Cy.

For part (a), observe that if «(y) = O and N > Y, fi, then there can be no models
of cardinality N whose profile is consistent with Cy,. However, if a(y) = 0, then), f; is
precisely v(v). Hence there can be no models of i of cardinality N if N > v(y). Moreover,
since v(¥) < 2P M, the result holds for any N > 2!7!. This proves part (a).

For part (b), let us first consider how many ways there are of choosing a world satisfying
¥ AV with cardinality N and profile (Ny, ..., Ny=i). To do the count, we first choose which
elements are to be the named elements in the domain. Clearly, there are () ways in which this
can be done. Once we choose the named elements, their properties are completely determined
by V.

It remains to specify the rest of the properties of the world. Let R be a nonunary predicate
of arity i > 2. To completely describe the behavior of R in a world, we need to specify which
of the N i-tuples over the domain are in the denotation of R. We have already specified this
for those i-tuples all of whose components are named elements. There are n' such i-tuples.
Therefore, we have N i _n' i-tuples left to specify. Since each subset is a possible denotation,
we have 2V' =" possibilities for the denotation of R. The overall number of choices for the
denotations of all nonunary predicates in the vocabulary is therefore 2%iz26i (V"=

It remains only to choose the denotations of the unary predicates for the N = N — n
domain elements that are not named. Let iy, ..., i, be the active atoms in v, and let h; =
Nj,—g; forj =1,..., a. Thus, we need to compute all the ways of partitioning the remaining
N’ elements so that there are h; elements satisfying atom A;;; there are (,, h:’ ».) ways of
doing this.

We now need to sum over all possible profiles, i.e., those consistent with v A V. If
ij € A(¥), then there must be at least M domain elements satisfying A;;. Therefore N;, > M,
and h; = N;, — gi; = M — g;;. This is the only constraint on h;. Thus, it follows that

N (N —pi N’
#worldﬁ(v/ AV) ~ z : ()22.22 bi(N'—n)(h i)
(R oot hibotha=N', ¥j hj=M—g;,) n 1. Na

This is equal to
(N)zz.zz bi(N'=n") S
n
for

N/
(.0
{tseishat hithg=N', ¥j hyj=M—g;} N"1 +0c Ta

ASYMPTOTIC CONDITIONAL PROBABILITIES 21

It remains to get a good asymptotic estimate for S. Notice that

N/ !
> ()=
{h1yeoshat hy+thy=N'} hy ... ha

since the sum can be viewed as describing all possible ways to assign one of a possible atoms
to each of N’ elements. Our goal is to show that "' is actually a good approximation for §
as well. Clearly S < a®'. Let

N’
AN
{(B1yeoshg: hj<M, hy+-+hy=N'} 1 «+. Ng

Straightforward computation shows that

N/
S = Z (h ,)
{h1yeensha: Ry <M, hy+-+h,=N'} 1 -.. Ny
M—1 N N L
S B))
h1=0 {ha,....,hq: ho+-+h,=N'—h,} hl h2 e ha
M-1 N
NHm ,
< o)' (a— DN
h|=0 hl.

<MNM@-1V.

Similar arguments show that S; < MN™ (a — 1)V for all j. It follows that

N’
S> Z (h h)_(S1+..+Sa)
(h1yeeoshaihy+-+ha=N"} 1 «.. Ng

>a"¥ —aMNM@a - 1)N/ .

Therefore,

thus concluding the proof. a

The asymptotic behavior described in this lemma motivates the following definition.

DEFINITION 3.29. Given an atomic description i over W, let the degree of i, written
A(y), be the pair (@ (¥), v(¥)), and let degrees be ordered lexicographically. We extend this
definition to sentences as follows. For 8 € L(W), we define the degree of 6 over W, written
AY(6),tobe maxy, ¢ 4¥ A(¥), and the activity count of 6 to be a¥ (9) (i.e., the first component
of A¥(9)). o

One important conclusion of this lemma justifies our treatment of well-definedness (Def-
inition 2.2) when conditioning on unary formulas. It shows that if 6 is satisfied in some
“sufficiently large” model, then it is satisfiable over all “sufficiently large” domains.

LEMMA 3.30. Suppose that 0 € L(V), and M = d(0) + |Cy|. Then the following
conditions are equivalent:

(a) 6 is satisfied in some model of cardinality greater than 2'F'M,

(b) «¥(6) >0,

(c) forall N > 2'P'\M, 6 is satisfiable in some model of cardinality N,

(d) Prl (x| 0) is well defined.

22 ADAM J. GROVE, JOSEPH Y. HALPERN, AND DAPHNE KOLLER

Proof. By definition, 0 is satisfiable in some model of cardinality N iff #world% @) > 0.
We first show that (a) implies (b). If 6 is satisfied in some model of cardinality N greater than
2!PIM, then there is some atomic description ¥ € A} such that ¥ is satisfied in some model
of cardinality N. Using part (a) of Lemma 3.28, we deduce that (i) > 0 and therefore that
a?(9) > 0. That (b) entails (c) can be verified by examining the proof of Lemma 3.28. That
(c) implies (d) and (d) implies (a) is immediate from the definition of well-definedness. a

For the case of sentences in the languages without equality or constants, the condition for
well-definedness simplifies considerably.

COROLLARY 3.31. If 0 € L7 (P), then Pry, (x | 0) is well defined iff 6 is satisfiable.

Proof. The only if direction is obvious. For the other, if 6 is consistent, then it is equiv-
alent to a nonempty disjunction of consistent simplified atomic descriptions. Any consistent
simplified atomic description has arbitrarily large models. 0

We remark that we can extend our proof techniques to show that Corollary 3.31 holds
evenif C # 0, although we must still require that 6 does not mention equality. We omit details
here.

For the remainder of this paper, we will consider only sentences 6 such that «¥ (6) > 0.

Lemma 3.28 shows that, asymptotically, the number of worlds satisfying ¢ A V is com-
pletely determined by the degree of {. Model descriptions of higher degree have many more
worlds, and therefore dominate. On the other hand, model descriptions with the same degree
have the same number of worlds at the limit, and are therefore equally likely. This observation
allows us to compute the relative weights of different model descriptions.

DEFINITION 3.32. For any degree § = (a, n), let .Ag' * be the set of atomic descriptions
¥ € A such that A(y) = 8. For any set of atomic descriptions .A’, we use M(A’) to denote
UpeaM@). O

THEOREM 3.33. Let 0 € L(W) and AY(0) =8 > (1,0). Let Y be an atomic description
in Ay, andlet y AV € MP).

(@) If A(Y) < S thenPry,(y AV |0) =0.

(b) If A(Y) = 8 then Pr(y AV | 6) = 1/|M®(A)].

Proof. We begin with part (a). Since AY(0) = § = (a, n), there must exist some atomic
description ¥ € A} with A(y') = 8. Let ¥’ A V' be some model description in M (/).

#worldy (Y A V)
#worldy ()
< #worldﬁ(q// AV)
- #worldf,(lp/ AV
(op) @@)” @)D i BN V@)

Py (Y AV [6) =

n

= O(N"D"(a(y)/a)").

(N)aN—nZZiaz bi(Nf=n')

The last step uses the fact that n and v(¥) can be considered to be constant, and that for any
constant k, (}Z) ~ Nk/k!. Since A(¥) < 8 = (a, n), either a(¥) < a or a(¥) = a and

v(¥) < n. In either case, it is easy to see that N*¥)~"(a(y)/a)" tends to 0 as N — oo,
giving us our result.

To prove part (b), we first observe that, due to part (a), we can essentially ignore all model
descriptions of low degree. That is:

#world? (6) ~ > #worldS (Y’ A V).
W AVYEM(A)?)

ASYMPTOTIC CONDITIONAL PROBABILITIES 23

Therefore,
#world® (y AV
PRy (Y AV 10) = Y
Z(I/I'/\V/)GM(A;}"S) #WOrldN(l/f/ N V/)
(V) -m2 Xt)
N\ N-— _ bi(Ni—ni)
2 AVHEMAY) (3)a" 22 !
_ 1
|MAZ)I
as desired. 0

Combining this result with Proposition 3.18, we deduce the following.
THEOREM 3.34. For any ¢ € L(®) and 6 € L(V) such that AY®)=68=>(1,0),

Pri(p|0) = Y. Pi(e |y AV)/IMAS)L.
(WAV)EM(A)?)

This result, together with the techniques of the next section, will allow us to compute asymptotic
conditional probabilities.

The results of Liogon’kii are a simple corollary of the above theorem. For an activity
count a, let Ay"* denote the set of atomic descriptions ¥ € .AY such that a(¢) = a.

THEOREM 3.35. [31] Assume that C = @, ¢ € L(®), 0 € L~ (P), and a¥ (0) = a > 0.
Then Priy(| 0) = Y, c 4pa Pris (o | ¥) /1A 1.

Proof. By Theorem 3.9, a sentence 8 € £~ (P) is the disjunction of the simplified atomic
descriptions in .A)’. A simplified atomic description ¥ has no named elements, and therefore
AW) = (a(¥),0). Moreover, M(y) = {¢} for any ¥ € Ag’. The result now follows
trivially from the previous theorem. a

This calculation simplifies somewhat if ¢ and 6 are both monadic. In this case, we assume
without loss of generality that d(¢) = d(6). (If not, we can replace ¢ with ¢ A 6 and 6 with
6 A (¢ V —@).) This allows us to assume that AY,, € AY, thus simplifying the presentation.

(2N
COROLLARY 3.36. Assume that ¢,0 € L™ (P), and aF (0) = a > 0. Then

lAD4|
P (p | 0) = —2—.
= |A7 |

Proof. Since ¢ is monadic, ¢ A 6 is equivalent to a disjunction of the atomic descriptions
A;fw C AP Atomic descriptions are mutually exclusive; thus, for € Ay, Pri (¢ |) =1

if ¥ € A:;Ae and Pry (¢ | ¥) = O otherwise. The result then follows immediately from
Theorem 3.35. 0

3.5. Asymptotic probabilities for random structures. We now turn our attention to
computing asymptotic conditional probabilities using the random-structures method. There
are two cases. In the first, there is at least one nonunary predicate in the vocabulary. In this
case, random structures is equivalent to random worlds, so that the results in the previous
section apply without change.

THEOREM 3.37. If ® # W then for any ¢ € L(®) and 6 € L(V), Prif(p |) =
Pri (¢ | 0).

Proof. Since ® # W, there is at least one nonunary predicate in ® that does not appear
in 6. We can therefore apply Corollary 2.10, and conclude the desired result. g

24 ADAM J. GROVE, JOSEPH Y. HALPERN, AND DAPHNE KOLLER

Random worlds and random structures differ in the second case, when all predicates
are unary, but the absence of high-arity predicates makes this a much simpler problem. For
the rest of this section, we investigate the asymptotic probability of ¢ given 6 using random
structures, for ¢, 0 € L(V¥). As discussed earlier, we can assume without loss of generality
that A7, C Ay

We will use the same basic technique of dividing the structures satisfying 6 into classes,
and computing the probability of ¢ on each part. In the case of random structures, however, we
partition structures according to the atomic description they satisfy. That is, our computation
makes use of the equation

Pl (@ 16) =) Pl (o | VIPEY (¥ | 6).
veAy

As for the case of random worlds, we assign weights to atomic descriptions by counting
structures. The following lemma computes #struct}{;(llf) for an atomic description . In the
case of random worlds, we saw in Lemma 3.28 that certain model descriptions ¥ A} dominate
others, based on the activity count () and the number of named elements v(y) of the atomic
description. The following analogue of Lemma 3.28 shows that, for the random-structures
method, atomic descriptions of higher activity count «(y) dominate regardless of the number
of named elements.

LEMMA 3.38. Let ¥ be a consistent atomic description of size M > |C| over V.

@) Ifa(y) =0and N > v(y), then #struct)\",(llf) = 0. In particular, this holds for

N >2PIM.

N1
() If a(y) > O then #structy () ~ =D

Proof. Part (a) follows immediately from Lemma 3.28(a), since #struct%(llf) = 0 iff
#worldy () = 0.

We now proceed to show part (b). Suppose that Cy = ((f1, 81), ..., (farr1, g2r71)) is the
characteristic of ¥. Let S be a structure of cardinality N. For any of the models in S, let N; be
the number of domain elements satisfying atom A; (because S is an isomorphism class, N; must
be the same for all worlds in the class). Asbefore, we say thatthe profile of Sis (Ny, ..., Ny»i).
Clearly we musthave Nj+- - -+ N7 = N. Recall that the profile (Ny, ..., Ny»i) is consistent
with Cy if f; # * implies that N; = f;, while f; = * implies that N; > M. Notice that if S
is a structure of v, then the profile of S must be consistent with Cy,. In fact, there is a unique
structure consistent with v with cardinality N and profile (N, ..., Ny=/). This is because a
structure is determined by the number of elements in each atom, the assignment of constants
to atoms, and the equality relations between the constants. The first part is determined by
the profile, while the second and third are determined by . It therefore remains to count

only the number of profiles consistent with Cy,. Let N' = N — Zi¢ AW) fiandletiy, ..., i,
a = a(y), be the active components of Cy,. We want to compute
S=I|{(Ni,,....N,): Njy+---+ N, =N, Vj N, = M}|.
Notice that, since Zi ¢AW) f; and a are constants,
! ra—1 a—1
Ny N Nyt Ny = N = (N :—al_ 1) - ((:—) D (aN— D
As in the proof of Lemma 3.28, let S; = |{{N;,, ..., Ni,) : Ny +---+N;,, = N', N;, < M}|.

It is easy to see that
M-1
Si= Y W{Nip.oos Ni): Ny -+ Ny =N = Ny }|
=0

< M(N/)a——Z s

ASYMPTOTIC CONDITIONAL PROBABILITIES 25

and similarly for all other S;. Therefore,

N 4+a-1
a—1

S =

)_(S1++Sa)

- 1) —aM(N')*~2

a-—1

N (N/)a—l

(a — 1!
Na—l

(@a—-D!’

_ aM(N/)a—'2

~

It follows that § ~ 2 as desired. 0
COROLLARY 3.39. If8 € L(V),a¥Y(®) =a > 0,and € A}, then
(@) ifa(y) < athenPrY (¢ | 6) =0,
(b) ifa(¥) = a then Pr)! (| 0) = 1/]45%).
Proof. Using Lemma 3.38, we can deduce that

N ((y) = 1!
Yprear N4V (a(y) = Dt

As in the proof of Theorem 3.33, we can deduce that if ¢(¥) < a = a¥(9), then Pr.Y (¥ |
60) = 0. Therefore

Py’ (¥ | 6) ~

#structy () ~ Y #structy ().
YeA)”

Since #structy (') is asymptotically the same for all " with the same activity count e(y"),
we deduce that if a(¥) = a, then Pri¥ (¥ | 0) = 1/|47“. O
We can now complete the computation of the value of Pr‘o’o“’ (¢ | 6) for the case of unary

@, 0.
THEOREM 3.40. If ¢, 6 € L(¥) and a = ¥ (8) > 0, then
| Agno
Pl (p|6) = —5—.
* |45

Proof. Recall that

Pl (e 10) =Y Pel(p | ¥IPY (¥ | 6).
yeAy

We have already computed Prf,g" (¢ | 6). It remains to compute Pr;;)“’ (¢ | ¥) for an atomic
description . Recall that ¢ A 6 is equivalent to a disjunction of the atomic descriptions
Agrg S Ay, and that atomic descriptions are mutually exclusive. Therefore, for ¥ € A,

it is easy to see that Pri (¢ | ¥) = 1if ¥ € A}, and Pri;! (¢ | ¥) = O otherwise. Since
Pl (¢ | 9) is O exceptif ¥ € A;" 4, it follows from Corollary 3.39 that

v,
A G|

Pt (p | 0) = —52
= |Ag %

’

as desired. 0

26 ADAM J. GROVE, JOSEPH Y. HALPERN, AND DAPHNE KOLLER

Recall that if £ € £~ (P), then AP (&) = («” (£),0). Thus, comparing Corollary 3.36
with Theorem 3.40 shows that, for formulas in £~ (P), random worlds and random structures
are the same.

COROLLARY 3.41. If 9,0 € L™ (P), then for any ¥ 2 P, Pr’ (¢ |) =Pril (¢ | 9).

Note that, although in general the asymptotic conditional probability in the case of random
structures may depend on the vocabulary, for formulas without constant symbols or equality,
it does not.

COROLLARY 3.42. If 9,0 € L™ (P), and Pyng € W NV’ then Pri¥ (v | 6) = Pt (¢ |
0) =Pry (¢ | 6).

4. Complexity analysis. In this section we investigate the computational complexity
of problems associated with asymptotic conditional probabilities. In fact, we consider three
problems: deciding whether the asymptotic probability is well defined, computing it, and
approximating it. As we did in the previous section, we begin with the case of random
worlds. As we shall see, the same complexity results also hold for the random-structures case
(even though, as we have seen, the actual values being computed can differ between random
structures and random worlds). The analysis for the unary case of random structures is given
in §4.6.

Our computational approach is based on Theorem 3.34, which tells us that

1
Pri(p | 0) = ——55 Z P (o | ¥ A V).
IMATDL o Trrars,

The basic structure of the algorithms we give for computing Pryy, (¢ | 6) is simply to enumerate
model descriptions ¥ A V and, for those of the maximum degree, compute the conditional
probability Pri (¢ | ¥ A V). In §4.1 we show how to compute this latter probability.

The complexity of computing asymptotic probabilities depends on several factors: whether
the vocabulary is finite, whether there is a bound on the depth of quantifier nesting, whether
equality is used in 6, whether nonunary predicates are used, and whether there is a bound
on predicate arities. If we consider a fixed and finite vocabulary there are just two cases: if
there is no bound on the depth of quantifier nesting then computing probabilities is PSPACE-
complete; otherwise the computation can be done in linear time. The case in which the
vocabulary is not fixed, which is the case more typically considered in complexity theory, is
more complicated. The problem of computing probabilities is complete for the class #EXP
(defined below) if either (a) equality is not used in 6 and there is some fixed bound on the
arity of predicates that can appear in ¢, or (b) all predicates in ¢ are unary. Weakening
these conditions in any way—allowing equality while maintaining any arity bound greater
than one, or allowing unbounded arity even without using equality in §—gives the same
complexity as the general case (which is complete for a class we call #TA(EXP, LIN),
defined later). All these results for the case of an unbounded vocabulary use formulas
with quantifier depth 2. As suggested in the introduction, the complexity of the problem
drops in the case of formulas of depth 1. A detailed analysis for this case can be found
in [27].

4.1. Computing the 0-1 probabilities. The method we give for computing Pri, (¢ |
¥ A'V) is an extension of Grandjean’s algorithm [20] for computing asymptotic probabilities
in the unconditional case. For the purposes of this section, fix a model description ¢ A V
over ®. In our proof of the conditional 0-1 law (§3.3), we defined a theory T corresponding

ASYMPTOTIC CONDITIONAL PROBABILITIES 27

to ¥ A V. We showed that T is a complete and consistent theory, and that ¢ € L£(®) has
asymptotic probability 1 iff T = ¢. We therefore need an algorithm that decides whether
T = o.

Grandjean’s original algorithm decides whether Pri (¢) is 0 or 1 for a sentence ¢ with
no constant symbols. For this case, the theory T consists of all possible extension axioms,
rather than just the ones involving model descriptions extending Dy, and consistent with
(see Definition 3.24). The algorithm has a recursive structure, which at each stage attempts
to decide something more general than whether T = ¢. It decides whether T = D = &,
where

e D is a complete description over @ and the set X; = {x, ..., x;} of variables, and

o £ € L(®) is a formula whose only free variables (if any) are in ;.
The algorithm begins with j = 0. In this case, D is a complete description over X and ®.
Since @ contains no constants and A} is the empty set, D must in fact be the empty conjunction,
which is equivalent to the formula true. Thus,forj = 0,7 = D = ¢iffT = ¢. Whilej =0
is the case of real interest, the recursive construction Grandjean uses forces us to deal with the
case j > 0 as well. In this case, the formula D = ¢ contains free variables; these variables
are treated as being universally quantified for purposes of determining if 7 = D = ¢.

Our algorithm is the natural extension to Grandjean’s algorithm for the case of conditional
probabilities and for a language with constants. The chief difference is that we begin by consid-
ering T = Dy = ¢ (where V is the model fragment on which we are conditioning). Suppose
D, uses the variables x1, ..., x,, where n = v(y). We have said that T = Dy, = ¢ is inter-
pretedas T = Vxy, ..., x, (Dy = ¢), and this is equivalent to T = (3x;, ..., x, Dy) = ¢
because ¢ is closed. Because 3xy,...,x, Dy isin T by definition, this latter assertion is
equivalent to T = ¢, which is what we are really interested in.

Starting from the initial step just outlined, the algorithm then recursively examines smaller
and smaller subformulas of ¢, while maintaining a description D which keeps track of any
new free variables that appear in the current subformula. Of course, D will also extend Dy
and will be consistent with .

We now describe the algorithm in more detail. Without loss of generality, we assume that
all negations in ¢ are pushed in as far as possible, so that only atomic formulas are negated.
We also assume that ¢ does not use the variables xi, x5, x3, The algorithm proceeds
by induction on the structure of the formula, until the base case—an atomic formula or Jjts
negation—is reached. The following equivalences form the basis for the recursive procedure:

1. If & is of the form &’ or —&’ for an atomic formula §’,then T = D = £ iff £ is a
conjunct of D.

2. If £isofthe form & A&y thenT ED = Eff T =D = & and T = D = &.

3. Iféisoftheform & v&E thenT =ED = EMffT =D =& orT =D = &.

4. If & is of the form Iy &’ and D is a complete description over ® and {x1, ..., x;},
thenT =D = £iff T |= D' = £'[y/x;41] for some complete description D’ over
® and {xi, ..., xj41} that extends D and is consistent with .

5. If £ is of the form Vy &’ and D is a complete description over ® and {xi, ..., x;},
thenT =D = £iff T |= D' = &'[y/x;41] for all complete descriptions D’ over &
and {xy, ..., xj4+1} that extend D and are consistent with 1.

The proof that this procedure is correct is based on the following proposition, which can
easily be proved using the same techniques as for Proposition 3.25.

PROPOSITION 4.1. If D is a complete description over ® and X and & € L(®) is aformula
all of whose free variables are in X, then either T =D = & or T = D = —§.

28 ADAM J. GROVE, JOSEPH Y. HALPERN, AND DAPHNE KOLLER

Proof. We know that T has no finite models. By the Lowenheim—Skolem Theorem
[12, p. 141], we can, without loss of generality, restrict attention to countably infinite models
of T.

Suppose X = {x1,x2,...,x;} and that T = D = &. Then there is some countable
model ¢/ of T, and j domain elements {d|, . .., d;} in the domain of i/, which satisfy D A —&.
Consider another model ¢’ of T, and any {d], ..., dj’.} in the domain of U’ that satisfy D.
Because D is a complete description, the substructures over {d,, ..., d;} and {d], .. ., dj’.} are
isomorphic. We can use the back and forth construction of Proposition 3.25 to extend this to
an isomorphism between I/ and U{’. But then it follows that {d], ..., dj’. } must also satisfy —&.
Since U was arbitrary, T = D = —&. The result follows. 0

The following result shows that the algorithm above gives a sound and complete procedure
for determining whether 7' |= Dy = ¢.

THEOREM 4.2. Each of the equivalences in steps (1)—(5) above is true.

Proof. The equivalences for steps (1)—(3) are easy to show, using Proposition 4.1.
To prove (4), consider some formula D = Jy&’, where D is a complete description over
X1, ..., x; and the free variables of £ are contained in {x1, ..., x;}. Let{{ be some countable
model of T, and let di,, d; be elements in { that satisfy D. If U satisfies D = Jy &’ then
there must exist some other element d; ;| that, together with di, .. ., d;, satisfies £. Consider
the description D’ over xi, ..., x;4 that extends D and is satisfied by dj, ..., dj;1. Clearly
T ¥ D' = —&'[y/xj41] because this is false in /. So, by Proposition 4.1, T = D’ =
&'[y/xj11] as required.

For the other direction, suppose that T |= D’ = &'[y/x;1,] for some D’ extending D. It
follows that T |= 3x;1 D" = 3x;11&'[y/xj+1]. The result follows from the observation that
T contains the extension axiom Vxi, ..., x;(D = 3x;4 D’).

The proof for case (5) is similar to that for case (4), and is omitted. 0

We analyze the complexity of this algorithm in terms of alternating Turing machines
(ATMs) [5]. Recall that in an ATM, the nonterminal states are classified into two kinds:
universal and existential. Just as with a nondeterministic TM, a nonterminal state may have
one or more successors. The terminal states are classified into two kinds: accepting and
rejecting. The computation of an ATM forms a tree, where the nodes are instantaneous
descriptions (IDs) of the machine’s state at various points in the computation, and the children
of a node are the possible successor IDs. We recursively define what it means for a node in a
computation tree to be an accepting node. Leaves are terminal states, and a leaf is accepting
just if the machine is in an accepting state in the corresponding ID. A node whose ID is in an
existential state is accepting iff at least one of its children is accepting. A node whose ID is
in a universal state is accepting iff all of its children are accepting. The entire computation is
accepting if the root is an accepting node.

We use several different measures for the complexity of an ATM computation. The time of
the computation is the number of steps taken by its longest computation branch. The number of
alternations of a computation of an ATM is the maximum number of times, over all branches,
that the type of state switched (from universal to existential or vice versa). The number of
branches is simply the number of distinct computation paths. The number of branches is
always bounded by an exponential in the computation time, but sometimes we can find tighter
bounds.

Grandjean’s algorithm, and our variant of it, is easily implemented on an ATM. Each
inductive step corresponding to a disjunction or an existential quantifier can be implemented
using a sequence of existential guesses. Similarly, each step corresponding to a conjunction
or a universal quantifier can be implemented using a sequence of universal guesses. Note that
the number of alternations is at most |¢|. We must analyze the time and branching complexity

ASYMPTOTIC CONDITIONAL PROBABILITIES 29

of this ATM. Given ¢ A V, each computation branch of this ATM can be regarded as doing
the following. It

(a) constructs a complete description D over the variables x, . .., x,4 that extends D,

and is consistent with ¢, where n = v(¥) and k < |¢|/2 is the number of variables
appearing in ¢,

(b) chooses a formula & or —&, where £ is an atomic subformula of ¢ (with free variables

renamed appropriately so that they are included in {x, ..., x,4}), and

(c) checks whether T = D = &.

Generating a complete description D requires time | D], and if we construct D by adding
conjuncts to Dy, then it is necessarily the case that D extends Dy. To check whether D is
consistent with v, we must verify that D does not assert the existence of any new element
in any finite atom. Under an appropriate representation of i (outlined after Corollary 4.4
below), this check can be done in time O(|D|2'P!). Choosing an atomic subformula & of
¢ can take time O(|g|). Finally, checking whether T = D = & can be accomplished by
simply scanning | D|. It is easy to see that we can do this without backtracking over | D|. Since
|D| > |&], it can be done in time O(|D|). Combining all these estimates, we conclude that
the length of each branch is O(|D|2'P! + |¢|).

Let D be any complete description over @ and X'. Without loss of generality, we assume
that each constant in @ is equal to (at least) one of the variables in X. To fully describe D
we must specify, for each predicate R of arity i, which of the i-tuples of variables used in D
satisfy R. Thus, the number of choices needed to specify the denotation of R is bounded by
| X'|” where p is the maximum arity of a predicate in ®. Therefore, | D| is O(|®||X’|?). In the
case of the description D generated by the algorithm, X is {x|, ..., X,, Xy41, ..., Xn+k}, and
n + k is less than n + |@|. Thus, the length of such a description D is O(|®|(n + |¢])?).

Using this expression, and our analysis above, we see that the computation time is certainly
O(|®12'P!(n + |¢])?). In general, the number of branches of the ATM is at most the number
of complete descriptions multiplied by the number of atomic formulas in ¢. The first of these
terms can be exponential in the length of each description. Therefore the number of branches
is O (|p|2!®1(r+leD”y = 2002I1+IeD”) We can, however, get a better bound on the number of
branches if all predicates in & are unary (i.e., if p = 1). In this case, ¢ already specifies all the
properties of the named elements. Therefore, a complete description D is determined when
we decide, for each of the at most k variables in D not corresponding to named elements,
whether it is equal to a named element and, if not, which atom it satisfies. It follows that
there are at most (2!®! + n)¥ complete descriptions in this case, and so at most |¢|(2/® 4 n)*
branches. Since k < |¢|/2, the number of branches is certainly O ((2!®' +n)"¢) if p = 1. We
summarize this analysis in the following theorem, which forms the basis for almost all of our
upper bounds in this section.

THEOREM 4.3. There exists an alternating Turing machine that takes as input a finite
vocabulary ®, a model description AV over ®, and a formula ¢ € L(®), and decides
whether Pr”.(¢ | ¥ A V) is 0 or 1. The machine uses time O(|®2'F\(v(¥) + |¢|)?) and
O(|@|) alternations, where p is the maximum arity of predicates in ®. If p > 1, the number
of branches is 20UP10WI+ODY) " If b = 1, the number of branches is O((2'® + v(yr))¥h).

An alternating Turing machine can be simulated by a deterministic Turing machine which
traverses all possible branches of the ATM, while keeping track of the intermediate results
necessary to determine whether the ATM accepts or rejects. The time taken by the determinis-
tic simulation is linear in the product of the number of branches of the ATM and the time taken
by each branch. The space required is the logarithm of the number of branches plus the space
required for each branch. In this case, both these terms are O(|D| + |¢|), where D is the de-
scription generated by the machine. This allows us to prove the following important corollary.

30 ADAM J. GROVE, JOSEPH Y. HALPERN, AND DAPHNE KOLLER

Procedure Compute-Pry (¢ | 6)
3« (0,0)
For each model description ¢ A V do:
Compute Pry (6 | ¥ A V) using our variant of Grandjean’s algorithm
If A(y) =68and Prg (6 | ¥ AV) = 1 then
count(0) < count(6) + 1
Compute Pri, (¢ | ¥ A V) using our variant of Grandjean’s algorithm
count(p) < count(p) +Pry (¢ | Yy A V)
If A(Y) > 6 and Prg (6 | ¥ AV) = 1 then
8§« AWY)
count(f) <1
Compute Pr (¢ | ¥ A'V) using our variant of Grandjean’s algorithm
count(p) < Proy (@ | ¥ A V)
If § = (0, 0) then output “Pry, (¢ | 6) not well defined”
otherwise output “Pry (¢ | 0) = count(p)/count(9)”.

FiG. 1. Compute-Pr, for computing asymptotic conditional probabilities.

COROLLARY 4.4. There exists a deterministic Turing machine that takes as input a finite
vocabulary ®, a model description ¥ AV over ®, and a formula ¢ € L(P), and decides
whether Pt (¢ | ¥ A V) is0or 1. If p > 1 the machine uses time 2°(P1CWI+eD") gpnd
space O(|®|(v(¥) + |@)?). If p = 1 the machine uses time 2°¢112110eCWI+D) and space
O(lol|®|log(v(¥) + 1)).

4.2. Computing asymptotic conditional probabilities. Our overall goal is to compute
Pry (¢ | 6) for some ¢ € L(P) and 6 € L(¥). To do this, we enumerate model descriptions
over ® of size d(9) + |C|, and check which are consistent with 8. Among those model
descriptions that are of maximal degree, we compute the fraction of model descriptions ¥ AV
for which Prg (¢ | ¥ A V) is 1.

More precisely, let § = AY(0). Theorem 3.34 tells us that

1
6 WAVIEM(A]P)

The procedure Compute-Pr, described in Fig. 1, generates one by one all model descriptions
of size d(#) + |C| over ®. The algorithm keeps track of three things, among the model
descriptions considered thus far: (1) the highest degree § of a model description consistent
with 8, (2) the number count(0) of model descriptions of degree § consistent with 6, and
(3) among the model descriptions of degree § consistent with 8, the number count(¢) of
descriptions such that Pri, (¢ | ¥ A V) = 1. Thus, for each model description ¢ A V
generated, the algorithm computes A(y). If A(¥) < 8 or Preg (8 | ¥ A V) is O, then the
model description is ignored. Otherwise, if A(y) > §, then the count for lower degrees
is irrelevant. In this case, the algorithm erases the previous counts by setting § « A(y),
count(8) < 1, and count(p) < Pro (¢ | ¥ AV). If A(y) = §, then the algorithm updates
count(0) and count(yp) appropriately.

Examining Compute-Pr.,, we see that its complexity is dominated by two major quanti-
ties: the time required to generate all model descriptions, and the time required to compute
each 0-1 probability using our variant of Grandjean’s algorithm. The complexity of the latter
was given in Theorem 4.3 and Corollary 4.4. The following proposition states the length of a
model description; the time required to generate all model descriptions is exponential in this
length.

ASYMPTOTIC CONDITIONAL PROBABILITIES 31

PROPOSITION 4.5. If M > |C| then the length of a model description of size M over ® is
0(|2|2"'M)”).

Proof. Consider a model description over ® of size M = d(6) + |C|. Such a model
description consists of two parts: an atomic description ¢ over ¥ and a model fragment V
over ® which is in M(y). To specify an atomic description v, we need to specify the unary
properties of the named elements; furthermore, for each atom, we need to say whether it has
any elements beyond the named elements (i.e., whether it is active). Using this representation,
the size of an atomic description v is O (|¥|v(¥) + 2/7!). As we have already observed, the
length of a complete description D over and X is O(|®||X'|?). In the case of a description
Dy for V € M(¥), this is O(|®|v(¥)?). Using v(y¥) < 2'PIM, we obtain the desired
result. 0

Different variants of this algorithm are the basis for most of the upper bounds in the
remainder of this section.

4.3. Finite vocabulary. We now consider the complexity of various problems related to
Pry (¢ | 6) for a fixed finite vocabulary &. The input for such problems is simply ¢ and 6,
and so the input length is the sum of the lengths of ¢ and 6. Since, for the purposes of this
section, we view the vocabulary ® as fixed (independent of the input), its size and maximum
arity can be treated as constants.

We first consider the issue of well-definedness.

THEOREM 4.6. Fix a finite vocabulary ® with at least one unary predicate symbol. For
0 € L(¥), the problem of deciding whether Pry, (x |) is well defined is PSPACE-complete.
The lower bound holds even if 6 € L~ ({P}).

Proof. Tt follows from Lemma 3.30 that Pr’2, (x | 6) is well defined iff «¥ (§) > 0. This
is true iff there is some atomic description ¥ € Ag’ such that «(y¥) > 0. This holds iff there
exists an atomic description ¢ of size M = d(8) + |C| over ¥ and some model fragment
V € MY (¢) such that a(¥) > 0and Pr (9 | ¥ A V) = 1. Since we are working within W,
we can take p = 1 and |P| to be a constant, independent of 6. Thus, the length of a model
description ¥ A V as given in Proposition 4.5 is polynomial in |6]. It is therefore possible to
generate model descriptions in PSPACE. Using Corollary 4.4, we can check, in polynomial
space, for a model description ¢ A V whether Pry, (6 | ¥ A V) is 1. Therefore, the entire
procedure can be done in polynomial space.

For the lower bound, we use a reduction from the problem of checking the truth of quan-
tified Boolean formulas (QBF), a problem well known to be PSPACE-complete [37]. The
reduction is similar to that used to show that checking whether a first-order sentence is true
in a given finite structure is PSPACE-hard [6]. Given a quantified Boolean formula 8, we
define a first-order sentence £ € L~ ({P}) as follows. The structure of &g is identical to
that of 8, except that any reference to a propositional variable x, except in the quantifier, is
replaced by P(x). For example, if 8 is Vx 3y (x A y), &g will be Vx Iy (P(x) A P(y)).
Let 6 be &g A 3x P(x) A Ix —P(x). Clearly, Pry,(x | 6) is well defined exactly if B
is true. 0

In order to compute asymptotic conditional probabilities in this case, we simply use
Compute-Pry,. In fact, since Compute-Pr, can also be used to determine well-definedness,
we could also have used it to prove the previous theorem.

THEOREM 4.7. Fix a finite vocabulary ®. For ¢ € L(®) and 0 € L(V), the problem
of computing Priy (¢ | 6) is PSPACE-complete. Indeed, deciding if Pry, (¢ | true) = 1 is
PSPACE-hard even if ¢ € L~ ({ P}) for some unary predicate symbol P.

Proof. The upper bound is obtained directly from Compute-Pr, in Fig. 1. The algorithm
generates model descriptions one by one. Using the assumption that & is fixed and finite, each

32 ADAM J. GROVE, JOSEPH Y. HALPERN, AND DAPHNE KOLLER

model description has polynomial length, so that this can be done in PSPACE. Corollary 4.4
implies that, for a fixed finite vocabulary, the 0-1 probabilities for each model description can
also be computed in polynomial space. While count(8) and count(p) can be exponential (as
large as the number of model descriptions), only polynomial space is required for their binary
representation. Thus, Compute-Pro, works in PSPACE under the assumption of a fixed finite
vocabulary.

For the lower bound, we provide a reduction from QBF much like that used in Theorem 4.6.
Given a quantified Boolean formula & and a unary predicate symbol P, we construct a sentence
&g € L7 ({P}) just as in the proof of Theorem 4.6. It is easy to see that Pryy (€3 | true) = 1 iff
B is true. (By the unconditional 0-1 law, Prg (§g | true) is necessarily either O or 1.) a

It follows immediately from Theorem 4.7 that we cannot approximate the limit. Indeed,
if we fix € with 0 < € < 1, the problem of deciding whether Prg (¢ | 8) € [0,1 — €] is
PSPACE-hard even for ¢, 6 € L7 ({P}). We might hope to prove that for any nontrivial
interval [ry,], it is PSPACE-hard to decide if Prg (¢ |) € [r1, r2]. This stronger lower
bound does not hold for the language £~ ({P}). Indeed, it follows from Theorem 3.35 that
if ® is any fixed vocabulary then, for ¢ € L£(®) and § € L~ (¥), Pre (¢ | 6) must take
one of a finite number of values (the possible values being determined entirely by ®). So
the approximation problem is frequently trivial; in particular, this is the case for any [r, r;]
that does not contain one of the possible values. To see that there are only a finite num-
ber of values, first note that there is a fixed collection of atoms over ®. If 8 does not use
equality, an atomic description can only say, for each atom A over ®, whether 3x A(x) or
—3x A(x) holds. There is also a fixed set of constant symbols to describe. Therefore, there
is a fixed set of possible atomic descriptions. Finally, note that the only named elements are
the constants, and so there is also a fixed (and finite) set of model fragments. This shows
that the set of model descriptions is finite, from which it follows that Prg (¢ | 0) takes one
of finitely many values fixed by ®. Thus, in order to have Pr2 (¢ | 0) assume infinitely
many values, we must allow equality in the language. Moreover, even with equality in the
language, one unary predicate does not suffice. Using Theorem 3.34, it can be shown that
two unary predicates are necessary to allow the asymptotic conditional probability to as-
sume infinitely many possible values. As the following result shows, this condition also
suffices.

THEOREM 4.8. Fix a finite vocabulary ® that contains at least two unary predicates and
rational numbers 0 < r; < ry < 1 such that [ry, r;] # [0, 1]. For ¢,0 € L(P), the problem
of deciding whether Pry, (¢ | 6) € [r1, r2] is PSPACE-hard, even given an oracle that tells us
whether the limit is well defined.

Proof. We first show that, for any rational number » with O < r < 1, we can construct
@r, 6, such that Pr} (¢, | 6,) = r. Suppose r = q/p. We assume, without loss of generality,
that ® = {P, Q}. Let 6, be the sentence

P P(x) A (T X (P(x) A Q) V Fx (P(x) A Q(x))) A x (=P (x) A =Q(x)).

That is, no elements satisfy the atom =P A —(Q, either g or ¢ — 1 elements satisfy the atom
P AQ,and p—1elements satisfy P. Thus, there are exactly two atomic descriptions consistent
with 6,. In one of them, i, there are ¢ — 1 elements satisfying P A Q and p — g elements
satisfying P A —Q (all the remaining elements satisfy =P A Q). In the other, i, there are g
elements satisfying P A Q and p — g — 1 elements satisfying P A —Q. Clearly, the degree
of Y is the same as that of vr,, so that neither one dominates. In particular, both define p — 1

named elements. The number of model fragments for v, is (;’ :i) = (—q%)—!. The number

of model fragments for v is (” ;1) = #_—qll!m- Let ¢, be ;. Clearly

ASYMPTOTIC CONDITIONAL PROBABILITIES 33

M)
M)+ IM@)I
(p—D!/(g—Dip -

T -DY@-DIp—h)+(p-D/@(p—q-DY
q q

=q+(p-—q)=p

Pro(¢r | 6,) =

Now, assume we are given r; < r,. We prove the result by reduction from QBF, as in
the proof of Theorem 4.6. If r; = O then the result follows immediately from Theorem 4.7.
If 0 < ri = q/p, let B be a QBF, and consider Prg, (§s A ¢, | 6, A 3x =P (x)). Note that,
since p > 2, 6,, implies 3x P(x). It is therefore easy to see that this probability is O if 8 is
false and Pry, (¢, | 6,,) = r1 otherwise. Thus, we can check if B is true by deciding whether
Pry (£ A @r, | 6, A Ix = P(x)) € [r1, r2]. This proves PSPACE-hardness.’ a

These results show that simply assuming that the vocabulary is fixed and finite is not by
itself enough to lead to computationally easy problems. Nevertheless, there is some good
news. We observed in a companion paper [23] that if ® is fixed and finite, and we bound the
depth of quantifier nesting, then there exists a linear time algorithm for computing asymptotic
probabilities. In general, as we observed in [23], we cannot effectively construct this algorithm,
although we know that it exists. As we now show, for the case of conditioning on a unary
formula, we can effectively construct this algorithm.

THEOREM 4.9. Fixd > 0. For ¢ € L(®), 6 € L(V) such that d(¢),d(0) < d, we can
effectively construct a linear time algorithm that decides if Pr (¢ | 6) is well defined and
computes it if it is.

Proof. The proof of the general theorem in [23] shows that if there is a bound d on
the quantification depth of formulas and a finite vocabulary, then there is a finite set £, of
formulas such that every formula & of depth at most d is equivalent to a formula in ¥,.
Moreover, we can construct an algorithm that, given such a formula &, will in linear time find
some formula equivalent to £ in ;. (We say “some” rather than “the,” because it is necessary
for the algorithm’s constructibility that there will generally be several formulas equivalent to
& in X4.) Given this, the problem reduces to constructing a lookup table for the asymptotic
conditional probabilities for all formulas in 2. In general, there is no effective technique for
constructing this table. However, if we allow conditioning only on unary formulas, it follows
from Theorem 4.7 that there is. The result now follows. 0

4.4. Infinite vocabulary—restricted cases. In the next two sections we consider an
infinite vocabulary 2. As discussed in §2.3, there are at least two distinct interpretations for
asymptotic conditional probabilities in the case of an infinite vocabulary. One interpretation of
“infinite vocabulary” views €2 as a potential or background vocabulary, so that every problem
instance includes as part of its input the actual finite subvocabulary that is of interest. So,
although this subvocabulary is finite, there is no bound on its possible size. The alternative is
to interpret infinite vocabularies more literally, using the limit process explained in §2.3. In
the case of the random-worlds method, Proposition 2.1 shows that both interpretations give
the same result. Thus, it is immediate that all complexity results we prove with respect to one
interpretation immediately hold for the other. As we are postponing the discussion of random
structures to §4.6, we present the earlier results with respect to the second, less cumbersome,
interpretation.

°In this construction, it is important to note that although ¢r, and 6, can be long sentences, their length depends
only on ry, which is treated as being fixed. Therefore, the constructed asymptotic probability expression does have
length polynomial in |8|. This is also the case in similar constructions later in the paper.

34 ADAM J. GROVE, JOSEPH Y. HALPERN, AND DAPHNE KOLLER

As before, we are interested in computing the complexity of the same three problems:
deciding whether the asymptotic probability is well defined, computing it, and approximating
it. As we mentioned earlier, the complexity is quite sensitive to a number of factors. One
factor, already observed in the unconditional case [4], [20], is whether there is a bound on
the arity of the predicates in Q. Without such a bound, the problem is complete for the class
#TA(EXP,LIN). Unlike the unconditional case, however, simply putting a bound on the arity
of the predicates in 2 is not enough to improve the complexity (unless the bound is 1); we
also need to restrict the use of equality, so that it cannot appear in the right-hand side of the
conditional. Roughly speaking, with equality, we can use the named elements to play the
same role as the predicates of unbounded arity. In this section, we consider what happens if
we in fact restrict the language so that either (1) © has no predicate of arity > 2, or (2) there
is a bound (which may be greater than 1) on the arity of the predicates in €2, but we never
condition on formulas that use equality. As we now show, these two cases turn out to be quite
similar. In particular, the same complexity results hold.

Throughout this section, we take €2 to be a fixed infinite vocabulary such that all predicate
symbols in © have arity less than some fixed bound p. Let Q be the set of all unary predicate
symbols in €2, let D be the set of all constant symbols in 2, and let T = Q U D.

We start with the problem of deciding whether the asymptotic probability is well defined.
Since well-definedness depends only on the right-hand side of the conditional, which we
already assume is restricted to mentioning only unary predicates, its complexity is independent
of the bound p.

The following theorem, due to Lewis [30], is the key to proving the lower bound for
well-definedness (and for some of the other results in this section as well).

THEOREM 4.10. [30] The problem of deciding whether a sentence § € L~ (Q) is satisfiable
is NEXPTIME-complete. Moreover, the lower bound holds even for formulas & of depth 2.

Lewis proves this as follows: for any nondeterministic Turing machine M that runs in
exponential time and any input w, he constructs a sentence § € £~ (Q) of quantifier depth 2
and whose length is polynomial in the size of M and w, such that & is satisfiable iff there is an
accepting computation of M on w.

Our first use of Lewis’s result is to show that determining well-definedness is NEXPTIME-
complete; this result does not require the assumptions that we are making throughout the rest
of this section.

THEOREM 4.11. For 6 € L(Y), the problem of deciding if Pry,(x | 8) is well defined
is NEXPTIME-complete. The NEXPTIME lower bound holds even for 6 € L~ (Q) where
d@) <2.

Proof. For the upper bound, we proceed much as in Theorem 4.6. Let ¥ = Yy and let
C = Dy. We know that Pry (x | 6) is well defined iff there exists an atomic description
of size M = d(#) + |C| over ¥ and some model fragment V € MY () such that () > 0
and Pr(® | ¥ AV) = 1. Since all the predicates in ¥ have arity 1, it follows from
Proposition 4.5 that the size of amodel description ¢ AV over W is O (|W|2/7'M). Since |¥| <
|6], this implies that model descriptions have exponential length, and can be generated by a
nondeterministic exponential time Turing machine. Because we can assume that p = 1 here
when applying Corollary 4.4, we can also deduce that we can check whether Pry, (6 | ¥ A V)
is 0 or 1 using a deterministic Turing machine in time 20 (PI¥IloeW+1) - Since |W| < |6,
and v(y) is at most exponential in |6/, it follows that we can decide if Pre. (0 | ¥ A V) =1
in deterministic time exponential in |0]. Thus, to check if Pry (x | 6) is well defined we
nondeterministically guess amodel description ¥ AV of the right type, and check thata(yr) > 0
and that Pr (@ | ¥ A V) = 1. The entire procedure can be executed in nondeterministic
exponential time.

ASYMPTOTIC CONDITIONAL PROBABILITIES 35

For the lower bound, observe that if a formula & in £~ (®) is satisfied in some model with
domain {1, ..., N} then it is satisfiable in some model of every domain size larger than N.
Therefore, & € £7(Q) is satisfiable if and only if the limit Prly (% | &) is well defined. The
result now follows from Theorem 4.10.]

We next consider the problem of computing the asymptotic probability Prg (¢ | 6), given
that it is well defined. We show that this problem is #EXP-complete. Recall that #P (see [38])
is the class of integer functions computable as the number of accepting computations of a
nondeterministic polynomial-time Turing machine. More precisely, a function f : {0, 1}* —
IN is said to be in #P if there is a nondeterministic Turing machine M such that for any w, the
number of accepting paths of M on input w is f(w). The class #EXP is the exponential time
analogue.

The function we are interested inis Priy (¢ | 6), which is not integer valued. Nevertheless,
we want to show that it is in #EXP. In the spirit of similar definitions for #P (see, for example,
[39] and [34]) and NP (e.g., [17]) we extend the definition of #EXP to apply also to non-
integer-valued functions.

DEFINITION 4.12. An arbitrary function f is said to be #EXP-easy if there exists an
integer-valued function g in #EXP and a polynomial-time-computable function A such that
for all x, f(x) = h(g(x)). (In particular, we allow A to involve divisions, so that f(x) may
be a rational function.) A function f is #EXP-hard if, for every #EXP-easy function g, there
exist polynomial-time functions 4, and h; such that, for all x, g(x) = ha(f(h;(x)))."0 A
function f is #EXP-complete if it is #EXP-easy and #EXP-hard.]

We can similarly define analogues of these definitions for the class #P.

‘We now show that for an infinite arity-bounded vocabulary in which equality is not used,
or for any unary vocabulary, the problem of computing the asymptotic conditional probability
is #EXP-complete. We start with the upper bound.

THEOREM 4.13. If either (a) 9,0 € L(Y) or (b) ¢ € L(Q) and 6 € L~ (), then
computing Pry (¢ | 6) is #EXP-easy.

Proof. Let ® = Qqp0, let ¥ = Y59, and let P and C be the appropriate subsets of W.
Let 8 = AY(#). Recall from the proof of Theorem 4.7 that we would like to generate the
model descriptions ¥ A V of degree 8¢, consider the ones for which Pry, (0 | ¥ A V) = 1,
and compute the fraction of those for which Pry. (¢ | ¥ A'V). More precisely, consider the set
of model descriptions of size M = d(¢ A 0) + |C|. For a degree 8, let count’ (6) denote the
number of those model descriptions for which Prg (8 | ¥ A V) = 1. Similarly, let count® (¢)
denote the number for which Pry (¢ A 6 | ¥ AV) = 1. We are interested in the value of the
fraction count® () /count® ().

We want to show that we can nondeterministically generate model descriptions ¢ A V),
and check in deterministic exponential time whether Prly (6 | ¥ AV) (or, similarly, Prly (9 A6 |
¥ AV))is 0or 1. We begin by showing the second part: that the 0-1 probabilities can be
computed in deterministic exponential time. There are two cases to consider. In case (a), ¢ and
6 are both unary, allowing us to assume that p = 1 for the purposes of Corollary 4.4. In this
case, the 0-1 computations can be done in time 20(#/91¥110gWI+D) where W = Y, 1q. Asin
Theorem 4.11, |¥| < |¢ A 0] and v(¥) is at most exponential in |6|, allowing us to carry out
the computation in deterministic exponential time. In case (b), 8 € £L7(Y'), and therefore the
only named elements are the constants. In this case, the 0-1 probabilities can be computed in
deterministic time 20U®1CI+PAD) where @ = Q9. However, as we have just discussed,
v(¥) < |@ A 8], implying that the computation can be completed in exponential time.

10Notice that we need the function /5 as well as k. For example, if g is an integer-valued function and f always
returns a rational value between O and 1, as is the case for us, then there is no function 4 such that g(x) = f(h(x)).

36 ADAM J. GROVE, JOSEPH Y. HALPERN, AND DAPHNE KOLLER

Having shown how the 0-1 probabilities can be computed, it remains only to generate
model descriptions in the appropriate way. However, we do not want to consider all model
descriptions, because we must count only those model descriptions of degree &y. The problem
is that we do not know &y in advance. We will therefore construct a nondeterministic expo-
nential time Turing machine M such that the number of accepting paths of M encodes, for
each degree 8, both count® (¢) and count®(6). We need to do the encoding in such a way as to
be able to isolate the counts for §9 when we finally know its value. This is done as follows.

Let v be an atomic description i over W of size M. Recall that the degree A(y) is a pair
((¥), v(¥)) such that a(y) < 2/Pland v(y) < 2'PIM. Thus, there are at most E = 22PIM
possible degrees. Number the degrees in increasing order: &, ..., . We want it to be the
case that the number of accepting paths of M written in binary has the form

P1o---Pimq10---9im --- PEO - -+ PEmGEOQ - - -9Em>

where pjg ... pim is the binary representation of count’ (¢) and g . . . gim is the binary rep-
resentation of count® (). We choose m to be sufficiently large so that there is no overlap
between the different sections of the output. The largest possible value of an expression of
the form count® (9) is the maximum number of model descriptions of degree §; over ®. This
is clearly less than the overall number of model descriptions, which we computed in §4.2.

The machine M proceeds as follows. Let m be the smallest integer such that 2™ is more
than the number of possible model descriptions, which, by Proposition 4.5, is 20(®127'#)")
Note that m is exponential and that M can easily compute m from ®. M then nondeterministi-
cally chooses a degree §;, fori = 1, ..., E. It then executes E — i phases, in each of which it
nondeterministically branches 2m times. This has the effect of giving this branch a weight of
22m(E=D) Tt then nondeterministically chooses whether to compute pjg . . . Pim OF Gio - - - Gim-
If the former, it again branches m times, separating the results for count® (¢) from those for
count’ (). In either case, it now nondeterministically generates all model descriptions ¥ A V)
over ®. It ignores those for which A(y) # §;. For the remaining model descriptions ¢ A V,
it computes Prly (¢ A 6 | ¥ AV) in the first case, and Prg (6 | ¥ A V) in the latter. This is
done in exponential time, using the same technique as in Theorem 4.11. The machine accepts
precisely when this probability is 1.

This procedure is executable in nondeterministic exponential time, and results in the
appropriate number of accepting paths. It is now easy to compute Pri (¢ |) by finding the
largest degree 8 for which count®(9) > 0, and dividing count® (¢) by count® (). 0

We now want to prove the matching lower bound. As in Theorem 4.11, we make use of
Lewis’s NEXPTIME-completeness result. As there, this allows us to prove the result even for
@,0 € L7(Q) of quantifier depth 2. A straightforward modification of Lewis’s proof shows
that, given w and a nondeterministic exponential time Turing machine M, we can construct a
depth-2 formula £ € £7(Q) such that the number of simplified atomic descriptions over P
consistent with £ is exactly the number of accepting computations of M on w. This allows us
to prove the following theorem.

THEOREM 4.14. Given & € L7 (Q), counting the number of simplified atomic descriptions
over Py consistent with & is #EXP-complete. The lower bound holds even for formulas & of
depth 2.

This theorem forms the basis for our own hardness result.

THEOREM 4.15. Given ¢,60 € L7(Q) of depth at least 2, the problem of computing
Pr (¢ | 8) is #EXP-hard, even given an oracle for deciding whether the limit exists.

Proof. Given ¢ € L7(Q), we reduce the problem of counting the number of simplified
atomic descriptions over P, consistent with ¢ to that of computing an appropriate asymptotic
probability. Recall that, for the language £~ (Q), model descriptions are equivalent to sim-

ASYMPTOTIC CONDITIONAL PROBABILITIES 37

Al Ay Az Ay
* 0 x 0
* * 0 *

FiG. 2. Two atomic descriptions with different degrees.

Al A Ay Ay

AQ *x 0 x 0
AmQ: 0 x 0 %
AQ : * x 0 =%
A=Q: 0 0 % 0

F1G. 3. Two maximal atomic descriptions.

plified atomic descriptions. Therefore, computing an asymptotic conditional probability for
this language reduces to counting simplified atomic descriptions of maximal degree. Thus,
the major difficulty we need to overcome here is the converse of the difficulty that arose in
the upper bound. We now want to count al// simplified atomic descriptions consistent with ¢,
while using the asymptotic conditional probability in the most obvious way would only let us
count those of maximum degree. For example, the two atomic descriptions whose character-
istics are represented in Fig. 2 have different degrees; the first one will thus be ignored by a
computation of asymptotic conditional probabilities.

Let P be P, = {P;,..., P}, and let Q be a new unary predicate not in P. We let
Ai, ..., Ag for K = 2F be all the atoms over P, and let A}, ..., A5k be all the atoms over
P'=PU{Q},suchthat A} = A; A Qand Ay, = A, A—Qfori=1,..., K.

We define 0’ as follows:

k
0’ =et ¥,y ((Q(x) A N\Pix) & P,~<y>>> = Q(y)) :
i=1

The sentence 6’ guarantees that the predicate Q is “constant” on the atoms defined by P.
That is, if A; is an atom over P, it is not possible to have Ix (A;(x) A Q(x)) as well as
Ix (A;(x) A =Q(x)). Therefore, if ¢ is a simplified atomic description over P’ which is
consistent with 6’ then, for each i < K, at most one of the atoms A; and A’ ; can be active,
while the other is necessarily empty. It follows that « () < K. Since there are clearly atomic
descriptions of activity count K consistent with §’, the atomic descriptions of maximal degree

are precisely those for which «(y) = K. Moreover, if a() = K, then A] is active iff A’

K+i
is not. Two atomic descriptions of maximal degree are represented in Fig. 3. Thus, for each
set I € {1,..., K}, there is precisely one simplified atomic description ¥ consistent with 6’

of activity count K where A/ is active in y iff i € I. Therefore, there are exactly 2X simplified
atomic descriptions ¥ over P’ consistent with 6’ for which a(¢) = K.

Let 6 = 6’ A 3x Q(x). Notice that all simplified atomic descriptions ¢ with ¢(¢) = K
that are consistent with 6’ are also consistent with 6, except for the one where no atom in
A}, ..., Al is active. Thus, |A;)/‘K| = 2K — 1. For the purposes of this proof, we call a sim-
plified atomic description ¥ over P’ consistent with 8 for which « () = K a maximal atomic
description. Notice that there is an obvious one-to-one correspondence between consistent
simplified atomic descriptions over PP and maximal atomic descriptions over P’. A maximal

atomic description where A is active iff i € I (and A’ is active for i ¢ I) corresponds

38 ADAM J. GROVE, JOSEPH Y. HALPERN, AND DAPHNE KOLLER

to the simplified atomic description over P where A; is active iff i € I. (For example, the
two consistent simplified atomic descriptions over {P;, P»} in Fig. 2 correspond to the two
maximal atomic descriptions over {P;, P,, Q} in Fig. 3.) In fact, the reason we consider 6
rather than 6’ is precisely because there is no consistent simplified atomic description over P
which corresponds to the maximal atomic description where no atom in A’l, el A’K is active
(since there is no consistent atomic description over P where none of Ay, ..., Ak are active).
Thus, we have overcome the hurdle discussed above.
We now define ¢g; intuitively, ¢¢ is ¢ restricted to elements that satisfy Q. Formally,

we define & for any formula £ by induction on the structure of the formula:

e £p = £ for any atomic formula &,

o (—§)g = —ép,

o ENnE)g=8pNnEp,

o (Vy&E()o =Vy Q1) = §o(y).
Note that the size of ¢ is linear in the size of ¢. The one-to-one mapping discussed above from
simplified atomic descriptions to maximal atomic descriptions gives us a one-to-one mapping
from simplified atomic descriptions over P consistent with ¢ to maximal atomic descriptions
consistent with ¢ A 3x Q(x). This is true because a model satisfies ¢ iff the same model
restricted to elements satisfying Q satisfies ¢. Thus, the number of model descriptions over
P consistent with ¢ is precisely | A7 X |.

(T
From Corollary 3.36, it follows that

P K
AR 1AD

¢Q/\9
A7k 2K =1

Proc(pg | 6) =

Thus, the number of simplified atomic descriptions over P consistent with ¢ is (2X —
1)Pry (9o | 0). This proves the lower bound. 0

As in Theorem 4.8, we can also show that any nontrivial approximation of the asymptotic
probability is hard, even if we restrict to sentences of depth 2.

THEOREM 4.16. Fix rational numbers 0 < ri < ry < 1 such that [ry, r2] # [0, 1]. For
©,0 € L7(Q) of depth at least 2, the problem of deciding whether Pr. (¢ | 0) € [r1, r2] is
both NEXPTIME-hard and co-NEXPTIME-hard, even given an oracle for deciding whether
the limit exists.

Proof. Let us begin with the case where r; = 0 and r, < 1. Consider any ¢ € £ (Q) of
depth at least 2, and assume without loss of generality that P = P, = {Py, ..., P¢}. Choose
Q ¢ P, let P = PU{Q}, and let & be Vx(P1(x) A ... A Pe(x) A Q(x)). We consider
Pr (¢ | ¢ V&). Clearly ¢ V £ is satisfiable, so that this asymptotic probability is well defined.
If ¢ is unsatisfiable, then Prly (¢ | ¢ v &) = 0. On the other hand, if ¢ is satisfiable, then
aP(p) = j > 0 for some j. It is easy to see that «¥ (¢) = o (p v &) = 2j. Moreover,
¢ and ¢ V & are consistent with precisely the same simplified atomic descriptions with 2
active atoms. This is true since a” (§) = 1 < 2j. It follows that if ¢ is satisfiable, then
Pro(plevE)=1.

Thus, we have that Pr (¢ | ¢ V &) is either O or 1, depending on whether or not ¢ is
satisfiable. Thus, Prg, (—¢ | ¢ V&) isin [ry, r2] iff ¢ is satisfiable; similarly, Pry, (—¢ | —@VE)
is in [ry, rp] iff ¢ is valid. By Theorem 4.10, it follows that this approximation problem is
both NEXPTIME-hard and co-NEXPTIME-hard.

If 1 = q/p > 0, we construct sentences ¢,, and 6,, of depth 2 in £7(Q) such that
Pr (¢r, | 6,,) = r1.!! Choose £ = [log p1, and let P” = {Q1, ..., Q} be a set of predicates

!1'The sentences constructed in Theorem 4.8 for the same purpose will not serve our purpose in this theorem, since
they used unbounded quantifier depth.

ASYMPTOTIC CONDITIONAL PROBABILITIES 39

such that P" NP’ = . Let Ay, ..., Ay be the set of atoms over P”. We define 6,, to be
% (A1) V Ay (x) V...V A, (X)).

Similarly, ¢,, is defined as
X (A1(x) V A2 (x) V...V A, (x)).

Recall from §3.1 that the construct “3'x” can be defined in terms of a formula of quantifier
depth 2. There are exactly p atomic descriptions of size 2 of maximal degree consistent
with 6,,; each has one element in one of the atoms Ay, ..., A, and no elements in the rest
of the atoms among Ay, ..., Ap, with all the remaining atoms (those among A, ..., Ay)
being active. Among these atomic descriptions, ¢ are also consistent with ¢,,. Therefore,
Pry (¢, | 6,,) = gq/p. Since the predicates occurring in ¢,,, 6,, are disjoint from P’, it
follows that

Pl (oA, [(@VE)YANG) =Pl (pleVE) Pry(e, 16,) =Pri(ploVE) . r.

This is equal to r; (and hence is in [r}, r;]) if and only if ¢ is satisfiable, and is O other-
wise. a

The lower bounds in this section all hold provided we consider formulas whose quan-
tification depth is at least 2. Can we do better if we restrict to formulas of quantification
depth at most 1? As is suggested by Table 1, we can. The complexities typically drop by
an exponential factor. For example, checking well-definedness becomes NP-complete rather
than NEXPTIME-complete. For the problem of computing probabilities for formulas with
quantification depth 1, we know that the problem is in PSPACE, and is (at least) #P-hard.
Finally, the problem of approximating probabilities is hard for both NP and co-NP. A detailed
analysis of these results can be found in [27]; some related work for a propositional language
has been done by Roth [35].

4.5. Infinite vocabulary—the general case. In §4.4 we investigated the complexity of
asymptotic conditional probabilities when the (infinite) vocabulary satisfies certain restrictions.
As we now show, the results there were tight in the sense that the restrictions cannot be
weakened. We examine the complexity of the general case, in which the vocabulary is infinite
with no bound on predicates’ arities and/or in which equality can be used.

The problem of checking if Pre (¢ | 6) is well defined is still NEXPTIME-complete.
Theorem 4.11 (which had no restrictions) still applies. However, the complexity of the other
problems we consider does increase. It can be best described in terms of the complexity class
TA(EXP,LIN)—the class of problems that can be solved by an exponential time ATM with a
linear number of alternations. The class TA(EXP,LIN) also arises in the study of unconditional
probabilities where there is no bound on the arity of the predicates. Grandjean [20] proved a
TA(EXP,LIN) upper bound for computing whether the unconditional probability is O or 1 in
this case, and Immerman [4] proved a matching lower bound. Of course, Grandjean’s result
can be viewed as a corollary of Theorem 4.3. Immerman’s result, which has not, to the best
of our knowledge, appeared in print, is a corollary of Theorem 4.18 which we prove in this
section.

To capture the complexity of computing the asymptotic probability in the general case,
we use a counting class #TA(EXP,LIN) that corresponds to TA(EXP,LIN). To define this class,
we restrict attention to the class of ATMs whose initial states are existential. Given such an
ATM M, we define an initial existential path in the computation tree of M on input w to be
a path in this tree, starting at the initial state, such that every node on the path corresponds to
an existential state except for the last node, which corresponds to a universal or an accepting

40 ADAM J. GROVE, JOSEPH Y. HALPERN, AND DAPHNE KOLLER

state. That is, an initial existential path is a maximal path that starts at the root of the tree
and contains only existential nodes except for the last node in the path. We say that an
integer-valued function f : {0, 1}* — IN is in #TA(EXP,LIN) if there is a machine M in
the class TA(EXP,LIN) such that, for all w, f(w) is the number of existential paths in the
computation tree of M on input w whose last node is accepting (recall that we defined a notion
of “accepting” for any node in the tree in §4.1). We extend the definition of #TA(EXP,LIN)
to apply to non-integer-valued functions and define #TA(EXP,LIN)-easy just as we did before
with #P and #EXP in §4.4.

We start with the upper bound.

THEOREM4.17. For ¢ € L(Q)and6 € L(Y), thefunctionPry (¢ | 0) isin#TA(EXP,LIN).

Proof. Let ® = Qgng, let W = Y, .4, and let p be the maximum arity of a predicate in .
The proof proceeds precisely as in Theorem 4.13. We compute, for each degree &, the values
count®(8) and count’ (¢). This is done by nondeterministically generating model descriptions
¥ AV over &, branching according to the degree of v, and computing Priv. (9 A 6 | ¥ A V)
and Pri, (6 | ¥ AV) using a TA(EXP,LIN) Turing machine.

To see that this is possible, recall from Proposition 4.5 that the length of a model description
over ® is O (|®|(2!P!M)*). This is exponential in |®| and p, both of which are at most [p A 6.
Therefore, it is possible to guess a model description in exponential time. Similarly, as we saw
in the proof of Theorem 4.13, only exponentially many nondeterministic guesses are required
to separate the output so that counts corresponding to different degrees do not overlap. These
guesses form the initial nondeterministic stage of our TA(EXP,LIN) Turing machine. Note
that it is necessary to construct the rest of the Turing machine so that a universal state always
follows this initial stage, so that each guess corresponds exactly to one initial existential path;
however, this is easy to arrange.

For each model description y» AV so generated, we compute Prye (6 | ¥ AV) or Priy (9 A6 |
¥ A V) as appropriate, accepting if the conditional probability is 1. It follows immediately
from Theorem 4.3 and the fact that there can only be exponentially many named elements
in any model description we generate that this computation is in TA(EXP,LIN). Thus, the
problem of computing Pry (¢ | 6) is in #TA(EXP,LIN). 0

We now want to prove the matching lower bound. Moreover, we would like to show
that the restrictions from §4.4 cannot be weakened. Recall from Theorem 4.13 that the #EXP
upper bound held under one of two conditions: either (a) ¢ and 6 are both unary, or (b) the
vocabulary is arity-bounded and 6 does not use equality. To show that (a) is tight, we show that
the #TA(EXP,LIN) lower bound holds even if we allow ¢ and 6 to use only binary predicates
and equality. (The use of equality is necessary, since without it we know from (b) that the
problem is #EXP-easy.) To show that (b) is tight, we show that the lower bound holds for
a non-arity-bounded vocabulary, but without allowing equality in 8. Neither lower bound
requires the use of constants.

The proof of the lower bounds is lengthy, but can be simplified somewhat by some as-
sumptions about the construction of the TA(EXP,LIN) machines we consider. The main idea
is that the existential “guesses” being made in the initial phase should be clearly distinguished
from the rest of the computation. To achieve this, we assume that the Turing machine has an
additional guess tape, and the initial phase of every computation consists of nondeterministi-
cally generating a guess string y which is written on the new tape. The machine then proceeds
with a standard alternating computation, but with the possibility of reading the bits on the
guess tape.

More precisely, from now on we make the following assumptions about an ATM M.
Consider any increasing functions 7'(n) and A(n) (in essence, these correspond to the time
complexity and number of alternations), and let w be an input of size n. We assume:

ASYMPTOTIC CONDITIONAL PROBABILITIES 41

e M has two tapes and two heads (one for each tape). Both tapes are one-way infinite
to the right.

e The first tape is a work tape, which initially contains only the string w.

e M has an initial nondeterministic phase, during which its only action is to nondeter-
ministically generate a string y of zeros and ones, and write this string on the second
tape (the guess tape). The string y is always of length T (n). Moreover, at the end
of this phase, the work tape is as in the initial configuration, the guess tape contains
only y, the heads are at the beginning of their respective tapes, and the machine is in
a distinguished universal state s.

e After the initial phase, the guess tape is never changed.

o After the initial phase, M takes at most 7' (n) steps on each branch of its computation
tree, and makes exactly A(n) — 1 alternations before entering a terminal (accepting
or rejecting) state.

e The state before entering a terminal state is always an existential state (i.e., A(n) is
odd).

Let M’ be any (unrestricted) TA(T,A) machine that “computes” an integer function f.
It is easy to construct some M satisfying the restrictions above that also computes f. The
machine M first generates the guess string y, and then simulates M’. At each nondeterministic
branching point in the initial existential phase of M’, M uses the next bit of the string y to
dictate which choice to take. Observe that this phase is deterministic (given y), and can thus
be folded into the following universal phase. (Deterministic steps can be viewed as universal
steps with a single successor.) If not all the bits in y are used, M continues the execution of
M/, but checks in parallel that the unused bits of y are all 0’s. If not, M rejects. It is easy
to see that on any input w, M has the same number of accepting paths as M’, and therefore
accepts the same function f. Moreover, M has the same number of alternations as M, and at
most a constant factor blowup in the running time.'?> This shows that it will be sufficient to
prove our hardness results for the class #TA(EXP,LIN) by considering only those machines
that satisfy these restrictions. For the remainder of this section we will therefore assume that
all ATMs are of this type.

Let M be such an ATM and let w be an input of size n. We would like to encode the
computation of M on w using a pair of formulas ¢, 6,,. (Of course, these formulas depend
on M as well, but we suppress this dependence.) Our first theorem shows how to encode part
of this computation: given some appropriate string y of length T (n), we construct formulas
that encode the computation of M immediately following the initial phase of guessing y.
More precisely, we say that M accepts w given y if, on input w, the initial existential path
during which M writes y on the guess tape leads to an accepting node. We construct formulas
©w,y and 6, ,, such that Prg (¢y,, | 6y,,) is either 0 or 1, and is equal to 1 iff M accepts w
given y.

We do not immediately want to specify the process of guessing y, so our initial construc-
tion will not commit to this. For a predicate R, let ¢[R] be a formula that uses the predicate
R. Let £ be another formula that has the same number of free variables as the arity of R.
Then @[£] is the formula where every occurrence of R is replaced with the formula &, with an
appropriate substitution of the arguments of R for the free variables in &.

THEOREM 4.18. Let M be a TA(T ,A) machine as above, where T (n) = 2!™ for some
polynomial t (n) and A(n) = O(n). Let w be an input string of length n, and y € {0, 1}7™
be a guess string.

12For ease of presentation, we can and will (somewhat inaccurately, but harmlessly) ignore this constant factor
and say that the time complexity of M is, in fact, T (n).

42 ADAM J. GROVE, JOSEPH Y. HALPERN, AND DAPHNE KOLLER

(a) Foraunary predicate R, there exist formulas ¢,,[R], §, € L(Q) and6,, € L(T) such
that Pry (oy[€,] | 64) = 1 iff M accepts w given y and is O otherwise. Moreover,
@y uses only predicates with arity 2 or less.
(b) Forabinarypredicate R, there exist formulas ¢,,[R], S)’, € L(2) suchthatPry, (¢,,[§,] |
true) = 1 iff M accepts w given y and is 0 otherwise.
The formulas ¢, [R], 6y, and ¢,[R] are independent of v, and their length is polynomial in
the representation of M and w. Moreover, none of the formulas constructed use any constant
symbols.

Proof. Let T" be the tape alphabet of M and let S be the set of states of M. We will identify
an instantaneous description (ID) of length £ of M with a string T for ¥ = Ty x T, where
TwisTU(T x) and g is ({0, 1} U ({0, 1} x {h})). We think of the Xy component of the
ith element in a string as describing the contents of the ith location in the work tape and also,
if the tape head is at location i, the state of the Turing machine. The X component describes
the contents of the ith location in the guess tape (whose alphabet is {0, 1}) and whether the
guess tape’s head is positioned there. Of course, we consider only strings in which exactly one
element in I" x S appears in the first component and exactly one element in {0, 1} x {h} appears
in the second component. Since M halts within 7'(n) steps (not counting the guessing process,
which we treat separately), we need only deal with IDs of length at most 7' (r). Without loss
of generality, assume all IDs have length exactly T (n). (If necessary, we can pad shorter IDs
with blanks.)

In both parts of the theorem, IDs are encoded using the properties of domain elements.
In both cases, the vocabulary contains predicates whose truth value with respect to certain
combinations of domain elements represent IDs. The only difference between parts (a) and
(b) is in the precise encoding used. We begin by showing the encoding for part (a).

In part (a), we use the sentence 8,, to define T'(n) named elements. This is possible since
6, is allowed to use equality. Each ID of the machine will be represented using a single domain
element. The properties of the ID will be encoded using the relations between the domain
element representing it and the named elements. More precisely, assume that the vocabulary
has ¢ (n) unary predicates P, ..., Pi), and one additional unary predicate P*. The domain is
divided into two parts: the elements satisfying P* are the named elements used in the process
of encoding IDs, while the elements satisfying —P* are used to actually represent IDs. The
formula 6, asserts (using equality) that each of the atoms A over { P*, Py, ..., P} in which
P* (as opposed to — P*) is one of the conjuncts contains precisely one element:

i=1

t(n)
Vi, y ((P*(x) AP A N\PG) & Pi(y») > x= y) :

Note that 6,, has polynomial length and is independent of y.

We can view an atom A over {P*, Py, ..., Py} in which P* is one of the conjuncts
as encoding a number between 0 and T (n) — 1, written in binary: if A contains P; rather
than —P;, then the jth bit of the encoded number is 1; otherwise it is 0. (Recall that T (n),

the running time of M, is 2/™.) In the following, we let A;, fori = 0,...,T(n) — 1,
denote the atom corresponding to the number i according to this scheme. Let ¢; be the
unique element in the atom A; fori = 0,..., T(n) — 1. When representing an ID using a

domain element d (where —P*(d)), the relation between d and ¢; is used to represent the ith
coordinate in the ID represented by d. Assume that the vocabulary has a binary predicate
R, for each 0 € X. Roughly speaking, we say that the domain element d represents the
IDoy...orm-1 if Ry, (d, e;) holds fori = 0, ..., T'(n) — 1. More precisely, we say that d

ASYMPTOTIC CONDITIONAL PROBABILITIES 43

represents oy . .. O (n)—1 if

T(n)—1

P A N Vy(A,-(ym(Rm(d,y)A A\ ﬁRa«d,y))).

i=0 o'eX—{o;}

Note that not every domain element d such that —P*(d) holds encodes a valid ID. However,
the question of which ID, if any, is encoded by a domain element d depends only on the
relations between d and the finite set of elements ey, ..., er(m—1. This implies that, with
asymptotic probability 1, every ID will be encoded by some domain element. More precisely,
let ID(x) = 0y ...0r(n)—1 be a formula which is true if x denotes an element that represents
00 ...07m)—1. (It should be clear that such a formula is indeed expressible in our language.)
Then for each ID oy . . . 67(»)—1 We have

Pr (3x (ID(x) = 6y . ..07(m)-1) | 6w) = 1.

For part (b) of the theorem, we must represent IDs in a different way because we are not
allowed to condition on formulas that use equality. Therefore, we cannot create an exponential
number of named elements using a polynomial-sized formula. The encoding we use in this
case uses two domain elements per ID rather than one. We now assume that the vocabulary Q
contains a ¢ (n)-ary predicate R, for each symbol o € X. Note that this uses the assumption
that there is no bound on the arity of predicates in Q. Fori =0, ..., T(n) — 1, let bf (- b‘i
be the binary encoding of i. We say that the pair (dy, d1) of domain elements represents the
ID 00...0T(n)-1 if

T(n)—1
do#dn o\ (R(,i (dys ooy,) A N\ Ry, ..., d,,;(”))> :
i=0 o'ex—{o;}
Again, we can define a formula in our language ID(xg, x1) = 0yp...07@)—1 Which is true if

X0, x1 denote a pair of elements that represent oy . . . 67(n)—1. As before, observe that for each
ID oy ...orm)-1 we have

Prg’o(ﬂxo, x1 (ID(x9,x1) =o0p... UT(n)—l) | true) = 1.

In both case (a) and case (b), we can construct formulas polynomial in the size of M and
w that assert certain properties. For example, in case (a), Rep(x) is true of a domain element
d if and only if d encodes an ID. In this case, Rep(x) is the formula

~P* () AVY (P*0) = VoesRo(x, 1)) A
Ay (P A Ve s)xsg) Ro G) ATy (PX(0) AV geimyxiionxinyy Bo (X ¥)

where \/ is an abbreviation whose meaning is that precisely one of its disjuncts is true.

In case (b), Rep(xg, x1) is true of a pair (dy, d;) if and only if it encodes an ID. The
construction is similar. For instance, the conjunct of Rep(xo, x;) asserting that each tape
position has a uniquely defined content is

t(n) .
X0 # X1 AVZLL o L ((/\(Zi =XxoVz= Xl)) Soex a\/Ra(Zla ce Zt(n))) .
i=l1

oex

Except for this assertion, the construction for the two cases is completely parallel given
the encoding of IDs. We will therefore restrict the remainder of the discussion to case (a).
Other relevant properties of an ID that we can formulate are:

44 ADAM J. GROVE, JOSEPH Y. HALPERN, AND DAPHNE KOLLER

e Acc(x) (resp., Univ(x), Exis(x)) is true of a domain element d if and only if d encodes
an ID and the state in /D(d) is an accepting state (resp., a universal state, an existential
state).

e Step(x, x") is true of elements d and &’ if and only if both d and d’ encode IDs and
ID(d") can follow from ID(d) in one step of M.

e Comp(x, x") is true of elements d and d’ if and only if both d and d’ encode IDs,
and ID(d") is the final ID in a maximal nonalternating path starting at ID(d) in the
computation tree of M, and the length of this path is at most 7'(n). A maximal
nonalternating path is either a path all of whose states are existential except for the
last one (which must be universal or accepting), or a path all of whose states are
universal except for the last one. We can construct Comp using a divide and conquer
argument, so that its length is polynomial in ¢ (n).

We remark that Acc, Step, etc. are not new predicate symbols in the language. Rather, they
are complex formulas described in terms of the basic predicates R,. We omit details of their
construction here; these can be found in [20].

It remains only to describe the formula that encodes the initial configuration of M on input
w. Since we are interested in the behavior of M given a particular guess string y, we begin
by encoding the computation of M after the initial nondeterministic phase; that is, after the
string y is already written on the guess tape and the rest of the machine is back in its original
state. We now construct the formula /nit[R](x) that describes the initial configuration. This
formula takes R as a parameter, and has the form Init’(x) A R(x). The formulas substituted
for R(x) will correspond (in a way discussed below) to possible guesses y.

We begin by considering case (a). We assume the existence of an additional binary
predicate By. Itis easy to write a polynomial-length formula /nif’ (x) which is true of a domain
element d if and only if d represents an ID where: (a) the state is the distinguished state s
entered after the nondeterministic guessing phase, (b) the work tape contains only w, (c) the
heads are at the beginning of their respective tapes, and (d) for all i, the ith location of the
guess tape contains O iff By(d, e;). Here ¢; is, as before, the unique element in atom A;. Note
that the last constraint can be represented polynomially using the formula

vy (P*()’)=>(Bo(x,y)© \/ Rf,(x,y))).

oeXw x{0,(0,h)}

We also want to find a formula &, that can constrain By to reflect the guess y. This formula,
which serves as a possible instantiation for R, does not have to be of polynomial size. We
define it as follows, where for convenience, we use B; as an abbreviation for — By:
T(n)—1
(1) £ =t \ Yy (Ai) = B,(x,y) .
i=0
Note that this is of exponential length.

In case (b), the relation of the guess string y to the initial configuration is essentially the
same modulo the modifications necessary due to the different representation of IDs. We only
sketch the construction. As in case (a), we add a predicate By, but in this case of arity 7 (n).
Again, the predicate By represents the locations of the 0’s in the guess tape following the initial
nondeterministic phase. The specification of the denotation of this predicate is done using an
exponential-sized formula E)’,, as follows (again taking Bj to be an abbreviation for —By):

&, (x0, x1) =det By (x0, ..., X0, X0) A By, (X0, ..., X0, X1) A...A B, = (x1,...,x1,x1).

Using these formulas, we can now write a formula expressing the assertion that M accepts
w given y. In writing these formulas, we make use of the assumptions made about M (that it

ASYMPTOTIC CONDITIONAL PROBABILITIES 45

is initially in the state immediately following the initial guessing phase, that all computation
paths make exactly A(n) alternations, and so on). The formula ¢,,[R] has the following form:

Axy (Init[R](x1) A Vx3 (Comp(xy, x2) = Ix3 (Comp(xz, x3) A Vx4 (Comp(x3, x4) = ...
Ax 4y (Comp(X any—15 Xam)) AN Acc(Xawm))) ..)))).

It is clear from the construction that ¢,,[R] does not depend on y and that its length is
polynomial in the representations of M and w.

Now suppose W is a world satisfying 6,, in which every possible ID is represented by at
least one domain element. (As we remarked above, a random world has this property with
asymptotic probability 1.) Then it is straightforward to verify that ¢,,[£,] is true in W iff
M accepts w. Therefore Pry. (¢,(£,] | 6,,) = 1 iff M accepts w given y and O otherwise.
Similarly, in case (b), we have shown the construction of analogous formulas ¢, [R], for a
binary predicate R, and &, such that Prg, (¢, [€,] | true) = 1iff M accepts w given y, and is
0 otherwise. a

We can now use the above theorem in order to prove the #TA(EXP,LIN) lower bound.

THEOREM 4.19. For ¢ € L(2) and 6 € L(Y'), computing Pry (¢ | 0) is #TA(EXP,LIN)-
hard. The lower bound holds even if ¢, 0 do not mention constant symbols and either (a) ¢
uses no predicate of arity > 2, or (b) 6 uses no equality.

Proof. Let M be a TA(EXP,LIN) Turing machine of the restricted type discussed earlier,
and let w be an input of size n. We would like to construct formulas ¢, 6 such that from
Pri2 (¢ | 6) we can derive the number of accepting computations of M on w. The number of
accepting initial existential paths of such a Turing machine is precisely the number of guess
strings ¥ such that M accepts w given y. In Theorem 4.18, we showed how to encode the
computation of such a machine M on input w given a nondeterministic guess y. We now
show how to force an asymptotic conditional probability to count guess strings appropriately.

AsinTheorem4.18,let T (n) = 2'™ andletP’ = {P/, ..., P/,,,} benew unary predicates
not used in the construction of Theorem 4.18. As before, we can view an atom A’ over P’
as representing a number in the range O, ..., T(n) — 1: if A contains Pj’ , then the jth bit of

the encoded number is 1; otherwise it is 0. Again, let A}, fori = 0, ..., T(n) — 1, denote
the atom corresponding to the number i according to this scheme. We can view a simplified
atomic description ¥ over P’ as representing the string y = ... ¥r@)-1 such that y; is 1 if
¥ contains the conjunct 3z A}(z), and O if v contains its negation. Under this representation,
for every string y of length T (n), there is a unique simplified atomic description over P’
that represents it; we denote this atomic description v,. Note that v, is not necessarily a
consistent atomic description, since the atomic description where all atoms are empty also
denotes a legal string—that string where all bits are 0.

While it is possible to reduce the problem of counting accepting guess strings to that of
counting simplified atomic descriptions, this is not enough. After all, we have already seen
that computing asymptotic conditional probabilities ignores all atomic descriptions that are
not of maximal degree. We deal with this problem as in Theorem 4.15. Let Q be a new unary
predicate, and let 6’ be, as in Theorem 4.15, the sentence

t(n)
vx,y <<Q(x) A NPIx) & P,-'(y))) =N Q(y)) .
j=1

Observe that here we use 6’ rather than the formula 6 of Theorem 4.15, since we also want to
count the “inconsistent” atomic description where all atoms are empty. Recall that, assuming
', each simplified atomic description v, over P’ corresponds precisely to a single maximal
atomic description ¥, over P’ U {Q}. We reduce the problem of counting accepting guess
strings to that of counting maximal atomic descriptions over P’ U {Q}.

46 ADAM J. GROVE, JOSEPH Y. HALPERN, AND DAPHNE KOLLER

We now consider cases (a) and (b) separately, beginning with the former. Fix a guess
string y. In Theorem 4.18, we constructed formulas ¢, [R], &, € L£() and 6,, € L(Y)
such that Pry (¢y[&,] | 6,) = 1 iff M accepts w given y, and is O otherwise. Recall that
the formula &, (x) (see equation (1)) sets the ith guess bit to be y; by forcing the appropriate
one of By(x, e;) and Bi(x, e;) to hold, where ¢; is the unique element in the atom A;. In
Theorem 4.18, this was done directly by reference to the bits y;. Now, we want to derive
the correct bit values from v,,, which tells us that the ith bit is 1 iff 3z A}(z). The following
formula £ has precisely the desired property:

t(n)
E(x) =gt Yy (P*(y) = (Bl(x, ORE (Q(z) VNGO P,f(z))))) .

j=1

Cleatly, ¥, =& © &,.
Similarly, for case (b), the formula £ is:

t(n)
£’ (x0, X1) =det YY1, -+ Yitw) ((A(Yj =xVy = x1)> =
i=1

t(n)
(Bi(yl, c Vi) & 2 (Q(z) AN =31 @ Pj’(z))))) :
j=1
Asinpart (a), ¥, E§ & §&).

Now, for case (a), we want to compute the asymptotic conditional probability Prl (¢[£] |
6w A 0"). In doing this computation, we will use the observation (whose straightforward proof
we leave to the reader) that if the symbols that appear in 6, are disjoint from those that appear
in¢; and 6, then Pr (¢; | 61 A8,) = Prly (¢; | 61). Using this observation and the fact that all
maximal atomic descriptions over P’ U{Q} are equally likely given 6,, A6’, by straightforward
probabilistic reasoning we obtain:

Pry (0ul€]] 6y A O') = ZPrZo(tpw[E] [6w AO"AY) - P (¥, | 64 AO)
vy

1
=T Zprowo(fﬂw[E] | 6w AO" A Y.
vy

We observed before that £ is equivalent to &, in worlds satisfying), and therefore
Proy(pulé11 6w A0 AY)) = Pro(0uléy 11 6, A 0" A = Pro(0uléy] | 6u),

where the second equality follows from the observation that none of the vocabulary symbols in
l/f;, or 6’ appear anywhere in ¢,,[£,] or in 6,,. In Theorem 4.18, we proved that Prly (¢, [£,] |
6y) is equal to 1 if the ATM accepts w given y and O if not. We therefore obtain that

f(w)
2T (n) :

Pre(pul€]1 6, A 6) =

Since both ¢, [£] and 6, A 6’ are polynomial in the size of the representation of M and in
n = |w|, this concludes the proof for part (a). The completion of the proof for part (b) is
essentially identical.]
It remains only to investigate the problem of approximating Pry (¢ | 8) for this language.
THEOREM 4.20. Fix rational numbers 0 < r1 < ry < 1 such that [ry, ;] # [0, 1]. For
@, 0 € L(), the problem of deciding whether Pty (¢ | 0) € [ry, rp] is TA(EXP,LIN)-hard,
even given an oracle for deciding whether the limit exists.

ASYMPTOTIC CONDITIONAL PROBABILITIES 47

Proof. For the case of r; = 0 and r, < 1, the result is an easy corollary of Theo-
rem 4.18. We can generalize this to the case of r; > 0, using precisely the same technique as
in Theorem 4.16.]

4.6. Complexity for random structures. So far in this section, we have investigated the
complexity of various problems relating to the asymptotic conditional probability using the
random-worlds method. We now deal with the same issues for the case of random structures.
It turns out that most of our results for random worlds carry through to random structures for
trivial reasons.

First, consider the issue of well-definedness. By Proposition 2.3, well-definedness is
equivalent for random worlds and random structures. Therefore, all of the results obtained for
random worlds carry through unchanged for random structures.

For computing or approximating the limit, Theorem 3.37 allows us to restrict attention to
unary vocabularies and unary sentences ¢ and 6. In particular, there is no need to duplicate
the results in §4.5. For the remainder of this section, we analyze the complexity of computing
P’ (¢ | 6) for @, 0 € L(W). As before, we can assume that A7, € Ay .

The computational approach is essentially the same as that for random worlds. However,
as we showed in §3.5, rather than partitioning € into model descriptions, we can make use of
the assumption that the vocabulary is unary and instead partition it into atomic descriptions
Y. That s, fora = «¥ (9),

Y,a
P (p10) = —— 3 Pilip|) (= P)
g1y b 4™

As for random worlds, we begin with the problem of computing 0-1 probabilities. In §4.1,
we showed how to extend Grandjean’s algorithm to compute Prg (¢ | ¥ A V). Fix a unary
vocabulary W, and suppose that ¢ AV is a model description over ¥, with n = v(y). Recall
from Proposition 3.21 that Priy. (¢ | ¥ AV) = Prig(¢ | ¥ A3xy, ..., x, Dy). However, in the
unary case it is easy to see that » A3x,, ..., x, Dy is equivalent to y. This is because the only
nontrivial properties of the named elements given by V is which atom each of them satisfies
and the equality relations between the constants, and this information is already present in the
atomic description .

Therefore, we conclude that Prl, (¢ |) is either O or 1, because this is so for Pry, (¢ |
¥ AV). Now recall that if ¢ € A;f’ then implies ¢. In this case, clearly Pry (¢ | ¥) =
Pr‘o’o"’ (¢ | ¥) = 1. Similarly, if ¢ & A;‘,’, then v is inconsistent with ¢ and Pri (¢ | ¢) =
Pr‘o’olIJ (p | ¥) = 0. So it follows that we can continue to use Grandjean’s algorithm, as
described in §4.1, to compute Pri.’ (¢ | ¥).

THEOREM 4.21. There exists an alternating Turing machine that takes as input a finite
unary vocabulary W, an atomic description ¥ over ¥, and a formula ¢ € L(V), and decides
whether Pﬁob“’(w | ¥) is 0 or 1. The machine uses time O(|¥|2"P'(v(¥) + |¢|)) and has at
most 02" + v(y¥))¥") branches and O(|¢|) alternations.

As before, we can simulate the ATM deterministically.

COROLLARY 4.22. There exists a deterministic Turing machine that takes as input a
finite unary vocabulary ¥, an atomic description ¥ over V, and a formula ¢ € L(\V), and
decides whether Pr'¥ (¢ |) is 0 or 1. The machine uses time 2°0¢II¥11eCWI+D) gpg space
O(lp||W[log(v(¥) + 1)).

We now analyze the complexity of computing Pr‘o;;" (¢ | 8). We begin with the case of a
fixed finite vocabulary W.

48 ADAM J. GROVE, JOSEPH Y. HALPERN, AND DAPHNE KOLLER

THEOREM 4.23. Fix a finite unary vocabulary V with at least one predicate symbol.
For ¢,0 € L(¥), the problem of computing Pr‘o'o"’ (¢ | 8) is PSPACE-complete. Moreover,
deciding if Pr (¢ | true) = 1 is PSPACE-hard, even if ¢ € L™ ({ P}).

Proof. By Corollaries 3.41 and 3.42,if 9,6 € L~ ({P}) and P € ¥, then Pry (¢ |) =
Pr‘o;)[P o | 6) = Pr‘o‘o"’ (¢ | 8). Thus, the lower bound follows immediately from Theorem 4.7.

For the upper bound, we follow the same general procedure of Compute-Pr,: generating
all atomic descriptions of size d(6) + |C|, and computing Pr‘ogl’ (¢ | 6). The only difference is
that, rather than counting only model descriptions of the highest degree A (Y) = (a(¥), v(¥)),
we count all atomic descriptions of the highest activity count «(y). Clearly, since there are
fewer atomic descriptions than model descriptions, and an atomic description has a shorter
description length than a model description, the complexity of the resulting algorithm can only
be lower than the corresponding complexity for random worlds. The algorithm for random
structures is therefore also in PSPACE. a

Just as Theorem 4.7, Theorem 4.23 shows that even approximating the limit is hard. That
is, for a fixed € with 0 < € < 1, the problem of deciding whether Pr‘o‘o‘l’ (p10)el0,1—¢€]is
PSPACE-hard even for ¢, 0 € L~ ({P}). As for the case of random worlds, this lower bound
cannot be generalized to arbitrary intervals [}, r;] unless we allow equality. In particular, for
any fixed finite language, there is a fixed number of atomic descriptions of size 1, where this
number depends only on the language. Therefore, there are only finitely many values that the
probability Pr‘o’o“’ (¢ | 8) can take for ¢, 8 € L~ (V). However, and unlike the case for random
worlds, for random structures once we have equality in the language, a single unary predicate
suffices in order to have this probability assume infinitely many values.

THEOREM 4.24. Fix a finite unary vocabulary \V that contains at least one unary predicate
and rational numbers 0 < r; < ry < 1 such that [ry, r2] # [0,1]. For ¢,0 € L(V), the
problem of deciding whether Pr.Y (¢ | 6) € [r1, r2] is PSPACE-hard, even given an oracle
that tells us whether the limit is well defined.

Proof. We first prove the result under the assumption that ¥ = {P}.

For the case of r{ = 0 and r, < 1, the result follows trivially from Theorem 4.23. Let
ri = q/p > 0. As for random worlds, we construct formulas ¢;,, ,, such that PI“O‘O[P](go,| |
6,,) = r1. The formula 6,, is 3x P(x) A3=Px P(x). The formula ¢, is Ix P(x) A3=9x P(x).
Clearly, there are p atomic descriptions consistent with 6,,, among which g are also consistent
with @,,. Thus, PP (g, 1 6,) =q/p =r1.

Now, as in Theorem 4.8, let 8 be a QBF, and define &4 as in that proof. As there,
PPl (Eg A @y, | 6, AJx =P (x))is Oif B is false and r if it is true. Thus, by computing this
probability, we can decide the truth of 8, proving PSPACE-hardness in this case.

The result in the case that ¥ # {P} is not immediate as it is for random worlds, since
the asymptotic probability in the case of random structures may depend on the vocabulary.
We define a formula 6’ to be the following conjunction: for each predicate P’ in ¥ — {P},
#’ contains the conjunct Vx P’(x). If ¥ contains constant symbols, let ¢ be a fixed constant
symbol in W. Then 6’ also contains the conjunct /\ p .y, P’(c), and conjuncts ¢ = ¢’ for each
constant ¢’ in W. We leave it to the reader to check that for any formulas ¢, 6 € L({P}),
PrilPl(p | 0) =Pl (p | 6 A D). o

For the case of a finite vocabulary and a bound on the quantifier depth, precisely the same
argument as that given for Theorem 4.9 allows us to show the following.

THEOREM 4.25. Fixd > 0. For ¢, 0 € L(V) such that d(¢), d(0) < d, we can effectively
construct a linear time algorithm that decides if Pr‘o‘;’ (¢ |) is well defined and computes it
if it is.

We now drop the assumption that we have a fixed finite vocabulary. As we previously
discussed, there are at least two distinct interpretations for asymptotic conditional probabilities

ASYMPTOTIC CONDITIONAL PROBABILITIES 49

in this case. One interpretation of “infinite vocabulary” views €2 as a potential or background
vocabulary, so that every problem instance includes as part of its input the actual finite subvo-
cabulary that is of interest. So although this subvocabulary is finite, there is no bound on its
possible size. The alternative is to interpret infinite vocabularies more literally, using the limit
process explained in §2.3. As we mentioned, for random worlds the two interpretations are
equivalent. However, this is not the case for random structures, where the two interpretations
may give different answers. In fact, from Corollary 2.9, it follows that the random-structures
method reduces to the random-worlds method under the second interpretation. Thus, the com-
plexity results are the same for random worlds and random structures under this interpretation.
As we already observed, even under the first interpretation, the random-structures method re-
duces to the random-worlds method if there is a binary predicate in the language. It therefore
remains to prove the complexity results for random structures only for the first interpretation,
where the vocabulary is considered to be part of the input, under the assumption that the
language is unary. As Example 2.4 shows, in this case, the random-worlds method may give
answers different from those given by the random-structures method. Nevertheless, as we
now show, the same complexity bounds hold for both random worlds and random structures.

As for the case of the finite vocabulary, the lower bounds for computing the probability
(Theorem 4.15) and for approximating it (Theorem 4.16) only use formulas in £~ (P) for
some P C Q. Therefore, by Corollaries 3.41 and 3.42, the lower bounds hold unchanged for
random structures.

THEOREM 4.26. For W C Y and ¢,0 € L (P) of depth at least 2, the problem of
computing Pryo‘o‘p (¢ | 0) is #EXP-hard, even given an oracle for deciding whether the limit
exists.

THEOREM 4.27. Fix rational numbers 0 < ri < r, < 1 such that [r, r] # [0, 1]. For
W C Qandg,0 € L7 (P) of depth 2, the problem of deciding whether Pryo'o‘l’ (p|0) €lr1,]
is both NEXPTIME-hard and co-NEXPTIME-hard, even given an oracle for deciding whether
the limit exists.

It remains only to prove the #EXP upper bound for computing the asymptotic probability.

THEOREM 4.28. For W C Q and ¢, 0 € L(V), the problem of computing PrS.Y (¢ |) is
#EXP-easy.

Proof. We again follow the outline of the proof for the case of random worlds. Recall that
in the proof of Theorem 4.13 we construct a Turing machine such that the number of accepting
paths of M encodes, for each degree §, count® (¢) and count’(0). From this encoding we
could deduce the maximum degree, and calculate the asymptotic conditional probability. This
was accomplished by guessing a model description ¥ A V), and branching sufficiently often,
according to A(y), so that the different counts in the output are guaranteed to be separated.
The construction for random structures is identical, except that we guess atomic descriptions
Y rather than model descriptions, and branch according to «(y) rather than according to
A(y). Again, since there are fewer atomic descriptions than model descriptions, and the
representation of atomic descriptions is shorter, the resulting Turing machine is less complex,
and therefore also in #EXP.]

5. Conclusions. In this paper and [23], we have carried out a rather exhaustive study of
complexity issues for two principled methods for computing degrees of belief: the random-
worlds method and the random-structures method. These are clearly not the only methods
that one can imagine for this purpose. However, as discussed in [2] and [22], both methods
are often successful at giving answers that are intuitively plausible and which agree with
well-known desiderata. We believe this success justifies a careful examination of complexity
issues.

50 ADAM J. GROVE, JOSEPH Y. HALPERN, AND DAPHNE KOLLER

Here we have focused on the case where the formula we are conditioning on is a unary
first-order formula. As we mentioned in the introduction, in many applications we want to
move beyond first order and also allow for statistical knowledge. Both methods continue to
make sense in this case. Furthermore, as shown in [33], [3], and [27], for a unary language we
can often calculate asymptotic probabilities in the random-worlds method, using a combination
of the techniques in this paper and the principle of maximum entropy. Since a lot is already
known about computing maximum entropy (for example, [7], [9], [19]), this combination may
lead to efficient algorithms for some practical problems.

Acknowledgments. We would like to thank Fahiem Bacchus, with whom we started
working on this general area of research. We would also like to thank Ron Fagin and Moshe
Vardi for useful comments on a previous draft of this paper. Ron’s comments encouraged
us to discuss both the random-structures and the random-worlds methods in this paper. We
would also like to thank Moshe for pointing out the reference [31]. Finally, we would like to
thank Andrew Granville for help with some of the details of Theorem 4.8.

REFERENCES

[11 W. ACKERMANN, Solvable cases of the decision problem, North-Holland, Amsterdam, 1954.
[2] F.BAccHUS, A.J. GROVE, J. Y. HALPERN, AND D. KOLLER, From statistics to belief, in Proc. National Conference
on Artificial Intelligence (AAAI *92), AIAA Press/MIT Press, New York, 1992, pp. 602-608.

, From statistical knowledge bases to degrees of belief, Tech. Report 9855, IBM Almaden Re-
search Center, San Jose, CA, 1994; Artif. Intell., to appear. Also available by anonymous ftp from
logos.uwaterloo.ca/pub/bacchus or via WWW at http://logos.uwaterloo.ca. A preliminary version of this
work appeared in Proc. International Joint Conference on Atrtificial Intelligence (IICAI *93), Chambéry,
France, 1993, pp. 563-569.

[4] A. BLass, Y. GUREVICH, AND D. KOZzEN, A zero—one law for logic with a fixed point operator, Inform. and
Control, 67 (1985), pp. 70-90.

[S] A. K. CHANDRA, D. KozeN, AND L. J. STOCKMEYER, Alternation, J. Assoc. Comput. Mach., 28 (1981),
pp. 114-133.

[6] A.K.CHANDRA AND P. M. MERLIN, Optimal implementation of conjunctive queries in relational databases, in
Proc. 9th ACM Symp. on Theory of Computing, Boulder, CO, 1977, pp. 77-90.

[7]1 P. C. CHEESEMAN, A method of computing generalized Bayesian probability values for expert systems, in
Proc. Eighth International Joint Conference on Artificial Intelligence (IJCAI ’83), Karlsruhe, Germany,
1983, pp. 198-202.

[8] K. CompTON, 0-1 laws in logic and combinatorics, in Proc. 1987 NATO Adyv. Study Inst. on algorithms and
order, I. Rival, ed., Reidel, Dordrecht, the Netherlands, 1988, pp. 353-383.

[9]1 W.E.DEMING AND F. F. STEPHAN, On a least squares adjustment of a sampled frequency table when the expected
marginal totals are known, Ann. Math. Stat., 11 (1940), pp. 427—444.

[10] K. G. DENBIGH AND J. S. DENBIGH, Entropy in Relation to Incomplete Knowledge, Cambridge University Press,
Cambridge, UK, 1985.

[11] B. DReBEN AND W. D. GOLDFARB, The Decision Problem: Solvable Classes of Quantificational Formulas,
Addison—-Wesley, Reading, MA, 1979.

[12] H. B. ENDERTON, A Mathematical Introduction to Logic, Academic Press, New York, 1972.

[13] R. FAGIN, Probabilities on finite models, J. Symbol. Logic, 41 (1976), pp. 50-58.

[14] , The number of finite relational structures, Discrete Math., 19 (1977), pp. 17-21.

[15] H. GAIFMAN, Probability models and the completeness theorem, in Internat. Congress of Logic Methodology
and Philosophy of Science, 1960, pp. 77-78. This is the abstract of which [16] is the full paper.

[16] , Concerning measures in first order calculi, Israel J. Math., 2 (1964), pp. 1-18.

[17]1 M. GAREY AND D. S. JOHNSON, Computers and Intractability: A Guide to the Theory of NP-completeness,
W. Freeman and Co., San Francisco, CA, 1979.

[18] Y. V. GLeBskIl, D. I. KoGan, M. I. LIoGON'KII, AND V. A. TALANOV, Range and degree of realizability of
formulas in the restricted predicate calculus, Kibernetika, 2 (1969), pp. 17-28.

[19] S. A. GOLDMAN, Efficient methods for calculating maximum entropy distributions, Master’s thesis, EECS
Department, MIT, Cambridge, MA, 1987.

[20] E. GRANDIEAN, Complexity of the first-order theory of almost all structures, Inform. and Control, 52 (1983),
pp. 180-204.

[21] A.J. GROVE, J. Y. HALPERN, AND D. KOLLER, Asymptotic conditional probabilities for first-order logic, in
Proc. 24th ACM Symp. on Theory of Computing, 1992, pp. 294-305.

[3]

[22]
[23]

[24]
[25]

[26]
[27]
[28]
[29]
[30]

[31]

[32]
[33]

[34]
[35]

[36]
[37]
[38]
[39]
[40]

ASYMPTOTIC CONDITIONAL PROBABILITIES 51

A.J. GROVE, J. Y. HALPERN, AND D. KOLLER, Random worlds and maximum entropy, J.A.L. Res., 2 (1994), pp.
33-38.

, Asymptotic conditional probabilities: The non-unary case, Research Report RJ 9564, IBM Almaden
Research Center, San Jose, CA, 1993; J. Symbol. Logic, to appear.

1. HACKING, The Emergence of Probability, Cambridge University Press, Cambridge, UK, 1975.

E. T. JAYNES, Where do we stand on maximum entropy?, in The Maximum Entropy Formalism, R. D. Levine
and M. Tribus, eds., MIT Press, Cambridge, MA, 1978, pp. 15-118.

J. M. KEYNES, A Treatise on Probability, Macmillan, London, 1921.

D. KOLLER, From Knowledge to Belief, Ph.D. thesis, Dept. of Computer Science, Stanford University, 1994.

J. v. KRIES, Die Principien der Wahrscheinlichkeitsrechnung und Rational Expectation, Freiburg, 1886.

H. R. Lewis, Unsolvable Classes of Quantificational Formulas, Addison-Wesley, New York, 1979.

, Complexity results for classes of quantificational formulas, J. Comput. System Sci., 21 (1980),
pp. 317-353.

M. L. LIoGON’K11, On the conditional satisfiability ratio of logical formulas, Math. Notes Acad. USSR, 6 (1969),
pp. 856-861.

J. LYNCH, Almost sure theories, Ann. Math. Logic, 18 (1980), pp. 91-135.

J. B. PARIS AND A. VENCOVSKA, On the applicability of maximum entropy to inexact reasoning, Internat.
J. Approx. Reasoning, 3 (1989), pp. 1-34.

S. J. PROVAN AND M. O. BALL, The complexity of counting cuts and of computing the probability that a graph
is connected, SIAM J. Comput., 12 (1983), pp. 777-788.

D. ROTH, On the hardness of approximate reasoning, in Proc. Thirteenth International Joint Conference on
Artificial Intelligence (IJCAI *93), Chambéry, France, 1993, pp. 613-618.

G. SHAFER, Personal communication, 1993.

L. J. STOCKMEYER, The polynomial-time hierarchy, Theoret. Comput. Sci., 3 (1977), pp. 1-22.

L. G. VALIANT, The complexity of computing the permanent, Theoret. Comput. Sci., 8 (1979), pp. 189-201.

, The complexity of enumeration and reliability problems, SIAM J. Comput., 8 (1979), pp. 410-421.

R. L. VAUGHT, Applications of the Lowenheim-Skolem-Tarski theorem to problems of completeness and
decidability, Indag. Math., 16 (1954), pp. 467—-472.

SIAM J. COMPUT. (©) 1996 Society for Industrial and Applied Mathematics
Vol. 25, No. 1, pp. 52-82, February 1996 002

A FAST DERANDOMIZATION SCHEME AND ITS APPLICATIONS*
YUIE HAN'

Abstract. This paper presents a fast derandomization scheme for the PROFIT/COST problem. Through the
applications of this scheme the time complexity of O (log? n loglog n) for the A + 1 vertex-coloring problem using
O((m + n)/loglogn) processors on the concurrent read exclusive write parallel random-access machine (CREW
PRAM), the time complexity of O(log?> n) for the maximal independent set problem using O ((m + n)/ log'= n)
processors on the CREW PRAM and the time complexity of O(logz'5 n) for the maximal matching problem using
O((m+n)/ log,o'5 n) processors on the exclusive read exclusive write (EREW) PRAM are shown.

Key words. derandomization, parallel algorithms, graph algorithms, graph coloring, maximal independent set,
maximal matching

AMS subject classifications. 05C70, 05C85, 68Q20, 68Q22, 68Q25, 68R10

1. Introduction. Recent progress in derandomization has resulted in several efficient
sequential and parallel algorithms [ABI], [BR], [BRS], [H], [HI], [KW], [L1], [L2], [L3],
[MNN], [PSZ], [Rag], [Sp]. The essence of the technique of derandomization lies in the
design of a sample space that is easy to search, in the probabilistic analysis showing that
the expectation of a desired random variable is no less than demanded, and in the search
technique which ultimately returns a good sample point. Raghavan [Rag] and Spencer [Spl]
showed how to search an exponential-size sample space to obtain polynomial-time sequential
algorithms. Their technique cannot be applied directly to obtain efficient parallel algorithms
through derandomization. Alon et al. [ABI], Karp and Wigderson [KW], and Luby [L1], [L2],
[L3] developed schemes using O (n) random variables with limited independence on a small
sample space and thus obtained efficient parallel algorithms through derandomization. Berger
and Rompel [BR] and Motwani et al. [MNN] presented novel designs in which (log® n)-wise
independent random variables are used in randomized algorithms and then A/C [Co] algorithms
are obtained through the derandomization of these randomized algorithms.

To obtain efficient parallel algorithms, i.e., algorithms using no more than a linear
number of processors and running in polylog time, Luby [L2], [L3] outlined an elegant frame-
work in which pairwise independent random variables are designed on a sample space that
facilitates binary search. His framework [L2], [L3] consists of a derandomization scheme
for the bit-pairs PROFIT/COST problem and the general-pairs PROFIT/COST problem,
and applications of the scheme to three problems: the A + 1 vertex-coloring problem,
the maximal independent set problem, and the maximal matching problem. By applying
his derandomization scheme, he obtained a linear processor concurrent read exclusive write
(CREW) algorithm for the A + 1 vertex-coloring problem with time complexity
O(log® nloglogn). Although he put the three problems in a very nice setting, his deran-
domization scheme is not efficient enough to improve on parallel algorithms for the maximal
independent set problem and the maximal matching problem obtained through ad hoc designs
[GS2], [IS]. To illustrate his ideas, Luby gave linear processor algorithms for the maximal
independent set problem and the maximal matching problem with time complexity O (log’)
through derandomization [L3].

Recently, Han and Igarashi [HI] gave a fast derandomization scheme for the bit-
pairs PROFIT/COST problem. Their scheme yields a fast CREW parallel algorithm for

*Received by the editors January 11, 1991; accepted for publication (in revised form) July 22, 1994. Part of
this paper appeared in Proc. 1991 Workshop on Algorithms and Data Structures, Carleton University, Ottawa, ON,
Canada, Lecture Notes in Comput. Sci. 519, Springer-Verlag, Betlin, New York, 1991, pp. 177-188.

tDepartment of Computer Science, University of Kentucky, Lexington, KY 40506. Current address: Electronic
Data Systems, Inc., 37350 Ecorse Road, Romulus, MI 48174.

52

DERANDOMIZATION 53

the bit-pairs PROFIT/COST problem with time complexity O (logn) using a linear number
of processors. Han then showed [H] how to obtain an exclusive read exclusive write (EREW)
algorithm with the same time and processor complexities. Their result improves the time
complexity of Luby’s A + 1 vertex-coloring algorithm to O(log® n). The most interesting
feature in Han and Igarashi’s scheme [H], [HI] is the design of a sample space which allows
redundancy and mutual independence to be exploited.

In this paper, we give a new scheme to speed up the derandomization process of the
general-pairs PROFIT/COST problem. This scheme allows several bit-pairs PROFIT/COST
problems in one general-pairs PROFIT/COST problem to be solved in one pass. We note that
our scheme cannot be constructed efficiently under the setting of previous derandomization
schemes [L2], [L3] because it would require more than a linear number of processors. The
power of our derandomization scheme allows us to improve the time complexity for the
A + 1 vertex-coloring problem and to obtain new efficient parallel algorithms for the maximal
independent set problem and the maximal matching problem.

A substantial amount of effort has been put into the search for efficient parallel algorithms
for these three problems. There are important special cases where optimal parallel algorithms
are known. Hagerup et al. [HCD] have an optimal parallel algorithm for the 5-coloring of
planar graphs which implies an optimal parallel algorithm for the maximal independent set
problem for planar graphs. Significant progress has also been made on the three problems for
graphs [ABI], [GS1], [GS2], [HI], [IS], [KW], [L1], [L2], [L3]. In this paper, we only study
these three problems on graphs.

Luby obtained through derandomization a CREW algorithm for the A + 1 vertex-coloring
problem with time complexity O (log® n loglog n) using a linear number of processors. Han
and Igarashi’s work [HI] improves the time complexity for the A + 1 vertex-coloring problem
to O(log® n). In this paper, we improve the time complexity for the A + 1 vertex-coloring
problem to O (log? n log log n) using O ((m + n)/ loglog n) processors on the CREW parallel
random-access machine (PRAM) [FW]. For the maximal independent set problem, the first
NC algorithm, which was obtained by Karp and Wigderson [KW], has time complexity
0(10g4 n) using O (n3/ log3 n) processors on the EREW PRAM. Their result has since been
improved to time O (log2 n) using O (mn?) processors on the EREW PRAM by Luby [L1] and
to time O (log> n) using O ((m + n)/ log n) processors on the EREW PRAM by Goldberg and
Spencer [GS1], [GS2]. In this paper, we obtain an EREW algorithm with time complexity
O (log*® n) using O((m + n)/ log®> n) processors. We are able to achieve the same time
complexity using O((m + n)/log"> n) processors on the CREW PRAM. We also obtain
a CREW algorithm with time complexity O(log®n) using O(n>37®) processors. For the
maximal matching problem, Israeli and Shiloach’s concurrent read concurrent write (CRCW)
algorithm [IS] has time complexity 0(log3 n) using O(m + n) processors. In this paper,
we give an EREW algorithm with time complexity O (log?° n) using O ((m + n)/1log®® n)
processors.

Since our algorithms are obtained through derandomization, they are derived at a loss of
efficiency from the original randomized algorithms.

Our approach to the three problems follows that of Luby’s [L2], [L3]. Our results are
obtained through the novel design of sample spaces which follows Han and Igarashi’s work
[H], [HI], the formulation of our fast derandomization process, and the adaptive applications
of the fast derandomization techniques to the three problems.

We have outlined here only the main results achieved. There are ramifications of our
results which we will mention in the remaining sections of the paper.

2. Preliminaries. The bit-pairs PROFIT/COST (BPC) and the general-pairs PROFIT/
COST (GPC) problems as formulated by Luby [L2] can be described as follows.

54 YIJIE HAN

Let x=< xi € {0,1}4 :i =0,...,n—1 >. Each point X out of the 2 points is
assigned probability 1/2"¢. Given function B(;) =2 j fi.j(xi, x;), where f; ; is defined
as a function {0, 1}¢ x {0, 1} — R. The GPC problem is to find a good point ; such that

B(;) > E [B(;))]. B is called the general-pairs BENEFIT function and the f; ;’s are called
the GPC functions. When g = 1, the GPC problem is called a BPC problem and the f; ;’s are
called the BPC functions.

The size m of the problem is the number of nontrivial PROFIT/COST functions present
in the input.

Let G = (V, E) be a graph with |V| = n and |E| = m. The degree of v € V is
denoted by d(v). Let A = max{d(v)|v € V}. The output of the A + 1 vertex coloring is
color(v) € {1,..., A + 1} forall v € V such that if (i, j) € E, then color(i) # color(j).
I C V is an independent set if for v, w € I, v # w, (v, w) € E. I is a maximal independent
set if I is not a proper subset of any other independent set. M C E is a matching set if no
two edges in M have a common vertex. M is maximal if it is not a proper subset of any other
matching set.

Han and Igarashi [HI] have formulated the BPC problem as a tree-contraction problem
[MR]. Without loss of generality, assume that n is a power of 2. n 0f1-valued uniformly
distributed mutually independent random variables r;, 0 < i < n, are used. A random-

variable tree T is built for x. T isa complete binary tree with n leaves plus a node which is
the parent of the root of the complete binary tree (thus there are n interior nodes in T and the
root of T has only one child). The n variables x;, 0 < i < n, are associated with n leaves of
T, and the n random variables r;, 0 < i < n, are associated with the interior nodes of T. The
n leaves of T are numbered from 0 to n — 1. Variable x; is associated with leaf i.

Variables x;, 0 < i < n, are chosen randomly as follows. Let F=< ri:i=0,...,n—
1 > and let ry, 73, . . ., iy, be the random variables on the path from leaf i to the root of T'.

Random variable x; is defined to be x,-(?) = (Z}(f(;l -1 i+ Ti; + Tiy,,) mod 2, where i; is the
Jjth bit of i starting with the least significant bit. It can be verified [H] that random variables
x;, 0 <i < n, are uniformly distributed mutually independent random variables.

Due to the linearity of expectation and pairwise independence of random variables in
X, E[B(X)] = Y, Elfi (i xpl = X, ELfi i (P, x;(F)] = E[B(x (¥)]. The
problem now is to find a sample point 7 such that B(7) > E[B] = %Zi’j (fi,;(0,0) +
£O. D)+ fi;(1,0) + f; (1, 1)

Han and Igarashi’s algorithm [HI] fixes random variables r; (setting their values to 0’s and
1’s) one level in a step starting from the level next to the leaves (level 0) and going upward on
the tree T until level log n. Since there are log n + 1 interior levels in T, all random variables
will be fixed in logn + 1 steps.

Let random variable r; at level O be the parent of the random variables x; and x;4 in the
random variable tree, where i#; is a number obtained by complementing the jth bit of i. r;
will be fixed as follows. Compute fo = E[f; 40+ fiso,ilri = 0l = (fi,i#0(0, 0)+ fiis0(1, 1)+
fi#0,i(0,0) + fizoi (1, 1))/2 and f1 = E[fiiso + firoilri = 1] = (fi.iz0(0, 1) + fiio(1,0) +
Sfi#0,:(0, 1) + fino:(1,0))/2. If fo > fi, thenset r; to O else set r; to 1. All random variables
at level 0 will be fixed in parallel in constant time using »n processors. This results in a smaller
space with higher expectation for B. Therefore, this smaller space contains a good point.

If r; is set to O, then x; = x;40; if r; is set to 1, then x; = 1 — x;40. Therefore, after r; is
fixed, x; and x4 can be combined. The n random variables x;, 0 < i < n, can be reduced
to n/2 random variables. PROFIT/COST functions f; ;, fiso,;. fi.j#0, and fixo, j#0 can also be
combined into one function. It can be checked that the combining can be done in constant
time using a linear number of processors.

DERANDOMIZATION 55

Bit-setting info. column j.
row i.o o \ o o
o o o o

l]l
ly
I
|IIII| Bit-setting info.
ly
ly

row j.o o
o o

Fic. 1.

During the combining process, variables x; and x;s are combined into a new variable
xfil/)2 |»and functions f; ;, fio,j, fi,j#0, and fiso, j#o are combined into a new function fL(il/g /2
After combining, a new function B! is formed which has the same form as B but has only
n/2 variables. As we stated above, E[B"] > E[B].

What we have explained above is the first step of the algorithm in [HI]. This step
takes constant time using a linear number of processors. After k steps, the random vari-
ables at levels O to k¥ — 1 in the random-variable tree (%e f(ilged, the(]g random variables

{x0, X1, ..., X,—1 } arereduced to n /2¥ random variables {xo s xy 5.0 x, /2/<—1}’ and functions

fij»ivJj €10, 1,...,n — 1}, have been combined into £, i, j € {0,1,...,n/2¢ — 1}.

After logn steps, BUog = 008" ((08™ 108" The bit at the root of the random-

variable tree is now set to 0 if f(,(}gg")(o, 0) > fé}gg "(1,1), and 1 otherwise. Thus Han and

Igarashi’s algorithm [HI] solves the BPC problem in O (logn) time with a linear number of
processors.

Let n = 2¥ and A be an n x n array. Elements A[i, j1, A[i, j#0], A[i#0, j], and
A[i#0, j#0] form a gang, which is denoted by ga[|i/2], | j/2]]. All gangs in A form ar-
ray ga.

When visualized on a two-dimensional array A (as shown in Fig. 1), a stage of Han
and Igarashi’s algorithm can be interpreted as follows. Let function f; ; be stored at A[i, j].
Setting the random variables at level O of the random-variable tree is done by examining the
PROFIT/COST functions in the diagonal gang of A. Function f; ; then gets the bit-setting
information from g4[|i/2], [i/2]1and ga[lj/2], |j/2]] to determine how it is to be combined
with other functions in g4[1i/2], | j/21].

A derandomization tree D can be built which reflects the way the BPC functions are
combined. D is of the following form. The input BPC functions are stored at the leaves, f; ;
is stored in Ag[i, j]. A node A,[i, j] at level [> O is defined if there exist input functions in
the range Aou, v],i %2/ <u < (i +1) %2, jx2' <v < (j + 1) x2'. A derandomization
tree is shown in Fig. 2.

Tree D can be constructed [H], [HI] by first sorting the input into the file-major indexing
and then building the tree bottom-up. The derandomization tree helps to reduce the space
requirement for the BPC problem. Han and Igarashi’s algorithm [HI] has time complexity
O(log n) using a linear number of processors.

The algorithm given by Han and Igarashi [HI] is a CREW algorithm. Recently, Han [H]
has given an EREW algorithm for the BPC problem with time complexity O(logr) using a
linear number of processors.

We now discuss some variations of the above algorithm to be used in §§5 and 6.

56 YIJIE HAN

Level 3

Level 2

FiG. 2. A derandomization tree. Pairs in the circles and the subscripts of PROFIT/COST problems.

In some applications, the BPC functions cannot be combined in order to obtain an ef-
ficient algorithm. If the functions are not combined, then there could be several BPC func-
tions fi(x;,, x;,), fa(xi,, x,), ..., fi(xi,, xj,) associated with an interior node in the random-
variable tree, where x; , x;, are leaves in the subtree rooted at r. If r is not the root of the whole
random-variable tree, then one of x; , x;, is in the left subtree of r and the other in the right
subtreeof r, 1 <t <k.

Let x; be a leaf of a random-variable subtree T. Let the random variables on the path
from x; to the root r of T be setto ag, ay, ..., a;. We define W (x;,r) = Zé:o(aj -i;)mod 2.
This function resembles the W function defined by Luby [L2], [L3].

In fixing r, we tentatively set » to 0 and 1, respectively, and evaluate f;(W(x;,,7),
W(x;,r)+ fi(¥W(x, r)® LY, r)®1),1 <t <k, where @ is the exclusive-or function.
We then get the sum of these functions and compare the sum for » = 0 with the sum forr = 1
to decide whether r should be set to O or 1. It takes O (log n) time to get the sum because there
are at most O (n?) functions.

We note that W(x;, r) can be evaluated progressively as the derandomization process
proceeds, i.e., ¥ (x;, r) = (¥ (x;, r") + tr) mod 2, where r is the parent of 7' and ¢ is the bit
of i corresponding to r.

Thus if the functions are not combined in the derandomization process, a BPC problem
requires O (log? n) time to solve.

In our applications we also use a combination of Luby’s technique [L2] and Han and
Igarashi’s technique [H], [HI] for solving a BPC problem. The random-variable tree used in
Luby’s algorithm degenerates to a chain of length log n + 1 plus n leaves. Therefore there are
log n 4 1 random variables ro, ry, . . ., riog» associated with the interior nodes in the tree. x; is
chosen randomly by the formula x; = (Z;‘f&' -1 i +Tj+T1ogn) mod 2. It can be shown [L2] that
x;’s are pairwise independent random variables. In Luby’s algorithm, the random variables in
the random-variable tree are also fixed one level at a time. His algorithm takes O (logn) time
to fix one level resulting in time complexity O (log®n). We stress that the random-variable
tree used in Luby’s algorithm has only logn + 1 random variables. Thus the sample space
contains only 2n sample points, while the sample space used in Han and Igarashi’s algorithm
[H], [HI] has 2" sample points.

Combining Luby’s technique and Han and Igarashi’s technique [H], [HI], we could
solve a BPC problem by using a random-variable tree T as shown in Fig. 3(c). T has
S = [(logn+ 1) /a] blocks, where a is a parameter. Block s contains levelsas toa(s+1) —1
of T. Block 0 has Cy = [n/2%] chains. Block s has C; = [C,_;/2%] chains. Each chain

DERANDOMIZATION 57

Block 1
E v
Block 0
T
(b)

(a) ©

F1G. 3. (a) Luby’s tree. (b) Han and Igarashi’s tree. (c) A tree of combination.

in block s has length a running from level as to level a(s + 1) — 1. A node at level as in
a chain (except the one in the last chain) has 2¢ children at level as — 1. Block S — 1 has
only one chain of length logn + 1 — a(S — 1). There is a random bit r at each interior node
of T and random variable x; is associated with the ith leaf of T. x; is chosen randomly as
xi(r) = (Z}":g(;' ! ij - Ii; + Fiy,,) mod 2, where ry, 7i,,, iy, are the random variables on
the path from leaf i to the root of T'. It is straightforward to show that the x;’s are uniformly
distributed pairwise independent random variables.
Different random variable trees are shown in Fig. 3.

3. A scheme for the GPC problem. In this section, we present a scheme to speed up
the derandomization process for the GPC problem.

In [L2] and [L3], Luby presented the following derandomization scheme for solving the
GPC problem.

Let y= (y; € {0,1)? : i = 0,1,...,n —1). Letx,, p < u < g, be totally
independent random bit strings, each of length n. Let Z be a vector of n bits. We write
the BENEFIT function B(xo, X1, ..., X,_1), where each x; is a variable containing ¢ bits,
as B(xq_:l e x,:q;;,;), where ¥ contains the least significant p bits of all variables and
)_c; contains the ith bits of all variables. Define TB(S;) = E [B(x;l xﬁlz,y)].Then
E[TB(,¥)] = E[E[B(x, 1 - xps12 V)| 2 =xpll = E[B(x, 11 - x,7)] = TB(Y).
Thatis, TB(;) can also be obtained by first computing TB(;;,;;), and TB(;) = E[TB(;;,;;)]
= Z; TB(?;)Pr()ZF? | x,,_)_l ;6=;). Thus there exists a z such that TB(Z;’)) >

TB(;). After TB(;;,;) are evaluated for all values of ;;,, the problem of finding such a z
is a BPC problem. Because in the GPC problem function B is the sum of GPC functions,
each depending on at most two variables, pairwise independent random variables can be used
for bits in each x,,, p+1 <u < g. Luby’s algorithm for the GPC problem then uses his
algorithm for the BPC problem to find a 7 satisfying TB(Z Y) > E[TB(x,Y)] = TB(Y),
thus fixing the random bits in ;;,

Luby’s solution [L2], [L3] to the GPC problem can be interpreted as follows: it solves
the GPC problem by solving ¢ BPC problems, one for each x,. These BPC problems are
solved sequentially. After the BPC problems for)Z,, 0 < u < v, are solved, BPC functions
fi,.j, (xi,, xj,) are evaluated based on the setting of bits x; , x;,, 0 < u < v. Suppose x;, is
set to y;,, and x;, issetto y;,, 0 < u < v. f; ; (x;,x;) is evaluated as f;, ; (vi,,y;,) =
ELfi.j(xis X)) 1Xig = Yig» Xjo = Yjor -+ s Xiyoy = Yiyos Xy = Yjours iy, = Vi Xjy = Yibs
Yi,» ¥j, = 0, 1. After BPC functions f; ; (x;,, x;,) have been obtained and stored in a table,
the BPC algorithm is invoked to fix Xy.

If we are to solve several BPC problems in a GPC problem simultaneously, we must have
BPC functions f;, ; (x;,, x;,) before the setting of the bits x;, and x;,,0 < u < v. Since there

58 YIJIE HAN

are a total of 2v bits, we could try out all possible 4V bit patterns. For each bit pattern we
have a distinct function f;, ; (x;,, x;,). If ¢ = O(logn), we need only a polynomial number
of processors to work on all these functions.

If we use Luby’s random-variable tree for each BPC problem, then there are logn + 1
random variables and 2xn sample points for each BPC problem. Thus if we try to solve for Z,
before)_c; ,0 < u < v, are solved, we have to take care of (2n)? possible situations. Apparently
more than a polynomial number of processors are needed if v is not a constant. So how about
using Han and Igarashi’s random-variable tree [H], [HI]? There are now n random variables
and 2" sample points for each BPC problem. The situation seems to be even more difficult
to deal with. However, by close examination, we find out that instead we could reduce the
number of processors by using Han and Igarashi’s random-variable tree.

We now present a scheme which allows several)?:, ’s to be fixed in one pass using Han and
Igarashi’s random-variable tree for each BPC problem.

First we give a sketch of our approach. The incompleteness of the description in this
paragraph will be elaborated on in the rest of this section. Let P be the GPC problem we are
to solve. P can be decomposed into g BPC problems to be solved sequentially. Let P, be the
uth BPC problem. Imagine that we are to solve P,, 0 < u < k, in one pass, i.e., we are to

- -

fix xg, X1, ..., xk_il in one pass, with the help of enough processors. For the moment, we can
have a random-variable tree 7, and a derandomization tree D, for P,, 0 < u < k. In Step
J» our algorithm will work on fixing the bits at level j —u in 7,,, 0 < u < min{k — 1, j}.
The computation in each tree D, proceeds as we have described in the last section. Note that
BPC functions f; ; (x;,,x;) depend on the setting of bits x;,, x;,, 0 < u < v. The main
difficulty with our scheme is that when we are working on fixing Z,, the Z,, 0<u<wv,
have not been fixed yet. The only information we can use when we are fixing the random
variables at level [of T, is that random variables at levels O to [+ ¢ — 1 are fixed in T,,_,,
0 < ¢ < u. This information can be accumulated in the pipeline of our algorithm and
transmitted on the bit-pipeline trees. Fortunately, this information is sufficient for us to speed
up the derandomization process without resorting to too many processors. For the sake of a
clear exposition, we first describe a CREW derandomization algorithm. We then show how
to convert the CREW algorithm to an EREW algorithm.

Suppose we have ¢ }:fzo(m * 4%) processors available, where ¢ is a constant. Assign

cm * 4" processors to work on P, for ;; We shall work on Z,, 0 < u < k, simultaneously in
a pipeline. The random-variable tree for P, (except that for Py) is not constructed before the
derandomization process begins; rather, it is constructed from a forest as the derandomization
process proceeds. A forest containing 2% random-variable trees corresponds to each variable
x;, in P, because there are 2“ bit patterns for Xijs 0 < j < u. Weuse F, to denote the

random-variable forest for P,. We fix the random bits on the /th level of F,, (for Z)) under the
condition that random bits from level O to level [+¢—1,0 < ¢ < v, in F,__ have already been
fixed. We perform this fixing in constant time. The 2% random-variable trees corresponding
to each random variable x;, are built bottom-up as the derandomization process proceeds.
Immediately before the step in which we fix the random bits on the /th level of F),, the 2*
random-variable trees corresponding to x;, are constructed up to the /th level. The details of
the algorithm for constructing the random-variable trees will be given later in this section.
Consider a GPC function f; ;(x;, x;) under the condition stated in the last paragraph.
When we start working on x,, we should have the BPC functions fiv.j, (xi,» x;,) evaluated

and the function values stored in a table. However, because)Z,, 0 < u < v, have not
been fixed yet, we have to try out all possible cases. There are a total of 4Y patterns
for bits x;,,x;, 0 < u < v. We use 4’ BPC functions for each pair (i, j). We use

DERANDOMIZATION 59

00 00 0000 1111 1111 01 01 0101 10 10 1010
00 11 0110 0011 0110 0011 0110 00 11 01 10

FiG. 4.

SivjoGiss X)) Yu—1Yv—2 -+ * Y0, Zv—12p—2 - - - Z0) to denote the function f; ; (x;, x;,), obtained
under the condition that (x;_ x; ,---Xiy, Xj_ Xj,_, " Xj,) is set to (yy_1Yy—2-"- Yo,
Zy—1Zy-2 "+ 20)-

For each pair (w, w#0) at each level [(this is the level in the random-variable forest),
0 <[< logn, a bit-pipeline tree is built (Fig. 4) which is a complete binary tree of height
2k. Nodes at even depth from the root in a bit-pipeline tree are selectors, and nodes at odd
depth are fanout gates. A signal true is initially input into the root of the tree and propagates
downward toward the leaves. The selectors at depth 2d select the output by the decision of the
random bits which are the parents of random variables x,,,, X,#0, in F;. One random variable
corresponds to each selector. Let random variable r correspond to the selector s. If r is set to
0 then s selects the left child and propagates the true signal to its left child, while no signal
is sent to its right child. If r is set to 1 then the true signal will be sent to the right child and
no signal will be sent to the left child. If s does not receive any signal from its parent then
no signal will be propagated to s’s children no matter how r is set. The gates at odd depth in
the bit pipeline tree are fanout gates, and pointers from them to their children are labeled with
bits which are conditionally set. Refer to Fig. 4, which shows a bit-pipeline tree of height 4.
If the selector at the root (node 0) selects O (which means that the random variable which is
the parent of x,,, and x,u, in the random-variable forest is set to 0), then x,,, = Xy#0,, and
therefore the two random variables can only assume the patterns 00 or 11 which are labeled
on the pointers from node 1. If, on the other hand, node O selects 1 then x,,, = 1 — xy,40,, the
two random variables can only assume the patterns 01 or 10 which are labeled on the pointers

of node 2. Let us take node 4 as another example. If node 4 selects O then x,,, = Xyu0,;
thus the pointers of node 9 are labeled with (1) (1) and } i . This indicates that the bits for

(wiwg, w#0, w#0p) can have two patterns, (01, 01) or (11, 11).

The bit-pipeline tree built for level logn has height k. No fanout gates will be used.
This is a special and simpler case compared to the bit-pipeline trees for other levels. In the
following discussion we only consider bit pipeline tree for levels other than logn.

LEMMA 1. In a bit-pipeline tree there are exactly 2% nodes at depth 2d which will receive
the true signal from the root.

Proof. Each selector selects only one path. Each fanout gate sends the true signal to
both children. Therefore, exactly 2¢ nodes at depth 2d will receive the true signal from the
root. |

For each node i at even depth, we shall also say that it has the conditional-bit pattern (or
conditional bits, bit pattern), which is the pattern labeled on the pointer from p(i). The root
of the bit-pipeline tree has an empty string as its bit pattern.

60 YIJIE HAN

Define Step 0 as the step when the true signal is input to node 0. The function of a
bit-pipeline tree can be described as follows.

Step ¢: Selectors at depth 2¢ which have received true signals select O or 1 for (w,, w#0;).
Pass the true signal and the bit-setting information to nodes at depth 2¢ + 2.

Now consider the selectors at depth 2d. By Lemma 1, a set of 2¢ selectors at depth 2d
receive the true signal. We call this set the surviving set S., ,. We also denote by S., , the
set of bit patterns the 2¢ surviving selectors have, where w in the subscript is for (w, w#0)
and [is the level for which the pipeline tree is built. Let selector s € Sfu, 4 have bit pattern
(Ya-1Ya-2 * * * Y0, Zd—124-2 * * * 20). § compares

£ 40,0, 0) (Ya—1¥a—2 - * * Y0, 2d-124—2 * ** 20)
+ fO w0, (L DDa=1Ya—2 - * * Y0, Za-12d-2 * - - 20)
+ fu(;go.,,w,,(o, 0)(z4—12d—2 * * * 205 Yd—1Yd—2 * * * Y0)
+ fz%o,,,wd(l, D (z4-12d-2 * * * 205 Yd—1Yd—2 * * * Y0)

with

FD 40,0 D(Ga-1¥a—2 -+ * Yo, 2a-12a—2 * * 20)
+ £3) 0, (1 O)(Yam1Ya—2 ** * Yo, Zd-12d—2 * * * 20)
+ fu(;la)ro‘,,wd(o, D (zg-12d4-2 * * * 20, Yd—1Yd-2 * * * Y0)

+ fu(,l;od,um(l, 0)(z4-12d—2 * * * 20, Yd—1Yd—2 * * * Y0)

and selects 0 if the former is no less than the latter and 1 otherwise. Note that the selectors
which do not receive the true signal (there are 4¢ — 2¢ of them) have bit patterns which are
eliminated.

Let LS, , = {a|(a, B) € S, ;) and RS, , = {Bl(a, B) € S, 4}.

LEMMA 2. LS, , = RS, , = {0, 1}%.

Proof. Lemma 2 is proved by induction. Assume that the lemma is true for bit-pipeline
trees of height 2d — 2. A bit-pipeline tree of height 2d can be constructed by using a new
selector as the root, two new fanout gates at depth 1, and four copies of the bit-pipeline tree of
height 2d — 2 at depth 2. If the root selects 0, then patterns 00 and 11 are concatenated with
patterns in S., ,_,; therefore, both LS. ,_, and RS, ,_, are concatenated with {0, 1}). The
situation when the root selects 1 is similar.]

Now let us consider how functions f}fil,)jd (xi,, xj,) (o, B) are combined. Take the difficult

case where both i and j are odd. By Lemma 2, there is only one pattern p; = (¢, @) € Sf#o, d
and there is only one pattern p; = (8, B) € S} #0.4- 1f the selector having bit pattern p; selects
0, then x;, = x40, else x;, = 1 — x;4,. If the selector having bit pattern p, selects 0, then
xj, = Xjuo, else x;, = 1 — xjuo,. In any case, the conditional-bit pattern is changed to (o', 8'),
. 1 . L 1+1
ie., fi,(,,)jd (xi,, x;,)(a, B) will be combined into fl.(i/-;_l)d‘U/Md (x1i/254> XUjj21a) (@', B'). Note that
X\ij2), and x| j,2;, are new random variables, and here we are not using a superscript to denote
this fact. The following lemma ensures that at most four functions will be combined into
U+1) /Y

fl_i/2_|d,|_j/2jd(x|.i/2Jd’ x1j21)@, B).

Let § = {(@, B)I(@,) € S'y, (B, B) € SLy . B € {0, 1}4).

LEMMA 3. | S| = 4%

DERANDOMIZATION 61

Proof. The definition of S can be viewed as a linear transformation. Represent x € {0, 1}¢
by a vector of 2¢ bits with the xth bit set to 1 and the rest of the bits set to 0. The transformation
o > o can be represented by a permutation matrix of order 2¢. The transformation («, 8) >
(o', B') can be represented by a permutation matrix of order 2¢+1. 0

Lemma 3 tells us that the functions to be combined are permuted; therefore, no more than
four functions will be combined under any conditional-bit pattern.

We call this scheme of combining combining functions with respect to the surviving set.

We have completed a preliminary description of our derandomization scheme for the GPC

problem. The algorithm for processors working on f;, 0 < d < k, can be summarized as
follows.

Step ¢t (0 <t < d): Wait for the pipeline to be filled.

Stepd +1t (0 <t < logn): Fix random variables at level ¢ for all conditional-bit patterns
in the surviving set. (*There are 2¢ such patterns in the surviving set.*) Combine functions
with respect to the surviving set. (*At the same time the bit-setting information is transmitted
to the nodes at depth 2d + 2 on the bit-pipeline tree.*)

Step d + logn: Fix the only remaining random variable at level logn for the only bit

pattern in the surviving set. Output the good point for x,. (*At the same time, the bit-setting
information is transmitted to the node at depth d + 1 on the bit-pipeline tree.*)

THEOREM 1. The GPC problem can be solved on the CREW PRAM in time O((q/k +
D(logn + k + 1)) with O(4*m) processors, where t is the time for a single processor to
evaluate a BPC function f;, ;,(xi,, xj,)(«, B).

Proof. The correctness of the scheme comes from the fact that as random bits are
fixed, a smaller space with higher expectation is obtained, and thus when all random bits are

fixed, a good point is found. To solve the uth BPC problem is to evaluate P, (2) =F [B(x:_l
. x,:q?;)], Ze {0, 1}*, where ;=< yi € 0,1} : i =0,1,...,n ~ 1 > is fixed.
We then view z as a random variable uniformly distributed on {0, 1}" and find 7z’ such that

P,(7') = E[P, (?)]. If we have a huge number of processors, we could solve all BPC prob-
lems in parallel by solving each P, with all possible ¥’s. Such an algorithm is apparently
correct. In our scheme, P, (?) is evaluated by evaluating E[f; (B, &'B)], o, &’ € {0, 1},
B, B’ € {0, 1}*. This is guaranteed to be correct by linearity of expectation. We use a pipeline

to solve the P,’s. Thus our algorithm is still correct while the number of processors needed is
drastically reduced.

With O (4¥m) processors, k J?; ’s are fixed in one pass. Each pass takes O(logn + k + 1)
time, t for evaluating BPC functions (i.e., setting up the function tables for the BPC problems)
and O(logn + k) time for fixing all random bits on the random-variable trees. The time
complexity for solving the GPC problem is O((g/k + 1)(logn + k + 7)).]

We have not yet discussed explicitly the way the random-variable trees are constructed.
The construction is implied in the surviving set we computed. We now give the algorithm for
constructing the random variable trees. This algorithm will help better understand the whole
scheme.

The ith node under conditional-bit pattern j at the /th level of the random-variable trees
for P, is stored in T,”[i][j]. The leaves are stored in 7,(~V. Initially, bit-pipeline trees for
level —1 are built such that 7,("V[i1[j] has two children T, [i/1[;01, 7.\ [i1[j1], where
j0 and j1 are the concatenations of j with 0 and 1, respectively. Note that the bit-pipeline
tree constructed here is different from the one we built before, but in principle they are the

62 YIJIE HAN

same tree and perform the same function in our scheme. The algorithm for constructing the
random-variable trees for P, is below.

PROCEDURE RV-TREE
begin
Step ¢ (0 <t < u): Wait for the pipeline to be filled.

Stepu +1¢ (0 <t < logn):

(*In this step, we will build TV[i][j1, 0 < i < n/2'*1,0 < j < 2*. Atthe
beginning of this step, Tu(’_)l[i 1[j] has already been constructed. Let Tu(’_ _11) [10][/]
and Tu(’_ ”11)[i 1][j'] be the two children of Tu(’_)l[i 1[j] in the random-variable tree.
T0~D[i0][0] and 7, D[i0][j 1] are the children of T,V [i0][j],and T,/ V[1][j/0]
and 7"~ D[i 1][j’1] are the children of Tu(’_"ll) [1][j] in the bit-pipeline tree for level

t — 1. The setting of the random variable for the pair ({0, i1) at level ¢ for P,_;,
i.e., the random variable in Tu('_)l[i 111, is known.*)

make 7,“~V[i0][j0] and T~ V[i 1][j'r] the children of TV [i][j0] in the random-
variable forest for P,; (*jr is the concatenation of j and r.*)

make 7."~V[i0][j1] and T,“~V[i 1][j'7] the children of TV [i][j1] in the random-
variable forest for P,; (*7 is the complement of r.*)

make 7,[i][j0] and 7, [{][j1] the children of 7., [i][/] in the bit-pipeline tree
for level ¢;

fix the random variables in 77 [{][j0] and TV [][j 1];

Step u + log n:
(*At the beginning of this step, the random-variable trees have been built for T;,
0 <i <u. Let Tu(l_olg")[O][j] be the root of 7,,_;. The random variable r in
Tu(l_olg") [0][7] has been fixed. In this step, we will choose one of the two children of
Tu(l_olg") [0][j] in the bit-pipeline tree for level logn as the root of T,,.*)

make T,"°®"~V[0][jr] the child of 7,"°*™[0][jr] in the random-variable tree;
make 7,"°¢" [0][jr] the child of Tu(l_o’f") [0][] in the bit-pipeline tree for level log n;
fix the random variable in 7,6 [0][jr];

output T,"°¢"[0][jr] as the root of T,;
end

Procedure RV-Tree uses the pipelining technique as well as a dynamic-programming
technique. These are some of the essential elements of our scheme.

An example of the execution of Procedure RV-Tree is shown in Fig. 5.

We now show how to remove the concurrent-read feature from the scheme. The difficulty
here is in the step of combining functions with respect to the surviving set. The size of the
surviving set S, is 2 while there are 4% conditional-bit patterns. There are 4* functions

fu(,fka (Xuy, Xy,),one for each bit pattern (o, B). All 4* functions will consult the surviving set

63

DERANDOMIZATION

(s). Step O.

ANV AN AN AN

(b). Step 1.

oo
)
fo .o A .o
- »
£ . Fo~
llo ‘© -
n 00
© © "’ O~
"
\. xe .© A-N —
T ° Ah o, Too
S IR T)
) g —~o
, ... Lol A-ﬂ —
) ... - A-ﬂl.&..:.lAh.ll
...
\, 2 ~o
- - =0
L= .© Axc om
i g S
”x © - -Noo
- " 0....... .WOI
oe ° A o e T oo
L e Sfoo
e - - A.MIO
‘- " .\..\0 -W-l-l
2o N, 2R
‘e
; - o<
\ -
—— l’.l .-\.'-IA&‘\..-I
MUY e A o R Ah—lo
\ - e " —O
e ° o~
"o o °A fFo—
o 3

(c). Step 2.

FI1G. 5. An execution of RV-Tree. Darkened lines and bits in boldface are random-variable trees. Dotted lines

are bit-pipeline trees.

YIIE HAN

64

A NV ANYANTA

L

T

Lo

(d). Step 3.

(f). Step S.

(e). Step 4.

FiG. 5. (Cont.)

DERANDOMIZATION 65

in order for them to be combined into new functions. The problem is how to do it in constant
time without resorting to concurrent read.

We show how to let fu(:?u#Ok (Xy, > Xuso,) (c, B) to acquire the bit pattern o’ which satis-
fies (o, B) € .. Function £ (x,,,xy)(e, B) can then obtain the bit pattern o’ from
fu(i?u#ok (Xu, » Xu#0,)(r, B) by the pipeline scheme described in [H].

Suppose we are to solve P,, 0 < u < k, in one pass. We solve 4% copies of P;_,; one
copy corresponds to one conditional-bit pattern in Py. fu(i?uk (Xy,» Xy,)(, B) in Py can obtain
o’ by following the computation in the copy of P;_; which corresponds to («, 8). This can be
done without concurrent read. Now for each of the 4% copies of P,_;, we solved 4*~! copies of
Py_»; one copy corresponds to one conditional-bit pattern in P;_1, and so on. Thus to remove
concurrent read we need ¢t (m + n) processors for solving P,,0 < u < k, in one pass, where
c is a suitable constant. Note also that it takes O (k?) time to make needed copies.

THEOREM 2. The GPC problem can be solved on the EREW PRAM in time O ((q/~k +
D(logn + k + 1)) with O(c*m) processors, where c is a suitable constant and t is the time
Jor a single processor to evaluate a BPC function f,, ,,(xy,, xy,) (e, B).

4. A + 1 vertex coloring. We apply our scheme to Luby’s formulation of the A + 1
vertex-coloring problem [L2], [L3]. First we adapt his formulation and then apply our fast
derandomization scheme to obtain a faster algorithm. Luby showed [L2], [L3] that after
solving a GPC problem a constant fraction of the vertices can be deleted. The main change
now is to show that after solving a GPC problem a constant fraction of the edges can be deleted.
We follow the notations and definitions as given by Luby [L2], [L3].

Let G = (V, E) be the graph we are to color. Let adj (i) be the set of vertices which
are adjacent to vertex i, and let d(i) be the degree of vertex i. Let avail; be the set of
colors which can be used to color vertex i, and let Navail; = |avail;|. Let k; be such that
24— < ANavail; < 2% and let Nlist; = 2. Let list;[0, ..., Nlist; — 1] be an array such that
the first Navail; entries in list; are the elements of avail; in sorted order and the remaining
entries in /ist; have value A. Let ¢ = max{k;|i € V}. Let X=< xi € {0,1}9,i € V >.
Fori € V, let list;(x;) be the entry in list; indexed by the first k; bits of x;. Also define the
following functions.

Foralli € V, let

v 1 if list; (x;) € avail;,
D=\ 0 fisty (xp) = A
Forall (i, j) € E, let
—1if list;(x;) = liStj()C_j) # A,
Yij(xi, xj) = { 0 otherwise.

The BENEFIT function B is defined as

- d(i
B(x)=)_ % (Yi(xi) +) Yi,.f(xnxj)> .

ieV jeadj(i)

Function B sets a lower bound on the number of edges deleted [L2], [L3] should the vertex
i be tentatively assigned color list; (x;). We will not repeat the definitions of the auxiliary
functions T'Y; and TY; ;(x;, x;), since their definitions can be found in [L2] and [L3]. The
auxiliary function 7 B is now defined as

TB (¥)=Z‘%(”" (o 2 T (xi’x"))

ieV jeadj(i)

66 YIJIE HAN

Following Luby’s proof [L2], [L3], we have TY;(A) > 1/8, TY; ;(A, A) = —1/16, and
therefore we have the following lemma.

LEMMA 4. TB (A) > |E|/16.

Thus by solving a GPC problem,! we are guaranteed to eliminate a constant fraction of
the edges.

Let c*m be the number of processors needed to compute k BPC problems in a GPC
problem in one pass. There will be O (logn) stages in the modified algorithm. Each stage
contains a constant number of GPC problems and reduces the number of edges so that there
will be no more than a 1/c¢ fraction of the edges left. Therefore, during stage i there will be e
edges in the remaining graph and c’e processors available. Because each stage has O (log n)
BPC problems, the time complexity for stage i is O(log?n/i). Thus the time complexity of
the whole algorithm becomes O (328" log? n/i) = O(log? n log log n).

The number of processors used in the algorithm can be reduced to O ((m + n)/ log log n).
We examine the first O (log log log) stages. In stage i, we can have ¢’/ log log n processors
for each edge under each conditional-bit pattern. Therefore, the tables for the BPC functions
in stage i can be computed in time O(log® nloglogn/c'), and the overall time for table
construction for the whole algorithm is O(log? n loglogn). The calculation for the time for
constructing the derandomization trees is similar and can be shown to be O (log? n log log n)
with O ((m +n)/ loglog n) processors. In the first O (log log log n) stages, our GPC algorithm
will be invoked with k = 1. The time complexity for these stages is

o (0(1°g§1°g") log?n lgg logn

) = O(log? nloglogn).
Cl

i=0

The remaining stages take O (log’ n log log n) time by the analysis in the last paragraph.

THEOREM 3. There is a CREW PRAM algorithm for the A + 1 vertex-coloring problem
with time complexity 0(log2 nloglogn) using O ((m + n)/loglogn) processors.

We also have, the following theorem.

THEOREM 4. O (mn¢) processors are sufficient to solve the A + 1 vertex-coloring problem
in time 0(log2 n) on the CREW PRAM, where € > 0 is an arbitrary constant.

Proof. This is because one GPC problem can now be solved in O (logn) time. O

5. Maximal independent set. Let G = (V, E) be an undirected graph. For W C V,
let N(W)={i e V|3 jeW,(,j) € E}. Known parallel algorithms [ABI], [KW], [GS1],
[GS2], [L1], [L3] for computing a maximal independent set have the following form.

PROCEDURE GENERAL-INDEPENDENT

begin
I:=¢;
V=V,
while V' # ¢ do
begin
Find an independent set I’ C V';
I:=1Ul;
V' i=V' — (I'UNI"));
end
end

The problem formulated [L.2], [L3] resembles a GPC problem. It is not a GPC problem in the strict sense. For
our purpose, we may view it as a GPC problem because our GPC algorithm applies.

DERANDOMIZATION 67

Luby’s work [L3] formulated each iteration of the while loop in General-Independent as
a GPC problem. We now adapt Luby’s formulation [L1], [L3].

Let k; be such that 26~1 < 4d(i) < 2. Let ¢ = max{kili € V). Let =< x; €
{0, 1}4,i € V}. The length |x;| of x; is defined to be k;. Define?

1 ifx; (x| —1D - x(0 =0|in,
Y _ { xz(lx.l) xi(0)
0 otherwise,
Yi j(xi, x;) = ~Yi(x)Y;(x;),
N d(
B(x) — ﬂ
iev
3 (Y,-(x,-) + Y Yo+ Y lc,k(xj,xk)>,
Jjeadj(i) keadj(j),d(k)=d(j) keadj(i)—{Jj}

where x; (p) is the pth bit of x;.

Function B sets a lower bound on the number of edges deleted from the graph [L1], [L3]
should vertex i be tentatively labeled as an independent vertex if x; = (0 U 1)9~%l0™i!, The
following lemma was proven in [L.1, Thm. 1].

LEMMA 5 [L1]. E[B] = |E|/c for a constant ¢ > O.

Function B can be written as

B(’)?):Z(> ‘%) Yep+) (> d—;’—)) Y (x5, %)

JjeV \i€adj(j) (J,k)EE,d(k)=d(j) \i€adj(j)
a@)
+Z—2 . Z Yk (xj, xi)
eV Jkeadj (i), j#k

= Z fiGx) + Z fij (i, x;5),

@i, j)
where
dii
fix) = (> %) Y ()
€adj(i)
and
.. d(k) d(k)
fij i x;) =483, j) (Z T) Y j(xi, x;) + (Z T) Y i (xi, x;),
keadj(i) keV andi, jeadj (k)

1 if (i, j) € Eand d(j) > d(i),
0 otherwise.

8(i, j) =[

Thus each execution of a GPC procedure eliminates a constant fraction of the edges from
the graph. It takes O (M (n)) (which is currently O(n*37¢) [CW]) processors to compute a

2In Luby’s formulation [L3], ¥;(x;) is zero unless the first |x;| bits of x; are 1’s. In order to be consistent with
the notations in our algorithm, we let ¥; (x;) be zero unless the first |x; | bits of x; are 0’s.

68 YIJIE HAN

matrix multiplication in time O (logn) to arrive at the GPC functions f;’s and f; ;’s because
oftheterm)., %Q i kead) (), j+k Yik (x;, x¢) in function B. We organize our algorithm for
the maximal independent set problem into O (logn) stages such that in stage i, the graph has
no more than |E|/c’ vertices and a constant number of GPC problems will be solved in stage
i. By Theorem 1, we achieve time complexity 0(10g2 n).

THEOREM 5. There is a CREW PRAM algorithm for the maximal independent set problem
with time complexity O (log® n) using O (M (n)) processors.

Proof. The time and processor complexities for computing matrix multiplication domi-
nate. a

We will give a second algorithm for the maximal independent set problem. We take
advantage of the special properties of the GPC functions to reduce the number of processors
to O(m + n). We cannot use the derandomization scheme in §3 directly because it would
involve a matrix multiplication, as we have seen in the design of our first maximal independent
set algorithm. The structure of our second algorithm is complicated. We first give an overview
of the algorithm.

5.1. Overview of the second algorithm. Because we can reduce the number of edges by
a constant fraction after solving a GPC problem, a maximal independent set will be computed
after O (logn) GPC problems are solved. Our algorithm has two stages, the initial stage and
the speedup stage. The initial stage consists of the first O(log®> n) GPC problems. Each
GPC problem is solved in O(log® n) time. The time complexity for the initial stage is thus

0(log2'5 n). When the first stage finishes, the remaining graph has size O ((m + n)/ 2\/@).
There are O(logn) GPC problems in the speedup stage. A GPC problem of size s in the
speedup stage is solved in time O (log? n/+/k) with O(cks logn) processors. Therefore the
time complexity of the speedup stage is O(Zgg’fy@)(logz n//i) = O(og*’n). The
initial stage is mainly to reduce the processor complexity while the speedup stage is mainly
to reduce the time complexity.

We used matrix multiplication in our first algorithm because of the term), , ‘—’3251 .
2 jkeadj iy, j#k Yik(xj, x) in function B. We shall call this term the vertex-cluster term.
There is a cluster C(v) = {x,|(v, w) € E} for each vertex v. Alternatively we may use
0 ey d*(v)) processors, d?(v) processors for cluster C(v), to evaluate all GPC func-
tions and to apply our derandomization scheme given in §3. However, to reduce the number
of processors to O (m + n) we have to use a modified version of our derandomization scheme
in §3.

Consider the problem of fixing a random-variable r in the random-variable tree. We
did this in constant time in §3 (Theorem 1). We now outline how r is fixed in the initial
stage. We cannot do it in constant time because the GPC function f(x, y), where x and y
are the leaves in the subtree rooted at r, is in fact the sum of several functions scattered in
the second term of function B and in several clusters. We will not combine BPC functions in
the derandomization process. As we have explained in §2, setting r requires O (logn) time
because of the summation of function values. (Note that the summation of » items can be
done in time O (n/p + log n) time with p processors.) A BPC problem takes 0(10g2 n) time
to solve. We pipeline all BPC problems in a GPC problem and get time complexity O (log? n)
for solving a GPC problem.

The functions in B have a special property which we will exploit in our algorithm. Each
variable x; has a length |x;| < g = O(logn). ¥; ;(x;, x;) is O unless the first |x;| bits of x; are
0’s and the first |x;| bits of x; are 0’s. When we apply our scheme, there is no need to keep
BPC functions Y;, j, (x;,, x;,) for all conditional-bit patterns because many of these patterns
will yield zero BPC functions. In our algorithm, we keep one copy of Y;, ;, (x;,, x;,) with

DERANDOMIZATION 69

conditional bits set to 0’s. This of course helps reduce the number of processors. In particular,
the random-variable tree for each P, now requires at most O (n) processors, instead of O (c*n)
processors as we have used in §3 on the CREW PRAM.

There are d?(i) BPC functions in cluster C (i), while we can allocate at most d (i) proces-
sors in the very first GPC problem because we have at most O (m + n) processors for the GPC
problem. What we do is use an evaluation tree for each cluster. The evaluation tree T C (i) for
cluster C (i) is a “subtree” of the random-variable tree. The leaves of T C (i) are the variables
in C(i). An interior node of the random-variable tree is not present in TC (i) if none of the
leaves of the subtree rooted at the interior node is in C(i). When we are fixing r, if r is not in
T C (i) then cluster C (i) does not contribute anything. If r is in T C (i) then the contribution
of C(i) can be obtained by evaluating the function f(x, y), where x and y are leaves in the
evaluation subtree rooted at » and x and y are in different subtrees of r. If r has a leaves in the
left subtree and b leaves in the right subtree then the contribution from 7 C (i) for fixing r is
the sum of ab function values. We will give the details of evaluating this sum using a constant
number of operations.

Let us summarize the main ideas. We do not combine functions and achieve time
O (log? n) for solving a BPC problem. We put all BPC problem in a GPC problem as one batch
into a pipeline to get O (log® n) time for solving a GPC problem. We use a special property
of functions in B to maintain one copy for each BPC function for only conditional bits of all
0’s. We use evaluation trees to take care of the vertex cluster term.

We now sketch the speedup stage. Since we have to solve O (log n) GPC problems in this
stage, we have to reduce the time complexity for a GPC problem to o(log® n) in order to obtain
o(log® n) time. We use a modified random-variable tree as shown in Fig. 3(c) in §2. Such a
random-variable tree has S = [(logn + 1)/a] blocks. Each block contains a levels. We fix
a block in a step instead of fixing a level in a step. Each step takes O (logn) time and a BPC
problem takes O(Slogn) time. If we have as many processors as we want, we could solve all
BPC problems in a GPC problem by enumerating all possible cases instead of putting them
through a pipeline; i.e., in solving P,, we could guess all possible settings of random variables
for P,,0 < v < u. We have explained this approach in the proof of Theorem 1 in §2. In doing
so we would achieve time O(Slogn) for solving a GPC problem. In reality, we have extra
processors, but they are not enough for us to enumerate all possible situations. We therefore
put a BPC problems of a GPC problem in a team. All BPC problems in a team are solved by
enumeration. Thus they are solved in time O (S logn). Let b be the number of teams we have.
We put all these teams into a pipeline and solve them in time O ((S + b) logn). The approach
of the speedup stage can be viewed as that of the initial stage with added parallelism which
comes with the help of extra processors.

5.2. The initial stage. We first show how to solve a GPC problem for function B in time
0(log2 n) using O((m + n) logn) processors.

O (m+-n) processors will be allocated to each BPC problem. The algorithm for processors
working on F,, has the following form.

Step 7 (0 < ¢t < u): Wait for the pipeline to be filled.

Stepu + ¢ (0 <t < logn): Fix random variables at level z.

Step u + logn: Fix the only remaining random variable at level log n. Output the good
point for)Z,

We will allow O (logn) time for each step and O (log® n) time for the whole algorithm.
Note that we do not combine functions with respect to the surviving set and therefore use
O (log n) time for a step.

70 YUIE HAN

The way T, is constructed can be described by algorithm MRV-Tree, a modified version
of algorithm RV-Tree in §3. In MRV-Tree we do not enumerate all possible conditional-bit
patterns. Only the bit pattern of all 0’s is kept. Thus a node on a bit-pipeline tree may not
have both children. A variable x; only appears in F), as x;, with u < |x;| because the setting
of random variables in F,,, u > |x;|, is not affected by x;, .

PROCEDURE MRV-TREE
begin
Step ¢ (0 <t < u): Wait for the pipeline to be filled.

Step u:
(*In this step, we will build 7©[i][j]. 0 < i < n/2 and j are indices for which
T, O[i][j] is not empty. At the beginning of this step, 7."” [][/] has already been

constructed if it is not empty. Random variables x; have been transmitted to depth
u of the bit pipeline tree for level 0.%)

for each node T,V[i][]

if T©[i][/] has received either x,; or x5, from T, [i][j/2]
(*x2; and x; 41 becomes x;, and xy; 41, in 7,,.) then
begin
if 7©[i][j] has received x,; then
make it the left child of 7(®[i][j] in the random-variable forest for P,;

if 7O[i][] has received x5+ then
make it the right child of 7?[i][j] in the random-variable forest for P,;

fix random variable r in TV [][];
make 79[i][] a child of T(9 [i1[/2] in the bit-pipeline tree;

if 7 @[i][j] has received xy; and |xz| > u then
transmit xp; to T +1[z][]0],

if T ©[i][j] has received xz; 41 and |xp;41| > u then

transmit x;sg to T(Lilirds
end
else (*TO[i][j] is empty.*);

Stepu +1t (1 <t < logn):
(*In this step, we will build T®[i][j], 0 < i < n/2'*' and j are indices for
which TV [i][j] is not empty. At the beginning of this step, T(')1 [£1[j] has already
been constructed. Let T(t 1)[z 0][/] and T(' 1)[z 1][j’] (they may be empty) be the
two children in the random-variable subtree rooted at T\”,[i][j]. T, V[:0][;0]
and TU~V[i0][j1] (they may be empty) are the children of T(’ 1)[10][j1, and
T(-D[i1][j’0] and T/~D[i1][j’1] (they may be empty) are the children of
Tu(’__ll)[i 1][;'] in the bit pipeline tree for level # — 1. The setting of the random

variable r for the pair (i0,i1) at level ¢ for P,_;, i.e., the random variable in
T [i]1/], is known.*)

DERANDOMIZATION 71

if 7.'~V[i0][j0] is not empty then
make it the left child of Tu(’)[i1[70] in the random-variable forest for P,;

if 7Y~ D[i1][j'r] is not empty then
make it the right child of 7V[{][j0] in the random-variable forest for P,;

if 7'~V[i0][j1] is not empty then
make it the left child of Tu(’)[i][j1] in the random-variable forest for P,;

if 7'~V[i 1][j'7] is not empty then
make it the right child of 7)[i][1] in the random-variable forest for P,;

if 70[i][,j0] is not empty then
make it the left child of Tu('_) 1[i1[] in the bit-pipeline tree for level ¢;

if 7\V[{][j 1] is not empty then
make it the right child of Tu(’_) ([i1[j] in the bit-pipeline tree for level ¢;

fix the random variables in 7,”[{][j0] and T, [i][,j 1];

Step u + logn:
(*At the beginning of this step, the random-variable trees have been built for 7;,
0 <i < u. Let Tu(l_of")[O][j1 be the root of 7, ;. The random variable r in
Tu(lff")[O][Jj1 has been set. In this step, we will choose one of the two children of
Tu(l_olg") [0][/] in the bit-pipeline tree for level log n as the root of T,,.%)

if 7,'°"~V[0][jr] is not empty then
begin
make 7,'°¢""V[0][jr] the child of T."®™[0][r] in the random-variable
tree;

make 7,"°*"[0][jr] the child of Tu(l_of "[0][j] in the bit-pipeline tree for level
log n;

fix the random variable in 7,8 [0][jr];

output 7,"°¢"[0][jr] as the root of T,;
end
end

Note that i and j in T0[i][j] are parameters and 7, is not a two dimensional array
here. We can view algorithm MRV-Tree as one which distributes random variables x; into
different sets. Each set is indexed by (u, t,i, j). We call these sets BD sets because they
are obtained on the bit-pipeline trees and the derandomization trees. x is in BD(u, t, i, j)
if x is a leaf in TV[i][j]. When u and t are fixed, BD(u, t, i, j) sets are disjoint. Because
we allow O(logn) time for each step in MRV-Tree, the time complexity for constructing the
random-variable trees is O (log? n).

See Fig. 6 for an execution of MRV-Tree.

YIJIE HAN

72

A A A

%o X bt}
(s). Step 0.
A‘ A
/O\ [} 1 0 P
b I X2 0% X 0% L I
..'.»' "..’ '..:' ’.’.'. '.’..'
0 0 0 ° i
A /[\ AN *®
Xg %y Xy Xy X4 Ry Rg Xy
(). Step 1.

/°\

% x x;
/o - "o
A
X X

:

A’
Xo

X

FiG. 6. An execution of MRV-Tree.

bit-pipeline trees.

1 0
Xy L] Xs X¢ o]
1

(c). Step 2.

Darkened lines in boldface are random-variable trees. Dotted lines are

73

DERANDOMIZATION

'

(d). Step 3.

(). Sep S,

(). Step 4.

FiG. 6. (Cont.)

74 YIJIE HAN

Example. Variables are distributed into the B D sets as shown below.

Step O: Step 1:
x0,x1 € BD(0,0,0,¢); X0, X1, X2,x3 € BD(0,1,0,¢);
x2,%x3 € BD(0,0,1,¢); X4, X5, X6, X7 € BD(0, 1,1, ¢);
Xx4,%x5 € BD(0,0,2,¢); X0, X1 € BD(1,0,0,0);
X6, X7 € BD(O, 0,3,¢). X2, X3 € BD(1,0,1,0);
X4 € BD(1,0,2,0);
Xs € BD(1,0,2, 1);
X6, X7 € BD(1,0,3,0).
Step 2: Step 3:
X0, X1, X2, X3, X0, X1, X2, X3,
X4, X5, X6, X7 € BD(0,2,0,¢€); X4, X5, X6, X7 € BD(0,3,0,¢);
X0, X1 € BD(1,1,0,0); X0, X1, X5, X6, X7 € BD(1,2,0,0);
X2, X3 € BD(1,1,0, 1); X2, X3, X4 € BD(1,2,0, 1);
X4 € BD(1,1,1,0); X0, X1 € BD(2, 1,0, 00);
Xs, Xg, X7 € BD(1,1, 1, 1); X5, X7 € BD(2,1,0, 10);
X0, X1 € BD(2,0,0, 00); X6 € BD(2,1,0,11);
X2, X3 € BD(2,0, 1,00); X2, X3 € BD(2,1, 1, 00);
X4 € BD(2,0,2, 00); X4 € BD(2, 1,1, 10).
Xs € BD(2,0,2, 10);
X6 € BD(2,0, 3, 00);
X7 € BD(2,0,3,01).
Step 4: Step 5:
x2,x3,x4 € BD(1,3,0,0); x2,x3 € BD(2,3,0,00).

X2, X3 € BD(2,2,0, 00);
X4 € BD(2,2,0,01).

Now consider GPC functions of the form ¥; (x;) and Y; ; (x;, x;) except the functions in the
vertex-cluster term. Our algorithm will distribute these functions into sets BDF (u, t,i’, j')
by the execution of MRV-Tree, where BDF (u, t,i’, j') is essentially the BD set except it is
for functions. Y; j isin BDF (u, t,i’, j') iff both x; and x; are in BD(u, t,i’, j'), max{k| (the
kthbitofi XOR j) = 1} =1t, |x;| > u,and |x;| > u, where X O R is the bitwise exclusive-or
operation, with the exception that all functions belong to BDF (u, logn, 0, j') for some j'.
The condition max{k| (the kth bitof i X OR j) = 1} = ¢ ensures that x; and x; are in different
subtree of the tree rooted at 7,)[i’][j']. The conditions |x;| > u and |x;| > u ensure that x;
and x; are still valid. The algorithm for the GPC functions for P, is shown below.

PROCEDURE FUNCTIONS
begin

Stept (0 <t < u):
(*Functions in BDF (0, ¢, i’, A) reach depth 0 of the bit-pipeline tree for level ¢.*)
Wait for the pipeline to be filled;

Stepu +1t (0 <t < logn):
(*Let S = BDF(u,t,i’, j').*)
if S is not empty then

begin

DERANDOMIZATION 75

for each GPC function Y; ;(x;, x;) € S
compute the BPC function Y}, ;, (x;,, x;,) with conditional bits set to all

(*To fix the random bit in 7,0[i'][j'],*)
T’ = 0;
Fo:= 3y esYi (Y0, TOWGD, ¥ 0y, TG
+ 2y, es Vi (Wi, TOWNG'D © LW (g, VW'D @ D) + VEs
(*V C is the function value obtained for functions in the vertex-cluster term.
We shall explain how to compute it later. & is the exclusive-or operation.*)

T = 1
Fri= Yy, o5 Yi g, (WG, TOWLD, W, TOLD)
+ ¥, es Vi (W0, TOWLD @ L ¥y, TOWD @ 1) + VC

if Fo > Fy then TO['][j'] :=0
else T['][j'] := 1;
(*The random bit is fixed.*)

(*To decide whether Y; ; should remain in the pipeline,*)
foreachY; ; € §
begin
if (x;, TOUG'D # W(x;, TOL'1[']) then remove Y; ;5
(*Y;,; is a zero function in the remaining computation of P, and also
a zero function in P,, v > u.*)

if (W (i, O = Wy, TOW AU = u+ DA] =

u + 1) then
(*Let b = W(x;, T[]
putY; ;into BDF(u + 1,¢,i’, j'b); (*Y; ; is to be processed in
Yu+1'*)
end
end

Step u + logn:
if S = BDF(u,logn, 0, j') is not empty then
(*S is the only set left for this step.*)
begin
for each GPC function Y; ; (x;, x;) (Y;(x;)) € S

compute the BPC function Y;, ; (x;,, x;,) (¥;, (x;,)) with conditional bits
set to all 0’s;

(*To fix the random bit in 7,"°¢™[0][j"],*)

T [0]Lj") := O;

Foi= Yy cs Y (W0, TV 101D, Wiy, L5 [01011)
+ Yyes Yo (W0, T OIL'D) + VC;

T2V (011 = 1; 1 1
Fii= Yy cs Y (@0, T 101D, Wy, Ta 8 [011'1)

76 YIIE HAN

+ Yyes Vi (¥ (i, TEP0ILD) + VC

if Fo > F then T¢"[0][j'] := 0
else 7, 5" [0]['] := 1;
(*The random bit is fixed.*)

(*To decide whether T; ; should remain in the pipeline,*)
foreachY;; € §
begin
(*Letb = T, [0][j']). W(x;, T, ¥ [0][;")) and W (x;, T, [O]L;'])
must be equal here.*)
if (U0, TLFV 010D = Wiy, TV 1L = 0) A (x>
u+ 1DV (x| =u+1)
then
putY; ; into BDF(u + 1,logn, 0, j'b);
else remove Y; ;;
end

(*To decide whether Y; should remain in the pipeline,*)
foreachY; € S
begin
(*Let b = T, *"[0][j'D). *)
if (U (xi, T (010 = 0) A (x| > u + 1) then
put Y; into BDF (u + 1,logn, 0, j'b);
else remove Y;;
end
end

end

The functions being evaluated can also be viewed as being pipelined through the deran-
domization trees.

There are O (logn) steps in MRV-Tree and FUNCTIONS, each step takes O (logn) time
and O((m + n) logn) processors.

Now we describe how the functions in the vertex-cluster term are evaluated. Each function
Y; ;j(x;, x;) in the vertex-cluster term is defined as Y; ;(x;, x;) = —1 if the first |x;| bits of x;
are 0’s and the first |x; | bits of x; are 0’s, and otherwise as Y; ; (x;, x;) = 0. Let /(i) = |x;| —u.
ThenY;, ;, (A, A)(0%,0%) = —1/2/O+HWD andy;, ; (0, 0)(0%, 04) = —1/2!O+HD=2jf |x;| > u
and |x;| > u. Procedure MRV-Tree is executed in parallel for each cluster C(v) to build an
evaluation tree T C (v) for C(v). An evaluation tree is similar to the random-variable tree. The
difference between the random-variable tree and T C (v) is that the leaves of T C (v) consist of
variables from C (v). Let r = T,")[i'][j'] be the root of a subtree T” in 7'C (v) which is to be
constructed in the current step. Let L and R be the left and right subtrees of 7', respectively.
Let r,, and rg be the roots of L and R, respectively. At the beginning of the current step, L
and R have already been constructed. Random variables in the interior nodes of L and R have
been fixed. Define M(x, b) = Zw,x):b ,71(,7, where i’s are leaves in the subtree rooted at
x. At the beginning of the current step, M (r., b) and M (rg, b), b = 0, 1, have already been
computed and associated with r; and rg, respectively. During the current step, r; is made the
left child of r and rg is made the right child of ». Now r is tentatively set to 0 and 1 to obtain
the value VC for fixing r in procedure FUNCTIONS. We first compute VC (v, r) for each

DERANDOMIZATION 77

v. VC(v,r) =2 Z,l,zo M(rp,b)M(rg, b & r), where @ is the exclusive-or operation. The
V C value used in procedure FUNCTIONS is — Z{Um(%,][j,] is not empty] 4(2’4) VC(v, Tu(’g LGD-
After setting r, we obtain an updated value for M (r, b) as M (r,b) = M (rp, b)+ M (rg, b®dr).
If T’ has only one subtree, then VC (v, r) = 0 and M (r, b) need to be computed after r is set.

The above paragraph shows that we need only spend O (7Ty) operations for evaluating
V C for all vertex clusters in a BPC problem, where Ty ¢ is the total number of tree nodes of
all evaluation trees. Ty¢ is O(mlogn) because there are a total of O (m) leaves and some
nodes in the evaluation trees have one child.

We briefly describe the data structure for the algorithm. We build the random-variable
tree and evaluation trees for Py. Nodes TO(’)[i 1[A] in the random-variable tree and nodes
To(,tz [i1[A] in the evaluation trees and functions in BD F (0, t, i, A) are sorted by the pair (¢, i).
This is done only once and takes O (log n) time with O (m + n) processors [AKS], [C]. Asthe
computation proceeds, the random-variable tree and each evaluation tree will split into several
trees; each B D F set will split into several sets, one for each distinct conditional bit pattern. A
BDF setin P, cansplit into at most two in P, ;. Since we allow O (log n) time for each step,
we can allocate memory for the new level to be built in the evaluation trees. We use pointers
to keep track of the bit-pipeline trees and the evaluation trees. The nodes and functions in
the same BD and BDF sets (indexed by the same (u, ¢, i’, j')) should be arranged to occupy
consecutive memory cells to facilitate the computation of F and F; in FUNCTIONS. These
operations can be done in O (logn) time using O ((m + n)/ logn) processors.

It is now straightforward to verify that our algorithm for solving a GPC problem takes
o (log2 n) time, O (log n) time for each of the O (log n) steps. We note that in each step for each
BPC problem we have used O (m + n) processors. This can be reduced to O ((m + n)/ log n)
processors because in each step, O (m + n) operations are performed for each BPC problem.
They can be done in O(logn) time using O((m + n)/logn) processors. Since we have
O (logn) BPC problems, we need only O(m + n) processors to achieve time complexity
O (log? n) for solving one GPC problem.

Weuse O((m+n)/ logo'5 n) processors to solve the first O (logo'5 n) GPC problems in the
maximal independent set problem. Recall that the execution of a GPC algorithm will reduce
the size of the graph by a constant fraction. For the first O (log log n) GPC problems, the time
complexity is O (3255 10g?5 n/ct) = O(log?*® n), where ¢ > 1 is a constant. In the ith
GPC problem, we solve O (¢’ log®’ n) BPC problems in a batch, incurring O (log? n) time for
one batch and O (log?* n/c?) time for the O (log®° n/c') batches. The time complexity for the

. . . log®5 n 2 2.5
remaining GPC problems is O(Zi=0(loglogn) log” n) = O(log™ n).

5.3. The speedup stage. The input graph here is the output graph from the initial stage.
The speedup stage consists of the rest of the GPC problems.

We have to reduce the time complexity for solving one GPC problem to under O (log? n)
in order to obtain an o(log® n) algorithm for the maximal independent set problem. After the
initial stage, we have a small-size problem and we have extra processor power to help us speed
up the algorithm.

We redesign the random-variable tree T for a BPC problem. We use the design as shown
in Fig. 3(c) in §2. There are S = [(logn + 1)/a] blocks in T', where a is a parameter.

We note that the design of T incorporates design techniques from both [H], [HI] and [L2],
[L3]. The advantage of Han and Igarashi’s design [H], [HI] is that random bits can be fixed
independently if these bits are at the same level of T. The advantage of Luby’s design is that
there are fewer random bits in 7', which is desirable in the speedup stage of our algorithm for
the maximal independent set problem.

78 YIJIE HAN

LEMMA 6. If all random variables in the interior nodes of a proper subtree T' of T are
fixed, the random variables x; at the leaves of T' can only assume two different patterns.

Proof. This is because the random variables from the root of T to the parent of the root
of T’ are common to all x;’s at the leaves of T". a

In fact, we have implicitly used this lemma in constructing the bit-pipeline tree in the
design of our GPC algorithm and in procedure RV-Tree.

The g BPC problems in a GPC problem are divided into » = g /a teams (without loss of
generality, assuming it is an integer). Team i, 0 < i < b, has a BPC problems. Let J,, be the
wth team. The algorithm for fixing the random variables for J,, can be expressed as follows.

Step z (0 < ¢t < w): Wait for the pipeline to be filled.
Stepz + w (0 < ¢t < S): Fix random variables in block # in random-variable forests for J,,.

Each step will be executed in O (logn) time. Since there are O (b + S) steps, the time
complexity is O (log? n/a) for the above algorithm since g = O (logn).

For a graph with m edges and n vertices, to fix random bits in block 0 for Py, we need
24(m + n) processors to enumerate all possible 2¢ bit patterns for the a bits in block 0. To fix
the bits in block O for P,, v < a, we need 2¢®*D patterns to enumerate all possible a(v + 1)
bits in block O for P,, u < v. For each of the 2¢(*+1) patterns, there are 2V conditional-bit
patterns. Thus we need e’ (m + n) processors for team O for a suitable constant c¢. Although
the input to each team may have many conditional-bit patterns, it contains at most O (m + n)
random-variable trees (in the input random-variable forest). We need keep working for only
those conditional-bit patterns which are not associated with empty trees. Thus the number of
processors needed for each team is the same because when team J,, is working on block i,
the bits in block i have already been fixed for teams J,,, # < w, and because we keep only
nonzero functions. The situation here is similar to the situation in the initial stage. Thus
the total number of processors we need for solving one GPC problem in time O (log® n/a) is
@ (m+n)logn/a = O (c“2 (m+n) log n). We conclude that one GPC problem can be solved
in time 0(10g2 n/ V) with O(ck(m + n) log n) processors. Therefore, the time complexity
for the speedup stage is O (Y. 2] (log? n/+/k)) = O(log>’ n).

THEOREM 6. There is an EREW PRAM algorithm for the maximal independent set problem
with time complexity 0(log2'5 n) using O((m +n)/ logo'5 n) processors.

We shall call this algorithm MAX.

5.4. Further improvement. To reduce the processor complexity by another factor of
log n on the CREW model, we need only work on the first O (log log n) GPC problems. These
GPC problems belong to the initial stage.

Consider the first GPC problem. Atthe beginning of the GPC algorithm, all GPC functions
(inBDF(0,¢,i, A)),nodes in the random-variable tree (in TO(') [i1[A]) and nodes in the evalua-
tion trees (in To(,tg [i1[A]) will be sorted by the parameter (¢, i). This takes O (m logn/p+logn)
time with p processors. A GPC function f will be passed down the bit-pipeline tree in the
procedure FUNCTIONS. At each depth of the bit-pipeline tree, f is involved in a constant
number of operations. Thus each GPC function will account for O (log n) operations, giving
a total of O (m logn) operations. This can be done in time O (m logn/p + log?n) with p
processors. The nodes in the random-variable tree and the nodes in an evaluation tree, as
they pass down the bit-pipeline tree, can be decomposed into several random-variable trees
and evaluation trees, one for each conditional-bit pattern. Each leaf in these trees can be
involved in O (log n) operations in a BPC problem and therefore O (log® n) operations in the
GPC problem. This gives time O (m log” n/p + log® n). On the CREW PRAM, we can avoid
evaluating nodes in a evaluation tree which has only one child. As long as we only evaluate

DERANDOMIZATION 79

nodes in the evaluation trees which have two children, the number of operations for evaluating
the nodes in an evaluation tree is proportional to the number of leaves in the tree. This helps
to cut the time for evaluating the evaluation trees to O (m/ p + log? n) for a BPC problem and
to O(mlogn/p + log®n) for the GPC problem. However, a node v at level / in an evalua-
tion tree could have its parent p(v) at level [+ ¢ with ¢ > 1, because now we require that
p(v) have two children. When p(v) is evaluated, we need the value W (v, p(v)). In order to
obtain this value, we keep updated W (v, w) for all leaves v in a random-variable tree and the
current node w. The W (v, w) value for the n leaves in the random-variable forest for a BPC
problem will be updated immediately after the random variables at each level are fixed. This
takes O (n logn/ p) time for a BPC problem and O (n log® n/ p) time for the GPC problem. In
summary, the first GPC problem can be solved in time O (m logn/p + nlog?n/p + log* n)
with p processors. If m > n logn, the time will become O (m logn/p + log® n).

One might argue that since the evaluation trees are built bottom-up, if a node is not checked
one cannot know whether that node has one or two children. The answer is that we cannot
avoid checking whether a node r in an evaluation tree of P, has one or two children. But if
we know r has one child, we can avoid checking r’s descendants in the bit-pipeline tree, i.e.,
those nodes in P,, v > u, which are descendants of r in the bit-pipeline tree.

Our modified algorithm for the GPC problem will first check whether m > nlogn. If
m < nlogn we first construct G’ induced by vertices in V with degree no greater than log n.
We then solve the maximal independent set problem for G’ in time O (m logn/p + log® n),
using an algorithm to be described later. Now the remaining graph can be viewed as satisfying
m > nlogn, and the rest of the computation takes O (m logn/p + log? n) time as explained
above. We therefore achieve time O (m logn/p + log® n loglog n) for the first O (loglogn)
GPC problems. The remaining graph can now be solved by MAX.

We now describe an algorithm for finding a maximal independent set for a graph satisfying
A = O(logn). This algorithm is obtained by using a modified version of our A + 1 vertex-
coloring algorithm. We first color the graph with A + 1 colors and then find a maximal
independent set by sequencing through these colors.

LEMMA 7 [HI]. A BPC problem can be solved by first sorting the input BPC functions
into the file-major indexing, which takes O(mlogn/p + logn) time, and then building the
derandomization tree and derandomizing the random variables, which takes O (m/p + logn)
time, where p is the number of processors used.

The reason that the computation for a BPC problem except the sorting step takes O (m/p+
log n) time is that the derandomization process can be formulated [HI] as a tree-contraction
process [MR]. Note that in order to establish Lemma 7, the derandomization tree D should
take the form such that each interior node of D must have at least two children [HI].

LEMMA 8. The A + 1 vertex-coloring problem can be solved in time O(mlogn/p +
log n(log log n)?) using p processors on the CREW PRAM if A = O(logn).

Proof. Since A = O(logn), one GPC problem now contains only O (loglogn) BPC
problems. Since the derandomization trees for all the BPC problems in a GPC problem are
the same, we need only build one derandomization tree and then make O (log log n) copies of
the tree. The time complexity for building the derandomization trees in the GPC algorithm is
O (m logn/p+logn). The time complexity for building the tables is O (m log log n/p+logn)
for a BPC problem, because A = O(logn), and O (m(log logn)?/p + log n log log n) for the
GPC problem. The time complexity for the rest of the computation in the GPC algorithm is
O(mloglogn/p + lognloglogn) using p processors because the BPC problems are solved
sequentially. Thus the first O (log logn) GPC problems can be solved in time

O(loglogn) m logn
o Z ; + logn(loglogn)® | = O(mlogn/p + logn(loglog n)?)
i=1 cp

80 YIJIE HAN

using p processors. Now the graph has size O (m/ log? n). It can be colored using the algorithm
in §4. Note again that each GPC problem has only O (loglogn) BPC problems. 0

THEOREM 7. There isa CREW PRAM algorithm for the maximal independent set problem
with time complexity O(logz'5 n) using O((m + n)/log'? n) processors.

The dominating operations in each step of our maximal independent set algorithm are
memory allocation and summation. These operations can be done in time O (logn/ loglogn)
on the CRCW PRAM [P], [Re], [CV]. Therefore, we have the following corollary.

COROLLARY. There is a CRCW PRAM algorithm for the maximal independent set prob-
lem with time complexity O (log*’ n/loglogn) using O ((m + n)loglogn/ log"> n) proces-
sors.

6. Maximal matching. Let N(M) = {(i,k) € E, (k,j) € E|3(,j) € M}. A
maximal matching can be found by repeatedly finding a matching M and removing M UN (M)
from the graph.

We adapt Luby’s work [L3] to show that after an execution of the GPC procedure a
constant fraction of the edges will be reduced.

Let k; be such that 261 < 4d(i) < 2%. Letq = max{k|i € V}. Let x=< x;; €
{0, 1}4, @i, j) € E}. The length |x;;| of x;; is defined to be max({k;, k;}. Define

_ { 1 if xij(lxijl — 1) .. x”(o) — leijl’

Y G
1 (%ij) 0 otherwise.

l]lj (xljixl N = _Yij(xij)Yi’j’(xi’j’)7

B(x) = Zd(l) (> (Yij(xij) +) Yij,jk(xij,xjk))

ieV jead; (i) keadj(j), ki

+ Z Yij i (xij, xik)) ,
Jokeadj (i), j#k
where x;;(p) is the pth bit of x;;.

Function B sets a lower bound on the number of edges deleted from the graph [L3] should
edge (i, j) be tentatively labeled as an edge in the matching set if x;; = (QU 1)4~4/0™!. The
following lemma can be proven by following Luby’s proof for Theorem 1 in [L1].

LEMMA 9. E[B] > |E|/c for a constant ¢ > O.

Function B can be written as

N d(i d(j d(
B(x) = Z MYU(XU‘HZ Z —%Yij’jk(xt'j,x]‘k)

(DeE JEV ikeadj(j),ik

+Z 46 Z Yijik (xij, xik)

ieV j.keadj (i), j#k

By using the same technique as in §5, we can obtain a CREW algorithm for the maximal-
matching problem with time complexity O (log? n) using O (M (n)) processors. The details
of this algorithm are omitted here.

There are two cluster terms in function B. We only need explain how to evaluate the cluster

term Z,ev > keadj(j).ik —(21 i, ik (xij» xjx). The rest of the functions can be computed as we
have done for the maximal independent set problem in §5.

DERANDOMIZATION 81

Again we build an evaluation tree T C (v) for each cluster C(v) in the cluster term. Let
1Gj) = |xij| —u. Letr = TX)[i'l[;'] be the root of a subtree T’ in 7C(v) which is to be
constructed in the current step. Let L and R be the left and right subtrees of T’, respectively.
Let r, and rg be the roots of L and R, respectively. At the beginning of the current step,
L and R have already been constructed. Random variables in the interior nodes of L and R
have been fixed. Define M(x,b) = Yy ; =y zi7- Define N(x,b) = 3 yij0=p 40 1.
At the beginning of the current step, M (rr, b), M(rg, b), N(rp, b), and N(rg,b), b = 0, 1,
have already been computed and associated with r; and rg, respectively. During the current
step, r; is made the left child of r and rg is made the right child of r. Now r is tenta-
tively set to O and 1 to obtain value VC for fixing r. We first compute VC (v, r) for each
v. VC(v,r) = Z,l)=0(N(rL, D)M(rr,b ®r) + M(r.,b)N(rg,b ® r)). The VC value
is — Z{vlT,,‘_',’,[t”][j’] is not empty) ¥ C (¥ TOL'1L'). After setting r, we obtain updated values
M(r,b)and N(r,b)asM(r,b) = M(rp, b)+M(rg, b®r),N(r,b) = N(rp,b)+N(rg, bdr).

Since this computation does not require more processors, we have the following theorem.

THEOREM 8. There is an EREW PRAM algorithm for the maximal matching problem with
time complexity O (log?> n) using O((m + n)/ log®> n) processors.

For the maximal-matching problem, we cannot remove another factor of log n from the
processor complexity as we did for the maximal independent set problem because there are
O (m) leaves in the random-variable trees of a BPC problem, while there are only O (n) leaves
in the maximal independent set problem.

Again in the CRCW PRAM algorithm a factor of log log n can be taken out from the time
complexity and put into the processor complexity.

Acknowledgments. The author wishes to thank the anonymous referees for their careful
reviewing and helpful comments on the manuscript. The author also thanks Professor Richard
Cole for making several good suggestions about the paper.

REFERENCES

[AKS] M. Arral, J. KoMLOs, AND E. SZEMEREDI, An O (N log N) sorting network, in Proc. 15th ACM Symposium
on Theory of Computing, Association for Computing Machinery, New York, 1983, pp. 1-9.

[ABI] N. ALON, L. BABAL, AND A. ITAlL, A fast and simple randomized parallel algorithm for the maximal
independent set problem, J. Algorithms, 7 (1986), pp. S67-583.
[BR] B. BERGER AND J. ROMPEL, Simulating (log® n)-wise independence, in NC Proc. 30th Symposium on

Foundations of Computer Science, IEEE Press, Piscataway, NJ, 1989, pp. 2-7.

[BRS] B. BERGER, J. ROMPEL, AND P. SHOR, Efficient NC algorithms for set cover with applications to learning and
geometry, in Proc. 30th Symposium on Foundations of Computer Science, IEEE Press, Piscataway,
NJ, 1989, pp. 54-59.

[C] R. CoLE, Parallel merge sort, in Proc. 27th Symposium on Foundations of Computer Science, IEEE Press,
Piscataway, NJ, 1986, pp. 511-516.

[Co] S. Cook, A taxonomy of problems with fast parallel algorithms, Inform. and Control, 64 (1985),
pp. 2-22.

[CV] R. CoLE AND U. VISHKIN, Approximate and exact parallel scheduling with applications to list, tree

and graph problems, in Proc. 27th Symposium on Foundations of Computer Science, IEEE Press,
Piscataway, NJ, 1986, pp. 478-491.

[CW] D. COPPERSMITH AND S. WINOGRAD, Matrix multiplication via arithmetic progressions, in Proc. 19th
Annnual ACM Symposium on Theory of Computing, Association for Computing Machinery, New
York, 1987, pp. 1-6.

[FW] S. FORTUNE AND J. WYLLIE, Parallelism in random access machines, in Proc. 10th ACM Symposium on
Theory of Computing, Association for Computing Machinery, New York, 1978, pp. 114-118.

[GS1] M. GOLDBERG AND T. SPENCER, A new parallel algorithm for the maximal independent set problem, SIAM
J. Comput., 18 (1989), pp. 419-427.

[GS2] , Constructing a maximal independent set in parallel, SIAM J. Discrete Math., 2 (1989),
pp. 322-328.

82

[HCD]
[H]
[HI]
1]
[1S]
[KW]
[L1]
[L2]

[L3]

[MR]

[MNN]

[PSZ]
[P]
[Rag]
[Re]

[Spl

YIIE HAN

T. HAGERUP, M. CHROBAK, AND K. DIKs, Optimal parallel S-coloring of planar graphs, SIAM J. Comput.,
18 (1989), pp. 288-300.

Y. HaN, A parallel algorithm for the PROFIT/COST problem, in Proc. 1991 International Conference on
Parallel Processing, 1991, pp. 103-112.

Y. HaN AND Y. IGARASHI, Derandomization by exploiting redundancy and mutual independence, Lecture
Notes in Comput. Sci., 450 (1990), pp. 328-337.

A. ISRAELI AND A. Ital, A fast and simple randomized parallel algorithm for maximal matching,
Tech. report, Computer Science Deptartment, Technion, Haifa, Israel, 1984.

A. ISRAELI AND Y. SHILOACH, An improved parallel algorithm for maximal matching, Inform. Process.
Lett., 22 (1986), pp. 57-60.

R. KARP AND A. WIGDERSON, 4 fast parallel algorithm for the maximal independent set problem, J. Assoc.
Comput. Mach., 32 (1985), pp. 762-773.

M. LuBY, A simple parallel algorithm for the maximal independent set problem, SIAM J. Comput.,
15 (1986), pp. 1036-1053.

, Removing randomness in parallel computation without a processor penalty, in Proc. 29th

Symposium on Foundations of Computer Science, IEEE Press, Piscataway, NY, 1988, pp. 162-173.

, Removing randomness in parallel computation without a processor penalty, Tech. report,
89-044, International Computer Science Institute, Berkeley, CA, J. Comput. System Sci., 47 (1993),
pp. 250-286.

G. L. MILLER AND J. H. REIF, Parallel tree contraction and its application, in Proc. 26th Symposium on
Foundations of Computer Science, IEEE Press, Piscataway, NJ, 1985, pp. 478-489.

R. MoTwanNi, J. NAOR, AND M. NAOR, The probabilistic method yields deterministic parallel algorithms,
in Proc. 30th Symposium on Foundations of Computer Science, IEEE Press, Piscataway, NJ, 1989,
pp. 8-13.

G. PanTZIOU, P. SPIRAKIS, AND C. ZAROLIAGIS, Fast parallel approximations of the maximum weighted cut
problem through derandomization, Lecture Notes in Comput. Sci., 405 (1989), pp. 20-29.

1. PARBERRY, On the time required to sum n semigroup elements on a parallel machine with simultaneous
write, Lecture Notes on Comput. Sci., 227, pp. 296-304.

P. RAGHAVAN, Probabilistic construction of deterministic algorithms: Approximating packing integer
programs, J. Comput. System Sci., 37 (1988), pp. 130-143.

J. H. REIF, An optimal parallel algorithm for integer sorting, in Proc. 26th Symposium on Foundations of
Computer Sci., IEEE Press, Piscataway, NJ, 1985, pp. 291-298.

J. SPENCER, Ten Lectures on the Probabilistic Method, Society for Industrial and Applied Mathematics,
Philadelphia, 1987.

SIAM J. COMPUT. (©) 1996 Society for Industrial and Applied Mathematics
Vol. 25, No. 1, pp. 83-99, February 1996 003

WEIGHTED MULTIDIMENSIONAL SEARCH AND ITS APPLICATION TO
CONVEX OPTIMIZATION*

RICHA AGARWALA'! AND DAVID FERNANDEZ-BACA?

Abstract. We present a weighted version of Megiddo’s multidimensional search technique and use it to obtain
faster algorithms for certain convex optimization problems in R?, for fixed d. This leads to speed-ups by a factor
of logd n for applications such as solving the Lagrangian duals of matroidal knapsack problems and of constrained
optimum subgraph problems on graphs of bounded tree-width.

Key words. computational geometry, convex optimization, Lagrangian relaxation, multidimensional search

AMS subject classifications. 52B12, 52B30, 52B55, 68P10, 68Q25, 68U05

1. Introduction. This paper has three main parts. In the first (§2), we present a weighted
version of the multidimensional search technique of Megiddo [27], [17], [10]. The second
part (§3) discusses the application of our result to a class of convex optimization problems
in fixed dimension which were studied earlier by Cohen and Megiddo [14], [15] and in a
different context by Aneja and Kabadi [4]. In rough terms, the results in [14], [15], and [4]
can be summarized as follows. Suppose that g is a concave function whose domain Q is
a convex subset of R and that g is computable in O(T') time by an algorithm A that only
performs additions, multiplications by constants, copies, and comparisons on intermediate
values that depend on the input numbers. Then g can be maximized in O(T¢*!) time. Cohen
and Megiddo go on to show that substantial speed-ups are possible by exploiting whatever
parallelism is inherent to algorithm .A. Thus, if A carries out D parallel steps, each of which
does at most M comparisons, the running time will be O ((D log M)¢T). By applying weighted
multidimensional search and a generalization of Cole’s circuit-simulation technique [16], we
are able to reduce this to O((D? + log? M)T) in some cases.

Lagrangian relaxation is a source of several problems that fall into the framework described
above [4]. This widely used approach is based on the observation that many hard optimization
problems are actually easy problems that are complicated by a relatively small set of side
constraints. By “pricing out” the bad side constraints into the objective function, one obtains
a simpler convex optimization problem whose optimum solution provides good bounds on the
optimum value of the original problem. The third part of this paper (§4) explains the application
of our results to Lagrangian relaxation problems where the number of bad constraints is fixed.
We give two examples of problems where the methods described in §3 give faster algorithms
than those of [4], [14]: solving the Lagrangian duals of matroidal knapsack problems [11] and
of certain constrained optimum subgraph problems on graphs of bounded tree-width.

2. Weighted multidimensional search. Let us first introduce some notation. Suppose
A C R? is convex and that & : R? — R is an affine function. Define sign, (k) as

0 ifh(A) =0forsome A € A,
sign, (h) = { +1 ifh(A) > OforallA € A,
—1 ifh(A) <OforallX € A.

*Received by the editors December 28, 1992; accepted for publication (in revised form) July 22, 1994. An earlier
version of this paper appears in [1].

tDepartment of Computer Science, Iowa State University, Ames, IA 50011. The research of this author was
supported in part by an Iowa State University College of Liberal Arts and Sciences Research Assistantship. Current
address: DIMACS (The Center for Discrete Mathematics and Theoretical Computer Science), Rutgers University,
Piscataway, NJ 08855 (agarwala@dimacs.rutgers.edu).

IDepanment of Computer Science, Iowa State University, Ames, IA 50011 (fernande@cs.iastate.edu). The
research of this author was supported in part by the National Science Foundation grants CCR-8909626 and CCR-
9211262. This author’s work was conducted in part at DIMACS, Rutgers University.

83

84 RICHA AGARWALA AND DAVID FERNANDEZ-BACA

We will write sign for sign, when no confusion can arise. A function A is resolved if sign, (h)
has been computed. Obviously, if #(A) = ay, sign(h) can be immediately determined from
the sign of ag.

Suppose we have a set H of d-dimensional affine functions and an oracle B¢ that can
compute sign 4 () for any & € H. The problem is to resolve every k& € H using as few oracle
calls as possible. The following result is proved in [27], [17], [10].

THEOREM 2.1. For each fixed d > O there exist positive constants B(d) and a(d),
a(d) < 1/2, and an algorithm SEARCH such that, given a set H of affine functions, SEARCH
either returns an affine function h such that sign, (h) = 0 or resolves every h € H' C H,
where |H'| > a(d) - |H|, by making at most B(d) calls to B%. Furthermore, the work done by
SEARCH in addition to the oracle calls is O (|H]).

In reality, the above references have proofs of this result for the case where A is a single
point, but the proof extends easily to the case where A is a convex set. By repeatedly applying
algorithm SEARCH, we can resolve all functions in H with O(log|H|) oracle calls. In this
section, we shall prove a weighted version of Theorem 2.1. Let S be a set on which a weight
function w : § — R has been defined. For §' C S, we write w(S’) to denote) o w(s).
We have the following result.

THEOREM 2.2. For each d > 0, there exist constants B(d) and a(d), @« < 1/2, and an
algorithm WEIGHTED-SEARCH with the following property. Given a set H of affine functions
and a weight function w : H — R, WEIGHTED-SEARCH either returns an affine function h
such that sign, (h) = 0 or finds a subset H' € H with w(H') = a(d) - w(H) and resolves
every h € H' by making at most B(d) calls to B*. Furthermore, the work done by WEIGHTED-
SEARCH in addition to the oracle calls is O(|'H)|).

The proof of this theorem will require some preliminary results, which are discussed next.

2.1. Preliminaries. Procedure WEIGHTED-SEARCH uses two simple algorithms. The
first is MATCH, which, given two sets A and B, attempts to match disjoint subsets of B with
elements of A in a “greedy” manner.

ALGORITHM MATCH
Input: Sets A = {a;,...,a,4)} and B = {by, ..., b} and a weight function w :
AUB — R*.
Output: Either FAILURE or disjoint sets Sy, . . ., Sj4| such that, foreach i, S; = {a;}UD;
where D; C B and w(D;) > w(a;).
begin
j<«1
for i = 1to |A| do begin
D,' «~ @
while w(D;) < w(a;) do begin
if j > |B| then return FAILURE
D,' <« Di U bj
Jjej+1
end
S; < {a;} U D;
end;
return S, ..., Sja
end

The running time of this algorithm is clearly O (| B|). We shall say that MATCH succeeds if
it does not return FAILURE. If MATCH succeeds, then the solution returned obviously satisfies
its output conditions. The next lemma gives one scenario in which MATCH always succeeds.

WEIGHTED MULTIDIMENSIONAL SEARCH AND ITS APPLICATIONS 85

LEMMA 2.3. If minycqw(x) > max,cpw(y) and w(B) > 2w(A), then MATCH succeeds.
Furthermore, each set S; = {a;} U D; returned by MATCH satisfies w(D;) < 2w(a;).

Proof. (This is a proof by contradiction.) Suppose the conditions of the lemma hold and
that MATCH returns FAILURE. Then there existsak, 1 < k < |A|, such that, at the kth iteration
of the for loop, MATCH runs out of elements of B to match up with ay; i.e., w(Dy) < w(ay)
and B = U*_, D;, where Dy, ..., Dy are the subsets of B constructed by MATCH up to this
point. Thus, Z};l w(D;j) = w(B). For j = 1,...,k, let D; = {d;1,d)2,...,dj;}. By
construction, for 1 < j < k — 1, w(D;) — w(dj;) < w(a;). Thus, for1 < j < k — 1,
w(D;) < w(aj) + w(dj;) < 2w(a;), as mingeqaw(x) > max,cpw(y). Together with the
above-mentioned fact that w(Dy) < w(ay), we get that

k k
w(B) =Y w(Dy) < Y 2w(a;) < 2w(A),
j=1 j=1

which is a contradiction. Therefore, MATCH succeeds, and for each set S; = {a;} U D;,
w(D;) < 2w(a;). 0
MATCH is invoked by the following algorithm.

ALGORITHM PAIRING

Input: Sets A, B, a weight function w : A U B — R™, and a number m such that
W/2 > w(B) = w(A) = (W/2 —m), where W = w(A U B) + m.

Output: k& > 0 disjoint sets S, ..., S, and an element e satisfying the following con-
ditions:

(P1) Each S; has the form S; = {¢;} U D;, where e # c;, and either
() foralli,e,c; € Aand D; C B, or
(2)foralli,e,c; € Band D; C A.

(P2) foralli,2w(c;) > w(D;) = w(c;).

P3) Y5 w(c) +wle) +m > W/e.

Note: In order to break ties between items with equal weights, we assume an arbitrary
but fixed ordering among the elements in A and in B. Given any two elements x
and y, where either both are in A or both are in B, we will say that x precedes y if
(w(x), x) is lexicographically smaller than (w(y), y).

Step1. Find ¢ € A and b € B such that w(A,), w(B;) < w(A)/3 and w(A,U

{a}), w(By U {b}) > w(A)/3, where A} = {x € A : x precedes a} and
B; = {x € B : x precedes b}. Let A, = A — A, and B, = B — B;.
Step 2. If w(a) > w(b), do the following steps.
Step 2(a). If w(a) +m > W/6,thenreturn k = 0 and ¢ = a.
Step 2(b). Call MATCH with inputs A; and B,. Let Sj, ..., S, be the
sets returned by this call. Return Sy, ..., S4,, and e = a.
Step 3. If w(a) < w(b), do the following steps.
Step 3(a). If w(b) +m > W/6, then return k = 0 and e = b.
Step 3(b). Call MATCH with inputs By and A,. Let Sy, ..., Sip, be the
sets returned by this call. Return Sy, ..., Sip,| and e = b.

LEMMA 2.4. PAIRING correctly computes output satisfying conditions (P1)—(P3).

Proof. If the output is returned in Step 2(a) or Step 3(a), the conditions are trivially
satisfied. We now consider Step 2(b); the analysis for Step 3(b) is similar. By construction,
minyeq, W(x) > maxyep, w(y) and w(B;) > 2w(A)/3 > 2w(A;). Since the conditions of
Lemma 2.3 are satisfied, MATCH succeeds and conditions (P1) and (P2) are satisfied. Since
MATCH works correctly, we have Zi.i‘ll w(c;) = w(A;). Therefore, ZL, w(c;)+w(e)+m =

86 RICHA AGARWALA AND DAVID FERNANDEZ-BACA
w(A;) + w(a) +m. Because w(A;) + w(a) > w(A)/3,

k
D_we) +w(e) +m = w(A)/3+m = w(A) +m)/3.

i=1

Since w(A) +m > W/2, we obtain

k
> w(c) +wle) +m = W/6
i=1
as desired. a
PAIRING can be implemented to run in O(n) time, where n = |A| + |B|. Step 1 takes
O (n) time as elements a and b can be found by repeated median finding [12]. Steps 2 and 3
also take linear time, since MATCH takes linear time.

2.2. The search algorithm. We shall now prove Theorem 2.2. The implementation of
WEIGHTED-SEARCH that we propose is an extension of Megiddo’s [27] and Dyer’s [17] algo-
rithms for unweighted multidimensional search (see Theorem 2.1). Suppose H = {hy, ..., h,},
where h;(\) = a,.T A +d;. If a; = 0, sign(h;) is simply the sign of d;, and no oracle calls are
needed. Thus, the presence of 4;’s with a; = 0 can only help. We shall henceforth assume
thata; # 0,fori =1, ..., n. In this case, each affine function 4; corresponds to a hyperplane
H; € R?, where H; = {X : h;(A) = 0}. Computing sign(k;) is thus equivalent to determining
whether H; intersects A and, if not, which side of H; contains A. We shall find it convenient to
deal interchangeably with hyperplanes and affine functions and to extend the weight function
w to these hyperplanes by making w(H;) = w(h;).

The numbers B(d) and «(d) are derived recursively with respect to the dimension. For
d = 1, the hyperplanes are n real numbers Aj, ..., A,. In this case, WEIGHTED-SEARCH
finds the weighted median A,,, inquires about its position relative to A*, and resolves either
{Ai :Ai < Am}or{A; i A; = Ap}. Thus, B(1) = 1 and «(1) = 1/2. For d > 2 we proceed as
follows.

Form a set Hoo = {H; : a;; = 0}. Each H; € H — H intersects the A;—A, plane
(i.e., the plane where A; = O fori ¢ {1, 2}) in a straight line a;;A; + a;2A, = b;. Since for
every scalar [# 0, sign(k(A)) = sign(l) - sign(h(A)/[), we can rewrite the equations of these
hyperplanes so that a;; > 0. Let the slope «; of H; be the same as that of a;; A, + ajsA, = b;
with respect to A, = 0; i.e., let o; = (—a;1/a;2). Let o* be the weighted median of the set
{o;} where the weight of «; is w(H;). Now we make the slopes of roughly weighted half of
the hyperplanes nonnegative and weighted half nonpositive by using the change of variables
Ay = A, +a*A; and a;; = a}; — o*a;». This change of variables is only done to simplify the
exposition and, indeed, needs to be reversed before making an oracle call. For convenience,
we now drop the primes on A}, and a;,. Recalculate the slopes of the hyperplanes after making
this change in variables. All hyperplanes that originally had a slope of o* will have 0 slope.
LetHo={H;:o; =0}, H- = {H; : o; <0}, and H; = {H; : o; > 0}.

Letm = w(Hoo) + w(Hp) and W = w(H). Since O is our new weighted median slope,
w(H_) < (W —w(Heo))/2 < W/2and w(H_) + w(Hy) = (W — w(H))/2. Therefore,
w(H-) = W/2—w(Hw)/2—w(Ho) = W/2—m. Similarly, W/2 > w(Hy) > (W/2—m).
Thus, sets H_, H . and the number m satisfy the preconditions of PAIRING—assuming, without
loss of generality, that w(H_) < w(H,). WEIGHTED-SEARCH calls PAIRING(H_, H ., m).
Let Sy, ..., S, e be the sets and the element returned, where S; = {c;} U D;. By output
condition (P3) of PAIRING,

!
(1) Y wie) +wle) +m = W/e.

i=1

WEIGHTED MULTIDIMENSIONAL SEARCH AND ITS APPLICATIONS 87

Next, we resolve the hyperplane associated with e, denoted by H,, by calling the oracle directly.
If H, intersects A, we return H,; otherwise, for the hyperplanes corresponding to elements in
S1, ..., S, we do the following.

Suppose that for each set S; = {¢;} U D;, ¢; corresponds to a hyperplane H; € H_ and
that D; has a corresponding set of hyperplanes {H;1, Hjs, ..., H,,} € H.. (The analysis for
the case where ¢; is associated with a hyperplane in H., is completely analogous.) For each
i, form pairs (H;, H;1), (H;, Hp), ..., (H;, Hig,). By Lemma 2.3, for each i and j,

2) w(H;;) < w(H)).

Consider a typical pair (H;, H;;). Since H; and H;; have strictly negative and strictly positive
slopes, respectively, their intersection is a (d — 1)-dimensional hyperplane. Through this
intersection, we can draw hyperplanes H,Sl) and Hi(jz) whose slopes are 400 and O respectively.
Mathematically,

1) .
H;;”: (anaiji — aiaijp)h = (aixbij — aijpbi) — Z(aﬂaijr — Qij2qir) s,
r=3
d
2
Hi(j) o (apnaiji — apaijp)hy = (aij1b; — a;ibij) — Z(aijlair — ai1a;jr),
r=3

Note that H, (11) and H;; 2 are (d — 1)- d1mens1onal hyperplanes Now, assign a weight of
min(w(H;), w(H;;)) to each of H;; M and H From equation (2), we get that
min(w(H;), w(H;;)) = w(H;;). This along with condltion (P2) of PAIRING gives us

qi qi di
€) D owHD) =Y wHD) =D w(Hy) > wc) =wH).
r=1 r=1 r=1

Recursively apply WEIGHTED-SEARCH to the set of (d — 1)-dimensional hyperplanes {Hi(jl)} U
Hoo. This requires B(d — 1) oracle calls. If an oracle call finds a hyperplane that intersects A,
we return that hyperplane. Otherwise, let Wo, and W; denote the weights of the hyperplanes
resolved from sets H, and {H,.(jl) }, respectively, and let w({H M H = 2, 1 9 _ w(H;p).
Then,

) Woo + W1 2 a(d = 1) (w(Hoo) + w((HD).

Let H® be the set of hyperplanes in {Hi(f)} for which the corresponding Hly)’s have been
resolved in the previous step. Recursively apply WEIGHTED-SEARCH to the set of (d — 1)-
dimensional hyperplanes in H® UHy. This requires at most 8(d — 1) oracle calls. As before,
if we find a hyperplane which intersects A, we return that hyperplane; otherwise, we proceed
as follows. Letting W and Wi, denote the weights of the hyperplanes resolved from sets H,
and H®, respectively, we have

(5 Wo + Wiz = a(d — D(w(Ho) + W1).

To summarize the algorithm up to this point, observe that we have either found a hyper-
plane which intersects A or, from the original set 7, we have resolved an element e of weight
w(e), a subset of weight W, of the planes in H, and a subset of weight W, of the planes in
‘Hy. In addition to this, we have resolved a subset of weight W, of the hyperplanes in set {H M }
and a subset of weight W), of the hyperplanes in set H®. For each hyperplane contr1but1ng

88 RICHA AGARWALA AND DAVID FERNANDEZ-BACA

to Wi,, we have also resolved its pair in the set {H,.(jl) }. However, W) and W), represent the
total weights of sets of auxiliary hyperplanes, rather than elements of 7. We shall now show
that by resolving such auxiliary hyperplanes, we are guaranteeing the resolution of sufficiently
many hyperplanes from (H_ U H,) — {H,}.

LEMMA 2.5. Let W, be the total weight of the hyperplanes resolved in (H_- UH) — {H,}.
Then, W, > Wi, /2.

Proof. Consider a particular set S; = {H;} U {H;1, H;3, ..., Hig}. The auxiliary hyper-
planes formed by the intersection of hyperplanes in S; are

HP, HD), ..., (HY, HD).

igi > “7iqi
Suppose H? ,H .(2), ceey H'® were resolved in the second recursive call. Then these hyper-
pp ll' i2 ip) . yp
planes contributed to Wy,. Hence, the contribution, C;, of the auxiliary hyperplanes resulting
from S; to Wi, is C; = J’.’=1 w(H,.(jZ)), and W, can be written as
i
6) Wi = Ci.
i=1

For each H,.(jz) that gets resolved, its corresponding Hi(jl) has already been resolved in the first
recursive call. We now rely on an observation of Megiddo [27], who noted that if we know
the position of A relative to both Higl) and Hi(jz), we can determine the position of A relative
to at least one of H; and H;;. Let R; be the sum of the weights of the hyperplanes resolved
from S;. Since Ule S; € (H-UH,) — {H,} and the S;’s are disjoint,

1
@ Woz) R
i=1

‘We have two cases to consider:
Case 1. In each pair, H;; is resolved. Then due to equation (3), we have

p p
R =Y w(Hy) =Y wH)=Ci.
j=1 j=1

Case Il. H; is resolved in at least one pair. Then equation (3) along with condition (P2)
of PAIRING implies that

! p
Ri z w(H) = w(e) >) w(Hy)/22) wHP)/2=Ci/2.
j=1 j=1

Therefore, in either case R; > C;/2. This along with equations (6) and (7) gives us the
following:

! 1
Wo> Y R Ci/2=Wp/2.
i=1 i=1

Therefore, W, > Wy, /2. a
Let Wy be the total weight of the hyperplanes from H that are resolved by our algorithm;
ie., Wr = w(e) + Wy + Wy + W,. Using Lemmas 2.4 and 2.5 and equations (3)—(5), we

WEIGHTED MULTIDIMENSIONAL SEARCH AND ITS APPLICATIONS 89

have

Wr = w(e) + Woo + Wo + Wi2/2
> w(e) + Woo +(d — 1) (w(Ho) + W))/2
> w(e) +a(d = 1) - (w(Ho) +a(d — 1) - (W(Heo) + w((HPD)) /2

1
>ad—-1)7- (w(e) + w(Ho) + w(Hoo) + Y w(ci)) /2
i=1

>a(d —1)2-W/12.

From the preceding discussion, we conclude that the number of oracle calls satisfies
B(d) = 2B8(d — 1) + 1, with (1) = 1, and that the fraction of the total weight satisfies
a(d) > a(d — 1)2/12, with (1) = 1/2. Hence, B(d) = 2¢ — 1 and a(d) = 12/242'1'1.

The same arguments as in [17] can be used to show that the total work done by WEIGHTED-
SEARCH is O(n). We omit the details.

2.3. Improving the efficiency of the search. Following Dyer [17], the efficiency of a
search scheme is the ratio e = a(d)/B(d). As for unweighted search, the efficiency of a
weighted search scheme will affect the running time of the algorithms that use the scheme as
a subroutine. The search scheme we have just presented has e that is doubly exponentially
small in d. Borrowing ideas from [17], we shall sketch how to make the efficiency singly
exponentially small.

Let us write S(d, B, «) to denote a weighted search scheme that, given a set of weighted
affine functions in R? of total weight W, resolves a fraction of total weight & - W using 8 oracle
calls. Thus, the algorithm that we have developed can be denoted by S(d, 2¢ — 1, 12/ 242").
Suppose that we have an S(d — 1, B(d — 1), a(d — 1)) scheme S;—;. To obtain a search
procedure for RY, proceed as follows. First, construct a S(d — 1, 8/, @) procedure with

o =1-(1—-ad—-1)y ad B =r-pd-1)

by carrying out r iterations, each of which consists of applying S,;_; and removing the hyper-
planes that are resolved. Next, use S(d — 1, 8, ') and the pairing scheme described earlier
to obtain a procedure S(d, 8", «”’), where

@ =[1—(1-—ad—-1))P/12 and B’ =2-r-fd—-1)+1.

Applying this procedure / times gives us a procedure S(d, B(d), «(d)) that solves d-dimensional
hyperplanes with

B@d)=1-g"=1@2r-pd—-1)+1)
and
1
ed=1-1-a")Y=1- {1 - %[1 —(1-—ad- 1))’]2].

We can use this framework to obtain a scheme S(d, B(d), a(d), where a(d) > 1/12 for all
d. For d = 1, we can easily obtain a scheme S(1, 1, 1/2). Suppose a(d — 1) > 1/12. If we
choose ! =2 and r = 15, we get

2
o,(d)=1—{1—1—12-[1—(1—1/12)15]2] >1/12

90 RICHA AGARWALA AND DAVID FERNANDEZ-BACA

as desired. Now

and we have a procedure S(d, 2(60°~1), 1/12) whose efficiency is singly exponentially small.

3. Convex optimization in fixed dimension. An algorithm is piecewise affine if the
only operations it performs on intermediate values that depend on the input numbers are
additions, multiplications by constants, copies, and comparisons [14], [15]. Several well-
known algorithms fall into this category, including many network-optimization algorithms
[13], [33]. Suppose @ < R is a (possibly empty) convex set defined by a set of at most [
linear inequalities, where / is some fixed integer. Let g : Q — R be a concave function. Our
goal is to compute

8) g" =max{g(A) : A € Q}

or, if @ = (J, to return a message that this problem is infeasible. Cohen and Megiddo [14],
[15] showed that, if g is computable by a piecewise affine algorithm that runs in time 7" and
makes D sets of at most M comparisons, then problem (8) can be solved in O((D log M)4T)
time. Closely related results were obtained by Norton, Plotkin, and Tardos [29] and Aneja
and Kabadi [4]. Toledo has extended this work to problems involving piecewise polynomial
functions [34]. The main result of this section is to show that weighted multidimensional
search in conjunction with Cole’s circuit-simulation technique [16] can sometimes be used to
solve (8) in O((D? + log® M)T) time.

To streamline the presentation, for the most part we shall omit any mention of constants
that depend on d. The magnitude of these values is discussed in §3.3.

3.1. The basic scheme. We now review the solution scheme of Megiddo and Cohen
[14], [15] and Aneja and Kabadi [4] as it forms the basis for our algorithm. Our presentation
is somewhat simpler, among other reasons because it avoids the notion of “minimal weak
approximation” used in [14]. We shall assume that problem (8) is bounded. This is done
without loss of generality, since unbounded problems can be handled by Seidel’s technique of
adding “constraints at infinity” [32]. Note also that if g is computable by a piecewise affine
algorithm, it is the lower envelope of a finite set of linear functions [14]. We say that a linear
function f : R? — RisactiveatA? € Qif g(A?) = fF(AP)and g(A) < f(A) forallA € Q
and we shall write A to denote the set of maximizers of g.

Let us refer to the algorithm that solves a d-dimensional problem of the form (8) as
algorithm C?. Let H be a hyperplane in R?, and let g}, denote the maximum of g on H; i.e.,

gy =max{g(l): A€ HNQ}.

Suppose we have an oracle B¢ that, as in §2, returns sign, (k) for any given affine function /.
Moreover, if 4 defines a hyperplane H, B¢ returns g};, assuming H N Q # 0.

Obviously, A can play the role of C° Ford > 1, ¢ proceeds as follows. First, it
determines whether Q is empty and, if so, returns a message saying that (8) is infeasible.
Since Q is defined by a fixed number of linear inequalities, this takes O (1) time. If Q # @, ce
uses Megiddo’s algorithm simulation technique [25], [26] to do one of two things. The first
option is to find a hyperplane H defined by #(X) = O such that sign, (k) = 0. Then, clearly,
g* = gj;- The second option is to find a linear function f and a set of linear inequalities £
defining a nonempty convex set @* € Q such that

(C1) 9 C A and
(C2) f isactive atevery A € Q.

WEIGHTED MULTIDIMENSIONAL SEARCH AND ITS APPLICATIONS 91

In this case, solving (8) reduces to solving the linear programming problem

max{f(A) : A € Q*},

which can be done in time linear in £, since d is fixed [27]. Algorithm C¢ relies on the
observation that, because A is piecewise affine and its inputs are linear functions of A, all
the intermediate values of its real variables can be represented implicitly as linear forms in A.
Using this representation, a single computation path of A, may correspond to the evaluation
of g(A) for a set of distinct A-values.

Suppose that for s < r, we know how to find a set Q' C R4 defined by a set of linear
inequalities £ such that @ N A # @ and such that the outcomes of the first r steps of any
computation path of A for every A* € Q' are exactly the same (when values are represented
implicitly). We wish to find such a set for s = r + 1. Before proceeding, note that finding
Q' when s = 0 is trivial, since we can choose Q' = Q. For s = r + 1, observe that knowing
the outcomes of the first r steps tells us what the (r + 1)st step of .4 will be; we now need to
determine the outcome of this step. If the (r 4+ 1)st step is an addition of two or more numbers,
a multiplication by a constant, or an assignment, C¢ does the corresponding operations with
linear forms and proceeds to the next step of A.

If the (r +1)st step is a comparison between two variables, C¢ compares the corresponding
linear forms f;(A) and f>(A) using B to resolve the function h(1) = f; (1) — f2(A). Suppose
h(X) = O defines a hyperplane H. If sign,(h) = O, then g* is the value of g, returned
by the oracle, and C? halts. Otherwise, C¢ updates £ by adding the inequality h(X) > O if
sign(h) = +1 or the inequality #(X) < Oif sign(h) = —1. The next step to be simulated from
A will be the action corresponding to fi(A) > f2(A) or fi(A) < f2(A) depending on whether
sign(h) is +1 or —1. If & is a constant function, the oracle’s job is trivial, since the outcome
of the comparison is independent of A and the simulation proceeds accordingly.

If C? simulates A to completion, Q" will satisfy condition (C1). Furthermore, the output
of A will be a linear function f satisfying condition (C2). Since A does O(T) comparisons,
|£| = O(T) and the resulting linear program in d variables can be solved in O (T) time [27].
The total time for algorithm C? is therefore O(T - b(d)), where b(d) is the running time of
B¢. We now turn our attention to the implementation of 3.

Implementing the oracle. Let h()) = Z;j:, a;»; + b be the function to be resolved. If
a; = 0fori = 1,...,n, sign(h) depends simply on the sign of b. Otherwise, H = {A :
h(X) = 0} is a hyperplane in R¢. To resolve h, B¢ first determines if H N Q = @. If this
is so, then, since A € Q, we simply need to find a point A? € Q and evaluate sign, 0 (h).
Determining if the intersection of H and Q is nonempty and finding a point inside Q take
O (1) time, since Q is defined by a set of O(/) linear inequalities and [is fixed.

From now on, assume H N Q # @. Now, if A N H =), due to concavity of g, the set of
all points A" such that g(A) > g7, is contained in only one side of H. This observation leads
to the following result, which is the basis for the implementation of B4,

LEMMA 3.1. Let H = {X\ : h(A) = 0} be a hyperplane in R?, and for every real number
a, let H(a) denote the hyperplane given by H(a) = {A : h(X) = a}. Then,

+1 if (3e > 0)[g}) > 8l
signy(h) =1 —1 if3e > 0)gy o > gl
0 otherwise.

Furthermore, if sign,(h) = +1 [sign,(h) = —1], then g};(y) > 8y [g};(_y) > gyl for all
y € (0, €], where € > 0 is sufficiently small.

The lemma tacitly assumes that H(e) N Q # @ [H(—€) N Q # @] for some € > O.
If He)NQ = @ [H(—e) N Q = @] for every € > 0, we can immediately conclude that

92 RICHA AGARWALA AND DAVID FERNANDEZ-BACA

sign(h) # +1 [sign(h) # —1]. Thus, we shall continue assuming that H(¢) N Q # @ and
H(—¢e) N Q # @ for some € > 0.

Lemma 3.1 implies that we can implement B¢ by computing g}, 8h and gy, for
sufficiently small ¢ > 0. Computing g7, is a (d — 1)-dimensional problem of the same form
as that of computing g*; hence, g}; can be calculated by recursively calling C¢~!. We can
also compute gy, using C41, provided C?~! treats € as a symbolic constant whose only
known attribute is being arbitrarily small and positive. (The details of computing g, _, are
analogous and therefore omitted.) The output g}, of this execution of C4~! will depend
linearly on €; i.e., gy = 8o + g1€. The values of g}, ., and g}, are compared by computing
y = sign(gy — &) = sign((gy — 8o) — g1€). If [g}; — 8ol > 0, d = sign(g}; — go), since €
is arbitrarily small. Otherwise, d = sign(—g), since e is positive. Of course, C4~! will itself
call B4~!, which will introduce a perturbation of its own. In order to deal effectively with the
various symbolic perturbations, we shall establish a certain ordering among them.

The state of the execution of C? is partially described by sequence of currently active
procedure calls (i.e., calls that have not yet been completed). Let us follow one sequence
of procedure calls C? — B* — C% ! —» B! — ... » B¢+l 5 C4=" Within this
sequence, for 0 < j < r — 1, B4/ — (%=1 corresponds to one of the three calls to
C4=7=1 done by B*~/; we refer to this part of the sequence as level j. Each level reduces
the dimension of the problem by one. Also, depending on which of the three calls the level
corresponds to, the call may or may not introduce a perturbation. If it does, we shall refer to
the perturbation as ¢;. Let 7 = {iy,...,is} €T = {0,...,r} consist of all j’s such that a
perturbation is introduced up to level j. We assume that 0 <i; <r and, for0 < j <s — 1,
0 <i; <ij;1 <r. The set J indicates which perturbations are “active” at the current stage
of the execution of C¢. The problem to be solved at level r can thus be expressed as

g =max{g(A) : A € Q'(€, ..., €,)},
where Q'(¢;,, ..., €;,) is a (d — r)-dimensional subset of R¢ defined by the intersection of
O(d) linear inequalities in {A;} and ¢;,, ..., €.

Now, suppose ¢~ invokes B4~ to resolve a hyperplane

H(eyyooon€6,)={A:h(X, €, ...,€,) =0}
For every real number a, let H'(€;,, ..., €;,,a) = {A : h(A, €, ..., €) = a}. Then, applying
Lemma 3.1, B¢ solves three problems:
8r1(0) =max{g(A) : A € Q(ey,...,€)NH (€, ..., €,,0)},
gri(ers1) =max{gA) 1A € Q (e, ..., 6)NH (€, ..., €, €11},
g (=€) =max{gA) : L € Q(ei,....€) NH (€, ..., €, —€11)},

where €,,1 > 0. By Lemma 3.1, if there exists an €,; > 0 such that g*_,(¢,+1) > g/, ,(0),
then g, (y) > g;,, forany y € (0, €,41]. Thus, when dealing symbolically with €, ;, we
can assume that it is arbitrarily smaller than any one of ¢; , ..., €. By the same reasoning,
when dealing with perturbations ¢; , . . ., €;,, we can always act under the assumption that

) O<eg K€, K K€, €¢, K1,

Since A is piecewise affine, all numbers manipulated at any level of the execution of C?
are linear forms in the A;’s and the ¢;’s. Suppose the execution of C¢ produces a sequence of
procedure calls that eventually triggers a comparison between two values. If the values involve
A (and, possibly, some ¢;’s), the comparison will be handled by an oracle call. Otherwise,

WEIGHTED MULTIDIMENSIONAL SEARCH AND ITS APPLICATIONS 93

we will be comparing linear forms in the €/s. For a correct implementation of C?, it suffices
to deal properly with the second kind of comparison. Suppose the two numbers have the
form u = ugy + ijl uje; and v = v + ijl vj€;;. We must compute sign(¢), where
t = to+Zj=1tje,'j andt; =u; —vj, j =1,...,s. Obviously,ift; =0for j =0,1,...,s,
sign(¢) = 0. Otherwise, there is a smallest subscript d, 0 < d < s, such that |¢;| > 0. By (9),
€iz1r - - - » €, Can be assumed to be arbitrarily smaller than ¢;,. Thus sign(¢) = sign(t;). We
should note that the use of perturbation techniques is common in mathematical programming
[13], [31], one example being the lexicographic rule applied in the simplex algorithm. These
methods have also found applications in computational geometry [18]. An earlier application
of perturbation methods to parametric computing was given by Megiddo [28].

Let c(d) be the running time of C¢. Since at any level, the number of perturbations
that C/ will have to deal with is d, and d is fixed, the running time of CJ will be the same,
asymptotically, whether it deals with a perturbed or an unperturbed problem. As we have seen,
c(d) is O(T - b(d)), where b(d) is the running time of B%, and b(d) is O(c(d — 1)) because
B¢ is implemented via three recursive calls to C¢~!. Since c¢(0) = O(T), we conclude that
c(d) is O(T4th.

3.2. Speeding up the search. The main bottleneck in algorithm C? is the need to apply
oracle B¢ to each affine function generated during the simulation of algorithm A. One way
to reduce this problem is to arrange things so that by using a small number of oracle calls,
we are able to resolve a large number of functions. Megiddo [26] proposed a way to do
this in the context of one-dimensional problems, an idea that has subsequently been used in
multidimensional optimization [14], [29]. Megiddo’s approach is to simulate the execution
of a parallel algorithm A for computing g (1) rather than a sequential one. Suppose A uses
M processors and carries out at most D parallel steps. In each step of the simulation, a batch
of at most M comparisons is carried out. In C%’s simulation of .4, each such comparison
has an associated affine function & which can be resolved using B%. Every parallel step
produces a set of O (M) hyperplanes. By using Theorem 2.1, we either resolve these O (M)
hyperplanes with O(log M) oracle calls or find a hyperplane H which intersects A. In the
latter case, we reduce the original problem to the (d — 1)-dimensional problem of computing
the maximum g7, on H N A, because this maximum will also be a global maximum. Since
B¢ is implemented by making at most three recursive calls to C?~!, the running time of C? is
O(c(d —1)- D -log M +T), where c(d) denotes the running time of C¢. Since c¢(0) = O(T),
the running time of C¢ will be O((D log M)4T).

Cole [16] showed that one can improve on Megiddo’s results for certain important special
cases. Like Megiddo’s method, Cole’s technique applies to one-dimensional parametric search
problems, but we shall show that it can be extended to higher dimensions. What follows shall
require some elementary knowledge of combinational circuits as described, say, in [12]. A
combinational circuit G is a directed acyclic graph whose nodes are combinational elements
(e.g., adders, min gates, etc.) and where an edge from element e; to element e, implies that
the output of e is an input to e,. Elements of zero fan-in are inputs; elements of zero fan-out
are outputs. An element is said to be active if all its inputs are known, but the associated
operation has not been carried out yet. An element is said to have been resolved when the
associated operation has been carried out.

Now, suppose that the algorithm A simulated by C¢ is implemented as a combinational
circuit G (which is given to us explicitly) of width M and depth D, whose elements are
multiplier gates where one of the two inputs is a constant, min gates, adders, and subtractors.
Megiddo’s approach would simulate G level by level, in D steps, where each step would carry
out the operations of the gates at a given level. The operations within a level would be carried
out using Theorem 2.1, with O (log M)) calls to the oracle B%. In Cole’s approach, each step

94 RICHA AGARWALA AND DAVID FERNANDEZ-BACA

only resolves a fixed fraction of of the active nodes, using only a constant number of oracle
calls. The choice of which nodes to resolve is guided by a weight function w : V(G) — R.
To describe the strategy precisely, we will need some notation. The active weight, W, of the
circuit is the sum of the weights of its active elements. Let « < 1/2 be a positive number.
An a-oracle with respect to w — or simply an «-oracle — is a procedure that is guaranteed
to resolve a set of active elements whose total weight is at least « W/2. The following is a
restatement and an extension of a result in [16].

LEMMA 3.2. Let G be a combinatorial circuit of width M and depth D. Let dyy, =
min{d;, dp}, where d; (dp) denotes the maximum fan-in (fan-out) of an element of G. Then,
there exists a weight function w such that G can be evaluated with O (D log dp;, + log M)
calls to an a-oracle with respect to w.

Proof. Let the weight function w be defined as follows. The weight of each output
element is 1, and the weight of each internal element is twice the sum of weights of its
immediate descendants. Then scale the weights to make the total weight of input elements
equal to M.

LEMMA 3.3. At the start of the (k + 1)st iteration, k > 0, the active weight is at most
(1 —a/2)% M.

Proof. By induction on k. The result holds for k = 0 since, at the start of the first iteration,
only the input elements are active and their total weight is M. To prove the inductive step, it
suffices to show that at each iteration the active weight is reduced by a factor of at least /2.

Suppose element e is resolved. Then e ceases to be active, but all its descendants may
become active. Hence, the resolution of e reduces the active weight by at least w(e)/2. Let
the active weight of the network be W. In one step, the a-oracle resolves a set of elements
whose total weight is at least o - W. Thus, in one step, the active weight is reduced from W to
1 —-a/2)W. a

LEMMA 3.4. The weight of any circuit element is at least 2dmin)P.

Proof. After the initial weight assignment, but prior to scaling, the total weight of the
elements at depth j is at most M (2dmin)®~/. Thus, the total weight of the input nodes is at
most M (2dyin)?. Hence the scaling factor is at most (2dmin)®. Since, prior to scaling, every
element has a weight of at least 1, after scaling the weight of any circuit element will be at
least (2dmin) 2. O

LEMMA 3.5. Let y = c(D10g 2dmin +log M), where c = |1 — 1/1og,(1 — t/2)]. Then,
there will be no active elements after k > y iterations.

Proof. First, observe that

y > — (Dlog2dmyin + log M) /log,(1 — a/2)
= — (log M - (2dmin)") /log,(1 — /2)
(10) =108,y /2 (M - (2dmin)”) ™.

By Lemma 3.3, the active weight at the start of the (k + 1)st iteration is at most (1 —a/2)* - M.
Using (10) and the fact that (1 — «/2) is less than 1, we have

d—a/* M<(Q—a/2) - M
< (- a/z)log(l_um(M~(2dman)D)“ M
= (2dmin)"".

As the weight of any element in the circuit is at least (2dmin) ~P and the active weight is strictly
less than this weight, there are no active elements after the kth iteration. |

WEIGHTED MULTIDIMENSIONAL SEARCH AND ITS APPLICATIONS 95

By Lemma 3.5, there will be no active elements after ¢(D log2dm;, + log M) steps,
where ¢ depends only on «. Thus, G can be evaluated with O (D log dpin + log M) calls to an
a-oracle. d

In order touse Lemma 3.2, we need to give an efficient implementation of the «-oracle. We
will actually implement a slight variant of the a-oracle, which will allow for early termination
of the simulation in case the optimum if found at some intermediate step. Let A be the set of
active elements of G and let A} C A be the set of adders, subtractors, and constant multipliers.
Each e € T can be resolved immediately by simply doing the corresponding operation on the
input linear forms. The remaining active elements are comparators, every one of which has an
associated affine function. Let the set of all such functions be H = {hy, ..., h,}, where A; is
the function associated with e; € A — A}, and assign a weight of w(e;) to k;. We either resolve
a fixed fraction of the functions with O (1) oracle calls using algorithm WEIGHTED-SEARCH of
82 or, if at any point during its execution, WEIGHTED-SEARCH encounters a hyperplane H (even
an auxiliary one) such that H N A # @, we return g},. In either case, the running time of the
a-oracle is O (c(d — 1)), since each oracle call requires O (1) calls to C4~!. Thus, Lemma 3.2
leads to an implementation of C¢ whose running time is O(c(d — 1)(D 4+ log M) + D - M).
Since ¢(0) = O(T), we can deduce that the running time of C? is O ((D? + log? M)T) (note
that the weight function required for the application of Lemma 3.2 can be computed within
this time bound).

3.3. Some remarks on constant factors. The use of schemes involving multidimen-
sional search seems to lead invariably to large constants that depend on d [17]. Using standard
techniques [10], [17], it can be shown that the algorithms described in this section have hidden
constants of the form 2°@") provided the search algorithm with singly exponentially small
efficiency is used. Some improvements are possible. For the case where all the weights are
powers of 1/4, as would occur if the circuit to be simulated is a comparator-based sorter, we can
obtain a search scheme with «(d) = 1/3 and B(d) = 2(20%!); the details are technical and
hence omitted. Using this improved scheme, the running time of the optimization algorithm
will still have a constant of the form 22" but the constant inside the O will be smaller.

4. Solving the Lagrangian dual when the number of constraints is fixed. The method
of Lagrangian relaxation, originally developed by Held and Karp [21], [22], is motivated by
the observation that many combinatorial problems that are known to be NP-hard can be viewed
as easy problems complicated by a relatively small set of side constraints. More formally, we
consider optimization problems of the following sort:

(11) Zp =min{c’x : Ax <0,x € X},

where cisan x 1 vector, A is ad X n matrix, x is an x 1 vector, and X is a polyhedral subset
of R¢. The set of inequalities Ax < O constitutes the complicating set of constraints in the
sense that, in its absence, the problem is polynomially solvable.

The Lagrangian relaxation of (11) is obtained by pricing out the constraints Ax < 0 into

the objective function by introducing a vector . = (Aj, ..., Agz) of Lagrange multipliers as
follows:
(12) Zp() = min{c’x + AT Ax : x € X).

It is well known that Zp(A) < Zp for all A > 0 [20]. Thus, if there is a polynomial-time
algorithm to compute Zp(A) for any fixed A > 0, problem (12) will provide an efficient
way to obtain a lower bound on the solution to (11). Such a bound can be of great utility in
branch-and-bound methods. The best lower bound on Zp attainable via (12) is given by

(13) Z}, =max{Zp(1) : A > 0O}

96 RICHA AGARWALA AND DAVID FERNANDEZ-BACA

Problem (13) is the Lagrangian dual of (11) with respect to the set of constraints Ax < 0, and
Z7, is the value of the Lagrangian dual.

Computational experiments have repeatedly shown that Z7j, provides excellent lower
bounds on the optimum solution of Zp [20], thus motivating the search for efficient algo-
rithms to solve the Lagrangian dual. One widely used method is subgradient optimization,
first proposed in [22]. Despite its success in practice, this technique is not known to be a
polynomial-time algorithm even if (12) can be solved in polynomial time.

It is well known that if Z(A) can be computed in polynomial time for each fixed A > 0,
then the Lagrangian dual can be solved in polynomial time [31]. Recently, Bertsimas and
Orlin [6] have presented faster polynomial-time algorithms for certain special cases. An issue
that has received some attention [4] is whether there exist strongly polynomial algorithms to
solve the Lagrangian dual. (An algorithm is said to be strongly polynomial if the number of
arithmetic operations it carries out is polynomially bounded independently of the magnitudes
of the input numbers.) The algorithms discussed above are not strongly polynomial even if
Z p (X)) can be computed in strongly polynomial time.

‘We shall be interested here only in the case where the number d of complicating constraints
is fixed. Since Zp is a concave function [31], if Zp(A) is computable in strongly polynomial
time by a piecewise affine algorithm, the results of Megiddo and Cohen described in §3 imply
the existence of strongly polynomial-time algorithms to solve the Lagrangian dual. We focus
our attention on two broad families of problems where weighted multidimensional search
allows us to obtain faster algorithms than the Megiddo—Cohen approach: matroidal knapsack

problems and a class of constrained optimum subgraph problems on graphs of bounded tree-
width.

4.1. Matroidal knapsack problems. What follows presupposes some familiarity with
matroid theory (see, e.g., [23]). Consider a matroid M = (E, G) where E, the ground set, is
a finite set and G is a collection of certain subsets of E called independent sets. We assume
that G is given in a concise form; i.e., there is an algorithm with running time ¢(n), polynomial
in n = |E|, for finding whether a given subset of E is independent. Suppose each element
e € E has avalue v(e). In ordinary matroid optimization problems, one must find an optimum
base (maximal independent set) of maximum total value. The standard algorithm for doing
so is the greedy method, which first sorts the elements according to value and then considers
the elements in nonincreasing order. An element e is added to the current set A if A U {e} is
independent. The greedy algorithm takes time O (nlogn + nc(n)).

In multiconstrained matroidal knapsack (MMK) problems, in addition to a value, each
e € E has a d-dimensional size vector s(e), and there is a d-dimensional capacity vector C.
The problem is to find a base G* such that

AR Z v(e) =Iggé[2v(e) : Zs(e) < C}.

eeG* ecG ecG

We refer the reader to Camerini et al. [11] for a discussion of the various applications of these
problems, as well as for references. MMK problems are in general NP-hard. We can bound
Z* by solving its Lagrangian dual. Let

Zp(3) = max [Z v(e) — AT (Z s(e) — C)} .

eeG eeG

The Lagrangian dual is

(14) Z* =min{Zp(A) : A > O}.

WEIGHTED MULTIDIMENSIONAL SEARCH AND ITS APPLICATIONS 97

In [11], Camerini et al. outline an algorithm for (14) whose running time is not guaranteed
to be polynomial. Noting that the crucial first stage of the greedy method (where all com-
parisons are done) can be carried out in parallel using an O (log n)-depth, O (n)-width sorting
circuit [2], we can use the Cohen—Megiddo technique to obtain an O ((n log n+n-c(n)) -log2d n)
algorithm using the approach outlined in §3, with the greedy algorithm playing the role of
algorithm 4. Using Lemma 3.2, and the weighted multidimensional search algorithm, we
obtain a O((nlogn + n - c(n)) - logd n) algorithm. We note that if the underlying matroidal
problem has a more specialized structure (e.g., if it is the spanning tree problem), even faster
algorithms are possible.

4.2. Constrained optimum subgraph problems. Optimum subgraph problems have
the following form. Given a graph G with real-valued vertex and edge weight functions
wy : V(G) - R and wg : E(G) — R, respectively, find an optimum (i.e., minimum- or
maximum-weight) subgraph H satisfying a property P. Well-known examples of such prob-
lems are minimum-weight dominating set, minimum-weight vertex cover, and the traveling
salesman problem. Let us write valg(H) to denote)", _,, y wv (V) + Y e E) W e(e), where
H is a subgraph of G. We can express all optimum subgraph problems as

(15) zg = opt{valg(H) : H a subgraph of G satisfying P},

where “opt” is either “min” or “max,” depending on the problem.

Even though many optimum subgraph problems are known to be NP-complete, several
researchers have developed methodologies for devising linear-time algorithms for graphs of
bounded tree-width [3], [5], [8], [9], [7], [35] (for a definition of tree-width, see [30]). While
their approaches differ from each other in several respects, in essence they all deal with sub-
graph problems that have certain “regularity” properties that make them amenable to dynamic
programming solutions. The class of regular problems is broad, and includes the subgraph
problems mentioned above, as well as many others, such as the maximum cut problem and
the Steiner tree problem (see, e.g., [3], [9], [7]).

Suppose that, in addition to a weight function, every v € V(G) (e € E(G)) has a d-

dimensional size vector sy (v) (sg(e)). The problem is to solve (15) subject to the knapsack-like
constraint

Y osv+ Y se(e) <t

veV(H) ecE(H)

where ¢ is a d-dimensional capacity vector. Even if the unconstrained problem is solvable in
polynomial time, the constrained one may be NP-hard. Such is the case, for example, for the
dominating set problem on trees (wWhich are graphs of tree-width 1) even if d = 1 [24].

For every v € V(G), let Wy (v, X)) = wy(v) + ATsy (v) and for every e € E(G), let
We(e,A) = wg(e) + ATsg(e). Let us write Valg(H, A) to denote ZveV(H) Wy (v,)) +
2 _ecry WE(e, A), where H is a subgraph of G. The Lagrangian relaxation of problem (15)
is

(16) Zg (M) = opt{Valg(H, A) : H a subgraph of G satisfying P}.

If property P is regular, there exists an O (n)-time algorithm to compute Zg (A) for any fixed
A. Also, as proved in [19], there exists an O (n)-size, O (logn)-depth combinational circuit
that computes Zg (1) for any fixed A. Thus, the results of Cohen and Megiddo summarized
in §3 imply that the Lagrangian dual can be solved in O(n log? n) time. Using weighted
multidimensional search and Lemma 3.2, we can improve this to O (n logd n).

98 RICHA AGARWALA AND DAVID FERNANDEZ-BACA

Acknowledgment. We thank the referee for several useful comments.

REFERENCES

[1] R. AGARWALA AND D. FERNANDEZ-BACA, Solving the Lagrangian dual when the number of constraints is fixed,
in Proc. 13th Conference on Software Technology and Theoretical Computer Science, Lecture Notes in
Comput. Sci., 652 (1992), pp. 164-175.
[2] M. Astal, J. KOMLOS, AND E. SZEMEREDI, A O (n log n) sorting network, in Proc. 15th Annual ACM Symposium
on Theory of Computing, Association for Computing Machinery, New York, 1983, pp. 1-9.
[3] S. ARNBORG, J. LAGERGREN, AND D. SEESE, Easy problems for tree-decomposable graphs, J. Algorithms,
12 (1991), pp. 308-340.
[4] Y. P. ANEJA AND S. N. KABADI, Polynomial algorithms for lagrangean relaxations in combinatorial problems,
manuscript.
[5] S. ARNBORG AND A. PROSKUROWSKI, Linear time algorithms for NP-hard problems restricted to partial k-trees,
Discrete Appl. Math., 23 (1989), pp. 11-24.
[6] D. BErTsIMAS AND J. B. ORLIN, A technique for speeding up the solution of the Lagrangean dual, Math.
Programming, 63 (1994), pp. 23-45.
[71 M. W.BERN, E. L. LAWLER, AND A. L. WONG, Linear time computation of optimal subgraphs of decomposable
graphs, J. Algorithms, 8 (1987), pp. 216-235.
[8] H. L. BODLAENDER, Dynamic programming on graphs with bounded tree-width, Tech. report RUU-CS-88-4,
University of Utrecht, Utrecht, The Netherlands, 1988.
[9] R.B.BORIE, R. G. PARKER, AND C. A. TOVEY, Automatic generation of linear-time algorithms from predicate-
calculus descriptions of problems on recursively-constructed graph families, Algorithmica, 7 (1992),
pp. 555-582.
[10] K. L. CLARKSON, Linear programming in O (n X 3"2) time, Inform. Process. Lett., 22 (1986), pp. 21-24.
[11] P. M. CaMERINI, F. MAFFIOLI, AND C. VERCELLIS, Multi-constrained matroidal knapsack problems, Math.
Programming, 45 (1989), pp. 211-231.
[12] T. H. CorMEN, C. E. LEISERSON, AND R. L. RIVEST, Introduction to Algorithms, MIT Press, Cambridge, MA,
1990.
[13] V. CHVATAL, Linear Programming, W. H. Freeman, San Francisco, 1983.
[14] E. CoHEN, Combinatorial algorithms for optimization problems, Tech report STAN-CS-91-1366, Department
of Computer Science, Stanford University, Stanford, CA, 1991.
[15] E. CoHEN AND N. MEGIDDO, Maximizing concave functions in fixed dimension, Complexity in Numerical
Optimization, P. M. Pardalos, ed., World Scientific, Singapore, 1993, pp. 74-87.
[16] R. CoOLE, Slowing down sorting networks to obtain faster sorting algorithms, J. Assoc. Comput. Mach.,
34 (1987), pp. 200-208.
[17] M.E. DYER, On a multidimensional search technique and its application to the Euclidean one-centre problem,
SIAM J. Comput., 15 (1986), pp. 725-738.
[18] H. EDELSBRUNNER, Algorithms in Combinatorial Geometry, Springer-Verlag, Heidelberg, 1987.
[19] D. FERNANDEZ-BACA AND G. SLUTZKI, Parametric problems on graphs of bounded tree-width, J. Algorithms,
16 (1994), pp. 108—430.
[20] M. L. FisHER, The Lagrangian relaxation method for solving integer programming problems, Management
Science, 27 (1981), pp. 1-18.
[21] M. HELD AND R. M. Karp, The traveling salesman problem and minimum spanning trees, Oper. Res.,
18 (1970), pp. 1138-1162.

[22] , The traveling salesman problem and minimum spanning trees: Part II, Math. Programming, 6 (1971),
pp. 6-25.

[23] E. LAWLER, Combinatorial Optimization: Networks and Matroids, Holt, Rinehart, and Winston, New York,
1976.

[24] J. McHUGH AND Y. PERL, Best location of service centers in a treelike network under budget constraints,
Discrete Math., 86 (1990), pp. 199-214.

[25] N. MEGIDDO, Combinatorial optimization with rational objective functions, Math. Oper. Res., 4 (1979),
pp. 414-424.

[26] , Applying parallel computation algorithms in the design of serial algorithms, J. Assoc. Comput. Mach.,
30 (1983), pp. 852-865.

[27] , Linear programming in linear time when the dimension is fixed, J. Assoc. Comput. Mach., 31 (1984),
pp. 114-127.

[28] , A note on sensitivity analysis in algebraic algorithms, Tech. report RJ 4958, IBM Almaden Research

Center, San Jose, CA, 1985.
[29] C.H. NORTON, S. A. PLOTKIN, AND E. TARDOS, Using separation algorithms in fixed dimension, J. Algorithms,
13 (1992), pp. 79-98.

WEIGHTED MULTIDIMENSIONAL SEARCH AND ITS APPLICATIONS 99

[30] N.ROBERTSON AND P. D. SEYMOUR, Graph minors 1L: Algorithmic aspects of tree-width, J. Algorithms, 7 (1986),
pp- 309-322.

[31] A. SCHRUVER, Theory of Linear and Integer Programming, Wiley, Chichester, UK, 1986.

[32] R. SEIDEL, Small-dimensional linear programming and convex hulls made easy, Discrete Comput. Geom.,
6 (1991), pp. 423-434.

[33] R. E. TARIAN, Data Structures and Network Algorithms, Society for Industrial and Applied Mathematics,
Philadelphia, 1983.

[34] S. ToLEDO, Maximizing non-linear concave functions in fixed dimension, Complexity in Numerical Optimiza-
tion, P. M. Pardalos, ed., World Scientifice, Singapore, 1993, pp. 429-446.

[35] T. V. WIMER, Linear algorithms on k-terminal graphs, Ph.D. thesis, Tech. report URI-030, Department of
Computer Science, Clemson University, Clemson, SC, 1987.

SIAM J. COMPUT. (© 1996 Society for Industrial and Applied Mathematics
Vol. 25, No. 1, pp. 100-116, February 1996 004

RAY SHOOTING AMIDST CONVEX POLYHEDRA AND POLYHEDRAL
TERRAINS IN THREE DIMENSIONS*

PANKAJ K. AGARWAL' AND MICHA SHARIR?

Abstract. We consider the problem of ray shooting in a three-dimensional scene consisting of m (possibly
intersecting) convex polyhedra or polyhedral terrains with a total of n faces, i.e., we want to preprocess them into a
data structure, so that the first intersection point of a query ray and the given polyhedra can be determined quickly. We
present a technique that requires O ((mn)>*¢) preprocessing time and storage, and can answer ray-shooting queries in
0(log2 n) time. This is a significant improvement over previously known techniques (which require O (n**¢) space
and preprocessing) if m is much smaller than n, which is often the case in practice. Next, we present a variant of
the technique that requires O (n'1*) space and preprocessing, and answers queries in time O (m'/*n'/2+¢), again a
significant improvement over previous techniques when m < n.

Key words. arrangements, ray shooting, range searching, data structures, parametric search, random sampling

AMS subject classifications. 52B11, 68P05, 68Q20, 68Q25

1. Introduction. The ray-shooting problem can be defined as follows:
Given a collection T" of n objects in R?, preprocess T into a data structure
so that one can quickly determine the first object of T intersected by a query
ray.
The ray-shooting problem has received much attention in the last few years because of
its applications in computer graphics and other geometric problems [1], [3], [4], [5], [6],
[9], [10], [14], [17], [21], [28]. Most of the work to date studies the planar case, where
I is a collection of line segments in R?. Chazelle and Guibas proposed an optimal algo-
rithm for the special case where I' is the boundary of a simple polygon [17]. Their algo-
rithm answers a ray-shooting query in O (logn) time using O (n) space; simpler algorithms,
with the same asymptotic performance bounds, were recently developed in [14] and [22].
If ' is a collection of arbitrary segments in the plane, the best-known algorithm answers
a ray-shooting query in time 0(% 10g°® n) using O(s'**) space and preprocessing' [1],
[6], [9], where s is a parameter that varies between n and n?. Although no lower bound
is known for this case, it is conjectured that this bound is close to optimal. In spite of
some recent developments, the three-dimensional ray-shooting problem seems much harder
and it is still far from being fully solved. The general three-dimensional ray-shooting prob-
lem is to preprocess a collection of n triangles, so that the first triangle hit by a query ray
can be computed efficiently. If the triangles are the faces of a convex polyhedron, then
an optimal algorithm, with O(logn) query time and linear space, can be obtained using
the hierarchical decomposition scheme of Dobkin and Kirkpatrick [20]. If the triangles
form a polyhedral terrain (a piecewise-linear surface intersecting every vertical line in ex-

*Received by the editors February 16, 1993; accepted for publication (in revised form) July 22, 1994.
A preliminary version of this paper appeared in Proc. 4th ACM-SIAM Symp. on Discrete Algorithms, 1993,
pp. 260-270.

TDepartment of Computer Science, P.O. Box 90129, Duke University, Durham, NC 27708-0129. This work was
supported by National Science Foundation grant CCR-91-06514.

¥School of Mathematics, Tel Aviv University, Tel Aviv 69978, Israel, and Courant Institute of Mathematical
Sciences, New York University, New York, NY 10012. This work was supported by National Science Foundation
grant CCR-91-22103 and by grants from the U.S.—Israeli Binational Science Foundation, the G.ILF. (the German—
Israeli Foundation for Scientific Research and Development), and the Fund for Basic Research administered by the
Israeli Academy of Sciences.

I'Throughout this paper, bounds of this kind mean that, given any arbitrarily small positive constant &, the
algorithm can be fine-tuned so that its performance satisfies the bound; the multiplicative constants in such bounds
usually depend on ¢ and tend to co as € | 0.

100

RAY SHOOTING AMIDST POLYTOPES 101

actly one point), then the technique of Chazelle et al. [15] yields an algorithm that requires
O(n**®) space and answers ray-shooting queries in O(logn) time. Nontrivial solutions to
the general problem were obtained only recently; see [4], [6], and [10] for some of these
results. The best-known algorithm for ray shooting among triangles in three dimensions
is due to Agarwal and Matousek [5]; it answers a ray-shooting query in time 0(’;1%) af-
ter O(s'™®) space and preprocessing. The parameter s can range between n and n*. If
s assumes its maximum value, queries can be answered in O(logn) time; see [5], [6],
and [28] for more details. We remark that no nontrivial lower bounds are known for the
three-dimensional problem as well, although such bounds are known for the related simplex
range-searching problem [12], which is used as a subprocedure in the solutions just men-
tioned.

The performance of these algorithms is rather inefficient when n is large, so a natural
objective is to find special cases where this performance can be improved. The case that
we consider here is where the three-dimensional scene is formed by m convex polyhedra or
polyhedral terrains with a total of n faces (general nonconvex polyhedra can be decomposed
into convex pieces and be replaced by these pieces). In many typical instances of the problem
m is much smaller than n; for example, curved objects, like balls, cylinders, cones, etc., are
usually approximated by a polyhedron with a large number of faces. Our goal is to develop
an algorithm whose performance depends on both m and n, and is much better than that of the
general technique when m < n.

In this paper we achieve this goal, presenting a technique that uses O((mn)**®) storage
and answers ray-shooting queries in 0(log2 n) time. Our algorithm is the first algorithm for
ray shooting among convex polyhedra (or polyhedral terrains) whose performance depends
on both m and n and matches the performance of [S] when m ~ n. We also present another
algorithm that answers a query in time O (m'/*n'/>*¢) using O (n'**) space and preprocessing,
so it matches the bound of [S5] when m & n, but is considerably faster when m < n.

In [7] we have presented an algorithm to preprocess a collection of m convex polygons
in the plane, with a total of n vertices, into a data structure of size O(mnlogm), so that a
ray-shooting query can be answered in O (log? n log? m) time. If the polygons are disjoint, or
the starting point of the ray always lies in the common exterior of the polygons, then the space
and preprocessing can be improved to O((m? + n) logm). The algorithm works even for a
collection of disjoint simple polygons.

A problem related to ray shooting among a collection of convex polyhedra in three di-
mensions is the so-called stabbing problem, where one wants to determine whether a query
line intersects all polyhedra. This problem seems to be easier than the ray-shooting problem:
Pellegrini and Shor [29] have described a data structure of size O (n?*®) that can answer a
stabbing query in O (logn) time.

We will first describe, in §2, the overall structure of the algorithm. We next present, in §3,
an algorithm for detecting an intersection between a query segment and a collection of convex
polyhedra or polyhedral terrains, which is the main subroutine used in our algorithm. For the
sake of convenience, we describe the algorithm only for a collection of convex polyhedra, but
the same technique works for polyhedral terrains as well. Next, in §4, we develop a variant of
the technique for answering a query efficiently if only close-to-linear space is allowed. In §5,
we give an application of our results to translational motion planning in R3: given m convex
polyhedral obstacles, with a total of n faces, and a polyhedral object B, with k vertices, free
to translate amidst them, we show how to preprocess them in time and space O ((kmn)**e),
so that, given any free placement z of B and direction u, we can compute in time O (log® kn)
the first obstacle to be hit as B is translated from z in direction u. Again, this is a substantial
improvement over previous results when m < kn. We conclude in §6 with a discussion of
our results and a few open problems.

102 PANKAJ K. AGARWAL AND MICHA SHARIR

2. The overall algorithm. Let P = {P,, ..., P} be a set of m convex polyhedra, let
n; be the number of edges in P;, and putn = Y-, n; (we prefer to have n denote the total
number of edges, rather than the number of faces, of the P;’s; by Euler’s relation, these two
quantities differ only by a small multiplicative factor). Without loss of generality assume
that each face of P; is triangulated; otherwise we can triangulate all faces of P; by adding
O (n;) additional edges. For the sake of convenience, we split the boundary of each P; into
its top portion (visible from z = +00) and its bottom portion (visible from z = —o00). We
construct separate data structures for the top portions and for the bottom portions, and answer
a ray-shooting query by searching in both structures and by selecting the output point nearest
to the ray origin. In what follows we describe only the data structure for the top portions of
the given polyhedra; with a slight abuse of notation, we will refer to these top portions also as
“polyhedra.” We note that this step is not required if the P;’s are polyhedral terrains.

Our general ray-shooting scheme is based on the parametric searching technique of Agar-
wal and Matousek [4]. In this technique we build a data structure for solving segment-
intersection detection queries, each asking whether a query segment e intersects any of the
(top portions of the) given polyhedra. Given a query ray p, we replace it by the segment aw,
where a is the origin of p and w is the first point of intersection between p and the given
polyhedra. We query the data structure with the segment aw. Of course, we do not know w
(our goal is to find it!), so we feed our data structure with a generic, unspecified input w. As
we will see below, each step of the algorithm asks a question of the following form: given a
query point p and a hyperplane h, determine whether p lies above, below, or on A; here p
is either the origin a of p, the Pliicker point of the line containing p, or the generic point w.
In the first two cases, we can answer the question in O (1) time. To determine the position
of w with respect to a plane 4, it is sufficient to determine whether a and w lie on the same
side of h. We compute the intersection point o of p and k. If p does not intersect &, we
can immediately conclude that a and w lie on the same side of . Otherwise, we invoke the
segment-intersection detection procedure with the segment ao. If ao intersects any of the
polyhedra in P, then a and w lie on the same side of %; otherwise they lie on the opposite
sides of A. This also restricts the allowed range of w. When the algorithm terminates, we
obtain the exact location of w, thereby answering the original ray-shooting query. It is shown
in [4] that the performance of this parametric searching technique is only slightly worse (by
a logarithmic factor) than the cost of a single (explicit) segment-intersection detection query;
see [4] for more details.

3. Segment-intersection detection. We now present an algorithm for the segment-inter-
section detection problem, i.e., preprocess P into a data structure, so that one can quickly
determine whether a query segment intersects any of the polyhedra in P. In this section we
aim to achieve fast (polylogarithmic) query time, at the expense of storage and preprocessing.
The opposite case, that of using only close-to-linear storage at the expense of query time, will
be studied in §4. We will construct two data structures. The first one, denoted as W, (P),
determines whether e intersects a face of some P; whose xy-projection does not contain any
of the endpoints of the xy-projection of e. The second data structure, denoted as W,(P),
determines whether e intersects a face of some P; whose xy-projection contains one of the
endpoints of the xy-projection of e. Throughout this section we will use y* to denote the
xy-projection of an object y in R?, and A* to denote {y* | y € A} for a set A of such objects.

3.1. First data structure. In this subsection we describe a data structure W, (P) that
determines whether the query segment intersects a face of some P; whose projection does not
contain any endpoint of e*. Let E; denote the set of edges of P;. We project them onto the
xy-plane, and let E} denote the set of resulting projected segments. Let E* = [J| E}. We

RAY SHOOTING AMIDST POLYTOPES 103

G G

FIG. 1. A canonical subset G of the output for a query segment g; (i) g intersects all segments of G from below;
(ii) g intersects all segments of G from above.

preprocess E* into a data structure of size O (n>*¢), using a variant of the technique described
in Agarwal and Sharir [6], so that the set of all segments of E* intersected by a query segment
in the xy-plane can be represented as O (logn) pairwise disjoint precomputed subsets. The
algorithm of [6] constructs a multilevel partition tree on E*. Roughly speaking, it stores a
family of subsets of E*, called canonical subsets, into a tree-like data structure. There are at
most O ((n/27)%*%) canonical subsets of size between 2/~! and 2/. For a given query segment
g, the canonical subsets that form the query output can be computed in O (logn) time, and
there is a constant number of output subsets of size between 2J=1 and 2/ for each j=0,1,....
Furthermore, for each canonical subset G of the query output, either the left endpoints of all
segments in G lie above the line containing the query segment g, or all of them lie below that
line. In the first case g, considered as a rightward-directed segment, intersects all of these
segments from below, and in the second case it intersects all of them from above. (In the
xy-plane, a rightward-directed segment g is said to intersect another segment e from “below”
if they intersect and the left endpoint of e lies above the line containing g; intersection from
“above” is defined symmetrically; see Fig. 1.) See [4] and [6] for details. In what follows we
only consider the case where g intersects all segments of G from below.

Let I'* be a canonical subset of E*, and let I be the set of corresponding pohyhedra
edges, and put v = |[™*|. Let I'; = I'* N E}, and let i < v denote the number of nonempty
I'}’s. Sets = [v/u]. We orient the edges of I'* from left to right. We preprocess I" so
that, for a (directed) query line £ in R? whose xy-projection intersects all segments of I'*, one
can quickly determine whether £ passes above or below the edges in I'. The way in which
we have oriented the xy-projections of the edges in I" and of £ ensures that the above/below
relationships between £ and these edges are determined solely by the sign of the relative
orientations between £ and the lines containing these edges. This will enable us to determine
whether a query segment intersects any of the given polyhedra, as will be described in more
detail below. The relative orientation of two oriented lines ¢, A in R? is defined to be the
orientation of any simplex abcd, where a, b € £, ¢, d € A, so that £ is oriented from a to b
and A is oriented from c to d. Equivalently, it is also the sign of the inner product between the
two vectors in projective 5-space representing the Pliicker coordinates of the two lines. (For
the sake of convenience, we will not distinguish between the projective 5-space and the affine
5-space R3.) To be more precise, £ can be mapped to a point 7 (£), called a Pliicker point,
and A can be mapped to a hyperplane @ (1), called a Pliicker hyperplane, in R, so that £ has
positive orientation with respect to A if and only if 7 (£) lies above the hyperplane @w (A). The
Pliicker points of all lines in R? lie on a quadric surface, known as the Pliicker surface, in R>.
More details concerning Pliicker’s coordinates and relative orientations can be found in [15]
and [31].

Recall that we are only preprocessing the upper portions of the polyhedra, which implies
that the (relative) interiors of edges of I'} are pairwise disjoint. We define a linear ordering for

104 PANKAJ K. AGARWAL AND MICHA SHARIR

a set G of ¢ nonintersecting segments in the xy-plane: let e, ¢’ be two segments in G; e < €’
if the x-projections of e and e’ overlap and ¢’ lies above e along a vertical line (parallel to the
y-axis), if the x-projections of e and ¢’ are disjoint and e lies to the left of ¢’. This is indeed a
linear ordering, and it can be computed in O (¢ log ¢) time, as shown by Guibas, Overmars, and
Sharir [21]. They have also shown that, for any e, ¢’ € G, if e < ¢’ and a rightward-directed
line intersects both of them from below, then it intersects e before €.

We sort each I' according to this ordering and, abusing the notation slightly, we denote
the resulting sequence also by I'f. Suppose I'} = (e, ef, ..., e;). We mark the first, the
last, and every sthedge of I'}, i.e., we mark e, €], €5, ..., ;. For each marked edge ¢j;, let
I(esj) = {esj+1, €sj+2, - - . » eu}, where u = min{z;, (s 4 1) j}, be the set of edges of P; whose
xy-projections form the block of edges of I'/ following €f; and ending at the next marked
edge. Let G be the set of edges of polyhedra in P corresponding to the marked segments of
I'*, each oriented so that its xy-projection is rightward directed; note that

IG| < Z(H-’ +1) < Z(ts—'+2) < %(Zti)+2u53u.

1 1
We will construct on G a data structure based on a partitioning scheme due to Chazelle, Sharir,
and Welzl [18]. For a segment y € R3, this structure decomposes G further into canonical
subsets, so that, for each canonical subset of G, either all the corresponding original polyhedra
edges lie above y or all of them lie below y. Next, for each canonical subset Q in the output,
we determine whether there is an edge in some I"(¢), for e € Q, that passes on the other side
of y, thereby implying that y intersects the polyhedron P; containing e. In more detail, this
is done as follows.

Map the (directed) line containing each segment of G to its Pliicker hyperplane in R?;
let H denote the set of resulting hyperplanes, and put ¢t = |H| < 3u. Set r to be some
sufficiently large constant. We compute a (1/r)-net R of H of size O(rlogr). (We call a
subset R € H a (1/r)-net if every (relatively open) simplex intersecting more than |H|/r
hyperplanes of H intersects a hyperplane of R; it is well known that there exists such an
R with the prescribed size.) R can be computed in O(¢) time if r is constant [11], [23].
We triangulate the arrangement A(R). Let E denote the simplices of the triangulation that
intersect the Pliicker surface. By a result of Aronov, Pellegrini, and Sharir [8], the number
of simplices in & is O(r*log’ r). By construction, each simplex in E intersects at most z/r
hyperplanes of H.

For each A € E, let Hx € H denote the set of hyperplanes that intersect the interior of
A. We also associate with A two other subsets Ua and L of H; U, is the set of hyperplanes
that lie fully above A, and L, is the set of hyperplanes that lie fully below A.

We construct two auxiliary data structures on U, and L. Let

Up = U{F(e) | eis an edge corresponding to a hyperplane in U, },
La= U{F(e) | e is an edge corresponding to a hyperplane in LA }.

Note that |U,|, [La| < st. We map the lines containing the edges of U, to their Pliicker
hyperplanes in R and preprocess their lower envelope for point-location queries, using an
algorithm of Clarkson [19]. That is, we preprocess the hyperplanes into a data structure, so
that we can quickly determine whether a query point lies below all hyperplanes. Similarly,
we map the edges of L, to their Pliicker hyperplanes and preprocess their upper envelope for
similar point location queries. Each point location structure requires O ((st)>*?) space and
preprocessing time, for any § > 0, and answers a query in O (log st) time; see [19] for details.

Our data structure needs one more ingredient: for each simplex A € E and for each
polyhedron P; we consider the first (marked) edge, if any, of I'; that contributes a hyperplane

RAY SHOOTING AMIDST POLYTOPES 105

to Up U L. For each such edge e, let fi, f> be the two faces of P; incident to e (if e is
the first or the last edge of I';, it is possible that only one of these faces is defined). Let Fu
be the collection of at most 2¢ resulting faces. We preprocess Fa for segment-intersection
detection queries using the techniques described in [5] and [6]. It requires O(t**%) space
and preprocessing time, for any § > 0, and can determine in O (logt?) time whether a query
segment intersects any triangle in Fy.

Finally, we recursively preprocess Hp, for each simplex A € E. The recursion stops
when | H, | falls below some specified constant ny. The resulting structure is atree T = T'(I")
of depth O(log n), each of whose nodes has degree at most O (r* log5 r). We repeat the same
procedure for all canonical subsets I" of E. This completes the description of the data structure.

Let us analyze the space and preprocessing time of the above structure. First let us
analyze the space required by the tree structure 7' (I") constructed on a canonical subset I".
Let S(u) denote the space required by the subtree of T constructed on a set H, consisting of
u hyperplanes. Since the degree of each node in T is O (r* log’ r), and the auxiliary structure
stored at each child requires O (s+3u?+? 4 u**%) space, we get the following recurrence:

o) ifu < no,
S@) =\ cirtlog’r - S (_u_) + ca (820 1wty ifu > n,
r

where ¢y, ¢z, and ng are some appropriate absolute constants. The solution of this recurrence
is

1) S(u) < As?Ho A

for another 8’ > O that tends to O with § and for some sufficiently large constant A = A(8’).
Indeed, arguing inductively, (1) obviously holds for u < ng, and for u > ny we have

S(u) < C1r4 lOgSr .S (E) + c2(s2+8u2+3 + u4+5)
r
/ 4+4'
< cirtlog’ ras*t? (5) ¥ ey(s2Hu2TE 4yt
r

5 58 58
_ A ¢y log’r +) (su) N u
ré A u? sy

/ '/
< AP At

provided that 8’ > § and r, A are sufficiently large. Hence, the total space required by T is
S@i) = 0(s2+5/t4+5/) _ O(I'V/MZH/MH‘S/) — 0(v2"’5’/,(,2"’5/),

because i < v. Wecalibrate § so that &' is equal to the original . Since there are O ((n /20)2+e)
canonical subsets of E* of size between 2/~! and 2/, the overall space required by the data
structure is

[logn]

20 ((57)2+) 0@ O = O((mn)?*),
Jj=1

for another ¢’ > O that tends to O with &. Hence the total storage required by the data structure is
O((mn)**) for any ¢ > 0. Following a similar analysis, one can show that the preprocessing
time is also O ((mn)?*¢).

106 PANKAJ K. AGARWAL AND MICHA SHARIR

3.2. Second data structure. Next, we describe the second data structure W, (P), which,
given a query segment y, determines whether there is a face f of some polyhedron P; such
that y intersects f and that f* contains one of the endpoints of y*. The data structure is again
based on the partitioning scheme due to Chazelle et al. [18]. As in the preceding subsection,
we consider here only the top portions of the given polyhedra. Choosing a sufficiently large
constant parameter r, we partition the plane, in O(n) time, into a collection A of O(r?)
triangles, so that each triangle intersects at most n/r edges of E* [23]. With each triangle
A € A, weassociate asubset EX C E*, and asubset F5 of faces of polyhedrain P. Anedge ¢*
belongs to E7, if the boundary of one of the triangles incident to e* (i.e., the projected polyhedra
faces) intersects A. A face f belongsto Fa if A C f*. Itis easily seenthat |[E}| < 5n/r and
| Fa| < m. We preprocess the triangles of F for segment-intersection detection queries, as in
the first data structure [5], [6]. This structure requires O (m**%) space and preprocessing time,
for any § > 0, and answers a query in O(logm) = O(logn) time. We recursively preprocess
each E} and its associated collection of incident faces, and thereby obtain the entire structure.
Note that each recursive processing of a set E involves ny = O(n/r) edges, at most 2n
incident faces, and ma < na polyhedra to which these edges and faces belong. W, (P) is thus
a tree of height O (logn).

If we denote by S'(m, n) the maximum space required by W, (P) for a collection of m
polyhedra with n edges, then S'(m, n) satisfies the following recurrence:

o) if n < ny,
, cir?

§(m.n) = Z S'(ma,na) +com** if n > no,
j=1

where ma; < np; < Sr—”, for each j, and ny, c1, ¢z are appropriate constants. The solution of

this recurrence is
) S'(m, n) < B(mn)***,

for some constant B and another & > O that tends to 0 with §. Indeed,
Clr2
S'(m,n) <) S'(ma,, na) + com*?
j=1
5 2+¢
< c1r2B (—r—nﬁ) + czm4+8
r
52+£c1 ¢ mzﬁ—e m2

< B(mn 24 f & *~1 e . (_)
< B(mn) (re + B nf n

< B(mn)***,

provided that ¢ > § and r, B are chosen sufficiently large. The last inequality follows from the
fact that m < n. A similar analysis yields the same bound on the preprocessing time needed
to construct the structure.

3.3. Answering a query. We now describe how to answer a query. Let y be a query
segment in R3, oriented so that its xy-projection is rightward directed, and let £ be the directed
line containing . We want to determine whether y intersects any P;.

DEFINITION 3.1. A segment y lies above another segment e in R3 if their xy-projections
intersect and the vertical line through this intersection meets y at a point higher than the point
at which it meets e.

RAY SHOOTING AMIDST POLYTOPES 107

F1G. 2. lllustration of Lemma 3.2.

The query answering procedure is based on the following simple lemma.

LEMMA 3.2. A segment y = pq in R? intersects a polyhedron P; € P if and only if at
least one of the following two conditions holds:

(i) A face of P;, whose xy-projection contains an endpoint of y*, intersects y .

(ii) There is a face f of P; such that y lies below (resp., above) one of the edges e of
f and lies above (resp., below) another edge e, of f. Moreover, assume that y* intersects e}
after e7; then, for any canonical subset I'* of E* that contains e, either e} is the first edge in
[}, or there is a marked edge e* in '} such that e; € T'(e), and y lies below (resp., above) e
and above (resp., below) e;.

Proof. The “if” part is obvious. For the “only if” part, assume that y intersects P; but
does not intersect the faces of P; whose projections contain the endpoints of y*. Let z be the
leftmost intersection point of P; and y, and let f be the face of P; containing z. Since the
endpoints of y* do not lie in f*, y* completely crosses f* (see Fig. 2). Let e} and e} be the
edges of f* intersected by y* in this order. Since z is the only intersection point of y and f,
either e; lies below y and e; lies above y, or vice-versa.

Assume that e, lies above y. Let I'* be a canonical subset of E* containing e3. If €] is
not the first edge in '}, then let e* be the last marked edge in I'} immediately preceding e},
i.e., e2 € I'(e). Recall that the first edge of I'} is marked, so e* is always properly defined.
Since z is the leftmost intersection point of y and P;, and e; lies above v, it is easily seen that
e lies below y. This completes the proof of the lemma. 0

In view of the above lemma we can answer a query as follows. First of all, we determine,
using W, (P), whether there is a face f of some polyhedron P; such that y intersects f and
an endpoint of y* lies in f*. If we find such a face, we stop right away. In more detail, we
query the structure with the left endpoint p* of y*. We follow a path in W, (P) starting from
the root. At each node we do the following. If v is a leaf, we determine explicitly whether y
intersects any of the faces associated with v. Otherwise, let A be the set of triangles associated
with v. We determine (say, by brute force) the triangle A € A that contains p*. We query the
auxiliary structure to determine whether any face of F, intersects y. If the answer is yes, we
stop. Otherwise we descend to the child of v corresponding to the triangle A and recursively
search within E}. We apply the same procedure to the right endpoint of y. The correctness
of this procedure is easy to verify.

Next, we query W, (P) with y. First, we find all segments of E* intersected by y*. Let
I'* be a canonical subset in the query output. Without loss of generality assume that the left

108 PANKAJ K. AGARWAL AND MICHA SHARIR

endpoints of all segments in I'* lie above y*, and all their right endpoints lie below y*, so that
y* intersects all segments of I'* from below. In this case y lies above (resp., below) a segment
e of I (with both y* and e* being rightward directed) if and only if the relative orientation
of y with respect to e is positive (resp., negative); see [15]. By Lemma 3.2, it suffices to
determine whether there is a I'; such that either y intersects a face incident to the first marked
edge of I';, or I'; contains a marked edge e that lies below (resp., above) y but an edge of
I"(e) lies above (resp., below) y. We map the (directed) line £ containing y to its Pliicker
point 77 (£) in R3. We determine the simplex A € E that contains 7 (£) (since 7 (£) lies on the
Pliicker surface, E contains such a simplex). First, we determine in O(logr) time whether
y intersects any triangle of Fa. If the answer is “yes,” we stop right away. Otherwise, we
continue as follows.

By construction, m(£) lies above all hyperplanes of L, and below all hyperplanes of
Ua, and therefore y lies above (resp., below) all edges e corresponding to the hyperplanes
of L (resp., Ua). We now have to determine whether y lies below (resp., above) any edge
in L (resp., U,). To do so, we locate 7 (£) in the upper envelope of L, (resp., in the
lower envelope of U). If m(£) does not lie above the upper envelope of L, then 7 (£) lies
below some hyperplane of LA, which implies that y passes below the corresponding edge,
and therefore intersects one of the polyhedra. We handle U , symmetrically. This completes
the description of the query answering procedure. The correctness of the procedure is easy to
verify, in view of Lemma 3.2.

Let Q(u) be the maximum query time spent at a subtree of 7' consisting of u hyperplanes.
Since we spend O(logn) time in querying the auxiliary structure stored at u, we get the
following recurrence:

3 Q) < Qu/r) + O(log u).

The solution of (3) is easily seen to be O(log2 u) if r > 1 is constant, so the total time
spent in querying the first data structure, for a fixed canonical set I'* of size v, is O (log? v).
The solution of (3) can be improved to O(logv) by choosing r = n®. However, if r = V¢,
we cannot use a brute-force method to find the simplex of the partitioning E in Pliicker 5-
space, which contains the query point. Instead, we preprocess the hyperplanes containing the
facets of simplices in & for answering point location queries using the algorithm of Chazelle
and Friedman [16]. Their algorithm preprocesses a collection of n hyperplanes in R? into
a data structure of size O(n?*?%), so that a point location query can be answered in time
O(logn). Thus, the simplex containing a query point can be computed in time O (log v) using
O((r*log’ r)’>*%) = 0(r'%*%) = 0 (v*(19+9) space, for an arbitrarily small constant § > 0.
It is easily seen that this additional structure does not affect the asymptotic bound on the total
storage required by 7. One can similarly modify the algorithm of Agarwal and Sharir [6],
so that the overall query time of the first data structure, summed over all canonical subsets of
E*, also reduces to O(logn); see [10] and [27] for details. A similar analysis shows that the
time spent in querying W, (P) is 0(log2 n) if r is chosen to be a constant, and that it can be
improved to O(logn) by choosing r = n®, modifying the structure as above.

Hence, we obtain the following theorem.

THEOREM 3.3. Let P = {P,, ..., P,} be a collection of m (possibly intersecting) convex
polyhedra in R® with a total of n edges. Given any ¢ > 0, we can preprocess P in time
O((mn)>*%) into a data structure of size O((mn)**¢), so that an intersection between P and
a query segment in R3 can be detected in O (logn) time.

Remark 3.4. Notice that we never used the fact that the P;’s are convex polyhedra.
The only property we needed was that the xy-projections of edges in each E; were pairwise
disjoint (and that the projected faces enclosed by the edges of E; formed a simply connected

RAY SHOOTING AMIDST POLYTOPES 109

planar region). Hence, the above algorithm also works for polyhedral terrains. We need
the nonintersecting property of E} to order the segments of a canonical subset I" using the
algorithm of Guibas, Overmars, and Sharir [21]. This is the only step that does not extend
to arbitrary nonconvex polyhedra. We leave it to the reader to verify that our technique does
indeed carry over to the case of polyhedral terrains.

We can now plug the above procedure into the general parametric searching procedure
of Agarwal and MatouSek [4]. We have explained in §2 how this is done. To complete the
description, one has to check that the operations that are performed by the above segment-
intersection detection procedure conform to the set-up of §2. In particular, we have to ensure
that we can simulate the segment-intersection detection algorithm on the segment oo, where
o is the starting point of the ray and o is the (unknown) first intersection point of the query ray
and P, as described in §2. First of all, observe that the coordinates of the Pliicker point of the
line £ containing a query segment depend only on £ and not on the endpoints of y, so the data
structures constructed on Pliicker hyperplanes or Pliicker points can be searched explicitly,
without having to generate any generic comparison, so no oracle calls are required at all. All
the other data structures, constructed in two or three dimensions, are searched either with the
endpoints of the query segment, or with their xy-projections, or with the point dual to the line
supporting y*. For example, the first level of W, (P) is searched with an endpoint of y*, and
the first level of the two-dimensional segment-intersection structure is searched with the line
supporting y* (actually with the point dual to that line). We leave it to the reader to verify,
based on the techniques described in [6] and [5], that each comparison generated by both data
structures arises in one of the following tests.

(i) Does a tetrahedron contain an endpoint of y?

(i1) Does a triangle in the xy-plane contain an endpoint of y*?

(iii) Does the point dual to the line supporting y* lie in a given triangle in the xy-plane?
Since all of the above questions can be reduced to determining whether a given half-space
contains o, we can indeed use the general parametric search technique, as described in §2.
We thus obtain the main result of the paper.

THEOREM 3.5. Let P = { Py, ..., Py} be a collection of m (possibly intersecting) convex
polyhedra or polyhedral terrains in R with a total of n edges. Given any ¢ > 0, we can
preprocess P in time O ((mn)>*) into a data structure of size O ((mn)**®), so that the first
intersection point of P and a query ray can be computed in O (log® n) time.

4. Data structures with almost linear size. In this section we consider the problem of
preprocessing P into a data structure of size O(n!*¢), so that a ray-shooting query can be
answered in time O(m!/4n!/2*¢). We will use a similar approach to that in the preceding
sections, except that we will replace each of the data structures used above by an alternative
structure that uses only close-to-linear storage. As above, the structures that we will obtain
are multilevel partition trees, composed of rather standard components, but, for the sake
of completeness, we will provide a brief description of them. The overall structure of the
algorithm is the same as in §3, that is, the algorithm uses parametric searching to replace
ray-shooting queries by segment-intersection detection queries. These queries are handled,
on a conceptual level, exactly as above. For the new data structures, we need the following
notation.

DEFINITION 4.1. Let S be a set of n points in R? and let r < n be some parameter. A
simplicial r-partition for S is a collection T1 = {(S1, A1), ..., (S, Ay)}, where Sy, ..., S
form a partition of S, t <2r,|S;| < [n/r], and A; is a simplex containing S;. The maximum
number of simplices intersected by a hyperplane is called the crossing number of I1.

Matousek has shown that there exists a simplicial r-partition with crossing number
O(r'~1/4) [25], [26]). Agarwal and Matousek [5] proved that if S lies on an algebraic surface

110 PANKAJ K. AGARWAL AND MICHA SHARIR

of some fixed degree, then the crossing number can be improved to O (r'~1/@=1 og#/@=1 1),
Moreover, if r = O (1), such a simplicial partition can be computed in linear time.

4.1. First data structure. We begin by describing the modified version of the first data
structure, denoted as W, (P). Using the technique of Agarwal and Sharir [6], one can pre-
process the set E of polyhedron edges into a data structure of size O(n'**), consisting of
O((n/27)1*+#) canonical subsets of size between 2/~! and 2/, foreach j =0, 1, .. ., so that all
segments of E* intersected by a query segment in the xy-plane can be reported as a collection of
O (n'/*#) pairwise disjoint canonical subsets; moreover, for each j there are O ((n/27)!/2+¢)
canonical subsets of size between 2/~! and 2/ in the query output. For each canonical subset
in the query output, the query segment meets all its edges from below, or meets all of them
from above. Let I' be a canonical subset of this level of the data structure. We construct a
secondary data structure 7 (I') on I', similar to the one in the previous section. Put v = |T'|
and define p and s as in §3.1. Let G be the set of marked edges of I" as defined in the previous
section. We map the lines containing the segments of G (oriented from left to right) to their
Pliicker points (rather than hyperplanes as in the previous section) in R3. Let S be the set of
resulting points; put # = |S|. Let r be some appropriate constant. Since all points of S lie on
the (quadratic) Pliicker surface, we can construct, as remarked above, a simplicial r-partition
I = {(S1, A1), ..., (Su, Ay)} of S with crossing number O (r¥*log¥*r). Let t; = |S;|, for
i =1,...,u. Weconstruct a secondary structure for each S;, of the form described below, and
then preprocess each pair (S;, A;) recursively. The resulting structure is a two-level partition
tree of depth O(logn). Let E(S;) denote the edges of E corresponding to the points in S;,
and let

Ui =|J{T(e) e e E(S)).

Put %; = |U;| < st;. We map each line containing an edge of U, to its Pliicker point in
R> and preprocess the set of resulting points into a linear-size data structure that answers
empty half-space queries (given a query half-space g in R, it determines whether g contains
any point of U;) in time O(E,.1 / 2+‘s), for some 0 < § < ¢; see [24]. We also preprocess the
triangles incident to the edges in E(S;) for segment-intersection detection queries, using the
algorithm of Agarwal and Matousek [5]; it requires O(ti”‘s) space and answers a query in
time O(ti3 / 4+‘s). This completes the description of the first data structure. Since a secondary
structure constructed on u points requires O (1'*?) space, the total space required by the first
data structure for a fixed canonical subset I' with v edges is O (v'*?). Summing it over all

canonical subsets of I'*, we obtain

[logn] [logn]

Z (%)He } 0(2j(1+6)) = 0(n1+s) Z 0= _ 0(n1+8),
j=1 =

since 8 < &. The preprocessing time is also O (n'*®).

4.2. Second data structure. Next, we describe the modified version of the second data
structure, denoted as @—2(73). We will construct a four-level partition tree. The first three
levels of W, (P) will filter out the faces of polyhedra in 7P whose xy-projections contain an
endpoint of y, and the fourth level will determine whether any of these faces intersect the
query segment.

In more detail, let F be the set of faces of polyhedra in P, and let F* denote the set of
the xy-projections of these faces. By our assumption, each face in F* is a triangle. We split
each face f € F into two subtriangles by drawing a plane parallel to the yz-plane through the
“middle” vertex of f, as shown in Fig. 3. We will continue to denote the new set of faces by

RAY SHOOTING AMIDST POLYTOPES 111

f*

f*
FIG. 3. Splitting each triangle into two triangles.

F and the set of their xy-projections by F*. Each triangle in F* has one vertical edge (i.e.,
parallel to the y-axis) and two nonvertical edges. Let I denote the set of the x-projections
of triangles in F*. We construct a segment tree B on I; see [30] for details on segment
trees. Every node v of B is associated with an interval §, and stores a “‘canonical” subset
I (v) of I, where each interval in / (v) contains 8, (but does not contain §,,), where p(v) is
the parent of v). Moreover, Zve g 11 (v)| = O(nlogn). We preprocess each canonical subset
separately.

Let F*(v) denote the set of triangles corresponding to the intervals in /(v); put t =
| F*(v)|. We construct a partition tree 7 = 7 (v) on F*(v). For each triangle A € F*(v),
pick one of its nonvertical edges. Let V denote the set of points in the xy-plane, dual to the
lines supporting these edges. Each node w of 7 will be associated with a subset of V and a
triangle. The root u is associated with V and the entire xy-plane. Let r be some appropriate
constant. We construct, in linear time, a simplicial r-partition IT = {(V}, t1), ..., (Vy, 7,)}
for V with crossing number O(/r) [25], [26]. We create a child w; of u corresponding to each
pair (V;, 7;) and store a two-level auxiliary structure at w;, as detailed below. We recursively
preprocess V; and attach the resulting tree of auxiliary substructures to w;. The recursion
stops when the number of points in V; falls below some prespecified constant.

The auxiliary structure at w; is constructed as follows. For each point p € V;, we pick the
other nonvertical edge of the triangle corresponding to p. Let W; denote the set of points dual
to lines supporting these edges; |W;| < [#/r]. We construct a partition tree on W; as above.
The root of the partition tree is associated with W; and the entire xy-plane. We compute a
simplicial r-partition I'1; = {(W;1, ti1), ..., (Wiy,, Tiy,)} for W;, create a child w; of the root
for each pair (W}, 7;;), and recursively preprocess W;;. Let F;; denote the set of faces in F'(v)
corresponding to points in W;;. If F;; contains two faces of the same polyhedron, we do not
store any structure at w; (because, for any projected endpoint p of a query segment, any set F;;
that will be picked up by the query will have the property that all its projected triangles contain
P, so an Fj; of the above kind will never have to be processed by any query). Otherwise we
preprocess F;; for segment-intersection detection queries in 3-space, using the algorithm of
Agarwal and MatousSek [5], and store it at the node corresponding to (W;;, t;;) as its auxiliary
structure. This completes the description of the second data structure. Following the same

analysis as for W (P), one can show that the total space and preprocessing time required are
10 (n 1+¢) .

4.3. Answering a query. A segment-intersection detection query is answered exactly
the same way as in §3.3. That is, we first query W,(P) and determine whether any of the
faces, whose xy-projections contain an endpoint of y, intersects y. If y does not intersect
any such face, then we determine, using W;(P), whether e intersects any other face of the
polyhedra in P.

Let p be the left endpoint of y*. We want to determine whether any face whose xy-
projection contains p intersects y. A triangle f* € F* contains p if and only if the following
three conditions are satisfied:

112 PANKAJ K. AGARWAL AND MICHA SHARIR

(i) the x-projection of f* contains the x-coordinate of p,

(ii) one of the nonvertical edges of f* lies above p, and

(iii) the other nonvertical edge of f* lies below p (in the xy-plane).

To filter out the faces whose xy-projections satisty these three conditions, we query the segment
tree B (the first-level structure of W, (P)) with p and compute the O (log n) nodes of B whose
associated intervals contain the x-coordinate of p. Let v be such a node of B, and let £ denote
the line dual to p. We query the (second-level) partition tree 7 = 7 (v) with £. We start at
the root and at each node w, visited by the algorithm, we do the following. Let (V, 7) be
the pair associated with w. If w is a leaf, we directly determine whether y intersects any of
the triangles of F corresponding to points in V. So assume that w is an internal node. If T
intersects £, we visit all the children of w. Otherwise, we visit the auxiliary structure stored at
w. Without loss of generality assume that t lies fully above £; the other case can be handled
symmetrically. We search the (third-level) auxiliary partition tree stored at w with £ in the
same way as we searched 7 (v). That is, at each node & of this third-level structure, we do
the following. Let (W’, t’) be the pair associated with £. If £ intersects the triangle t’, we
recursively search at each child of &. If ¢/ lies fully above £, then both nonvertical edges
of triangles in F;, the set of triangles of F*(v) corresponding to the points in W’, lie above
the left endpoint of y*, which implies that p lies below all triangles in F;. Consequently,
we do not search the subtree rooted at £ any further. Finally, if 7’ lies fully below £, we can
conclude that p lies in the triangles of F;. Let F;v C F(v) denote the set of faces of polyhedra
corresponding to triangles in F;. Using the fourth-level auxiliary structure stored at §, we test
whether y intersects any of the triangles in F.. If y intersects a triangle of F;/, we stop right
away, otherwise we continue with the overall search. If no face of F(v), whose xy-projection
contains p, intersects y, we repeat the above step with the right endpoint of y.

If the above procedure does not detect an intersection between P and y, we query ¥ (P)
as follows. We determine the segments of E* intersected by the xy-projection y* of the query
segment y. Let I' be a canonical subset of the output to this subquery. We map the line
containing y to its Pliicker hyperplane 4, and query the secondary structure (partition tree)
constructed on the marked edges of I with 4. The root of the partition tree stores a simplicial
r-partition IT = {(S;, &A1), ..., (Sy, Ay)}. For each simplex A; in I1, we test whether h
intersects A;. If & intersects A;, we recursively search the substructure constructed on S;.
On the other hand, if & does not intersect A;, all points in S; lie either above h or below #,
say above h. Then, as is easily checked, we know that all edges e € E(S;) lie above y, so it
suffices to determine whether y intersects any of the faces incident to any edge in E(S;), or
whether any edge of U; lies below y. Both of these conditions can be tested, by querying the
third-level substructures stored with E(S;), in time O (/4% + su'/?*%) (where u = |S;| and
su > |U;]). This completes the description of the algorithm for answering a query.

We now analyze the total time spent in answering a query. First let us consider the time
spent in querying W,(P). For 1 < i < 4, let Q¥ (m, n) denote the maximum query time at
an ith level structure (including the time spent at its auxiliary structures), storing n triangles
which belong to m different polyhedra. Since the above procedure visits only O (log) nodes
of the segment tree,

@ 0D (m, n) = 0logn) - QP (m, n).

The fourth-level structure of W, () has at most one triangle from each polyhedron, so m = n
and, by [5], Q@ (m, n) = O(m***%), for any § > 0. Finally, fori = 2, 3 (i.e., for partition
trees constructed on sets of nonvertical edges of triangles), a line intersects only O (/7)
triangles of the r-partition constructed on the set of points associated with any tree node.
Therefore the query line recursively searches only O (4/r) children of any interior node, which

RAY SHOOTING AMIDST POLYTOPES 113

yields the following recurrence:

11
) 0(mm < | 2@ miun) + 0 Vmm) ifn = m
0(1) ifn < ng,

where ng, ¢| are appropriate constants, and n; < n/r, m; < m for each i. We claim that the
solution of the above recurrence is

©) QD (m, n) < Am'/4n!/>+e,

for any ¢ > 0. We will prove the recurrence for i = 3; a similar proof works for i = 2.
Equation (6) is obviously true for n < ng (provided A is chosen sufficiently large); and for
n > ng, we have, for an appropriate constant ¢, > 0,

ar
0®(m,n) <) QP (myi, n) + com®*+

i=1

Z 1/4()1/2+8+62m3/4+a

1
5Am1/4n1/2+s__£_+02m3/4+8
r

< Am\/Aplizte,

provided that ¢ > § and that the constants r, A are chosen sufficiently large (we also use here
the obvious fact that m < n).

Similarly, we can show that Q® (m, n) = O (m'/*n!/2+¢). Plugging (6) into (4), we can
conclude that the maximum query of W, (P) is O(m!/*n!/2+%),

Next, we analyze the query time of W, (P) . Recall that we spend O (u3/4+? + (su)!/2+9)
time at a third-level substructure of size u. Let Q® (1) denote the maximum query time of
the second-level partition constructed on a subset of # marked edges of I". Since the crossing
number of the simplicial r-partition stored at each node of the (second-level) partition tree is
O (r3/*10g** r), we obtain the following recurrence:

@) 0%w) < clr3/410g5 r. Q(Z)(>+C2(u3/4+8 + (su) /249y,

where ¢, ¢, are appropriate constants. The solution of the above recurrence is easily checked
to be

Q(2)(u) — 0(s1/2+8u3/4+5) .

Hence, the total time spent in querying a single first-level canonical subset I" is

1/2+6
0(s1/2+5M3/4+8) =0 ([Y_] M3/4+5) — O(Ml/4vl/2+8).
u

Recall that there are O((n/2/)!*) first-level canonical subsets of size between 2/~! and 2/,
so the overall query time of the first data structure is at most

[logn]

Z 0 (())) (m1/42j(l/2+8)) — 0(m1/4n1/2+‘9’),

114 PANKAJ K. AGARWAL AND MICHA SHARIR

where ¢’ > ¢ + § is another arbitrarily small constant. Putting everything together, we obtain
the following theorem.

THEOREM 4.2. Let P = {P, ..., Py} be a collection of m (possibly intersecting) convex
polyhedra or polyhedral terrains in R? with a total of n edges. Given any ¢ > 0, we can
preprocess P in time O (n'*®) into a data structure of size O (n'*®), so that one can determine
in time O(m'/*n'/?*¢) whether a query segment intersects any polyhedron (or polyhedral
terrain) in P.

Again, we plug this procedure into the parametric search technique to answer a ray-
shooting query. We leave it to the reader to verify that each comparison can be reduced to
determining whether the first intersection of the ray and P lies in a query half-space. Hence,
we can conclude with the following theorem.

THEOREM 4.3. Let P = { P, ..., Py} be a collection of m (possibly intersecting) convex
polyhedra or polyhedral terrains in R with a total of n edges. Given any ¢ > 0, we can
preprocess P intime O (n'*®) into a data structure of size O (n'*%), so that the first intersection
point, if any, of a query ray with the polyhedra of P can be computed in O (m'/*n'/?*¢) time.

5. Application to motion planning. An interesting application of our algorithm for ray
shooting amidst convex polyhedra is the following motion-planning problem in R3. Suppose
we have a convex polyhedral object B bounded by k faces, which is free to translate amidst a
collection of m convex polyhedral obstacles, A, ..., A,, with a total of n faces. Preprocess
them into a data structure so that, given any free placement Z of B and a direction u, we can
efficiently find the first obstacle, if any, to be hit as we translate B from Z in direction u.

This problem can be easily reduced to the ray-shooting problem amidst a collection of
intersecting convex polyhedral objects. We simply compute the Minkowski differences (also
known as expanded obstacles)

Ai =A;—Bo={x—y|xe€A;,ye B},

fori = 1,...,m; here By denotes some standard placement of the object B. If A; has n;
faces, then A} is a convex polyhedron consisting of at most O (kn;) faces, so the total number
of faces of the expanded obstacles is O (kn).

Now, given a free placement Z of B and a direction u, we can find the first obstacle to
be hit by B when it is translated from Z in direction u by performing a ray-shooting query
with the ray (z, u) amidst the expanded obstacles A}, where z is the displacement of B from
its standard placement By to the placement Z. The first expanded obstacle that the ray hits
corresponds to the first obstacle that B hits. Applying the results in the previous sections, we
thus obtain the following corollary.

COROLLARY 5.1. Given a collection of m convex polyhedral obstacles with a total of
n faces and a convex polyhedral object B with k faces, we can preprocess them, in time
O ((kmn)?*®), into a data structure of size O((kmn)>*®), so that, given any placement Z of
B and direction u, we can determine, in O (log® kn) time, the first obstacle, if any, that B hits
when translated from Z in direction u.

6. Conclusion. Inthis paper we presented two data structures for answering ray-shooting
queries among a collection of m convex polyhedra or polyhedral terrains with a total of n faces.
The first method answers a query in O (log? n) time using O ((mn)>*¢) space and preprocessing
time, while the second method achieves O (m'/*n'/2*#) query time, using O(n'*®) space
and preprocessing time. When m < n, both methods are significantly better than previous
techniques, which either require O (n***) space and preprocessing for a polylogarithmic query
time, or require O (n3/4*¢) query time for almost-linear storage and preprocessing. Of course,
whenm = n, our algorithms perform as well as the previous ones. Form = 1, the performance

RAY SHOOTING AMIDST POLYTOPES 115

of our algorithms matches that of the best known algorithm for ray shooting in a polyhedral
terrain [4], [15], but is not as good as the best known technique for a single convex polyhedron.

We conclude by mentioning some open problems:

1. If m = 1, neither of our structures achieves close-to-optimal performance for the case
of a single convex polyhedron. For example, the space and preprocessing time of our
first technique are O (n>**), in contrast with the technique of [20], which can answer a
ray-shooting query in O (log n) time, using O (n) space and O (n log n) preprocessing.
It is clear from this that we are not fully exploiting the fact that the given polyhedra
are convex. It would be interesting to improve our techniques further so that their
performance approaches that of [20] for the case of a single convex polyhedron. (We
are also not exploiting at all the pairwise disjointness of the given polyhedra.) A
plausible goal to shoot for might be to improve our first technique so that it yields a
data structure that requires only O (m**® 4 n) or O (m>*¢n) space and preprocessing.

2. How far can our techniques be extended? It seems unlikely that any improvement
over the general previous techniques can be obtained for ray shooting among arbitrary
nonconvex polyhedra, but perhaps there are useful special cases, beyond the case of
terrains, for which faster techniques exist.

3. One application of our algorithms is for the case of a small number of curved surfaces,
each approximated by a polyhedral surface with a large number of faces. An alter-
native attack on this case would be to drop the polyhedral representation altogether
and to develop special techniques for ray shooting amidst curved objects. This is
a more difficult problem for general surfaces, although some progress has recently
been done for the case of ray shooting amidst spheres (see [2] and [5]).

4. Finally, as mentioned in the introduction, no nontrivial lower bounds are known for
any of the ray-shooting problems.

Acknowledgments. The authors thank Mark de Berg and other attendants of the 2nd

Utrecht Workshop on Computational Geometry and Its Application for raising the problem
studied here.

(1]

[2]
[3]

(4]

(5]
(6]

(71
(8]

[91
[10]

(11]
(12]

[13]

[14]

REFERENCES

P. K. AGARWAL, Ray shooting and other applications of spanning trees with low stabbing number, SIAM J.
Comput., 21 (1992), pp. 540-570.

P. K. AGARWAL, L. GuiBAS, M. PELLEGRINI, AND M. SHARIR, manuscript, 1993.

P. K. AGARWAL, M. VAN KREVELD, AND M. OVERMARS, Intersection queries for curved objects, J. Algorithms,
15 (1993), pp. 229-266.

P. K. AGARWAL AND J. MATOUSEK, Ray shooting and parametric search, SIAM J. Comput., 22 (1993),
pp- 794-806.

, Range searching with semi-algebraic sets, Discrete Comput. Geom., 11 (1994), pp. 393-418.

P. K. AGARWAL AND M. SHARIR, Applications of a new space partitioning technique, Discrete Comput.
Geom., 9 (1993), pp. 11-38.

, Ray shooting amidst convex polygons in 2D, J. Algorithms, to appear.

B. ArRONOV, M. PELLEGRINI, AND M. SHARIR, On the zone of a surface in a hyperplane arrangement, Discrete
Comput. Geom., 9 (1993), pp. 177-188.

R. BAR YEHUDA AND S. FOGEL, Variations on ray shooting, Algorithmica, 11 (1994), pp. 133-145.

M. DE BERG, D. HALPERIN, M. OVERMARS, J. SNOEYINK, AND M. VAN KREVELD, Efficient ray shooting and
hidden surface removal, Algorithmica, 12 (1994), pp. 30-53.

B. CHAZELLE, Cutting hyperplanes for divide-and-conquer, Discrete Comput. Geom., 10 (1993), pp. 145-158.

, Lower bounds on the complexity of polytope range searching, J. Amer. Math. Soc., 2 (1989),
pp. 637-666.

B. CHAZELLE AND H. EDELSBRUNNER, An optimal algorithm for intersecting line segments in the plane,J. ACM,
39 (1992), pp. 1-54.

B. CHAZELLE, H. EDELSBRUNNER, M. GRIGNI, L. GUIBAS, J. HERSHBERGER, M. SHARIR, AND J. SNOEYINK, Ray
shooting in polygons using geodesic triangulations, Algorithmica, 12 (1994), pp. 54-68.

116 PANKAIJ K. AGARWAL AND MICHA SHARIR

[15] B.CHAZELLE, H. EDELSBRUNNER, L. GUIBAS, M. SHARIR, AND J. STOLF], Lines in space: Combinatorics and al-
gorithms, Tech. rep. 491, Dept. of Computer Science, New York University, February 1990; Algorithmica,
to appear.

[16] B. CHAZELLE AND J. FRIEDMAN, A deterministic view of random sampling and its use in geometry, Combina-
torica, 10 (1990), pp. 229-249.

[17] B. CHAZELLE AND L. GUIBAS, Visibility and intersection problems in plane geometry, Discrete Comput. Geom.,
4 (1989), pp. 551-589.

[18] B. CHAZELLE, M. SHARIR, AND E. WELZL, Quasi-optimal upper bounds for simplex range searching and new
zone theorems, Algorithmica, 8 (1992), pp. 407-430.

[19] K. L. CLARKSON, A randomized algorithm for closest-point queries, SIAM J. Comput., 17 (1988),
pp. 830-847.

[20] D. DoBKIN AND D. KIRKPATRICK, Determining the separation of preprocessed polyhedra: A unified approach,
Proc. 17th Internat. Collog. Automata, Languages and Programming, 1991, pp. 400-413.

[21] L. GuiBas, M. OVERMARS, AND M. SHARIR, Ray shooting, implicit point location, and related queries in
arrangements of segments, Tech. Rep. 433, Dept. of Computer Science, New York University, March
1989.

[22] J. HERSHBERGER AND S. SURI, A pedestrian approach to ray shooting: Shoot a ray, take a walk, J. Algorithms,
18 (1995), pp. 403-431.

[23] J. MATOUSEK, Approximations and optimal geometric divide-and-conquer, J. Comput. System Sci., 50 (1995),

pp. 203-208

[24] , Reporting points in halfspaces, Computational Geometry: Theory and Applications, 2 (1992),
pp. 169-186.

[25] , Efficient partition trees, Discrete Comput. Geom., 8 (1992), pp. 315-334.

[26] , Range searching with efficient hierarchical cuttings, Discrete Comput. Geom., 10 (1993), pp. 157-182.

[27] K. MEHLHORN, Data Structures and Algorithms, IIl. Multi-Dimensional Searching and Computational Geom-
etry, Springer-Verlag, Berlin, Heidelberg, New York, 1985.

[28] M. PELLEGRINI, Ray shooting in triangles in 3-space, Algorithmica, 9 (1993), pp. 471-494.

[29] M. PELLEGRINI AND P. SHOR, Finding stabbing lines in 3-space, Discrete Comput. Geom., 8 (1992), pp. 191-208.

[30] F.PREPARATA AND M. SHAMOS, Computational Geometry: An Introduction, Springer-Verlag, Heidelberg, 1985.

[31] D. M. H. SOMMERVILLE, Analytical Geometry in Three Dimensions, Cambridge University Press, Cambridge,
UK, 1951.

SIAM J. COMPUT. (© 1996 Society for Industrial and Applied Mathematics
Vol. 25, No. 1, pp. 117-132, February 1996 005

A NEW CHARACTERIZATION OF TYPE-2 FEASIBILITY*
B. M. KAPRON' AND S. A. COOK*

Abstract. K. Mehlhom introduced a class of polynomial-time-computable operators in order to study poly-time
reducibilities between functions. This class is defined using a generalization of A. Cobham’s definition of feasibility
for type-1 functions to type-2 functionals. Cobham’s feasible functions are equivalent to the familiar poly-time
functions. We generalize this equivalence to type-2 functionals. This requires a definition of the notion “poly time
in the length of type-1 inputs.” The proof of this equivalence is not a simple generalization of the proof for type-1
functions; it depends on the fact that Mehlhorn’s class is closed under a strong form of simultaneous limited recursion
on notation and requires an analysis of the structure of oracle queries in time-bounded computations.

Key words. type-2 computability, polynomial time, notational recursion, oracle Turing machine

AMS subject classifications. 68Q05, 68Q15, 03D65, 03D20

1. Introduction. A type-1 function is a mapping from N to N. We will denote the set of
all functions by NN. A type-2 functional is a mapping from ("N)* x N/ to N, for some k and
1. More specifically, we will call a mapping of this sort a functional with rank (k,1).

For type-1 functions, there is a well-established notion of computational feasibility.
Namely, a function is feasible if it is computable in polynomial time on a Turing machine.
More specifically, a function f is poly time if there is a Turing machine (TM) M and a polyno-
mial p such that for all x, M with input x computes f (x) and runs in time p(n), where n = |x|,
and for x € N, |x| denotes the length of the binary notation of x, that is [log(x + 1)7]. This no-
tion of feasibility is robust in the sense that it is independent of the computational model used,
assuming that the model is “reasonable.” In [1], Cobham presented a machine-independent
characterization of computational feasibility, via an inductive definition. Cobham’s definition,
while important, lacks the intuitive appeal of the machine-based characterization because, in-
tuitively, feasibility depends on a notion of bounding computational resources (in this case
running time) in a general computational model in some natural way.

Questions about feasibility arise when dealing with type-2 functionals as well, for exam-
ple, in the study of reducibilities [9], computable analysis [5], and descriptive set theory [10].
Mehlhorn’s study [9] of feasible reducibilities appears to be one of the first to consider the
notion of feasibility for type-2 functionals. Here, a class of poly-time operators is defined,
using a generalization of Cobham’s definition. Subsequent studies, such as [10] and [4], take
Mehlhomn’s approach. The work done to date in this area does not address the question of
whether there is a natural machine-based definition of Mehlhorn’s class. In this paper, we
provide an affirmative answer to the question.

2. A computational model for functionals. Our model for type-2 computability is a
generalization of the familiar multitape oracle Turing machine (OTM). However, we allow
arbitrary type-1 functions as oracles, rather than subsets of N. Note that we also use the term
oracle Turing machine to refer to this modified model. In addition to the normal work tapes,
there is an oracle-query tape and an oracle-answer tape for each function input. These tapes
are infinite in one direction. In order to query a function oracle at an input x, we write x
(in binary) on the corresponding query tape, move the read head on the oracle tape to the

*Received by the editors February 23, 1994; accepted for publication (in revised form) July 25, 1994. A
preliminary version of this paper appeared as [7].

TDepartment of Computer Science, University of Victoria, Victoria, BC V8W 3P6, Canada (bmkapron@
csr.uvic.ca). The work of this author was completed while at the University of Toronto as part of his Ph.D. the-
sis [6].

iDepanment of Computer Science, University of Toronto, Toronto, ON MS5S 1A4, Canada (sacook@
theory.toronto.edu).

117

118 B. M. KAPRON AND S. A. COOK

beginning, and enter a query state for that oracle. In the next step, the value of the function
at the specified input is written (in binary) at the beginning of the corresponding answer tape,
and the head of the answer tape is returned to the leftmost position. The rest of the answer
tape is overwritten with blanks. There is also a special, read-only input tape. One work tape
is specified as the output tape.

An OTM M computes a functional Fj, of rank (k, [) if it has k oracle-query states, and
forall fi,..., fy and xy, ..., x;, whenever M is started with x1, ..., x; written in binary (and
separated by blanks) on its 1nput tape, and when f; is the function assoc1ated with query state
i, M halts with F,(f X) written at the beginning of its output tape, followed by blanks and
with the read head of the work tape in the leftmost position. In this case we say that M has
function inputs f1, ..., fi and number inputs xi, . .., x; and that M is a rank-(k,) OTM.

The running time of a Turing machine is normally just the number steps that it executes
before halting. This is also the case for OTMs with set oracles. With function oracles, on the
other hand, there are two possible conventions for the cost of an oracle call. The first is to
charge one time step, reflecting our intuition that oracles are like subroutines with unlimited
power. However, it is also reasonable to charge the length of the value returned by the oracle,
reflecting the fact that the answer returned by the oracle must still be written down on the output
tape. More formally, if we query oracle f at input X, the associated cost is max{1, | f(X)|}.
Thus we have an I/O cost associated with an oracle call. We choose the latter convention. !

DEFINITION 2.1. The running time of an OTM with a given input is the sum of the costs
of the steps it executes. We denote by Ty (f X) the running time of M on inputs f and X.

Because of the way we charge for oracle calls, the number of steps in a computation is
not equal to its running time, as oracle calls are atomic steps with nonunit cost. We denote by
Steps(M, f, X, t) the least number of steps that M must execute > on inputs f, X so that the sum
of the costs of those steps is at least 7. In the case that £ > Ty (f X), we adopt the convention
that Steps(M f X, t) denotes Steps(M, f X, Ty (f X)) + 1. We will write Steps(t) when
M, f and X are understood. We will also denote by SM(f x) the value Steps(T(f X)),
that is, the total number of steps taken by M on inputs f and X before halting. It is important
to note that the computation of an OTM for a given function input depends only on the values
of the function at those points which are actually queried during the computation. This is
formalized as follows (we will restrict our attention to rank-(1, 1) functionals for the sake of
simplicity.)

DEFINITION 2.2. For any function f, any rank-(1,1) OTM M, and any t,x € N, let
Q(M, f, x, t) denote the query set consisting of all y such that M with inputs f and x queries
S at y within Steps(t) steps of its execution. For any set Q € N and any function f, let fg, the
query restriction of f, be the function such that fo(y) = f(y) forally € Q, and fo(y) =
otherwise.

PROPOSITION 2.3. If @ = Q(M, f, x, t), then the first Steps(t) steps of the execution of
M on inputs f and x are identical to its first Steps(t) steps on inputs fg and x.

3. Basic feasible functionals. Cobham [1] gave an inductive definition of type-1 feasible
functions in terms of certain initial functions and closure conditions. The mostimportant aspect
of this definition is closure under limited recursion on notation. Cobham’s feasible functions
coincide exactly with the familiar poly-time functions. Mehlhorn [9] generalized Cobham’s
definition to type-2 functionals to define the class of polynomial-time operators. We will
consider a functional version of this generalization based on that given by Townsend [10]. We
differ somewhat from Townsend, who considers functionals over {0, 1}*. Also, we include all

IRecently, A. Ignjatovi¢ [6] showed that the main result of this paper also holds in the unit cost model. His
techniques differ significantly from ours.

A NEW CHARACTERIZATION OF TYPE-2 FEASIBILITY 119

type-1 poly-time functions as initial functionals. This simplifies the closure schemes needed
for argument manipulation. Note that we will refer to functionals in this class as basic feasible
functionals (BFFs) rather than poly-time functionals. An explanation of this terminology is
given in [4]. We first introduce some schemes for defining functionals.

DEFINITION 3.1. F is defined from H, G1, ..., G; by functional composition if for all f
and X,

F(f,3) = H(f, G(f. B)...., Gi(f, %)
F is defined from G by expansion if for all f,§, %, and 3,
F(f.§%5 =G(f. 5.

F is defined from G, H, and K by limited recursion on notation (LRN) if for all f ,X,and y,

F(f,%,0)=G(f, %),
F(f.%.y)=H(f.%.y, F(f.% 3. y>0,

\F(f, %, | < |K(F, %, p).

DEFINITION 3.2. Let X be a set of type-2 functionals. The class of basic feasible functionals
defined from X (BFF(X)) is the smallest class of functionals containing X , all type-1 poly-time
functions and the application functional Ap, defined by Ap(f, x) = f(x), and which is closed
under functional composition, expansion, and limited recursion on notation. If F € BFF (X)),
we say that F is basic feasible in X. The basic feasible functionals (BFFs) are just BFF ().
If a functional F is in BFF({Fi, ..., F,}), we say that F is feasible in Fi, ..., F,.

The BFFs have a strong closure property with respect to computation by OTMs. We now
define this property.

DEFINITION 3.3. A class X of functionals has the Ritchie-Cobham property if for all F,
F € X iff there is an OTM M and some G € X so that M computes F and for all inputs f
and X, the running time of M is bounded by |G(f, X)|.

The following result is due to Mehlhorn [9].

THEOREM 3.4. The BFFs have the Ritchie—-Cobham property.

Mehlhorn proved this result for the model in which oracle calls have unit cost. Itis not hard
to adapt Mehlhorn’s proof to prove the forward direction for our model. Note that simulating
the application functional Ap requires more running time in our model because of the extra
cost associated with an oracle call. However, this overhead can easily be incorporated into the
time bound.

Sufficiency in our model follows from Mehlhorn’s result. However, we need a somewhat
stronger result in §5, which we now outline. We will show that for any OTM M, there is a BFF
Runy, such that the value of Rung,(f ,X,T), where T € N, is an encoding oﬁ a sequence of
instantaneous descriptions (IDs) which give the history of the first Steps(M, f, X, |T]) steps
of M’s execution with inputs f and X. Below, we give an outline of how Runy, is defined
by limited recursion on notation (LRN) on T. Also, it is not hard to define a BFF Output
so that if x codes a sequence of IDs, then Output(x) is the contents of the output tape of
the last ID in the sequence. So if F is computed by an OTM M for which there is a BFF

2In [8], the definition of BFF(X) also includes closure under functional substitution. Results of Townsend [10]
show that this definition is equivalent to the one given here.

120 B. M. KAPRON AND S. A. COOK

G so that for all inputs f and x, the running time of M is bounded by |G(f X)|, we have
F(f X) = Output(RunM(f X, G(f X))), and so F is a BFF.

In order to define Runy,, we first use standard low-level encoding techniques, similar to
those of [9], to define a BFF Next,, such that Next,(f , X, i) returns the ID which follows
from ID i of M on inputs f and ¥, assuming that i is a valid ID for M. In the case where the
state associated with i is an oracle-query state, we use the Ap functional to obtain the resulting
value. Now, to compute Runy(f, X, T), we use LRN on T to iterate Nexty, |T'| times, starting
with M’s initial configuration. However, during each iteration, we also check that the overall
running time (1nclud1ng the cost incurred for oracles calls) does not exceed |T'|. If this is
not the case, we “exit” from the iteration at this point. Finally, note that [Runy(f X, T)|is
O(|T|(JX| + |T)), independently of f Full details of this construction can be found in [7].

This result provides some evidence of the naturalness of the BFFs. However, it does not
provide a purely machine-based characterization of type-2 feasibility. We will now introduce
such a characterization.

4. Basic poly-time functionals. Recall that a type-1 function f is poly time if there is
aTM M and a polynomial p such that M computes f and, for all inputs x, the running time
of M with input x is bounded by p(|x|). Hence a function is feasible if it is computable in
time polynomial in the size of its input. A naive generalization of this characterization to
type-2 functionals would lead us to propose that a functional is feasible if it is computable in
time polynomial in the lengths of its inputs, where now its inputs include functions as well
as numbers. In order to formalize this proposal, we need to answer two questions. The first
is, what is the “length” of a function input f? Since f is an infinite object, there can be no
single n € N which measures the length of f. However, for each x there is an associated
length | f (x)|, which is also the cost of querying f at x. Viewing f as a subroutine, there is
a worst-case complexity for calling f, given this query cost. It is this complexity which we
define to be the length of f.

DEFINITION 4.1. For any f €N N, the length of f, denoted | f|, is the function defined by

Ifl(n) = maX|f(y)|

Given this definition for the length of a function, we are presented with a second question:
when is a functional “polynomial in” the length of a function? We answer this question by
generalizing polynomials to allow function variables.

DEFINITION 4.2. First-order variables are elements of the set {ny, ns, ...}. Second-order
variables are elements of the set {Ly, L,,...}. Second-order polynomials are defined in-
ductively: any ¢ € N is a second-order polynomial; first-order variables are second-order
polynomials; and if P and Q are second-order polynomials and L is a second-order variable,
then P + Q, P - Q, and L(P) are second-order polynomials.

We will refer to second-order polynomials as polynomials when the context makes this
distinction clear. Suppose P is a polynomial, all of whose first-order variables are among
ni, ..., ns and all of whose second-order variables are among L, ..., L;. Then for any se-
quence fi, ..., f; of functions and any sequence xi, ..., x; of numbers, P (f , %), P evaluated
at f , X denotes some natural number. For example, if

M Py=Li(Li(ny-ny))+Li(Li(ny))-Li(ny)) + Li(ny) +4

and f(x) = x?, then

A NEW CHARACTERIZATION OF TYPE-2 FEASIBILITY 121

Po(f,2)=f(f2-2)+ f(fQ)- fF2N+ f(2)+4
=@+ (%222 +22 +4
= 520.

We are now ready to introduce a type-2 analogue for the poly-time functions, based on
our generalizations of polynomials and lengths for functions.

DEFINITION 4.3. A functional F is basic poly time if there is an OTM M and a second-
order polynomial P such that M computes F, and for allf and X, Ty (f, X) is bounded by
P(fil - 1 el xals ooy Bxal).

Note that if M and P are as in the preceding definition, we will say that P bounds the
running time of M.

5. Equivalence of basic feasible and basic poly-time functionals. We have proposed
a new definition for type-2 feasibility, namely basic poly-time computability. In this section,
we will show that our new definition coincides with Mehlhorn’s. We begin with the following
theorem.

THEOREM 5.1. Every BFF is basic poly time.
In order to prove the theorem, we require the following easily demonstrated facts.
LEMMA 5.2. Suppose P and Q are polynomials with first-order variables ny, . .., n; and

second-order variables L, ..., Lyi1. Thenforalli, 1 < i <, there is a polynomial P’ so
that forall g, %,

P'(g,X)=P(@g x1,...,xi—1, (&, X), Xiy1, ..., X1).

LEMMA 5.3. Suppose P is a polynomial with first-order variables ny, . . . , n; and second-
ordervariables Ly, . .., L. Thenforall monotone nondecreasing g1, ..., grandallxy, ..., xj,
andforalli,1 <i <l,andally, ify > x;, then

P(g, X1, ..., X1, Y, Xig1, ..., X1) = P(g,X).

Proof of Theorem 5.1. By Theorem 3.4, it suffices to show that if F is a BFF, then there is
a polynomial P so that for all f X, |F(f D < PASfily oo Ll 1xal, .., 1xa]). We proceed
by induction on the definition of F. The result is clear when Fisan initial function. We now
consider each definition scheme. Ineach case, we assume that F is defined from functionals for
which the theorem holds. The case of expansion is straightforward. If F is defined from F, G,
and K by LRN and P is a bounding polynomial for K, then it is also a bounding polynomial
for F (since |F(f X)| < IK(f X)|). Now suppose that F is defined from H, Gy, ..., G,
by functional composition, and suppose that P is a bounding polynomial for H and P,~ isa
bounding polynomial for G;, 1 < i <[. By Lemma 5.2, there is a polynomial P’ such that
for all f and X,

P'(fal - el xals oo)
= P(fil, ..., 1 fel, PLA AL o Ul Bl oo D,
P fily oo Ufel el oo D)),

so by Lemma 5.3, |G(f,)| < P'(fil, - -, | fil, [xil, .-, 1) o

122 B. M. KAPRON AND S. A. COOK

Surprisingly, the converse of 5.1 is also true, so that the BFFs and the basic poly-time
functionals coincide. We begin by considering an example which illustrates some of the
problems associated with proving the converse.

Let F; be defined as follows:

Fi(f, x) = {)(c“k < x)(max;< | f(@)| = k) if such a k exists,

otherwise.

It is easy to see that this functional is basic poly time. For inputs f and x we can compute
F) in time bounded by ¢ [| f [(|x])]? + ¢ for constants ¢; and ¢, as follows: just evaluate f
at successive inputs, starting with 0, until we find a point £ such that F;(f, x) = k or reach
x. Now we will make at most F;(f, x) + 1 such evaluations, and each evaluation returns a
value with length bounded by | f|(|x]). The approximate run-time bound is then obtained by
noting that F; (f, x) < | f|(|x]). This approach to computing F; does not allow us to conclude
that F) is a BFF. In particular, it appears that with such an approach, computing F; for certain
inputs f and x would require a recursion with an exponential number of iterations. However,
this problem can be avoided with a nested recursion, as we will now show. In order to do so,
we need to consider the auxiliary function F;:

{ (nk < Fi(f, x))(f(k) = maxo<i<r,(f,x) f(E)) if such a k exists,

otherwise.

F2(f’x)=

F,(f, x) returns the smallest point y, 0 < y < Fi(f, x), such that y maximizes f over

{0, ..., Fi(f, x)}. Soif Fi(f, x) < x,|f(F2(f, x))| = Fi(f, x). Otherwise, | f (F2(f, x))| >
x. Let

F(f, x) = (FI(f, x), Fa(f, x))

and let

G(f”x? y) = (Fl(f’ min(le)’))’ FZ(f7 min(lxl’)’))),

where (-, -) is a poly-time pairing function. Clearly G is basic feasible (we can use LRN on
x to do a “brute-force” search). Let # be the rank (0, 2) BFF defined by x#y = 2¥I'Vl. We
define F using LRN, as follows:

F(f,0) = (0,0),
FUfn = (5] < 3] then F O (5],

else G(f, f(T(F(f, |5)#2, x),
|F(f, 0] < [(x, x)],

where I1; and IT, are poly-time projection functions. So Fi(f, x) = I1{(F(f, x)).

To simplify the presentation of our result, we will restrict our attention to functionals of
rank (1, 1). Basically, we want to show that if F' is computed by an OTM M with running
time bounded by P, then there is a BFF G so that for all f and x, the running time of M
is bounded by |G(f, x)|]. More formally, our goal is to find a BFF G so that F(f, x) =
Output(Runy (f, x, G(f, x))). Now if there were a BFF H such that |H(f, x)| > | f|(|x]),
our task would be trivial, since we could then obtain the BFF G from H. It is not hard to show
that there is no BFF H with the required property.

LEMMA 5.4. For any BFF F, if f is a O-1-valued function, then there is a polynomial p
such that for all x, |F(f, x)| < p(|x]).

A NEW CHARACTERIZATION OF TYPE-2 FEASIBILITY 123

Proof. Use a straightforward induction on the definition of F'. 0

THEOREM 5.5. If H is a functional such that for all f and x, |H(f, x)| = | f|(|x]), then
H is not basic feasible.

Proof. Assume that H is a BFF, and let f be a 0—1-valued function. By Theorem 3.4 and
Lemma 5.4, there is an OTM M and a polynomial p such that for all x, H (f, x) is computable
by M in time p(|x|). Soin computing H(f, x), M can query f at no more that p(|x|) different
inputs, and thus for some xj there is a y, |y| < |xo|, so that M, on input f and x¢, does not
query f at y. Let f’ be defined by

2-H(f,x)+1 ifx=y,

fx) otherwise.

fl(x)= {
Now by Proposition 2.3, M behaves identically with inputs f, xo and f’, xo, so that

|H(f, x0)| = [H(f', x0)| = | f'|(Ixo]) = [H(f, x0)| + 1,

and we have derived a contradiction. 0

Our goal now is to try to simplify P in such a way that the value of P (] f|, |x|) can be
feasibly computed without using a functional such as H. We begin by noting the following
facts regarding running times.

LEMMA 5.6. Suppose M is an OTM and P is a polynomial which bounds the running time
of M. Forany f,x,andt,if Q@ = Q(M, f,x,t)andt > P(|fgl, |x|), then Su(fo,x) <
Steps(z).

Proof. Suppose this is not the case for some ¢, and let Q@ = Q(M, f,x,t). Since
Su(fo,x) = Steps(Ty(fo,x)) and Steps is monotone increasing, Ty (fg,x) = t. So
Ty (fo,x) > P(|fal, |x|), contrary to Proposition 2.3. a

LEMMA 5.7. Suppose M is an OTM and P is a polynomial which bounds the running
time of M. For any f,x,t,and t', if Q = QM, f,x,t), @ = QM, f,x,t), and t' >
P(|fol, |x]), then either |Q'| > |Q| or Su(for, x) < Steps(t').

Proof. Suppose |Q'| = |Q|. Then @ = @, so P(|fol, |x]) = P(]fol, |x|). But then
t' > P(|fol, Ix]), and so by Lemma 5.6, Sy (fo, x) < Steps(¢'). |

We denote by ¢(M, f,x,r) the least value ¢ such that Steps(r) = Sy (f,x) or
|Q(M, f, x,t)] = r. We will abbreviate this by #(r) in appropriate contexts.

LEMMA 5.8. Supposet = t(M, f,x,r)and Q = Q(M, f, x,t) for r € N. If Steps(t) <
Su(f, x), then Steps(t) < Sy (fo, x).

Proof. Given that Steps(t) < Sy (f, x), M with input f and x must query f at r distinct
inputs before halting. But then by Proposition 2.3, the same is true of M with inputs fo, x.

The result follows by the minimality of 7. 0
We now want to show that for our bounding polynomial P, there is ad € N and a
first-order polynomial P so that for any query set Q, there are points gy, . . ., g4 in Q such that

P(fol. Ix) < PAf@DI, -, 1f (gl IxD.

This will reduce our problem of finding a basic feasible bounding function for M to the problem
of finding BFFs which gives us such gy, ..., g4 in Q(M, f, x, P(|f], |x])). We now describe
the method for obtaining the first-order polynomial P.
DEFINITION 5.9. Let P be a polynomial. We define d(P), the depth of P, by induction on
P:d(c) =d(n;) =0,d(P+Q) =d(P-Q) = max{d(P),d(Q)};andd(L(P)) = 1+d(P).
Let P be a polynomial with depthd. For 1 < ¢ <d, let P, ..., PkcL_ be an enumeration
of the depth-c subpolynomials of P which have the form L(Q), where L is a second-order

124 B. M. KAPRON AND S. A. COOK

variable and d(Q) = ¢ — 1. If ch = L(Q), let Q]c- = Q. Clearly, for any Q; there is a
first-order polynomial Q”. ,1<i<c,1=<1<k,suchthat forall g and X,

Q5(3. %) = Q5(P/ (3. %), ... PL(E. %), ..., L3, %), %)).

Now suppose that M is an OTM and that P is a depth-d polynomial bounding the running
time of M. For any inputs f and x and any ¢, there are q;, ..., g4 € Q(M, f, x, t) so that for
l<c<dandl <j <k,

@ l9¢l < max Q5 el Ix)
and
3) [f(go)] = lrgjg;c Pi(l fal, 1xD.

But then there are first-order polynomials Qc, 1 <c¢ <dsuchthatforl < j <k,
@) 05 (I fal, 1x1) < Q£ (gDl -, 1 £ (g1, 1x]).
Similarly, there is a first-order polynomial P such that

P(fal, Ix) < PUf @D, -, | f@a)l, 1xD.

As an example, for the polynomial Py given in (1), we have

Po(l fal, Ix]) < [fol(fol(x®) + I fol(l fal (IXD1P) + | fol(1x]) + 4
< Ifal(f @)D + 1 fal(f (@D + | f(@)] + 4

<I1f@)+1f@)+1f(g)]+4,

where |q1| < |x|?and |g2| < | f(¢1)[*. Sowehave O, = n?, 0, =n?,and P = 2-ny+n,+4.

DEFINITION 5.10. Let M be an OTM whose running time is bounded by the depth-d
polynomial P. For 1 < ¢ < d, the cth maximizing argument for M, f, x, and t is the least-
value q. satisfying (2) and (3) for Q = Q(M, f,x,t). The cth maximizing argument for
M, f,x,and t is denoted q.(M, f, x,t), or just q.(t) when M, f, and x are understood.

Recall that for any first-order polynomial p(n,, ..., ni) with positive coefficients, there is
a poly-time function f}, so that | f,(xy, ..., xx)| = p(lx1l, ..., |x|), forall x;, ..., x;. Since
the application functional is a BFF, for Ql, R Qd, 13, there are BFFs GQI’ e, Géd,G p SO
that for all f, x, q1, ..., q4,

G, (fr g1 e, 01 = QeI F @D, -, | f(@e-n)], 12D, 1< <d,
and
IGp(fiq1. - qa.)| = PUF(@D. ..., | f(qa)l, x]).
Now suppose that there are BFFs Gy, ..., Gy such thatfor1 <c¢ <d,
[f(Ge(f, XD = 1 f(ge(M, f,x, P(If], xD)I.
We could then define a basic feasible bounding functional G by

G(f,X) = Gﬁ(f’ Gl(f,.X), ey Gd(f,X),X).

A NEW CHARACTERIZATION OF TYPE-2 FEASIBILITY 125

As a first step toward finding such functionals, we will introduce a parameter r, which bounds
the number of inputs at we allow M to query f. Formally, if d(P) = d, let Max_Argj,,
1 < ¢ < d, be the functional of rank (1, 2) defined by

ifr =0,

Max_Arg$,(f, x,r) =
B qc(M, f,x,t) +1 otherwise,

where ¢ is the smallest value such that Sy, (f, x) < Steps(z) or |Q(M, f, x, t)| > r. In general,
we will denote such a ¢ by 1 (M, f, x, r), or just ¢ (r) in the appropriate context.

CLAIM 5.11. For any OTM M with running time bounded by a polynomial P with depth
d, Max_Arg}, is a BFF for 1 <c¢ <d.

Given this claim, we only need to show that we can feasibly eliminate the use of the
parameter r. If we could show that there is a BFF R such that for all f and x, R(f, x) =
|Q(M, f,x, P(Ifl,|x]))|, we would be finished, because we would then have

Max_Arg, (f, x, R(f, x)) — 1 = q.(M, f, x, P(|f], |x])).

What we will actually show is that there is a constant d and a sequence ry, . . ., r4 of “approx-
imations” to R(f, x) such that r; is basic feasible in f, x and r.,, is basic feasible in r., f,
and x, and such that a basic feasible bounding functional G can be obtained from the r.’s.
Intuitively, r. is an upper bound on R(f, x), assuming that M queries f only at points y such
that |y| < |q.|. Given r, let

5) T = G s(f, Max_Arg),(f,x,r) — 1,..., Max_Argd,(f, x,r) — 1, x),

and Q@ = Q(M, f, x,t), where t = t(r). If Sy (f, x) < Steps(¢), |T| = P(|f], |x]), and so
F(f,x) = Output(Runp (f, x, T)). Otherwise, Sy (fg,x) > Steps(t) by Lemma 5.8, and
so, by Lemma 5.6, P(|fgl, |x|) > t. By the definition of T, |T| > P(|fgl, |x|). Finally,
since each query made by M has at least unit cost, t > r. Combining these inequalities gives
|T| = r. Now there is a BFF A which satisfies

|f(ACS, X)) = max Lf DI

Since |T| = r, | f(A(f, 2#T))| = | f|(|r|). In other words, if M on inputs f and x runs for
long enough to query f at r inputs, then we can feasibly compute an upper bound of | f|(|r])
from f, x,andr.

We will now give an example to show how we take advantage of the approach described
above. Recall the polynomial Py given in (1).

Po(If1, 1xD) = I£1A£1Ax) + 1A F1AxXDID) + [£1(x]) + 4.

Suppose Pj bounds the running time of M which computes the functional F. For inputs f
and x, we will begin by trying to find ¢;. For any Q, |¢| < |x|*> < |x#x|. So we begin by
setting r; = x#x. Let T} be T as defined in (5), for r = r;. Now if M halts before making r,
queries, it halts in Steps(|7}|) steps, so we do not need to go any further, since |7;| will bound
the running time of M. Otherwise, we have a value I} = A(f, 2#T}) sothat | f(I;)| = | f(q1)I.
Since |g2| < |f(q1)?, we now try r, = f(l;)#f(l;), and let T, be T as defined by (5) for
r = rp. Again, if M halts in Steps(|73|) steps, we are done. Otherwise, we have a value
I, = A(f,2#T,) so that | f(I2)| = | f(g2)|. Under the assumption that for inputs f and x, M
does not halt in Steps(|T}|) or Steps(|T»|) steps, the running time of M must be bounded by
2-|f)| + | f))] + 4. So if Pad is the rank (0, 2) BFF defined by Pad(x, y) = x - 2" and

G(f, x) = max{T, T>, Pad(Pad(2#Ap(f, l2), Ap(f, 1)), 16)},

126 B. M. KAPRON AND S. A. COOK
then

F(f, x) = Output(Runy, (f, x, G(f, x))).

Formalizing this argument for arbitrary bounding polynomials, we obtain our main result.
THEOREM 5.12. If F is a rank-(1, 1) basic poly-time functional, then F is basic feasible.
Proof. Suppose that F is acomputed by an OTM M such that for all f and x, the running

time of M with inputs f, x is bounded by P (| f|, |x|), where d(P) = d. Let

rn =Gy (f %),

T. = Gs(f, Max_Arg,lw(f, x,re)—1,..., Max-Arg‘j,,(f,x, r)—1,x), 1<c<d,

le = A(f,2#T,), 1<c<d,

re = G (fili, ... Loy, x), 2<c<d,
and define G by

G(f, x) = maX{Gﬁ(f, 11, ey ld, x), T1, ey Td}.
An argument similar to that given in the example shows that for all f and x,
F(f, x) = Output(Runy (f, x, G(f, x))). 0

It remains to demonstrate Claim 5.11. We want to show that Max_Argj, is a BFF for
1 < ¢ < d. To do so, we also consider for 1 < ¢ < d, the functional Max_Arg_Unary$, of
rank (1, 2) such that for all f, x, r, and R, if |R| = r then

Max_Arg}, (f, x, r) = Max_Arg_Unary, (f, x, R).

We begin by showing that Max_Arg_Unaryy, is feasible for case where d = 1.

LEMMA 5.13. For any OTM M with running time bounded by a depth-1 polynomial P,
Max_Arg_Unary,, is basic feasible.

Proof. Max_Arg_Unary}, is defined by LRN on R. Max_Arg_Unary,},(f, x, 0) = 0. Now
suppose that we have defined Max_Arg_Unary,(f, x, | §]). Lett = ¢(||£]]), @ = Q(),
and

T =2 Gs(f, Max_Arg Unary), (f, x, |2]) = 1,x) + L.

Finally, let A = Runy (f, x, T). We claim that 4 encodes enough of the computation of M so
that Max_Arg_Unary(f, x, R) can be feasibly computed from k. If Sy (f, x) < Steps(t),
then |T| > P(|f], |x]|), so the claim holds. Otherwise, by Lemma 5.8, Sy (fg,x) >
Steps(¢). Since T is defined so that |T| > P(|fol, |x]), we have, by Lemma 5.7, that
|Q(M, f.x,ITD| > |QM, f,x,1)|. Since t = t(|| £ |]), it follows that |Q(M, f, x, |T])| >
|R|, and again the claim holds. Since [Max_Arg_Unary',(f, x, R)| is bounded by |G 6, (s 0,
we conclude that Max_Arg_Unary}, is basic feasible. g

LEMMA 5.14. For any M with running time bounded by a depth-1 polynomial P,
Max_Arg,lw is basic feasible.

Proof. Max_Arg}, is defined by LRN onr. We set Max_Arg}, (f, x, 0) = 0. Now suppose
that we have defined Max_Arg),(f, x, | 5 |). Let Lett = (| 5 |), @ = Q(¢), and

T =2-Gp(f. Max_Argy, (f.x, |5 —1,x) + 1.

A NEW CHARACTERIZATION OF TYPE-2 FEASIBILITY 127

Finally, let A = Runy, (f, x, T). If Sy (f, x) < Steps(¢), |T| > P(]|f], |x]), and so h encodes
the whole history of M’s execution on inputs f, x and we can obtain Max_Arg,lw(fix,r)via
a feasible computation on this history.

Otherwise, Sy (fg, x) = Steps(#) by Lemma 5.8, so by Lemma 5.6, P(| fol, |x]) > t.
Now T is defined so that |T| > P(|fol, |x]), so |T| > t. Since every query has at least unit
cost, t > L%J , and so we have |T| > r. It is easy to show that there is a poly-time function
s(x, y) so thatif |x| > y, then |s(x, y)| = y. So

Max_Arg,ll,,(f, X, r) = Max_Arg_Unary}w(f, x,s(T,r)).

Since
IMax_Argl, (f, x, R)| < |G, (f, %),

we conclude that Max_Arg), is basic feasible. 0

It is not hard to see that this argument can be extended to give a simultaneous definition
of Max_Arg_Unary$, (f, x, r) and Max_Arg§,(f, x, ¥), 1 < ¢ < d, assuming that the running
time of M is bounded by a depth-d polynomial. So before we can conclude that these functions
are BFFs as in Claim 5.11, we must extend LRN to allow simultaneous definitions. We begin
by considering a simple extension of LRN. oo .

DEFINITION 5.15. Fi, ..., Fy are defined from G, H, and K by simultaneous limited
recursion on notation (SLRN) if for all f, X, and y,

F(f.%,0)=Gi(f. %), 1<i<k,
F(f %) =H(f.3y, F(f.% [4]), y>0,1<i<k,

\F(f %, < IKi(f, %,], 1<i<k

LEMMA 5.16. If Fy, ..., Fy are defined from é, P}, and K by SLRN, then F; is basic
feasible in G, H, and K, 1 < i < k.

Proof. Recall that for k € N, there are poly-time functions Axj ... Axg . (x, ..., x;) and
M¥ 1 < i < k, such that IT¥((x1, ..., xx)) = x;. Now it is not hard to see that we can
define, using LRN, a functional F, basic feasible in G, H, and K, such that F;(f, %, y) =
O} (F(f, %, y)). i

It would appear that SLRN is too weak to allow the simultaneous definition of the func-
tionals Max_Argj,, 1 < ¢ < d. The problem arises in attempting to provide bounds for these
functionals. By (2) and (4), we know that

IMax_Args, (f. %, y)| < |G 4 (f. Max_Arg}, (f, %,) —1, ..., Max_Argi; ' (f. %,) — 1, x)|

and Max_Arg_Unary$, (f , X, r) is similarly bounded. However, the bounding conditions for
SLRN do not allow such a general form of bounding. We now introduce a form of simultaneous
recursion which does. L. .

DEFINITION 5.17. Fy,..., F; are ﬂdeﬁned from G, H, and K by multiple limited
recursion on notation (MLRN) if for all f, X, and y,

F(f.%.00=G;(f, %), 1<i <k,

F(f %) = H(f, %y, F(f, %, |3]), y>0,1<i <k,

128 B. M. KAPRON AND S. A. COOK

|F(f, %,)1 < IK(FL 7,),
\F(F) < |1Ki(F 2y, FI(F R y), o B (F R)], 2<i <k

MLRN is a generalization of a scheme introduced by Cook in [2]. The apparent power of
this scheme compared to SLRN arises from the use of weaker bounds for | F; (f , ¥)|, which
require bounding only in terms of Fy, ..., F;_;. Otherwise, MLRN is identical to SLRN.
Surprisingly, it is no more powerful than SLRN

THEOREM 5.18. If Fy, ..., F are defined by MLRN from G, H, and K, then F; is basic
feasible in G, H,and K,1<i <k.

This is a result which is interesting in its own right. We postpone its proof to the following
section, and continue now with the thread of our main result.

Proof of Claim 5.11. We extend the proof of Lemma 5.14, to allow a simultaneous
definition of Max_Arg_Unary$,, 1 < ¢ < d, using MLRN. We then use these functionals to
give a simultaneous definition of Max_Argj,, 1 < ¢ < d, again using MLRN. d

6. Feasibility of MLRN. This section is devoted to the proof of Theorem 5.18. Our first
step is to consider an apparently weaker version of MLRN.

DEFINITION 6.1. Fy, ..., Fy are defined from G, H, and K by weak multiple limited
recursion on notation (WMLRN) if for all f X, and y,

F(f,%,0)=Gi(f.), 1<i<k
F(f. % 9) = H(f.% y. F(f. 5 3], F(f. 5. [3])). y>0.1<i<k
I 3 01 < 1K (L E)l
IE(f. 20 < IK(FL %y Fa(f 2), 2<i <k
Once we show that the BFFs are closed under WMLRN, we obtain a proof of Theorem
5.18, as follows.

Proof of Theorem 5.18. We show that there are functionals FY, ..., F], basic feasible in
G H and K sothatfor1 <i <k,

F,‘/(fy)_f',)’)=(Fl(f,)?,)’)’---,Fi(f,)_é,)’))'
F/,..., F; are defined by WMRLN, as follows:

F/(f.%,0) = (Gi(f,%),..., Gi(f, %)),
F/(f. % y) = (Hi(f. %y, IEF (£ 3 3D, - TEFEFL 3D, -
Hi(f. %y, IKF{(FL 5, 3 D)). - ECFEEE 3D, v > 0,
IF{(f. %, 0] < IKi(f. %,),
|F/(f, %, 9| < (KL(F. %,), Ko(F %, y, TTTNF (F % 90, -

Ki(f %y, 7N E (F 2), TEZNEL(F 2y O

It remains to show that the BFFs are closed under WMLRN. Suppose Fi, ..., F; are
defined by WMLRN. By introducing extra parameters zj, ..., zx so that F; is bounded in

A NEW CHARACTERIZATION OF TYPE-2 FEASIBILITY 129

terms of z;_; rather than F;_j, it is possible to define by SLRN functionals E}, ..., Ei so that
E; agrees with F; when supplied with appropriate values for zj, . .., zx—;. This is formalized
in Lemma 6.2 below. It then remains to define zy, .. ., zx—; with the required property. In fact,
functionals giving appropriate values for zi, ..., zx— can be defined by WMLRN. Then, by
induction on k, we can conclude that the F;’s are definable using SLRN. This is formalized in
Lemma 6.3 below. We will write x C y if for some i, x = Ly/ /2i

LEMMA 6.2. Suppose that Fi, ..., F are defined from G, H and K by WMLRN. Then
there are functionals E;, . .., Ey, basw feasible in G H and K so that forall 7y, . .., Zx-1,
Yis oo Yy andall y, if

(6) |F(f, %, 0)| < IKi(f, %, yi_ 5Dl 2<i <Kk,
forallv C vy, then

E(f. % y.5,y)=F(f, %y, 1<i<k

Proof. Let Ly, ..., L be defined as follows:
Li(f.%,5.2.9) = Ki(f. %,),
Li(f %y, 50 =K(f, Xyl _pa-), 25i<k
Let H{, ..., H; be defined as follows:

G555 0D [Hi(f,x,y,a if |Hi(f, %, y, Dl < ILi(F, %, ¥, 2,),
Z =

Li(f,%,y.,2,y) otherwise.
Finally, let G, ..., G} be defined as follows:
Gi(f.%,y.%) = Gi(f. %).

E., ..., E; aredefined by SLRN from G", I:I", and L. Clearly, E; isbounded by L;,1 <i <k.
We now show by induction on y that if (6) holds for all v € y, then

Ei(f’i’.);;’z’y)=Fi(f’i’y)’ ISlSk

This follows directly when y = 0. Now suppose it is the case for | § |. Assume that (6) holds
for all v C y. Then it holds for all v C | 4 |, and by the induction hypothesis we have

-

E(f. %Y, % 3D =F(f.% 3], 1<i<k
and so
H(f. %y, E(f. 5.5, %. |3 .. E(f. 3,93 |3 = Fi(f. %y, 1<i=<k

Now |F1(f,5c', Y < IKI(J?,)'E, y)| and by our assumption that (6) holds for all v < y, for
2 <i < k we have

\F(f, %, 01 < ILi(f, %, ¥, 2,).

-

We then conclude, referring to (6), that Ei(f, %9.%2,y) = Fi(f, %,). O

130 B. M. KAPRON AND S. A. COOK

LEMMA 6.3. If F\, ..., Fi are defined by WMLRN from G, H, and K, then F; is basic
feasiblein G, H, and K, 1 <i <k.

Proof. We proceed by inductiononk > 2. When k = 2, we show that there is a functional
P, basic feasible in é, H s K so that for all y and all v C y,

@ IB(f, %, 0| < |Ka(F, %, TL(P(F, %,), T(P(f, %,).
Having defined such a P, we can conclude from the preceding lemma that
F(f.%,y) = E(f. %, TL(P(F, %,), (P(f, %, y)), »), i =1,2,
so that F; is basic feasible in G , H , and K ,i =1,2. Itis easy to see that if P satisfies

) P(f,%,y) = (v, Fi(f, %, v)),

where v C y maximizes |K2(]7, X, v, Fl(f, X, v))|, then P will satisfy (7) forall v C y. So
it suffices to find a BFF P which satisfies (8) for all y. Now define P as follows:

P(f,%,0) = (0, G\(f, %)),

.. .z1) i IK(F, 3, y, 20l 2 (Ko (fL %, T (0), M),
P(f.x,y)= , y >0,
t otherwise,
where
2= Hi(f, %, y, E\(f, %, L), (), | 3], E2(f, %, Mi(n), Ma(ry), | 3])
and

n=P, %3]

We will show that P satisfies (8) for all y, by induction on the notation of y. This follows
directly when y = 0. Now assume that P satisfies (8) for L%J Then P satisfies (7) for

all v € | %], so that by the preceding lemma, z; = F;(£,%,). But then, by the induction
hypothesis and the definition of P,

.. 0 Fi(f 5 9) i IKo(F, %y, Fi(F 3) 2 1Ko (F, 3, v, Fi(F, %, o),
P(f,x,y) = .
(v, Fi(f,x,v)) otherwise,
where v C L%J maximizes |K2(f, X, v, Fl(f, X, v))|. Itis then clear that P satisfies (8) for
¥, as required. Finally, since P satisfies (8) for all y,

P(f, %,)1 < Ity max Ky (F, 5,)],

so that, in fact, P is definable by LRN from functionals basic feasible in é, H , and K.
Now assume that the result holds for k — 1. We show validity for k as follows: we will
show that there are Py, ..., Py, basic feasible in G, H, and K so thatfor2 <i <k,

©) Fi(f, %, 0| < [Ki(f, %, TL(Pioa (f, %,), TP (F, %,)
for all y and all v € y. By the preceding lemma, we will then have

F(f, % y) = E(f, 5, TL(P(F 2), ., (P () 7,), T (Py(F B),

(P, (f, %, 9), y)),

A NEW CHARACTERIZATION OF TYPE-2 FEASIBILITY 131

so that F; is basic feasible in f;, H , and K , 1 <i < k. We will attempt to define Py, ..., Py
by WMLRN. By the induction hypothesis, we can then conclude that P, ..., P,_; are basic
feasible in é, H , and K. Itis easy to see that for 1 <i < k — 1, if P; satisfies

(10) P.(f %, y) = (v, F(F %, v)),

where v; C y maximizes |Kii(f, X, vi, F;(f, %, v;))|, then P; will satisfy (9) for all v C y.
So it suffices to find BFFs Py, ..., P,—; which satisfy (10) for all y. Define P, ..., P,_; as
follows:

P.(f, % 0) = (0, Gi(f, %)),

.. (voz) 1K (F %y, 20| = 1K1 (F, %, T (), Th(@)),
P,'(f,x,y)={ y >0,

t; otherwise,

where
% =H(f, %y, Es(f, %, TL(t), .., T (te1), To(t), .., To(t),
E(f, 3, (1), ..., (1), Ta(ty), ..., Ta(51)))
and
t=P(f.% 3]

‘We now show, by induction on the notation of y, that the P;’s satisfy (10) for all y. This s clear
when y = 0. Assume thatfor 1 <i < k—1, P, satisfies (10) for | % |. Thenfor1 <i <k—1,
P; satisfies (9) for all v € | 4 |, so that by the preceding lemma, z; = F;(f,%,y). But then,
by the induction hypothesis and the definition of P;, for 1 <i <k — 1 we have

Pi(f_)’i’y)

{ (yv E(f’ iv y)) iflKl'+1(‘f_)’)-é7 Y, E(‘f_)’)-c" .V))| = |Ki+1(.fv 5‘;7 Vi, E(f-:"i:v U,‘))l,
(vi, F:(f, %, vi)) otherwise,

where v; € y maximizes |K;41(f, %, vi, Fi(f, %, v;))|. Itis then clear that for | <i <k —1,
P; satisfies (10) for y, as required.

It remains to show that Py, ..., P;_; are bounded in such a way so that they are definable
by WMLRN. The bound for P, is obtained as in the base case. Now for2 <i <k — 1, we
conclude from the definition of P; that

IMa(Pi(f, %, Y] < max |Fi(F, %,).
We also conclude from the definition of F' that

\Fi(F, %, v)| < |Ki(f, %, v, F (f, %,)]

Combining these equalities with the fact that for 1 <i < k — 1, P; satisfies (10) for all y, we
see that

T (P,(f, %, y)| < |Ki(f, %, TT(P_1(F) %,), (P 1 (£, %, 9))).

Finally, since |1'[1(P,~(f, 90 < |yl, Pi,..., Pr_; are definable by WMLRN from func-
tionals basic feasible in é, H ,and K. 0

132 B. M. KAPRON AND S. A. COOK

REFERENCES

[1] A. CoBHAM, The intrinsic computational difficulty of functions, Proc. 1964 International Congress for Logic,
Methodology, and the Philosophy of Science, North—Holland, Amsterdam, 1964.

[2] S. A. Cook, Iterated recursion is PV-definable, manuscript, 1989.

[3] , Computability and complexity of higher-type functions, in Logic from Computer Science, Springer-
Verlag, Berlin, 1992, pp. 51-72.

[4] S. A. Cook AND B. M. KAPRON, Characterizations of the basic feasible functionals of finite type, in Feasible
Mathematics, Birkhauser, Boston, 1990, pp. 71-95.

[5] H. FriEDMAN AND K. Ko, Computational complexity of real functions, Theoret. Comput. Sci., 20 (1982),
pp. 323-352.

[6] A.IGNIATOVIC, On feasibility in higher types, manuscript, 1994.

[71 B. M. KAPRON, Feasible computation in higher types, Tech. report 249/91, Department of Computer Science,
University of Toronto, Toronto, ON, 1991.

[8] B. M. KaPRON AND S. A. CoOK, A new characterization of Mehlhorn’s poly-time functionals, in Proc. 32nd
IEEE Symposium on Foundations of Computer Science, San Juan, PR, 1991, pp. 342-347.

[9] K.MEHLHORN, Polynomial and abstract subrecursive classes, J. Comput. System Sci., 12 (1976), pp. 147-178.

[10] M. TowNseND, Complexity for type-2 relations, Notre Dame J. Formal Logic, 31 (1990), pp. 241-262.

SIAM J. COMPUT. © 1996 Society for Industrial and Applied Mathematics
Vol. 25, No. 1, pp. 133-168, February 1996 006

LINEAR TIME AND MEMORY-EFFICIENT COMPUTATION*
KENNETH W. REGAN'

Abstract. A realistic model of computation called the block-move (BM) model is developed. The BM regards
computation as a sequence of finite transductions in memory, and operations are timed according to a memory cost
parameter p. Unlike previous memory-cost models, the BM provides a rich theory of linear time, and in contrast
to what is known for Turing machines (TMs), the BM is proved to be highly robust for linear time. Under a wide
range of ; parameters, many forms of the BM model, ranging from a fixed-wordsize random-access machine (RAM)
down to a single finite automaton iterating itself on a single tape, are shown to simulate each other up to constant
factors in running time. The BM is proved to enjoy efficient universal simulation, and to have a tight deterministic
time hierarchy. Relationships among BM and TM time complexity classes are studied.

Key words. computational complexity, theory of computation, machine models, Turing machines, random-
access machines, simulation, memory hierarchies, finite automata, linear time, caching

AMS subject classifications. 68Q05, 68Q10, 68Q15, 683Q68

1. Introduction. This paper develops a new theory of linear-time computation. The
block-move (BM) model introduced here extends ideas and formalism from the block-transfer
(BT) model of Aggarwal, Chandra, and Snir [2]. The BT is a random-access machine (RAM)
with a special block-transfer operation, together with a parameter &+ : N — N called a
memory-access cost function. The RAM’s registers are indexed 0,1,2,. .., and @(a) denotes
the cost of accessing register a. A block transfer has the form

copylay...bilinto [ay...b;],

and is valid if these intervals have the same size m and do not overlap. With regard to a particular
W, the charge for the block transfer is m + () time units, where ¢ = max{ay, by, az, b> }. The
idea is that after the initial charge of u(a) for accessing the two blocks, a line of consecutive
registers can be read or written at unit time per item. This is a reasonable reflection of
how pipelining can hide memory latency, and accords with the behavior of physical memory
devices (see [3], p. 1117, or [34], p. 214). An earlier paper [1] studied a model called HMM
which lacked the block-transfer construct. The main memory-cost functions treated in these
papers are ig(a) := [log,(a + 1)1, which reflects the time required to write down the
memory address a, and the functions uy(a) := [a'/?] withd = 1,2, 3, ..., which model the
asymptotic increase in communication time for memory laid out on a d-dimensional grid. (The
cited papers write f in place of u and « for 1/d.) The two-level input/output (1/0) complexity
model of Aggarwal and Vitter [3] has fixed block size and a fixed cost for accessing the outer
level, while the uniform memory hierarchy (UMH) model of Alpern, Carter, and Feig [5]
scales block size and memory access cost upward in steps at higher levels.

The BM makes the following changes to the BT. First, the BM fixes the wordsize of
the underlying machine, so that registers are essentially the same as cells on a Turing tape.
Second, the BM provides native means of shuffling and reversing blocks. Third and most
important, the BM allows other finite transductions S besides copy to be applied to the data
in a block operation. A block move has the form

Slay...b1linto[ay...bs].

*Received by the editors June 17, 1993; accepted for publication (in revised form) July 28, 1994. This research
was supported in part by NSF Research Initiation Award CCR-9011248.

*Department of Computer Science, State University of New York at Buffalo, 226 Bell Hall, Buffalo, NY 14620-
2000.

133

134 KENNETH W. REGAN

If x is the string formed by the symbols in cells a; through by, this means that S(x) is written
to the tape beginning at cell a; in the direction of b,, with the proviso that a blank B appearing
in the output S(x) leaves the previous content of the target cell unchanged. This proviso
implements shuffle, while reverse is handled by allowing b; < a; and/or b, < a;. The
block move is valid if the two intervals are disjoint and meets the strict boundary condition
if S(x) neither overflows nor underflows [a; . .. b,]. The work performed in the block move
is defined to be the number |x| of bits read, while the memory-access charge is again p(c),
¢ = max{ay, by, ap, b, }. The p-time is the sum of these two numbers. Adopting terms from
[5], we calla BM M memory efficient if the total memory-access charges stay within a constant
factor (depending only on M) of the work performed, and parsimonious if the ratio of access
charges to work approaches O as the input length n increases.

In the BT model, Aggarwal, Chandra, and Snir [2] proved tight nonlinear lower bounds of
O[nlogn] with u = w1, Onloglogn] with u = pg4, d > 1, and O[nlog” n] with & = ey,
for the so-called “touch problem” of executing a sequence of operations during which every
value in registers R; ... R, is copied at least once to Ry. Since any access to R, is charged the
same as copying R, to Ry, this gives lower bounds on the time for any BT computation that
involves all of the input. In the BM model, however, the other finite transductions can glean
information about the input in a way that copy cannot. Even under the highest cost function
w1 that we consider, many interesting nonregular languages and functions are computable in
linear time.

1.1. Previous models. It has long been realized that the standard unit-cost RAM model
[21], [31], [18] is too powerful for many practical purposes. Feldman and Shapiro [22]
contend that realistic models M, both sequential and parallel, should have a property they call
“polynomial vicinity,” which we state as follows: let C be a data configuration, and let H¢
stand for the finite set of memory locations (or data items) designated as “scanned” in C. For
all ¢ > 0, let I, denote the set of locations (or items) i such that there exists an M-program
that, when started in configuration C, scans i within ¢ time units. Then the model M has
vicinity v(t) if for all C and ¢, |I,|/|Hc| < v(t). In three-dimensional space, real machines
“should have” at most cubic vicinity. The RAM model, however, has exponential vicinity even
under the log-cost criterion advocated by Cook and Reckhow [18]. So do the random-access
Turing machine (RAM-TM) forms described in [30], [26], [7], [14], [64], and so do TMs
with tree-structured tapes (see [57], [63], [S1], [52]). Turing machines with d-dimensional
tapes (see [31], [60], [50]) have vicinity O(t¢), regardless of the number of such tapes or
number of heads on each tape, even with head-to-head jumps allowed. The standard TM
model, with d = 1, has linear vicinity. The “RAM with polynomially compact memory” of
Grandjean and Robson [29] limits integers i that can be stored and registers a that can be used
to a polynomial in the running time 7. This is not quite the same as polynomial vicinity—if
t <« T, the machine within ¢ steps could still address a number of registers that is exponential
in . The BM has polynomial vicinity under 4 (though not under p0g), because any access
outside the first ¢¢ cells costs more than ¢ time units. The theorem of [56] that deterministic
linear time on the standard TM (DLIN) is properly contained in nondeterministic TM linear
time (NLIN) is not known to carry over to any model of superlinear vicinity.

1.2. Practical motivations. The BM attempts to capture, with a minimum of added
notation, several important properties of computations on real machines that the previous
models neglect or treat too coarsely. The motivations are largely the same as those for the BT
and UMH. As calibrated by p, memory falls into a hierarchy ranging from relatively small
amounts of low-indexed fast memory up through to large amounts of slow external storage.
An algorithm that enjoys good temporal locality of reference, meaning that long stretches of
its operation use relatively few different data items, can be implemented as a BM program

LINEAR TIME AND MEMORY-EFFICIENT COMPUTATION 135

that first copies the needed items to low memory (figuratively, to a cache) and is rewarded
by a lower sum of memory-access charges. Good spatial locality of reference, meaning that
needed data items are stored in neighboring locations in approximately the order of their need,
is rewarded by the possibility of batching or pipelining a sequence of operations in the same
block move. However, the BM appears to emphasize the sequencing of data items within a
block more than the BT and UMH do, and we speak more specifically of good serial access
rather than spatial locality of reference. The BM breaks sequential computation into phases
in which access is serial and the operation is a finite transduction, and allows “random” access
only between phases. Both p-time(n) and the count R(n) of block moves provide ways to
quantify random access as a resource. The latter also serves as a measure of parallel time,
since finite transductions can be computed by parallel prefix sum. Indeed, the BM is similar
to the Pratt—Stockmeyer vector machine [61], and can also be regarded as a fixed-wordsize
analogue of Blelloch’s “scan” model [11].

1.3. Results. The first main theorem is that the BM is a very robust model. Many diverse
forms of the machine simulate each other up to constant factors in @-time, under a wide range
of cost functions p. Allowing multiple tapes or heads, expanding or limiting the means of tape
access, allowing invalid block moves, making block boundaries preset or datadependent in a
block move, and even reducing the model down to a single finite automaton that iterates itself
on a single tape make no or little difference. We claim that this is the first sweeping linear-time
robustness result for a natural model of computation. A “linear speed-up” theorem, similar
to the familiar one for Turing machines, makes the constant factors on these simulations as
small as desired. All of this gives the complexity measure pu-time a good degree of machine
independence. Some of the simulations preserve the work (w) and memory-access charges
(u-acc) separately, while others trade w off against p-acc to preserve their sum.

Section 2 defines the basic BM model and also the reduced form. Section 3 defines all
the richer forms, and §4 proves their equivalence. The linear speed-up theorem and some
results on memory efficiency are in §5. The second main result of this paper, in §6, shows
that like the RAM but unlike what is known for the standard multitape Turing machine model
(see [36], [24]), the BM carries only a constant factor overhead for universal simulation. The
universal BM given is efficient under any p4, while separate constructions work for pjog. In
consequence, for any fixed @ = g Or fiog, the BM complexity classes DuTIME[¢] form a
tight deterministic time hierarchy as the order of the time function ¢ increases. Whether there
is any hierarchy at all when p rather than ¢ varies is shown in §7 to tie back to older questions
of determinism versus nondeterminism. This section also compares the BM to standard TM
and RAM models and studies BM complexity classes. Section 8 describes open problems,
and §9 presents conclusions.

2. The block-move model. We use A for the empty string and B for the blank character.
N stands for {0, 1, 2, 3, ... }. Characters in a string x of length m are numbered xox; « - - X;—1.
We modify the generalized sequential machine (GSM) of [36] so that it can exit without
reading all of its input.

DEFINITION 2.1. A generalized sequential transducer (GST) is a machine S with compo-
nents (Q, T, 8, p, s, F),where F C Q is the set of terminal states, s € Q \ F is the start state,
§:(Q\ F)xTI' —> Q is the transition function, and p : (Q \ F) x I' — I'* is the output
function. The 1/O alphabet I' may contain the blank B.

A sequence (4o, X0, g1, X15 - - - » gm—1> Xm—1, Gm) is a halting trajectory of S on input x
ifgo = S, qm € F, XoX1...Xm—1 IS an initial substring of x, and for 0 < i < m—1,
8(qi, x;) = qi+1. The output S(x) is defined to be p(qo, x0)-P(q1, X1) -+ P(Gm—1> Xm—1)-

By common abuse of notation we also write S(-) for the partial function computed by S.
Except briefly in §8, all finite-state machines we consider are deterministic. A symbol ¢ is an

136 KENNETH W. REGAN

E— +—>

o1 ... a

F1G. 1. BM with allowed head motions in a pass.

endmarker for a GST S if every transition on ¢ sends S to a terminal state. Without loss of
generality, B is an endmarker for all GSTs.

The intuitive picture of our model is a “circuit board” with GST “chips,” each of which
can process streams of data drawn from a single tape. The formalism is fairly close to that for
Turing machines in [36].

DEFINITION 2.2. A block machine (BM) is denotedby M = (Q, X, T, 8, B, Sy, F), where

e Q is a finite set consisting of GSTs, move states, and halt states;
F is the set of halt states;
every GST has one of the four labels Ra, La, OR, or OL;
move states are labeled either \a/2], 2a, or 2a+1;
X is the I/O alphabet of M, while the work alphabet T is used by all GSTs;
the start state Sy is a GST with label Ra; and
e the transition function § is a mapping from (Q \ F) x I' to Q.

We find it useful to regard GSTs as “states” in a BM machine diagram, reading the machine
in terms of the specific functions they perform, and submerging the individual states of the
GSTs onto alower level. M has two tape heads, called the “cell-0 head” and the “cell-a head,”
which work as follows in a GST pass (Fig. 1). Let o [i] stand for the symbol in tape cell i, and
for i, j € N with j < i allowed, let o[i ... j] denote the string formed by the symbols from
celli tocell j.

DEFINITION 2.3. A pass by a GST S in a BM works as follows, with reference to the current
address a and each of the four modes Ra, La,OR, 0L :

(Ra) S reads the tape moving rightward from cell a. Since B is an endmarker for S, there
isacellb> ainwhich S exits. Let x == ola...bland y := S(x). If y = A, the
pass ends with no change in the tape. For 'y # A, let ¢ := |y| — 1. Then y is written
into cells [0...c], except that if y; = B, cell i is left unchanged. This completes the
pass.

(La) S reads the tape moving leftward from cell a. Unless S runs off the left end of the
tape (causing a “crash”), let b < a be the cell in which S exits. As before let
x:=ola...bl,y = Sx),andif y # A, c := |y| — 1. Then formally, for0 <i <c,
if yi # B thenoli] := y;, while if y; = B then o[i] is unchanged.

(OR) S reads from cell O, necessarily moving right. Let c be the cell in which S halts. Let
x:=o0[0...c],y := S(x),and b := a + |y| — 1. Then y is written rightward from
a into cells [a . . . b], with the same convention about B as above.

(OL) This is the same as OR, except that b := a — |y| + 1, and y is written leftward from
ainto[a...b].

Here a, b, and c are the access points of the pass. Each of the four kinds of passes is valid if
either (i) y = A, (ii) a, b, ¢ < 1, or (iii) ¢ < min{a, b}. The case y = X is called an empty
pass, while if |x| = 1, then it is called a unit pass.

In terms of §1, Ra and La execute the block move S[a...b] into [0...c], except that
the boundaries b and ¢ are not set in advance and can depend on the data x. Similarly OR and

LINEAR TIME AND MEMORY-EFFICIENT COMPUTATION 137

non-B
B B B B
Start »>@ —>l —ofl}— —» to rest of M
a:=2a+l a:=2a+1 put right pull right
copy c>o c@
(* Current address Append $ to output

isnow = 2n+1 *)

FiG. 2. A BM that makes a fresh track.

OL execute S[0...c]into[a...b]. We make the distinction that in a pass, the read and write
boundaries may depend on the data, while in a block move (formalized in the next section),
they are set beforehand. The tape is regarded as linear for passes or block moves but as a
binary tree for addressing. The root of the tree is cell 1, while cell O is an extra cell above
the root. The validity condition says that the intervals [a ...b] and [O. . . ¢] must not overlap,
with a technically convenient exception in case the whole pass is done in cells O and 1. If a
pass is invalid, M is considered to “crash.” A pass of type Ra or La figuratively “pulls” data
to the left end of the tape, and we refer to it as a pull; similarly, we call a pass of type OR or
OL a put. Furthering the analogy to internal memory or to a processor cache, these pass types
might be called a fetch and writeback, respectively. An La or OL pass can reverse a string on
the tape.

DEFINITION 2.4. A valid computation ¢ byaBM M = (Q, £, T, 8, B, So, F) is defined
as follows. Initially a = 0, the tape contains x in cells 0. . . |x|—1 with all other cells blank,
and Sy makes the first pass. When a pass by a GST S ends, let ¢ be the character read on
the transition in which S exited. Then control passes to §(S, ¢). In a move state q, the new
current address a' equals |a/2], 2a, or 2a+1 according to the label of q, and letting d be
the character in cell a’, control passes to state 8(q, d). All passes must be valid, and a valid
computation ends when control passes to a halting state. Then the output, denoted by M (x),
is defined to be o[0...m—1], where o[m] is the leftmost non-¥. character on the tape. If
M is regarded as an acceptor, then the language of strings accepted by M is denoted by
L(M) :={x € *|M(x) halts and outputs 1}.

The convention on output is needed since a BM cannot erase, i.e., write B. Alternatively,
for an acceptor, F could be partitioned into states labeled ACCEPT and REJECT.

DEFINITION 2.5. A memory-cost function is any function u : N — N with the properties
(@ n(0) =0, (b) (Va)u(a) < a,and (c) (VN = 1)(Va)u(Na) < Nu(a).

Our results will only require the property (c'): (YN > 1)(AN’ = 1) (V®*a) u(Na) <
N’u(a). While property (c) can be named by saying that w is “sublinear,” we do not know
a standard mathematical name for (c’), and we prefer to call either (c) or (¢’) the tracking
property for the following reason.

EXAMPLE 2.1. Tracking. Figure 2 diagrams a multichip BM routine that changes the input
X = X0X] -+ Xp—1 10 Xo@X1@" - * Xn—2@Xn—1 @ $, where @ acts as a “surrogate blank,” and
only @ or B appears to the right of the $. This divides the tape into two tracks of odd and even
cells. A BM can write a string y to the second track by pulling it as ByoBy1 -+ - BYym—1BYm,
since the blanks B leave the contents of the first track undisturbed. Two strings can also be
shuffled this way. Since u(2a) < 2u(a), the tracking no more than doubles the memory-access
charges.

The principal memory cost functions we consider in this paper are the log-cost function
Miog(@) := [logy(a + 1)1, and for all d > 1, the d-dimensional layout function p.(a) =
[a'/4]. These have the tracking property.

138 KENNETH W. REGAN

DEFINITION 2.6. For any memory-cost function ., the w-time of a valid pass that reads x
and operates the cell-a head in the interval [a . . . b] is given by p(a) + |x| + w(b). The work
of the pass is | x|, and the memory-access charge is p(a) + u(b). A move state that changes a
to a' performs 1 unit of work and has a memory-access charge of (a) + u(a’). The sum of
the work over all passes in a valid computation ¢ is denoted by w(C), the total memory-access
charges by w-acc(C), and the total ju-time by u(¢) := w(c) + p-acc(?).

Intuitively, the charge for a pass is w(a) time units to access cell a, plus |x| time units for
reading or writing the block, plus u(b) to communicate to the central processing unit (CPU)
that the pass has ended and to reset the heads. We did not write max{ w(a), w(b) } because b
is not known until after the time to access a has already been spent; this makes no difference
up to a factor of two. Replacing |x| by |x| + | S(x)| or by max{ |x|, |S(x)|}, or adding w(c) to
w(a) + n(b), also make no difference in defining w or p-acc, this time up to a constant factor
that may depend on M.

DEFINITION 2.7. For any input x on which a BM M has halting computation ¢, we define
the following complexity measures.

Work: w(M, x) = w().

Memory access: w-acc(M, x) := p-acc(c).

u-time: u-time(M, x) :== w(M, x) + pu-acc(M, x).

Space: s(M, x) := the maximum of a for all access points a in ¢ .
Pass count: R(M, x) := the total number of passes in C .

M is dropped when it is understood, and the above are extended in the usual manner to
functions w(n), u-acc(n), p-time(n), s(n), and R(n) by taking the maximum over all inputs
x of length n. A measure of space closer to the standard TM space measure could be defined
in the extended BM models of the next section by placing the input x on a separate read-
only input tape, but we do not pursue space complexity further in this paper. The pass count
appears to be sandwiched between two measures of reversals for multitape TMs, namely the
now-standard one of [59], [35], [16] and the stricter notion of [43], which essentially counts
keeping a TM head stationary as a reversal.

DEFINITION 2.8. For any memory-cost function w and recursive functiont : N — N,
DuTIME](t] stands for the class of languages accepted by BMs M that run in time t(n), i.e.,
such that for all x, pu-time(M, x) < t(|x|). TLIN stands for D TIME[O (n)].

We also write DuTIME[¢] and TLIN for the corresponding function classes. Section 7
shows that TLIN is contained in the TM linear-time class DLIN. We argue that languages and
functions in TLIN have true linear-time behavior even under the most constrained implemen-
tations.

We do not separate out the work performed from the total memory-access charges in
defining BM complexity classes, but do so in adapting the following notions and terms from
[5] to the BM model.

DEFINITION 2.9. (a) A BM M is memory efficient, under a given memory-cost function
W, if there is a constant K such that for all x, p-time(M, x) < K-w(M, x).

(b) M is parsimonious under w if u-time(M, x)/w(M, x) — 1 as |x| —> oo.

Equivalently, M is memory efficient under u if u-acc(M, x) = O(w) and parsimonious
under p if w-acc(M, x) = o(w), where the asymptotics are as |x| — co. The intuition, also
expressed in [5], is that efficient or parsimonious programs make good use of a memory cache.

Definition 2.9 does not imply that the given BM M is optimal for the function f it
computes. Indeed, from Blum’s speed-up theorem [12] and the fact that j-time is a complexity
measure, there exist computable functions with no p-time-optimal programs at all. To apply
the concepts of memory efficiency and parsimony to languages and functions, we use the
following relative criterion.

LINEAR TIME AND MEMORY-EFFICIENT COMPUTATION 139

Start)

BS$
$.$

é
$A

Accept Reject BA Exit and Restart

F1G. 3. Reduced-form BM for the language of balanced parentheses.

DEFINITION 2.10. (a) A function f is inherently w-efficient if for every BM M, that
computes f, there is a BM M, that computes f and a constant K > 0 such that for all x,
u-time(My, x) < K-w(My, x).

(b) f is inherently p-parsimonious if for every BM My computing f there is a BM M,
computing f such that imsup,,_, ., p-time(My, x)/w(Mo, x) < 1.

By definition, p-parsimony = p-efficiency, and if f is inherently efficient (resp., par-
simonious) under 1, then f is inherently efficient (resp., parsimonious) under every memory-
cost function p < w;.

Just for the next three examples, we drop the validity condition on rightward pulls; that is,
we allow the tape intervals [a ... b] and [0. .. c] to overlap in an Ra move. This is intuitively
reasonable so long as the cell-0 head does not overtake the cell-a head and write over a cell
that the latter has not read yet. Theorem 4.1 will allow us to drop the validity condition with
impunity, but the proof of Theorem 2.1 below requires that it be in force.

EXAMPLE 2.2. Balanced parentheses. Let D stand for the language of balanced paren-
thesis strings over ¥ := {(,)}. Let the GST S work as follows onany x € T*: If x = A, S
goes to a terminal state marked ACCEPT; if x begins with “/”, S goes to REJECT. Else S erases
the leading “/” and thereafter takes bits in twos, translating

ey ((— () =) O A) A

Ifx endsin “/” or|x|is odd, S also signals REIECT. Then S has the property that for any x # X\
that it does not immediately reject, x € Dy <= S(x) € Dy. Furthermore, |S(x)| < |x|/2.
We can think of Dy as being self-reducible in a particularly sharp sense.

Figure 3 shows the corresponding BM in the “reduced form” defined below. The “$”
endmarker is written on the first pass and prevents leftover “garbage” on the tape from
interfering with later passes. We take this for granted in some later descriptions of BMs. For
any memory-cost function i, the running time of M is bounded by

logy n

) > 0 +2' + @),

i=0

which is O(n) even for i = . Hence the language D, belongs to TLIN.

EXAMPLE 2.3. Counting. Let ¥ := {a,b}. We can build a GST S with alphabet
[={a,b,0,1,8$, B} that runs as follows on inputs of the form x' = xu$ with x € {a,b}*
andu € {0, 1}*: S erases bits xo, x3, X4, . .. of x and remembers |x| modulo 2. S then copies
u, and on reading the final $ (or on the first pass, B), S outputs 0$ if |x| was even, 13 if |x|

140 KENNETH W. REGAN

was odd. S is also coded so that if x = A, S goes to HALT. Let M be the BM which iterates
S on input x. Then M (x) halts with |x| in binary notation on its tape (followed by “$” and
“garbage”). The -time for this iteration is likewise O(n) even for u = ;.

EXAMPLE 2.4. Simulatinga TM. Let T := (Q, £, T, 8, B, qo, F) be a single-tape TM in
the notation of [36]. Define the ID alphabet of T to be I'y :== (Q x Y UT U { A, $}, where
A, $ ¢ T. The simulating BM M on an input x = xg - - - X, makes a rightward pull that
lays down the delimited initial ID N(qo, X0)X1X2 * - - Xn—1$ of T (x). The finite control of T is
turned into a single GST S with alphabet Ty that produces successive IDs in the computation
with each pass. Whenever T writes a blank, M writes @. Let T be programmed to move its
head to cell O before halting. Then the final pass by M removes the A and $ and leaves exactly
the output y := T (x) on the tape. Actually, because a BM cannot erase tape cells, y would
be followed by some number of symbols @, but Definition 2.4 still makes y the output of M.
Hence the BM is a universal model of computation.

The machines in Examples 2.2-2.4 only make rightward pulls from cell 0. Each is really a
GST that iterates on its own output, a form generally known as a “cascading finite automaton”
(CFA). Up to small technical differences, CFAs are comparable to the one-way “sweeping
automata” studied by Ibarra et al. [37]-[41], [15]. These papers characterize both one-way
and two-way arrays of identical finite-state machines in terms of these and other automata and
language classes. The following shows that the BM can be regarded as a generalization of these
arrays, insofar as a BM can dynamically change its origin point a and direction of operation.

DEFINITION 2.11. The reduced form of the BM model consists of a single GST S whose ter-
minal states q have labelsl (q) € {a, |la/2], 2a, 2a+1, HALT }andl,(q) € { Ra, La,0R,0L }.
The initial pass has mode Ra with a = 0. Whenever a pass by S exits in some state q with
l1(q) # HALT, the labels l,(q) and l,(q) determine the address and mode for the next pass.
Computations and complexity measures are defined as before.

THEOREM 2.1. Every BM M is equivalent to a BM M’ in reduced form, up to constant
factors in all five measures of Definition 2.7.

Proof. The idea is to combine all the GSTs of M into a single GST § and save the current
state of M in cells 0 and 1. Each pass of M is simulated by at most six passes of M’, except for
a “staircase” of O(logn) moves at the end which is amortized into the constant factors. This
simulation expands the alphabet but does not make any new tracks. The details are somewhat
delicate, owing to the lack of internal memory when a pass by M’ ends, and require the validity
condition on passes. The full proof is in the appendix. d

In both directions, the tape cells used by M and M’ are almost exactly the same, i.e., M
is simulated “in place.” Hence we consider the BM and the reduced form to be essentially
identical. The idea of gathering all GSTs into one works with even less technical difficulty
for the extended models in the next section.

3. Extensions of the BM. We consider five natural ways of varying the BM model: (1)
Remove or circumvent the validity restriction on passes. (2) Provide “random addressing”
rather than “tree access” in move states. (3) Provide delimiters a;, by, a,, b, for block moves
Slay...b1] into [ay ... by], where the cell by in which S exits is determined or calculated
in advance. (4) Require that for every such block move, b, is such that S(x) exactly fills
[az ... b;]. (5) Provide multiple main tapes and GSTs that can read from and write to k-many
tapes at once. These extensions can be combined. We define them in greater detail, and in the
next section, prove equivalences among them and the basic model.

DEFINITION 3.1. A BM with buffer mechanism kas a new tape called the buffer tape and
GST chips S with the following six labels and functions:

(RaB) The GST S reads x from the main tape beginning in cell a and writes S(x) to the
buffer tape. The output S(x) must have no blanks in it, and it completely replaces any

LINEAR TIME AND MEMORY-EFFICIENT COMPUTATION 141

previous content of the buffer. Taking b to be the cell in which S exits, the
u-time is w(a) + |x| + w(b) as before.

(LaB) This is defined as for RaB, but reading leftward from cell a.

(BaR) Here S draws its input x from the buffer, and S(x) is written on the main tape starting
in cell a. Blanks in S(x) are allowed and treated as before. When S exits, even if it
has not read all of the buffer tape, the buffer is flushed. With b the destination of the
last output bit (or b = a if none), the p-time is likewise w(a) + |x| + w(b).

(BalL) This is defined as for BaR, but writing S(x) leftward from cell a.

(OB) This is defined as for RaB, but using the cell-0 head to read the input, and p-time
x| + p(0).

(BO) This is defined as for BaR, but using the cell-0 head to write the output; likewise,
wu-time |x| + p(c).

All six types of passes are automatically valid. Further details of computations and complexity

measures are the same as before. A BM with limited buffer mechanism has no GSTs with

labels BO or OB and consequently has no cell-0 head.

The original BM’s moves of type Ra or La can now be simulated directly by RaB or LaB
followed by B0, while OR or OL is simulated by OB followed by BaR or BaL. For the limited
buffer mechanism, the simulation is trickier, but for © = p; we will show that it can be done
efficiently. The next extension allows “random access.”

DEFINITION 3.2. The address mechanism adds an address tape and new load moves
labeled RaA, LaA, and 0A. These behave and are timed like the buffer moves RaB, LaB, and
0B, respectively, but direct their output to the address tape instead. As with the buffer, the
output completely replaces the previous content of the address tape. Addresses are written
in binary notation with the least significant bit leftmost on the tape. The output a’ of a load
becomes the new current address. Move states may be discarded without loss of generality.

EXAMPLE 3.1. Palindromes. Let Pal denote the language of palindromes over a given
alphabet 3. We sketch a BM M with address mechanism that accepts Pal. On input x, M
makes a fresh track on its tape via Example 2.1 and runs the procedure of Example 2.3 to
leave n := |x| in binary notation on this track. In running this procedure, we either exempt
rightward pulls from the validity condition or give M the buffer mechanism as well. The fresh-
track cell which divides the right half of x from the left half has address n’ :=2|n/2] + 1. A
single 0A move can read n but copy the first bit as 1 to load the address n’'. M then pokes a
$ into cell n'. Another load prepends a “0” so as to address cell 2n, and M then executes a
leftward pull that interleaves the left half of x with the right half. A bit-by-bit compare from
cell 0 finishes the job. M also runs in linear p-time.

The address mechanism provides for indirect addressing via a succession of loads and
makes it easy to implement pointers, linked lists, trees, and other data structures and common
features of memory management on a BM, subject to charges for the number and size of the
references.

Thus far, all models have allowed data-dependent block boundaries. We call any of the
above kinds of BM M self-delimiting if there is a subalphabet I", of endmarkers such that all
GSTs in M terminate precisely on reading an endmarker. (If we weaken this property slightly
to allow a GST S to exit on a nonendmarker on its second transition, then it is preserved in
the proof of Theorem 2.1.) The remaining extensions preset the read block [a; .. . b{] and the
write block [a; . . . b;], and this is when we speak of a block move rather than a pass. Having b,
fixed would let us use the original GSM model from [36]. However, the machines that follow
are always able to drop an endmarker into cell b; and force a GST S to read all of [a; ... b;].
Hence we may ignore the distinction and retain “GST” for consistency.

DEFINITION 3.3. A block move is denoted by Sla; ...b1] into [ay ... by] and has this
effect on the tape: Let x := olay...b1]. Then S(x) is written to the tape beginning at a,

142 KENNETH W. REGAN

and proceeding in the direction of by, with the proviso that each blank in S(x) leaves the
target cell unchanged, as in Definition 2.3. The block move is valid so long as the intervals
[a;...b1] and |az .. . by] are disjoint. It underflows if |S(x)| < |b, — az| 4+ 1 and overflows
if1S()| > |by —az| + 1.

By default we tolerate underflows and overflows in block moves. We draw an analogy
between the next form of the BM and a text editor in which the user may mark a source and
destination block and perform an operation on them. One important point is that the BM does
not allow insertions and deletions of the familiar “cut-and-paste” kind; instead, the output
flows over the destination block and overwrites or lets stand according to the use of B in
Definition 2.3. Willard [69] describes a model of a file system that lacks insertion and deletion
and gives fairly efficient algorithms for simulating them. Many text processors allow the user
to define and move markers for points of immediate access in a file. Usually the maximum
number of markers allowed is fixed to some number m. Adopting a term from data structures,
we give the machine four fingers, with labels a;, b;, az, b>, which can be assigned among the
m markers and which delimit the source and destination blocks in any block move. Finger a;
may be thought of as the “cursor.” The dual use of “a;” as the fixed label of a finger and as the
number of the cell its assigned marker currently occupies may cause some confusion, but we
try to keep the meanings clear below. The same applies to a,, b;, and b;, and to later usage of
these labels to name four special “address tapes.”

DEFINITION 3.4. A finger BM has four fingers, labeled a,, by, az, by, and some number
m > 4 of markers. Initially, one marker is on the last bit of the input, while all other markers
and all four fingers are on the first bit in cell 0. An invocation of a GST S executes the block
move Slay...b]into [a;...by]. The work performed by the block move is |by — a;| + 1,
while the memory-access charge is u(c), where ¢ = max{ay, by, az, by }. In a move state,
each marker on some cell a may be moved to cell |a/2], 2a, or 2a+1 (or kept where it is),
and the four fingers may be redistributed arbitrarily among the markers. The cost of a move
state is the maximum of p(a) over all addresses a involved in finger or marker movements;
those remaining stationary are not charged.

One classical difference between “fingers” and “pointers” is that there is no fixed limit on
the number of pointers a program can create. Rather than define a form of the BM analogous
to the pointer machines of Schonhage and others [45], [66], [67], [49], [10], we move straight
to a model that uses “random-access addressing,” a mechanism usually considered stronger
than pointers (for in-depth comparisons, see [9], [10] and also [68]). The following BM form
is based on a random-access TM (RAM-TM; cf. “RTM” in [30] and “indexing TM” in [14],
[64], [8]), and is closest to the BT.

DEFINITION 3.5. A RAM-BM has one main tape, four address tapes, which are labeled
ay, by, ay, and by and given their own heads, and a finite control comprised of RAM-TM states
and GST states. In a RAM-TM state, the current main-tape address a is given by the content
of tape a,. The machine may read and change both the character in cell a and those scanned
on the address tapes and move each address tape head one cell left or right. In a GST state S,
the address tapes give the block boundaries for the block move S [a; ...b]into [a; ... by] as
described above, and control passes to some RAM-TM state. A RAM-TM step performs work
1 and incurs a memory-access charge of max{ u(a), u(b) }, where b is the rightmost extent
of an address tape head. Block moves are timed as above. Both a RAM-TM step and a block
move add 1 to the pass count R(n). Other details of computations are the same as for the
basic BM model.

A fixed-wordsize analogue of the original BT model of [2] can now be had by making
copy the only GST allowed in block moves. A RAM-BM with address loading can use block
moves rather than RAM-TM steps to write addresses.

LINEAR TIME AND MEMORY-EFFICIENT COMPUTATION 143

DEFINITION 3.6. A finger BM or a RAM-BM obeys the strict boundary condition if in every
block move Sla; ...b1]into [ay ...bs], |S(x)| = |by — ay| + 1.

This constraint is notable when S is such that | S(x)| varies widely for different x of the
same length. The next is a catch-all for further extensions.

DEFINITION 3.7. For k > 2, a k-input GST has k-many input tapes and one output tape,
withd : (Q\ F) xT* = Qand p : (Q\ F) x '* — I'*. Each input head advances one cell
at each step.

DEFINITION 3.8. A multitape BM has some number k > 2 of main tapes, each possibly
equipped with its own address and/or buffer tapes, and uses k-input GSTs in passes or block
moves.

Further details of computations and complexity measures for multitape BMs can be in-
ferred from foregoing definitions, and various validity and boundary conditions can be formu-
lated. The proofs in the next section will make the workings of these machines clear.

Finally, given two machines M and M’ of any kind and a cost function u, we say M’
simulates M linearly in wu if u-time(M', x) = O (u-time(M, x)) + O(|x|). The extra “0O (n)”
is stated because like the RAM-TM, several BM variants give a sensible notion of computing
in sublinear time, while all the simulations to come involve an O (n)-time preprocessing phase
to set up tracks on the main tape. Now we can state the following theorem.

THEOREM 3.1 (main robustness theorem). For any rational d > 1, all forms of the BM
defined above simulate each other linearly in |4-time.

If we adapted a standard convention for TMs to state that every BM on a given input x takes-
time at least |x| + 1 (cf. [36]), then we could say that all the simulations have constant-factor
overheads in wy-time.

4. Proof of the main robustness theorem. The main problems solved in the proof are:
(1) how to avoid overlaps in reading and writing by “tape-folding” (Theorem 4.1), (2) how
to simulate random access with one read head whose movements are limited (Lemma 4.6),
and (3) how to precompute block boundaries without losing efficiency (Lemma 4.11 through
Theorem 4.15). Analogues of these problems are known in other areas of computation, but
solving them with only a constant-factor overhead in w-time requires some care. Some of the
simulations give constant-factor overheads in both w and p-acc, but others trade off the work
against the memory-access charges. We also state bounds on w’ and p-acc’ for the simulating
machine M’ individually, and on the number R’ of passes M’ requires, in or after proofs. The
space s'(n) is always O(s(n)).

4.1. Simulations for data-dependent block boundaries. The first simulation uses the
tracking property u(Na) < Nu(a) from Definition 2.5 and does not give constant-factor
overheads in all measures. We give full details in this proof, in order to take reasonable
shortcuts later.

THEOREM 4.1. For every BM M with buffer, there is a BM M’ such that for every i, M’
simulates M linearly in p-time.

Proof. Let M have the buffer mechanism. Let C be the largest number of symbols output
in any transition of any GST in M. Let K := [log,(2C +6)] and N := 2%, The BM M’ first
makes N-many tracks by iterating the procedure of Example 2.1. The track comprising cells
0, N,2N, 3N, ... represents the main tape of M, while the two tracks flanking it are “marker
tracks.” The track through cells 2, N + 2, ... represents the buffer tape. The other tracks are
an “‘extension track,” a “holding track,” C-many “pull bays,” and C-many “put bays.” M’ uses
the symbol @ to reserve free space in tracks and uses A and $ to mark places in the tape. A
$ also delimits the buffer track so that leftover “garbage” does not interfere. Two invariants

144 KENNETH W. REGAN

are that before every simulated pass by M with current address a, the current address a’ of
M’ equals Na, and the tracks apart from the main and buffer tracks contain only blanks and
@ symbols.

The move a := 2a by M is simulated directly by @’ := 2a’ in M’. The move a := 2a+1
is simulated by effecting a’ := |a’/2] K-many times, then @’ := 2a’+1, and then @’ := 24’
K -many times. The move a := |a/2] is simulated by effecting @’ := |a’/2] (K + 1)-many
times, and then a’ := 2a K-many times. Since K is a constant, the overhead in p-acc for
each move is constant. Henceforth we refer to “cell a on the main track” in place of a’.

We need only describe how M’ simulates each of the six kinds of pass by M. Since M
has the OB and BO instructions, we may assume that the current address a for the other four
kinds is always > 1. For each state g of a GST S of M, M’ has a GST S/, which simulates S
starting in state ¢, and which exits only on the endmarker $. We write just S when g = s or
q is understood.

(a) RaB. M’ chooses a; := 2a, pokes A to the left of cell a, and pokes $ to the left of
cell a;. M’ then pulls y; := S’[a...a; —1] to the C-many pull bays. By the choice of C,
|y1] € Ca, and so the pull is valid.

If the cell b in which S exits falls in the interval [a...a; —1], then S’ likewise exits in
cell b. Since the exit character has no $, the transition out of §' communicates that S has
exited. M’ then makes (K + 1)-many moves a := 2a so that M’ now addresses cell Na; on
the main track, which is cell N2a; overall. M’ puts y := y; onto the extension track and then
pulls y onto the buffer track. One more put then overwrites the used portion of the extension
track with @ symbols. M’ then effects a := |a/2] (K + 1)-many times so that it addresses
the original cell a again, and re-simulates S in order to overwrite the copy of y on the pull
bays by @ symbols. All of these passes are valid. M’ finally removes the A and $ markers at
cells a and a;. The original time charge to M was w(a) + m + (b), where m = b —a + 1.
The time charged to M’ in this case is bounded by

u(Na) +2+4+ u(Na —1)+ u(Naj) +2+ u(Na; — 1) (poke A and $)
4+ w(Na) + Nm + u(Nb) (simulate S)
+2Ku(N%ay) (move to cell Na;)
+3u(N2%a) + 3N2%m + 3u(N%a; + N2(m — 1)) (put and pull y)

+ 2K u(N%ay) + w(Na) + Nm + w(Nb) + 2u(Na) + 4 +2u(Na;) (clean up)

< (14N 4+ 8N2?K + 12N?)u(a) + BN? +2N)m + 2N u(b) + 4. (m—1 < a).
So far, both the work w’ and the memory-access charges p-acc’ to M’ are within a constant
factor of the corresponding charges to M.

If S does not exitin [a...a; —1], § exits on the $ marker. This tells M’ to do a dummy
pull to save the state g that S was in when S’ hit the $, and then to execute a put that copies
y; from the pull bays to the put bays rightward from cell a. M’ then effects a := 2a so now
a = ay, lets a; := 2ay, pokes another $ to the left of cell a,, pulls y, := S[I l[ai...a—1]to
the pull bays, and then puts y, into the put bays rightward of cell a;. Since the $ endmarker
is in cell Na; —1, this move is valid; nor does y, overlap y;. If S didn’t haltin [a; ...ay—1],
M’ saves the state ¢’ that S was in when $’ hit cell a,, setting things up for the next stage
with a3 := 2a,. The process is iterated until S finally exits in some cell b in some interval
[aj—1...a;—1]. Then y := y;y,---y; equals S[a...b]. M’ moves to cell Na;, puts y onto
the extension track rightward of cell Na;, pulls y to the buffer track, and “cleans up” the
extension track as before. M’ then takes (K +1)-many steps backward to cell ¢;_; and cleans
up the pull and put bays with a pull and a put. Finally, M’ effects a := |a/2] until it finds
the A originally placed at cell a, meanwhile removing all of the $ markers, and then re-
moves the A. This completes the simulated pull by S.

LINEAR TIME AND MEMORY-EFFICIENT COMPUTATION 145

Let j be such that a; < b < a;;;. Then the number m of symbols read by S is at least
a; — a. An induction on j shows that the running totals of both w’ and p-acc’ stay bounded
by Dm, where D is a constant that depends only on M, not on a or j. Hence the p-time for
the simulation by M’ is within 2D times the u-time charged to M for the pass. (However,
when j > 0, u-acc’/u-acc may no longer be bounded by a constant.)

(b) 0B. M’ first runs S on cell O only and stores the output y, on the first cells of the C-
many put bays. M’ then follows the procedure for RaB with a = 1. The analysis is essentially
the same.

(c) LaB. M’ first pokes a A to the left of cell a and $ to the left of cell [a/2]. The A allows
M’ to detect whether a is even or odd; i.e., whether it needs to simulate a := 2a ora := 2a+1
to recover cell a. M’ then pulls y; := S'[a ... la/2]] to the pull bays. Note that cell |a/2]
is included; M’ avoids a crash by remembering the first 2C-many symbols of y; in its finite
control. If S didn’texitin[a...|a/2]|], M’ remembers the state g that S would have gone to
after processing cell |a/2]. M’ then copies cells [0. .. |a/2] —1] of the main track into cells
[la/2]+1...a] of the holding track, and does a leftward pull by S; to finish the work by S,
stashing its output y, on the put bays. If S does not exit before hitting the $, then S ran off
the left end of the tape and M crashed. Let y := y;y,. Since |y| < Ca, M’ can copy y to the
buffer via cell Na of the extension track by means similar to before, and “clean up” the pull
and put bays and holding and extension tracks before returning control to cell a. Here both w’
and p-acc’ stay within a fixed constant factor of the corresponding charges to M for the pass.

(d) BaR. M’ marks cell a on the left with a $, and does a dummy simulation of S on cells
[0...a—1] of the buffer track. If S exits in that interval, M’ puts S[0...a— 1] directly onto
the main track, and this completes the simulated pass. If not, M’ puts yp := S[0...a—1]
onto the holding track rightward of cell a, and remembers the state g in which S’ hits the $.
M’ then follows the procedure for simulating RaB beginning with S’, except that it copies
@“yoy - - - yj to the extension track via cell Na;. The final pull then goes to the main track but
translates @ by B so that the output written by M lines up with cell a of the main track. There
is no need to “clean up” the read portion of the buffer tape since all writes to it are delimited.
A calculation similar to that for RaB yields a constant bound on the p-time and work for the
simulated pass, though possibly not on the p-access charges.

(e) BO. Under the simulation, this is the same as 0B with the roles of the main track and
buffer track reversed and @ translated to B.

(f) BaL. M’ marks cell a on the left with $ and puts y; := S[0...a—1] rightward from
cell a of the holding track. If S exits in that interval of the buffer tape, M’ then pulls y; to
the left end of the holding track. Note that if |y;| > a+1, then M was about to crash. M’
remembers the first symbol ¢’ of y; in its finite control to keep this last pull valid just in case
|y1l = a+1. Then M’ puts ¢’ into cell a, pokes a $ to the left of cell |a/2], and executes a
“delay-1 copy” of the holding track up to the $ into the main track leftward from cell a. If
a B or @ is found on the holding track before the $, meaning that |y;| < |a/2], the copy
stops there and the simulated BaL move is finished. If not, i.e., if |y;| > |a/2], then the delay
allows the character ¢” in cell |a/2]—1 of the holding track to be suppressed when the $ is hit,
so that the copy is valid. Since |y;| > |a/2], M’ can now afford to do the following: poke
a $ to the right of cell a, effect a := 2a, and do a leftward pull of cells [2a ...a+1] of the
holding track into cells [0 . . . a—1] of the main track, translating @ as well as B by B to leave
previous contents of the main track undisturbed. This stitches the rest of y; beginning with ¢
correctly into place. M’ also cleans up cells [0. .. 2a] of the holding track by methods seen
before, and removes the $ signs.

If S does not exit in [0...a—1], M’ executes a single Ra move starting S’ from cell a,
once again holding back the first character of this output y, just in case y; was empty and

146 KENNETH W. REGAN

|y2| = a+1. If this pull is invalid, then likewise |y2| > a+1 and M crashed anyway. M’ then
concatenates y; to the string y; kept on the holding track to form y, and does the above with
y. As in LaB, the overhead in both w and p-acc is constant. This completes the proof. a

The converse simulation of a BM by a BM with buffer is clear and has constant-factor
overheads in all measures, by remarks following Definition 3.1. Itis interesting to ask whether
the above can be extended to a linear simulation of a concatenable buffer (cf. [46]), but this
appears to run into problems related to the nonlinear lower bounds for the touch problem in
[2]. The proof gives w'(n) = O(w(n) + n) and R'(n) = O(R(n)logs(n)). For u-acc,
the charges in the rightward moves are bounded by a constant times Zi.o:gb w(b/27). For
W = g this sum is bounded by 2d 114 (), and this gives a constant-factor overhead on wg4-acc.
However, for & = o4 there is an extra factor of log b.

COROLLARY 4.2. A BM that violates the validity conditions on passes can be simulated
linearly by a BM that observes the restrictions.

We digress briefly to show that allowing simultaneous read and overwrite on the main
tape does not alter the power of the model, and that the convention on B gives no power other
than shuffle. A two-input Mealy machine (2MM) is essentially the same as a 2-input GST with
p:(Q\F)xTI?—>T*

PROPOSITION 4.3. Let M be a BM with the following extension to the buffer mechanism:
in a put step, M may invoke any 2MM S that takes one input from the buffer and the other
from the main tape, writes to the main tape, and halts when the buffer is exhausted. Then M
can be simulated by a BM M’ with buffer at a constant-factor overhead in all measures, for
all .

Proof. To simulate the put by a 2MM S, M’ copies the buffer to a separate track so as to
interleave characters with the segment of the main tape of M concerned. Then M’ invokes a
GST S that takes input symbols in twos and simulates S. Finally M’ copies the output of S’
from its own buffer over the main tape segment of M. g

PROPOSITION 4.4. At a constant-factor overhead in all measures, for all w, a BM M can
be simulated by a BM M’ that lacks B but has the following implementation of shuffle: M’
has the above buffer extension, but restricted to the fixed 2MM which interleaves the symbols
of its two input strings.

Proof. Let I'” consist of " together with all ordered pairs of characters from I'; then the
fixed 2MM can be regarded as mapping I'* x I'* onto I *. Now consider any GST S of M
that can output blanks. Let S’ write a dummy character @ in place of B, and let M’ shuffle
the output of S’ with the content of the target block of the main tape. Finally M’ executes a
pass which, for all ¢y, ¢; € I with ¢; # @, translates (¢;, @) to ¢; and (cy, ¢;) to ¢;. 0

Besides the tracking property, our further simulations require something which, again for
want of a standard mathematical name, we call the following.

DEFINITION 4.1. A memory-access cost function [u has the tape-compression property if
Ve > 0)(36 > 0)(V*®a) u([dal) < € u(a).

LEMMA 4.5. For any d > 1, the memory-cost function g has the tape compression
08

property. In consequence, ZLO}’ wa([b/211) = O(uq(b)).

Proof. Take § < €9. If § of the form 1/2* satisfies (a) for € := 1/2, then by elementary
calculation, for all but finitely many b, 312" 4 ([b/217) < 2ku(b). O

Lemma 4.5 promises a constant-factor overhead on the memory-access charges for “stair-
cases” under u4, whereas an extra log factor can arise under pj0g. The simulation of random
access by tree access in the next lemma is the lone obstacle to extending the results that follow
to f10g. Since any function i (m) with the tape-compression property must be 2[m€] for some
€ > 0, this pretty much narrows the field to the functions p4. To picture the tree we write UP,
DOWN LEFT, and DOWN RIGHT in place of the moves |a/2], 2a, and 2a+1 by M'.

LINEAR TIME AND MEMORY-EFFICIENT COMPUTATION 147

LEMMA 4.6. For every BM M with address mechanism, there is a basic BM M’ such that
foralld > 1, M’ simulates M linearly under i .

Proof. We need to show how M’ simulates a load step of M that loads an address a;
from cells [ap . .. bo] of the main tape. Let m := |ag — bg| + 1. M’ makes one spare track
for operations on addresses. M’ first pulls a; in binary to the left end of this track. By
Theorem 4.1 we may suppose that this pull is valid. The cost is proportional to the charge of
w(ag) +m + u(bg) to M for the load. By our convention on addresses, the least significant
bit of a; is leftmost. In this pull, M’ replaces the most significant “1” bit of a; by a “$”
endmarker. M’ then moves UP until its cell-a head reaches cell 1. With k := [log, ao], the
total memory-access charges so far are proportional to Z:f:o w(2%), which is bounded by a
fixed constant times ((ag) by Lemma 4.5. Since the number of bits in a; is bounded by Cm,
where C depends only on M, the work done by M’ is bounded by 2Cm + k. Since k < w(ag),
we can ignore k. Hence the u-time charged so far to M’ is bounded by a fixed constant of that
charged to M for the load.

M’ now executes a rightward pull that copies all but the bit b before the $ endmarker,
b being the second most significant bit of a;. This pull is not valid owing to an overlap on
the fresh track, but by Corollary 4.2 we may suppose that it is valid. If » = 0 M’ moves
DOWN LEFT, while if b = 1, M’ moves DOWN RIGHT. M’ then executes a put that copies the
remainder of a; (plus the $) rightward from the new location a. M’ iterates this process until
all bits of a; are exhausted. At the end, a = a;. Because of the tracking, M’ moves DOWN
LEFT once more so that it scans cell 2a, which is cell a of the main track. This completes the
simulated load. Recalling |a;| < Cm, and taking / := [log,(a;)], the w-time for this second
part is bounded by a constant times

!
3) D o n@) +20m — i) + p@ +20m —).
i=0

By Lemma 4.5, the total memory-access charges in this sum are bounded by a fixed constant
times s(a;). The work to simulate the load is proportional to m -, that is, to (log a;)?, which
causes an extra log factor over the work by M in the load. The key point, however, is that since
M loaded the address a;, M will be charged w4(a;) on the next pass, which is asymptotically
greater than (log a;)2. Hence the uy-time of M’ stays proportional to the ji4-time of M. 0

COROLLARY 4.7. For every BM M with both the address and buffer mechanism, we can
find a basic BM M', and a BM M" with the limited buffer mechanism, such that for any d > 1,
M’ and M" simulate M linearly under 1.

Proof. The constructions of Lemma 4.6 and Theorem 4.1 yield M’. For M”, we may first
suppose that M is modified so that whenever M loads an address a, it first stores a spare copy
of a at the left end of a special track. Now consider a pass of type B0 or 0B made by M. M"
invokes a GST that remembers cell O and writes 1 to the address tape. Then witha’ = 1, M”
simulates the pass by a BaR or Ra’B move. M” then recovers the original address a by loading
it from the track. Thus far M” is a BM with address and buffer that doesn’t use its cell O head.
The method of Lemma 4.6 then removes the address mechanism in a way unaffected by the
presence of the buffer. g

We remark that Lemma 4.6 and Theorem 4.1 apply to different kinds of pass by M, with
two exceptions. First, pulling 1 to the left end of the track in the proof of Lemma 4.6 may
require simulating a buffer. However, this can be accounted against the cost to M for the load.
Second, the buffer is needed for overlaps in the further processing of a;. However, this is
needed for at most O (loglog(a;))-many passes, each of which involves O (loga;) work, and
these costs are dominated by the time to process a; itself. Hence in Corollary 4.7, the bounds

148 KENNETH W. REGAN

from Lemma 4.6 and Theorem 4.1 are additive rather than compounded, and with u = puy
we obtain for M’ pg-acc'(n) = O(ug-acc(n)), piog-acc’(n) = O(pog-acc(n)logs(n)),
w'(n) = O(w(n) +n + R(n)logs(n)), and R'(n) = O(R(n)logs(n)).

LEMMA 4.8. For every RAM-BM M, we can find a BM M’ with the address and buffer
mechanisms, such that for any memory-cost function u that is Q(logn), M’ simulates M
linearly under 1.

Proof. First, M’ makes separate tracks for the address tapes and worktapes of M, and
also for storing the locations of the heads on these tapes of M. Whenever M begins a block
move S{a;...b1] into [a;...b,], M’ first computes the signs of b, — a; and b, — a,, and
remembers them in its finite control. M’ then loads the true address of cell a; on the main tape,
and pulls the data through a copy of S labeled RaB or LaB—depending on sign—to the buffer.
Then M’ loads O to access ay, loads a; itself, and finally copies the buffer right or left from
cell a. Since p is Q2(logn), the w-time charged to M’ is bounded by a fixed constant times
the charge of 1 4 |b; — a;| +max{ u(a;), n(az), u(b1), uw(by) } incurred by M. Similarly the
wu-acc charge to M’ has the same order as that to M, though if |b; — a;| < log(b;), this may
not be true of the work.

If M executes a standard RAM-TM transition, the costto M is 1 + . (a;) + u(c), where a;
is the cell addressed on the main tape and c is the greatest extent of an address tape or worktape
head of M. M’ first loads a; and writes the symbol written by M into location a; with a unit
put. Then M’ loads each of the addresses for the other tapes of M in turn, updates each one
with a unit pull and a unit put, remembers the head movement on that tape, and increments
or decrements the corresponding address accordingly. The time charge for updating the other
tapes stays within a fixed constant factor of u(c).]

Remark. 1t would be nice to have the last simulation work when the charge to M for a
RAM-TM transition is just 1 + p(a;). The difficulty is that even though |a;| < a1, it need not
hold that ¢ < a;, since M might be using a lot of space on its worktapes. The issue appears to
come down to whether a multitape TM running in time ¢ can be simulated by a BM in u-time
O(t). We discuss related open problems in §8.

LEMMA 4.9. A finger BM can be simulated by a BM with address and buffer mechanisms,
with the same bounds as in Lemma 4.8.

Proof. M’ stores and updates the finitely many markers on separate tracks in a similar
manner to the last proof. The extra work per block move simulated to write or load these
addresses is O(log s(n)) as before. Both here and in Lemma 4.8, R'(n) = O(R(n)). a

THEOREM 4.10. Let M be a RAM-BM, a finger BM, or a BM with the address and/or
buffer mechanisms. Then we can find a BM M’ that simulates M linearly under any 4.

Proof. This follows by concatenating the constructions of the last two lemmas with that
of Corollary 4.7. Since R'(n) = O(R(n)) in the former, the bounds on work and pass count
remain w’(n) = O(w(n) +n + R(n)logs(n)) and R'(n) = O(R(n)logs(n)). a

This completes the simulation of most of the richer forms of the model by the basic BM,
with a constant factor overhead in p4-time. By similar means, one can reduce the number of
markers in a finger BM all the way to four. In going up to the richer forms, we encounter the
problem that the finger BM and RAM-BM have preset block boundaries for input, and if the
strict boundary condition is enforced, also for output.

4.2, Simulations for preset block boundaries. The simulation in Theorem 4.1 does not
make M’ self-delimiting because it does not predetermine the cell b € [ayp . . . a;] in which its
own simulating GST §’ will exit. We could try forcing S’ to read all of [ag . ..a;], but part
(a) of the proof of Theorem 4.1 had a; := 2ay, and if, e.g., u(ag) = /ap and b — a is small,
M’ would do much more work than it should. However, if one chooses the initial increment
e to be too small in trying a, := ag + e, a; := ap + 2e, az := ag + 4e, ..., the sum of the

LINEAR TIME AND MEMORY-EFFICIENT COMPUTATION 149

pu-access charges may outstrip the work. To balance the charges we take e := w(ap). This
requires M’ to calculate u(a) dynamically during its computation and involves a concept of
“time-constructible function” similar to that defined for Turing machines in [36].

DEFINITION 4.2. Let p be a memory-cost function, and let t : N — N be any function.
Then t is ju-time constructible if t (n) is computable in binary notation by a BM M in u-time
O(t(n)).

Note that the time is in terms of n, not the length of n. We use this definition for t = u
itself, in saying that u is w-time constructible. The following takes d to be rational because
there are real numbers d > 1 such that no computable function whatever gives [m!/?] to
within a factor of 2 for all m. In this section it would suffice to estimate [m'/¢] by some
binary number of bit length |m|/d, but we need the proof idea of incrementing fingers and the
exact calculation of u4(m) for later reference.

LEMMA 4.11. For any rational d > 1, the memory cost function g is jLg-time con-
structible by a finger BM that observes the strict boundary condition.

Proof. For any rational d > 1, the function [m!/?] is computable in polynomial time,
hence in time (logm)°®" by a single-tape TM T. The finger BM M simulates the tape of
T beginning in cell 2, and tracks the head of T with its “main marker” m;. M also uses a
character @ which is combined into others like so: if T scans some character c in cell a, M
scans (¢, @). M then uses two unit block moves S[a...a] into [0...0] and S[0...0] into
[a...a] toread and write what T does. It remains to simulate the head moves by T'.

To picture a tree, we again say UP, DOWN LEFT, and DOWN RIGHT in place of moves
from a to |a/2], 2a, or 2a+1. M can test whether a is a left or right child by moving UP and
DOWN LEFT and seeing whether the character scanned contains the @. If T moves right and a
is a left child, M then intersperses moves UP and DOWN RIGHT with unit block moves to and
from cell 0 to change (c, @) back to ¢ and place @ into cell a+1. If instead a is a right child,
M introduces a new marker ms into cell 1 and writes A there. M moves ms DOWN LEFT to
count how far UP m; has to go until it reaches either a left child or the root (i.e., cell 1). By
unit block moves, M carries @ along with m;, and by assigning a finger to marker ms, can
test whether ms is on cell 1. If m reaches a left child, M moves it Up, DOWN RIGHT, and then
DOWN LEFT until m5 comes back to the A. Then m is in cell a+1. If m hits the root marked
by A, then a had the form 2% — 1, and so M moves m; DOWN LEFT k times. The procedure
for decrementing m; when T moves left is similar, with RIGHT and LEFT reversed.

For each step by T, the work by M is proportional to loga. By Lemma 4.5 for u,4, the
total memory-access charge for incrementing or decrementing a finger in cell a is O (uq(a)).
Since a < (logm)©W, the total uy-time for the simulation is still a polynomial in logm, and
hence is o(wq(m)). 0

This procedure can also be carried out on one of 2X-many tracks in a larger machine,
computing a + 2K instead of a £ 1 to follow head moves by T. The counting idea of the next
lemma resembles the linear-size circuits constructed for 01 sorting in [55].

LEMMA 4.12. The function #a(x), which gives the number of occurrences of “a” in a
string x € {a, b}*, is computable in linear (1 -time by a BM that observes the strict boundary
condition.

Proof. The BM M operates two GSTs S; and S, that read bits of x in pairs. Each records
the parity p of the number of pairs “ab” or “ba” it has seen thus far, and if |x| is odd, each
behaves as though the input were xb. S; outputs the final value of p to a second track. S,
makes the following translations

aar> a, bb+— b, ab,ba — {b .lf p=0,
a if p=1

to form a string x” such that |x’| = [|x|/2]. Then #a(x) = 2#a(x’) + p. This is iterated until

150 KENNETH W. REGAN

no a’s are left in x, at which point the bits p combine to form #a(x) in binary notation with
the least significant bit first.

M begins with one marker m; in cell n — 1. We first note that even setting up the two
tracks requires a trick to get two more markers to cell n —1. M starts a marker ms in cell 1
and moves it DOWN LEFT or DOWN RIGHT according to whether m; is on a left or right child.
When m) reaches cell 1, ms records n—1 in reverse binary notation. Then M starts moving ms
back up while ferrying m, and m3 along with m,. Then M places m, and m3 into cells 2n and
4n—1, and with reference to Example 2.1, executes (¢ — c@)[0...n—1]into [2n...4n—1]
and copy[2n ...4n—1] into [0...2n—1]. This also uses one increment and decrement of a
marker as in the proof of Lemma 4.11.

M uses a new marker mg to locate where the next bit p will go, incrementing mg after
running S;. In running S;, always | S,(x")| = [|x’|/2], and by appropriate parity tests using
its markers m1, m,, and m3, M can place its fingers so that all these moves are valid and meet
the strict boundary condition. For the kth iteration by S,, these three markers are all on cells
with addresses lower than n/2%~2, and even if each needs to be incremented by 1 with the help
of ms, the w, charges for simulating the iteration still total less than a fixed constant times
n/2%=2. This also subsumes the O (log” n) charge for updating ms. Hence the sum over all
iterations is still O (n). a

THEOREM 4.13. For every BM M and rational d > 1, we can find a finger BM M’ that
simulates M linearly under g and observes the strict boundary condition.

Proof. As in the proof of Theorem 4.1, let C be the maximum number of characters output
in any GST transition of M, and let K := log,(2C + 6). M’ first makes N := 2K tracks, by
using the last proof’s modification of the procedure of Example 2.1. Besides 2C-many tracks
for handling the output of passes and one track for the main tape of M, M’ uses one track to
record the current address a of M with the least significant bit rightmost, one to compute and
store e := w4(a) via Lemma 4.11, one to store addresses a; below, two for Lemma 4.12, and
one for other arithmetic on addresses. M’ uses eight markers. Marker m; occupies cell Na
to record the current address a of M. A move to |a/2] by M is handled by moving m; Up
K +1 times and DOWN LEFT K times, and other moves are handled similarly. Meanwhile,
marker mg stays on the last bit of the stored address a, and updating a requires only one
marker increment or decrement and O (log log a) work overall. From here on we suppress the
distinction between a and Na and other details that are the same as in Theorem 4.1.

First consider a rightward pull by M that starts a GST S from cell ag on its main tape. M’
has already stored ay in binary, and computes e := p4(ap). Since wq(ag) < ap, e fits to the
left of marker mg in cell |a|. M’ then places m3 into cell |a|+1 and my into cell 2|a|+1 and
executes two block moves from [|a|...0] and [0...|a|] into [|a|+1...2|a|+1] that shuffle
ap and e on their respective tracks with the least significant bits aligned and leftmost. M’ then
executes add [|a|+1...2|a|+1] into [|a]| ... 0] to produce a;. A final carry that would make
lai] > lap| and cause a crash can be caught and remembered in the finite control of M’ by
running a “dummy addition” first and then marking cell 2|a|+1 to suppress its output by the
GST add. Then M’ “walks” marker m, out to cell a; by using m3 to read the value of a; and
ms to increment ms3.

Next M’ walks m4 out to cell e (i.e., Ne), and keeps m3 in cell 0. Let S’ be a copy of S
which pads the output of each transition out to length exactly C, and which sends its output z
to the C-many tracks used as “pull bays.” 5’ is also coded so that if S exits, S’ records that fact
and writes @© in each transition thereafter. Then M’ can execute S’ [a;...a2]into[0...e]in
compliance with the strict boundary condition. Now M’ can calculate the number i of non-@
symbols in z by the method of Lemma 4.12. To write the true output y; = Slag...a;] and
ensure the block move is valid, M’ must still use the pull bays to hold y;, so M’ calculates

LINEAR TIME AND MEMORY-EFFICIENT COMPUTATION 151

i’ :=[i/C7 (actually, i’ = N[i/C7). Next M walks m4 out to cell i’ and can finally simulate
the first segment of the pass by S by executing S[a; ...az] into [0...7'].

If S exited in [ag...a;], M’ need only transfer the output y; of the last pass onto the
left end of the main track. This can be done in two block moves after locating markers into
cells i’, Ci’, and 2Ci’. Else, M’ transfers y; instead to the put bays and assigns a new marker
my to the “stitch point” in the put bays for the next segment of y. The final marker mg goes
to cell a; and is used for the left end of the read block in all succeeding segments. In three
block moves, M’ can both double e to 2e and compute a, := ag + 2e using add as before.
If and when the current value of e has length greater than |ag|, M’ reassigns marker mg to
the end of e rather than gy, incrementing it each time e is doubled. Then M’ walks m, out
to cell a; and, remembering the state g of S where the previous segment left off, produces
y2 := §la;+1...a;] by the same counting method as before. To stitch y; into place on the
put bays, M’ converts the current location of m into a numeric value k, adds it to i := |ys|,
and finds cells i + k and 2i + k for two block copies. In case S did not exit in [a; . ..az], m7
is moved to cell i 4 k, mg to ap, m, to az := ag + 4e, and the process is repeated.

Let b be the actual cell in which S exits, and let j > 0 be such that a; < b < aj;1. Then
the wq-time charged to M for the pull is at least

@ tj = palao) + palao +27'e) + 277 e > 2e + 207 e,

(For j = 0, read “2/~1” as 0.) By Lemma 4.5, the memory access charge for walking a marker
out to cell a; is bounded by a constant (depending only on d) times 14(a;). The charges for
the marker arithmetic come to a polynomial in log a;, and the charges for stitching segments
y; into place stay bounded by the work performed by M’. Hence the yi,4-time charged to M’
is bounded by a constant times

J i1
&) uj = pa(ao) +) paao+2'e) +e+) e
i=0 i=0

Thenu; < e+ Y I_qua(@*lag) +2e < 2/t2e 4+ 2/e < 10y;.

For a leftward pull step by M, M’ uses the same choice of e := py(ag). If e > ay/2, then
M’ just splits [0. . . ap] into halves as in the (LaB) part of the proof of Theorem 4.1. Else, M’
proceeds as before with ;. := ag — 2/e and checks at each stage whether ;.| > ao/2 so
that the next simulated pull will be valid. If not, then the amount of work done by M thus far,
namely 2/~ e, is at least ag/4. Thus M’ can copy all of [a; ...0] to another part of the tape
and finish it off while remaining within a constant factor of the charge to M. The remaining
bounds are much the same as those for a rightward pull above.

For a rightward or leftward put, marker m is kept at the current address a, cell O is
remembered in the finite control, and the procedure for a rightward pull is begun with ag = 1
and mg assigned there. Here e = 1, and the rest is a combination of the (BaR) or (BaL) parts
of the proof of Theorem 4.1 to ensure validity, and the above ways to meet the strict boundary
condition in all block moves. 0

Remarks. This simulation can be made uniform by providing d as a separate input. It can
also be done using 8 tracks rather than 2C + 6, though even taking e := u,(ag)/C does not
guarantee that the third stage of a rightward pull, which reads [ag + 2e, ap + 4], will be valid.
The fix is first to write the strings y; further rightward on the tape, then assemble them at the
left end. Theorem 4.13 preserves w(n) + pg-acc(n) up to constant factors, but does not do
so for either w(n) or pug-acc(n) separately. When d < 1, the case b = a gives a worst-case
extra work of a'/4, while the case of b = 2a gives a total memory-access charge of roughly
2(loga)(d — 1)/d times uq(a). This translates into w'(n) = O(w(n) + n + R(n)s(n)'/4)

152 KENNETH W. REGAN

and ug-acc’'(n) = O(ug-acc(n)logs(n)). However, when d = 1, both w and w-acc are
preserved up to a factor of 10N. Allowing that p4(ap) can be estimated to within a constant
factor in O(logap) block moves, the pass count still carries R'(n) = O(R(n) logzs(n))
because each movement in walking a marker to ¢; adds 1 to R’. The following shows some
technical improvements of having addressing instead of tree access.

THEOREM 4.14. Let 1 = piog O |4 = g With d rational. Then every BM M can be
simulated linearly under u by a RAM-BM M’ with address loading that observes the strict
boundary condition.

Proof. For p4 the simulation of the finger BM M’ from the last proof by a RAM-BM is
clear—the RAM-BM can even use RAM-TM steps for the address arithmetic. For w0, the
point is that M’ can take e := |ay|, and we may presume e is already stored. The calculated
quantities a; can be loaded in one block move. (Using RAM-TM steps to write them would
incur p0g access charges proportional to log ag log log ag.) The tradeoff argument of the proof
of Theorem 4.13 works even for 104, and the above takes care of a constant-factor bound on
the other steps in the simulation. This also gives R'(n) = O(R(n) logs(n)). 0

The tradeoff method of Theorem 4.13 seems also to be needed for the following “tape-
reduction theorem.”

THEOREM 4.15. For every rational d > 1, a multitape BM M can be simulated linearly
in wy-time by a one-tape BM M’ .

Proof. Suppose that M uses k tapes, each with its own buffer, and GSTs S that produce
k output strings as well as read k inputs. We first modify M to a machine M’ that has k main
tracks, k address tracks, one “input track,” and one “buffer track.” For any pass by M with
S, M’ will interleave the k inputs on the input track, do one separate pull for each of the k
outputs of S, and interleave the outputs on its buffer track. When M subsequently invokes a
k-input GST T to empty its buffers, M’ uses a one-tape GST that simulates 7 on the buffer
track, invoking it k times to write each of the k outputs of 7 to their destinations on the main
tracks.

It remains only to show how M’ marks the portions of the inputs to interleave. As in the
proof of Theorem 4.13, there is the difficulty of not knowing in advance how long S will run
on its k inputs. The solution is the same. M’ first calculates the maximum a; of the addresses
ai, ..., a on its address tracks and then calculates e := uy(a;). Foreachi, 1 <i <k, M’
drops an endmarker into cell @; & e according to the direction on main track i. Then M’ copies
only the marked-off portions of the tracks, putting those on its input track, and simulates the
one-tape version S; of S. If S; exits within that portion, then M’ continues as M’ does. If S
does not exit within that portion, M’ tries again with a; & 2e, a; & 4e, . .. until it does. The
same calculation as in Theorem 4.13, plus the observation that if the direction on track j is
leftward then no track uses an address greater than 2a;, completes the proof. 0

Finally, we may restate Theorem 3.1 in a somewhat stronger form.

THEOREM 4.16. For any rational d > 1, all of the models defined in §3 are equivalent,
linearly in pgy-time, to a BM in reduced form that is self-delimiting with “$” as its only
endmarker.

Proof. This is accomplished by Theorems 2.1 through 4.15. The procedures of Lemmas
4.13 and 4.6 and Theorem 4.1 are self-delimiting and need only one endmarker $. The trick
of writing $ on special tracks into the cell immediately left or right of the addressed cell a
allows $ to survive the proof of Theorem 2.1 without being “tupled” into the characters cy, ¢y,
orc,. 0

With all this said and verified, we feel justified in claiming that there is one salient
Block Machine model, and that the formulations given here are natural. The basic BM is the
tightest for investigating the structure of computations, and helps the lower bound technique

LINEAR TIME AND MEMORY-EFFICIENT COMPUTATION 153

we suggest in Section 8. The richer forms make it easier to show that certain functions do
belong to Du s TIME[¢ (n)].

5. Linear speed-up and efficiency. The following “linear speed-up” theorem shrinks
the constants in all the above simulations, at the usual penalty in alphabet size. First, we give
a precise definition.

DEFINITION 5.1. The linear speed-up property for a model of computation and measure
of time complexity states that for every machine M with running time t(n), and every € > 0,
there is a machine M’ that simulates M and runs in time € - t(n) + O(n).

In the corresponding definition for TMs in [36], the additive O(n) term is n+1 and is
used to read the input. For the DTM, time O (n) properly contains time n+ 1, while for the
NTM these are equal [13]. For the BM under cost function u, the O (n) term is n + w(n).

THEOREM 5.1. With respect to any unbounded memory cost function | that has the tape
compression property, all of the BM variants described in §82 and 3 have the linear speed-up
property.

Proof. Let the BM M and € > 0 be given. The BM M’ uses two tracks to simulate
the main tape of M. Let § in the tape-compression property be such that for almost all 7,
u(én) < (e/12C) - u(n). Here C is a constant that depends only on M. Let k := [1/24],
let “@” stand for the blank in I', and let I'" := I'* U { B}. M’ uses B only to handle its own
two tracks. We describe M’ as though it has a buffer; the constant C absorbs the overhead for
simulating one if M’ lacks the buffer mechanism. On any input x of length n, M’ first spends
O(n) time units on a pull step that writes x into [r/k]-many characters over the compressed
alphabet I'" on the main track. Thereafter, M’ simulates M with compressed tapes. In any
pass by M that writes output to the main tape, M’ writes the compressed output to the alternate
track. M’ then uses the pattern of @ symbols in each compressed output character to mask the
elements of each main track character that should not be overwritten, sending the combined
output to the buffer. One more pass writes the result back to the main tape. If the cost to M

for the pass was w(a) + |b — a| + u(b), the cost to M’, allowing for the tracking, is no more
than

3[ula/kl) + (2/d)b —al + 2 + n(2[b/k1)]
< (e/2)u(a) + (¢/2)|b — a| + 6 + (¢/2) (D).

The “+42” and “+4-6” allow for an extra cell at either end of the compressed block. Since u
is unbounded, we have u(a) - (¢/2) + 6 < € - u(a) for all but finitely many a. The main
technical difficulty of the standard proof for TMs is averted because 1 absorbs any time that
M might spend moving back and forth across block boundaries. The compression by a factor
of € holds everywhere except for cells 1, ..., m on the main tape, where m is least such that
u(m) > 12 /€, but M’ can keep the content of these cells in its finite control. The remaining
details are left to the reader. For BMs with address tapes, we may suppose that the addresses
are written in a machine-dependent radix rather than in binary. 0

COROLLARY 5.2. For all of the simulations in Theorems 2.1-4.15, and all ¢ > 0,

(a) if M runs in py-time t(n) = w(n), then M’ can be constructed to run in py-time

€t (n) for all but finitely many n.

(b) if M runs in pg-time O(n), then M’ can be made to run in pg-time (1 + €)n.

Mostly because of Lemma 4.6 and Theorem 4.13, the above simulations do not guarantee
constant factor overheads in either w or u-acc. They do, however, preserve u-efficiency.

PROPOSITION 5.3. For all of the simulations of a machine M by a machine M’ in Theorems
2.1-4.15, and memory cost functions w they hold for, if M is w-efficient then M’ is also -
efficient.

154 KENNETH W. REGAN

Proof. Let K, be the constant from the simulation of M by M’, and let K, come from
Definition 2.9(a) for M. Then for all but finitely many inputs x, we have

p-time(M', x) < Ky(u-time(M, x) + |x]) < Ki(K2(w(M, x) + |x]) < 2K Kw(M’, x).

The last inequality follows because every simulation has w(M’, x) > w(M, x) andw(M’, x) >
|x|. Hence M’ is p-efficient.]

So long as we adopt the convention that every function takes work at least n+1 to compute,
we can state the following corollary.

COROLLARY 5.4. For any memory-cost function [y, with d > 1 and rational, the notion
of a language or function being memory efficient under |1y does not depend on the choice
among the above variants of the BM model. o

We do not have analogous results for parsimony. However, the above allows us to conclude
that ford = 1, 2, 3, ..., memory efficiency under . is a fundamental property of languages
or functions. Likewise we have a robust notion of the class Du,TIME[?(n)] of functions
computable in w,-time t(n), for any time bound ¢(n) > n. The next section shows that for
any fixed d, the classes Du,TIME[¢ (n)] form a tight hierarchy as the time function ¢ varies.

6. Word problems and universal simulation. We use a simple representation of a list
X = (xq, ..., X,) of nonempty strings in X* by the string x#. .. #x,#, where # ¢ ¥. More
precisely, we make the last symbol ¢ of each element a pair (c, #) so as to separate elements
without adding space, and also use pair characters (¢, @) or (c,$) to mark selected elements.
The size of the list is m, while the bit length of the list is n := Y - |x;|. We let r stand
for max{ |x;] : 1 <i < m}. Following [16] we call the list normal if the strings x; all have
length ». We number lists beginning with x; to emphasize that the x; are not characters.

LEMMA 6.1. (a) The function mark(X , y), which marks all occurrences of the string y in
the normal list X , belongs to TLIN.

(b) The function shuffle, which is defined for normal lists X := (x1,...,%xy) and y =
Y1y -+, Ym) Of the same length and element size r by shuffle(X ,y) = (x1, y1, X2, Y2, - -
Xm, Ym), belongs to TLIN. Here r as well as m may vary.

Remark. Even if the lists X and y are not normal, mark and shuffle can be computed
in linear y,-time so long as they are balanced in the sense that (3k)(Vi)2k~! < |x;| < 2k
This is because a balanced list can be padded out to a normal list in linear w-time (we do not
give the details here), and then the padding can be removed. To normalize an unbalanced list
may expand the bit length quadratically, and we do not know how to compute shuffle in linear
w1-time for general lists.

Proof. (a) Let r be the element size of the normal list X . If |y| # r, then there is nothing to
do. Else, the BM M uses the idea of “recursive doubling” (cf. the section on vector machines
in [6]) to produce y*, where k = [log, m1. This time is linear as a function of n = rm. Then
M interleaves ¥ and y* on a separate track, and a single pass that checks for matches between
signs marks all the occurrences of y in X (if any).

(b) Suppose m is even. M first uses two passes to divide X into the “odd list” x;@" x3
@" -+ x,,_1@" and the “evenlist” @ x,@" x,@" - - - @ x,,,. Single passes then convert these to
x1@Y x3@% -+ xp_1@% and @Y x,@% x4@°" - - @* x,,. A pull step that writes the second
over the first but translates @ to B then produces ¥/ := x1@" x,@ x3@" - - - @" x,. If m is odd
then the “odd list” is x;@" x3@" - - - @" x,,, and the “even list” is @ x,@ x4@" - - - @ x,,_ 1@,
but the final result X ’ is the same. By a similar process, M converts y to ' := @ y;@" y, - - -
@' y,,@". Writing ¥’ on top of ¥’ and translating @ to B then yields shuffle(x , y). This
requires only a constant number of passes. a

A monoid is a set H together with a binary operation o defined on H, such that o is
associative and H has an element that is both a right and a left identity for o. We fix attention

L]

LINEAR TIME AND MEMORY-EFFICIENT COMPUTATION 155

on the following representation of the monoid of transformations M g of a finite-state machine
S. M acts on the state set Q of S and is generated by the functions { g. : ¢ € X }, defined
by g.(q) = 8(q,c) for all g € Q, by letting o be composition of maps on Q, and closing
out the g. under o. Here we ignore the output function p of S, intending to use it once the
trajectory of states S enters on an argument z is computed. We also remark that M g need not
contain the identity mapping on Q, though it does no harm for us to adjoin it. By using known
decomposition theorems for finite transducers [47], [32], [48], we could restrict attention to
the cases where each g, either is the identity on Q or identifies two states (a “reset machine”)
or each g. is a permutation of Q and Mg is a group (a “permutation machine”; cf. [17]).
These points do not matter here. We encode each state in Q as a binary string of some fixed
length k, and encode each element g of M g by the list g#g(q)#- - - over all ¢ € Q. Without

loss of generality, we extend Q to Q' := {0, ..., 2¥—1} and make g the identity on elements
q =n.
The word problem for monoids is as follows: givenalistg := g,g,_1 - - - g2&1 of elements

of the monoid, not necessarily distinct, compute the representation of g, 0 g,_j0---0gp0gj.
Let us call the following the trajectory problem: given g and some w € {0, 1 }*, compute the
n-tuple (g1(w), g2(g1(w)), ..., g (w)). The basic idea of the following is that “parallel prefix
sum” is u-efficient on a BM.

LEMMA 6.2. There is a fixed BM M that, for any size parameter k, solves the word and
trajectory problems for monoids acting on {0, 1 }* in w,-time O (n - k2¥). In particular, these
problems for any fixed finite monoid belong to TLIN.

Proof. Let T be a TM which, for any k, composes two mappings hy, hy : {0, 1} —
{0, 1}* using the above representation. For ease of visualization, we make T a single-tape
TM which on any input of the form h,#h # uses only the 2k - 2% cells occupied by the input
as workspace, and which outputs s, o k;# shuffled with “@” symbols so that the output has
the same length as the input. We also program 7 so that on input A#, T leaves & unchanged.
The running time (k) of T depends only on k and is O (k2%)2. As in Example 2.4, we can
create a GST S whose input alphabet is the ID alphabet of T', such that for any nonhalting ID
I of T, S(I) is the unique ID J such that I 7 J.

The BM M operates as follows on input g := g,#g,_1#-- - #go#g #. It first saves g in
cells [(nk - 2 + 1) ... (2nk - 2¥)] of a separate storage track. We may suppose that n is even;
if n is odd, g, is left untouched by the current phase of the recursion. M first sets up the initial
ID of T on successive pairs of maps, viz. Aqogn#gn—1# A qogn—2#gn—3# - - A qogo#g1#. Then
M invokes S in repeated left-to-right pulls, until all simulated computations by 7" have halted.
Then M erases all the @’s, leaving (g, 0 g,—1)#(gn—2 © gn—3)#- - - (g2 0 g1)# on the tape. The
number of sweeps is just ¢ (k), and hence the total w-time of this phase is < 2¢(k)-n = O (n).

M copies this output to cells [((n/2)k - 264+ 1)... (nk-25)] of the storage track, and then
repeats the process, until the last phase leaves & := g, 0 g,—; 0-- - 0 g2 0 g1 on the tape. Since
the length of the input halves after each phase, the total w;-time is still O(n). This finishes
the word problem.

To solve the trajectory problem, M uses the stored intermediate results to recover the path
(w, g1 (w), g2(g1(w)), ..., h(w)) =: (w, wy, wy, ..., w,)of the givenw € {0, 1 }*. Arguing
inductively from the base case (w, h(w)), we may suppose that M has just finished computing
the path (w, wo, wy, ..., Wy—2, w,). M shuffles this with the string g #g3#gs#...#g,_ and
then simulates in the above manner a TM T~ that given a g and a w computes g(w). All this
takes w-time O (n). 0

The following presupposes that all BMs M are described in such a way that the alphabet
"y of M can be represented by a uniform code over { 0, 1 }*. This code is extended to represent
monoids M as described above.

156 KENNETH W. REGAN

THEOREM 6.3. There is a BM My and a computable function code such that for any BM
M and rational d > 1, there is a constant K such that for all inputs x to M, My on input
(code(M), code(x), d) simulates M (x) within pq-time K - wy-time(M, x).

Proof. My uses the alphabet I'y := {0, 1,@,$, (0,#), (1, #), (@, #), A, B}. By The-
orem 2.1, we may suppose that M has a single GST S = (Q,T'y, Ty, 38, p,50). Let

:= [log, II'm|1, and let [be the least integer above log, | Q] that is a multiple of k. The code
function on strings codes each ¢ € I'ys by a 0-1 string of length &, except that the last bit of
code(c) is combined with # and B is coded by @~} (@, #).

The monoid M of transformations of S is encoded by a k-tuple of elements of the form
code(c)code(g.) over all ¢ € I'y,. Here code(g.) is as described before Lemma 6.2. Dummy
states are added to Q so that code(g.) has length exactly 2/ - 2/; then code(M) has length
exactly 2%(k 4 21-2). Let C be the maximum number of symbols written in any transition
of M. The code of S includes a string code(p) that gives the output for each transition in §,
padded out with @ symbols to length exactly C (i.e., length Ck under code). The rest of the
code of M lists the mode-change information for each terminal state of S. Finally, the input
x to M is represented by the string code(x) of length |x|2*.

My has four tracks: one for the main tape of M, one for the code of M, one for simulating
passes by M, and one for scratchwork. My uses d to compute e := ugy(a), and follows just
the part of the proof of Theorem 4.13 that locates the cells a; := a + 2/=1e, in order to drop
$ characters there. This allows My to pull off from its main track in cells [a . .. a;] the code
of the first m := 2/~ e /4k characters of the string x that M reads in the pass being simulated.
(If this pass is a put rather than a pull, then e = 1 and x is in cells [1...2/7'].) Then My
changes code(z) to

7 := (code(z0))’ - (code(z1)) - - - (code(zp—1)),

where m := |z| and j := 2¥(1 4+ 2(I/k)2'). This can be done in linear y;-time by iterating
the procedure for shuffle in Lemma 6.1(b). Now foreach i, 0 <i < m — 1, the ith segment of
7’ has the same length as code(M). Next, M uses “recursive doubling” to change code(M)
to (code(M))™. This also takes only O(m) time. Then the strings z’ and (code(M))™ are
interlaced on the scratchwork track. A single pass that matches the labels code(c) to segments
of 7’ then pulls out the word g, := g, - 8z, * " * 82,1 -

M evaluates this word by the procedure of Lemma 6.2, yielding the encoded trajectory
s’ := (so, S1, .-, Sm) of S on input z. By a process similar to that of the last paragraph, My
then aligns s’ with (code(p))™ and interleaves them, so that a single pass pulls out the output
y of the trajectory. Then code(y) is written to the main tape, erasing the symbols A used for
padding and translating @ to B. The terminal state s,, of the trajectory is matched against the
list that gives the mode information for the next pass of M (Lemma 6.1(a)), and My changes
its mode and/or current address accordingly.

If the original pass by M cost u-time w(a) + m + w(b), then the simulation takes w-time
w(4a)+ O(m) + pn(4b). The constant in the “ O (m)” depends only on M. We have described
My as though there were no validity restrictions on passes, but Theorems 4.1 and 2.1 convert
My to a basic BM while keeping the constant overhead on p4-time. d

Remarks. This result implies that there is a fixed, finite collection of GSTs that form
an efficient “universal chipset.” It might be interesting to explore this set in greater detail.
The constant on the “O(m)” is on the order of 22¢+% (I + k). We inquire whether there are
other representations of finite automata or their monoids that yield notably more efficient
off-line simulations than the standard one used here. The universal simulation in Theorem
6.3 does not preserve w or wy-acc individually because it uses the method of Theorem 4.13
to compensate for its lack of “foreknowledge” about where a given block move by M will

LINEAR TIME AND MEMORY-EFFICIENT COMPUTATION 157

exit. The simulation does preserve memory efficiency, on account of Proposition 5.3. If,
however, we suppose that M is already self-delimiting in a way made transparent by code,
then we obtain constant overheads in both w and w-acc, and the simulation itself becomes
independent of .

THEOREM 6.4. There is a BM My and a computable function code such that for any
memory-cost function . and any self-delimiting BM M, there is a constant K such that for
all inputs x to M, My on input x' = (code(M), code(x)) simulates M (x) with w(U, x") <
Kw(M, x) and p-acc(U, x") < Ku-acc(M, x).

Proof. The function code is changed so that it encodes the endmarkers of M by strings
that begin with “$.” Then My pulls off the portion x of its main track up to $. The rest of the
operation of My is the same, and the bounds now require only the tracking property of w. (If
the notion of “self-delimiting” is weakened as discussed before Definition 3.3, then we can
have My first test whether a GST S exits on the second symbol of x.) 0

To use these results for diagonalization, we need two preliminary lemmas. Recall that a
function ¢ is w-time constructible if ¢t (n) is computable in binary notation in u-time O (¢ (n)).
Since all of » must be read, t must be Q2 (logn).

LEMMA 6.5. If a BM M is started on an input of length n, then any pass by M either takes
w1-time O(n) or else no more than doubles the accumulated (.-time before the pass.

Proof. Any portion of the tape other than the input that is read in the pass must have been
previously written in some other pass or passes. (Technically, this uses our stipulation that B
is an endmarker for GSTs.) Thus the conclusion follows. 0

LEMMA 6.6. For any memory-cost function w that is w-time constructible, a BM M can
maintain a running total of its own p-time with only a constant-factor slowdown.

Proof. To count the number m = |b — a| + 1 of transitions made by one of its GST chips
S in a given pass, a BM M can invoke a “dummy copy” of S that copies the content x of the
cells up to where S exits to a fresh track, and then count |x| on that track by the O (m)-time
procedure of Example 2.3. Then M invokes S itself and continues operation as normal. Since
u is Q(logn), the current address a can be copied and updated on a separate track in p-time
O(u(a)). Also in a single pass, M can add a and m in pu-time O(u(a) + m), and thus obtain
b itself. M then calculates w(b) in u-time O (u (b)), and finally adds k := w(a) + m + wu(b)
to its running total ¢ of u-time. In case t is much longer than k, we want the work to be
proportional to |k|, not to |¢|. Standard “carry—save” techniques, or alternatively an argument
that long carries cannot occur too often, suffice for this. |

THEOREM 6.7. Let d > 1 be rational, and let t| and t, be functions such that t; is [Ly-time
constructible, and t, is o(t;). Then DUTIME[t,] is properly contained in DuTIME[#,].

Proof. The proof of Theorem 6.3 encoded BMs M over the alphabet Iy, but let code’
recode M over (00 U 11)*. We build a BM M, that accepts a language D € DuTIME[#,] \
DuTIME[#] as follows. Mp has two extra tracks on which it logs its own u-time, as in
Lemma 6.6. On any input x, Mp first calculates n := |x|, and then calculates #,(n) on its
“clock track.” Next, Mp lets w be the maximal initial segment of doubled bits of x. Since
the set { code(M) : M is a BM } is recursive, Mp can decide whether w is the code’ of a BM
M in some time U (n). The device of using w ensures that there are co-many inputs in which
any given BM M is presented to Mp. If w is not a valid code, M halts and rejects.

If so, Mp runs My on input code(M)-code(x), except that after every pass by My, Mp
calculates the w-time of the pass and subtracts it from the total on its clock tape. If the total
ever falls below #,(n)/2, Mp halts and rejects. Otherwise, if the simulation of M (x) finishes
before the clock “rings,” Mp rejects if M accepts, and accepts if M rejects. By Lemma 6.5,
the total w-time of Mp never exceeds t;(n).

Now let L be accepted by a BM M, that runs in u-time t;(n). Let K; be the constant
overhead for My to simulate M in Theorem 6.3, and let K, be the overhead in Lemma 6.6.

158 KENNETH W. REGAN

Since t; is o(f;), there exists an x such that t,(|x|)/#(|x]) > 4K;K,, the maximal initial
segment w € (00U 11)* of x is code’ (M), and U (Jw|) < |x|. Then the simulation of M (x)
by Mp finishes within p-time (1/2)t;(|x|), and Mp(x) # M (x). a

It is natural to ask whether the classes D, TIME][? (n)] also form a tight hierarchy when ¢
is held constant and d varies. The next section relates this to questions of determinism versus
nondeterminism.

We observe finally that the BM in its original, reduced, and buffer forms all give the same
definition of D1, TIME[? ()], and we have the following theorem.

THEOREM 6.8. For any time functions ti, t, such that ty(n) > n, t; = o(t), and tp is
Miog-time constructible, Do TIME[?1] is properly contained in Duos TIME[#,].

Proof. Here the strict boundary condition is not an issue, but the efficient universal
simulation still requires delimiting the read block in advance. The idea is to locate cells
ai, az, as, ..., in the proof of Theorem 4.13 without addressing by the following trick. As
in Theorem 4.14, the current address ayg is already stored and e = |ap|. In a rightward pull,
rather than add ao + e, M’ puts qy itself in binary rightward from cell ay on a separate track,
appending an endmarker $. By “recursively doubling” the string ag, M’ can likewise delimit
the cells as, as, .. . Leftward pull steps are handled similarly, and put steps do not need pt10g (a0)
at all. This is all that is needed for the efficient universal simulation. The remainder follows as
above, since o i (10g-time constructible—in fact, piog(a) = |a| is computable in p-time
O(lal). o

A similar statement holds for the perhaps-larger i105-time classes for the BM variants that
do use addressing.

7. Complexity theory and the BM model. Our first result shows that the construction
in the Hennie—Stearns theorem [33], which states that any multitape TM that runs in time
t(n) can be simulated by a two-tape TM in time ¢ (n) log ¢ (n), is memory efficient on the BM
under 1. It has been observed in general that this construction is an efficient caching strategy.
DTIME[t (n)] refers to TM time, and DLIN stands for DTIME[O (n)].

THEOREM 7.1. For any function t, DTIME[t(n)] € Du; TIME[¢(n) log t (n)].

Proof. With reference to the treatment in [36], let M; be a multitape TM with alphabet
I" that runs in time ¢(n), and let M, be the two-tape TM in the proof. The k-many tapes of
M, are simulated on 2k-many tracks of the first tape of M, so that all tape heads of M, are
maintained on cell O of each track. M, uses its second tape only to transport blocks of the form
[2/-1...2/—1] from one part of the first tape to another. The functions used in these moves are
homomorphisms between the alphabets I'** and ' that pack and unpack characters in blocks.
Thus a BM M3 simulating M, can compute each move in a single GST pass. By the structure
of the blocks, any pass that incurs a memory-access charge of w1(2/) = 2/ simulates at least
2/~ moves of M,. Hence the work and the ., charges to M3 are both O (¢ (n) log ¢t (n)). O

We do not know whether the random-access capability of a BM can be exploited to give an
O(tlogt) simulation that holds the work to O(¢), even for u = pjog. Indeed, O (z log) is the
best bound we know for all memory-cost functions y between fi10g and 1. One consequence
of this proposition is that sets in DLIN can be padded out to sets in TLIN.

COROLLARY 7.2. (a) For every L € DLIN, the language { x#0*/'°81* . x e L} belongs
to TLIN.

(b) TLIN contains P-complete languages, so TLIN C NC <= P = NC.

Hence it is unlikely that all TLIN functions can be computed in polylog-many passes like the
examples in this paper. If a BM quickly compresses the amount of information remaining to
be processed into cells [0. .. /7], it can then spend O (4/n) time accessing these cells in any
order desired and still run in linear w-time.

THEOREM 7.3. Let M be a BM that runs in u-time t (n) and space s(n). Then we can find
a DTM T that simulates M in time O[t (n)s(n)/u(s(n))].

LINEAR TIME AND MEMORY-EFFICIENT COMPUTATION 159

Proof. T has two tapes, one for the main tape of M and one used as temporary storage
for the output in passes. (If M has the buffer mechanism, then the second tape of T simulates
the buffer.) Let s stand for s(n). Consider a move by M that changes the current address a to
la/2]. T can find this cell in at most 3a/2 steps by keeping count with its second tape. Since
s/a > 1, the tracking property u(Na) < Nu(a) with N := s/a gives a/u(a) < s/u(s).
Hence the ratio of the time used by T to the pu-time charged to M stays Ol[s/u(s)]. The
same holds for the moves a := 2a and a := 2a+1. T has every GST S of M in its finite
control, and simulates a pull by writing S[a . . . b] to its second tape, moving to cell 0, copying
S[a . ..b] over the first tape, and moving back to cell a. Both this and the analogous simulation
of a put by T take time O(a + b), and even the ratio of this to the memory-access charges
w(a) + n(b), not even counting the number of bits processed by M, keeps the running total
of the time logged by T below ¢ (n)s/u(s). O

COROLLARY 7.4. For any time bound t(n) > n, Du | TIME[t(n)] € DTIME[¢(n)]. In
particular, TLIN C DLIN.

More generally, for any d > 1, Dug TIME[z (n)] € DTIME[?~ (/9 (n)]. Allowing TMs
to have d-dimensional tapes brings this back to a linear-time simulation.

LEMMA 7.5. For any integer d > 1 and time bound t(n) > n, a BM M that runs in
q-time t(n) can be simulated in time O(t(n)) by a d-dimensional TM T .

Proof. T has one d-dimensional tape on which it winds the main tape of M in a spiral
about the origin, and one linear tape on which it buffers outputs by the GST S of M. In any
pass that incurs a uy charge of /4, T can walk between cell a and the origin within a'/¢
steps and complete the move. d

Let us say that a language or function in DuyTIME[O (n)] has dimension d. For a
problem above linear time, we could say that its dimensionality is the least d, if any, for which
the problem has relatively optimal BM programs that are u,-efficient (see Definition 2.10).
The main robustness theorem is our justification for this concept of dimensionality. Lemma
7.5 says that it is no less restrictive than the older concept given by d-dimensional Turing
machines. Ford > 1 we suspect that it is noticeably more restrictive. The d-dimensional tape
reduction theorem of Paul, Seiferas, and Simon [58] gives t'(n) roughly equal to ¢ (n)!*1/4,
and when ported to a BM, incurs memory access charges close to #(n)! 7?4 Intuitively, the
problem is that a d-dimensional TM can change the direction of motion of its tape head(s) at
any step, whereas this would be considered a break in pipelining for the simulating BM, and
thus subject to a memory-access charge.

We write RAM-TIME'" 8 for time on the log-cost RAM. A log-cost RAM can be simulated
with constant-factor overhead by a TM with one binary tree-structured tape and one standard
worktape [57], and the latter is simulated in real time by a RAM-TM.

PROPOSITION 7.6. For any time function t,

(a) RAM-TIME™"¢[¢(n)] C Dtiog TIME[(n) log £ (n)].

(b) Do TIME[t (n)] € RAM-TIME'"°8[z (n) log £ (n)].

Proof. Straightforward simulations give these bounds. (The extra log(n) factor in (b)
dominates a factor of loglogn that was observed by [44] for the simulation of a TM (or
RAM-TM) by a log-cost RAM.)]

For quasilinear time, i.e., time glin = n(logn)®W, the extra logn factors in Theorem
7.1 and Proposition 7.6 do not matter. Following Schnorr [65], we write DQL and NQL
for the TM time classes DTIME[glin] and NTIME[g/in]. Gurevich and Shelah [30] proved
that RAM-TIME'®8[¢lin] is the same as deterministic nearly linear time on the RAM-TM
and several other RAM-like models, and perhaps more surprisingly, that the nondeterministic
counterparts of these classes are all equal to NQL.

COROLLARY 7.7. (a) Du; TIME[¢lin] = DQL.

(b) D10 TIME[gqlin] = RAM-TIME"8[¢lin) € NQL.

160 KENNETH W. REGAN

Hence the objective of separating the classes DuTIME[O (n)], as u varies from u; through
Ha tO liog, by anything more than factors of O(logn), runs into the problem of whether
DQL # NQL, which seems as hard as showing P # NP. Whether they can be separated by
even one log n factor is discussed in the next section.

8. Open problems and further research. The following languages have been much
studied in connection with linear-time algorithms and nonlinear lower bounds. We suppose
that the lists in L,, and L, are all normal.

(a) Pattern matching: L, = { p#t : (Ju, v € {0, 1}*)t = upv }.

(b) Element (non)distinctness: Lyyp, = {x1#---#x, 1 (3, j)i < jAx; =X }.

(c) Listintersection: L, = {x1#- - - #xp, y1#---#y, 0 3P, j)xi = y; }.

(d) Triangle: Lo = {A : A is the adjacency matrix of an undirected graph that contains

a triangle}.
L 4 belongs to DLIN (see [25], [23]), and was recently shown not to be solvable by a one-way
non-sensing multihead DFA [42]. Lg,, and L;, can be solved in linear time by a RAM or
RAM-TM that treats list elements as cell addresses. L » is not believed to be solvable in linear
time on a RAM at all. The best method known involves computing A2 + A, and squaring
n X n integer matrices takes time approximately N8 where N = n2, by the methods of
[19]. (For directed triangles, cubing A is the best way known.)

OPEN PROBLEM 1. Do any of the above languages belong to TLIN? If not, prove nonlinear
lower bounds.

A BM can be made nondeterministic (NBM) by letting 8(g, ¢) be multiply valued and,
more strongly, by using nondeterministic GSTs or GSM mappings in block moves. Define
NTLIN to be linear time for NBMs of the weaker kind. Then all four of the above languages
belong to NTLIN. Moreover, they require only O (logn) bits of nondeterminism.

OPEN PROBLEM 2. Is NTLIN # TLIN? For reasonable p and time bounds t, is there a
general separation of NUTIME[? (n)] from DuTIME[¢(n)]?

Grandjean [27], [28] shows that a few NP-complete languages are also hard for NLIN
under TM linear time reductions, and hence by the theorem of [56] lie outside DLIN, not
to mention TLIN. However, these languages seem not to belong to NTLIN, nor even to
linear time for NBMs of the stronger kind. The main robustness theorem and subsequent
simulations hold for the weaker kind of nondeterminism, but our proofs do not work for the
stronger because they rerun the GST S used in a pass. We suspect that different proofs will
give similar results. A separation of the two kinds can be shown with regard to the pass-
count measure R(n), which serves as a measure of parallel time (e.g., R(n) = polylog(n)
and polynomial work w(n) by deterministic BMs characterizes NC [62]). P. van Emde Boas
[personal communication, 1994] has observed that while deterministic BMs and NBMs of the
weaker kind belong to the second machine class of [68] with R(n) as time measure, NBMs
of the stronger kind have properties shown there to place models beyond the second machine
class. Related to Open Problem 2 is whether the classes Du,TIME[O (n)] differ as d varies.
It is also natural to study memory-efficient reductions among problems.

The following idea for obtaining such separations and proving nonlinear lower bounds in
wu-time on a deterministic BM M suggests itself: let I'ys , stand for the set of access points
used in the computation of the BM M on input x. In order for M to run in linear u-time, 'y
must thin out at the high end of memory. In particular for 4 = w, there are long segments
between access points that can be visited only a constant number of times. The technical
difficulty is that block moves can still transport information processed in low memory to these
segments, and the proof of Theorem 7.1 suggests that a lower bound of Q[n log n] may be the
best achievable in this manner. In general, we advance the BM as a logical next step in the
longstanding program of proving nonlinear lower bounds for natural models of computation.

LINEAR TIME AND MEMORY-EFFICIENT COMPUTATION 161

In particular, we ask whether the techniques used by Dietzfelbinger, Maass, and Schnitger [20]
to obtain lower bounds for Boolean matrix transpose and several sorting-related functions on
a certain restricted two-tape TM can be applied to the differently restricted kind of two-tape
TM in Theorems 7.1 and 7.3. The latter kind is equivalent to a TM with one worktape and
one pushdown store with the restriction that after any POP, the entire store must be emptied
before the next PUSH.

We have found two variants to the BM model that seem to depart from the cluster of
robustness results shown in this paper. They relate to generally known issues of delay in
computations. The first definition is the special case for GSTs of Manacher’s notion of a
“fractional on-line RAM algorithm with steady-paced output” [53].

DEFINITION 8.1. Letd > Oand e > 1 be integers. A GST S runs in fixed output delay d /e
if for every terminal trajectory (qo, X0, q1s - - - » Xm—1, Gm), and eachi <m—2,|p(q;, x;)| = d
if e divides i +1, = 0 otherwise. For the exiting transition, |p(qm—1, Xm—1)| depends only on
(m mod e). The quantity C := d /e is called the expansion factor of S.

Note that the case d = 0 is allowed. Every GST function g can be written as e o f, where
f is fixed delay and e is an erasing homomorphism: pad each output of the GST for g to the
same length with “@” symbols, and let e erase them. A k-input GST with stationary moves
allowed may keep any of its input heads stationary in a transition. Such a machine can be
converted to an equivalent form coded like an ordinary GST in which every state g has a label
j €{1,...,k} such that g reads and advances only the head on tape j.

DEFINITION 8.2. (a) A BM runs in fixed output delay if every GST chip in M runs in fixed
output delay.

(b) A pause buffer BM is a BM with buffer whose put steps may use 2-input GSTs with
variable input delay (cf. Proposition 4.3).

Put another way, the BM model presented in this paper requires fixed delay in reading
input but not in writing output, while (a) requires both and (b) requires neither. We did not
adopt (b) because we feel that stationary moves by a 2-GST in the course of a pass require
communication between the heads, insofar as further movements depend on the current input
symbols, and hence should incur memory-access charges. We defend our choice against a
similar criticism that would require (a) by contending that in a single-tape GST pass, the
motion of the read head is not affected by the write head, and the motion of the write head
depends only on local factors as bits come in to it. Also, every BM has a limit C on the number
of output bits per input bit read by a GST. The main robustness theorem (Theorem 3.1), in
particular the ability to forecast the length of the output of a pass by fixed-delay means shown
in Theorem 4.13, satisfies our doubts about this.

The robustness results in this paper do carry over to the case of fixed output delay.

THEOREM 8.1. For any rational d > 1, the fixed-delay restrictions of the BM and all the
variants defined in §3 simulate each other up to constant factors in jL4-time.

Proof. All auxiliary operations in the simulations in §4 use GSTs that run in fixed output
delay, except for the second, unpadded run of the GST S in Theorem 4.13. However, if S
already runs in fixed output delay, so does this run. O

Under the proof of Theorem 2.1, the corresponding notion for the reduced form of the
model is “fixed delay after the initial transition.” Our proof of efficient universal simulation
does not quite carry over for fixed output delay because the quantities £ and [in the proof
of Theorem 6.3 may differ for different M. The operations that pull off the word g, and the
padded output code(y) run in “stride” a function of k and /, but this is not fixed. We believe
that the proof can be modified to do so under a different representation scheme for monoids.

Whether a similar robustness theorem holds for the pause-buffer BM leads to an open
problem of independent interest: can every k-input GST be simulated by a composition tree

162 KENNETH W. REGAN

of two-input GSTs when stationary moves are allowed? The questions of the power of both
variants versus the basic BM can be put in concrete terms.

OPEN PROBLEM 3. Can the homomorphism Er, : {0, 1,2} — {0, 1}*, which erases all
2’s in its argument, be computed in linear pi-time by a BM that runs in fixed output delay?

OPEN PROBLEM 4. For every two-input GST S with stationary moves allowed, does the
function S'(x#y) := S(x, y) belong to TLIN?

THEOREM 8.2. (a) The answer to Open Problem 3 is “yes” iff for every memory-cost
function u and BM M, there is a BM M’ that runs in fixed output delay and simulates M
linearly under p.

(b) The answer to Open Problem 4 is “yes” iff for every memory-cost function u and
pause-buffer BM M, there is a BM M’ that simulates M linearly under 1.

Proof. For the forward implication of (a), M’ pads every output by M with @ symbols,
coding the rest over {0, 1 }*, and runs Erg on a separate track to remove the padding. That
of (b) is proved along the lines of Proposition 4.3. The reverse implications are immediate,
and all this needs only the tracking property of u. 1]

Alon and Maass [4] prove substantial time—space tradeoffs for the related “sequence-
equality” problem SE[n]: given x,y € {0,1,2}", does Ery(x) = Ery(y)? We inquire
whether their techniques, or those of [54], can be adapted to the BM. The BM in Theorem
7.1 runs in output delay 1/2, 1, or 2 for all passes, so the two kinds of BM can be separated
by no more than a log factor. A related question is whether every language in TLIN, with or
without fixed output delay, has linear-sized circuits.

Further avenues for research include analyzing implementations of certain important
algorithms on the BM, as done for the BT and UMH in [2], [5]. Here the BM is helped by its
proximity to the Pratt—Stockmeyer vector machine, since conserving memory-access charges
and parallel time often lead to similar methods. One can also study storage that is expressly laid
out on a two-dimensional grid or in three-dimensional space, where a pass might be defined
to follow either a one-dimensional line or a two-dimensional plane. We expect the former not
to be much different from the BM model with its one-dimensional tape, and we also note that
CD-ROM and several current two-dimensional drive technologies use long one-dimensional
tracks. The important issue may not be so much the topology of the memory itself, but whether
“locality is one-dimensional” for purposes of pipelining.

Last, we ask about meaningful technical improvements to the simulations in this paper.
The lone obstacle to extending the main robustness theorem for p = fjog is the simulation
of random access by tree access in Lemma 4.6. The constants on our universal simulation
are fairly large, and we seek a more efficient way of representing monoids and computing the
products. Two more questions are whether the BM loses power if the move option a := 2a+1
is eliminated, and whether the number m of markers in a finger BM can be reduced to m —1
or to 4 without multiplying the number of block moves by a factor of log ¢ (n).

9. Conclusion. In common with motivations expressed in [2] and [5], the BM model
fosters a finer analysis of many theoretical algorithms in terms of how they use memory and
how they really behave in running time when certain practicalities of implementation are
taken into account. We have shown that the BM model is quite robust and that the concept
of functions and languages being computable in a memory-efficient manner does not depend
on technical details of setting up the model. The richer forms of the model are fairly natural
to program, providing random access and the convenience of regarding finite transductions
such as addition and vector Booleans as basic operations. The tightest form of the model is
syntactically simple, retains the bit-string concreteness of the TM, and seems to be a tractable
object of study for lower bound arguments. The robustness is evidence that our abstraction is
“right.”

LINEAR TIME AND MEMORY-EFFICIENT COMPUTATION 163

In contrast to the extensive study of polynomial-time computation, very little is known
about linear-time computation. Owing to an apparent lack of linear-time robustness among
various kinds of TMs, RAMs, and other machines, several authorities have queried their
suitability as a model for computation in O(n) time. Since we have y as a parameter we
have admittedly not given a single answer to the question, “What is linear time?”, and leave
TLIN, Du,; TIME[O (n)], and DusTIME[O(n)] as leading candidates. However, the BM
model does supply a robust yardstick for assessing the complexity of many natural combi-
natorial problems and for investigating the structure of several other linear-time complex-
ity classes. It has a tight deterministic time hierarchy right down to linear time. The ef-
ficient universal simulator which we have constructed to show this result uses the word
problem for finite monoids in an interesting manner. The longstanding program of show-
ing nonlinear lower bounds in reasonable models of computation has progressed up to ma-
chines apparently just below the BM (under w;) in power, so that attacking the problems
given here seems a logical next step. The authors of [3] refer to the “challenging open
problem” of extending their results when bit manipulations for dissecting records are avail-
able. The bit operations given to the BM seem to be an appropriate setting for this prob-
lem. A true measure of the usefulness of the BM model will be whether it provides good
ground for developing and connecting methods that solve older problems not framed with
the term “BM.” We offer the technical content of this paper as appropriately diligent spade-
work.

Appendix: Proof of Theorem 2.1. For every move state ¢ in M we add a new GST
S, that performs a 1-bit empty pull just to read the currently scanned character d, and then
sends control to 6(g, d). This modification no more than doubles the w access charges, and
gives M the following property: for any pass by a GST S;, the next GST S; to be invoked (or
HALT) is a function only of i and the character ¢ that caused S; to exit, and there is at most one
intervening move. Henceforth we assume that M has this form, and number its GST chips by
So, - - -, Sy, with Sy as start chip.

M’ uses an alphabet I'"” which includes the alphabet I" of M, a surrogate blank @, tokens
{so0,...,s,}forthe chips of M, markers { my, m,, mg, my,, myg } for the three kinds of move,
“no move,” and HALT, special instruction markers { I, . . ., 112 }, plus certain tuples of length
up to 7 of the foregoing characters. We also use @ to indicate that the symbol written to cell O
is immaterial.

During the simulation, the first component of every tuple in a cell i is the character¢; € I’
in that cell of the tape of M. Except initially, cell 1 holds both ¢y and c;, so that cell O can be
overwritten by other characters. This also allows M’ to simulate all moves by M without ever
moving its own cell-a head back to cell 0. The markers Iy and I; tell M’ when the cell-a head
of M isincell O or 1. Fora > 2, the heads of M and M’ coincide. The other main invariant of
the simulation is that the only cell besides cells 0 and 1 to contain multiple symbols is cell a.
The two initial moves of M’ set up these invariants.

Character(s) read Action (Initial mode is Ra, a = 0.)

co, C1 Pull [¢g, 1] to cell 0, a := a, mode := OR.

[co, c1], c1 Put @ into cell 0 and [¢y, ¢y, So, Ip] intocell 1, a := 2a + 1, mode :=
Ra.

The first move must automatically be executed every time M’ moves its tape head to a new
cell a, a > 2, since this cell and cell a + 1 will always contain single characters over I.
However, the second move is unique to the initialization because cell 1 will never again hold
a single character. The cell-a head of M’ is now on cell 1, but the Iy enables M to record that
the cell-a head of M is still on cell 0.

164 KENNETH W. REGAN

The lone GST S of M’ includes two copies of each GST S; of M. The first is a “dummy
copy” which simulates S; but suppresses output until it picks up the character ¢ that causes
S; to exit. On this exiting transition, the dummy outputs a token s; for the next GST S
and a token m for the intervening move, or m,, for none, or my for HALT. The other copy
simulates the actual pass by ;. It has special states that distinguish whether S; has written
zero, one, or at least two output symbols in the pass, since the first one or two symbols of
the output y are altered. If S; performs a pull and |y| > 2, we define ¢ = yo if yo # B,
but ¢ := ¢ if yo = B. Similarly ¢} := y, if y; # B, but ¢} := ¢, if y; = B. On the tape
of M’, the output y looks like [cy, ¢}, ..][], cg, .- .Jy2 -+ yi, where I = |y|. For |y| <1,
treat the missing y; and/or yo as B. Besides these functional conventions on s, m, c;, and
¢}, we omit reference to the address a if it is not changed and omit the second character read
by S when it does not affect control at the large initial branch. Let S; be the current GST
of M.

Character(s) read Action (Current mode is Ra,a = 1.)

[c1, co, si, To] By the validity conditions (Definition 2.3), the output y by §; has
length at most 2. Hence the next-move token m and next-GST token
sx can be picked up and the output y written in one pass, without
needing the dummy copy of S;. If m = my, S pulls @ to cell 0 and
[c], ¢y, T2l tocell 1. If m = mg, pulls @[c}, cg, sk, 11] to signify that
the cell-a head of M is now on cell 1. Else S pulls @[c}, cg, sk, Iol,
and this step repeats. In each case, mode := Ra.

[c1, co, I12] Pull ¢ into cell O, c; into cell 1, and HALT.

[c1, co, i, I1] Simulate S; as for [c;, co, §;, Io] to get m, si, and y, but treat c; as the
first input character to S;. If m = mp pull @[c}, ¢, 2], if m = my
pull @[c), ¢y, sk, Io], and if m = my,, pull @[c}, cg, sk, I1]. In these
three cases, the address of M’ stays at 1. If m = m, then pull
@Ic), g, si] and effect a := 2a. If m = mg, pull @[c}, ¢, s¢] and
effect a := 2a + 1. In every case, the mode stays Ra.

The last two cases give a > 2. When a > 2, the next pass by S encounters a single
character ¢, € T" on its start transition (possibly ¢, = B), and S must perform the first
operation above. This overwrites the @ in cell 0. However, the new character [}, c;, s¢] in
cell 1 prevents the initial sequence from recurring, viz. the following:

Character(s) read Action (Current mode is Ra, a > 2.)
Cas Catl Pull [c,, cg+1] to cell 0, a := a, mode := OR.
B Pull [@, @, Iy] tocell 0, a := a, mode := OR.

[ca, cav1], [€1, o, 8i1 Put[cq, co, c1, 8i, I2] into cell a. If the label of S; is La then mode :=
La, else mode := Ra.

[ca, co, C1, 8i, I2] If S; is labeled OL or OR, then pull [cy, ¢1, ¢4, i, I¢] into cell 0, and
mode := the mode of S;. Else S simulates the dummy copy of S; to
find m and sy, treating ¢, as the first input character to §;, and pulls
[co, ¢1, Ca, m, Sk, Si, I3] to cell O with mode := OR.

[co, c1, Ca, m, sk, Si, I3] Put [c,, co, 1, m, Sk, si, 14] into cell a, mode := the mode of ;.

[ca, coy €1, m, Sk, 8i, I4] Simulate the pull move by S;, translating its output y to
[cgs €)s €as m, Is][Ch, €, Sk]y2 - - - yi, and change mode to OR. Re-
mark: For ¢, to be correct, it is vital that cell a not be overwritten in
this pull.

LINEAR TIME AND MEMORY-EFFICIENT COMPUTATION 165

[co, €1, Cq, m, I5] Put ¢, into cell a. On exit, if m = m,, then leave a unchanged, if
m = my effecta := |a/2],if m = m effecta := 2a,andif m = my
effect a := 2a + 1. In each of these four cases, mode := Ra. For
m = mpy, see below.

If the last move was up, i.e., a to |a/2], we may now have a = 1 again. Since the
“sentinel” in cell 1 is always correctly updated to the next GST S;, this is handled by the
following:

[c1, co, si] Same as for [cy, ¢o, si, 11].

If still @ > 2, then S once again senses single characters in cells a and a + 1, and the
cycle repeats. The other branch with instruction 6 goes as follows:

[co, €1, Ca, Siy I6] Here S; is labeled OL or OR, and this is the current mode. S treats
co, ¢1 as the first two input characters in simulating the dummy copy
of S;, and puts [c,, co, 1, m, S, s;, I7] into cell a with mode := Ra.

[ca, o, €1, m, Sk, Si, I7] Pull [co, 1, ca, m, Sk, 5;, Ig] into cell 0, mode := the mode of S;.

[co, €1, Cqs M, Sk, 8;, Is] Simulate the put by S;. If the output y is empty or begins with B, let
¢, := cq. Elselet ¢, := yo. Copy y as [c}, co, c1,m, sk, Iy], and set
mode := OR.

[ca, co, C1, m, sk, I9] Pull [cg, c1, cq, m, Is] to cell O and [cy, cg, sx] to cell 1, mode := Ra.

The validity conditions prevent cell a from being overwritten in a pull. It is possible for
cell 1 to be overwritten by a leftward put that exits after just one input bit, but this can only
happen if a < C, where C is the maximum number of bits a leftward pull chip of M can
write in its first transition. The problem can be solved either by exploiting the ability of M
itself to remember C-many characters in its finite control, or by reprogramming M so that
no leftward pull chip outputs more than one symbol on its first step. Details are left to the
reader.

The final halting routine involves a “staircase” to leave the tape exactly the same as that
of M at the end of the computation. It picks up in the case [cy, ¢1, ¢4, m, Is] withm = my.

[co, c1, Ca, my, Is] Put [c,, co, c1, I10] into cell a, mode := Ra.

[ca, co, €1, T10] Pull [cy, c1, ¢4, I11] to cell 0 and [cy, ¢y, I12] to cell 1, with mode =
OR.

[co, €1, €a, T11] Put ¢, into cell a, effect a := |a/2], mode := Ra.

Ca» Catl Pull [¢,, c441] to cell O, mode := OR.

[cas Ca+1], [€1, co, I12] Put ¢, into cell a, effect a := |a/2], mode := Ra.
[c1, co, I12] As above, pull ¢g into cell 0, ¢, into cell 1, and HALT.

M’ uses exactly the same tape cells as M, making at most eight passes of equal or less cost
for each pass by M. The final “staircase” down from cell a is accounted against the p-charges
for M to have moved out to cell a. Hence both the number of bits processed by M’ and the
p-acc charges to M’ are within a constant factor of their counterparts in M.

For the converse simulation of the reduced form S by a BM M, the only technical difficulty
is that § may have different exiting transitions on the same character c¢. The solution is to run
a dummy copy of S that outputs a token ¢ for the state in which S exits. Then ¢ is used to
send control to the move state of M’ that corresponds to the label /;(¢), and thence to a copy
of S with the pass-type label /;(¢). The details of running the dummy copy are the same as
above.]

166 KENNETH W. REGAN

By using more “instruction markers” one can make the mode of M’ always follow the
cycle Ra, OR, La, OL. Hence the only decision that need depend on the terminal state of the
lone GST S is the next origin cell a.

Acknowledgments. 1 would like to thank Professor Michael C. Loui for comments on
preliminary drafts of this work and for bringing [2] and [5] to my attention. Professors Pierre
McKenzie and Gilles Brassard gave me a helpful early opportunity to test these ideas at
an open forum in a University of Montreal seminar. Special thanks are due to Professors
Klaus Ambos-Spies, Steven Homer, Uwe Schoning, and other organizers of the 1992 Schloss
Dagstuhl Workshop on Structural Complexity for inviting me to give a presentation out of
which the present work grew. Last, I thank an anonymous referee and several colleagues for
helpful suggestions on nomenclature and presentation.

REFERENCES

[1] A. AGGARWAL, B. ALPERN, A. CHANDRA, AND M. SNIR, A model for hierarchical memory, in Proc. 19th
Symposium on the Theory of Computing, Association for Computing Machinery, New York, 1987,
pp- 305-314.
[2] A. AGGARWAL, A. CHANDRA, AND M. SNIR, Hierarchical memory with block transfer, in Proc. 28th Foundations
of Computer Science, IEEE Computer Society Press, Los Alamitos, CA, 1987, pp. 204-216.
[3] A. AGGARWAL AND J. VITTER, The input-output complexity of sorting and related problems, Comm. Assoc.
Comput. Mach., 31 (1988), pp. 1116—-1127.
[4] N. ALON AND W. MAASS, Meanders and their application to lower bound arguments, J. Comput. System Sci.,
37 (1988), pp. 118-129.
[S] B. ALPERN, L. CARTER, AND E. FEIG, Uniform memory hierarchies, in Proc. 31st Foundations of Computer
Science, IEEE Computer Society Press, Los Alamitos, CA, 1990, pp. 600—608.
[6] J. BALCAZAR, J. DiazZ, AND J. GABARRO, Structural Complexity Theory, Springer-Verlag, Berlin, New York,
1988.
[7] D. M. BARRINGTON, N. IMMERMAN, AND H. STRAUBING, On uniformity within NC!, in Proc. 3rd Structures,
IEEE Computer Society Press, Los Alamitos, CA, 1988, pp. 47-59.
[8] , On uniformity within NC', J. Comput. System Sci., 41 (1990), pp. 274-306.
[9] A.BEN-AMRAM AND Z. GALIL, Lower bounds for data structure problems on RAMs, in Proc. 32nd Foundations
of Computer Science, IEEE Computer Society Press, Los Alamitos, CA, 1991, pp. 622-631.
[10] , On pointers versus addresses, J. Assoc. Comput. Mach., 39 (1992), pp. 617—648.
[11] G. BLELLOCH, Vector Models for Data-Parallel Computing, MIT Press, Cambridge, MA, 1990.
[12] M. BLUM, A machine-independent theory of the complexity of recursive functions, J. Assoc. Comput. Mach.,
14 (1967), pp. 322-336.
[13] R. BOOK AND S. GREIBACH, Quasi-realtime languages, Math. Systems Theory, 4 (1970), pp. 97-111.
[14] A. CHANDRA, D. KOZEN, AND L. STOCKMEYER, Alternation, J. Assoc. Comput. Mach., 28 (1981), pp. 114—-133.
[15] J. CHANG, O. IBARRA, AND A. VERGIS, On the power of one-way communication, J. Assoc. Comput. Mach.,
35 (1988), pp. 697-726.
[16] J. CHEN AND C. YAP, Reversal complexity, SIAM J. Comput., 20 (1991), pp. 622-638.
[17] M. CONNER, Sequential machines realized by group representations, Inform. and Comp., 85 (1990),
pp. 183-201.
[18] S. Cook AND R. REcKHOW, Time bounded random access machines, J. Comput. System Sci., 7 (1973),
pp. 354-375.
[19] D. COPPERSMITH AND S. WINOGRAD, Matrix multiplication via arithmetical progressions, J. Symbolic Comput.,
9 (1990), pp. 251-280.
[20] M. DIETZFELBINGER, W. MAASS, AND G. SCHNITGER, The complexity of matrix transposition on one-tape off-line
Turing machines, Theoret. Comput. Sci., 82 (1991), pp. 113-129.
[21] C. ELGOT AND A. ROBINSON, Random-access stored-program machines, J. Assoc. Comput. Mach., 11 (1964),
pp. 365-399.
[22] Y. FELDMAN AND E. SHAPIRO, Spatial machines: A more-realistic approach to parallel computation, Comm.
Assoc. Comput. Mach., 35 (1992), pp. 60-73.
[23] P. FISCHER, A. MEYER, AND A. ROSENBERG, Real-time simulations of multihead tape units, J. Assoc. Comput.
Mach., 19 (1972), pp. 590-607.
[24] M. FURER, Data structures for distributed counting, J. Comput. System Sci., 29 (1984), pp. 231-243.
[25] Z. GaLIL AND J. SEIFERAS, Time-space optimal string matching, J. Comput. System Sci., 26 (1983),
pp- 280-294.
[26] E. GRAEDEL, On the notion of linear-time computability, Internat. J. Found. Comput. Sci., 1 (1990),
pp- 295-307.

[27]
[28]
[29]
[30]
[31]

[32]
[33]

[34]

[35]
[36]

[371

[38]
[39]

[40]
[41]
[42]
[43]
[44]
[45]
[46]
[47]

(48]

[49]
[50]
[51]
[52]
[53]
[54]
[55]
[56]
[57]
[58]

[59]
[60]

LINEAR TIME AND MEMORY-EFFICIENT COMPUTATION 167

E. GRANDIEAN, A natural NP-complete problem with a nontrivial lower bound, SIAM J. Comput., 17 (1988),
pp. 786-809.

, A nontrivial lower bound for an NP problem on automata, SIAM J. Comput., 19 (1990), pp. 438—451.

E. GRANDJEAN AND J. ROBSON, RAM with compact memory: A robust and realistic model of computation,
in Proc. 4th Annual Workshop in Computer Science Logic, Lecture Notes in Comput. Sci., 533, (1991),
pp. 195-233.

Y. GUREVICH AND S. SHELAH, Nearly linear time, in Proc. Logic at Botik, Lecture Notes in Comput. Sci.,
363 (1989), pp. 108-118.

J. HARTMANIS AND R. STEARNS, On the computational complexity of algorithms, Trans. Amer. Math. Soc.,
117 (1965), pp. 285-306.

, Algebraic Structure Theory of Sequential Machines, Prentice—Hall, Englewood Cliffs, NJ, 1966.

F. HENNIE AND R. STEARNS, Two-way simulation of multitape Turing machines, J. Assoc. Comput. Mach.,
13 (1966), pp. 533-546.

T. HEYWoOD AND S. RANKA, A practical hierarchical model of parallel computation I: The model, J. Parallel
Distrib. Comput., 16 (1992), pp. 212-232.

J.-W. HONG, On similarity and duality of computation 1, Inform. and Comp., 62 (1985), pp. 109-128.

J. HOPCROFT AND J. ULLMAN, Introduction to Automata Theory, Languages, and Computation, Addison—-Wesley,
Reading, MA, 1979.

O. IBARRA, Systolic arrays: Characterizations and complexity, in Proc. 1986 Conference on Mathematical
Foundations of Computer Science, Lecture Notes in Comput. Science, 233 (1986), pp. 140-153.

O. IBARRA AND T. JIANG, On one-way cellular arrays, SIAM J. Comput., 16 (1987), pp. 1135-1153.

O. IBARRA AND S. KM, Characterizations and computational complexity of systolic trellis automata, Theoret.
Comput. Sci., 29 (1984), pp. 123-153.

O. IBARRA, S. KM, AND M. PALIS, Designing systolic algorithms using sequential machines, IEEE Trans.
Comput., 35 (1986), pp. 531-542.

O.IBARRA, M. PALIS, AND S. KIM, Some results concerning linear iterative (systolic) arrays, J. Par. Dist. Comp.,
2 (1985), pp. 182-218.

T. JIANG AND M. L1, K one-way heads cannot do string-matching, in Proc. 25th Symposium on the Theory of
Computing, Association for Computing Machinery, New York, 1993, pp. 62-70.

T. KAMEDA AND R. VOLLMAR, Note on tape reversal complexity of languages, Inform. and Control, 17 (1970),
pp- 203-215.

J. KATAJAINEN, J. VAN LEEUWEN, AND M. PENTTONEN, Fast simulation of Turing machines by random access
machines, SIAM J. Comput., 17 (1988), pp. 77-88.

A. KOLMOGOROV AND V. USPENSKIL, On the definition of an algorithm, Uspekhi Mat. Nauk, 13 (1958), pp. 3-28;
English translation, Russian Math. Surveys, 30 (1963), pp. 217-245.

R. KoSARAIU, Real-time simulation of concatenable double-ended queues by double-ended queues, in Proc.
11th Symposium on the Theory of Computing, 1979, pp. 346-351.

K. KROHN AND J. RHODES, Algebraic theory of machines 1: Prime decomposition theorem for finite semigroups
and machines, Trans. Amer. Math. Soc., 116 (1965), pp. 450-464.

K. KROHN, J. RHODES, AND B. TILSON, The prime decomposition theorem of the algebraic theory of machines,
in Algebraic Theory of Machines, Languages, and Semigroups, M. Arbib, Ed., Academic Press, New
York, 1968, Chap. 4-9.

D. LEWANT, Descriptive characterizations of computational complexity, J. Comput. System Sci., 39 (1989),
pp. 51-83.

M. Loui, Simulations among multidimensional Turing machines, Theoret. Comput. Sci., 21 (1981),
pp. 145-161.

, Optimal dynamic embedding of trees into arrays, SIAM J. Comput., 12 (1983), pp. 463—472.

, Minimizing access pointers into trees and arrays, J. Comput. System Sci., 28 (1984), pp. 359-378.

G. MANACHER, Steady-paced-output and fractional-on-line algorithms on a RAM, Inform. Process. Lett.,
15 (1982), pp. 47-52.

Y. MANSOUR, N. NISAN, AND P. TIWARL, The computational complexity of universal hashing, Theoret. Comput.
Sci., 107 (1993), pp. 121-133.

D. MULLER AND F. PREPARATA, Bounds to complexities of networks for sorting and switching, J. Assoc. Comput.
Mach., 22 (1975), pp. 195-201.

W. PAUL, N. PIPPENGER, E. SZEMEREDI, AND W. TROTTER, On determinism versus nondeterminism and related
problems, in Proc. 24th Foundations of Computer Science, IEEE Computer Society Press, Los Alamitos,
CA, 1983, pp. 429-438.

W. PAUL AND R. REISCHUK, On time versus space 11, J. Comput. System Sci., 22 (1981), pp. 312-327.

W. PAUL, J. SEIFERAS, AND J. SIMON, An information-theoretic approach to time bounds for on-line computation,
J. Comput. System Sci., 23 (1981), pp. 108-126.

N. PIPPENGER, On simultaneous resource bounds, in Proc. 20th Foundations of Computer, 1979, pp. 307-311.

N. PIPPENGER AND M. FISCHER, Relations among complexity measures, J. Assoc. Comput. Mach., 26 (1979),
pp. 361-381.

168 KENNETH W. REGAN

[61] V. PRATT AND L. STOCKMEYER, A characterization of the power of vector machines, J. Comput. System Sci.,
12 (1976), pp. 198-221.

[62] K. REGAN, A new parallel vector model, with exact characterizations of NC¥, in Proc. 11th Symposium on
Theoretical Aspects of Computer Science, Lecture Notes in Comput. Sci., 778 (1994), pp. 289-300.

[63] R. REISCHUK, A fast implementation of multidimensional storage into a tree storage, Theoret. Comput. Sci.,
19 (1982), pp. 253-266.

[64]1 W. Ruzzo, On uniform circuit complexity, J. Comput. System Sci., 22 (1981), pp. 365-383.

[65] C. SCHNORR, Satisfiability is quasilinear complete in NQOL, J. Assoc. Comput. Mach., 25 (1978), pp. 136-145.

[66] A. SCHONHAGE, Storage modification machines, SIAM J. Comput., 9 (1980), pp. 490-508.

[671 , A nonlinear lower bound for random-access machines under logarithmic cost, J. Assoc. Comput.
Mach., 35 (1988), pp. 748-754.

[68] P. vaN EMDE Boas, Machine models and simulations, in Handbook of Theoretical Computer Science, vol. A,
J. V. Leeuwen, Ed., Elsevier, New York, MIT Press, Cambridge, MA, 1990, pp. 1-66.

[69] D. WILLARD, A density control algorithm for doing insertions and deletions in a sequentially ordered file in a
good worst-case time, Inform. and Comput., 97 (1992), pp. 150-204.

SIAM J. COMPUT. (© 1996 Society for Industrial and Applied Mathematics
Vol. 25, No. 1, pp. 169-192, February 1996 007

ON THE COMPOSITION OF ZERO-KNOWLEDGE PROOF SYSTEMS*
ODED GOLDREICHT AND HUGO KRAWCZYK?

Abstract. The wide applicability of zero-knowledge interactive proofs comes from the possibility of using these
proofs as subroutines in cryptographic protocols. A basic question concerning this use is whether the (sequential
and/or parallel) composition of zero-knowledge protocols is zero-knowledge too. We demonstrate the limitations of
the composition of zero-knowledge protocols by proving that the original definition of zero-knowledge is not closed
under sequential composition; and that even the strong formulations of zero-knowledge (e.g., black-box simulation)
are not closed under parallel execution.

We present lower bounds on the round complexity of zero-knowledge proofs, with significant implications for
the parallelization of zero-knowledge protocols. We prove that three-round interactive proofs and constant-round
Arthur—Merlin proofs that are black-box simulation zero-knowledge exist only for languages in BPP. In particular,
it follows that the “parallel versions” of the first interactive proofs systems presented for quadratic residuosity,
graph isomorphism, and any language in NP, are not black-box simulation zero-knowledge, unless the corresponding
languages are in BPP. Whether these parallel versions constitute zero-knowledge proofs was an intriguing open
questions arising from the early works on zero-knowledge. Other consequences are a proof of optimality for the
round complexity of various known zero-knowledge protocols and the necessity of using secret coins in the design
of “parallelizable” constant-round zero-knowledge proofs.

Key words. zero-knowledge, cryptographic protocols, interactive proofs

AMS subject classifications. 68Q99, 94A60

1. Introduction. In this paper we investigate the problem of composing zero-knowledge
proof systems. Zero-knowledge proof systems, introduced in the seminal paper of Goldwasser,
Micali, and Rackoff [GMR1], are efficient interactive proofs which have the remarkable prop-
erty of yielding nothing but the validity of the assertion. Namely, whatever can be efficiently
computed after interacting with a zero-knowledge prover, can be efficiently computed on-input
of a valid assertion. Thus, a zero-knowledge proof is computationally equivalent to an answer
of a trusted oracle.

A basic question regarding zero-knowledge interactive proofs is whether their compo-
sition remains zero-knowledge. This question is not only of theoretical importance, but is
also crucial to the utilization of zero-knowledge proof systems as subprotocols inside crypto-
graphic protocols. Of particular interest are sequential and parallel composition. Candidate
“theorems” (whose correctness we investigate) are listed here.

Sequential Composition. Let I1; and I, be zero-knowledge proof systems for languages
L, and L,, respectively. Then, on input x; o x;, first executing I1; on x; and afterwards
executing I, on x, constitutes a zero-knowledge interactive proof system for L; o L.

Parallel Composition. Let I1; and I, be as above. Then, on input x; o x,, concurrently
executing I1; on input x; and IT, on x, constitutes a zero-knowledge interactive proof system
for Ly o L,. (Concurrent execution means that the ith message of the composed protocol
consists of the concatenation of the ith messages in I1; and I, respectively.)

Sequential composition. Soon after the publication of [GMR1], several researchers no-
ticed that the formulation of zero-knowledge proposed therein (hereafter referred as the orig-
inal formulation) is probably not closed under sequential composition. In particular, Feige

*Received by the editors August 30, 1993; accepted for publication (in revised form) July 28, 1994. This
research was partially supported by the Fund for Basic Research Administered by the Israeli Academy of Sciences
and Humanities. A preliminary version of this paper appeared in the Proc. 17th ICALP, Lecture Notes in Computer
Science, Vol. 443, Springer-Verlag, Berlin, 1990, pp. 268-282.

TDepartment of Computer Science, Technion, Haifa, Israel.

fIBM T. J. Watson Research Center, Yorktown Heights, NY 10598 (hugo@watson.ibm.com). This research
work was performed while this author was with the Department of Computer Science, Technion, Haifa, Israel.

169

170 ODED GOLDREICH AND HUGO KRAWCZYK

and Shamir [Fei] proposed a protocol conjectured to be a counterexample to the Sequential
Composition “Theorem.” In this paper we use the ideas of [Fei] and new results on pseudo-
random distributions [GK] to prove that, indeed, the original formulation of zero-knowledge
is not closed under sequential composition. Our proof is independent of any intractability
assumption. It applies to the notion of computational zero-knowledge (see §2), and uses
computationally unbounded provers. (So far no proof exists for the same result with provers
limited to polynomial time, or for statistical or perfect zero-knowledge.)

The reader should be aware that the Sequential Composition Theorem was proven (by
Goldreich and Oren [GO], [Ore]) for a stronger (‘“‘nonuniform”) formulation of zero-knowledge
suggested by several authors (cf. [Fei], [GMR2], [GO], [Ore], and [TW]). The Sequential
Composition Theorem is crucial to the utilization of zero-knowledge interactive proofs in
cryptographic applications and in particular to the construction of cryptographic protocols for
playing any computable game [Yao], [GMW?2].

Parallel composition. Parallel composition of interactive proofs is widely used as a
means of decreasing the error probability of proof systems, while maintaining the number of
rounds. Of course, one would be interested in applying these advantages of parallelism to
zero-knowledge protocols as well. Parallelism is also used in multiparty protocols in which
parties wish to prove (the same and/or different) statements to various parties concurrently.
Unfortunately, we show in this paper a counterexample to the Parallel Composition Theo-
rem. Namely, we introduce a pair of protocols which are (computational) zero-knowledge
with respect to the strongest known definitions (including the nonuniform formulation dis-
cussed above and the “black-box simulation” formulation discussed below) yet their parallel
composition is not zero-knowledge (not even in the “weak” sense of the original [GMR1]
formulation). Also in this case, our proof does not rely on any unproven hypotheses; on the
other hand, it uses in an essential way the unbounded computational power of the prover and
the computational notion of zero-knowledge. Based on intractability assumptions, Feige and
Shamir [FS2] show a perfect zero-knowledge protocol with a polynomial-time prover which
fails parallel composition. Our results below on three-round zero-knowledge proofs imply a
similar result, but our case requires a superlogarithmic number of repetitions, while in [FS2]
two repetitions suffice.

By the above result we have ruled out the possibility of proving that particular interactive
proofs are zero-knowledge by merely arguing that they are the result of parallel composition
of various zero-knowledge protocols. But this does not resolve the question of whether
concrete cases of composed interactive proofs are zero-knowledge. In particular, since the
first presentation of the results in [GMR1] and [GMW1], it was repeatedly asked whether
the “parallel versions” of the interactive proofs presented for quadratic residuosity, graph
isomorphism, and any language in NP are zero-knowledge.

Round complexity of zero-knowledge proofs. In this paper we prove a general result
concerning the round complexity of zero-knowledge interactive proofs which, in particular,
resolves the question of parallelization of the above-mentioned protocols. This general result
states that only BPP languages have three-round interactive proofs which are black-box sim-
ulation zero-knowledge." Since the parallel versions of the above examples are three-round
interactive proofs (with negligible cheating probability for the prover) it follows that these inter-
active proofs cannot be proven zero-knowledge using black-box simulation zero-knowledge,
unless the corresponding languages are in BPP. This (negative) result is proven for computa-

IThis result applies to interactive proofs in which the prover can convince the verifier of accepting a false assertion
with only negligible probability. The above-mentioned languages have three-round zero-knowledge interactive proofs
in which the prover has a significant (e.g., constant) probability of cheating.

ON THE COMPOSITION OF ZERO-KNOWLEDGE PROOFS 171

tional zero-knowledge proofs and therefore applies to statistical and perfect zero-knowledge
as well.

Loosely speaking, we say that an interactive proof for alanguage L is black-box simulation
zero-knowledge if there exists a (probabilistic polynomial-time) universal simulator which,
using any (even nonuniform) verifier V* as a black box, produces a probability distribution
which is polynomially indistinguishable from the distribution of conversations of (the same)
V* with the prover, on inputs in L. This definition of zero-knowledge is more restrictive than
the original one, which allows each verifier V* to have a specific simulator Sy«. Nevertheless,
all known zero-knowledge protocols are also black-box simulation zero-knowledge. This fact
cannot come as a surprise since it is hard to conceive of a way of taking advantage of the full
power of the more liberal definition.

It is not plausible that our result could be extended to four-round interactive proofs since
such proofs are known for languages believed to be outside BPP. The protocols for quadratic
nonresiduosity [GMR1] and graph nonisomorphism [GMW 1] are such examples. In addi-
tion, zero-knowledge interactive proofs of five rounds are known for quadratic residuosity and
graph isomorphism [BMO1], and, assuming the existence of claw-free permutations, there
exist five-round zero-knowledge interactive proofs for any language in NP [GKa]. Moreover,
our results extend to zero-knowledge arguments®, for which Feige and Shamir [FS1] pre-
sented (assuming the existence of one-way functions) a four-round protocol for any language
in NP. Our result implies that the round complexity of this protocol is optimal (as long as
BPP # NP).

Constant-round Arthur—Merlin proofs. When restricting ourselves to Arthur-Merlin
interactive proofs, we can extend the above result to any constant number of rounds. We show
that only BPP languages have constant-round Arthur—Merlin proofs which are also black-box
simulation zero-knowledge.

Arthur-Merlin interactive proofs, introduced by Babai [Bab], are interactive proofs in
which all the messages sent by the verifier are the outcome of his coin tosses. In other words,
the verifier “keeps no secrets from the prover.” Our result is a good reason to believe that the
only feasible way of constructing constant-round zero-knowledge interactive proofs is to let
the verifier use “secret coins.” Indeed, the above-mentioned constant-round zero-knowledge
proofs, as well as the constant-round statistical zero-knowledge proofs of [BMO?2], use secret
coins. Thus, secret coins do help in the zero-knowledge setting. This should be contrasted
with the result of Goldwasser and Sipser [GS], which states that Arthur—Merlin interactive
proofs are equivalent to general interactive proofs (as far as language recognition is concerned).
They show that any language having a general interactive proof (IP) of k rounds also has an
Arthur—Merlin (or AM) proof of k rounds. Using our result we see that in the zero-knowledge
setting such a preservation of rounds (when transforming IP into AM) is not plausible (e.g.,
graph nonisomophism).

Our result concerning Arthur—Merlin proofs is tight in the sense that the languages con-
sidered above (e.g., graph nonisomorphism, every language in NP) have unbounded (i.e.,
w(n)-round, for every unbounded function w : N — N) Arthur—Merlin proof systems which
are black-box simulation zero-knowledge. In particular, we get that bounded-round Arthur—
Merlin proofs which are black-box zero-knowledge exist only for BPP, while unbounded round
proofs of the same type exist for all PSPACE (if one-way functions exist [IY], [B*], [Sha]).
That is, while the finite hierarchy of languages having black-box zero-knowledge Arthur—

2Interactive arguments (also known as “computationally sound proofs” and “computationally convincing proto-
cols”) differ from an interactive proof system in that the soundness condition of the system is formulated with respect
to probabilistic polynomial-time provers, possibly with auxiliary input (see [BCC]). Namely, efficient provers cannot
fool the verifier into accepting an input not in the language, except with negligible probability.

172 ODED GOLDREICH AND HUGO KRAWCZYK

Merlin proofs collapses to BPP (= AM(0)), the corresponding infinite hierarchy contains all
of PSPACE. This implies (assuming the existence of one-way functions) a separation between
the two hierarchies.

Organization. In §2 we outline the definitions of interactive proofs and zero-knowledge,
and introduce some terminology and notation used throughout the paper. Section 3 presents
the definitions and results concerning pseudorandom distributions that are used for disproving
the composition theorems. In §§4 and 5 we present these disproofs for the case of sequential
and parallel composition, respectively. Finally, in §6 we present the lower bounds on the round
complexity of black-box simulation zero-knowledge proofs. We stress that this last section
is technically independent from §§3, 4, and 5 and can be read without going through these
sections.

2. Preliminaries. The notions of interactive proofs and zero-knowledge were introduced
by Goldwasser, Micali, and Rackoff [GMR1]. Here, we give an informal outline of these
notions. For formal and complete definitions, as well as the basic results concerning these
concepts, the reader is referred to [GMR1], [GMW1], and [GMR2].

An interactive proof is a two-party protocol in which a computationally unrestricted
prover, P, interacts with a probabilistic polynomial-time verifier, V, by exchanging messages.
Both parties share a common input x. At the end of the interaction the verifier computes a
predicate depending on this input and the exchanged messages in order to accept or reject the
input x. Such a protocol, denoted (P, V), is called an interactive proof for a language L if the
following two conditions hold.

Completeness property. For any positive constant ¢ and sufficiently long x € L, Prob(V
accepts x) > 1 — |x|7¢.

Soundness property. For any positive constant ¢ and sufficiently long x ¢ L, Prob(V
accepts x) < |x|~¢, no matter how the prover behaves during the protocol.

(The above probabilities are taken over the coin tosses of both the prover and the verifier.)
In other words, we require that on inputs belonging to L the probability that the prover P
“convinces” V to accept the common input is almost 1, while on inputs outside L there is no
prover that can fool V into accepting, except with negligible probability.

Note. Notice that we define an interactive proof to have a negligible probability of error.
Some authors define this probability to be just a constant (e.g., %) The latter is motivated by
the fact that constant-error interactive proofs can be converted into negligible-error proofs by
parallel repetition. However, in the setting of zero-knowledge interactive proofs, our results
show that such parallel repetition may sacrifice the zero-knowledge property.

An interactive proof in which the honest verifier chooses all its messages at random (i.e.,
with uniform probability over the set of all strings of the same length as the message) is called
an Arthur—Merlin interactive proof [Bab]. That is, in an Arthur—Merlin proof system the only
nontrivial computation carried out by the honest verifier is the evaluation of a polynomial-time
predicate at the end of the interaction, in order to decide the acceptance or rejection of the
input to the protocol. We say that such a verifier uses public coins. (Notice that there is no
“public coin” restriction on the cheating verifiers.)

We say that an interactive proof has k rounds if there are a total of k messages (alternately)
exchanged between the prover and verifier during the protocol (i.e., we count messages from
both parties). In general, the number k can be a function k(|x|) of the input length. The
notation IP(k) stands for the class of languages having k-round interactive proofs, and AM(k)
stands for languages having k-round Arthur-Merlin interactive proofs.

Aninteractive proof'is called zero-knowledge if on input x € L no probabilistic polynomial-
time verifier (i.e., one that may arbitrarily deviate from the predetermined program) gains
information from the execution of the protocol except the knowledge that x belongs to L.

ON THE COMPOSITION OF ZERO-KNOWLEDGE PROOFS 173

This means that any polynomial-time computation based on the conversation with the prover
can be simulated, without interacting with the real prover, by a probabilistic polynomial-time
machine (“the simulator”) that gets x as its only input. More precisely, let (P, V*)(x) denote
the probability distribution generated by the interactive machine (verifier) V*, which inter-
acts with the prover P on input x € L. We say that an interactive proof is zero-knowledge
if for all probabilistic polynomial-time machines V*, there exists a probabilistic expected
polynomial-time algorithm My- (called the simulator) that on inputs x € L produces prob-
ability distributions My« (x) that are polynomially indistinguishable from the distributions
(P, V*)(x). (This notion of zero-knowledge is also called computational zero-knowledge.)?

The above formalization of the notion of zero-knowledge is taken from the original paper
by Goldwasser, Micali, and Rackoff [GMR1]. Later, stronger formulations of zero-knowledge
were introduced in which the simulation requirement is extended to deal with stronger veri-
fiers [Fei], [GMR2], [GO], [Ore], [TW], namely, verifiers with nonuniform properties (e.g.,
probabilistic polynomial-time verifiers that get an additional auxiliary-input tape), or verifiers
modeled by polynomial-size circuits.

One further formulation of zero-knowledge is called black-box simulation zero-knowledge
[GO], [Ore]. This formulation differs from the former by requiring the existence of a (““univer-
sal”) simulator that, using any (nonuniform) verifier V* as a black box, succeeds in simulating
the (P, V*) interaction. In other words, there exists a probabilistic expected polynomial-time
oracle machine M such that for any polynomial-size verifier V* and for x € L, the distributions
(P, V*)(x) and M"V" (x) are polynomially indistinguishable.

Remark. A complete formalization of the notion of black-box simulation zero-knowledge
requires dealing with the following technical problem. The simulator uses V* as a black box.
This means that the simulator is responsible, during the simulation process, for feeding into
the black box the external parameters that determine the behavior of V*. These parameters
are the string representing the input to the protocol, the contents of the random tape of V*,
and the messages of the prover. A problem arises when feeding the random coins used by V*.
Although the number of coin tosses used by a particular verifier V* is bounded by a polynomial,
there is no single polynomial that bounds this number for all possible verifiers. On the other
hand, the simulator M runs (expected) time that is bounded by a specific polynomial. So, how
can this simulator manage to feed a verifier requiring more coin tosses than this bound? In
[BMO2] this problem is overcome by stating the existence of two random tapes for M. The
first is used in the regular way for M’s computations. The second can be entirely fed by M into
V* in a single step. That is, M can feed the random coins for the black box in an “intelligent
way” as long as the number of coins does not exceed the time capability of M; beyond this
number it can only feed truly random bits. We stress that this formalization is general enough
to include all known zero-knowledge proofs.

An alternative solution to the above problem is to have, for each polynomial p, a simulator
M, which simulates all verifiers V* that use at most p(|x|) random coins on any input x.
Clearly, the running time of the simulator M, may depend on the polynomial p, and then the
above difficulty is overcome. This second formulation is weaker than the one proposed in
[BMOZ2], but it suffices for the results proved in our paper and is therefore adopted here. (In
fact, our results in §6 only require the existence of a simulator that simulates deterministic
verifiers, i.e., M, with p = 0.)

Based on the above remark we give our definition of black-box simulation zero-knowledge.

3Other definitions were proposed in which it is required that the distribution generated by the simulator be
identical to the distribution of conversations between the verifier and the prover (perfect zero-knowledge), or at least
statistically close (statistical zero-knowledge). See [GMR2] for further details.

174 ODED GOLDREICH AND HUGO KRAWCZYK

DEFINITION. An interactive proof (P, V) is called black-box simulation zero-knowledge if
for every polynomial p, there exists a probabilistic expected polynomial-time oracle machine
M, such that for any polynomial-size verifier V* that uses at most p(n) random coins on
inputs of length n, and for x € L, the distributions (P, V*)(x) and M IY "(x) are polynomially
indistinguishable.

Note. The notion of polynomial indistinguishability in the above definition can be for-
malized based on nonuniform polynomial-size distinguishers or uniform polynomial-time
distinguishers which have black-box access to the corresponding V*. Our results apply to
both formalizations.

Terminology. Throughout this paper we use the term negligible to denote functions that
are (asymptotically) smaller than 1 over any polynomial, and the term nonnegligible to denote
functions that are greater than 1 over some fixed polynomial. More precisely, a function f
from nonnegative integers to reals is called negligible if for all constants ¢ and sufficiently large
n, f(n) < n™°. The function f is called nonnegligible if there exists a constant ¢ such that
for all (sufficiently large) n, f(n) > n~°¢. (Observe that nonnegligible is not the complement
of negligible.)

Notation. We use the notatione €y S for “the element e is chosen with uniform probability
from the set S.”

3. On evasive and pseudorandom sets. In the demonstration of counterexamples for
the “composition theorems” we make use of pseudorandom distributions which have some
interesting “evasiveness” properties. These properties and the corresponding proofs are given
in [GK] and cited here without proof.

Roughly speaking, a distribution on a set of strings of length k is pseudorandom if this
distribution cannot be efficiently (i.e., in time polynomial in k) distinguished from the uniform
distribution on the set of all strings of length k. In order to formalize this notion one has to
define it in asymptotical terms and refer to collections of distributions (called pseudorandom
ensembles), rather than single distributions. The notion of a “pseudorandom set” is made
precise in the following definition.

DEFINITION 3.1. A set S C {0, 1}* is called (t(k), e(k))-pseudorandom if for any
(probabilistic) circuit C of size t(k) with k inputs and a single output

|pc(S) — pc({0, 1}9)] < e(k),

where pc(S) (resp., pc({0, 1}%)) denotes the probability that C outputs 1 when given elements
of S (resp., {0, 1}"), chosen with uniform probability.

Note that a collection of uniform distributions on a sequence of sets Sy, S, ..., where
each Sy is a (t(k), e(k))-pseudorandom set, constitutes a pseudorandom ensemble, provided
that both functions t(n) and £~!(n) grow faster than any polynomial. Therefore, we shall
refer to such a sequence of sets as a pseudorandom ensemble.

We now present the concept of “evasive sets.” Informally, evasiveness means that it is
hard, for efficient algorithms, to find strings which belong to these sets.

DEFINITION 3.2. Let Si, S, ... be a sequence of (nonempty) sets such that for every
n, S, € {0,1}2™, for a fixed polynomial Q. Such a sequence is called a polynomially
evasive (denoted P-evasive) ensemble if for any probabilistic polynomial-time algorithm A,
any constant c, any sufficiently large n, and any x € {0, 1}*,

Prob(A(x) € S,) < n™°,

where the probability is taken over the random coins of algorithm A.

The following theorem states the existence of a P-evasive ensemble which is also pseu-
dorandom.

ON THE COMPOSITION OF ZERO-KNOWLEDGE PROOFS 175

THEOREM 3.1 [GK]. There exists a P-evasive pseudorandom ensemble Si, S, ... with
Q(n) = 4n. Furthermore, there exists a Turing machine which on input 1" outputs the set
Sn-

For disproving the parallel composition theorem we shall need a stronger notion of evasive-
ness. Namely, one which also resists nonuniform algorithms. This definition of evasiveness
involves a collection of sets for each length, rather than a single set per length as in the uniform
case.

DEFINITION 3.3. Let Q(-) be a polynomial, and for n = 1,2, ... let S™ be a collection
of 2" sets {S™, ..., S}, where each S,.(") C {0, 1}2™. The sequence SV, SP | .. . is called
a nonuniform polynomially evasive (denoted P/poly-evasive) ensemble if for any ¢ > 0,
sufficiently large n, and any (probabilistic) circuit C of size n® (with n inputs and Q(n)
outputs)

1
Prob(C(i) € §) < g

where the probability is taken over the random coins of C and i € {1,...,2"}, both with
uniform probability.
That is, a sequence SV, S@, ... is a P/poly-evasive ensemble if any circuit of size

polynomial in n, which gets a randomly selected index of one of the sets in $™, cannot
succeed in outputting an element in that set, except for a negligible probability.

Remark. Notice that in the definition of P-evasive ensembles the (uniform) algorithm
trying to hit an element in the evasive set S, gets as input a string x of length n, which can be
seen as an auxiliary input. The crucial difference between this “uniform” definition and the
definition of P/poly-evasiveness is that in the latter the auxiliary input is allowed to be of any
length polynomial in the length of the target strings, while in the former the auxiliary input is
properly shorter than the target strings in the set S,,.

The following theorem states the existence of a P/poly-evasive ensemble which is com-
posed of pseudorandom sets.

THEOREM 3.2. There exists a Plpoly-evasive ensemble SV, 8@, .. . with Q(n) = 4n, such
that for every n, each S,.(") is a (2"*, 27"/*)-pseudorandom set of cardinality 2". Furthermore,
there exists a Turing machine which on input 1" outputs the collection S™.

The proof of this theorem is given in the appendix.

4. Sequential composition of zero-knowledge protocols. A natural requirement from
the notion of zero-knowledge proofs is that the information obtained by the verifier during
the execution of a zero-knowledge protocol will not enable him to extract any additional
knowledge from subsequent executions of the same protocol. That is, it would be desirable
for the sequential composition of zero-knowledge protocols to yield a protocol which is itself
zero-knowledge. Such a property is crucial for applications of zero-knowledge protocols in
cryptography (for details and further motivation, see [GO] and [Ore]).

We prove that the original definition of (computational) zero-knowledge introduced by
Goldwasser, Micali, and Rackoff in [GMR1], is not closed under sequential composition.
Several authors have previously observed that this definition probably does not guarantee the
robustness of zero-knowledge under sequential composition, and hence have introduced more
robust formulations of zero-knowledge [Fei], [GMR2], [GO], [Ore], [TW]. But so far, no proof
has been given for the claim that computational zero-knowledge (with uniform verifiers) fails
under sequential composition.

Intuitively, the reason that a zero-knowledge protocol could not be closed under sequential
composition is that the definition of zero-knowledge requires that the information transmitted
in the execution of the protocol is “useless” for any polynomial-time computation; it does not

176 ODED GOLDREICH AND HUGO KRAWCZYK

rule out the possibility that a cheating verifier could take advantage of this “knowledge” in
a subsequent interaction with the (nonpolynomial time) prover for obtaining valuable infor-
mation. This intuition (presented in [Fei]) is the basis of our example of a protocol which
is zero-knowledge in a single execution but reveals significant information when composed
twice in a sequence. This protocol, presented in the proof of the following theorem, uses a
P-evasive ensemble as defined in Definition 3.2 and whose existence is stated in Theorem 3.1.

THEOREM 4.1. Computational zero-knowledge ((GMR1] formulation) is not closed under
sequential composition.

Proof. Let i, S, ... be a P-evasive pseudorandom ensemble as described in Theorem
3.1. Also, let K be an (arbitrary) hard Boolean function, in the sense that the language
Lk = {x : K(x) = 1} is not in BPP (we use this function as a “knowledge” function).

We present the following interactive-proof protocol (P, V) for the language L = {0, 1}*.
(Obviously, this language has a trivial zero-knowledge proof in which the verifier accepts
every input without carrying out any interaction. We intentionally modify this trivial protocol
in order to demonstrate a zero-knowledge protocol which fails sequential composition.)

Let x be the common input for P and V, and let n denote the length of x. The verifier
V begins by sending to the prover a random string s of length 4n. The prover P checks
whether s € S, (the nth set in the P-evasive ensemble defined above). If this is the case (i.e.,
s € S,), then P sends to V the value of K (x). Otherwise (i.e., s € S,), P sends to V a string
so randomly selected from S,. In any case the verifier accepts the input x (as belonging to
L).

We stress that the same P-evasive ensemble is used in all the executions of the protocol.
Thus, the set S, does not depend on the specific input to the protocol, but only on its length.
Therefore, the string s, obtained by the verifier in the first execution of the protocol, enables
him to deviate from the protocol during a second execution in order to obtain the value of
K (x"), for any x’ of length n (and in particular for x’ = x). Indeed, consider a second
execution of the protocol, this time on input x’. A “cheating” verifier, which sends the string
s = sg instead of choosing it at random, will get the value of K (x’) from the prover. Observe
that this cheating verifier obtains information that it could not compute by itself. There is
no way to simulate in probabilistic polynomial time the interaction in which the prover sends
the value of K (x'); otherwise the language Lx would be in BPP (indeed, such a simulator
could be used as a probabilistic polynomial-time algorithm for computing the function K with
negligible error probability. To see that, notice that the real prover in an interaction with the
above cheater verifier on inputs (x, x’) will output k(x’) with probability 1. Therefore, the
simulator must output the correct value of k(x’) with probability almost 1, or otherwise, its
output is polynomially distinguishable from the real conversations). Thus, the protocol is not
zero-knowledge when composed twice.

On the other hand, the protocol is zero-knowledge (when executed once). To show
this, we present for any verifier V*, a polynomial-time simulator My~ that can simulate the
conversations between V* and the prover P. There is only one message sent by the prover
during the protocol. It sends the value of K (x) when the string s sent by the verifier belongs to
the set S, and a randomly selected element of S, otherwise. By the evasivity condition of the
set S, there is only a negligible probability that the first case holds. Indeed, no probabilistic
polynomial-time machine (in our case, the verifier) can find such a string s € S,, except with
negligible probability (no matter what the input x to the protocol is). Thus, the simulator can
succeed by always simulating the second possibility, i.e., the sending of a random element s¢
from S,. This step is simulated by randomly choosing so from {0, 1}*" rather than from S,.
The indistinguishability of this choice from the original one follows from the fact that each
S, is a pseudorandom subset of {0, 1}*", and that the prover chooses s from S, with uniform
probability. 0

ON THE COMPOSITION OF ZERO-KNOWLEDGE PROOFS 177

Remark. The argument presented in the above proof generalizes to any language L having
a zero-knowledge interactive proof. Simply modify the zero-knowledge proof for L as in the
proof of Theorem 4.1.

Remark. Another example of a zero-knowledge protocol which is not closed under se-
quential composition was independently found by D. Simon [Sim]. His construction assumes
the existence of secure encryption systems.

5. Parallel composition of zero-knowledge protocols. In this section we address the
question of whether zero-knowledge interactive proofs are robust under parallel composition.

Clearly, we cannot expect the original Goldwasser—Micali—Rackoff (GMR) definition to
satisfy this condition: it is easy to see that a zero-knowledge protocol which is not closed under
sequential composition can be transformed into another zero-knowledge protocol which fails
parallel composition.

In light of the fact that auxiliary-input zero-knowledge is robust under sequential composi-
tion [GO], [Ore], it is an interesting open question whether this formulation of zero-knowledge
is also robust under parallel composition. The main result of this section is that this is not
the case. We prove the existence of protocols which are zero-knowledge even against nonuni-
form verifiers (e.g., auxiliary-input zero-knowledge), but which do not remain zero-knowledge
when executed twice in parallel. As in the case of sequential composition our results concern
only computational zero-knowledge.

The ideas used for the design of a protocol which fails parallel composition are simi-
lar to those used for the sequential case. There, we have used the pseudorandomness and
evasiveness of some sets to construct the intended protocol. We also use this method here.
The main difficulty of extending these properties to the present case is that now we need an
evasive collection which resists even nonuniform verifiers. Clearly, a P-evasive ensemble
will not satisfy this condition, since for any set of strings there exist nonuniform verifiers
which can output elements in this set (e.g., by getting such a string as auxiliary input). In-
stead, we use the notion of P/poly-evasive ensembles as defined in Definition 3.3. Based on
Theorem 3.2, which states the existence of such ensembles, we prove the main result of this
section.

THEOREM 5.1. Computational zero-knowledge (even with nonuniform verifiers) is not
closed under parallel composition.

Proof. We present a pair of protocols (P;, Vi) and (P,, V,) which are zero-knowledge
when executed independently, but whose parallel composition is provably not zero-knowledge.

We use some dummy steps in the protocols in order to achieve synchronization between
them. Of course, one can modify the protocol, substituting these extra steps by significant
ones. The version we give here prefers simplicity over naturality. Both protocols consist of
five steps and are described below (see also Fig. 1).

The first protocol is denoted (P;, V). Let x be the input to the protocol and let n denote
its length. The protocol uses (for all its executions) a P/poly-evasive ensemble S, §@ ...
with the properties described in Theorem 3.2. It also involves a hard Boolean function K as in
the proof of Theorem 4.1. The prover P; begins by sending to V; an index i €¢ {1, ...,2"}.
After two dummy steps the verifier V; sendsto P; astring s € {0, 1}**. The prover P; checks
whether s € S,.("). If this is the case then it sends to V; the value of K (x), (otherwise an empty
message). This concludes the protocol.

The second protocol (P,, V,) uses the same P/poly-evasive ensemble S, §@ . as
protocol (P;, V;) does. The first step of the protocol is a dummy one. In the second step
the verifier V, sends to P, an index j €x {1,...,2"}. The prover P, responds with a string
r €R S;"). After two more dummy steps the protocol stops.

We show that each of the above protocols is indeed zero-knowledge (even for nonuni-
form verifiers). For the first protocol, there are two steps of the prover to be simulated. In the

178 ODED GOLDREICH AND HUGO KRAWCZYK

Py vy step P, V,
iegi{l,---,2"}> 1 dummy step
dummy step 2 <jepi{l,---,2"}
dummy step 3 regSM >
<seg{0,1}* 4 dummy step
ifse SM: Kx)> 5 dummy step
FiG. 1. Protocols (Py, V1) and (Pa, V,) with input x.
first step P; sends an index i €g {1,...,2"}. The simulator does the same. In the second

step, the prover sends the value of K (x) only if the verifier succeeds in presenting him with a
string which belongs to the set 5. By the evasivity condition of the sequence SV, @, ...,
this will happen with negligible probability and therefore the simulator can always simulate
this step as for the case where the verifier sends a string s & Si("). (Observe that the circuits
in the definition of P/poly-evasive ensembles only get as input the index of the set to be hit.
Nevertheless, in our case the circuits also have an additional input x. Clearly, this cannot help
them find an element in Si("); otherwise, circuits which have such a string incorporated will
contradict the evasiveness condition.)

In the second protocol, (P,, V,), the only significant step of the prover P, is when it
sends an element r € S;”) in response to the index j sent by the verifier. In this case the
simulator will send a string ¥’ € {0, 1}**. Using the pseudorandomness property of the set
S;") we get that the simulator’s choice is polynomially indistinguishable from the prover’s
one.

Finally, we show that the parallel composition of the above protocols into a single protocol
(P, V) is not zero-knowledge. Let V* be a “cheating” verifier which behaves as follows.
Instead of sending a randomly selected index j (corresponding to the second step of the
subprotocol (P, V,)) it sends the index i received from P as part of P;’s first step. Thus,
J =i, and the prover P will respond with a string r € Si("). In the next step this V* will send
string r to P instead of the “random” string s that V) should send to P,. The prover P will
verify that r € Sl.(") and then will send the information K (x). By the hardness of the function
K this step cannot be simulated by a probabilistic polynomial-time machine. Therefore, the
composed protocol (P, V) is not zero-knowledge. o

Remark. The two protocols (P, V1) and (P,, V,) can be merged into a single zero-
knowledge protocol which is not robust under parallel composition. In this merged protocol,
the verifier chooses (at random) an index i € {1, 2}, sends it to the prover, and then both
parties execute the protocol (P;, V;). When executing two copies of this protocol in parallel,
the verifiers may choose i = 1 and i = 2, respectively, thus forcing a parallel execution of
(Py, V1) and (P,, V,), which we have shown not to be zero-knowledge.

6. On the round complexity of zero-knowledge proofs. In this section we present
lower bounds on the round complexity of black-box simulation zero-knowledge interactive
proofs. We show that only languages in BPP have constant-round Arthur—Merlin interactive
proofs which are black-box simulation zero-knowledge. (For a definition of black-box simu-
lation zero-knowledge and Arthur—Merlin interactive proofs, see §2.) We have the following
theorem.

ON THE COMPOSITION OF ZERO-KNOWLEDGE PROOFS 179

THEOREM 6.1. A language L has a constant-round Arthur—Merlin interactive proof which
is black-box simulation zero-knowledge if and only if L € BPP.

In §6.1 we present a proof for a special case of this theorem, namely, for the case of a three-
round Arthur—Merlin protocol. The general case is proved in §6.2 using careful extensions of
the ideas presented for this special case.

The three-round case can also be extended to general interactive proof systems. That is,
we also have the following theorem, proved in §6.3.

THEOREM 6.2. A language L has a three-round interactive proof which is black-box
simulation zero-knowledge if and only if L € BPP.

(We remark that [GO] and [Ore] show that two-round (auxiliary-input) zero-knowledge
proofs—not necessarily black-box simulation—exist only for BPP languages.)

Our results are optimal in the sense that there exist Arthur—Merlin interactive proofs, for
languages believed to be outside BPP, with unbounded number of rounds and which are black-
box simulation zero-knowledge. Similarly, there exist four-round interactive proof protocols
(using private coins) which are also black-box simulation zero-knowledge. For further details
about these protocols, and some consequences concerning the hierarchy of languages having
zero-knowledge Arthur—Merlin proofs, see §1.

Itis interesting to note that our results hold also for a weaker notion of black-box simulation
zero-knowledge, namely, one which only requires the existence of a black-box simulator
that succeeds in simulating conversations with deterministic (nonuniform) verifiers. The
sufficiency of this condition follows from the proofs below. Also, the formulation of the
completeness condition of an interactive proof (see §2) can be relaxed in the following way.
We have defined the completeness condition by requiring that the prover convince the verifier of
accepting an input in the language with probability almost 1 (i.e., 1 minus a negligible fraction).
For the correctness of our results it suffices to require just a nonnegligible probability. (In
this section we use this weaker formulation of the completeness condition.) On the other
hand, the requirement of a negligible probability of convincing the verifier to accept an input
not in the language (the soundness condition) is essential. (For example, three-round zero-
knowledge protocols exist for all languages in NP if the soundness condition is formulated with
probability % [GMW1].) Finally, our results hold also in the setting of interactive arguments
[BCC], i.e., “interactive proofs” in which the prover is limited to probabilistic polynomial-time
computations, possibly getting an auxiliary input.

6.1. The case AM(3).

The protocol (P, V). Consider an Arthur—Merlin protocol (P, V) for a language L,
consisting of three rounds. We use the following notation. Denote by x the input for the
protocol, and by n the length of this input. The first message in the interaction is sent by
the prover. We denote it by . The second round is the V, which sends a string 8. The
third (and last) message is from P, and we denote it by y. The predicate computed by the
verifier V in order to accept or reject the input x is denoted by py, and we consider it, for
convenience, as a deterministic function py (x, &, 8,). (For the general case, see Remark
6.2.) We will also assume, without loss of generality, the existence of a polynomial /(n) such
that || = |B| = I(n).

The simulation process. Let this three-round Arthur—Merlin protocol (P, V') be black-
box simulation zero-knowledge. Denote by M the guaranteed probabilistic expected poly-
nomial-time black-box simulator which, given access to the black-box V*, simulates (P, V*).
The process of simulation consists of several “tries” or calls to the interacting verifier V* (“the
black box™). In each such call the simulator M feeds the arguments for V*. These arguments
are the input y (which may be different from the “true” input x), the random coins for V*,
and a string o representing the message sent by the prover P. In our case, it suffices for our

180 ODED GOLDREICH AND HUGO KRAWCZYK

results to consider a simulator that is just able to simulate conversations with deterministic
(nonuniform) verifiers. In particular, this simulator does not care about feeding the black-box
V* with random coins. This simplifies our proof by avoiding any reference to these random
coins for V*, and strengthen our result (since it holds even under the sole existence of this
weak kind of simulator).

After completing its tries the simulator outputs a conversation (y, «, 8,).

We shall make some further simplifying assumptions on the behavior of the simulator M,
which will not restrict the generality. In particular, we assume that some cases, which may arise
with only negligible probability, do not happen at all. This cannot significantly effect the suc-
cess probability of the simulator. In other words, any black-box simulator which successfully
simulates (P, V*) conversations of deterministic verifiers V* can be changed into another sim-
ulator for which the following conventions hold and which has the same success probability as
the original simulator, except for a possibly negligible difference. We assume the following:

e The conversations output by M always have the form (x, «, 8, y) (i.e., y = x), and
that the string 8 equals the message output by V* when fed with inputs x and «. Note
that these conditions always hold for the real conversations generated by the prover
P and the (deterministic) verifier V*. Therefore, the simulator must almost always
do the same. (Otherwise, a distinguisher which has access to V* would distinguish
between the simulator’s output and the original conversations.)

e The simulator M explicitly tries, in one of its calls to V*, the arguments x and «
appearing in the output conversation. (For example, once the simulator decides on
the output conversation with a specific parameter «, it explicitly feeds V* with x and
this value of «, regardless of whether it asked « before or not. In any case, the answer
of the deterministic V* to the pair (x,), will be always the same.)

e The simulator runs in (strictly) polynomial time. (In Remark 6.1 below we show
how to handle the general case in which the simulator runs in expected polynomial
time.) We denote by ¢(n) a polynomial bounding the number of calls tried by M
before outputting a conversation.

The simulator as a subroutine. Our goal is to present a BPP algorithm for the language
L. The idea is to use the simulator M in order to distinguish between inputs in and outside L.
For that, we use the simulator itself as a subroutine of the BPP algorithm. We do not make any
assumption on the internal behavior of this simulator, but just use the following observation.
The behavior of the simulator M, interacting with a verifier V*, is completely determined by
the input x, the random tape Ry used by M, and the strings output by V* (in response to the
arguments fed by the simulator during its tries). Therefore, in order to operate M, we just
need to feed it with an input x, a tape of random coins, and a sequence of responses to its
messages «. Below we formally describe a computation process that uses M as a subroutine.
(We stress that in this process there is no explicit verifier present.)

Fix an input x of length n, a string Ry (of length q(n), where g(-) is a polynomial
bounding the number of random coins used by M on inputs of length n), and ¢t = ¢(n)
(arbitrary) strings B, B@, ..., B®, each of length I(n). Activate M on input x with its
random tape containing Rj. For each y and o tried by M, respond with a message B from
the above list B, B@, ..., B® according to the following rule. (This rule depends on the
strings « but not on y.) To the first o presented by M respond with 8. For subsequent
a’s check whether the same string « was presented by M. If so, respond with the same 8
as in that case; if it is the first time this « is presented then respond with the first unused
B in the list. That is, if « is the ith different string presented by M then we respond with
BH. We denote the ith different o by a®. Clearly, a® is uniquely determined by x, Ry,

ON THE COMPOSITION OF ZERO-KNOWLEDGE PROOFS 181

and the i — 1 strings BV, ..., B¢~D, i.e., there exists a deterministic function s such that
a® = ay(x, Ry, BY, ... BED). Wedenoteby convy (x, Ry, BV, ..., BD) = (x, e, B, y)
the conversation output by the simulator M when activated with these parameters (notice that
t strings B®) always suffice for answering all tries of M). By our convention on the simulator
M, there exists i, | <i <t,suchthata = o and g = g©.

DEFINITION. We say that avector (x, Ry, BV, ..., BD) is M-goodif convy(x, Ry, BV,
..., BY) is an accepting conversation for the (honest) verifier V, namely, if convM (x, Ry,
BY, ..., BY) = (x,a,B,y) and py(x, a, B, y) = ACCEPT. We say that (x, Ry, B, ..
B®) is (M, i)-good (or i-good for short) if it is M-good and a = a®, B = B©.

The main property of M-good strings is stated in the following lemma.

LEMMA 6.3. Let (P, V) be a three-round Arthur-Merlin protocol for a language L.
Suppose (P, V) is black-box simulation zero-knowledge, and let M be a black-box simulator
as above. Then,

1. for strings x outside L, only a negligible portion of the vectors (x, Ry, BV, ..., B®)
are M-good,

2. for strings x in L there exists a nonnegligible portion of the vectors (x, Ry, BV, ...,
B®) that are M-good. (This nonnegligible portion is at least one half of the com-
pleteness probability of the protocol (P, V), i.e., at least half the probability that P
convinces V to accept x.)

Before proving this key lemma, we use it to prove Theorem 6.1 for the case of the three-
round Arthur—Merlin interactive proof.

Proof of Theorem 6.1 (for the case AM(3)). By Lemma 6.3 we get the following BPP
algorithm for the language L. On input x:

*select at random a vector (Ry, B, ..., B©);

*accept x if and only if (x, Ry, B, ..., B®) is M-good.

The complexity of this algorithm is like the complexity of testing for M-goodness. The
latter is polynomial-time since it involves running the simulator M which is polynomial-time,
and evaluating the predicate py, which is also polynomial-time computable. The success
probability of the algorithm is given by Lemma 6.3. g

Proof of Lemma 6.3. (1) Assume that the portion of M-good vectors (x, R, BV, ..., B©)
forx’snotin L is not negligible. This means that there exist infinitely many x ¢ L for which the
portion of M -good vectors is nonnegligible. For each such x, there exists anindex ip, 1 < iy <
t, for which a nonnegligible fraction of the vectors (x, R, B, ..., B?) are ip-good (since
there are only polynomially many possible values for ip). Thus, there exists a nonnegligible
number of prefixes (x, R, B, ..., B%=D) each with a nonnegligible number of iy-good con-
tinuations (8%, . .., B®) (i.e., suchthat (x, R, 1V, ..., plo—D gl B®)areij-good).
Let (x, R, B, ..., B%=D) be such a prefix, and let @ = ay(x, R, B, ..., po~D), For
each iy-good continuation (8%, ...,) machine M outputs a conversation (x, &, g)
for which py (x, 2 g4) = ACCEPT. In particular, there exists a nonnegligible number
of B for which this happens.

In other words, for each x as above, there exists a string a, (=) for which the set
B(x,0a,) ={B : 3y, pv(x, oy, B, v) = ACCEPT} is of nonnegligible size among all possible
strings B. Consider now a (“‘cheating”) prover that sends this «, as its first message. If V
responds with 8 € B(x, a,), the prover sends the corresponding y, which convinces V to
accept. Since V selects its messages B at random, then the probability of being convinced
by the above prover is (at least) as big as the relative size of B(x, «), i.e., nonnegligible.
Concluding, we have shown the existence of a prover that for infinitely many x’s outside L
convinces V to accept with nonnegligible probability. This contradicts the soundness condition
of the protocol (P, V), and this part of the lemma follows.

L]

182 ODED GOLDREICH AND HUGO KRAWCZYK

(2) We show that for strings x in L a nonnegligible portion of the vectors (x, Ry, B, .. .,
B®) are M-good. We do it by considering the behavior of the simulator M when receiving
“random-like” responses from the verifier. This behavior is analyzed by introducing a partic-
ular family of “cheating” verifiers, each of them associated to a different hash function from
a family of ¢ (n)-wise independent hash functions. The t(n)-wise independence (where ¢ (n)
is the bound on the number of simulator’s tries) achieves the necessary randomness from the
verifiers’ responses.

Let x € L and let n denote its length. Consider a family of hash functions H, which
map [(n)-bit strings into /(n)-bit strings, such that the locations assigned to the strings by a
randomly selected hash function are uniformly distributed and ¢ (n)-wise independent. (Recall
that /(n) is the length of messages « and B in the Arthur—Merlin protocol (P, V) for L, while
t(n) is the bound on the number of M’s tries.) For properties and implementation of such
functions, see, e.g., [Jof], [WC], and [CG]; in particular, we observe that such functions can
be described by a string of length ¢ () - [(n), i.e., polynomial in n.

For each hash function 2 € H, we associate a (deterministic nonuniform) verifier V;,
which responds to the prover’s message o with the string 8 = h(x) (V" has wired in the
description of #). Consider the simulation of (P, V;*) conversations by the simulator M.
Fixing an input x, a random tape Ry, for M, and a function h € H,, the whole simulation is
determined. In particular, this (uniquely) defines a sequence of «’s tried by the simulator, and

the corresponding responses 8 of V;*. We denote by o, «@, ..., a®), the different values
of « in these tries. When s < ¢, we complete this sequence to V), ..., @, ¥V . «®,
by adding ¢ — s strings « in some canonical way, such that the resultant V), ..., o are all
different. Let B9 = h(a®),1 < i < t, and define v(x, Ry, h) = (x, Ry, BV, ..., BD).

Part (2) of the lemma follows from the following two claims.

CLAM 1. For x € L, there is a nonnegligible portion of the pairs (Ry;, k) for which the
vector v(x, Ry, h) is M-good.

Proof. For any input x to the protocol (P, V), let p, denote the probability that the
prover P convinces V (the honest verifier) to accept x. In other words, p, is the probability,
over the coin sequences Rp of the prover P, and (random) choices B of V, that the resultant
conversation (x, a(x, Rp), B, y(x, Rp, B)) is accepting. By the completeness property of the
protocol (P, V), we get that for x’s in L the probabilities p, are nonnegligible.

Let x € L and consider the interaction between the real prover P and the verifiers V,* on
the input x. Each coin sequence R p determines the message « and the corresponding response
h(a) by V). By the uniformity property of the family H, we get that for every «, all B’s are
equiprobable as the result of 4 («). Therefore, the probability that P and V' (for A uniformly
chosen from H,) output an accepting conversation is exactly the same as the probability, p;,
that P and V output such a conservation.

Finally, since the simulator M succeeds in simulating (P, V;}) conversations for all func-
tions h € H,, we get that for each h the probability that M outputs an accepting conversation
when interacting with V¥ is almost the same (up to negligible difference) as the probability
that P and V;” output an accepting conversation. This last probability, for h €g H,, is p,. We
conclude that the probability, over random Ry, and A, that v(x, Ry, h) is M-good is almost

px and thus nonnegligible. The claim follows. g

CLAIM 2. For all strings x and Ry, and for # chosen with uniform probability from H,,
the vector v(x, Ry, k) is uniformly distributed over the set {(x, Ry, BV, ..., BD) : B ¢
{0, 1™},

Proof. Recall the function «ys introduced above. Observe that
‘U()C, RM» h) = (x, RM’ ﬂ(l)’ L) ﬂ(t))
if and only if forevery i, 1 <i <t,

h(am (x, Ry, BY, ..., B7D)) = gD,

ON THE COMPOSITION OF ZERO-KNOWLEDGE PROOFS 183

On the other hand, by the uniformity and ¢ (n)-independence property of the family H,, we
have that for any ¢ different elements ay, . .., a, in the domain of the functions h € H,, the
sequence h(ay), ..., h(a,) is uniformly distributed over all the possible sequences by, .. ., b,
for b; in the range of the functions H,.

Thus, for all strings x and Ry, and for fixed 8V, ..., B®, the probability (for & € H,)
that v(x, Ry, h) = (x, Ry, BV, ..., B®) equals the probability that foreveryi, 1 <i <t,h

maps @@ = ay (x, Ry, BL, ..., B D) into BO. Since, by definition, all ¥ ’s are different,
then we can use the above property of the family H, to get that the latter probability is the
same for every sequence BV, ..., B® (ie., we put ¢; = a and b; = B?). The claim
follows. a

Claim 2 states that for any Ry, the value of v(x, Ry, h) is uniformly distributed over
all possible vectors (x, Ry, B, ...,). On the other hand, by Claim 1, a nonnegligible
portion of v(x, Ry, h) are M-good, and then we get that a nonnegligible portion of the vectors
(x, Ry, BV, ..., B®) are M-good.

The lemma follows. 0

Remark 6.1 (expected polynomial-time simulator). For simplicity we have assumed that
the given simulator, M, for the protocol (P, V) runs in (strictly) polynomial time. Neverthe-
less, in the definition of zero-knowledge we allow this simulator to run in expected polynomial
time. We show that our results also hold in this general case by transforming a given expected
polynomial-time simulator M into a strictly polynomial-time simulator M’, and showing that
Lemma 6.3 holds for this new simulator. Then, we can use the modified simulator M’ in the
BPP algorithm for the language L.

The simulator M’ behaves like M, but its running time is truncated after some (fixed)
polynomial number of steps, denoted s(n). We show how to choose this polynomial s(n). Let
T (n) be a polynomial bounding the expected running time of M, and let p(n) be a (lower)
bound on the probability that the prover P convinces the (honest) verifier V to accept an input
in L of length n. We define s(n) tobe 2 - T'(n)/p(n). Since 1/ p(n) is polynomially bounded
(by the completeness condition of the protocol (P, V'), then s(n) is polynomially bounded.
With this modification of M the proof of Lemma 6.3 remains valid, except for a more delicate
argument in the proof of Claim 1. The required changes follow.

In that proof we claimed that “for each & the probability that M outputs an accept-
ing conversation when interacting with V;® is almost the same (up to a negligible differ-
ence) as the probability that P and V) output an accepting conversation.” This is true for
the original simulator M, but not necessarily for M’. Since we cut the running of M af-
ter s(n) steps, then there exist cases in which M’ does not complete the original behavior
of M. Nevertheless, by the choice of s(n), the probability (over the coin tosses of M’)
that this happens (i.e., the running time of M exceeds s(n)) is at most p(n)/2. Thus,
for any 4, the probability that the truncated simulator, M’, outputs an accepting conver-
sation when interacting with V;* differs from the probability that P and V" output an ac-
cepting conversation by at most p(n)/2. For h €gp H,, this last probability was shown
(in the original proof of Claim 1) to be at least p(n), and then we get that the proba-
bility, over random R,y and A, that v(x, Ry, h) is M'-good is (up to a negligible differ-
ence) larger than p(n)/2, and then nonnegligible. Therefore, Claim 1 follows in this case
also. 0

Remark 6.2 (randomized py). We have assumed that the only coin tosses of the (honest)
verifier V during the Arthur—Merlin protocol (P, V) are the bits corresponding to the string
B sent to the prover, and that no additional coin tosses are used in order to compute the
accepting/rejecting predicate py. This restriction can be removed from the above proof by
using finer arguments, as done in our treatment of the general IP(3) case (of §6.3).

More generally, any AM(k) protocol in which the predicate py depends on the whole
conversation and some additional random string can be transformed into an AM(k + 1) pro-
tocol in which no such additional string is used: simply let the verifier send this random string as

184 ODED GOLDREICH AND HUGO KRAWCZYK

its last message. Hence, since we prove our result for any constant-round AM protocol, we
can assume that py is deterministic. a

Remark 6.3 (interactive arguments). We now show how to generalize the above proof of
the case AM(3) in order to prove the same result in the setting of interactive arguments, i.e.,
“interactive proofs” in which the soundness condition is required only with respect to provers
limited to probabilistic polynomial-time computations, possibly getting an auxiliary input.
We have to prove Lemma 6.3 in this setting. Notice that part (2) of the lemma relies on the
completeness and zero-knowledge properties of the interactive proof, but these properties are
not influenced by the soundness condition. Therefore, this part of the proof automatically holds
for interactive arguments. The other part, part (1), relies on the soundness of the interactive
proof, thus a modification is required in the proof to deal with provers having just polynomial
power.

In that proof we showed, by contradiction, the existence of infinitely many x’s not in L for
which a cheating prover can convince the verifier to accept x with nonnegligible probability.
The success of this prover was shown by proving, for each such x, the existence of a message
o, that for nonnegligibly many B’s a string y exists such that py (x, ay, 8, y) = ACCEPT. In
the interactive arguments, setting the sole existence of such an «, is not sufficient. The limited
prover should find in probabilistic polynomial time this string and the corresponding response
y to the message B sent by V. We describe such a prover P*, which uses the simulator M in
order to find the required strings. It begins by choosingi € {1, ..., t}and random strings Ry,
BW, ..., BYD. Then it computes & = ap(x, Ry, B, ..., B~D) and sends this « to V.
Once V responds with B, the prover P* chooses ¢ —i random strings 8¢+D, ..., B computes
(using the simulator M) the conversation conv (x, Ry, BV, ..., B¢~ g, pE+D . B®),
and sends to V the message y appearing in this conversation. If the chosen vector is i-good
then this y convinces V to accept the conversation. We analyze the probability of such an
event.

There exists a nonnegligible probability that P* chooses i, 1 < i < ¢, for which the
number of i-good vectors is nonnegligible (we saw that such an i exists). On the other hand,
the whole vector (x, Ry, 8O, ..., B¢V, ..., B®) is chosen at random (except for x): the
B component by the verifier (the protocol is Arthur—Merlin!) and the other components by
P*. Therefore, there is a nonnegligible probability that the resultant vector is i-good, in which
case V accepts x. This way P* works in polynomial time and has a nonnegligible probability
of convincing V to accept x, from which we derive the required contradiction. 0

6.2. The case AM(k): Secret coins help zero-knowledge. In this section we consider
constant-round Arthur—Merlin interactive proofs. We show that a language having such an
interactive proof which is also black-box simulation zero-knowledge belongs to BPP, thus
proving Theorem 6.1. We present this proof based on the proof for the particular case of
AM(3) as given in §6.1. The basic ideas are similar, but their implementation is technically
more involved in this general case. We highly recommend familiarity with §6.1 before going
through the present section.

The protocol (P, V). Let (P, V) be a k-round Arthur—Merlin protocol for a language L.
For simplicity of the exposition we make some assumptions on the form of the protocol without
restricting the generality of the proof. We consider protocols in which both the first and last
messages are sent by the prover. By adding dummy messages any protocol can be converted
into one of this form. Notice that in such a protocol, the number of rounds is always an odd
number k = 2 - m + 1. The prover P sends m + 1 messages which we denote by a1, . .., 0
and y, respectively. The m messages by V are denoted Sy, ..., B,,. The input to the protocol
is denoted by x, and its length by n. The predicate computed by the verifier V in order to
accept or reject the input x is denoted by py, and we assume it to be a deterministic function of

ON THE COMPOSITION OF ZERO-KNOWLEDGE PROOFS 185

the conversation py (x, &1, B1, ..., ®m, Bm, ¥). (Our results hold also for interactive proofs in
which py depends on an additional random string. See Remark 6.2.) We need the following
technical convention. We assume that all prover messages in the protocol have a form that
allows them, by only seeing the ith message «;, to uniquely reconstruct all previous messages
sent by the prover during the conversation. This is easily achieved by simple concatenation
of previous messages (using a delimiter or some length convention). We also assume the
existence of a polynomial /(n) such that all prover’s and verifier’s messages on an n-length
input have length /(n) (e.g., using dummy padding). Finally, we let the verifier V check
whether the received messages conform to the above conventions, and reject the conversation
if not.

The simulation process. We denote by M the black-box simulator for the protocol
(P, V). The simulation process consists of several tries by the simulator M. Each try in-
volves feeding the verifier V* (i.e., the black box representing it) with a value y as the input to
the protocol, and the messages «;, 1 < i < m, that simulate the messages sent by P. (Again,
we do not care about random coins for V*; we just need a simulator that is able to simulate
conversations with deterministic verifiers.) The simulator M chooses these arguments, in the
successive tries, depending on the random tape Ry, and the responses B; output by the black
box V* during the current and previous tries. After each try the simulator may decide to output
a conversation of the form (y, a1, B1, . . . , @m, Bm, V) or to perform a new try. We assume that
the output conversation has y = x (i.e., the input component in the conversation corresponds
to the actual input being simulated), that the o« messages appearing in the output conversation
fit our convention on the form of the prover’s messages, and that the simulator explicitly tries
the output conversation. Namely, it operates (in one of the tries) the black box V* on input x
and ¢y, ..., ®,, as appearing in the output conversation, and, respectively, gets as responses to
V* the strings B, . . ., Bm, also appearing in this conversation. These assumptions are appar-
ently restricting ones, since the simulator is allowed to output conversations that are not “legal
conversations” between the prover P and the simulated verifier V*. Nevertheless, a simulator
that succeeds simulating the (P, V*) conversations will output such illegal conversations with
only negligible probability (otherwise the simulated conversations can be easily distinguished
from the true ones). Finally, we consider, for the sake of simplicity, only simulators that run in
(strictly) polynomial time. The necessary changes in the proof for handling the general case
in which the simulator runs in expected polynomial time are analogous to the ones described
in Remark 6.1 for the case AM(3). We denote by 7(n) a polynomial bounding the number
of calls to V* tried by M before outputting a conversation, and put ¢ (n) = m - £(n) (notice
that ¢ (n) constitutes an upper bound on the total number of messages « tried by M during the
whole simulation).

The simulator as a subroutine. Our goal is to present a BPP algorithm for the language
L, and we use the simulator M to achieve it. The way M is used is similar to the way we used
the simulator in the AM(3) case (see §6.1). In the present case, the behavior of the simulator
M when “interacting” with a verifier V* is determined by the input x to the protocol, the
random tape Ry, and the strings S output by V* as responses to the strings fed by M during
the different tries. Also, here we define a computational process that uses M as a subroutine.

Fix an input x of length 7, a string Ry, and ¢t = ¢(n) strings B, p@, ..., B, each of
length I(n). Activate M on input x with its random tape containing Rj. For each message
o presented by M, respond in the following way. (The responses will depend on the strings
a, but not on y.) If « is “illegal,” then respond with a special “reject-message.” By illegal
we mean a message « that does not fit our above conventions on the form of the prover’s
messages. For legal o’s we respond (impersonating a black-box verifier) with one of the 8’s
from the above list B, ..., B according to the following rule. If the same o was previously

186 ODED GOLDREICH AND HUGO KRAWCZYK

presented by M (i.e., during a previous try), respond with the same B as in that case. If o
is the ith different (legal) string presented by M since the beginning of the simulation, then
respond with 8. We denote the ith different @ by «®. Clearly,) is uniquely determined by
x, Ry, and the i — 1 strings B8V, ..., BY~D_ That is, there exists a deterministic function o
such that & = aps(x, Ryr, BV, ..., BY™D). We denote by convy(x, Ry, B, ..., BD) =
(y, a1, Bi1, ..., %m, Bm, V) the conversation output by the simulator M when activated with
these parameters (notice that ¢ strings 8¢ always suffice for answering all tries of M). By
our convention on the simulator M and on the form of the prover’s messages it follows
that there exists a sequence of indices 1 < i; < i < -+ < i, < t such that for each
oj, Bj, j = 1,..., m, appearing in the output conversation, o; = /) and B; = @) This is
true since the simulator always outputs a conversation which was explicitly generated in one
of its tries. The increasing property of the sequence of indices i; is enforced by the special
form of the “legal” messages «, namely, by the fact that we respond to message o; only if
we had previously responded to the messages oy, ..., «j_1. In the present setting we use the
following definition of M-good vectors.

DEFINITION. We say that a vector (x, Ry, BV, ..., B®) is M-good if convy(x, Ry,
BW, ..., BD)isanaccepting conversationfor the (honest) verifier V. We say that (x, Ry, B,
e BOY s (i, ip, ..., im)-good if it is M-good and the corresponding conversation has
aj =aDand By = B9, for j=1,...,m.

The following lemma is analogous to Lemma 6.3.

LEMMA 6.4. Letk = 2 -m + 1 be a constant, and let (P, V') be a k-round Arthur—Merlin
protocol for a language L. Suppose (P, V') is black-box simulation zero-knowledge, and let
M be a black-box simulator as above. Then

1. for strings x outside L, only a negligible portion of the vectors (x, Ry, B, ..., B?)
are M-good,

2. for strings x in L there exists a nonnegligible portion of the vectors (x, Ry, B, ...,
BD) that are M-good. (This nonnegligible portion is at least one half of the complete-
ness probability of the protocol (P, V'), i.e., half the probability that P convinces V to
accept x).

Proof of Theorem 6.1. Using Lemma 6.4 we get that the algorithm described in the proof
of Theorem 6.1 for the special case of AM(3) (see §6.1) is a BPP algorithm for the language
L. 0

Proof of Lemma 6.4. This proof is essentially analogous to the proof of Lemma 6.3,
although some delicate modifications are required.

(1) Assume that the portion of M-good vectors (x, Ry, BV, ..., B®) for x’s not in L
is not negligible. This means that there exist infinitely many x ¢ L for which the portion of
M-good vectors is nonnegligible. Observe that there are only polynomially many different
sequences 1 < ij <ip < --- < in <t (ie., ('f:)), and m is a constant), and then note that
for each x, as above, there exists a sequence (i1, i2, ..., i) for which nonnegligibly many
vectors (x, Ry, BV, ..., D) are (iy, iy, ..., im)-good. Next, we describe a prover P* which
convinces the (honest) verifier V to accept any of the above inputs x ¢ L with nonnegligible
probability, thus contradicting the soundness condition of the protocol (P, V).

The prover P* begins by choosing a sequence (i1, is, .. ., i,,) atrandom. Then, it chooses
random strings Ry, B, ..., B4~V and uses them to compute o = arpr(x, Ry, BV, ...,
BE~=D). It sends o to V and receives back the response B;. Now P* chooses random
BE-D . @D and computes oy = ap(x, Rpr, BV, ..., GO0, g, pO+D . gDy,
After receiving the response S, from the verifier, P* selects new random strings 8 @th
B®D) and computes a3 = oau(x, Ry, B, ..., G~ g, G+ gE-b g,
p@+b . BG=D) This process continues until all messages o;, B;, 1 < i < m, are com-
puted and exchanged. When the resultant vector (x, Ry, 8, ..., g4=D, g, p@+b

ON THE COMPOSITION OF ZERO-KNOWLEDGE PROOFS 187

BED By BD)is(iy, iy, ..., inm)-good, then computing the function conv,, on this vector
results in an accepting (for V') conversation (x, a1, 81, .- -, &%, Bm, ¥) (With «;, B;, as defined
above). But then, by sending this y, the prover P* convinces V to accept. The probability that
this happens equals the probability that the above vector (x, Ry, B, ..., p&—D gy, pé+D,
ey BETY B BDY s (i, in, . .., im)-good. Since this sequence of indices and all the
vector components (excluding x) are chosen at random (recall that V chooses its messages,
Bis .-, Bm, at random!) then this probability is nonnegligible.

(2) The proof of this part is analogous to the corresponding proof in Lemma 6.3. We
use a set H, of t(n)-independent hash functions (z(n) as defined in this section) to define
a family of verifiers V/*. For all h € H,, the verifier V,* responds to a legal message o
sent by the prover with i(«), and with a rejection message if « is illegal. The statements
for Claims 1 and 2 remain the same, as does the proof of Claim 2. The proof of Claim 1
needs a more delicate argument, as follows. As in the AM(3) case we consider the interaction
between the prover P and a verifier V), but now this interaction generates a conversation
of the form (x, &1, B1, ..., ®m, Bm, ¥). In particular, for each 4 and random tape Rp for P
a unique sequence of messages B, ..., B, (the responses of V;*) is determined. We have
to show that for every tape Rp all sequences fi, ..., B are equiprobable for h €r H,.
The proof of this property uses a similar argument as in the proof of Claim 2: observe that
the pair Rp and h generates the responses 81, ..., B, if and only if, forevery i, 1 < i <
m, h(ap(x, Rp, B1, ..., Bi—1)) = Bi. (Here ap stands for the function computed by P in
order to determine its next message «.) Thus, the probability (for h €gx H,) that a given
sequence By, ..., Bx is generated is like the probability that for every i, 1 < i < m, h maps
ap(x, Rp, By, ..., Bi—1) into B;. Since the functions H, are m-independent (by definition
they are ¢ (n)-independent, but m < t(n)), and the messages «;, . .. «,, output by P are all
different by convention, we get that the latter probability is the same for every sequence
ﬁ Iy o> ﬂm-

From this property of the pairs Rp and i we conclude that the probability that P and V)
(for h e H,) output an accepting conversation is exactly the same as the probability that P
and the honest V output such a conversation.

The rest of the proof follows as in Claim 1 of Lemma 6.3 a0

Remark 6.4. Notice that the prover P* described in the proof of part (1) of Lemma
6.4 is a polynomial-time prover. The other parts of the proof of Theorem 6.1 also hold for
such provers, and then we get that our result remains valid also in the setting of interactive
arguments.

6.3. The case IP(3). In the setting of general interactive proofs the (honest) verifier is
not restricted to choosing all its messages at random, but can compute them based on the input
x, arandom (“secret”) string r, and the previous messages of the prover. In the case of three
rounds this means that the only message sent by V' during the protocol is computed by means
of a (deterministic) function By (x, r, &), where « is the first message sent by P. Also, in
this case V accepts or rejects a conversation based on a predicate py (x, r, &, ¥) (y is the last
message sent by P).

Here we outline the proof of Theorem 6.2, based on the proof presented in §6.1 for the
AM(3) case.

Proof of Theorem 6.2 (outline). Let L be alanguage having a three-round interactive proof
which is black-box simulation zero-knowledge. Let (P, V') be such a protocol and let M be the
corresponding black-box simulator. The simulation process consists of several tries; in each
of them the simulator feeds the black box V* with arguments y (the input) and « (the prover’s
message), and gets an answer 8 from V*. (Again, it suffices to consider a simulator just able
to simulate conversations with deterministic verifiers, so this simulator does not feed V* with

188 ODED GOLDREICH AND HUGO KRAWCZYK

a random tape.) We assume the same conventions on the simulator as the ones described in
§6.1 for the proof of the AM(3) case.

o The simulator always outputs a conversation of the form (x, ¢, 8, ¥), where x and o
are fed into the black-box V* in one of the simulator tries, and 8 is the response of
V* to these arguments.

e The simulator runs in strictly polynomial time. In particular, #(n) stands for the
polynomial bound on the number of tries made by M on inputs of length n during
the simulation process (the case of expected polynomial-time simulators is handled
exactly as in Remark 6.1).

The main modification with respect to the proof of the AM(3) case is in the way we
use the simulator M as a subroutine for constructing the BPP algorithm for the language L.
Recall that the whole simulator process is completely determined by the input to the protocol,
x, the contents of M’s random tape, Ry, and the responses by the verifier. This was true
for the AM(3) case and remains true here. In the former case we used M as a subroutine by
feeding it with x and a randomly chosen string Rj;. Then, we used ¢ = #(n) random strings
BV, ..., B as the response of the virtual verifier. In the present case we choose a string
Ry, as before, and ¢ random strings denoted r(1), ..., ®, each of length I(n), where I(n) is
a (polynomial) bound on the number of random bits used by the (honest) verifier in the IP(3)
protocol (P, V). The idea is to use these strings as the random coins of the virtual verifier for
responding to M’s tries. More precisely, for each try by the simulator, consisting of an input
y to the protocol and a message o, we compute 8 = By (y, r® o), and feed it into M as the
verifier’s response to a.. For each new try we use a new r¥) (in increasing order of i), except
in the case in which the present a was also presented in a previous try. If so, we use the same
r@ as in that case.

Note that a unique conversation is determined by x, Ry, and the ¢ strings r(V, ... r®.
Thus, as in the case AM(3), we can define conv (x, Ry, 'V, ..., r®) to be the conversation
output by M when the described process is finished. Also, we denote by a the ith different
o output by M during the simulation. Clearly, «”) is uniquely determined by x, Ry, and the
strings ¥, ..., r@D; thus we denote @ = aps(x, Rpg, vV, ..., r¢7D),

By our convention on M, if conv(x, Ry, ¥, ..., r®) = (x, a, B, ¥), then M explicitly
tried the arguments x and « during the simulation, and got as response the string 8. This
means that there exists (at least one) i, 1 < i < ¢, such that 8 = By (x, r®, «). This fact is
used in the following definition.

DEFINITION. We say that avector (x, Ry, rV, ..., r®)is M-goodifconv(x, Ry, rV, ...,
r®y = (x,, B, y) and py(x,rD, a, y) = ACCEPT, where i is the minimal value for which
B = Bv(x,rD a). According to this value of i, we call the conversation (M, i)-good (or
i-good for short).

Using this re-definition of the notion of M-goodness, Lemma 6.3 of §6.1 also holds in
the present (IP(3)) case, by just changing the %) notation by @ in the formulation of the
lemma. Theorem 6.2 then follows by using the BPP algorithm as described in the proof of
the AM(3) case. For the proof of Lemma 6.3 in the present case we note the following simple
modifications. In the proof of part (1) we use the same reasoning as in the corresponding proof
in §6.1 but applied to the strings 7@ instead of %), We note that the soundness probability
of the protocol is now defined over the random coins used by V, i.e., over the choices r®).
For the proof of the other part of the lemma we slightly modify the definition of the verifiers
V;'. We still use the same family of hash functions, but the verifier V* works as follows: on
message « sent by the prover, V;* responds with 8 = By (x, h(a), @), i.e., it computes B as the
honest verifier does, but using 4 («) as the random coins of V. The rest of the proof (including
Claims 1 and 2) remains essentially unchanged (up to the replacement of “responses 8¢)” by
“random coins r®”), 0

ON THE COMPOSITION OF ZERO-KNOWLEDGE PROOFS 189

Remark 6.5. As in the previous cases also, the IP(3) case extends to the setting of
interactive arguments. The modifications in the proof are analogous to the ones described in
Remark 6.3.

7. Concluding remarks. Although the results presented in this paper are negative in
nature, we believe that they have played a positive role in the development of the field.

We believe that sequential composition is a fundamental requirement of zero-knowledge
protocols. It is analogous to requiring that adding two algebraic expressions, each evaluating
to zero, yields an expression which evaluates to zero. Furthermore, sequential composition is
required when using zero-knowledge proofs as tools in the design of cryptographic protocols
(an application which is the primary motivation of zero-knowledge). The fact that the original
formulation of zero-knowledge is not closed under sequential composition establishes the
importance of augmenting this formulation by an auxiliary input (cf. [GO], [Ore], [TW], and
[Gol]). It should be stressed, of course, that all known zero-knowledge proofs also satisfy the
augmented formulation.

Parallel composition is the key to improving the efficiency (in terms of number of rounds)
of zero-knowledge protocols, but we do not believe that it is a fundamental requirement.
Carrying the analogy of the previous paragraph, one cannot require that “interleaving” two
expressions (each evaluating to zero) yields an expression which evaluates to zero. The fact
that all known formulations of (computational) zero-knowledge are not closed under parallel
composition motivates the introduction of weaker notions such as witness indistinguishability
[FS2] which suffice for many applications. Namely, instead of strengthening the hypothesis of
the alleged Parallel Composition Theorem (as was done in the case of Sequential Composition),
one relaxes the conclusion of the Parallel Composition Theorem (and this weaker conclusion
turns to suffice in many applications).

The fact that (“nontrivial”) black-box zero-knowledge proofs cannot be both of AM
type and of constant number of rounds establishes the importance of “private coins” in the
design of constant-round zero-knowledge proofs. In other words, in the process of such
proofs, the verifier must “commit” (and later “decommit”) to some pieces of information.
In fact, such commitments are the core of the constant-round zero-knowledge proofs (and
arguments) for any language in NP presented in [BCY], [FS1], and [GKa] (relying on various
reasonable intractability assumptions) and in the (unconditional) zero-knowledge proof for
graph isomorphism presented in [BMO1].

Appendix: Proof of existence of P/poly-evasive pseudorandom ensembles. In this
appendix we present the proof of Theorem 3.2. We first restate the theorem.

THEOREM 3.2. There exists a P/poly-evasive ensemble SV, 8@ | .. . with Q(n) = 4n, such
that for every n, each S is a (2"/*, 27"/*)-pseudorandom set of cardinality 2". Furthermore,
there exists a Turing machine which on input 1" outputs the collection S™ .

Proof. For any integer n, we denote by R™ the collection of sets S < {0, 1}*" of cardinality
2" which are (2"/4, 27"/*)-pseudorandom, and by C™ the set of (deterministic) circuits of size
2"/4 having n inputs and 4n outputs.

We prove the theorem by showing, for any large enough n, the existence of 2" sets
Si, ..., S» from R™ such that for any circuit C € C™, and i g {1, ...,2"}, Prob(C(i) €
S;) < 27"/*, Denoting this collection of 2" sets by S™, we get that the resultant sequence SV,
S, ... by aP/poly-evasive ensemble that satisfies the conditions of Theorem 3.2. We stress
that considering only deterministic circuits does not restrict the generality, since we can wire in
such a circuit a sequence of “random coins” that maximizes the probability Prob(C (i) € ;).

We turn to show the existence of a collection of sets as described above. We do it by
proving that there exists a positive probability to randomly choose 2" sets Sj, ..., S from
R™ with the above evasivity property.

190 ODED GOLDREICH AND HUGO KRAWCZYK

For a fixed C € C™ and a fixed i,1 < i < 2", consider the probability, denoted
Probg(C (i) € S), that the element C (i) belongs to the set S, for S uniformly chosen over all
subsets of {0, 1}*" of size 2". Clearly,

ERI AN

G) T

Prob(C(i) e S)=1-—

We call a set S C {0, 1}**,|S| = 2", C-bad if there exists some i, 1 < i < 2", such that
C(i) € S. Fixing a circuit C, we have that for S uniformly chosen over all subsets of {0, 1}
of size 2",

2’1
Probg(S is C-bad) < ZProbs(C(i) €S) <2m" =2,

i=1

In [GK] it is proven that the measure 04f R™ (i.e., the proportion of sets S which are (2"/4, 27/4)-
pseudorandom) is at least 1 — 272", Therefore, for each circuit C € C™ the probability,
hereafter denoted as pc, to uniformly choose from R™ a set S which is C-bad is

—-n
pc = Probg(Sis C-bad |S € R™) < T
We now proceed to compute the probability that for a fixed circuit C € C™, a collection of
2" randomly chosen sets from R™ contains a significant portion of C-bad sets. We define as
“significant” a fraction pc +8,. (The quantity §, will be determined later.) Let p be a random
variable assuming as its value the fraction of C-bad sets on a random sample of 2" sets from
R™. Clearly, the expected value of p is pc. Using Hoeffding’s inequality [Hoe] (see also
[GK]) we get that

Prob(p > pc + 8,) < e 2%,

i.e., this quantity bounds the probability of choosing at random 2" sets from R™ among which
the fraction of C-bad sets is larger than p¢ + §,.

Recall that we are interested in choosing 2" sets that are evasive for all circuits C € C™.
That is, we require that for any C, the number of C-bad sets among the 2" sets we choose
is negligible. In order to bound the probability that 2" randomly selected sets do not satisfy
this condition, we multiply the above probability, computed for a single circuit, by the total
number of circuits in C™ which is at most 2@”"” = 22"*, Putting 8, = 27"/4//2 we get

22n/2) e_22n83 _ 22n/2 . e_zz,.z-%—l — 22n/2 . e_zn/z <1
We conclude that there exists a positive probability that 2" sets S, ..., S»» chosen at random
from R™ have the property that for any circuit C € C™ the fraction of C-bad sets among
S1, ..., S is less than pc + 8,. Therefore, such a collection of sets does exist.

Finally, we bound, for this fixed collection Si, ..., Sy, and for any circuit C € C™, the
probability Prob, (C (i) € S)i), for i randomly chosen from {1, ..., 2"}. We have

Prob; (C (i) € §;) = Prob;(C(i) € S;|S; is C-bad) - Prob; (S; is C-bad)
+ Prob; (C (i) € S;|S; is not C-bad) - Prob;(S; is not C-bad)
2-n 2-—n/4

—n/4
<1 (et +0 < T + = <2 nfa,

ON THE COMPOSITION OF ZERO-KNOWLEDGE PROOFS 191

Therefore, we have shown for every circuit C of size 2"/ that Prob, (C (i) € ;) < 27"/4, thus
proving the required properties of the sets Sy, ..., Sp.

Such acollection can be generated by a Turing machine by considering all possible collec-
tions {S;,...,S»} and checking whether they evade all the circuits in the set
cm, O

Acknowledgments. Silvio Micali was one of the only researchers to strongly object to the
“intuition” that the parallel versions of the interactive proof systems for quadratic residuosity,
graph isomophism, and all languages in NP, are zero-knowledge. The results in this paper are
rooted in this clear vision of Silvio. We are grateful to him for that.

REFERENCES

[Bab] L. BaBAl, Trading group theory for randomness, in Proc. 17th ACM STOC, 1985, pp. 421-429.
[BMO1] M. BELLARE, S. MICALI, AND R. OSTROVSKY, Perfect zero knowledge in constant rounds, in Proc. 22nd
ACM STOC, 1990, pp. 482-493.

[BMO2] , The (true) complexity of statistical zero knowledge, in Proc. 22nd ACM STOC, 1990,
pp- 494-502.

[B*] M. BEN-OR, O. GOLDREICH, S. GOLDWASSER, J. HASTAD, J. KILLIAN, S. MICALI, AND P. RoGawAy,
Every thing provable is provable in ZK, in Advances in Cryptology—Crypto ’88 Proceedings,
S. Goldwasser, ed., Lecture Notes in Comput. Sci. 403, Springer-Verlag, Berlin, 1989, pp. 37-56.

[BCC) G. BRASSARD, D. CHAUM, AND C. CREPAU, Minimum disclosure proofs of knowledge, J. Comput. Systems
Sci., 37 (1988), pp. 156-189.

[BCY] G. BRASSARD, C. CREPAU, AND M. YUNG, Everything in NP can be argued in perfect zero-knowledge in
a bounded number of rounds, in Proc. 16th ICALP, Stresa, Italy, 1989.

[CG] B. CHOR AND O. GOLDREICH, On the power of two-point based sampling, J. Complexity, 5 (1989),
pp. 96-106.

[Fei] U. FEIGE, Interactive proofs, M.Sc. thesis, Weizmann Institute, 1987.

[FS1] U. FEIGE AND A. SHAMIR, Zero knowledge proofs of knowledge in two rounds, in Advance in Cryptology—
Crypto *89 Proceedings, Lecture Notes in Comput. Sci. 435, G. Brassard, ed., 1989, pp. 526-544.

[FS2] , Witness indistinguishability and witness hiding protocols, in Proc. 22nd ACM STOC, 1990,
pp. 416-426.

[Gol] O. GOLDREICH, A uniform-complexity treatment of encryption and zero-knowledge, J. Cryptology,
6 (1993), pp. 21-53.

[GKa] O. GOLDREICH AND A. KAHAN, How to construct constant-round zero-knowledge proof systems for NP,
J. Cryptology, to appear.

[GK] O. GOLDREICH AND H. KRAWCZYK, Sparse pseudorandom distributions, Random Structures and Algo-

rithms, 3 (1992), pp. 163-174.
[GMW1] O.GOLDREICH, S. MICALI, AND A. WIGDERSON, Proofs that yield nothing but their validity or all languages
in NP have zero-knowledge proofs, J. Assoc. Comput. Mach., 38 (1991), pp. 691-729.

[GMW?2] , How to play any mental game or a completeness theorem for protocols with honest majority,
in Proc. 19th ACM STOC, 1987, pp. 218-229.

[GO] O. GOLDREICH AND Y. OREN, Definitions and properties of zero-knowledge proof systems, J. Cryptology,
6 (1993), pp. 1-32.

[GM] S. GOLDWASSER AND S. MIcCALIL, Probabilistic encryption, J. Comput. System Sci., 28, (1984),
pp- 270-299.

[GMR1] S. GOLDWASSER, S. MICALIL, AND C. RACKOFF, Knowledge complexity of interactive proofs, in Proc. 17th
ACM STOC, 1985, pp. 291-304.

[GMR2] , The knowledge complexity of interactive proof systems, SIAM J. Comput., 18 (1989),
pp- 186-208.

[GS] S. GOLDWASSER AND M. SIPSER, Private coins versus public coins in interactive proof systems, in
Advances in Computing Research: A Research Annual, Vol. 5 (Randomness and Computation,
S. Micali, ed.), 1989, pp. 73-90.

[Hoe] W. HOEFFDING, Probability inequalities for sums of bounded random variables, J. Amer. Statist. Assoc.,
58 (1963), pp. 13-30.

[1Y] R. IMPAGLIAZZO AND M. YUNG, Direct minimum-knowledge computations, in Advances in Cryptology—

Crypto ’87 Proceedings, C. Pomerance, ed., Lecture Notes in Comput. Sci. 293, Springer-Verlag,
1987, pp. 40-51.

[Jof] A. JOFFE, On a set of almost deterministic k-independent random variables, Ann. Probab., 2 (1974),
pp. 161-162.

192

[Ore]
[Sim]
[Sha]
[TW]
[WC]

[Yao]

ODED GOLDREICH AND HUGO KRAWCZYK

Y. OREN, On the cunning power of cheating verifiers: Some observations about zero-knowledge proofs,
in Proc. 28th IEEE Symp. on OCS, 1987, pp. 462-471.

D. SIMON, Issues in the definition of zero-knowledge, M.Sc. Thesis, University of Toronto, 1988.

A. SHAMIR, IP = PSPACE, in Proc. 31st IEEE Symp. on FOCS, 1990, pp. 11-15.

M. Tompa AND H. WOLL, Random self-reducibility and zero-knowledge interactive proofs of possession
of information, in Proc. 28th IEEE Symp. on FOCS, 1987, pp. 472-482.

M. N. WEGMAN AND J. L. CARTER, New hash functions and their use in authentication and set equality,
J. Comput. Systems Sci., 22 (1981), pp. 265-279.

A. C. YA0, How to generate and exchange secrets, in Proc. 27th IEEE Symp. on FOCS, 1986,
pp. 162-167.

SIAM J. COMPUT. (© 1996 Society for Industrial and Applied Mathematics
Vol. 25, No. 1, pp. 193-206, February 1996 008

THE ISOMORPHISM CONJECTURE HOLDS RELATIVE TO AN ORACLE*
STEPHEN FENNER!, LANCE FORTNOW?, AND STUART A. KURTZ$

Abstract. The authors introduce symmetric perfect generic sets. These sets vary from the usual generic sets by
allowing limited infinite encoding into the oracle. We then show that the Berman—Hartmanis isomorphism conjecture
holds relative to any sp-generic oracle, i.e., for any symmetric perfect generic set A, all NPA-complete sets are
polynomial-time isomorphic relative to A. Prior to this work, there were no known oracles relative to which the
isomorphism conjecture held.

As part of the proof that the isomorphism conjecture holds relative to symmetric perfect generic sets, it is also
shown that PA=FewP“ for any symmetric perfect generic A.

Key words. computational complexity, relativization, isomorphism conjecture

AMS subject classification. 68Q15

1. Introduction.

Is it possible to define a notion of genericity such that all NP-complete sets are p-isomorphic?
Judy Goldsmith and Deborah Joseph [6]

We construct an oracle relative to which the Berman—Hartmanis isomorphism conjecture
[1], [2] is true. This conjecture holds that any two NP-complete sets are isomorphic to one
another by a polynomial-time computable and invertible one—one reduction. The isomorphism
conjecture has been the subject of considerable research. We recommend the surveys by Joseph
and Young [11] and Kurtz, Mahaney, and Royer [15].

The attempt to construct oracles relative to which the isomorphism conjecture either
succeeded or failed began soon after the conjecture was made in 1976.

Success was first obtained in finding oracles relative to which the conjecture fails. In 1983,
Kurtz (in an unpublished manuscript) constructed an oracle relative to which the conjecture
failed. Hartmanis and Hemachandra [8] later combined Kurtz’s construction with Rackoff’s
construction [18] of an oracle relative to which P = UP (and thus no one-way functions exist
[7]). In 1989, Kurtz, Mahaney, and Royer [16] showed that the conjecture fails relative to
a random oracle; and Kurtz [12] gave an improved version of his original construction that
showed that the conjecture fails relative to a Cohen generic oracle.

The attempt to construct an oracle relative to which the conjecture succeeds has proven
much more difficult. Even partial successes have been viewed as important advances. In
1986, Goldsmith and Joseph [6] constructed an oracle relative to which a partially relativized
version of the isomorphism conjecture holds. Namely, they constructed an oracle A such that
all of the p-complete sets for NP4 are pA-isomorphic.

An m-degree is an equivalence class of sets all many—one reducible to each other. In
1987, Kurtz, Mahaney, and Royer [13] gave a relativized version of their collapsing degree
construction [14] and showed that there is an oracle A relative to which some m-degree in
NP collapses. Finally, in 1989, Homer and Selman [9], [10] gave an oracle relative to which
the complete degree for £F collapsed.

We introduce a new notion of genericity, define the symmetric perfect generic sets (a.k.a.
the sp-generic sets), and present the following theorem.

*Received by the editors May 3, 1993; accepted for publication (in revised form) August 2, 1994.

TUniversity of Southern Maine, 96 Falmouth Street, Portland, ME 04103 (fenner@cs.usmsas.
maine.edu). The research of this author was partially supported by NSF grant CCR 92-09833.

University of Chicago, 1100 E. 58th Street, Chicago, IL 60637 (fortnow@cs.uchicago.edu). The research of
this author was partially supported by NSF grants CCR 90-09936 and CCR 92-53582.

§ University of Chicago, 1100 E. 58th Street, Chicago, IL 60637 (stuart@cs.uchicago.edu).

193

194 STEPHEN FENNER, LANCE FORTNOW, AND STUART A. KURTZ

THEOREM 1.1. Relative to any symmetric perfect generic set A, all NP-complete sets are
polynomial-time isomorphic.

We improve upon the work of Goldsmith and Joseph [6] by allowing NP-complete sets
via relativized reductions.

After describing the mathematical background needed for this paper, in §3 we will describe
sp-generic sets and give some of their properties. In §4 we show that P4 = FewP* for any
sp-generic A, which will form a necessary part of our proof that the isomorphism conjecture
holds relative to any sp-generic oracle. In §5 we will give some intuition for the proof of the
isomorphism conjecture, followed by the detailed proof.

2. Mathematical preliminaries. The natural numbers are denoted by N. The cardinality
of a set X is denoted by || X||. Let £ = {0, 1}.

We will use lower case Greek letters for partial functions from ©* — {0, 1}. We say
T extends o to mean that T is equal to o everywhere that o is defined. We often identify
a language A € X* as its characteristic function, for instance, in saying A extends o. The
everywhere-undefined function is denoted by . Two functions are compatible if they agree
everywhere both are defined. For compatible o and 7, the smallest partial function extending
both is denoted o U 7. We use dom(7) and range(t) to represent the domain and range of t,
respectively.

We say a computation path of an oracle Turing machine using 7 is defined if t(x) is
defined for all queries x along that path. If M is an oracle nondeterministic Turing machine,
we say that M7 (x) accepts on a path p if all queries to the oracle made along p are in the
domain of 7 and are answered according to t, and p ends in an accepting state.

We will sometimes need a machine to know the domain of t as well as the values of 7 on
its domain. For these machines, we will define the total function 7 : ¥* x {0, 1} — {0, 1} as
follows:

. 1 ifx edom(r) and T(x) =i,
T i) = i 0 otherwise.

By abuse of terminology we will on occasion use the expression “ f4(x)” to refer to one
of (i) the value f“(x), (ii) the function x > f4(x), or (iii) the computation of a particular
machine computing f oninput x using oracle A. We will try to make clear which interpretation
of “ f4(x)” we mean when it cannot easily be inferred from context.

A one-one polynomial-time function f4 is invertible relative to A if there exists a
polynomial-time function g# such that for all x € X*, g#(f“(x)) = x. Note that g# does not
have to recognize the range of f4.

For a function f and an oracle A, let £4(~1(z) be the set of strings x such that f4(x) = z.

Let CNF* be a relativized version of CNF formulae (see [6]). We will also consider the
formulae in a closed form, e.g., instead of a formula looking like (x Vv y), it will look like
Jx3y(x Vv y). This will allow us to talk about “true” and “false” formulae and make it easier
to combine formulae with other expressions. Because we only talk about NP“-completeness,
we only allow “3” as a quantifier. SAT* consists of the true formulae relative to the oracle A.

Using standard encoding tricks and simple modifications of the theorems of Cook [4] and
Berman and Hartmanis [2], we get that the following properties of CNF# and SAT* hold for
all oracles A:

1. For every nondeterministic oracle Turing machine M that runs in time O (n'), there
exists a polynomial-time unrelativized function f such that
(a) f reduces L(M*) to SAT#, and
(b) forallx, | f(x)| = O(|x|*).

RELATIVIZED ISOMORPHISM CONJECTURE 195

2. Every formula @ € CNF has a representation as a binary string. Every binary string
represents a formula in CNF4.
3. Every formula represented by a binary string of n bits can only depend on A on
strings of length shorter than n.
4. There is an unrelativized polynomial-time padding function P such that for all for-
mulae ¢ and strings z,
(a) P(p, z) is true if and only if ¢ is true,
(®) [P (¢, 2)| > max(|¢|, |z[), and
(c) from P (g, z) we can in unrelativized polynomial time recover ¢ and z.
Berman and Hartmanis [2] observed that for any languages B and L such that B is NPA-
complete and has such a padding function and L in NP4, there is a one-to-one length-increasing
invertible reduction from L to B.

Let i = (i, i1) using the standard pairing function. Let fy, ..., be an enumeration of
functions where f; simulates the deterministic oracle Turing machine with code iy running
in time n'. Let My, ... be an enumeration of nondeterministic oracle machines where M;

simulates the Turing machine with code i; running in time n'.
We use FP to represent the class of polynomial-time computable functions.

3. Symmetric perfect generic sets. In this section, we define the specific type of generic
set that we use in this paper. We will later show that the isomorphism conjecture holds to all
such generics.

DEFINITION 3.1. A sequence (a;);cN of integers forms an iterated-polynomial sequence if
there exists a polynomial p such that p(n) > n® for all n, ag > 2, and a; ., = p(a;) for alli.

DEFINITION 3.2. A partial characteristic function t : £* — {0, 1} is a symmetric perfect
forcing condition if there is an iterated-polynomial sequence (a;);cN such that

(U 2“") Ndom(t) = @.
ieN

In other words, T (x) is undefined for all x such that |x| = a; for some i € N. Note that T (x)
may be undefined on other x as well.

We generally refer to symmetric perfect forcing conditions as sp-conditions. As opposed
to most types of forcing conditions, sp-conditions cannot necessarily be coded into finite
objects.

The name symmetric perfect is intended to describe the topological structure of the con-
ditions and to honor our intellectual debts. Topologically, we can view a symmetric perfect
condition 7 as a complete binary tree, the branchings of which correspond to points x at which
7(x) is undefined. The paths of a complete binary tree form a closed set without isolated
points in their natural topology, i.e., they are perfect.

From a scholarly point of view, our symmetric perfect conditions are special cases of
Gerald Sacks’s pointed perfect conditions [20]. The unique contribution of Sacks was to
recognize that forcing conditions need not be recursive (as they are in the standard finite
extension arguments or in the recursion theoretic minimal degree construction). Rather, it is
sufficient that T be recursive in each of its members. This is his notion of pointedness. Our
conditions are pointed because they can be conceived of as a complete binary tree which has
been pruned at a coinfinite recursive set of points. This pruning is symmetric in that we remove
either all of the left branchings at x (by setting t(x) = 1) or all of the right branchings at x
(by setting t(x) = 0).

DEFINITION 3.3. A set S of symmetric perfect forcing conditions is dense if for every
sp-condition T, there exists an sp-condition o in S such that o extends t.

196 STEPHEN FENNER, LANCE FORTNOW, AND STUART A. KURTZ

DEFINITION 3.4. A language A is symmetric perfect generic (sp-generic) if for every
definable dense set S of sp-conditions, there is a o € S extended by A.

By definable we mean the set {o | 0 € S}isa I'I} class (see [19]).

The following theorem is a simple adaptation of the Baire category theorem.

THEOREM 3.1. Every sp-condition t is extended by an sp-generic language A.

Proof. Let Dy, ... be an enumeration of the definable dense sets. Let oy = t. For
every i > 0, let 0; = o for some o € D; such that o extends o;_;. For all x € ¥*, let
A(x) =1lim;, 0, (x, 1). a0

DEFINITION 3.5. A proposition P(A) is said to be forced by an sp-condition t if P(A) is
true for all oracles A extending t.

Note that this definition is simpler but different from the usual definition of forcing on
generic sets.

If P(A) is a first-order proposition in A, then the set S of conditions that force P(A) is
definable since o € S if and only if for all A extending o, P(A) holds.

We can already see the power of sp-generic sets by the following lemma.

LEMMA 3.2. Given any sp-condition t and any language X, there is an sp-condition o
extending T such that o forces X € P4,

Proof. Let (a;);en be the iterated-polynomial sequence such that t is undefined on strings
of length (a;);en. For each i, let b; = ay; and d; = ay;41. Let f(x) = x01/, where j is the
smallest value such that |x01/| = d; for some i. Clearly j is bounded by a polynomial in |x|,
f is one—one and range(f) N dom(t) = @. Define o (y) as

T(y) if y € dom(7),
] 1 ify=f(x)andx € X,
o) = 0 ify=f(x)andx ¢ X,

undefined otherwise.

Thus for any A extending o, x € X if and only if f(x) € A. The partial function o is
undefined on strings of length (b;);eN, so o is an sp-condition. 0

Of course, Lemma 3.2 does not imply that there is an sp-generic set G such that for every
set X, X is polynomial-time Turing reducible to G. Lemma 3.2 only implies that all X such
that the predicate “X € PA” is first-order definable are encoded into all sp-generics.

4. P = FewP relative to sp-generics. In this section, we will show that, relative to sp-
generics, acceptance of nondeterministic machines with a small number of accepting paths
can be decided in polynomial time.

THEOREM 4.1. If A is an sp-generic oracle, then P = FewP*.

This proof will build on ideas from Blum and Impagliazzo [3], Hartmanis and Hemachan-
dra [8], and Rackoff [18].

An immediate corollary follows.

COROLLARY 4.2. For any sp-generic oracle A, PA = UPA,

Let R; be the requirement “Either there is some input x such that MiA (x) has more than
n' accepting paths, or L(M') € PA”

By our enumeration of Turing machines at the end of §2, if A satisfies R; for all i, then
P4 = FewP*.

Fix i. The set of sp-conditions that force R; is definable since R; is a first-order proposition
in A. We will show that the set of sp-conditions that force R; is dense. Then any sp-generic
A will extend a 7 such that T forces R;. We will show that these sets are dense by showing
how to extend any sp-condition 7 to another condition o such that o forces R;.

Let M = M; and let T be an sp-condition. Suppose T does not force “For all x, M4 (x)
has at most |x|’ accepting paths.” For some A extending T and some x, we will have that

RELATIVIZED ISOMORPHISM CONJECTURE 197

M*(x) has more than |x|’ accepting paths. Let 0 = t U (A restricted to strings of length at
most |x|'). Clearly o extends and forces “For some x, M“(x) has more than |x|' accepting
paths.” To see that o is an sp-condition, pick a c such that a. > |x|' and let b; = a,; for all
jeN

For the rest of this section, we will assume t forces “For all x, M4 (x) has at most |x|’
accepting paths.” _

By Lemma 3.2, there is an sp-condition o extending 7 such that o forces SAT® € PA.

Suppose A extends 0. We will show that L(M4) € P4,

Consider the following algorithm for computing M#(x) using A as an oracle. The idea
is the same as that used in [3]. We repeatedly look for some extension « of the partial oracle
(not necessarily compatible with A) which makes M have the maximum possible number of
accepting paths. To ensure consistency with A, we then answer all queries in the domain of «
according to A.

In the algorithm below, we maintain the following invariants for all j:

A extends yj,

® yji1 extends y;, ‘
e |yl < lyjl +n'*!, and
e dom(y;) Ndom(t) = @ (this fact is not crucial for the proof).
BEGIN ALGORITHM
Yo < @.

FOR j < 0TO |x|¥ — 1 DO

Let n be the largest number for which there is an « extending y; such that
e o is compatible with 7, and
o M“Y"(x) has at least n distinct accepting paths.

Choose some « that satisfies these two conditions with minimal domain, meaning that
dom(w) contains only those queries made along n distinct accepting paths which are
not in dom(t). If n = 0, then ¢ = @.

Yj+1 < (A restricted to dom(c)).

/* This trick is borrowed from [3]. It will be explained later. */

ENDFOR
Y < Vixp- /* Note that A extends y. */
IF M"Y (x) has an accepting path
THEN accept
ELSE reject.
END ALGORITHM.

Theorem 4.1 now follows from the following two lemmas. B

LEMMA 4.3. The above algorithm runs in polynomial time relative to SAT® and thus
relative to A.

Proof. We show that there is a fixed polynomial bound on both the size of y; and the
running time of the jth iteration of the FOR loop for all j < |x|*. Assume, inside the jth
iteration of the FOR loop, that y; has polynomial size. By our assumptions about the behavior
of machine M on oracles extending v, we have 0 < n < |x|¢. For any such n, the question—
given y;—of whether there exists an « extending y; compatible with t such that M*""(x) has
at least n accepting paths is an NP question and hence can be answered by a single query to
SAT" (such an « can always be chosen to have polynomial size: only include oracle queries
not already in dom(7) made along n distinct accepting paths). Thus n can be determined using
polynomially many queries to SAT®. Once n is found, a polynomial-size o causing M*Y" (x)
to accept on n distinct paths can be constructed bit by bit in a straightforward way by making

198 STEPHEN FENNER, LANCE FORTNOW, AND STUART A. KURTZ

NP queries of the form “Given a sequence U of k bits, is there such an & whose first k + 1
bits are 0?” Similarly, we can construct the n paths. Once such an « is found, dom(e) can
be made to be minimal simply by eliminating any queries in dom(e) — dom(y;) not made
along any accepting path of M**(x); thus we can find a minimal & with at most polynomially
many additional NP* queries. The size of dom(cr) — dom(y;) is at most a polynomial in |x|
independent of j, so we can compute y;; by asking polynomially many queries to A, and its
size is the same as that of &. We thus have that forall j < |x |2i , the size of y; and the running
time of the jth iteration of the FOR loop are both bounded by a fixed polynomial in |x|, and
thus the entire FOR loop runs in polynomial time, and y|,;» has size polynomial in |x|.

Since after the FOR loop, y has polynomial size, we can determine whether M” V" (x) has
an accepting path by asking one additional NP question. Thus, the entire algorithm runs in
polynomial time relative to A, which proves Lemma 4.3. g

LEMMA 4.4. The above algorithm correctly decides M* (x).

Proof. Suppose M“(x) has exactly k accepting paths. Let 8 be the partial function of
minimal domain such that

e A extends 8, and

e MPYT(x) has k distinct accepting paths.
Since k < |x|* and each path of M4 (x) can make only |x|' queries, the size of dom(B) is at
most |x|% (if k = 0, then B = 9).

CLAIM 4.5. After the FOR loop, y|xp = y extends B.

Lemma 4.4 immediately follows from Claim 4.5 and the fact that A extends y. Indeed,
since MPYT (x) and M4 (x) have the same number of accepting paths, we know that M?"7 (x)
and M*(x) have the same number of accepting paths because extending a partial oracle can
never decrease the number of accepting paths. Thus we accept if and only if M4 (x) has at
least one accepting path.

It remains only to prove Claim 4.5. This is similar to the incompatibility argument in-
[3]. It suffices to show that dom(B) € dom(y), since both 8 and y are compatible with A.
Suppose that for some j < |x|* we have ||dom(B) — dom(y;)|| = £ > 0. If the o chosen
in the jth iteration of the FOR loop does not extend 8, then it must be incompatible with
B, otherwise the union 8 U a would cause M#Y*Y"(x) to have at least one more accepting
path than M*V" (x) (the extra path is “contributed” by 8). This contradicts the fact that o was
chosen to allow the maximum possible number of accepting paths of M*V*(x). Hence 8 and
vj+1 share at least one additional point in their domains, so [|[dom(8) — dom(y;+)| < £ — 1.
Since |[dom(8) — dom(yp)|| < |x|%, we must have |dom(8) — dom(y)| = 0, which proves
the claim. O

5. The isomorphism conjecture.

5.1. Intuition. In this section, we give some of the ideas of the proof that the isomor-
phism conjecture holds relative to sp-generic oracles. A full and complete proof is presented
beginning in §5.2.

We first consider how researchers created oracles for which the isomorphism conjecture
fails. Typically, they would create a hard function f* and an oracle A such that f4(SAT#)
is NP-complete but not isomorphic to SAT#. One approach is to have f# scramble SAT in a
way that no reduction to 4 (SAT*) could be invertible. Kurtz, Mahaney, and Royer used this
approach to show that the isomorphism conjecture fails to a random oracle [16]. However,
since we know that PA = UP“ for sp-generic oracles A (Corollary 4.2), any such scrambling
function can be unscrambled.

When Kurtz showed that the isomorphism conjecture fails for regular generic oracles
[12] and Hartmanis and Hemachandra created an oracle A relative to which the isomorphism
conjecture fails while P4 = UP* # NP [8], they had to use a different approach. They

RELATIVIZED ISOMORPHISM CONJECTURE 199

created functions £ that work as follows: For ¢ a boolean formula represented as a string,
define £4(p) by

£4(p) = A(p01)A(¢011) ... A(¢01"),
where n is the number of variables in ¢. Let 6 be a small true instance of SAT# and define
f4 by
6 if £4(p) is a satisfying assignment of ¢,
¢ otherwise.

f"(w)={

Note that for any oracle A and this kind of f4, f4(SAT*) is NP*-complete. Using an A
that encodes solutions to SAT*, Kurtz and Hartmanis and Hemachandra show that f A (SATA)
contains large gaps and, for reasons of density alone, cannot be isomorphic to SATA.

In order to hint at how we prove our main result, we will describe how for sp-generic sets
A, fA(SAT*) must be isomorphic to SAT#.

The oracles designed by Kurtz and Hartmanis and Hemachandra that prevent isomor-
phisms to SAT* work by having &4 (¢) be a satisfying assignment to ¢. Since we are trying to
create an oracle A such that the isomorphism conjecture holds, we will call the computation
fA(@) bad if £4(¢) is a satisfying assignment to ¢, and all other computations f4(¢) we
will call good. Note that if f4(¢) is good, then f4(¢) = ¢. Whether f4(¢) is good will, of
course, depend on A.

Berman and Hartmanis [2] show that in order to have SAT# isomorphic to f A (SATA)
we need only find a polynomial-time one—one length-increasing invertible function g# that
reduces SAT? to f4(SAT*). Our g*(¢) will work as follows: Find a formula ¥ such that

L |y] > el
2. ¥ is true relative to A iff ¢ is true relative to A,
3. fA(Y) is good.
Then g#(p) = fA(¥) = ¥ is our reduction. The trick is for g*(¢) to find such a .

We use a straightforward combinatorial argument to show that there exists an invertible

polynomial-time function A(g, w) such that the following hold:
1. For all w, |h(p, w)| > |¢|.
2. For all w and sp-generic A, (g, w) is true relative to A if and only if ¢ is true relative
to A.
3. For all sp-generic A, there exists a w such that f A(h(p, w)) is good.
Now all g4 has to do is find a w such that f4(h(p, w)) is good. We will use f to help g
in this task.

Let s(¢) be the formula that encodes the NP statement “p is true and there exists a w
such that f4(h(¢p, w)) is good.” Clearly, for A, |s(¢)| > |¢| and s(p) is true if and only if ¢
is true because there always is a w such that f4(h(g, w)) is good.

We now create g4 (¢) as follows: Look at the computation of f4(s(¢)). If f4(s(¢)) is
good, then output f4(s(p)) = s(¢). Otherwise, £4(s(¢)) is a satisfying assignment to s(¢),
and thus from £4(s(¢)), we can obtain a w such that 4 (h(¢, w)) is good. The function g#
then outputs f4(h(p, w)) = h(p, w) for that w. Notice that g# is not only length-increasing
but also one—one and invertible.

Of course there is no a priori reason that a general reduction has to act like f4. We will,
however, force a general f4 to look similar to the f4 described above or not be a reduction.

Suppose f4 reduces SAT# to L(M*), where f* is an arbitrary deterministic function
running in time n’ and M* is a nondeterministic Turing machine also running in time n‘. Let
us define (g, w) to be a formula that encodes the following:

(@ATylp,w,y, 1) € A) vIylp, y,0) € A,

200 STEPHEN FENNER, LANCE FORTNOW, AND STUART A. KURTZ

where the y’s are quantified over strings of length exactly |¢|’. If we put at least one string of
the form (¢, w, y, 1) into A and no strings of the form (¢, y, 0) into A, then ¢ is true if and
only if h(p, w) is true.

We now need a notion of goodness for f4(h(¢, w)) for arbitrary f4. We would like
to call f4(h(p, w)) good if fA(h(p, w)) fails to find a satisfying assignment to (g, w).
However such a thing could be hard to verify. We could, however, determine which queries to
A are made by f4(h(¢, w)). Thus we call f4(h(p, w)) good if f4(h(p, w)) does not query
any string (¢, w, y, 1) such that (¢, w, y, 1) € A, i.e., f4(h(p, w)) does not find this part of
a satisfying assignment to h(p, w). If f4(h(p, w)) is good, then we can alter the truth value
of h(p, w) without affecting the value f4(h(p, w)).

Suppose f4(h(p, w)) is good and ¢ = | f4(h(p, w))| < |@|. Then M“(g) cannot ask
questions of the form (¢, w, y, 1) or (¢, y, 0) because they are too long. We can prevent f4
from being a reduction by setting 4 (¢, w) to true if M4 (g) rejects or setting h (¢, w) to false
if M4(q) accepts.

Suppose fA(h(¥, w1)) = fA(h(6, w,)) and neither of these computations ask questions
about whether (¥, wy, y, 1), (¥, y,0), (8, wa, y, 1),0r (8, y, 0) arein A. Then we can prevent
f# from being a reduction by setting £ (y, w1) to true and 4(6, w,) to false.

We can combine the above techniques under the auspices of sp-generics to produce a
reduction g that is length-increasing and almost one—one. Using the fact that P4 = FewP
for sp-generic A and applying this construction twice we can produce a one-one length-
increasing reduction g. Grollmann and Selman [7] show that we get g invertible for free since
P4 = UP* for sp-generic A.

5.2. Proof of the relativized isomorphism conjecture. In order to formally prove The-
orem 1.1, we need the following technical lemma, whose proof we defer to §5.3.

LEMMA 5.1. Let A be an sp-generic set, M4 a relativized nondeterministic polynomial-
time Turing machine, and f* a relativized polynomial-time reduction from SAT* to L(M*).
There is a polynomial-time function g* and a polynomial p(n) such that the following hold:

1. g* reduces SAT* to L(M*);

2. g4 is length increasing;

3. forallq € %, if ||gAV(g)|| > 1, then
@ 2Dl > 1,
(b) q isin L(M*),
© lg* D@l < plgD.

Proof of Theorem 1.1 (assuming Lemma 5.1). Let L be NP*-complete. There must exist
a nondeterministic polynomial-time machine M and a polynomial-time function f such that
L = L(M*) and f* reduces SAT* to L. Apply Lemma 5.1 and let g be the function that
fulfills the properties of this lemma.

Let T = {q] g P(g)|l > 1}. Note that T is in FewP* because of 2 and 3(c), and thus
T is in P4 since PA = FewP“ relative to sp-generic oracles (Theorem 4.1).

Let 6 be a fixed member of SAT* such as (3x)x Vv ¥. Define f 4(p) as follows:

FAp) = { g") ifghp)eT,
$)= g*(¢) otherwise.

Note that f4 is a reduction from SAT* to L because of 3(b).

Apply Lemma 5.1, this time to f 4, and let g4 be the resulting function. Note that the
only possible g such that [|g4V(q)| > 1is g = g*(#) because of 3(a).

Let GA(¢) = §4(P(¢, q)), where P is the padding function for SAT#. Berman and
Hartmanis [2] show that the claim below immediately implies that SAT* is pA-isomorphic to
L. 0

RELATIVIZED ISOMORPHISM CONJECTURE 201

CLAIM 5.2. The function G* is a one—one length-increasing reduction from SAT* to L
whose inverse is computable in FPA,

Clearly G is areduction. Since 4 and P are length increasing, then G* is length increas-
ing. Also, G is one—one. Suppose G*(¢) = G4 (); then g4 (P (9, q)) = §4(P (¥, q)) = q,
but this contradicts the fact that g4 is length increasing.

By Corollary 4.2, we know that PA = UP%. Grollmann and Selman [7] show that
P4 = UP* implies that all one—one length-increasing polynomial-time functions relative to
A are invertible relative to A. This proves the claim. O

5.3. Proof of Lemma 5.1. We define requirement R; as follows: “Lemma 5.1 holds for
fA = f*and M4 = M2 Note that by the definitions of f; and M; in §2, all pairs of
reductions and machines will be covered by some R;.

Fix i. Let S; be the set of sp-conditions that force R;. Since the statement of Lemma 5.1
is first-order definable in A, we have that S; is a definable set of conditions. We need now
show that S; is dense. Then any sp-generic A will extend a T such that t forces R;. We will
show S; is dense by showing how to extend any sp-condition t to another condition o such
that o forces R;.

Fix i and let T be an sp-condition and {g;);en be the corresponding iterated-polynomial
sequence. We will create an sp-condition o with corresponding sequence (b;);en that forces
Ri. Let f = fiand M = M;.

Suppose T does not force “f4 reduces SAT# to L(M*).” For some A extending t and
some ¢, we will have that either ¢ is true and f4(p) & L(M*) or ¢ is false and f4(p) €
L(M*). Let m = max(|g|’, | f4(@)|'). Let o = t U (A restricted to strings of length at most
m). Clearly, o extends t and forces “ f4 does not reduce SAT to L(M#)” and thus forces
R;. To see that o is an sp-condition, pick a ¢ such thata. > m and letb; = a.; forall j € N.

For the remainder of this proof we will assume that 7 forces ““ 4 reduces SATAto L(M*4).”

Pick an e such that a; . > a;' for all j. Since p(n) > n* for all n by Definition 3.1, any
e > log,(3i) will suffice. Pick a ¢ such that a, is sufficiently large to avoid all the degenerate
cases in this proof. For all j, let b; = ac42.; and d; = @cy2¢j+.. This proof will never do
any encoding on strings of length b;, guaranteeing that o is an sp-condition. In fact, all of the
interesting coding for o will occur for strings of length d;. Initially, set 0 = 7 and also define
o (x) = 0 for every x ¢ dom(7) such that x does not have length b; or d; for some j.

Let ¢ be an arbitrary CNF“ formula. Pick the smallest j such that d; > 4|p|'. We define
special tupling functions (¢, y, 0), (¢, w, y, 1), and (¢, w, y, 2) where we are only interested
in w and y as they range over strings of length |d;/4]. We design these tupling functions so
that they have disjoint ranges over strings of length exactly d;. Since |¢|, |y|, and |w| are all
bounded by d; /4, such an encoding is not hard to achieve.

Let (@, w) be the formula that encodes

(o Adylp,w,y,1) € A) vIy(p, y,0) € A.

In other words, create a nondeterministic oracle Turing machine M such that M4 accepts
if this expression is true and apply the relativized version of Cook’s theorem, mentioned in
§2. We will have |h(p, w)| = O(d}).

Define f4(h(p, w)) as follows: Simulate f4(h(p, w)). Whenever f4(h(p, w)) queries
a string of the form (¢’, w’, z, 1), f4 will query (¢’, w’, z, 2).

We say the computation f4 (k1 (¢, w)) is good if, for all z, £4(h(p, w)) queries (¢, w, z, 2)
then (¢, w, z,2) € A. Note that whether fAh (¢, w)) is good does not depend on whether
any string of the form (¢’, w’, z, 1) is in A.

Let 7 (¢) be the formula that encodes

Jw[(@y{p, w,y, 1) € A) and fA(h(go, w)) is good].

202 STEPHEN FENNER, LANCE FORTNOW, AND STUART A. KURTZ

Let s(¢) be the formula that encodes

(e Ar(p)) Vv Iylp,y,0) €A

By suitable padding in Cook’s theorem [4], we can construct s and A such that each is
one—one and range(h) Nrange(s) = @J. Note that A, r, and s can be computed in unrelativized
polynomial time.

LEMMA 5.3. There is away to set o onthe strings of length {d;) jen such that the following
hold:

1. o forces “For every formula @, r(¢) is true.”

2. For every ¢ and w, there is exactly one y such that o ({¢, w, y, 1)) = 1.
3. Forallpand y, o({p, y,0)) =0.

4. Forall ¢, y,and w, o ({¢, w, y, 1)) = o ({¢, w, y, 2)).

This is a combinatorial lemma that follows mainly because there are many more ways to
set o than there are extensions to o that f4(h(p, w)) could query. We will give a complete
proof of Lemma 5.3 in §5.4.

Note that f4 (h(@, w)) = f4(h(p, w)) for all w and A where A extends o. Also note that
o forces “For every ¢ and w, ¢ is true if and only if 4 (¢, w) is true if and only if s(p) is true.”

We now describe the algorithm for g (¢).

BEGIN ALGORITHM
(1) Simulate f4(s(¢)) and let S be the set of w such that f4(s(¢)) queried a string of the
form (¢, w, y, 1).
(2) If for some w € S, f4(h(p, w)) is good, then output f4(h(¢p, w)) for the first such w.
(3) Otherwise output f4(s(¢)).
END ALGORITHM.

CLAIM 5.4. For any A extending o, the function g* is a reduction from SAT? to L(M*).

Proof. The fact that g4 is a reduction now follows from the construction of g# and the
fact that T forces f* to be a reduction. 0

We now show that o forces g4 to fulfill conclusions (2) and (3)(a—) of Lemma 5.1.
We will show that if there exists an oracle A extending o such that g# fails to fulfill these
conditions, then there exists an oracle B extending t such that f B does not reduce SAT?® to
L(M?®). This contradicts the assumption that t forces f2 to be such a reduction.

We will create a B that disagrees with A only on strings longer than formulas involved in
the assumed failure of some part of (2) or (3)(a—) for g#. This will guarantee that the truth
values of these formulas will remain unchanged.

First, we show that the sp-condition o forces that g4 is length-increasing, thus fulfilling
condition (2) of Lemma 5.1.

Suppose by way of contradiction that |g4(¢)| < |¢|. Let ¢ = g#(¢). Note that M*(q)
cannot look at any string of the form (g, y, 0), (¢, w, y, 1), or (¢, w, y, 2) because they are
too long.

We have two cases each with two subcases.

1. g = fA(h(p, w)) output by the algorithm for g* (¢) in step (2):
(a) M“(q) rejects. There must be some y such that f4(h(p, w)) did not query
(¢, y,0). Then with B = A U {{¢, y, 0)}, £ would not be a reduction.
(b) MA(q) accepts. By the definition of the functions g# and f4 and by parts
(3) and (4) of Lemma 5.3, we have that f4(h(p, w)) queries (¢, w, z, 1) only
if (¢, w,z,1) &€ A. Then with B equal to A minus all strings of the form
(p, w, z, 1), fB would not be a reduction.
2. g = fA(s(p)) output by the algorithm for g* (¢) in step (3):
(a) M“(q) rejects. There must be some y such that f4(s(¢)) did not query
(¢, y,0). Then with B = AU {{g, y, 0)}, 2 would not be a reduction.

RELATIVIZED ISOMORPHISM CONJECTURE 203

(b) M“(q) accepts. Let S be the set from the definition of g#. Let B equal A
minus all strings of the form (¢, w, z, 1) for w ¢ S. If r(¢) is false relative to
B, then f2 is no longer a reduction since f2(s(p)) = fA(s(¢)) = g, s(p) is
false relative to B, and g € L(M?).
Suppose r(¢p) is true relative to B. By the definition of r(¢), we have that for
some w € S, f8(h(p, w)) is good. Note that the computation of f5(h(p, w))
is identical to the computation of f4(h(¢p, w)). Since f(h(p, w)) is good,
then f4(h(p, w)) is also good, and so the algorithm for g4 would have output
A (h(p, w)) in step (2).

Thus g* is length increasing.

Suppose for some A extending ¢ and some ¢, [|g* P (g)|| > 1. Clearly, by the definition
of g# and the fact that & and s are both one—one with range(h) N range(s) = @, || fAV(¢)|| >
1. Thus we have fulfilled condition (3)(a) of Lemma 5.1. We need to show how to fulfill
conditions (3)(b) and (3)(c).

Suppose ¢ ¢ L(M*). Let ¥ and n be such that g4 () = g%(n) = g. We can assume
without loss of generality that || < |n| < |g|. There must be some y such that neither
¢* () nor g (n) queries (1, y,0). Let B = AU {(n, y,0)}. Suppose g*(¥) = f*(v) and
g4(n) = f4(n) for some formulas w and v. Then fB(v) = fB(u) = ¢ but v is false and u
is true relative to B, and thus f 2 is not a reduction. Thus we have fulfilled condition (3)(b) of
Lemma 5.1.

We will now show how to fulfill condition (3)(c) with p = 42 where ¢ is the running time
of gA. Suppose g € L(M*) and ||g* P (g)|l > p(lg]) = t(lq|) + 2. Let ¢ be a minimum-
length formula such that g#() = g. By the pigeonhole principle, there is some formula
n # ¥ such that g#(n) = ¢q and g”(¥) does not ask any queries of the form (n, w, z, 1) or
(n, w, z, 2). Suppose g () = f4(v) for some formula v.

Note that the value f#(v) and the truth value of v cannot depend on whether strings of
the form (n, w, z, 1) are in A. Since g#(¥) simulates f4(v) and g”(v) does not ask any
queries of the form (n, w, z, 1), then f#(v) does not ask any queries of the form (5, w, z, 1).
The truth value of v can only depend on whether strings of the form (i, y, 0), (¥, w, y, 1),
and (¥, w, y, 2) are in A and the truth value of ¥ and whether f (k2 (yr, w)) is good for some
w. None of these depend on whether strings of the form (n, w, z, 1) are in A.

We have two cases.

1. ¢ = g*(n) = fA(h(n, w)) output by the algorithm for g4 (n) in step (2). By the defi-
nition of g4 and f4 and by Lemma 5.3, we have that £ (h(1, w)) queries (n, w, z, 1)
only if (n, w,z,1) & A. Thus if we let B equal A minus all strings of the form
(n, w, z, 1), the following four properties hold:

(a) h(n, w) is false relative to B,
(b) vistrue,
© fEh(n, w)) = fA(h(n, w) = (h(n, w)) = g*(n) = ¢, and
@) g =g*@W) =0 =).
Thus f2 will not be a reduction.

2. g = f(s(n)) output in step (3) of the algorithm. Let S be the set from the definition
of g#. Let B equal A minus all strings of the form (1, w, z, 1) for w & S. Note that
fB(s(n) = fA(s(n)). Also, r(n) is false relative to B for the same reasons as in
case (2)(b) of the proof of condition (2) above, and thus s(n) is also false relative to
B. Thus

Py = fAsm) =g =q=g"@) = f'v) = P
and v is true relative to B, and thus f2 is not a reduction.

Thus we have fulfilled condition (3c). We have now fulfilled all of the conditions of
Lemma 5.1. a

204 STEPHEN FENNER, LANCE FORTNOW, AND STUART A. KURTZ

5.4. Proof of Lemma 5.3. We will use relativized Kolmogorov complexity for this proof.
For an excellent background in Kolmogorov complexity, see the book by Li and Vitanyi [17].

We need to find a o extending t that fulfills the conditions of Lemma 5.3. Note that by
our construction of the d; sequence, we have that d; > djgizl. Fix j and let £ be the least
integer such that d;_; < 4¢€' and u be the greatest integer such that d; > 4u’. For j = 0, let
£ = 0. The values £ and u bound the lengths of formulae ¢ such that (¢, y, 0), (¢, w, y, 1),
and (¢, w, y, 2) all have length d;.

Letz = |w| = |y| = |d;/4]. Letm =22)", _,_, 2°. Let x be a string of length m such
that K F(x) > m,i.e., x is Kolmogorov random with respect to 7.

View x as a concatenation of strings x, ,, of length z, where ¢ ranges over all formulae
of length between £ and u and w ranges over all strings of length z. Set o ({(¢, w, Xy w, 1)) =
o({¢, w, x4, 2)) = 1 forall ¢ and w, and set o to zero for all other strings of length d;.

Clearly, this o fulfills conditions (2)—(4) of Lemma 5.3. We still need to show that o
forces “For all formula ¢, r(p) is true.”

Suppose there is some oracle A extending o such that for some formula ¢, r(¢) is false
relative to A. We will show how to describe x with a string of length much shorter than x,
contradicting the fact that x is Kolmogorov random.

Recall that 2 (¢, w) has length O (d?). Thus 4 (h(¢, w)) has running time at most O (d}").
Thus 4 can only depend on the strings in A’ = A<bi+1,

Initialize B to be A’ with all the strings of the form (¢, w, y, 2) removed.

Create a string v as follows:

1. Initially set v = e.
2. For w ranging over strings of length z do the following:
(a) For j = 1to |h(p, w)[',
if the jth query of f4(h(p, w)) exists and is a string (¢, w’, y,2) € A’— B,
then mark j and add (¢, w’, y, 2) to B.

(b) Concatenate to v the number of marked j followed by a list of marked j. Write
these numbers with leading zeros if necessary to keep the lengths consistent in
order to make the encoding simpler.

The orders in which w and j are chosen in this procedure play an important role in
allowing us to keep the description of A’ small.

Since r () is false relative to A then for every w, f4(h (¢, w)) queries the unique string of
the form (g, w, y, 2) in A (and thus in A”). Thus every such string will be added to B in step
w of the above procedure if not before. At the end of this procedure, we will have B = A'.

The length of v is bounded by O (2 log d;) because there are 2 strings in A’ — B initially.
Note that each (¢, w, y, 2) € A’ can only contribute to one marking.

Now we claim that we can construct A’ and thus x using an oracle for 7 and the tuple
(A=Y v, @, x'), where x’ is the concatenation of Xy, forall formulae y # @ of length between
¢ and u, and w ranging over all strings of length z. We can reconstruct A’ by repeating the
procedure above using v to tell us which queries of the form (¢, w, y, 2) are in A’.

We can encode the tuple (A%, v, ¢, x') as a string of length |A=¢i | 4 |v| 4 |@| + |x| plus
an additional O(d};) bits to encode the length of each piece.

The total length is bounded by O (d;) +2b5+1 L 0(2%log di)+di+m—22* <m—0(1).
There might exist a finite number of j such that this inequality fails. We can eliminate this
possibility by an appropriate choice of a. in the beginning of §5.3.

We have created a fixed Turing machine that outputs x with oracle T and input (A=%, v, ¢,
x'), a tuple whose length is strictly less than |x|. This contradicts the fact that x was Kol-
mogorov random relative to T. 0

6. Conclusions and open questions. Later work by Fenner, Fortnow, Kurtz, and Li [5]
show that relative to sp-generics, P = BPP = NP N co-NP = SPP but the polynomial-time

RELATIVIZED ISOMORPHISM CONJECTURE 205

hierarchy is proper. They also look at notions of genericity in a broader sense and show several
interesting oracle results based on these ideas.

We have shown that relative to sp-generic oracles the isomorphism conjecture holds.
Several obvious open questions remain:

e Does the isomorphism conjecture hold in the unrelativized world? Despite Theo-
rem 1.1, the authors believe the evidence supports the position that the conjecture
does not hold. Theorem 1.1 shows that a proof of this result will require nonrelatizing
techniques.

o How complicated must an oracle A be such that the isomorphism conjecture holds
relative to A? By Lemma 3.2 we can easily see that there are no sp-generic oracles
in the arithmetic hierarchy. However, we can fulfill just the requirements necessary
for the isomorphism conjecture with a set recursive in the halting problem.

o Is there a recursive oracle A? One could wonder whether we could recursively fulfill
all the necessary requirements. We could use time-bounded Kolmogorov complexity
in §5.4, but determining whether t forces f to be a reduction is not decidable.
However, we believe that a careful finite-injury argument could lead to a recursive
oracle.

e Is there an oracle relative to which the isomorphism conjecture is true and the
polynomial-time hierarchy collapses? A related question is whether there exists
an oracle A such that P4 = UP“ and NP# = EXP*. This oracle A also would imply
that the isomorphism conjecture holds (see [10]).

Acknowledgments. This paper grew from discussions at the Dagstuhl workshop on struc-
tural complexity theory with many people, especially Ted Slaman, Bill Gasarch, Steve Homer,
and Alan Selman.

We would like to thank other people for helpful discussions on the isomorphism conjecture
over time: Steve Mahaney, Jim Royer, and Mike Sipser.

We also thank Richard Beigel, Bill Gasarch, Steve Homer, and Jim Royer for their com-
ments on earlier drafts of this paper. We would also like to thank the anonymous referee for
his or her extensive comments.

And, of course, we would like to acknowledge Juris Hartmanis for bringing this challeng-
ing problem to the world.

Note added in proof. John Rogers [21], extending the ideas in this paper, has created a
relativized world where the isomorphism conjecture holds and P # UP, i.e., one-way functions
exist.

REFERENCES

[1] L.BERMAN AND J. HARTMANIS, On isomorphism and density of NP and other complete sets, in Proc. 8th ACM
Symposium on the Theory of Computing, ACM, New York, 1976, pp. 30—40.

[2] , On isomorphism and density of NP and other complete sets, SIAM J. Comput., 1 (1977), pp. 305-322.

[3]1 M. BLUM AND R. IMPAGLIAZZO, Generic oracles and oracle classes, in Proc. 28th IEEE Symposium on Foun-
dations of Computer Science, IEEE, New York, 1987, pp. 118-126.

[4]1 S. Cook, The complexity of theorem-proving procedures, in Proc. 3rd ACM Symposium on the Theory of
Computing, ACM, New York, 1971, pp. 151-158.

[5] S. FENNER, L. FortNOW, S. KURTZ, AND L. LI, An oracle builder’s toolkit, in Proc. 8th IEEE Structure in
Complexity Theory Conference, IEEE, New York, 1993, pp. 120-131.

[6] J. GoLDSMITH AND D. JOSEPH, Three results on the polynomial isomorphism of complete sets, in Proc. 27th
IEEE Symposium on Foundations of Computer Science, IEEE, New York, 1986, pp. 390-397.

[7]1 J. GROLLMANN AND A. SELMAN, Complexity measures for public-key cryptosystems, SIAM J. Comput.,
17 (1988), pp. 309-355.

[8] J. HARTMANIS AND L. HEMACHANDRA, One-way functions and the nonisomorphism of NP-complete sets,
Theoret. Comput. Sci., 81 (1991), pp. 155-163.

206

[9]

[10]

[11]

[12]
[13]

(14]
[15]

[16]
171
[18]
[19]

[20]
[21]

STEPHEN FENNER, LANCE FORTNOW, AND STUART A. KURTZ

S. HOMER AND A. SELMAN, Oracles for structural properties: The isomorphism problem and public-key
cryptography, in Proc. 4th IEEE Structure in Complexity Theory Conference, IEEE, New York, 1989,
pp. 3-14.

, Oracles for structural properties: The isomorphism problem and public-key cryptography, J. Comput.
System Sci., 44 (1992), pp. 287-301.

D. JosepH AND P. YOUNG, Self-reducibility: Effects of internal structure on computational complexity,
in Complexity Theory Retrospective, A. Selman, ed., Springer-Verlag, Berlin, New York, 1990,
pp- 82-107.

S. Kurtz, The isomorphism conjecture fails relative to a generic oracle, Tech. report 88-018, Department of
Computer Science, University of Chicago, 1988.

S. KURTZ, S. MAHANEY, AND J. ROYER, Progress on collapsing degrees, in Proc. 2nd IEEE Structure in Com-
plexity Theory Conference, IEEE, New York, 1987, pp. 126~131.

, Collapsing degrees, J. Comput. System Sci., 37 (1988), pp. 247-268.

, The structure of complete degrees, in Complexity Theory Retrospective, A. Selman, ed., Springer-

Verlag, Berlin, New York, 1990, pp. 82-107.

, The isomorphism conjecture fails relative to a random oracle, J. Assoc. Comput. Mach., (1995),
to appear.

M. L1 AND P. VITANYI, An Introduction to Kolmogorov Complexity and Its Applications, Texts and Monographs
in Computer Science, Springer, New York, 1993.

C. RACKOFF, Relativized questions involving probablistic algorithms, J. Assoc. Comput. Mach., 29 (1982),
pp. 261-268.

H. ROGERS, Theory of Recursive Functions and Effective Computability, MIT Press, Cambridge, MA, 1987.

G. SACKS, Forcing with perfect closed sets, Proc. Sympos. Pure Math., 13 (1971), pp. 331-356.

J. ROGERS, The isomorphism conjecture holds and one-way functions exist relative to an oracle, in Proc. 10th
IEEE Structure in Complexity Theory Conference, IEEE, New York, 1995, pp. 90-101.

SIAM J. COMPUT. (© 1996 Society for Industrial and Applied Mathematics
Vol. 25, No. 1, pp. 207-233, February 1996 009

A UNIFIED APPROACH TO DYNAMIC POINT LOCATION, RAY SHOOTING,
AND SHORTEST PATHS IN PLANAR MAPS*

YI-JEN CHIANG!, FRANCO P. PREPARATA, AND ROBERTO TAMASSIAT

Abstract. We describe a new technique for dynamically maintaining the trapezoidal decomposition of a connected
planar map M with n vertices and apply it to the development of a unified dynamic data structure that supports point-
location, ray-shooting, and shortest-path queries in M. The space requirement is O (n log n). Point-location queries
take time O (log n). Ray-shooting and shortest-path queries take time 0(log3 n) (plus O (k) time if the k edges of the
shortest path are reported in addition to its length). Updates consist of insertions and deletions of vertices and edges,
and take O(log3 n) time (amortized for vertex updates). This is the first polylog-time dynamic data structure for
shortest-path and ray-shooting queries. It is also the first dynamic point-location data structure for connected planar
maps that achieves optimal query time.

Key words. point location, ray shooting, shortest path, computational geometry, dynamic algorithm

AMS subject classifications. 68U05, 68Q25, 68P05, 68P10

1. Introduction. A number of operations within the context of planar maps (or subdi-
visions, as determined by a planar graph embedded in the plane) have long been regarded as
important primitives in computational geometry. First and foremost among these operations is
planar point location, i.e., the identification of the map region containing a given query point;
shortest-path and ray-shooting queries have also been considered very prominently.

Starting with the pioneering work in planar point location of the 1970s [10], [18], over the
years several techniques have been developed, culminating in asymptotically time- and space-
optimal methods [12], [17], [29] that are also of sufficiently practical flavor. Such methods,
however, refer to the static case where no alteration of the map is allowed during its use. Due
to the obvious importance of the dynamic setting, in recent years considerable attention has
been devoted to the development of dynamic point-location algorithms [2], [6], [8], [14], [15],
[21], [25], [26], [31].

All the known dynamic point-location results are for connected maps, since maintaining
region names in a disconnected map would require solving half-planar range searching in a
dynamic environment, for which no polylog-time algorithm is known. The best results to date
for dynamic point location in an n-vertex connected map are due to Cheng and Janardan [6]
and Baumgarten, Jung, and Mehlhorn [2]. The technique of [6] achieves O (log?) query time,
O(logn) update time, and O (n) space. The data structure of [2] has query and insertion time
O(lognloglogn) and deletion time 0(log2 n), using O (n) space, where the time bounds are
amortized for the updates. In many real-time applications, point-location queries are executed
more frequently than updates, so that it is often desirable to achieve optimal O (logn) query
time in a dynamic setting. The only previous technique that supports O (log n)-time queries
in a dynamic environment is restricted to monotone maps [8]. For a survey of dynamic point-
location techniques and other dynamic algorithms in computational geometry, see Chiang and
Tamassia [9].

Algorithmic research on shortest-path and ray-shooting queries has also experienced
steady progress, resulting in time-optimal techniques for the static setting [1], [5], [7], [16],

*Received by the editors January 8, 1992; accepted for publication (in revised form) August 3, 1994. An
extended abstract of this paper was presented at the 4th ACM-SIAM Symposium on Discrete Algorithms, Austin,
Texas, January 1993. This research was supported in part by National Science Foundation grants CCR-90-07851
and CCR-91-96176, U.S. Army Research Office grants DAAL03-91-G-0035 and DAAH04-93-0134, and the Office
of Naval Research and the Defense Advanced Research Projects Agency under contract N00014-91-J-4052, ARPA
order 8225.

tDepartment of Computer Science, Brown University, Providence, RI 02912-1910 ({yjc,franco,rt}@cs.
brown.edu).

207

208 Y.-J. CHIANG, F. P. PREPARATA, AND R. TAMASSIA

[19]. In particular, the linear-space data structures of Chazelle and Guibas [5] and of Guibas
and Hershberger [16] support in O (log n) time ray-shooting and shortest-path queries, respec-
tively, in a simple polygon with n vertices. No polylog-time method was previously known
in a dynamic setting, although a polylog-time ray-shooting technique by Reif and Sen [28],
designed for monotone polygons, may be extensible to the general case. Sublinear-time tech-
niques are known only for ray-shooting queries [11, [7], with O (4/n polylog(n)) query/update
time; they support ray shooting in a set of possibly intersecting segments without taking
advantage of the structure of planar maps.

A property that appears to greatly facilitate the development of dynamic point-location
techniques is monotonicity [8], [15], [25]. Whereas the restriction to monotone maps is quite
adequate for many important applications, the exclusion of more general maps is a severe
shortcoming. In the static case, a connected map can be reduced to monotone (or, as we
say in this paper, normalized) by the straightforward insertion of (auxiliary) diagonals. The
same approach, when attempted for the dynamic setting, could lead to onerous updates, such
as when the insertion of an edge causes the removal of a very large number of normalizing
diagonals. A rather complicated and only partially documented technique due to Fries [13]
is reported to assure that only a logarithmic number of normalizing diagonals be involved in
any update.

In this paper we combine the feature just stated with the underpinnings of the trapezoid
method, whose search efficiency both in theory [4], [23] and practice [11] is well established.
This leads to the adoption of horizontal normalizing diagonals, called lids. The method rests
on three major components:

1. anormalization structure that transforms a connected map into a monotone one by the
addition of horizontal diagonals, while guaranteeing that no more than a logarithmic
number of such diagonals are affected by insertions/deletions of edges/vertices,

2. a hull structure that stores the convex hulls of the chains and subchains of the mono-
tone subregions, so that ray-shooting and shortest-path queries can be efficiently
performed,

3. alocation structure that represents a recursive decomposition of the normalized map
into trapezoidal regions, and supports point-location queries in optimal time.

It is important to underscore that a single tree structure—the normalization structure—
provides the unifying framework for the three applications considered. In fact, this structure,
while ensuring efficient updates by controlling the size of the modifications, can be naturally
augmented with node-appended secondary structures to support shortest-path and ray-shooting
queries. It can also be supplemented with a distinct, but tightly coupled, location structure
designed for efficient point location. The main normalization structure and its two auxiliary
components act in a tightly integrated fashion. Point location is crucially used in shortest-path
and ray-shooting queries and in the update of the normalization structure.

The fundamental constituents of our data structures are monotone chains and trapezoids
determined by edges and horizontal lines through vertices. This provides the unifying frame-
work for the three applications mentioned earlier. Indeed, a simple augmentation of the nor-
malization structure provides the right environment for all three queries, as we shall illustrate.
It should be underscored that, although their linkings are obviously elaborate, the elementary
data structures employed are particularly simple, so that not only asymptotic efficiency is
established, but also practical potential is apparent.

Our main results are outlined in the following theorem.

THEOREM 1.1. There exists a fully dynamic data structure that supports point-location,
ray-shooting, and shortest-path queries in a connected planar map M with n vertices. The
space requirement is O (nlogn). Point-location queries take time O (logn). Ray-shooting
and shortest-path queries take time O(log® n) (plus O (k) time if the k edges of a shortest path

DYNAMIC POINT LOCATION, RAY SHOOTING, AND SHORTEST PATHS 209

are reported in addition to its length). Updates take O(log® n) time (amortized for vertex
updates).

As a corollary, we can also perform stabbing queries, i.e., determine the k edges of map
M intersected by a query segment, in O ((k + 1) log? n) time.

The contributions of this work can be summarized in the following points:

e We present the first polylog-time dynamic data structure for shortest-path queries in
connected planar maps. All previous data structures for shortest paths are static and
take linear time for either queries or updates when used in a dynamic environment.

e We provide the first polylog-time dynamic data structure for ray-shooting queries in
connected planar maps. The previous best result is O (/7 polylog(n)) query time.

e We present the first dynamic data structure for point-location queries in connected
planar maps with optimal O (log n) query time and polylog update time. The previous
best result is O (logn loglogn) query time.

e We provide the first dynamic point-location data structure that checks the validity
of an edge insertion, i.e., whether the new edge does not intersect the current edges
of the map. Previous dynamic point-location data structures did not have such a
capability due to the lack of an efficient dynamic ray-shooting technique.

In §2 we briefly review the terminology of planar maps and the basic data structures
used by our method. The mechanics of the dynamic maintenance of a normalized map are
described in §3, while §§4, 5, and 6 are respectively devoted to shortest-path, point-location,
and ray-shooting queries.

2. Review of background. For the geometric terminology used in this paper, see [24]. A
connected planar map M is a subdivision of the plane into polygonal regions whose underlying
planar graph is connected. The map is augmented with two vertical rays, one directed toward
y = 400 and the other toward y = —o0, respectively issuing from the vertices of M with
maximum and minimum y-coordinates. Thus, all but two regions of M are bounded simple
polygons. In the following, n denotes the number of vertices of the planar map M currently
being considered. Also, we assume that no two vertices of M have the same y-coordinate;
the degenerate cases can be handled by standard techniques and will not be discussed in this
paper.

In the plane we have an orthogonal frame of reference (x, y). A polygonal chain y is
monotone if any horizontal line intersects it in a single point or in a single interval or not at
all. A simple polygon r is monotone if its boundary consists of two monotone chains. A cusp
of a polygon is a vertex v whose internal angle is greater than 7w and whose adjacent vertices
are both strictly above (lower cusp) or strictly below (upper cusp) v. A polygon is monotone
if and only if it has no cusps. A map is monotone if all its regions are monotone.

The trapezoidal decomposition of a connected map M is obtained by drawing from each
vertex v of M two horizontal rays that either remain unbounded or terminate when they first
meet edges of M. The resulting segments are called splitters. It is easily verified that a region
of M with s vertices is partitioned by the splitters into s — 1 trapezoids (see Fig. 1). The
trapezoidal decomposition of M is geometrically dualized by mapping each of the obtained
trapezoids T to an arbitrary point §(z) in the interior of 7. Each of the splitters is mapped to
an edge between images of trapezoids in the usual way. We let §(M) denote the resulting
dual graph, which is a forest of trees since the trapezoids of a single region r € M dualize
to a tree 8(r) (because r has no holes). Note that each node of §(r) has degree at most four.
Lets;, i = 1,2, denote either a splitter or an extreme vertex of region r. Then SLEEVE(s}, s3)
denotes the union of the trapezoids traversed by the shortest path within r between any point
of s; and any point of s;. (Note the duality between “sleeves” in region r and paths in tree
8(r).) In a notationally consistent manner, §(s) denotes the edge of §(r) that is the dual of
splitter s.

210 Y.-J. CHIANG, F. P. PREPARATA, AND R. TAMASSIA

Our data structures are based on a variety of balanced search trees. We observe that
all the standard operations on balanced search trees (insertion, deletion, split, and join) can
be performed by means of a logarithmic number of more basic primitives, which we call
“elementary joins and splits,” defined as follows:

e An elementary join of two binary trees 7; and 7, forms a new tree T by making T;
and T the left and right subtrees of a new root node.

e An elementary split yields the left and right subtrees 77 and T, of T by removing its
root.

In particular, a simple rotation can be viewed as a sequence of four elementary splits and
joins.

Three special types of data structures will be used in this paper: biased binary trees [3],
B B[a]-trees [20], and dynamic trees [30].

A biased binary tree [3] is a binary search tree whose leaves store weighted items. Let
w be the sum of all weights. We have that the depth of a leaf with weight w; is at most
log(w/w;) + 2, and each of the following update operations can be done in O(log w) time:
change of the weight of an item, insertion/deletion of an item, and split/splice of two biased
trees [3].

A BBJa]-tree [20] (where « is a fixed real, with % <a<l1-— 4) is a binary search tree
and has the following important properties (among others):

e A BB][u]-tree with n nodes has height O (log n).

e Assume that we augment a B B[«]-tree with secondary structures stored at its nodes.
Let the subtree with root x have £ leaves, and let the time for updating the secondary
structures after a rotation at node i be O(£log£). Then the amortized time of an
update operation in a sequence of n insertions and deletions starting from an initially
empty B B[o]-tree is 0(log2 n).

Dynamic trees [30] are designed to represent a forest of rooted trees, with each edge
directed toward the root of its tree (and called an arc). Some important operations (among
others) supported by dynamic trees include the following:

link(w, v). Add an arc from w to v, thereby making p a child of v in the forest. This
operation assumes that u is the root of one tree and v is a node of another tree.

cut(). Delete the arc from p to its parent, thereby dividing the tree containing w into
two trees.

evert(u). Make p the root of its tree by reversing the path from pu to the original root.

Each arc of the trees is classified as solid or dashed, so that each tree is partitioned into
a collection of solid paths, connected by dashed arcs. A solid path is maintained by a data
structure called a path tree. Using biased binary trees [3] as the standard implementation of
path trees, each of the above operations takes O (log) time, where n is the size of the tree(s)
in the forest involved.

3. The dynamics of trapezoidal decompositions. Given a connected map M, our ob-
jective is first to systematically transform (rnormalize) it into a monotone map, and then to
illustrate how to efficiently maintain it under a dynamic regimen of edge and vertex inser-
tions/deletions.

3.1. Normalization. We first address the problem of normalization. Each region r of
M is handled individually. We refer to a region r, bounded or unbounded. In the following,
we denote by m the current number of vertices in r.

We imagine representing §(r) as a dynamic tree A(r) [30] (see Fig. 1). We choose an
arbitrary node of 5(r) as the root, which immediately forces a direction on each edge, referred
to hereafter as an arc and directed toward the root. Since we have chosen to dualize each

DYNAMIC POINT LOCATION, RAY SHOOTING, AND SHORTEST PATHS 211

FI1G. 1. Example of a region r and its dynamic tree A(r) (Py,... Py are solid paths).

trapezoid to a point in its interior, the y-component of each arc has a well-defined sign. An arc
is usually denoted either by a single letter or by an ordered pair (origin, destination). The arcs
are classified as follows: letting w(u), weight of u, denote the number of nodes in the subtree
rooted at node w, an arc (u, v) is classified heavy if w(u) > %w(v) and light otherwise.
Consequently, at most one heavy arc enters a node of A(r). Note that the attributes {light,
heavy} pertain uniquely to the weight structure of the dynamic tree A(r).

Arcs are also classified as solid or dashed to enforce the property that at most one solid
arc enters a node of A(r). The maximal paths of consecutive solid arcs (possibly consisting
of a single node) are called solid paths, and each corresponds to a sleeve of r. Note that the
attributes {dashed, solid} pertain to a given, but otherwise arbitrary, decomposition of r into
sleeves.

The weight structure and the sleeve decomposition are tied by the following weight in-
variant, which holds before and after the execution of data structure operations (queries or
updates): heavy arcs are solid and light arcs are dashed. However, during the execution of
operations, we may change heavy arcs to dashed and light arcs to solid, and thus loose the
original correspondence. The weight invariant is restored at the completion of each operation.

Region r contains a set of splitters, called /ids, which are the duals of the following arcs:

Rule 1. All dashed arcs.
Rule 2. Any two consecutive solid arcs whose y-components have opposite signs.

212 Y.-J. CHIANG, F. P. PREPARATA, AND R. TAMASSIA

(a) (b)

FIG. 2. Proof of Lemma 3.1.

Note that each lid is generated by a vertex of . The set of lids normalizes r. Namely, we
have the following lemma.

LEMMA 3.1. The set of lids partitions r into a collection of monotone polygons.

Proof. Let ¢ be a cusp of polygon r. We consider the two arcs of A(r) which are the duals
of the two splitters issuing from c. If at least one of them is dashed (see Fig. 2(a)), then there
is at least one lid issuing from cusp c corresponding to the dashed arc (Rule 1). If on the other
hand both arcs are solid, then one must have a positive y-component and the other a negative
one, or otherwise they would enter the same node of A(r) and thus would violate the property
that at most one solid arc enters a node (see Fig. 2(b)). Then these two arcs are consecutive
solid arcs with y-components of opposite signs, and there are two lids from ¢ corresponding
to these arcs (Rule 2). Hence there is always at least one horizontal lid issuing from each cusp
¢ of r, thereby achieving a decomposition of r into monotone polygons. 0

LEMMA 3.2. Each directed path of the dynamic tree A(r) contains at most log, m light
arcs.

Proof. Moving away from the root, each light arc traversed reduces the size of the current
subtree by at least one half, since w(child) < %w(parent). 0

COROLLARY 3.3. Any straight line drawn in region r crosses O (logm) lids.

Proof. The weight invariant is always preserved before and after the execution of data
structure operations. Each lid then corresponds to either (i) alight arc (Rule 1, since dashed arcs
are light) or (ii) a solid arc at which the solid path containing this arc changes monotonicity
with respect to the y-axis (Rule 2). By Lemma 3.2, any straight line / drawn in r crosses
O (log m) lids of type (i). Now consider the lids of type (ii). Lemma 3.2 also implies that /
goes through O (logm) solid paths. Observe that each solid path P can be partitioned into
maximal monotone subpaths, and / can go through at most one such monotone subpath, thus
crossing at most two lids of solid arcs of P. It follows that the number of lids of type (ii)
crossed by [is also O (log m). a

3.2. The double-thread data structure. It is intuitively clear that insertion or deletion
of an edge may substantially modify the set of trapezoids, whereas it alters only slightly the
structure of region boundaries. For this reason, we adopt a data structure that represents a solid
path of A(r) by two “threads”; these two threads respectively correspond to two chains whose
union is the boundary of the sleeve associated with the solid path. The proposed structure is
referred to as double-thread data structure for region r, denoted by DT (r).

Each arc o of A(r) can be drawn to intersect its dual splitter issuing from some vertex
v of r. Therefore we associate « with v. Notice that each vertex v in M is associated with
two arcs: if v is a cusp of some region r, then the two splitters issuing from v both lie in r
and thus cross two arcs of A(r); otherwise, v belongs to two regions r; and r, and the two

DYNAMIC POINT LOCATION, RAY SHOOTING, AND SHORTEST PATHS 213

splitters issuing from v cross respectively an arc of A(r;) and an arc of A(r;). Instead of
maintaining the nodes of A(r), we choose to maintain the arcs of A(r) using the vertices of
r as their representatives, by associating each node of A(r) to the arc issuing from it. As a
consequence, each solid path P is represented by two binary trees lthread(P) and rthread(P),
referred to as thread trees, whose implementation is described below. Recall that each solid
path is directed toward the root. Each vertex v associated with an arc on solid path P is
classified as follows: walking along P toward the root, vertex v is classified left if it lies to
the left of P and right otherwise. Notice that if P is followed by a dashed arc « (every solid
path except the one terminating at the root of A(r) has this property), then we also include «
as an arc on solid path P in our representation.

The arcs of a solid path P can be partitioned into maximal monotone (on the basis of
the signs of their y-components) subpaths Q;, Q», ..., Q. Our thread trees lthread(P) and
rthread(P) are each implemented as a two-level (called lower and upper) balanced binary tree
(i.e., the roots of lower-level trees are leaves of the upper-level tree). Referring to lthread(P),
in the lower level, we have a balanced binary tree ltree(Q;) for each Q;, where the leaves of
Itree(Q;) store the left vertices of Q; in their path order. Thread tree rthread(P) is analogously
organized, with rtree(Q;) storing the right vertices. The roots of ltree(Q;) and rtree(Q;) are
bidirectionally linked. In the upper level, lthread(P) (and analogously rthread(P)) has the
roots of ltree(Q), ltree(Q>), . . ., ltree(Qy) as leaves in their path order. A bidirectional link
also exists between the roots of /thread(P) and rthread(P). An example is shown in Fig. 5(a).

Any node on P might be pointed to (via dashed arcs) by some other solid paths in the
dynamic tree A(r). Suppose that P’ points to P via an arc o’ associated with vertex v’. Two
situations may now occur: (i) vertex v’ is also associated with an arc of P (e.g., see paths
Py, P3, and P, in Fig. 1 with P = P;). Then v’ is a left or right vertex of P (thus stored
as a lower-level leaf of lthread(P) or rthread(P)). We establish a pointer from each root of
Ithread(P") and rthread(P’) to that lower-level leaf v’ (see Fig. 5(b)). The possible instances
of this situation are illustrated in Fig. 3(b and d). (ii) vertex v’ is not associated with an arc of
P (e.g., see paths Ps and Py in Fig. 1 with P = P;). This occurs if P changes monotonicity
(by crossing both splitters of a cusp c) at the node reached by arc «’. In this case, in order
to provide a destination for the pointers from the roots of lthread(P’) and rthread(P’), we
introduce an auxiliary leaf, called a coupler (usually denoted by letter H), inserted between
the two consecutive subtrees (both either ltrees or rtrees) of the thread tree not containing cusp
¢ (see Fig. 5(b)). The possible instances of this situation are illustrated in Fig. 3(c and e).

Note that a pointer destination may be needed when a solid path P begins (Fig. 4(b and
c) and Fig. 1 for P = P;). In this case, we adopt the convention to insert a coupler preceding
either ltree(Q) or rtree(Q1), where Q; is the initial monotone subpath of P (see Fig. 5(b)).
The overall data structure DT (r) consists therefore of two rooted trees of in degree at most 4
(see Fig. 5(b)).

We now define a new parameter of nodes of DT (r) (DT-nodes), called charge, which
will be used to maintain the weights of the nodes of the dynamic tree A(r). Each DT-node
corresponding to a vertex of r (a leaf of a lower-level tree) is labeled distinguished; the charge
of a DT-node is the number of the distinguished nodes in the subtree of which it is the root.

According to its definition, the weight w(u) of a node u of A(r) is the number of the
nodes in the subtree of which it is the root, or, equivalently, the number of the arcs in this
subtree plus the arc « issuing from w. It is immediate that, denoting by v the vertex associated
with arc ¢ and by Q; the monotone subpath containing «, this number is obtained as the sum
of two items: (1) the sum of the charges of all lower-level leaves (actually leaves or couplers)
up to and including v in the thread tree containing v, and (2) in the other thread tree, the sum
of the charges of all lower-level leaves preceding v*, where v* is the first vertex on monotone
subpath Q; whose splitter follows the splitter issuing from v, or if v* does not exist (because

214 Y.-J. CHIANG, F. P. PREPARATA, AND R. TAMASSIA

F1G. 3. All possible cases in which a solid path P crosses a splitter issuing from a cusp c. Note that P does not
change monotonicity (i.e., crosses only one splitter issuing from c) in (b) and (d), and P changes monotonicity (i.e.,
crosses both splitters issuing from c) in (a), (c), and (e).

(@)

|

Fic. 4. All possible cases in which a solid path P starts. Note that a coupler of P is needed to provide a
destination of P’ and P" in (b) and (c).

Q; terminates at v), the sum of the charges of all lower-level leaves up to and including the
last leaf of the appropriate subtree of Q; (either ltree(Q;) or rtree(Q;)). For example, let us
look at w(u;) and w(uy) in Fig. 6. For w(u,), v* = s, thus w(wy) is the sum of the charges
of all lower-level leaves of rthread(P) from left up to and including v which corresponds
to wy, and the charges of all lower-level leaves of lthread(P) up to and including coupler
H; for w(u;), v* does not exist, and thus w(u;) is the sum of the charges of all lower-level
leaves of rthread(P) up to and including v which corresponds to (1, and the charges of all
lower-level leaves of Ithread(P) up to and including u. Clearly, we can locate v* or decide its
nonexistence in logarithmic time, using the y-coordinate of v to perform a binary search on
either ltree(Q;) or rtree(Q;) of the thread tree that does not contain v.
The preceding discussion establishes the following lemma.

DYNAMIC POINT LOCATION, RAY SHOOTING, AND SHORTEST PATHS 215

(@
Ithread(P;) : rthread(P;) :
20 19 7 6 5 55 ;; ;2 3435394042
(b)
lthread(P;) : Ithread(P3)
Ithread(P;,) /\
26
rthread(Py;) 2 2
rthread(P3)
lthread(Ps) 3
4_.,_—————'11thx'ead(P6)
rthread(Ps) rthread(Pg)
910

13141516

rthread(Py) :
éé 34353040 4 lthread(P»)
lthread (P VS 2
read(9)%”/' 1thread(P4)K
rthread(Py) 36 rthread(P,)

rthread(P,)
42
3132 38 39

FIG. 5. Double-thread data structure DT (r) for region r in Fig. 1: (a) basic thread trees for Py; (b) complete
structure of DT (r). The bidirectional pointers linking pairs of corresponding thread trees and thread subtrees are
omitted.

LEMMA 3.4. The space complexity of the normalization structure for an n-vertex map is
O(n).

Our data structure has an auxiliary component, called dictionary. The dictionary stores
the names of vertices, edges, and regions, so that their representatives occurring in various
places in the normalization structure, hull structure, location structure (see §§ 4 and 5), etc.,
can be efficiently accessed. The edges of a region r are also maintained in the dictionary by a
balanced binary tree according to their circular order, with the root of the tree storing the name
of r. We store with each edge e two pointers respectively to its left and right representatives in
such trees, so that given e, the region r to its left (respectively, right) can be found by accessing
its left (respectively, right) representative and walking up to the root of the tree of r. It is easy
to see that accessing and updating the dictionary can be performed in logarithmic time, and

216 Y.-J. CHIANG, F. P. PREPARATA, AND R. TAMASSIA

@ ® hreadc)

: 1ih'read(P'g
rthread(P'

rthread(P)
. /\
NN

.oty vz...
ﬁ_ﬁz
Hq

F1G. 6. Weights w(ie1), w(u2) of nodes w1, p2 of the dynamic tree A(r): w(iz) is the sum of the charges of all
lower-level leaves of rthread(P) from left up to and including the occurrence of v which corresponds to uy, and the
charges of all lower-level leaves of Ithread(P) up to and including coupler H; w(uw1) is the sum of the charges of all
lower-level leaves of rthread(P) up to and including the occurrence of v which corresponds to 1, and the charges
of all lower-level leaves of Ithread(P) up to and including u.

that the dictionary does not affect the space complexity of our data structure. Therefore we
omit any further discussion of the dictionary in the rest of the paper.

3.3. Update operations. We define the following update operations on a connected map
M:

INSERTEDGE(e, vy, Uz, F; 1, r2). Insert edge e = (vg, v;) into region r such that r is
partitioned into two regions r; and r;.

REMOVEEDGE(e, vy, V3, I'1, I2; ¥). Remove edge e = (vq, v;) and merge the regions r;
and r, formerly on the two sides of e into a new region r.

INSERTVERTEX(v, €; ey, e2). Split the edge e = (u, w) into two edges e; = (u, v) and
e; = (v, w) by inserting vertex v along e.

REMOVEVERTEX(v, €1, e2; €). Let v be a vertex with degree two such that its incident
edges e; = (u, v) and e; = (v, w), are on the same straight line. Remove v and merge ¢; and
e; into a single edge e = (u, w).

ATTACHVERTEX(vy, €; v;). Insert edge e = (vy, vz) and degree-one vertex v, inside some
region r, where v; is a vertex of r.

DETACHVERTEX (v, ¢). Remove a degree-one vertex v and edge e incident on v.

With the above repertory, the following theorem is immediate.

THEOREM 3.5. An arbitrary connected map M with n vertices can be assembled from
the empty map, and disassembled to obtain the empty map, by a sequence of O(n) opera-
tions drawn from the set {point-location query, INSERTVERTEX, REMOVEVERTEX, INSERTEDGE,
REMOVEEDGE, ATTACHVERTEX, DETACHVERTEX}.

Now we show that ATTACHVERTEX and DETACHVERTEX can be simulated by a sequence of
O (1) operations taken among the first four of the repertory and point-location query. Referring
for simplicity to ATTACHVERTEX (v, e; v3), we have the following emulation routine: perform

DYNAMIC POINT LOCATION, RAY SHOOTING, AND SHORTEST PATHS 217

T

-_________.,
e e e =2

O

[

FiG. 7. Example of splice(Py, P»; P', P").

a point-location query of v, to obtain the region r containing it (which also provides the
trapezoid containing v,), compute the two horizontal projection points v’ and v” of v, on the
boundary of r, insert vertices v’ and v”, insert edge (v', v”), insert vertex v, on (v’, v"'), insert
edge e, remove edges (v, v3) and (v,, v”'), and finally remove vertices v’ and v”.

In the rest of this section, we describe how to implement the first four operations of
the above repertory on the dynamic tree A(r) of an arbitrary region r (a simple polygon),
represented by the double-thread data structure described above.

3.3.1. Primitive dynamic-tree operations. We begin by considering some elementary
dynamic-tree operations expose, conceal, and evert introduced in [30], in terms of which the
operations of the above repertory can be immediately expressed. In the course of some updates,
we may change a solid arc to dashed and vice versa and thus violate the weight invariant; thus
we need the capability to restore such weight invariant. Such actions are effected by the
operations expose and conceal introduced in [30]. Operation expose(u), for some node u
of A(r), transforms the unique path P from node u to the root of A(r) into a solid path,
by changing the dashed arcs in P to solid and the solid arcs incident to P to dashed. Since
this transformation may violate the weight invariant of dynamic trees, the inverse operation
conceal(P) is used to remove the violation, by identifying all the light arcs in P and making
them dashed, and also identifying all heavy arcs (if any) among the arcs incident to P and
making them solid.

The primitive operation used in expose and conceal is splice(Py, P,; P’, P"), acting on
two given paths P; and P, to produce two new paths P’ and P” (see Fig. 7). Originally, solid
path P, points to node w of solid path P; via a dashed arc «. Denoting by «’ the (solid) arc
of P; terminating at u (if any), splice exchanges the roles of ¢ and ¢/, i.e., it creates two new
solid paths P’ and P” with P” pointing to P’ via dashed arc «’ (again, P” and o’ might be
empty).

Operation splice(P;, P»; P’, P") essentially involves splitting and concatenating both
threads of the paths concerned. Specifically, lthread(P;) is split into lthread(P") and
Ithread(P"), and then lthread(P,) is concatenated with lthread(P") to form Ithread(P’);
this happens analogously for rthread. Operation slice may require either the insertion or the
deletion of a coupler (see, for example, splicing P4 to P; (insertion) and Ps to P; (deletion) in
Fig. 1). Since a constant number of splits/concatenations have to be performed, we have the
following lemma.

218 Y.-J. CHIANG, F. P. PREPARATA, AND R. TAMASSIA

LEMMA 3.6. Operation slice can be executed in O (log m) time on the double-thread data
structure.

Since each directed path in A(r) contains at most log, m light arcs by Lemma 3.2 (each
accessible by climbing to the root of an O(logm)-depth thread tree), expose uses at most
log, m slice operations and therefore is executed in O (log? m) time.

Given a solid path P, operation conceal(P) identifies the light arcs of P which have to be
made dashed and the heavy arcs (if any) incident to P which have to be made solid in order to
comply with the weight invariant of dynamic trees. It can be carried out by finding the topmost
(i.e., closest to the root of A(r)) light arc «, splitting P at o, removing the subpath from the
root up to and including ¢, and then repeating the process for the remaining solid path, until
no light arc is found. The heavy arcs incident to P can then be identified (and made solid) in
a straightforward way: each time a light arc (u, v) is found, we check all (up to three) arcs
incident to v to see if any one of them is heavy; finally, we also apply this checking process to
the arcs incident to the bottommost node of P. So the main issue for performing conceal(P)
is how to find the topmost light arc.

Before describing its adaptation to the double-thread data structure, we briefly review
the standard implementation of operation conceal as proposed by Sleator and Tarjan [30].
Let the dynamic-tree nodes of solid path P be stored left to right as the leaves of a balanced
binary tree T (P), called in [30] a path tree. Each leaf ¢ of T (P) stores local_weight(L),
defined as the sum of the local weights of all dashed-arc children (which are the roots of
some other path trees) of ¢, if any, plus 1 (to account for ¢ itself). For each internal node 7,
local_weight(n) is defined as the sum of the local weights of its children. Note the similarlity
between the local weights of nodes in path tree T (P) and charges of nodes in thread trees
Ithread(P) and rthread(P) defined in §3.2. Actually, parameters local_weight and charge
are identical except for their usages in computing w(u)—the weight of a dynamic-tree node
w. In T(P), w(w) is the left-to-right prefix sum of the local weights of the leaves, whereas
in thread trees, w(u) is contributed by the prefix sums of the charges of the leaves in both
Ithread(P) and rthread(P) (see §3.2). Let T, be the subtree of T (P) rooted at internal node
n. Denoting by A the rightmost leaf in T;, and by £ the leaf adjacent to A on the left, variable

lefttilt(n) is defined by lefttilt(n)éw(é;‘) — local weight()). We recall that arc (€, 1) of P is
light if and only if w(§) < %w()»), ie., w() < %(w(é) + local_weight(A)), which yields
lefttilt(n) < 0.

Moreover, define leﬁmin(n)émin{lefttilt(O) : 6 is aninternal node of 7, }. It follows that if
leftmin(n) > 0, then there is no light arc between any two adjacent leaves of T;,. Also, variable
netleft(n) is defined as leftmin(n) if n is the root of T (P) and leftmin(n) — leftmin(parent(n))
otherwise. Correspondingly, variables netright(n), rightmin(n), and righttilt(n) are defined
symmetrically in a straightforward manner by summing the local weights from right to left for
the purpose of reversing the path direction. In summary, each internal node 7 of T (P) stores
three values: local_weight(n), netleft(n), and netright(n).

To find the topmost light arc in P, we traverse a path from the root of T'(P) with the
following advancing mechanism. Assume inductively that, for the current node 7, parameter
leftmin(n) (< 0) is known. Let " and n” be the left and right children of 7, respectively, and
& be the leftmost leaf of 7». From the definition

netleft(n") = leftmin(n") — leftmin(n),

we obtain leftmin(n”). If leftmin(n”) < 0, then we proceed to n”. Otherwise, we compare
local_weight(n') and local_weight(§). If local weight(n') < local_weight(&), then the arc
leading to £ is the sought light arc; else, we compute lefimin(n’) = leftmin(n) + netleft(n’)
(which is necessarily < 0) and proceed to n’ (this establishs the inductive step). By this

DYNAMIC POINT LOCATION, RAY SHOOTING, AND SHORTEST PATHS 219

process, akin to binary search, the topmost light arc can be found in O(logm) time. Recall
that by Lemma 3.2, there are at most log, m light arcs in T (P).

We are now ready to consider the implementation of conceal for the double-thread data
structure. We treat thread trees lthread(P) and rthread(P) independently as two path trees,
with parameter charge playing the role of local weight. By the method just illustrated, we
identify at most log, m light arcs from each of Ithread(P) and rthread(P). Note that a light
arc (&, 1) in P assures the existence of a light arc (¢/, A) in either lthread(P) or rthread(P)
that contains leaf A, where £’ is the left-neighboring leaf of A. Indeed, in T (P), the sum
w(&) of the local weights up to and including & satisfies w(§) < local_-weight(A). But in
the appropriate thread tree (i.e., either lthread(P) or rthread(P) that contains 1), the sum w’
of the charges up to and including £’ is only a fraction of w(§) (w(£) is contributed by both
Ithread(P) and rthread(P)), so that w’ < w(&) < local_weight(\) = charge(\), and (¢, 1)
is light. Hence 2 log, m light arcs from lthread(P) and rthread(P) give all possible candidates
for light arcs in P. For each such candidate (§', A), we perform a binary search in the paired
thread tree to locate the point just before A, at the same time accumulate the total charge w”
up to and including this point in that tree, then compute w(£) by adding w” to w’, and check
if w(§) < charge(r) (= local_weight(L)). Therefore, we find 21og, m candidates, perform
2 log, m binary searches for checking, identify at most log, m light arcs in P (and also at most
log, m + 1 heavy arcs incident to P), and then split and join P accordingly—each of these
operations within O (logm) time. This leads to the following lemma.

LEMMA 3.7. The update of the double-thread data structure as required by the operation
conceal can be performed in O(log* m) time.

Operation evert(it), for an arbitray node v of A(r), moves the root of A(r) to u while
preserving the weight invariant. If we can reverse the direction of a solid path, then evert(u)
can be carried out as follows: we perform expose(w) to obtain a solid path P from p to the
original root, reverse the direction of P (which effectively moves the root to), and then
perform conceal(P) to comply with the weight invariant. We add a “direction” bit to each
node of the thread trees, so that when we reverse the direction of a solid path P, the direction
bit of the root of lthread(P) is complemented, indicating that the meanings of left and right
subtrees of lthread(P) are interchanged; this is done similarly for the direction bit of the root
of rthread(P). Also, these two complemented bits indicate that lthread(P) means rthread(P)
and vice versa. Given the direction bits and operations expose and conceal, we can perform
evert in the double-thread data structure in 0(10g2 m) time.

In the following, if 1 is anode of A(r) and a an incoming arc of u, the notations expose(a)
and expose(u) are equivalent, and similarly for evert.

LEMMA 3.8. Given splitters s and s, of region r with m vertices, SLEEVE(s], s2) and the
corresponding solid path between 5(s\) and 6(s,) can be constructed in O(log2 m) time, by
means of O(log? m) elementary splits/joins of thread trees.

Proof. We obtain a solid path between §(s;) and §(s;) by evert(6(s;)) and expose(5(s2)).
Each of operations evert and expose uses O(log?>m) elementary splits/joins and takes
O (log? m) time. u|

The double-thread structure adds two new primitive operations to the original reper-
tory of dynamic trees. Operation part(P, e; P, P,) on a solid monotone path P separates
Ithread(P) and rthread(P), and creates two new solid paths P; and P, by adjoining lthread(P)
and rthread(P) to a new edge e. Namely, lthread(P;) = lIthread(P), rthread(P;) = e,
Ithread(P,) = e, and rthread(P,) = rthread(P). The operation pair(P;, Py; P, e) is the
inverse operation of part(P, e; Py, P;) and is implemented similarly.

LEMMA 3.9. Operations part and pair have time complexity O(1).

As we shall see in the next section, operations part and pair are crucial in the efficient
execution of INSERTEDGE and REMOVEEDGE.

220 Y.-J. CHIANG, F. P. PREPARATA, AND R. TAMASSIA

3.3.2. Insertion and deletion of edges and vertices. Operation INSERTEDGE(e, vy, V2, F;
r1, rp) is carried out as follows:

1. Fori = 1, 2, if v; is an extreme vertex of r, let s; = v;, else let s; be a splitter of r
induced by v;. If v; is a cusp of r, then there are two such splitters; by viewing edge
e = (v1, vy) as issuing from v;, s; is taken as the left splitter of v; if e goes toward left
(and as the right splitter otherwise), so that SLEEVE(s], §3) is the smallest monotone
sleeve that contains e.

2. Construct SLEEVE(sj, s;) and the corresponding solid path P by performing
evert(8(s;)) and then expose(5(s3)).

3. Insert edge e by performing part(P, e; Py, P;), so that there are new solid paths P;
and P, respectively in new regions r; and r;.

4. For each of the (up to three) solid paths previously pointing to the head of P, make
it point to the head of Pj if it lies in r;, and to the head of P; if it lies in r; do this
similarly for the solid paths previously pointing to the tail of P. Note that P; and P,
have the same orientation as P.

5. Create a new dynamic tree A(r;) for r;, by putting the root at the end of P; that is
closer to v; (which does not change the direction of P;), then performing operation
conceal(Py); similarly create a new dynamic tree A(r;). Note that the conceal
operations readily splice the solid paths pointing to the heads and tails of P, and of
P; if necessary.

‘We analyze the time complexity of the above operation. Steps 1, 3, and 4 take O(1) time,
and the other steps globally involve a fixed number of evert, expose, and conceal operations,
so that the total time required for updating the double-thread data structure is O (log® m).

Operation REMOVEEDGE(e, v1, V2, 1, I'2; 1) is the inverse operation of INSERTEDGE. We
first evert v; and then expose v; in both A(r;) and A(r;), pair the two solid paths into one,
and conceal it. This can also be done in 0(log2 m) time.

Operation INSERTVERTEX(v, e; €], €) is performed as follows. We insert v with
charge(v) = 1 into Ilthread(P) and rthread(P’) for some solid paths P and P’ of differ-
ent regions r and r’, where both Ithread(P) and rthread(P’) contain two endpoints v; and v,
of e. In dynamic tree A(r), we perform expose on the one of v; and v; that is farther from
the root to obtain a solid path, and then perform conceal on this path; in A(r’) we perform
exactly the same operations. It is easy to see that operation INSERTVERTEX is executed in
O (log? m) time. Operation REMOVEVERTEX is the inverse operation of INSERTVERTEX and can
be completed within the same time bound.

4. Shortest-path queries. In this section, we illustrate how the normalization data struc-
ture can be modified, by appending secondary data structures collectively called hull structure,
to answer the following queries:

PATHLENGTH(q1, g2, r). Return the length of a shortest path inside region r between query
points g; and g;.

PATH(q1, q2,). Return the shortest path inside region r between query points q; and g
as a chain of segments.

First, by point location (see §5) we can check whether q; and g, belong to r. Note that
we need to specify within which region the shortest path is sought to avoid ambiguities when
both g; and g, belong to edges of the subdivision. We now show that the above queries can
be supported in worst-case time 0(log3 n) and 0(log3 n + k), respectively, where k is the
number of segments in the shortest path reported by PATH.

The notion of hourglass is central to our current problem. We adopt the terminology
proposed by Guibas and Hershberger [16].

DYNAMIC POINT LOCATION, RAY SHOOTING, AND SHORTEST PATHS

(a)

(6'.,8,9,11)

b, S22 a

(b)

25 ,
24 """ (24',25)

(12,14,15")

(6'8,9,11)
1889.11) (18,21,23,26)

(18,21,23,26)

(16,5,18) (5:6)

3.5)
(15',16)

(1,2‘3)5 E (12,14,15%

FiG. 8. Example of representation of hourglasses in the nodes of ltree(Q) and rtree(Q) of a monotone path
Q. (b) The sleeve of Q (directed from left to right): the parallel lines drawn on it represent set Y; the points on the
sleeve with labels of the type i’ delimit fragments of the same edge; the hourglass between the extreme splitters of the
sleeve is shown grey filled. (a) Pruned tree ltree(Q): the nodes of ltree(Q) are those drawn with thick lines, while
the nodes drawn with thin lines denote the subtrees of) pruned away to construct ltree(Q); the grey-filled nodes are
associated with closed sleeves, and the white-filled nodes are associated with open sleeves. Next to each white-filled
node (L we show the subchain of HOURGLASS(u) stored at . (c) Pruned tree rtree(Q) (similar comments as in (a)

apply). (d) Hourglasses of the grey-filled nodes and of their children. The subchains stored at each node are labeled
and shown with thick lines.

(12,14,16)

(1,2,16)

Consider two nonintersecting diagonals s; = (aj, b;) and s, = (a3, by) of r, where
the endpoints have been named so that the counterclockwise cyclic sequence of points in
the boundary of r includes the subsequence (a;, az, by, by). The hourglass of s; and s,,
denoted HOURGLASS(s1, §2), is the subregion of r formed by the union of all the shortest paths
PATH(q1, q2, r) With g, € s; and g2 € s, (see Fig. 8(b)). It is known that the boundary of
HOURGLASS(s1, $2) is the concatenation of sy, PATH(a;, as, r), $», and PATH(b,, by, r). Let «
be the subchain of r counterclockwise from a; to a;, and define B similarly for b, and b;. The
hourglass has one of the following special structures (as analyzed in [16]):

Open hourglass. If the convex hulls inside r of & and 8 do not intersect, then PATH(a,, a3, 1)
is the convex hull of the subchain of « clockwise from a; to a;, and similarly for PATH(b,, by, r).

222 Y.-J. CHIANG, F. P. PREPARATA, AND R. TAMASSIA

Closed hourglass. If the convex hulls of o and § intersect, then there exist vertices p;
and p, of o U 8 such that PATH(a,, ay, r) N PATH(by, by, r) = PATH(p1, p2, r). Without loss
of generality, assume that p; is in «. Then PATH(a;, p1, r) is the convex hull inside r of the
subchain of ¢ from a; to p;, while PATH(b,, p1, r) is the union of segment (p,, p’l) and the
convex hull inside r of the subchain of 8 from b; to p}, where p is the vertex of 8 closer to b,
on the two tangents from p; to 8. Similar arguments apply to p,. The union of PATH(a;, p;, r)
and PATH(b;, p;, r) (i = 1or2)iscalled afunnel [19]. Vertices p; and p, are called the apices
of the hourglass, and the path between them the string of the hourglass (see Fig. 8(b)).

If we represent an hourglass by its string and the (two to four) convex chains forming the
rest of its boundary, and for each polygonal chain represented, we also store its length, then
given HOURGLASS(s1, S2), it is possible to compute PATHLENGTH(q1, g2, 1) in O (log n) time for
any two points g, € s; and g, € s, by means of O(1) common-tangent computations. Also,
given HOURGLASS(s1, 52) and HOURGLASS(s, s3) in r, with 51 and s3 on opposite sides of the
line containing sy, it is possible to compute HOURGLASS(s1, §3) in time O (logn) by means of
0O (1) common-tangent computations and O (1) split and join operations on the chains forming
the two hourglasses.

We now consider the modifications of the normalization data structure that enable the
support of the given path queries. As we shall see, only three items are needed, i.e.,

(i) the choice of an appropriate implementation of the trees /tree and rtree introduced in
83.2;

(ii) the appending of secondary data structures (collectively called “hull structure”) to
the nodes of ltrees and rtrees. The hull structure stores at the nodes of ltrees and rtrees the
hourglasses of the corresponding sleeves; it establishes an implicit correspondence between
the two chains of a monotone sleeve, allowing both efficient access to the hourglass of the
sleeve and fast pairing or parting of the two chains as required by edge insertion or deletion;

(iii) a separate BB[«]-tree Y (called Y-tree) that determines a hierarchical partition of the
plane into horizontal strips, according to which ltrees and rtrees are implemented.

We first describe the adopted representation of polygonal chains. A concatenable queue,
called chain tree, will be used to represent a polygonal chain y. The chain tree T for y is a
balanced tree and has in-order thread pointers. Each node u of T corresponds to a subchain
v of y and stores the endpoints of y,,, the common point of the subchains of the children of
Y., and the length of y,,. It should be clear that this information can be updated in O(1) time
per elementary join or split, so that splitting or splicing two chain trees takes logarithmic time.
With this representation, it is possible to find the two tangents from a point to a convex chain
and the four common tangents between two convex chains in logarithmic time [24].

We now give the details of our representation of hourglasses. An open hourglass is
represented by storing its two convex chains into chain trees. A closed hourglass is represented
by storing into separate substructures the four convex chains forming the funnels, and the string
between the apices. The convex chains of the funnels and the string are each stored into a
chain tree.

Without loss of generality, we assume that the degree of each vertex of M is at most
3. This is not restrictive since we can expand a vertex v with degree d > 3 into a chain of
degree-3 vertices connected by edges of infinitesimal length. Since the sum of the degrees
of all vertices of M is O(n), the total number of vertices after the expansion is still O(n).
Every update operation in the original map M can be simulated with O (1) operations in the
modified map with bounded-degree vertices.

We consider the ordered sequence Y of the y-coordinates of the vertices of M and establish
a one-to-one correspondence between Y and the leaves of a BB[«]-tree), called Y-tree, which
is added as a separate tree into the data structure. Tree) determines a hierarchical partition of

DYNAMIC POINT LOCATION, RAY SHOOTING, AND SHORTEST PATHS 223

the plane into horizontal strips according to the well-known segment-tree scheme. Each node
of Y corresponds to a canonical interval of y-coordinates. A vertical interval (y’, y”) with
¥, ¥" € Y is uniquely partitioned into O (logr) canonical intervals, called the fragments of
(»', ¥"), and their associated nodes in) are called the allocation nodes of (y’, y"). We extend
this terminology to any geometric entity that is uniquely associated with a vertical interval,
such as an edge, a monotone chain, or a monotone sleeve.

We now introduce the useful notion of the “pruned tree.” A pruned tree of a rooted tree
T is atree S that can be obtained from T by removing from it the subtrees rooted at a selected
subset of its nodes. Pruned trees of a balanced tree T support the full repertory of concatenable
queue operations. Each operation takes O (log n) time and is performed by means of O (logn)
elementary joins and splits between pruned trees whose roots are associated with sibling nodes
in T. A sequence I of k consecutive intervals with endpoints in Y will be stored in a pruned
subtree of), whose leaves are the allocation nodes of the intervals of I and whose internal
nodes are the ancestors of such leaves. It is easy to verify that the pruned tree associated with
I has O(klogn) nodes and O (log n) height.

Now, we show how to modify the normalization structure so that hourglasses can be
dynamically maintained (see Fig. 8). We denote with Q a maximal monotone subpath of a
solid path P and specify the implementation of ltree(Q) and rtree(Q). We use pruned trees
augmented with chain trees as secondary structures. Our scheme uses ideas from [22] and
[16].

o Trees ltree(Q) and rtree(Q) are implemented by means of pruned trees with respect
to V.

e Let i be a node of Itree(Q) (nodes of rtree(Q) are handled identically) and v the
parent of u. Node u has a pointer to the corresponding node y of . Also, if u is not
a leaf, then we establish a back pointer from y to . We do not set up back pointers
from y to leaves of ltree(Q) (or of rtree(Q)) in order to obtain efficient updates,
as we shall see later. Consider the subpath Q' of Q associated with the subtree of
Itree(Q) rooted at u. We denote with SLEEVE(w) the sleeve of Q', with s; and s,
the splitters that delimit SLEEVE(w), with HOURGLASS(u) the hourglass of s; and s,
(namely, HOURGLASS(s}, §2)), and with CHAIN(u) the “left chain” of SLEEVE(uw), i.e.,
the chain formed by the edge fragments stored at the leaves of the subtree of ltree(Q)
rooted at .

We distinguish several subcases:

— If w is a leaf of ltree(Q), then p stores the corresponding edge fragment.

— If HOURGLASS(w) is open and HOURGLASS(v) is closed, then w stores in a
secondary data structure the right convex hull of CHAIN(u).

— If both HOURGLASS(1+) and HOURGLASS(v) are open, then u stores in a sec-
ondary data structure only the endpoints of CHAIN(x) and the portion of the
right hull of CHAIN() that is not stored at an ancestor of .

— If HOURGLASS(u) is closed and w is the root of ltree(Q), then w stores in
secondary data structure the (up to five) components of HOURGLASS(it).

— If HOURGLASS(u) is closed and p is not the root, then p stores the apices and
the length of the string of HOURGLASS(1t), plus the subchains of the funnels of
HOURGLASS (1) that are not stored at the ancestors of .

e The upper levels (see §3.2) of thread trees Ithread(P) and rthread(P) are essentially
identical (except for the couplers). Also, an internal node w in the upper level of
Ithread(P) stores the length and the endpoints of the string of HOURGLASS(i). The
corresponding node of rthread(P) stores exactly the same information.

LEMMA 4.1. The space requirement of the hull structure is O (nlogn).

224 Y.-J. CHIANG, F. P. PREPARATA, AND R. TAMASSIA

Proof. We only need to determine the space used by the secondary structures (the
chain trees) that augment the ltrees and rtrees. Consider the set S of all segments s such
that s is either an edge fragment or the tangent segment in the hourglass of a node in
ltree or rtree. We claim that the size of S is O(nlogn). By standard segment-tree ar-
guments, the number of edge fragments in S is O(nlogn). For the tangent segments,
consider the hourglasses HOURGLASS(u), HOURGLASS(u'), and HOURGLASS(u”’) of a node
u and its children u’ and u”. Note that SLEEVE(u') and SLEEVE(u”) share a common
splitter, say s, and the other splitters s; of SLEEVE() and s3 of SLEEVE(u”) lie on op-
posite sides of s,. It follows that HOURGLASS(i#) = HOURGLASS(s), s3) is obtained from
HOURGLASS(u') = HOURGLASS(s], s2) and HOURGLASS(u”) = HOURGLASS(s7, s3) by O(1)
common-tangent computations, and thus each node u contains O (1) tangent segments. Again,
by segment-tree arguments, the total number of nodes in ltrees and rtrees is O (n log n), hence
the total number of tangent segments in S is O(nlogn). Also, each segment of S is stored
O (1) times in the data structure, since it can have representatives in an allocation node (for
an edge fragment), in the highest open hourglass, and in the highest monotone hourglass, and
there may be two such nodes for each segment (recall that edges have two “sides,” and the
corresponding nodes in the paired /tree and rtree may have duplicate information). We con-
clude that the secondary structures are a collection of balanced trees with a total of O (n log n)
nodes, and hence use total space O (n logn). 0

Query operations PATHLENGTH(q1, g2,) and PATH(q1, g2, r) are performed as follows:

1. Find the trapezoids 7, and 7, of the trapezoidal decomposition of r containing ¢; and
q>, using the point-location machinery of §5. Let s; and s, be the splitters on the
boundary of t; and 7,, such that ¢, and g, are on opposite sides of SLEEVE(sy, s2).

2. Create the solid path P for SLEEVE(s], s;) (P is the path between edges 3(s;) and
8(s2) of 8(r)), by means of evert(§(s1)) and expose(§(s2)). The secondary struc-
ture stored at the root of lthread(P) (or rthread(P)) yields a representation of
HOURGLASS(s1, $2).

Given the representation of HOURGLASS(s1, 52), after computing in time O (logn) the
tangents from g, and g, to the appropriate funnels, we can answer PATHLENGTH(q, g2, r) and
PATH(q1, q2,) in time O (1) and O (k), respectively (where k is the number of edges of the
shortest path reported). Finally, we conceal the path exposed in step 2 to satisfy the weight
invariant.

Regarding updates, we have the following lemma (see the example in Fig. 9).

LEMMA 4.2. An elementary split or join of two thread trees in the normalization structure
augmented with the hull structure takes time O (logn).

Proof. After an elementary split or join of two solid thread trees, we need to update
only the secondary data structures of their roots. Since such data structures represent the
hourglasses of the corresponding sleeves, they can be updated in O (logn) time (see Fig. 9).
Note that for a nonmonotone solid path the updates are limited to its leftmost or rightmost
monotone subpath. For this reason it is sufficient to store only the length of the string in the
nodes of the upper levels of the lthread and rthread trees. 0

As a consequence, splitting a solid path or joining two solid paths takes time O (log® n).
Note that parting or pairing /tree(Q) and rtree(Q) of a monotone path Q (because of an edge
insertion or deletion in the corresponding sleeve) takes O (1) time. The lemma below follows
from Lemmas 3.8 and 4.2.

LEMMA 4.3. Queries PATHLENGTH(q,, q2, ') and PATH(q,, q2, ') are performed in time
o (log3 n) and O (log® n + k), respectively, where k is the number of edges of the shortest path
reported.

Now, we discuss how operation INSERTVERTEX(v, €; e}, e;) affects the new data structure.
First, we insert a new node y(v) into). Let u be one of the two nodes in the ltree and rtree

DYNAMIC POINT LOCATION, RAY SHOOTING, AND SHORTEST PATHS 225

(a)

JAN
/\

o | &/ o (73

ANINAN
A /N £

FiG. 9. Example of update of the secondary structures in an elementary join of two solid paths. (a) Geometric
construction of the hourglass. (b) Construction of the representation of the root hourglass by means of split and join
operations on the chain trees in the repesentation of the hourglasses of the children nodes.

that stores the fragment of edge e where v is inserted, and let y be the corresponding node
of). Before the insertion of v, there is a pointer from p to y but no back pointer from y to
W, since w is a leaf of a pruned tree. After the insertion of v, the fragment of e stored in u
is further partitioned into O (logn) fragments (but the total number of fragments of e is still
O (log n)) according to the subtree of)Y rooted at y (y(v) has already been inserted into this
subtree); we allocate these edge fragments into a new tree 7)., expand leaf u to T, establish
a pointer from y to u, and rename all fragments of e to e; or e, appropriately.

The insertion of y(v) into) may cause rebalancing operations in) carried out by means
of rotations. A rotation between a node y’ and its child y” implies that horizontal cuts at y”
now take priority over horizontal cuts at y’. It is easy to see that the rotation only affects
the subtrees of the ltrees and rtrees rooted at the nodes pointed to by y’. We rebuild such
subtrees from scratch, which can be done in time proportional to their size. Note that prior
to the rotation, a leaf w of ltree or rtree corresponding to y’ stores an edge fragment that
spans the canonical vertical interval I of y’, and thus u is not affected by the rotation (except
that after the rotation we have to redirect the original pointer of x to y’ so that it now points
to y”, since y” now corresponds to I). Since there may be a large number of such leaves
u that do not require rebuilding, we do not establish a back pointer from y’ to leaf w in
our data structure (as we have already seen), so that inefficient checking for the necessity
of rebuilding is avoided. Also, the redirection of all pointers of leaves w from y’ to y” can
be done efficiently when we rotate y’ with y”: we switch the contents of the physical nodes
y’" and y” to interchange the roles of the physical nodes y’ and y” (and then carry out the

226 Y.-J. CHIANG, F. P. PREPARATA, AND R. TAMASSIA

rotation appropriately by O(1) elementary splits and joins), so that all these pointers are
effectively redirected, though no actual changes are made to the pointers. Now we show that
the rebuilding of the subtrees of ltrees and rtrees caused by a rotation in Y can be performed
efficiently.

LEMMA 4.4. Let y be a node of) whose subtree has € leaves. The subtrees of ltrees and
rtrees with the hull structure appended whose roots are pointed to by node y have total size
O(Llogt) and can be built in time O (£1og).

Proof. The subtree of) rooted at y has exactly 2¢ — 1 nodes. Thus there are O ()
vertices inside the canonical vertical interval I of node y. The leaves of the subtree rooted at
a node pointed by y store the edge fragments that are inside I but do not span /. Hence, the
edges contributing to such fragments must be incident on some vertex inside /. Since each
vertex has bounded degree, there are O (£) such edges. Also, since the subtree of) has height
O (log £), each such edge has O (log £) fragments inside /. We conclude that the total number
of leaves in the subtrees rooted at node pointed by y is O (€ log £), and hence their total size
is also O (£1og?). a

By the properties of BB[«]-trees, we derive the following lemma.

LEMMA 4.5. The amortized rebalancing time of the Y-tree) in a sequence of update
operations is O (log2 n).

We conclude the following.

THEOREM 4.6. Shortest-path queries PATHLENGTH(q, g2, ') and PATH(q1, g2, 1) inan n-
vertex connected planar map can be performed inworst-case time O (log> n) and O (log® n+k),
respectively (where k is the number of edges of the shortest path reported), using a fully
dynamic data structure that uses space O(nlogn) and supports updates of the map in time
0(log3 n) (amortized for vertex updates).

Remark. In a concrete situation where vertices are a priori restricted to a fixed set of
ordinates, tree) is static; if we then implement the trees ltree and rtree by means of contracted
binary trees [27] of depth < log | Y| (whose maintenance requires no rotation), then the update
times become 0(10g2 nlog|Y]|), in the worst case.

The following arc two additional types of queries that can be supported by the described
data structure without any modification.

TRAILLENGTH(q1, q2leq, - - . , €¢). Allowing edges ey, ..., €; to be deleted, are points g,
and g, reachable to each other? If so, then return the length of the shortest path.

TRAIL(q1, g2lei, - - ., €¢). Allowing edges ey, ..., e, to be deleted, are points g; and ¢,
reachable to each other? If so, then return the shortest path.

An immediate application is that viewing the edges of the map as walls, we are allowed
to put doors on edges ey, . .., ¢;. Can a pointlike robot at position g; reach position g,? If so,
then report the shortest path or its length.

Clearly, by using REMOVEEDGE, point-location query (see §5), PATHLENGTH or PATH, and
INSERTEDGE operations, queries TRAILLENGTH and TRAIL can be answered in worst-case time
o((£+1 log3 n)and O((£+ 1) log3 n + k), respectively, where k is the number of edges of
the shortest path reported.

5. Point location. In this section, we consider the problem of answering point-location
queries.

LOCATE(g). Find the region containing query point g. If g is on an vertex or edge, then
return that vertex or edge.

Our dynamic point-location data structure is inspired by the static trapezoid method [23]
and its dynamic version for monotone maps [8]. It uses the normalization and hull structures as
the underpinning of update operations. Queries are instead performed in a location structure,
a binary tree called trapezoid tree.

DYNAMIC POINT LOCATION, RAY SHOOTING, AND SHORTEST PATHS 227

M
r,
A 5-- e t4 l
I 4 AN .y
e o \es T8
Y rrro - -----l3
R7 €o
ty ty 2

(b)

FIG. 10. Example of the construction of trapezoid tree T for map M. (a) Recursive decomposition of M by
vertical and horizontal cuts. (b) Trapezoid tree T associated with the decomposition in part (a).

The trapezoid tree defines a binary partition of the plane obtained by means of vertical
and horizontal cuts. It differs in many substantial aspects from the trapezoid trees used in [8],
[23], the most striking difference being that it is not balanced.

The trapezoid tree 7 for map M is based on the Y-tree) (see §4) and on the normalization
of M as reflected by the normalization structure (see §3). We view the unnormalized map
M as a trapezoid with its sides at infinity. If a trapezoid t contains more than a single edge
fragment in its interior, we recursively decompose it into trapezoids whose vertical spans are
canonical vertical intervals, according to the following rules (see Fig. 10):

Vertical cut. If T is a coupler or is vertically spanned by a monotone subpath Q and the
hourglass H of SLEEVE(Q) is open, we decompose T by one of the supporting tangents ¢ of H.

Horizontal cut. If no vertical cut is possible, then we decompose 7 by cutting it along the
horizontal line at the y-coordinate associated with the (unique) allocation node of 7 in).

Note that a vertical cut always takes priority over a horizontal cut. If more vertical cuts
are possible, their order is arbitrary. We represent the above decomposition of M by means
of a binary tree 7 (see Fig. 10). Each node of 7 is associated with a trapezoid t of the
decomposition and the partitioning object (a tangent or a horizontal line) of 7, and stores
the representation of such object. Nodes of 7 are classified into three categories (and the
association): a ()-node (a vertical cut), a V-node (a horizontal cut), and a O-node (a terminal
trapezoid of the decomposition and its edge fragment).

The above decomposition process is closely related to the one induced by the segment
tree. In particular, the leaves of 7 are in one-to-one correspondence with the fragments of the
edges of M, so that tree 7 has O (nlogn) leaves. Since each node stores a constant amount
of information, we have that the space requirement of the trapezoid tree 7 is O(nlogn).

It is clear that a point-location query LOCATE(g) can be performed by traversing a root-
to-leaf path in 7", where at each internal node © we branch left or right depending on the

228 Y.-]. CHIANG, F. P. PREPARATA, AND R. TAMASSIA

discrimination of the query point g with respect to the partitioning object stored at . Indeed,
the leaf reached identifies an edge that is first hit by a horizontal ray through g. Since we
did not impose any balance requirement on 7, the query time could be linear in the worst
case.

To speed up queries, we implement 7 as a dynamic tree [30], i.e., 7 is decomposed
into solid paths (which should not be confused with the solid paths in the normalization
structure), connected by dashed arcs (see Fig. 11). Each solid path is associated with a path
tree, implemented as a biased search tree [3]. Note that the sequence of nodes of a solid path
of 7 identifies a sequence of nested trapezoids. For example, in path tree T (P;) of Fig. 11(c),
leaf ¢; identifies the trapezoid of the entire map M, and leaf #4 identifies the trapezoid whose
right side is at infinity and whose other sides are #;, /;, and /. A point-location query starts at
the root of the path tree of the topmost solid path of 7 (e.g., the root of T (P;) in Fig. 11(c)).
At a given internal node 7 of a path tree, we consider the rightmost node ¢ in the left subtree
of n (readily available given thread pointers). We discriminate g against the trapezoid t of ¢
and go to the left or right child of 7 according to whether q is inside or outside t (recall that
a solid path is stored bottom-to-top in the left-to-right leaves of its path tree). When we reach
a leaf of a path tree (which represents a node u of 7°), we always exit on a dashed arc, and
we always know the exit except for the case of the last node of the solid path, in which case
we go to its left or right child by discriminating g against the partitioning object of u. For
example, in Fig. 11(c), when we reach leaf /; of T (P;), we know that the next node to visit is
the root of T'(P»), since that is the only exit; when we reach leaf I3 of T (P,), we discriminate
q with /3 and move down right to T (Ps) by the fact that g is above /3. By this process, we
will finally reach a leaf of a path tree with no exit (representing a leaf of 7°), which identifies
an edge of the region containing g.

Using biased search trees [3] as the standard implementation of path trees, we have the
following lemma.

LEMMA 5.1. The time complexity for a point-location query is O (logn).

Proof. Let (vq, i1), ..., (ve, e) be the sequence of dashed arcs traversed by the query
algorithm, with v; the parent of u;. (Note that u, is the leaf reached by the query algo-
rithm.) Also, let 1o be the root of 7. Since the path trees are implemented as biased
search trees, we have that the number of nodes visited in the solid path of v; is at most
log(weight(u;—1)/weight(v;)) + 2. Hence, the time complexity of a point-location query
is O(Zf=1 log(weight(i;—1)/weight(v;))). Since weight(u;) < weight(v;), the above sum
telescopes, and we have that a point-location query takes time O (logn). 0

To perform update operations, we establish bidirectional links between the trapezoid tree
and the normalization structure. Let u be a node of 7. We have the following:

o If 1 is a (O-node, let Q' be the subpath of a monotone path Q associated with the
vertical cut at w (i.e., the sleeve of Q' spans the trapezoid of u and has an open
hourglass). We establish pointers between w and the nodes of ltree(Q) and rtree(Q)
associated with Q’.

e If uis a V-node, let Q' and R’ be subpaths of monotone paths Q and R such that Q'
and R’ span the leftmost and rightmost regions in the trapezoid of u. We establish
pointers between w and the nodes of ltree(R) and rtree(Q) associated with R’ and
Q’, respectively. Also, we establish a back pointer from the allocation node y of u
in) to u.

e If 1 is a O-node, we establish pointers between u and the two nodes in the normal-
ization structure associated with the same edge fragment.

Note that every node of a thread tree associated with an open hourglass is pointed to by
exactly two nodes of 7.

DYNAMIC POINT LOCATION, RAY SHOOTING, AND SHORTEST PATHS 229

(a) M

re l2

I R AY 1 N, W
o \e3 s

afammnn smmm= -----l3

(]
i3
T(Py)

1 23 I

T(Py)

3 I3

T(Ps)

€3 I(Py)

If7 €

FIiG. 11. Representing trapezoid tree T by a dynamic tree. (a) The same decomposition of M as in Fig. 10(a).
(b) Decomposing trapezoid tree T of Fig. 10(b) into solid paths Py, Ps, (c) Actual data structure representing T,
where T (P;) is the path tree for solid path P; in T . The left-to-right leaves of T (P;) represent bottom-to-top nodes
of P;, which in turn correspond to smaller-to-bigger nested trapezoids.

Now, we discuss how update operations affect the trapezoid tree. Since the decomposition
described by 7T is determined by the monotone paths, we update the trapezoid tree whenever
monotone paths are changed in the normalization structure. We only need to consider the
effects on the trapezoid tree of elementary splits, joins, partings, and pairings of monotone
paths. Each such elementary operation in the normalization structure corresponds to perform-
ing O(1) link and cut operations in the trapezoid tree. Details are shown in Figs. 12 and 13.
Link and cut operations are performed in O (log r) time by standard dynamic tree algorithms.
Regarding vertex insertions, a rotation at a node y in the Y-tree) caused by a vertex update
is handled by rebuilding the subtrees of 7 whose roots are V-nodes pointed by y. With an
argument analogous to the one of Lemma 4.4, we can prove the following lemma.

LEMMA 5.2. Let y be a node of Y whose subtree has £ leaves. Then the subtrees of T
whose roots are pointed to by y have total size O (€1og £) and can be built in time O (£1og¢).

Hence the amortized cost of rebalancing) in a sequence of updates is O (log?n). We
conclude the following.

THEOREM 5.3. Point-location queries LOCATE(q) in an n-vertex connected planar map
can be performed in worst-case time O (logn) using a fully dynamic data structure that uses
space O(nlogn) and supports updates of the map in time O(log®n) (amortized for vertex
updates).

Note that query LOCATE(q) is used in the update of the hull structure.

230 Y.-J. CHIANG, F. P. PREPARATA, AND R. TAMASSIA

FiG. 12. Update of the trapezoid tree in consequence of an elementary split of a monotone path in the normal-
ization structure.

Fic. 13. Update of the trapezoid tree caused by parting a monotone path in the normalization structure because
of an edge insertion.

6. Ray shooting. In this section, we consider the problem of performing ray-shooting
queries of the following type:

SHOOT(q, d). Find the first vertex or edge hit by aquery ray (g, d) in direction d originating
at point q.

DYNAMIC POINT LOCATION, RAY SHOOTING, AND SHORTEST PATHS 231

We show that the dynamic point-location data structure in the previous section also sup-
ports ray-shooting queries in worst-case time O (log® n). Without loss of generality, assume
that (g, d) is oriented upwards. The ray-shooting algorithm is as follows.

First, we perform LOCATE(q) to determine the region » containing q. If g lies on a vertex or
edge, an infinitesimal perturbation of g in direction d enables us to find the first region r entered
by the ray. Query LOCATE(q) also identifies the monotone sleeve SLEEVE(Q) of r containing
q and the splitter s; of SLEEVE(Q) immediately below q. We find the first intersection g’ of
(g, d) with the boundary of SLEEVE(Q). If ¢’ is on a vertex or edge of r, then we report ¢’
and stop; else (¢’ is on a lid of SLEEVE(Q)) we apply the algorithm recursively to the new ray
(q',ad).

We find the first intersection g’ of (g, d) with the boundary of SLEEVE(Q) by the process
below:

1. Find the topmost splitter s, in SLEEVE(Q) such that HOURGLASS(sy, §3) is open, by
means of O(logn) elementary splits and joins of subpaths of Q that yield a new
monotone path R such that SLEEVE(s;, s,) = SLEEVE(R). Note that the boundary
of SLEEVE(R) is part of the boundary of SLEEVE(Q) except for possibly s; and s;,
where s is part of the boundary of SLEEVE(Q) if and only if s, is the top lid of
SLEEVE(Q).

2. Find the first intersection p of (g, d) with the boundary of SLEEVE(R).

3. If p is not on sy, or if p is on s; but s; is the top lid of SLEEVE(Q), then p is on the
boundary of SLEEVE(Q) and thus the desired intersection g’. Return p and stop.

4. Else (pison s, and s; is not the top lid of SLEEVE(Q)), set s} := 52,9 := p, and go to
step 1. Note that this situation can occur at most twice, since s; is the topmost splitter
above s; such that HOURGLASS(s, s2) is open, and any straight line can completely
go through at most one such hourglass, with the bottom and top portions of the line
possibly in the two (below and above) adjacent hourglasses (see Fig. 14).

In step 2, the first intersection p of (g, d) with the boundary of SLEEVE(R) can be found
by a binary search in the trees ltree(R) and rtree(R) as follows: at a current node p with
children u’ and w”, where CHAIN(w') is below CHAIN(u1”), we determine the intersection of
(g, d) with the convex hull of CHAIN(u). If the intersection is on a real edge or on a lid,
then we are done. Else it is on a (fictitious) convex hull edge; we then compute the complete
convex hulls of CHAIN(u') and CHAIN(u'), and repeat the process on w1’ or on u” depending
on whether or not (g, d) intersects with the convex hull of CHAIN(u), respectively.

The computation of point ¢’ can be done in O (log? n) time: step 1 performs O (logn)
elementary joins and splits of solid subpaths of Q, each in O(logn) time by Lemma 4.2;
step 2 takes O (log2 n) time, with O (log n) time on each node visited during the binary search;
finally, the steps are executed at most three times by step 4. The number of recursive calls
to compute a sequence of such points ¢’ is O (logn), since the query ray intersects O (log r)
lids by Corollary 3.3. At the end, we conceal the path of A(r) traversed by the query ray to
restore the weight invariant. We conclude with the following theorem.

THEOREM 6.1. Ray-shooting queries SHOOT(q, d) in an n-vertex connected planar map
can be performed in worst-case time O (log® n) using a fully dynamic data structure that uses
space O(nlogn) and supports updates of the map in time O(log> n) (amortized for vertex
updates).

Theorem 6.1 also provides the capability of checking the validity of an edge insertion, i.e.,
whether the new edge does not intersect the current edges of the map. Moreover, as a corollary,
we can perform stabbing queries, namely, determine the k edges of the map intersected by a
query segment, in time O((k + 1) log® n).

232 Y.-J. CHIANG, F. P. PREPARATA, AND R. TAMASSIA

top lid of
SLEEVE(Q)

SLEEVE(Q)

bottom side of
SLEEVE(Q)

FIG. 14. The situation in step 4 of the process for computing q' can occur at most twice. Fori = 1,2, 3, siy1 is
the topmost splitter above s; such that HOURGLASS(S;, Si+1) is open. As shown, the situation of step 4 occurrs twice
when (q, d) hits s and s3, respectively. Note that (q, d) cannot reach ss, or otherwise HOURGLASS(S2, s4) would be
open and s3 would not be the topmost splitter above sy such that HOURGLASS(s2, s3) is open.

REFERENCES

[1]1 P. K. AGARWAL AND M. SHARIR, Applications of a new partition scheme, Discrete Comput. Geom., 9 (1993),
pp. 11-38.
[2] H. BAUMGARTEN, H. JUNG, AND K. MEHLHORN, Dynamic point location in general subdivisions, in Proc. 3rd
ACM-SIAM Symposium on Discrete Algorithms, 1992, pp. 250-258.
[3] S.W.BENT, D. D. SLEATOR, AND R. E. TARIAN, Biased search trees, SIAM J. Comput., 14 (1985), pp. 545-568.
[4] G. BILARDI AND F. P. PREPARATA, Probabilistic analysis of a new geometric searching technique, unpublished
manuscript, 1981.
[S] B. CHAZELLE AND L. J. GuIBAS, Visibility and intersection problems in plane geometry, Discrete Comput.
Geom., 4 (1989), pp. 551-581.
[6] S. W. CHENG AND R. JANARDAN, New results on dynamic planar point location, SIAM J. Comput., 21 (1992),
pp. 972-999.
, Space efficient ray shooting and intersection searching: Algorithms, Dynamizations, and Applications,
in Proc. 2nd ACM-SIAM Symposium on Discrete Algorithms, 1991, pp. 7-16.
[8] Y.-J. CHIANG AND R. TAMASSIA, Dynamization of the trapezoid method for planar point location in monotone
subdivisions, Internat. J. Comput. Geom. Appl., 2 (1992), pp. 311-333.
[9] , Dynamic algorithms in computational geometry, Proc. Institute for Electrical and Electronics Engi-
neering, G. Toussaint, ed., 80 (1992), pp. 1412-1434.
[10] D.P.DoBKIN AND R. LIPTON, Multidimensional searching problems, SIAM J. Comput., 5 (1976), pp. 181-186.
[11] M. 1. EpAHIRO, . KOKUBO AND T. ASANO, A new point-location algorithm and its practical efficiency—
comparison with existing algorithms, ACM Trans. Graphics, 3 (1984), pp. 86-109.
[12] H. EDELSBRUNNER, L. J. GUIBAS, AND J. STOLFI, Optimal point location in a monotone subdivision, SIAM J.
Comput., 15 (1986), pp. 317-340.
[13] O. FRrIES, Zerlegung einer planaren unterteilung der ebene und ihre anwendungen, M.S. thesis, Institut fiir
Angnewandte Mathematic und Informatik, Universitiit Saarlandes, Saarbriicken, Germany, 1985.
[14] O. Fries, K. MEHLHORN, AND S. NAHER, Dynamization of geometric data structures, in Proc. 1st ACM Sym-
posium on Computational Geometry, 1985, pp. 168-176.

[71

(15]
[16]

(17]
(18]

(19]
[20]

[21]
[22]

[23]
[24]

[25]

[26]
[27]

(28]
[29]
(30]

(31]

DYNAMIC POINT LOCATION, RAY SHOOTING, AND SHORTEST PATHS 233

M. T. GOODRICH AND R. TAMASSIA, Dynamic trees and dynamic point location, in Proc. 23rd ACM Symposium
on Theory of Computing, 1991, pp. 523-533.

L. J. GuiBAs AND J. HERSHBERGER, Optimal shortest path queries in a simple polygon, J. Comput. System Sci.,
39 (1989), pp. 126~152.

D. G. KIRKPATRICK, Optimal search in planar subdivisions, SIAM J. Comput., 12 (1983), pp. 28-35.

D. T. Lee AND F. P. PREPARATA, Location of a point in a planar subdivision and its applications, SIAM J.
Comput., 6 (1977), pp. 594 -606.

, Euclidean shortest paths in the presence of rectilinear barriers, Networks, 14 (1984), pp. 393-410.

K. MEHLHORN, Data Structure and Algorithms 1: Sorting and Searching, Springer-Verlag, Heidelberg,
Germany, 1984, pp. 189-199.

M. H. OVERMARS, Range searching in a set of line segments, in Proc. 1st ACM Symposium on Computational
Geometry, 1985, pp. 177-185.

M. H. OVERMARS AND J. VAN LEEUWEN, Maintenance of configurations in the plane, J. Comput. System Sci.,
23 (1981), pp. 166-204.

F. P. PREPARATA, A new approach to planar point location, SIAM J. Comput., 10 (1981), pp. 473-483.

F. P. PREPARATA AND M. 1. SHAMOS, Computational Geometry: An Introduction, Springer-Verlag, New York,
1985.

F. P. PREPARATA AND R. TAMASSIA, Fully dynamic point location in a monotone subdivision, SIAM J. Comput.,
18 (1989), pp. 811-830.

, Dynamic planar point location with optimal query time, Theoret. Comput. Sci., 74 (1990), pp. 95-114.

F. P. PREPARATA, J. VITTER, AND M. YVINEC, Computation of the axial view of a set of isothetic parallelepipeds,
ACM Trans. Graphics, 9 (1990), pp. 278 -300.

J. H. REIF AND S. SEN, An efficient output-sensitive hidden-surface removal algorithm and its parallelization,
in Proc. 4th ACM Symposium on Computational Geometry, 1988, pp. 193-200.

N. SARNAK AND R. E. TARIAN, Planar point location using persistent search trees, Commun. Assoc. Comput.
Mach., 29 (1986), pp. 669-679.

D. D. SLEATOR AND R. E. TARIAN, A data structure for dynamic trees, J. Comput. System Sci., 24 (1983),
pp. 362-381.

R. TAMASSIA, An incremental reconstruction method for dynamic planar point location, Inform. Process. Lett.,
37 (1991), pp. 79-83.

SIAM J. COMPUT. (© 1996 Society for Industrial and Applied Mathematics
Vol. 25, No. 2, pp. 235-251, April 1996 001

APPROXIMATE MAX-FLOW MIN-(MULTI)CUT THEOREMS
AND THEIR APPLICATIONS*

NAVEEN GARG', VIJAY V. VAZIRANIf, AND MIHALIS YANNAKAKISt

Abstract. Consider the multicommodity flow problem in which the object is to maximize the
sum of commodities routed. We prove the following approximate max-flow min-multicut theorem:

min multicut . .
————— < max flow < min multicut,
O(log k)

where k is the number of commodities. Our proof is constructive; it enables us to find a multicut
within O(logk) of the max flow (and hence also the optimal multicut). In addition, the proof
technique provides a unified framework in which one can also analyse the case of flows with specified
demands of Leighton and Rao and Klein et al. and thereby obtain an improved bound for the latter
problem.

Key words. approximation algorithm, multicommodity flow, minimum multicut

AMS subject classifications. 68Q25, 90B10

1. Introduction. Much of flow theory, and the theory of cuts in graphs, is built
around a single theorem—the celebrated max-flow min-cut theorem of Fort and Fulk-
erson [FF] and Elias, Feinstein, and Shannon [EFS]. The power of this theorem lies
in that it relates two fundamental graph-theoretic entities via the potent mechanism
of a min-max relation.

The importance of this theorem has led researchers to seek its generalization to
the case of multicommodity flow. In this setting, each commodity has its own source
and sink, and the object is to maximize the sum of the flows subject to capacity
and flow conservation requirements. The notion of a multicut generalizes that of a
cut and is defined as a set of edges whose removal disconnects each source from its
corresponding sink. Clearly, maximum multicommodity flow is bounded by minimum
multicut; the question is whether equality holds. This can be established for some
special cases, e.g., if there are only two commodities [Hu); however, one can construct
very simple examples to show that equality does not hold in general. Consider a tree
of height one with three leaves. Each pair of leaf vertices form the source—sink pair
for a commodity. All edges have unit capacities. The max flow in this graph is %,
whereas the minimum multicut is 2.

Why does the theorem hold for a single commodity, and why does the gener-
alization fail? For an explanation, consider the LP formulation of the maximum
multicommodity flow problem. As shown in §5, the dual of this is the LP relaxation
of the minimum multicut problem, i.e., the optimal integral solution to the dual is the
minimum multicut. In general, the vertices of the dual polyhedron are not integral.
However, for the case of a single commodity, they are integral (see [GV] for an exact
characterization), and the max-flow min-cut theorem is simply a consequence of the
LP-duality theorem. For the multicommodity case, the LP-duality theorem shows
only that maximum flow is equal to the minimum fractional (i.e., relaxed) multicut.

In this situation, the best one can hope for is an approximate max-flow min-
cut theorem. In ground-breaking work, Leighton and Rao [LR| gave the first such

* Received by the editors January 19, 1993; accepted for publication (in revised form) August 5,
1994.

t Department of Computer Science and Engineering, Indian Institute of Technology, Delhi, India.
¥ AT&T Bell Laboratories, Murray Hill, NJ 07974 (mihalis@research.att.com).

235

236 N. GARG, V. V. VAZIRANI, AND M. YANNAKAKIS

theorem. Let us consider a second formulation of the multicommodity flow problem
that has also been widely studied in the past. In this formulation, a demand, D;,
is specified for each commodity, i. The object is to determine the maximum num-
ber, f, called throughput, such that fD; amount of each commodity ¢ can be routed
simultaneously, subject to capacity and conservation constraints. (Equivalently, the
object is to determine the minimum number, u, such that if the capacity of each edge
is multiplied by u, then all the demands can be simultaneously satisfied. Clearly, at
optimality f = %) The analogue of a minimum cut in this case is a sparsest cut into
two parts, one that minimizes the ratio of capacity of the cut to the demand across
the cut. Let a be this minimum. Clearly, f < a, and once again equality does not
generally hold.

Leighton and Rao considered a special case of the above-stated formulation, called
uniform multicommodity flow, in which there is a commodity corresponding to each
pair of vertices and all the demands are unity. They proved the following approximate
max-flow min-cut theorem:

o
— < f <
O(logn) — fso

where n is the number of vertices in the graph. Subsequently, Klein et al. [KARR]
managed to attack the arbitrary demands problem, and proved that

a
O(log C'log D) sfsa

where C is the sum of capacities of all edges and D is the sum of all demands.
However, one restriction they impose is that all capacities and demands be integral.
The lower bound was later improved to a/O(lognlog D) by Tragoudas [Trag]. [LR],
[KARR], and [Trag] also give polynomial-time algorithms for finding an approximation
to the sparsest cut, the factors being O(logn) and O(log C'log D) (or O(log n log D)),
respectively.

We address the first version of the multicommodity flow problem, henceforth
referred to as the mazximum multicommodity flow problem, and prove the following
approximate max-flow min-multicut theorem:

Otloghy <7 <M

where f is the max flow, M is the minimum multicut, and k is the number of com-
modities. We also show that our theorem is tight up to a constant factor, and we
give a polynomial-time algorithm for finding a multicut within O(log k) of the optimal
fractional, and therefore also of the integral multicut.

Our general approach is similar to that of Leighton and Rao [LR] and Klein et al.
[KARR]. We consider the LP-relaxation of the minimum multicut problem and use
its optimal solution to define a graph with distance labels on the edges. Starting from
a source or a sink, we grow a region in this graph until we find a cut of small enough
capacity separating the root from its mate. The region is removed and the process is
repeated. Our method differs in several respects from previous methods. It dispenses
with the discretization of the edge distances and employs a technique that leads to
quicker termination of the region growth process and thus produces a better bound on
the capacity of the cut. These techniques are encapsulated in the two region-growing
lemmas of §4, which use the idea of packing cuts to grow regions.

APPROXIMATE MAX-FLOW MIN-MULTICUT THEOREMS 237

Our analysis is also useful in the demands version of the multicommodity flow
problem. It establishes a unified framework in which simpler proofs of the theorems
of Leighton and Rao and Klein et al. can be given by dispensing with tokenizing
distances. We also avoid the dynamic resetting of the parameters for region growing
and restarting the procedure. In both cases we use heavily ideas from the original
papers. Using our lemmas, we improve the [KARR] and [Trag] results to

(67

— << f<a.
OllogklogD) =7 =©

We also dispense with the restriction that capacities be integral. Furthermore, Plotkin
and Tardos [PT] give a method of scaling demands so that the log D factor in these
results can be replaced by log k, thus yielding an improved bound of O(log? k) on the
gap between f and .

The following problem is a generalization of the uniform multicommodity flow
problem considered by Leighton and Rao and by Tragoudas. It was called the product
multicommodity flow problem in [LR] and the complete concurrent flow problem in
[Trag]. In this problem, each vertex has a nonnegative weight w(v) (assumed to be
positive integer in [LR] and [Trag] but this is not essential), and there is a commodity
for each unordered pair u, v of vertices, with a demand of w(u)w(v). The object again
is to maximize the throughput subject to capacity and conservation constraints. Let

o = min 2V
scv w(S)w(S)’

where w(S) in the sum of weights of vertices in S.

Let W be the sum of weights of all vertices, and C be the sum of all edge capacities.
Then, Leighton and Rao prove a,/O(log min(w‘:i.. , cn(in)) < f < a, where wpy is the
weight of the lightest vertex, and cp;, is the minimum over all vertices of the sum
of capacities of edges incident at the vertex. Tragoudas improves the lower bound to

a/O(logn) [Trag]. Using our techniques, we improve this result to

07

— < f <
O(logk) — fse

where k is the number of vertices having nonzero weight.

The multicut problem finds numerous applications, e.g., in circuit partitioning
problems. It was first stated by Hu in 1963 [Hu]. For k = 1, the problem coincides
with the ordinary min cut problem. For k = 2, it can also be solved in polynomial
time by two applications of a max-flow algorithm [YKCP]. The problem was proven
NP-hard and MAX SNP-hard for any k > 3 by Dalhaus et al. [DJPSY]. Because of the
MAX SNP-hardness, there is no polynomial-time approximation scheme for multicut
for k > 3 (assuming P # N P) [ALMSS]. Note that, in the demands case, the sparsest
cut problem can be solved in polynomial time for fixed k& (or k = O(logn)) because
in this case we are concerned only with cuts into two parts, and thus we can try all
possible partitions of the sources and sinks into two parts and compute the minimum
cut for each partition.

Dahlhaus et al. [DJPSY] studied the multiway cut (or multiterminal cut) prob-
lem: given a set of “terminal” vertices 7', find a minimum weight set of edges that
disconnects every terminal from every other terminal. This is the special case of
the multicut problem where there is one commodity for every pair of vertices from
the subset T. [DJPSY] gave a factor-of-2 approximation algorithm for this case and

238 N. GARG, V. V. VAZIRANI, AND M. YANNAKAKIS

showed that it can be used to approximate the general multicut problem within a
factor of 2 with a running time that has &k in the exponent. Thus the running time is
polynomial only for fixed k.

Klein et al. LKARR] used their approximation algorithm for the sparsest cut
to give an O(log®n) approximation algorithm for multicut. They also gave some
applications of the multicut problem obtaining approximation algorithms with ratio
O(log3 n) for the following problems: deleting the minimum number of clauses to make
a 2CNF = formula satisfiable, deleting the minimum number of edges from a graph
to make it bipartite, and a via minimization problem in VLSI. Our improvement for
multicut gives us an O(logn) approximation algorithm for these problems.

2. LP formulations for max multicommodity flow. Given an undirected
graph G = (V, E), a capacity function ¢ : E — R*, and k pairs of vertices (not nec-
essarily distinct) {s;,t;} 1 <1 < k, we associate a commodity, ¢, with the pair {s;,;}
and designate s; as the source and ¢; as the sink for commodity i. A multicommod-
ity flow is a way of simultaneously routing commodities from their sources to sinks,
subject to capacity and conservation constraints.

The assumption that each commodity has a single source and a single sink can
be made without loss of generality. The more general case where a commodity ¢ may
have a set S; of sources and a set T; of sinks can be easily reduced to this one by
adding a new source s; with edges to the vertices in S; and a new sink ¢; with edges
to T;.

A multicommodity flow in which the sum of the flows over all the commodities
is maximized will be called a maz (multicommodity) flow. A multicut is defined as a
set of edges whose removal disconnects each {s;,t;} pair. The weight of the multicut
is the sum of the capacities of the edges in it. The MULTICUT problem is to find a
multicut of minimum weight.

We say that two vertices share indexr i if they form the source-sink pair for
commodity 1.

Assume that there exist edges (¢;, s;) in G,1 < ¢ < k. These edges are special; the
only flow allowable on edge (;, s;) is commodity i lowing from ¢; to s;. There are no
capacity restrictions on these edges. This allows us to view max flow as a circulation
in which the sum of the flows in the edges (¢;,s;),1 < ¢ < k, is to be maximized. Let

ilj denote the flow of commodity ! in edge (¢, 7). The LP formulation of the problem
is as follows:

k
maximize Z fis,
=1
subject to > fli— Y fi<0 Viev Viell,..., k],
(49)eE (i,5)EE
k k k
Y+ Y i< Y65 € BE- {50}
=1 =1 =1
20 V@j)eE Viell,... k.

The first set of inequalities says that the total flow of each commodity into vertex
i is at most the total flow out of it. Note that, if these inequalities hold for each vertex
i € V, then in fact they must all hold with equality, thereby implying flow conservation
at each node. This is because a deficit in the flow balance at one node must imply a

APPROXIMATE MAX-FLOW MIN-MULTICUT THEOREMS 239

surplus at some other. The second set of inequalities are capacity constraints on the
edges; the total flow over all commodities summed in both directions is at most the
capacity of the edge.

The dual of this LP is

minimize E dijcij

(1.))€E
subject to dij > pt—p} V(i,j) € E— LkJ{(ti,Si)} viell,..., k],
ph —pi >1 Vi e [1.. k], =
pt>0 VieV viell,..., kK,
k
dij >0 V(i,j) € E = | J{(t:, 5:)}-
i=1

The variable d;; can be viewed as a distance label on the edge (¢,5) and p! as
the potential corresponding to commodity / on vertex i. Thus the dual problem is an
assignment of potentials to vertices and distance labels to edges so that the potential
difference (for each commodity) across each edge is no more than the distance label of
that edge. Furthermore, the potential difference between the source and the sink for
each commodity should be at least 1. These two conditions imply that the distance
between each s;,t; under the distance label assignment d;; is at least 1. The following
LP (with, however, exponentially many constraints) expresses this much more simply.

minimize z deCe
e€E
subject to Z deqf (e)>1 ‘v’q{
eeE
de>0 VeeE,

where qf denotes the jth path in G (under some arbitrary numbering) from s; to
t; and qf (e) is the characteristic function of this path, i.e., g/(e) = 1 if e € ¢/,0
otherwise.

Clearly the distance labels of a feasible solution to the first LP give a feasible so-
lution to the second LP with the same objective function. Conversely, given a feasible

solution to the second LP compute potentials on the vertices for each commodity as
follows:

p. = length of the shortest path from vertex i to the sink for commodity I,
under distance labels d..

It can be shown that these potentials, together with the distance labels d., are a
feasible solution to the first LP with the same objective function. Hence the two
formulations of the dual are equivalent.

The dual program can now be viewed as an assignment of nonnegative distance
labels d. to edges e € E, so as to minimize) ccE deCe, subject to the constraint that

240 N. GARG, V. V. VAZIRANI, AND M. YANNAKAKIS

each {s;,t;} pair be at least a unit distance apart. An integral solution to the dual
problem corresponds to a multicut; the edges with d. = 1 form a multicut. Hence,
the dual is the LP relaxation of the MULTICUT problem.

3. Overview of the algorithm. In this section we will give a high-level de-
scription of our algorithm, justifying the steps taken on intuitive grounds.

Our goal is to pick a set of edges of small capacity whose removal separates all
83, t; pairs; the total capacity of edges picked should be within a small factor of the
max flow (our factor is O(log k)). Clearly, such edges will be bottlenecks for the max
flow, so one possibility is to find a max flow using an LP subroutine and start with
the set of saturated edges. A better possibility is to find an optimal solution to the
dual LP and consider the set of edges having positive distance labels. Notice that, by
complementary slackness, d, > 0= S8 i+ >r, fli = ce, where e = (i,7), i.e., €
must be saturated in every max flow. Moreover, the edges D = {e|d. > 0} constitute
a multicut.

The entire set D may have a very large capacity; we wish to pick a small capacity
subset that is still a multicut. The optimal dual solution is the most cost effective way
of picking a fractional multicut. This provides the clue that, for our purpose, edges
with large distance labels should be more important than edges with small distance
labels. Our algorithm indirectly gives preference to edges having large distance labels.
We start by defining the length of edge e in G as d.. We then find disjoint sets, called
regions, such that for each set S, Cy(s) < €. wt(S), where Cy(g) is the capacity of
the cut (5,5), € is an appropriately chosen parameter, and wt(S) is roughly 3 c.dk,
where the sum is over all edges having at least one endpoint in S. No region contains
both source and sink of any pair, and for each commodity either the source or the
sink is in some region. Under these conditions, the union of the cuts of the regions is
a multicut and has capacity bounded by 2¢F’, where F is the value of the maximum
flow.

The overall approach of finding the optimal fractional solution to the dual LP
and then growing regions was introduced by Leighton and Rao [LR] for the uniform
multicommodity flow problem. The procedure for growing regions is similar to a
graph clustering technique first proposed by Awerbuch in [Aw] (for graphs without
capacities or lengths on the edges), and is also similar to that used by Leighton and
Rao [LR] and Klein et al. [KARR] (for graphs with capacities and lengths) in the
context of multicommodity flows. Each region is formed by growing out radially, with
respect to the edge lengths d., from one of the sources, as in the usual shortest path
computation; the region is grown as long as it accumulates weight fast enough. The
reason for adopting radial growth is that this maximizes the weight of the region for
a given bound on the pairwise distance between vertices in the region. The region-
growing process is formally described in the next section. The main differences from
[LR] and [KARR] are in the initialization of the process (assignment of initial weights
wt for the roots of the regions), the elimination of the discretization of the lengths of
the edges, and the use of auxiliary variables associated with the layers of the radial
growth. The idea of packing cuts is used for growing the regions and for accounting.
This yields simpler proofs, as well as a more precise bound on e.

4. Two crucial lemmas. In this section we shall prove two region-growing lem-
mas that will be central to our multicut algorithm. We shall prove these in sufficient
generality so that they can be applied to the other versions of the multicommodity
flow problem as well.

APPROXIMATE MAX-FLOW MIN-MULTICUT THEOREMS 241

Given a graph G = (V, E), a capacity function ¢ : E — R* and distance labels
d: E - RT on the edges, define B = Zee g deCe. A subset of vertices V! C V is
provided to the region-growing algorithm as the set of candidate roots from which
regions will be grown. In our case, V' is the set of sources and sinks. We associate
a variable yg with each subset S C V; initially yg = 0 for all S. The cut associated
with a set S, denoted by V(S), is the set of edges with exactly one end point in S.
The capacity of the cut, Cy(s), is ZeGV(S) Ce.

4.1. Growing a region. A region is grown in a radial manner starting from a
root vertex, . The order in which vertices are included in the region is the same as
the order in which Dijkstra’s algorithm finds shortest paths to vertices from r. We
begin by picking a vertex, r € V', and assign it a weight wt(r) = B/q, where ¢ = |V’|.

At any point in the algorithm we identify a set, A, as the active set and raise its
variable y4. Initially, the active set is {r}. Define the weight enclosed by the set A as

wt(A) = Z yscv(s) + wt(r).
SCA

It is important that the ys’s must form a packing, i.e., Ve € E: ZS:eEV(S) Ys < de.
Thus, if while raising y4 we find that Zeev(s) ys = de for some edge e = (u,v) €
V(A), u € A, we make the set AU {v} active, i.e., A — AU {v}, and start increasing
the variable corresponding to it. We keep growing the active set in this manner, one
vertex at a time, until

(1) CV(A) <e- wt(A)

is satisfied, where € is a constant that will be set appropriately while applying the
lemma. Let R denote the active set for which condition 1 is satisfied.

Define the radius of A, rad(A) =Y g4 ¥s-

LEMMA 4.1. rad(R) <In(g+1)/e.

Proof. The claim is trivial if rad(R) = 0, so assume rad(R) > 0. Let S1, Sa,...,S;
denote the successive sets for which the variable yg > 0. It is easy to check that these
sets are nested, i.e., if ¢ < j then S; C S;. In what follows we denote the value of the
variable ys, by y; and Cy(s,) by C;.

Since, while raising the variable yg, from 0 to y;, condition 1 was not satisfied

C,; Z €- wt(Si).
From our definition of the weight enclosed by a set, it follows that
wt(S;) = wt(Si-1) + 4:Cs
()
Z wt(S‘_..l) + eyiwt(Si),

where for i = 1 we let wt(Sp) = wt(r) in the above equation. Note that wt(S;—;) > 0
for all 7 and hence 0 < ey; < 1. Thus,

wt(S~_1)
wt(S;) > m

242 N. GARG, V. V. VAZIRANI, AND M. YANNAKAKIS

Hence,

wit(r)
(1—ey1)(1—eyz) -~ (1 —ey)
_ B
a1 —eyr)(I—ey2) - (L—ey)’

wt(8)) >

Since the ys’s form a packing (Ve € E : 35 cy(s)Ys < de), it follows that

gyczg(z’ 2 ce)=2(6e > ys)szcede=3,

€€V (S;) e€E 5:e€V(S) ecE
and hence,
wt(Sy) = i:yici +uwtr)<B+Z =B (1 + 1) .
i1 - q q
Therefore,

B
(1 —ey1)(1 —ey2)--- (1 — eyr)

<wi(S) £ B (1+$),

which implies that

1
(1—ey1)(1—eya) - (1 —ey) <gq

Taking natural logs we get

+ 1.

l
Zln(l —ey;)" ! <lIn(g+1).
i=1

From (2) it follows that 0 < ey; < 1,1 <i <l Sinceln(l1—-z) ! >z for0<z <1,

1
eZyi <In(g+1).

i=1

Thus, rad(R) = Zli___l yi <In(g+1)/e. 0
Let distq(u,v) denote the shortest path distance between u and v under the
distance label assignment d. Consider vertex v € R. Let S; be the first set containing

v, i.e., v € S; — S;—1. Then from the manner in which we grow the region it follows
that

(3) distg(r,v) = rad(S;—1).

COROLLARY 4.2. For all u,v € R, distg(r,u) < rad(R) and distqg(u,v) <
2rad(R).

APPROXIMATE MAX-FLOW MIN-MULTICUT THEOREMS 243

4.2. Growing disjoint regions. Having grown a region rooted at an arbitrary
vertex in V’, remove all vertices contained in the region and grow another region
starting from a new root picked from V’. Continue in this manner until the residual
graph contains no vertex of V’. Let R1,R2..., R, denote the regions formed. It is
easy to see that these are disjoint. Clearly, p < [V'| =gq.

Let M = V(Rl) U V(Rz) J.--u V(RP)

LEMMA 4.3. > 3 ce < 2¢B.

Proof. Let G; = (V;, E;) be the graph obtained by deleting vertices contained in
U;;]iRj (G1 = G). Furthermore, let Civ(s) denote the capacity of the cut V(S) in
G;. Note that 3 cpce = 2ot_; Cy(ry- .

u Each region R; satisfies condition 1. Therefore, Cg 5,y < €. wt(R;), 1 <i < p.
ence,

P P
D Comy S € ut(Ry)
i=1

=1

p p
=e|> D usCosy+ 2 wilri) |,
i=1

=1 SCR;

where 7; is the root of region R;. Since the yg’s form a packing,

P
Y D ysCys) <Y dece =B.

i=1 SCR; ecE

Also,
P
Zwt(ri) = Ep <B.
i=1 q

Thus, }°7_, Cy(x,) < 2¢B, and hence - ¢ p/ ce < 2€B. ul

When growing region R; in the graph G;, we have that) . E; GeCe < Y eck deCe =
B. However, the proof of Lemma 4.1 goes through without any modifications. Re-
garding (3), note that rad(S;_1) is now the shortest path distance between r and v in
the graph G;; the shortest distance between these vertices in G might be even smaller.
Hence Corollary 4.2 still holds.

COROLLARY 4.4. Y7_, Cy(r,) < 4¢B.

Proof. An edge in M occurs in at most two cuts V(R;), 1 < i < p. Thus,

icv(ki) <2) c.<4B. O

i=1 eeEM

The time complexity of growing disjoint regions is O(m+nlogn) as our algorithm
is essentially the same as Dijkstra’s algorithm for shortest paths.

5. Approximate max-flow min-multicut theorem. Clearly, the max flow,
F, is less than the weight of the minimum multicut, M, i.e., F < M.

The main result of this section is an algorithm that finds a multicut of weight at
most F - O(log k). We state this as a theorem for later reference.

244 N. GARG, V. V. VAZIRANI, AND M. YANNAKAKIS

THEOREM 5.1 (approximating the minimum multicut). Consider an instance
of the MULTICUT problem specified by a graph G = (V,E), a capacity function
c: E — R, and k pairs of vertices. One can, in polynomial time, find a multicut
separating the specified pairs of vertices having weight within a factor O(log k) of the
mazimum flow over these pairs.

Since M is the minimum multicut, M < F -