
SIAM J. COMPUT.
Vol. 25, No. 1, pp. 1-51, February 1996

() 1996 Society for Industrial and Applied Mathematics
001

ASYMPTOTIC CONDITIONAL PROBABILITIES: THE UNARY CASE*

ADAM L GROVEt, JOSEPH Y. HALPERNt, AND DAPHNE KOLLER

Abstract. Motivated by problems that arise in computing degrees ofbelief, we consider the problem ofcomputing
asymptotic conditional probabilities for first-order sentences. Given first-order sentences p and 0, we consider the
structures with domain N} that satisfy 0, and compute the fraction ofthem in which o is true. We then consider
what happens to this fraction as N gets large. This extends the work on 0-1 laws that considers the limiting probability
of first-order sentences, by considering asymptotic conditional probabilities. As shown by Liogon’kii [Math. Notes
Acad. USSR, 6 (1969), pp. 856-861 and by Grove, Halpern, and Koller [Res. Rep. RJ 9564, IBM Almaden Research
Center, San Jose, CA, 1993], in the general case, asymptotic conditional probabilities do not always exist, and most
questions relating to this issue are highly undecidable. These results, however, all depend on the assumption that 0
can use a nonunary predicate symbol. Liogon’kii [Math. Notes Acad. USSR, 6 (1969), pp. 856-861] shows that if
we condition on formulas 0 involving unary predicate symbols only (but no equality or constant symbols), then the
asymptotic conditional probability does exist and can be effectively computed. This is the case even if we place no
corresponding restrictions on o. We extend this result here to the case where 0 involves equality and constants. We
show that the complexity of computing the limit depends on various factors, such as the depth of quantifier nesting, or
whether the vocabulary is finite or infinite. We completely characterize the complexity of the problem in the different
cases, and show related results for the associated approximation problem.

Key words, asymptotic probability, 0-1 law, finite model theory, degree of belief, labeled structures, principle
of indifference, complexity

AMS subject classifications. 03B48, 60C05, 68Q25

1. Introduction. Suppose we have a sentence 0 expressing facts that are known to be
true, and another sentence 99 whose truth is uncertain. Our knowledge 0 is often insufficient
to determine the truth of p: both p and its negation may be consistent with 0. In such cases, it
can be useful to assign aprobability to 0 given 0. In a companion paper [23], we described our
motivation for investigating this idea, and presented our general approach. We repeat some of
this material below, to provide the setting for the results of this paper.

One important application ofassigning probabilities to sentences--indeed, the one that has
provided most ofour motivation--is in the domain ofdecision theory and artificial intelligence.
Consider an agent (or expert system) whose knowledge consists of some facts 0, who would
like to assign a degree of belief to a particular statement 99. For example, a doctor may want
to assign a degree of belief to the hypothesis that a patient has a particular illness, based on
the symptoms exhibited by the patient together with general information about symptoms and
diseases. Since the actions the agent takes may depend crucially on this value, we would like
techniques for computing degrees of belief in a principled manner.

The difficulty ofdefining a principled technique for computing the probability of q9 given 0,
and then actually computing that probability, depends in part on the language and logic being
considered. In decision theory, applications often demand the ability to express statistical
knowledge (for instance, correlations between symptoms and diseases) as well as first-order

*Received by the editors October 13, 1993; accepted for publication (in revised form) July 7, 1994. Some of
this research was performed while Adam Grove and Daphne Koller were at Stanford University and at the IBM
Almaden Research Center. A preliminary version of this paper appeared in Proc. 24th ACM Symp. on Theory of
Computing [20]. This research was sponsored in part by an IBM Graduate Fellowship to Adam Grove, by a University
of California President’s Postdoctoral Fellowship to Daphne Koller, and by Air Force Office of Scientific Research
contract F49620-91-C-0080. The United States Government is authorized to reproduce and distribute reprints for
governmental purposes.

NEC Research Institute, 4 Independence Way, Princeton, NJ 08540 (grove@research.nj.nec.com).
tlBM Almaden Research Center, 650 Harry Rd., San Jose, CA 95120 (halpern@almaden.ibm.com).
Computer Science Division, University of California at Berkeley, Berkeley, CA 94720 (daphne@cs.

berkeley.edu).

2 ADAM J. GROVE, JOSEPH Y. HALPERN, AND DAPHNE KOLLER

knowledge. Work in the field of 0-1 laws (which, as discussed below, is closely related to
our own) has examined some higher-order logics as well as first-order logic. Nevertheless,
the pure first-order case is still difficult, and is important because it provides a foundation for
all extensions. In this paper and in [23] we address the problem of computing conditional
probabilities in the first-order case. In a related paper [22], we consider the case of a first-order
logic augmented with statistical knowledge.

The general problem of assigning probabilities to first-order sentences has been well
studied (cf. 15] and 16]). In this paper, we investigate two specific formalisms for computing
probabilities, based on the same basic approach. Our approach is itself an instance of a much
older idea, known as theprinciple ofinsufficient reason [28] or theprinciple ofindifference [26].
This states that all possibilities should be given equal probability, and was once regarded as
one of the most basic principles of probability theory. (See [24] for a discussion of the history
of the principle.) We use this idea to assign equal degrees of belief to all basic "situations"
consistent with the known facts. The two formalisms we consider differ only in how they
interpret "situation." We discuss this in more detail below.

In many applications, including the one of most interest to us, it makes sense to consider
finite domains only. In fact, the case of most interest to us is the behavior of the formulas

0 and 0 over large finite domains. Similar questions also arise in the area of 0-1 laws. Our
approach essentially generalizes the methods used in the work on 0-1 laws for first-order
logic to the case of conditional probabilities. (See Compton’s overview [8] for an introduc-
tion to this work.) Assume, without loss of generality, that the domain is 1 N} for
some natural number N. As we said above, we consider two notions of "situation." In the
random-worlds method, the possible situations are all the worlds, or first-order models, with
domain N} that satisfy the constraints 0. Based on the principle of indifference, we
assume that all worlds are equally likely. To assign a probability to p, we therefore simply
compute the fraction of them in which the sentence p is true. The random-worlds approach
views each individual in N} as having a distinct name (even though the name may
not correspond to any constant in the vocabulary). Thus, two worlds that are isomorphic
with respect to the symbols in the vocabulary are still treated as distinct situations. In some
cases, however, we may believe that all relevant distinctions are captured by our vocabulary,
and that isomorphic worlds are not truly distinct. The random-structures method attempts to
capture this intuition by considering a situation to be a structureman isomorphism class of
worlds. This corresponds to assuming that individuals are distinguishable only if they dif-
fer with respect to properties definable by the language. As before, we assign a probability
to q9 by computing the fraction of the structures that satisfy q9 among those structures that
satisfy 0.1

Since we are computing probabilities over finite models, we have assumed that the domain
is N} for some N. However, we often do not know the precise domain size N. In
many cases, we know only that N is large. We therefore estimate the probability of 0 given 0
by the asymptotic limit, as N grows to infinity, of this probability over models of size N.

Precisely the same definitions of asymptotic probability are used in the context of 0-1 laws
for first-order logic, but without allowing prior information 0. The original 0-1 law, proved
independently by Glebski et al. [18] and Fagin [13], states that the asymptotic probability of
any first-order sentence p with no constant or function symbols is either 0 or 1. This means
that such a sentence is true in almost all finite structures, or in almost none.

The random-worlds method considers what has been called in the literature labeled structures, while the random-
structures method considers unlabeled structures [8]. We choose to use our own terminology for the random-worlds
and random-structures methods, rather than the terminology of labeled and unlabeled. This is partly because we feel
it is more descriptive, and partly because there are other variants of the approach that are useful for our intended
application, and that do not fit into the standard labeled/unlabeled structures dichotomy (see [2]).

ASYMPTOTIC CONDITIONAL PROBABILITIES 3

Our work differs from the original work on 0-1 laws in two respects. The first is relatively
minor: we need to allow the use ofconstant symbols in o, as they are necessary when discussing
individuals (such as patients). Although this is a minor change, it is worth observing that it
has a significant impact. It is easy to see that once we allow constant symbols, the asymptotic
probability of a sentence p is no longer either 0 or 1; for example, the asymptotic probability
of P (c) is . Moreover, once we allow constant symbols, the asymptotic probability under
random worlds and under random structures need not be the same. The more significant
difference, however, is that we are interested in the asymptotic conditional probability of p,
given some prior knowledge 0. That is, we want the probability of 0 over the class of finite
structures defined by 0.

Some work has already been done on aspects of this question. Liogon’ki [31], and
independently Fagin 13], showed that asymptotic conditional probabilities do not necessarily
converge to any limit. Subsequently, 0-1 laws were proved for special classes of first-order
structures (such as graphs, tournaments, partial orders, etc.; see the overview paper [8] for
details and further references). In many cases, the classes considered could be defined in terms
of first-order constraints. Thus, these results can be viewed as special cases of the problem
that we are interested in: computing asymptotic conditional probabilities relative to structures
satisfying the constraints of a database. Lynch [32] showed that, for the random-worlds
method, asymptotic probabilities exist for first-order sentences involving unary functions,
although there is no 0-1 law. (Recall that the original 0-1 result is specifically for first-order
logic without function symbols.) This can also be viewed as a special case of an asymptotic
conditional probability for first-order logic without functions, since we can replace the unary
functions by binary predicates, and condition on the fact that they are functions.

The most comprehensive work on this problem is the work of Liogon’k [31].2 In
addition to pointing out that asymptotic conditional probabilities do not exist in general, he
shows that it is undecidable whether such a probability exists. (We generalize Logon’k’s
results for this case in [23].) He then investigates the special case of conditioning on formulas
involving unary predicates only (but no constants or equality). In this case, he proves that the
asymptotic conditional probability does exist and can be effectively computed, even if the left
side of the conditional, o, has predicates of arbitrary arity and equality. This gap between
unary predicates and binary predicates is somewhat reminiscent of the fact that first-order logic
over a vocabulary with only unary predicates (and constant symbols) is decidable, while if
we allow even a single binary predicate symbol, then it becomes undecidable 11], [29]. This
similarity is not coincidental; some of the techniques used to show that first-order logic over a
vocabulary with unary predicate symbols is decidable are used by us to show that asymptotic
conditional probabilities exist.

In this paper, we extend the results of Liogon’ki [31 for the unary case. We first prove
(in 3) that, if we condition on a formula involving only unary predicates, constants, and
equality that is satisfiable in arbitrarily large models, the asymptotic conditional probability
exists. We also present an algorithm for computing this limit. The main idea we use is the
following: to compute the asymptotic conditional probability of p given 0, we examine the
behavior of p in finite models of 0. It turns out that we can partition the models of 0 into a
finite collection of classes, such that 0 behaves uniformly in any individual class. By this we
mean that almost all worlds in the class satisfy p or almost none do; i.e., there is a 0-1 law
for the asymptotic probability of p when we restrict attention to models in a single class. In
3 we define these classes and prove the existence of a 0-1 law within each class. We also

2In an earlier version of this paper [21], we stated that, to our knowledge, no work had been done on the
general problem of asymptotic conditional probabilities. We thank Moshe Vardi for pointing out to us the work of
Liogon’ki [31].

4 ADAM J. GROVE, JOSEPH Y. HALPERN, AND DAPHNE KOLLER

TABLE
Complexity ofasymptotic conditional probabilities.

Existence
Compute
Approximate

Depth _< Restricted General case
NP-complete NEXPTIME-complete NEXPTIME-complete
#P/PSPACE #EXP-complete #TA(EXP,LIN)-complete
(co-)NP-hard (co-)NEXPTIME-hard TA(EXP,LIN)-hard

show how the asymptotic conditional probability of p given 0 can be computed using these
0-1 probabilities.

In 4 we turn our attention to the complexity of computing the asymptotic probability in
this case. Our results, which are the same for random worlds and random structures, depend
on several factors: whether the vocabulary is finite or infinite, whether there is a bound on
the depth of quantifier nesting, whether equality is used in 0, whether nonunary predicates
are used, and whether there is a bound on predicate arities. For a fixed and finite vocabulary,
there are just two cases: if there is no bound on the depth of quantifier nesting then computing
asymptotic conditional probabilities is PSPACE-complete, otherwise the computation can be
done in linear time. The case in which the vocabulary is not fixed (which is the case more
typically considered in complexity theory) is more complex. The results for this case are
summarized in Table 1. Perhaps the most interesting aspect of this table is the factors that
cause the difference in complexity between #EXP and #TA(EXP,LIN) (where #TA(EXP,LIN)
is the counting class corresponding to alternating Turing machines that take exponential time
and make only a linear number of alternations; a formal definition is provided in 4.5). If
we allow the use of equality in 0, then we need to restrict both 99 and 0 to using only unary
predicates to get the #EXP upper bound. On the other hand, if 0 does not mention equality,
then the #EXP upper bound is attained as long as there is some fixed bound on the arity of the
predicates appearing in p. If we have no bound on the arity of the predicates that appear in
o, or if we allow equality in 0 and predicates of arity 2 in o, then the #EXP upper bound no
longer holds, and we move to #TA(EXP,LIN).

Our results showing that computing the asymptotic probability is hard can be extended to
show that finding a nontrivial estimate of the probability (i.e., deciding if it lies in a nontrivial
interval) is almost as difficult. The lower bounds for the arity-bounded case and the general
case require formulas of quantification depth 2 or more. For unquantified sentences or depth-

quantification, things seem to become an exponential factor easier. We do not have tight
bounds for the complexity of computing the degree of belief in this case; we have a #P lower
bound and a PSPACE upper bound. The results for depth 1 are not proved in this paper; see
[27] for details.

We observe that apart from our precise classification of the complexity of these problems,
our analysis provides an effective algorithm for computing the asymptotic conditional prob-
ability. The complexity of this algorithm is, in general, double-exponential in the number of
unary predicates used and in the maximum arity of any predicate symbol used; it is exponential
in the overall size of the vocabulary and in the lengths of q9 and 0.

Our results are of more than purely technical interest. The random-worlds method is of
considerable theoretical and practical importance. We have already mentioned its relevance to
computing degrees of belief. There are well-known results from physics that show the close
connection between the random-worlds method and maximum entropy [25]. These results
say that in certain cases the asymptotic probability can be computed using maximum entropy
methods. Some formalization of similar results, but in a framework that is close to that of the
current paper, can be found in [33] and [22]. (These results are of far more interest when there
are statistical assertions in the language, so we do not discuss them here.)

ASYMPTOTIC CONDITIONAL PROBABILITIES 5

As we observe in [23] and [22], this connection relies on the fact that we are conditioning
on a unary formula. In fact, in almost all applications where maximum entropy has been used
(and where its application can be best justified in terms of the random-worlds method) the
knowledge base is described in terms of unary predicates (or, equivalently, unary functions
with a finite range). For example, in physics applications we are interested in such predicates
as quantum state (see [10]). Similarly, AI applications and expert systems typically use only
unary predicates [7] such as symptoms and diseases. In general, many properties of interest
can be expressed using unary predicates, since they express properties of individuals. Indeed,
a good case can be made that statisticians tend to reformulate all problems in terms of unary
predicates, since an event in a sample space can be identified with a unary predicate [36].
Indeed, in most cases where statistics are used, we have a basic unit in mind (an individual,
a family, a household, etc.), and the properties (predicates) we consider are typically relative
to a single unit (i.e., unary predicates). Thus, results concerning computing the asymptotic
conditional probability if we condition on unary formulas are significant in practice.

2. Definitions. Let be a set of predicate and function symbols, and let () (resp.,
/-()) denote the set of first-order sentences over with equality (resp., without equality).
To simplify the presentation, we begin by assuming that is finite; the case of an infinite
vocabulary is deferred to 2.3. Much of the material in 2.1 and 2.2 is taken from [23].

2.1. The random-worlds method. We begin by defining the random-worlds, or labeled,
method. Given a sentence 6 Z(), let #worldN() be the number of worlds, or first-order
models, of over with domain 1 N}. Note that the assumption that is finite is
necessary for #world() to be well defined. Define

#world (q9 / O)Prv’*(P 0)
#world(O)

In [23], we proved the following proposition.
PROPOSITION 2.1. Let , ’ befinite vocabularies, and let qg, 0 be sentences in both .(b)

w wand (’). Then PrN’* (p 0) PrN’ (P 0).
Thus, the value of Prv’’ (0 0) does not depend on the choice of . We therefore omit

reference to in Prv’’(0 0), writing Prv(q9 0) instead.
We would like to define Pr(p 0) as the limit limN_ Prv(q9 0). There is a small

technical problem we have to deal with in this definition: we must decide what to do if
#world(O) 0, so that Prv(q9 0) is not well defined. In [23], we differentiate between
the case where Prv (q9 0) is well defined for all but finitely many N’s, and the case where it
is well defined for infinitely many N’s. As we shall show (see Lemma 3.30) this distinction
need not be made when 0 is a unary formula. Thus, for the purposes of this paper, we use the
following definition of well-definedness, which is simpler than that of [23].

DEFINITION 2.2. The asymptotic conditional probability according to the random-worlds
method, denoted Pr(q9 0), is well defined if #world(O) 0 for all but finitely many N. If
Pr(p 0) is well defined, then we take Pr(p 0) to denote limu_ Prv (p 0). [3

Note that for any formula qg, the issue of whether Pr(q9 0) is well defined is completely
determined by 0. Therefore, when investigating the question of how to decide whether such a
probability is well defined, it is often useful to ignore qg. We therefore say that Pr(, 0) is
well defined if Pr(p 0) is well defined for every formula 99 (which is true iffPr(true O)
is well defined).

2.2. The random-structures method. As we explained in the introduction, the random-
structures method is motivated by the intuition that worlds that are indistinguishable within

6 ADAM J. GROVE, JOSEPH Y. HALPERN, AND DAPHNE KOLLER

the language should only be counted once Thus, the random-structures method counts the
number of (unlabeled) structures, or isomorphism classes of worlds.

Formally, we proceed as follows. Given a sentence 6 /2(O), let #struct() be the
number of isomorphism classes of worlds with domain N} over the vocabulary
satisfying . Note that since all the worlds that make up a structure agree on the truth value
they assign to , it makes sense to talk about a structure satisfying or not satisfying . We

#struct(q)/xO) We define asymptoticcan then proceed, as before, to define Pr%a’ (99 0) as #struct(o)
conditional probability, denoted Pl* (o 0) in terms of Pr (99 0), in analogy to the earlier
definition for random worlds. It is clear that #world*N(O) 0 iff #struct(O) O, so that
well-definedness is equivalent for the two methods, for any 99, 0.

PROPOSITION 2.3. For any 0 6 /2(), Pr(. 0) is well defined iffPra’(. 0) is well

defined.
As the following example, taken from [23], shows, for the random-structures method

the analogue to Proposition 2.1 does not hold; the value of Pr* (q) 0), and even the value
of the limit, depends on the choice of . This example, together with Proposition 2.1, also
demonstrates that the values of conditional probabilities generally differ between the random-
worlds method and the random-structures method. By way of contrast, Fagin 4] showed that
the random-worlds and random-structures methods give the same answers for unconditional
probabilities, if we do not have constant or function symbols in the language.

Example 2.4. Suppose {P}, where P is a unary predicate symbol. Let 0 be
3!x P(x) v -,3x P(x) (where, as usual, "!" means "exists a unique"), and let q9 be x P(x).
For any domain size N, #struct*N(O) 2. In one structure, there is exactly one element
satisfying P and N satisfying --,P; in the other, all elements satisfy --,P. Therefore,

Now, consider O’ P, Q}, for a new unary predicate Q. There are 2N structures
where there exists an element satisfying P: the element satisfying P may or may not satisfy
Q, and of the N elements satisfying P, any number between 0 and N 1 may also
satisfy Q. On the other hand, there are N + structures where all elements satisfy P: any
number of elements between 0 and N may satisfy Q Therefore, Pr)*’(q) 0) 2N and3N+

2

We know that the asymptotic limit for the random-worlds method will be the same,
whether we use or ’. Using , notice that the single structure where !x P(x) is true
contains N worlds (corresponding to the choice of element satisfying P), whereas the other
possible structure contains only one world. Therefore, Pr (q) 0) 1. [3

Although the two methods give different answers in general, we shall see in the next
section that there are important circumstances under which they agree.

2.3. Infinite vocabularies. Up to now we have assumed that the vocabulary is finite.
As we observed, this assumption is crucial in our definitions of #world() and #struct ().
Nevertheless, in many standard complexity arguments it is important that the vocabulary be
infinite. For example, satisfiability for propositional logic formulas is decidable in linear time
if we consider a single finite vocabulary; we need to consider the class of formulas definable
over some infinite vocabulary of propositional symbols to get NP-completeness.

How can we modify the random-worlds and random-structures methods to deal with
an infinite vocabulary f2? The issue is surprisingly subtle. One plausible choice depends
on the observation that even if is infinite, the set of symbols appearing in a given sentence
is always finite. We can thus do our computations relative to this set. More formally,
if S2/0 denotes the set of symbols in f2 that actually appear in 99 /x 0, we could define

Prv’(q 0) Prv’A (99 0). Similarly, for the random-structures method, we could

ASYMPTOTIC CONDITIONAL PROBABILITIES 7

define Pra(9 0) PraA (99 0). The problem with this approach is that the values
given by the random-structures approach depend on the vocabulary, and it is easy to find two

S,’oAOequivalent sentences 9 and 9’ such that f2, : f2, and vr (9 10) 76 Pr; (9’ 0).
(A simple example of this phenomenon can be obtained by modifying Example 2.4 slightly.)
Thus, under this approach, the value of asymptotic conditional probabilities can depend on
the precise syntax of the sentences involved. We view this as undesirable, and so we focus on
the following two interpretations of infinite vocabularies.

The first of these two alternative approaches treats an infinite vocabulary as a limit of
finite subvocabularies. Assume for ease of exposition that 2 is countable. Let ’m consist of
the first rn symbols in S2 (using some arbitrary fixed ordering). We can then define Prv’a (99

W0) limm--,o Pru’am (99 0) (where we take Pru’am (9 0) tO be undefined if 99, 0 6 (’m)).4

Similarly, we can define Pr)a (9 0) limm-,o Pram (9 0). It follows from the results we
prove below that these limits are independent of the ordering of the symbols in the vocabulary.

The second interpretation is quite different. In it, although there may be an infinite
vocabulary f2 in the background, we assume that each problem instance comes along with
a finite vocabulary as part of the input. Thus, in our infinite vocabulary S2, we may have
predicates that are relevant to medical diagnosis, physics experiments, automobile insurance,
etc. When thinking about medical applications, we use that finite portion of the infinite
vocabulary that is appropriate. In this approach, we always deal with finite vocabularies, but
ones whose size is potentially unbounded because we do not fix the relevant vocabulary in
advance.

In essence, the first approach can be viewed as saying that there really is an infinite
vocabulary, while the second approach considers there to be an infinite collection of finite
vocabularies (with no bound on the size of the vocabularies in the collection). The distinction
between these possibilities is not usually examined as closely as we have done here. This
is because the difference is rarely important. For example, propositional satisfiability is NP-
complete over an infinite vocabulary, no matter how we interpret "infinite." In our context, the
difference turns out to be moderately significant. For random worlds, an argument based on
Proposition 2.1 shows the two approaches lead to the same answers (as does the approach that
we rejected where, when computing Prv’a (9 0), we restrict the vocabulary to f2A0). On the
other hand, the two approaches can lead to quite different answers in the case of the random-
structures approach. It is important to point out, however, that the complexity of all problems
we consider turns out to be the same no matter which interpretation of "infinite" we use.

In fact, as we now show, according to the first approach the random-structures method and
the random-worlds method agree whenever we have an infinite vocabulary (and thus we have
an analogue to Fagin’s result [14] for the case of unconditional probabilities). A structure
of size N is an equivalence class of at most N! worlds, since there are at most N! worlds
isomorphic to a given world. We say that such a structure is rigid if it consists of exactly
N! worlds. It is easy to see that a structure is rigid just if every (nontrivial) permutation of
the domain elements in a world that makes up the structure produces a different world in that
structure. We say a world is rigid if the corresponding structure is.

Example 2.5. Let consist of a single unary predicate P, and consider the worlds over
the domain 1, 2, 3}. All worlds where the denotation of P contains exactly two elements
are isomorphic. Therefore, these worlds form a single structure $. There are three worlds in

3We note, however, that all our later complexity results concerning infinite vocabularies can be easily shown to
hold for the definition just discussed.

4Here, we chose to take the limit on the vocabulary, and only then to take the limit on the domain size. We could,
however, have chosen to reverse the order of the limits, or to consider arbitrary joint limits of these two parameters.
The approach taken here seems to be the most well motivated in this framework.

8 ADAM J. GROVE, JOSEPH Y. HALPERN, AND DAPHNE KOLLER

$, corresponding to the possible denotations of P: 1, 2}, {1, 3}, {2, 3}. Therefore, S is not

rigid. In fact, it is easy to see that no structure over is rigid. Now, consider structures over

’ P, Q }, where Q is a new unary predicate. The set of all worlds where the denotation
of P contains two elements no longer forms a structure over ’. For example, one structure
,9’ over ’ is the set of worlds where the denotations of P/ Q, P A Q, and P/ Q each
contain one element. There are six worlds in S’, corresponding to the possible permutations
of the three domain elements. Therefore, S’ is rigid.

This example demonstrates that increasing the vocabulary tends to cause rigidity. We
now formalize this intuition, and show its importance. Note that in the following definition
(and throughout the paper) all logarithms are taken to the base 2.

DEFINITION 2.6. We say that a vocabulary is sufficiently rich with respect to N if
(a) contains at least XN constant symbols and XN > N2 log N, or
(b) contains at least ZrN unary predicate symbols and ZrN > 3 log N, or
(c) contains at least one nonunary predicate symbol. 71

Fagin showed that if contains at least one nonunary predicate symbol, then the number
of worlds over of size N is asymptotically N! times the number of structures [14]. That
is, almost all structures are rigid in this case. We now generalize this result. Let rigid be an
assertion that is true only in rigid structures or rigid worlds; note that rigid cannot be expressed
in first-order logic. If F(N) and G(N) are two functions of N, we write F(N) G(N) if
limN-, F(N)/G(N) 1.

THEOREM 2.7. Suppose thatfor every N, dp and ’U are disjointfinite vocabularies such
that ’U is sufficiently rich with respect to N. Thenfor any

lim Pr*vu (rigid 1,
N--> oo

UNprovided that is satisfiable for all sufficiently large domains. Hence, wortaN ()
N!#structN ().

Proof. We first prove the result under the additional assumptions that true and (P 0.
We consider each of the three possibilities for sufficient richness separately, and for each case
we show that almost all structures are rigid. As we said above, the case where "2u contains
at least one nonunary predicate and true is Fagin’s result, so we need only consider the
remaining two cases.

Suppose true, 0, and ’U contains xN constant symbols. Without loss of
generality, we can assume that these constants are the only symbols in f2U, because any
expansion of a rigid structure over ’2u to a richer vocabulary will also be rigid. Consider
a structure S. All the worlds that make up ,9 must agree on the equality relations between
the interpretations of the constants. That is, for any pair of constant symbols c and c’, either
they are equal in all worlds that make up the structure or not equal in all of them. Thus, a
lower bound on the number of distinct structures over f2U is given by the number of ways of
partitioning XU objects into N or fewer equivalence classes. There is no closed form expression
for this number, but a simple lower bound is obtained by counting structures where the first N
constants denote distinct objects. There are N(go-N) such structures, because we must choose,
for each of the other constants, to which of the first N constants it is equal. It is easy to see
that if all or all but one of the elements in a structure (that is, in any of the worlds in that
structure) are denoted by some constant, then this structure is rigid. Hence, if a structure is
nonrigid, then two or more elements are not denoted by any constant. Thus, an upper bound
on the number of nonrigid structures is (N 2)" Therefore,

(N--2)XN NN(1 2)
xN

Pra (--,rigid true) < < NNe-2--
NXN-N -This will tend to 0 if XN >_ N2 log N.

ASYMPTOTIC CONDITIONAL PROBABILITIES 9

Next, suppose that true, 0, and E2N contains 7N unary predicate symbols. As
before, we can assume that these predicates comprise all of f2U. Consider a structure S and
a world W in the isomorphism class making up that structure. These 2/"u unary predicates
partition the domain ofW into 2rN cells, according to the subset ofpredicates satisfied by each
of the domain elements. Notice that the predicates actually partition each of the isomorphic
worlds in s in the same way (in that corresponding elements of the partition have the same
size). Thus, a lower bound on the number of distinct structures over is the number of ways
of allocating N indistinguishable elements into 2rru distinguishable cells, which is 2N +U-lu)"
Clearly, a structure is nonrigid if and only if some element of the partition contains more
than one domain element. Thus, an upper bound on the number of nonrigid structures can
be obtained by counting the number of structures over N 1 elements, then choosing one of
the these elements to be a "double" element, representing two elements. This can be done in
(N- 1)(2’NN+_--2 ways. Therefore,

(2rN +N 2"(N-1) N-l-) N2-N
Pr2N (--,rigid true) <

(2rNWN-1) 2ru + N- 1
N

This tends to zero if 2
3 log N.

Finally, we drop the assumptions that true and 0. Given a structure over fZU, we
can choose the denotation for the predicates in in any way that satisfies . It is easy to verify
that if the original structure is rigid, all such choices lead to distinct structures. Therefore,

structN (rigid/) > #struct (rigid). #world()

On the other hand, clearly

#structUu (--,rigid/ < #struCtuu (--,rigid). #world(
The second factor is the same in both these bounds, and therefore

Pr’UN (rigid I) > Pru (rigid true).

From our results for true and 0 we conclude that limu__,Pr’Uu
(rigid I) 1.

We also need to prove an analogous result for the random-worlds method. Note that
while, if we restrict to formulas in (), the answers given by the random-worlds method
are independent of the vocabulary, the predicate rigid has a special definition in terms of the
random-structures method, and so rigidity may well depend on the vocabulary. Thus, in the
next result, we are careful to mention the vocabulary being used.

COROLLARY 2.8. Suppose that for every N, and N are disjoint finite vocabularies
such that 2N is sufficiently rich with respect to N. Thenfor any ,(),

lim Pr’u(rigid I) 1,
N--cx

provided that is satisfiable in all sufficiently large domains.

Proof. Any rigid structure with domain size N that satisfies corresponds to N! worlds.
On the other hand, nonrigid structures correspond to fewer than N! worlds. It follows that
the proportion of worlds satisfying that are rigid is at least as great as the proportion of
structures satisfying that are rigid. Since the latter proportion is asymptotically 1, so is the
former.

0 ADAM J. GROVE, JOSEPH Y. HALPERN, AND DAPHNE KOLLER

Our main use of this theorem is in the following two corollaries. The first shows that
when the vocabulary is infinite (and therefore sufficiently rich) the random-worlds and random-
structures methods coincide. The second corollary shows that the same thing happens when
the vocabulary is sufficiently rich because of a high-arity predicate, as long as this predicate
does not appear in the formula we are conditioning on.

COROLLARY 2.9. Suppose that is infinite and p, 0 (S2). Then
(a) Prv’a(99 0) Pra(p 0),
(b) Pr;a(q9 0) Pla(o 0).
Proof. Fix N, and let ’m be the first m symbols in some enumeration of f2. We will

be interested in the limit as m cx), so without loss of generality assume that m >
N2 log N+ f2e/0 I. Clearly f2m e/0 is sufficiently rich with respect to N, so by Theorem 2.7,
almost all structures are rigid. Since a rigid structure over a domain of size N consists of N!
worlds, we get:

#wortaN (99 A O) structN (99 A O)Prv’auam (P 0) fl2o,xoUf2m .fao,xoUf2m#wortaN (0) structN (0)

PralJam (0).

Since this holds for any sufficiently large m, it certainly holds at the limit. This proves part
(a). Part (b) follows easily.

We can easily strengthen part (a) and prove that we actually have Prv
0), for all N. Since we do not need this result in this paper, we omit the proof here. We remark
that this result also holds for much richer languages; we did not use the fact that we were
dealing with first-order logic anywhere in the proof.

COROLLARY 2.10. Suppose that p, 0 (@) where contains some nonunarypredicate
symbol that does not appear in O. Then Pr(p 0) Pro; (o 0).

Proof. Using the rules of probability theory, we know that

prS (0 0) PrS (99 0/xrigid).Pr* (rigid 0)+Pr (99 0/x--,rigid).PrS* (--rigid 0),

if all limits exist. Because of the high-arity predicate, 0 is sufficiently rich with respect
to any N. Therefore, by Theorem 2.7, we deduce that PrS* (rigid 0) and PrS* (--,rigid
0) 0. Thus

prS(q) 0) PrS(p 0/x rigid).

Using Corollary 2.8 instead of Theorem 2.7, we can similarly show

Because of rigidity,

Pr;*(99 0) Pr;*(0 0/x rigid).

prsg* (o 0/x rigid) Pr* (99 0/x rigid).

The result now follows immediately.

3. Asymptotic probabilities. We begin by defining some notation that will be used
consistently throughout the rest of the paper. We use to denote a finite vocabulary, which
may include nonunary as well as unary predicate symbols and constant symbols. We take 7
to be the set of all unary predicates in , C to be the set of all constant symbols in @, and
define P 7) U C. Finally, if 0 is a formula, we use 0 to denote those symbols in that
appear in q); we can similarly define C, 79, and

ASYMPTOTIC CONDITIONAL PROBABILITIES

Our goal is to show how to compute asymptotic conditional probabilities. As we explained
in the introduction, the main idea is the following. To compute Pr(99 0), we partition the
models of 0 into a finite collection of classes, such that p behaves uniformly in any individual
class, that is, there is a 0-1 law for the asymptotic probability of q) when we restrict attention
to models in a single class. Computing Pr(q) 0) reduces to first identifying the classes,
computing the relative weight of each class (which is required because the classes are not

necessarily of equal relative size), and then deciding, for each class, whether the asymptotic
probability of 99 is zero or one. In this section we deal with the logical aspects of this process;
namely, showing how to construct an appropriate partition into classes. In the next section,
we use results from this section to construct algorithms that compute asymptotic probabilities,
and examine the complexity of these algorithms.

For most of this section, we will concentrate on the asymptotic probability according to
random worlds. In 3.5 we discuss the modifications needed to deal with random structures,
which are relatively minor.

3.1. Unary vocabularies and atomic descriptions. The success of the approach out-

lined above depends on the lack of expressivity of unary languages. In this section we show
that sentences in/2(P) can only assert a fairly limited class of constraints. For instance, one

corollary of our general result will be the well-known theorem that, if 0 6 (qJ) is satisfiable
at all, it is satisfiable in a "small" model, one of size at most exponential in the size of the 0.
(See 1] for a proof of this result and further historical references.)

We start with some definitions.
DEFINITION 3.1. Given a vocabulary and a finite set of variables A’, a complete de-

scription D over and A’ is an unquantified conjunction of formulas such that
for every predicate R 6 t2 {=} of arity m, and for every Z Zm C U 2(, D
contains exactly one of R(z Zm) or -,R(z Zm) as a conjunct;
D is consistent.

We can think of a complete description as being a formula that describes as fully as
possible the behavior of the predicate symbols in over the constant symbols in and the
variables in

We can also consider complete descriptions over subsets of . The case when we look
just at the unary predicates and a single variable x will be extremely important.

DEFINITION 3.2. Let 79 be P1 P}. An atom over 79 is a complete description over
7-9 and some variable {x }. More precisely, it is a conjunction of the form P (x)/’,.../’, P (x),
where each P/’ is either Pi or --’Pi. Since the variable x is irrelevant to our concerns, we

typically suppress it and describe an atom as a conjunction of the form P
Note that there are 2 217)1 atoms over 79, and that they are mutually exclusive and

exhaustive. We use A A2171 to denote the atoms over 79, listed in some fixed order.
For example, there are four atoms over 79 {P1, P2}: A1 P1 /x P2, A2 P /x -’Pz,
A3 =--’P /x P2, A4 P1/x-"P2.

We now want to define the notion of atomic description which is, roughly speaking, a
maximally expressive formula in the unary vocabulary tp. Fix a natural number M. A size
M atomic description consists of two parts. The first part, the size description with bound M,
specifies exactly how many elements in the domain should satisfy each atom Ai, except that
if there are M or more elements satisfying the atom it only expresses that fact, rather than
giving the exact count. More formally, given a formula (x) with a free variable x, we take
3mx (x) to be the sentence that says there are precisely m domain elements satisfying

5Inconsistency is possible because of the use of equality. For example, if D includes zl z2 as well as both
R(zl, z3) and --,R(z2, z3), it is inconsistent.

12 ADAM J. GROVE, JOSEPH Y. HALPERN, AND DAPHNE KOLLER

Similarly, we define :::]>-mx (X) to be the formula that says that there are at least rn domain
elements satisfying :

DEFINITION 3.3. A size description with bound M (over 7"9) is a conjunction of 2I’1

formulas: for each atom Ai over 79, it includes either 3>-Ix Ai(x) or a formula of the form
:::]mx Ai (x) for some rn < M. [3

The second part of an atomic description is a complete description that specifies the
properties of constants and free variables.

DEFINITION 3.4. A size M atomic description (over q and 2’) is a conjunction of:
a size description with bound M over 79, and
a complete description over q and A’. [3

Note that an atomic description is a finite formula, and there are only finitely many
size M atomic descriptions over q and A’ (for fixed M). For the purposes of counting atomic
descriptions (as we do in 3.4), we assume some arbitrary but fixed ordering of the conjuncts in
an atomic description. Under this assumption, we cannot have two distinct atomic descriptions
that differ only in the ordering of conjuncts. Given this, it is easy to see that atomic descriptions
are mutually exclusive. Moreover, atomic descriptions are exhaustive--the disjunction of all
consistent atomic descriptions of size M is valid.

Example 3.5. Consider the following size description cr with bound 4 over 79 P1, P2 }:

lx Al(X) A 3x A2(x) A >4x A3(x) A >4X A4(x).

Let q P1, P2, cl, c2, c3 }. It is possible to augment tr into an atomic description in many
ways. For example, one consistent atomic description 7r. of size 4 over q and 0 (no free
variables) is:6

O" / A2(Cl)/ A3(c2)/ A3(c3)/ Cl c2/ Cl c3/ c2 c3.

On the other hand, the atomic description

tr A AI(Cl) A A1(c2)/ A3(c3)/ Cl c2/ Cl c3/ c2 c3

is an inconsistent atomic description, since tr dictates that there is precisely one element in the
atom A1, whereas the second part of the atomic description implies that there are two distinct
domain elements in that atom. [3

As we explained, an atomic description is, intuitively, a maximally descriptive sentence
over a unary vocabulary. The following theorem formalizes this idea by showing that each
unary formula is equivalent to a disjunction of atomic descriptions. For a given M and set A’
of variables, let 4t,x be the set of consistent atomic descriptions of size M over q and A’.

DEFINITION 3.6. Let d() denote the depth ofquantifier nesting in . We define d() by
induction on the structure of as follows:

6In our examples, we use the commutativity of equality in order to avoid writing down certain superfluous
disjuncts. In this example, for instance, we do not write down both cl c2 and c2 g: c.

ASYMPTOTIC CONDITIONAL PROBABILITIES 13

d() 0 for any atomic formula ,
d(-’) d(e),
d(se A e2) d(v e2) max(d(se), d(ee)),
d(Vy) d(y) d() + 1.

THEOREM 3.7. If is a formula in .() whose free variables are contained in X, and
m _> d() + [CI + [XI, then there exists a set ofatomic descriptions .A _c t*m,x such that

is equivalent to VveA .
Proof. We proceed by a straightforward induction on the structure of . We assume

without loss of generality that is constructed from atomic formulas using only the operators
A, --,, and B.

First suppose that is an atomic formula. That is, is either of the form P (z) or of the
form z z’, for z, z’ E C U X’. In this case, either the formula or its negation appears as a
conjunct in each atomic description ap E AM.. Let .A be those atomic descriptions in which

appears as a conjunct. Clearly, is inconsistent with the remaining atomic descriptions.
Since the disjunction of the atomic descriptions in A’ is valid, we obtain that is equivalentM,X’
to V,.a, -If is of the form 1 A 2, then by the induction hypothesis, i is equivalent to the
disjunction of a set .4 c_ .Aq’M,x, for 1, 2. Clearly is equivalent to the disjunction of

the atomic descriptions in .A*, A .A,. (Recall that the empty disjunction is equivalent to the
formulafalse.)

If is of the form --,’ then, by the induction hypothesis, ’ is equivalent to the disjunction
of the atomic descriptions in .4* It is easy to see that is the disjunction of the atomic

descriptions in ,4* ,4*-,’ M,X
Finally, we consider the case that is of the form By ’. Recall that M >_ d() + Il / I,1.

Since d(’) d() 1, it is also the case that M >_ d(’) + Il / 12" {Y}l. By the
induction hypothesis, ’ is therefore equivalent to the disjunction of the atomic descriptions
in A*,. Clearly is equivalent to By v,sA p, and standard first-order reasoning shows that

By v,t,A,,,’ ap is equivalent to v,ut, By . Since .A*, _C .AM.A.U{y},* it suffices to show that for

each atomic description ap 6 ,AM.A,U{y}, By p is equivalent to an atomic description in ,4*
Consider some 6,4*M,A’U{y}, we can clearly pull out of the scope of By all the conjuncts

in that do not involve y. It follows that By ap is equivalent to ’ A By ", where " is a
conjunction of A(y), where A is an atom over 79, and formulas of the form y z and y -76 z. It
is easy to see that ’ is a consistent atomic description over and X" of size M. To complete
the proof, we now show that ’ A By " is equivalent to p’. There are two cases to consider.
First suppose that ap" contains a conjunct of the form y z. Let 7t"[y/z] be the result of
replacing all free occurrences of y in " by z. Standard first-order reasoning (using the fact
that "[y/z] has no free occurrences of y) shows that 7t"[y/z] is equivalent to By P"[y/z],
which is equivalent to By ". Since is a complete atomic description which is consistent
with ", it follows that each conjunct of P"[y/z] (except z z) must be a conjunct of ’,
so ’ implies ap"[y/z]. It immediately follows that ap’ is equivalent to ap’ A By ap" in this
case. Now suppose that there is no conjunct of the form y z in p". In this case, By p" is
certainly true if there exists a domain element satisfying atom A different from the denotations
of all the symbols in Af U C. Notice that ap implies that there exists such an element, namely,
the denotation of y. However, p’ must already imply the existence of such an element since
ap’ must force there to be enough elements satisfying A to guarantee the existence of such an
element. (We remark that it is crucial for this last part of the argument that M > IX’l + + ICI.)
Thus, we again have that ap’ is equivalent to ap’ A By ". It follows that By ap is equivalent to.a consistent atomic description in .AM,x, namely , as required.

4 ADAM J. GROVE, JOSEPH Y. HALPERN, AND DAPHNE KOLLER

For the remainder of this paper we will be interested in sentences. Thus, we restrict
attention to atomic descriptions over q and the empty set of variables. Moreover, we assume
that all formulas mentioned are in fact sentences, and have no free variables.

DEFINITION 3.8. For P 7) tO C, and a sentence 6/2(P), we define 4 to be the set
of consistent atomic descriptions of size d() + [CI over q such that is equivalent to the
disjunction of the atomic descriptions in A.

It will be useful for our later results to prove a simpler analogue of Theorem 3.7 for
the case where the sentence does not use equality or constant symbols. A simplified atomic
description over 7 is simply a size description with bound 1. Thus, it consists of a conjunction
of 2171 formulas of the form -x Ai(x) or qx Ai (x), one for each atom over 7. Using the
same techniques as those of Theorem 3.7, we can prove the following theorem.

THEOREM 3.9. If ,-(7), then is equivalent to a disjunction of simplified atomic
descriptions over 7.

Proof. The proof is left to the reader.

3.2. Named elements and model descriptions. Recall that we are attempting to divide
the worlds satisfying 0 into classes such that:

v is uniform in each class, and
the relative weight of the classes is easily computed.

In the previous section, we defined the concept of atomic description, and showed that a
sentence 0 Z;(q) is equivalent to some disjunction of atomic descriptions. This suggests
that atomic descriptions might be used to classify models of 0. Liogon’ki [31 has shown that
this is indeed a successful approach, as long as we consider languages without constants and
condition only on sentences that do not use equality. In Theorem 3.9 we showed that, for such
languages, each sentence is equivalent to the disjunction of simplified atomic descriptions.
The following theorem, due to Logon’ki, says that classifying models according to which
simplified atomic description they satisfy leads to the desired uniformity property. This result
will be a corollary of a more general theorem that we prove later.

PROPOSITION 3.10. [31] Suppose thatC 0. lfv (cb) and is a consistent simplified
atomic description over 7, then Pr(0) is either 0 or 1.

If C - 0, then we do not get an analogue to Proposition 3.10 if we simply partition the
worlds according to the atomic description they satisfy. For example, consider the atomic
description r, from Example 3.5, and the sentence R (cl, Cl) for some binary predicate
R. Clearly, by symmetry, Pr(v ,) 1/2, and therefore 0 is not uniform over the worlds
satisfying ,. We do not even need to use constant symbols, such as cl, to construct such
counterexamples. Recall that the size description in , included the conjunct 3x A I(X). So
if99’ 3x (A(x) A R(x,x)) then we also get Pr(o’ .) 1/2.

The general problem is that, given p., p can refer "by name" to certain domain elements
and thus its truth can depend on their properties. In particular, p can refer to domain elements
that are denotations of constants in C as well as to domain elements that are the denotations
of the "fixed-size" atoms--those atoms whose size is fixed by the atomic description. In the
example above, we can view "the x such that A (x)" as a name for the unique domain element
satisfying atom A 1. In any model of 7r., we call the denotations of the constants and elements
of the fixed-size atoms the named elements of that model. The discussion above indicates
that there is no uniformity theorem if we condition only on atomic descriptions, because an
atomic expression does not fix the denotations of the nonunary predicates with respect to the
named elements. This analysis suggests that we should augment an atomic description with
complete information about the named elements. This leads to a finer classification of models
which does have the uniformity property. To define this classification formally, we need the
following definitions.

ASYMPTOTIC CONDITIONAL PROBABILITIES 5

DEFINITION 3.1 1. The characteristic of an atomic description p of size M is a tuple C
of the form ((fl, gl) (f21, g2171)), where

f/ m if exactly m < M domain elements satisfy Ai according to 7r,
j5 * if at least M domain elements satisfy Ai according to 7t,
gi is the number of distinct domain elements which are interpretations of elements
in C that satisfy Ai according to 7t. q

Note that we can compute the characteristic of 7t immediately from the syntactic form
of 7t.

DEFINITION 3.12. Suppose C7, ((fl, gl) (f2, g2)) is the characteristic of 7t.
We say that an atom Ai is active in 7t if j ,; otherwise Ai is passive. Let A(p) be the set
{i Ai is active in 7t}.

We can now define named elements.
DEFINITION 3.13. Given an atomic description 7t and a modelW of 7t, the named elements

in W are the elements satisfying the passive atoms and the elements that are denotations of
constants.

The number of named elements in any model of 7t is

ia() ica()

where C ((fl, gl) (f21l, g21l)), as before. [3

As we have discussed, we wish to augment 7t with information about the named elements.
We accomplish this using the following notion of modelfragment which is, roughly speaking,
the projection of a model onto the named elements.

DEFINITION 3.14. Let 7t cr A D for a size description o- and a complete description D
over q. A modelfragment)2 for 7t is a model over the vocabulary with domain 1 v (p)
such that:

; satisfies D, and
satisfies the conjuncts in cr defining the sizes of the passive atoms. q

We can now define what it means for a model V to satisfy a model fragment .
DEFINITION 3.15. Let V be a model of p, and let i i(E {1 N} be the

named elements in I/V, where il < i2 < < i(. The model /V is said to satisfy the
model fragment] if the function F(j) ij from the domain of]2 to the domain of A2
is an isomorphism between] and the submodel of /V formed by restricting to the named
elements. [3

Example 3.16. Consider the atomic description 7t, from Example 3.5. Its characteristic

C7, is ((1, 0), (3, 1), (,, 1), (,, 0)). The active atoms are thus A3 and A4. Note that g3 1
because c2 and c3 are constrained to denote the same element. Thus, the number of named
elements v(p,) in a model of 7t, is + 3 + 5. Therefore each model fragment for p,
will have domain 1, 2, 3, 4, 5}. The elements in the domain will be the named elements;
these correspond to the single element in A 1, the three elements in A2, and the unique element
denoting both c2 and c3 in A3.

Let be P1, P2, cl, c2, c3, R where R is a binary predicate symbol. One possible model
fragment]2, for 7t, over gives the symbols in the following interpretation:

* 3Cl
v* 4, c2

v*- 3, c3

eV, {1, 2, 4, 5}, P2v* {1, 3}, Rv* {(1, 3), (3, 4)}.

It is easy to verify that, satisfies the properties ofthe constants as prescribed by the description
D in , as well as the two conjuncts 31x Al(x) and 33x A2(x) in the size description in 7t,.

16 ADAM J. GROVE, JOSEPH Y. HALPERN, AND DAPHNE KOLLER

Now, let W be a world satisfying ,, and assume that the named elements in W are
3, 8, 9, 14, 17. Then)/V satisfies ;, if this 5-tuple of elements has precisely the same properties
in W as the 5-tuple 1, 2, 3, 4, 5 does in V,.

Although a model fragment is a semantic structure, the definition of satisfaction just given
also allows us to regard it as a logical assertion that is true or false in any model over whose
domain is a subset of the natural numbers. In the following, we use this view of a model
description as an assertion frequently. In particular, we freely use assertions which are the
conjunction of an ordinary first-order ap and a model fragment ;, even though the result is not
a first-order formula. Under this viewpoint it makes perfect sense to use an expression such
as Pr(99 / V).

DEFINITION 3.17. A model description augmenting p over the vocabulary is a conjunc-
tion of and a model fragment V for over . Let ,A//’ (p) be the set of model descriptions
augmenting p. (If is clear from context, we omit the subscript and write (ap) rather than
t*().)

It should be clear that model descriptions are mutually exclusive and exhaustive. More-
over, as for atomic descriptions, each unary sentence 0 is equivalent to some disjunction of
model descriptions. From this, and elementary probability theory, we conclude the following
fact, which forms the basis of our techniques for computing asymptotic conditional probabil-
ities.

PROPOSITION 3.18. For any o () and 0

Pr(tp 10) Z Pr(0 / V). Pr(/ V 0),

if all limits exist.
As we show in the next section, model descriptions have the uniformity property so the

first term in the product will always be either 0 or 1.
It might seem that the use of model fragments is a needless complication and that any

model fragment, in its role as a logical assertion, will be equivalent to some first-order sentence.
Consider the following definition.

DEFINITION 3.19. Let n v(). The complete description capturing]2, denoted Dr, is
a formula that satisfies the following:7

Dv is a complete description over and the variables {Xl x} (see Defini-
tion 3.1),
for each :/: j, Dv contains a conjunct xi :/: xj, and
; satisfies Dv when is assigned to X for each n.

Example 3.20. The complete description Dr, capturing the model fragment);, from
the previous example has conjuncts such as Pl(xl), Pl(X3), R(Xl, x3), R(Xl,X2), and

X4 C1.
The distinction between a model fragment and the complete description capturing it is

subtle. Clearly if a model satisfies)2, then it also satisfies 3Xl xn Dr. The converse is not
necessarily true. A model fragment places additional constraints on which domain elements
are denotations of the constants and passive atoms. For example, a model fragment might
entail that, in any model over the domain 1 N}, the denotation of constant C is less
than that of c2. Clearly, no first-order sentence can assert this. The main implication of this
difference is combinatorial; it turns out that counting model fragments (rather than the complete
descriptions that capture them) simplifies many computations considerably. Although we
typically use model fragments, there are occasions where it is important to remain within

7Note that there will, in general, be more than one complete description capturing ;. We choose one of them
arbitrarily for Dr.

ASYMPTOTIC CONDITIONAL PROBABILITIES 17

first-order logic and use the corresponding complete descriptions instead. For instance, this is
the case in the next subsection. Whenever we do this we will appeal to the following result,
which is easy to prove.

PROPOSITION 3.21. For any q9 () and model description p /x V over , we have

Pr(q9 m ;) Pr(o / 3Xl xv/ Dr).

Proof. The proof is left to the reader. 1

3.3. A conditional 0-1 law. In the previous section, we showed how to partition 0 into
model descriptions. We now show that q0 is uniform over each model description. That is, for
any sentence q9 6 /2() and any model description 7r/)2, the probability Pr(o 7t/x)2)
is either 0 or 1. The technique we use to prove this is a generalization of Fagin’s proof of
the 0-1 law for first-order logic without constant or function symbols 13]. This result states
that if 0 is a first-order sentence in a vocabulary without constant or function symbols, then

Pr(0) is either 0 or 1.8 It is well known that we can get asymptotic probabilities that are
neither 0 nor if we use constant symbols, or if we look at general conditional probabilities.
However, in the special case where we condition on a model description there is still a 0-1
law. Throughout this section let ap/)2 be a fixed model description with at least one active
atom, and let n v(ap) be the number of named elements according to 7t.

As we said earlier, the proof of our 0-1 law is based on Fagin’s proof. Like Fagin,
our strategy involves constructing a theory T which, roughly speaking, states that any finite
fragment of a model can be extended to a larger fragment in all possible ways. We then prove
two propositions.

1. T is complete; that is, for each o 6/2(), either T tp or T --,qg. This result, in
the case of the original 0-1 law, is due to Gaifman [16].

2. For any q9 6/2(), if T p then Pr(q9 7r/x);) 1.
Using the first proposition, for any sentence p, either T 0 or T --,0. Therefore, using
the second proposition, either Pr(o / ’l)) 1 or Pr(q9 / ") 1. The latter case
immediately implies that Pr(0 ap/)2) 0. Thus, these two propositions suffice to prove
the conditional 0-1 law.

We begin by defining several concepts which will be useful in defining the theory T.
DEFINITION 3.22. Let A"

_
A’, let D be a complete description over and A:’, and let D’

be a complete description over and 2". We say that D’ extends D if every conjunct of D is
a conjunct of D’. [3

The core of the definition of T is the concept of an extension axiom, which asserts that
any finite substructure can be extended to a larger structure containing one more element.

DEFINITION 3.23. Let A" {Xl xj for some k, let D be a complete description over
and 2’, and let D’ be any complete description over and ,-V U {Xj+l} that extends D. The

sentence

Xl, X2 Xj (D := 3Xj+l D’)

is an extension axiom. [3

In the original 0-1 law, Fagin considered the theory consisting of all the extension axioms.
In our case, we must consider only those extension axioms whose components are consistent
with , and which extend Dr.

8As we noted in the introduction, the 0-1 law was first proved by Glebski et al. 18]. However, it is Fagin’s proof
technique that we are using here.

8 ADAM J. GROVE, JOSEPH Y. HALPERN, AND DAPHNE KOLLER

DEFINITION 3.24. Given 7t/x V, we define T to consist of /x ::tX Xn Dv together
with all extension axioms

tXl, X2 Xj (D = ::]Xj+l D’)

in which D (and hence D’) extends Dv and in which D’ (and hence D) is consistent
with 7.

We have used Dv rather than]2 in this definition so that T is a first-order theory. Note
that the consistency condition above is not redundant, even given that the components of an
extension axiom extend Dr. However, inconsistency can arise only if D’ asserts the existence
of a new element in some passive atom (because this would contradict the size description
in p).

We now prove the two propositions that imply the 0-1 law.
PROPOSITION 3.25. The theory T is complete.
Proof. The proof is based on a result of Log and Vaught [40] which says that any first-

order theory with no finite models, such that all of its countable models are isomorphic, is
complete. The theory T obviously has no finite models. The fact that all of its countable
models are isomorphic follows by a standard "back and forth" argument. That is, let/g and
be countable models of T. Without loss of generality, assume that both models have the same
domain D 1, 2, 3 }. We must find a mapping F 7? --+ 79 which is an isomorphism
between b/and b/’ with respect to .

We first map the named elements in both models to each other, in the appropriate way.
Recall that T contains the assertion SXl x, Dr. Since/g T, there must exist domain
elements dl dn 79 that satisfy Dv under the model/g. Similarly, there must exist
corresponding elements d’ d’ 6 79 that satisfy Dv under the model b/’. We define the
mapping F so that F(di) d for 1 n. Since Dv is a complete description over
these elements, and the two substructures both satisfy Dr, they are necessarily isomorphic.

In the general case, assume we have already defined F over some j elements
{dl, d2 dj 79 so that the substructure of L/ over {dl dj} is isomorphic to the
substructure of U’ over {d’ dj}, where d F(di) for j. Because both sub-
structures are isomorphic there must be a description D that is satisfied by both. Since we
began by creating a mapping between the named elements, we can assume that D extends

Dr. We would like to extend the mapping F so that it eventually exhausts both domains. We
accomplish this by using the even rounds of the construction (the rounds where j is even) to
ensure that b/is covered, and the odd rounds to ensure that b/’ is covered. More precisely, if j
is even, let d be the first element in 79 which is not in {dl dj }. There is a model description
D’ extending D that is satisfied by dl dj, d in . Consider the extension axiom in T
asserting that any j elements satisfying D can be extended to j + 1 elements satisfying D’.
Since b/’ satisfies this axiom, there exists an element d’ in/g’ such that d’ dj, d’ satisfy D’.
We define F(d) d’. It is clear that the substructure of b/over {dl dj, d} is isomorphic
to the substructure of ’ over {dtl d, d’}. If j is odd, we follow the same procedure,
except that we find a counterpart to the first domain element (in L/’) which does not yet have
a pre-image in/g. It is easy to see that the final mapping F is an isomorphism between
and b/’.

PROPOSITION 3.26. For any p (c), if T p then Pr(p /) 1.

Proof. We begin by proving the claim for a sentence T. By the construction of
T, is either Bx xn Dv or an extension axiom. In the first case, Proposition 3.21
trivially implies that Pr(/) 1. The proof for the case that is an extension
axiom is based on a straightforward combinatorial argument, which we briefly sketch. Recall
that one of the conjuncts of p is a size description a. The sentence a includes two types of

ASYMPTOTIC CONDITIONAL PROBABILITIES 19

conjuncts: those of the form 3mx A(x) and those of the form 3>Mx A(x). Let or’ be r with
the conjuncts of the second type removed. Let gr’ be the same as 7r except that or’ replaces
or. It is easy to show that Pr(S>-Mx A(x) 7r’ / V) for any active atom A, and so

Pr(Tr 7t’/ V)- 1. Since 7r =V 7r’, by straightforward probabilistic arguments, it suffices
to show that Pr(’/x V) 1.

Suppose is an extension axiom involving D and D’, where D is a complete descrip-
tion over A" {xl xj and D’ is a description over A" U {xj+l} that extends D. Fix
a domain size N, and some particular j domain elements dl dj that satisfy D. Ob-
serve that, since D extends Dr, all the named elements are among dl dj. For a given
d g {dl dj }, let B(d) denote the event that dl dj, d satisfies D’, conditioned on
7t’/x V. The probability of B(d), given that dl dj satisfies D, is typically very small but
is bounded away from 0 by some/3 independent of N. To see this, note that D’ is consis-
tent with /x V (because D’ is part of an extension axiom) and so there is a consistent way
of choosing how d is related to d dj so as to satisfy D’. Then observe that the total
number of possible ways to choose d’s properties (as they relate to dl dj) is indepen-
dent of N. Since D extends Dr, the model fragment defined over the elements dl dj
satisfies p’/x V. (Note that it does not necessarily satisfy
with p’.) Since the properties of an element d and its relation to dl dj can be chosen
independently of the properties of a different element d’, the different events B(d), B (d’)
are all independent. Therefore, the probability that there is no domain element at all that,
together with dl dj, satisfies D’ is at most (1 -/3)f-j. This bounds the probability of
the extension axiom being false, relative to fixed dl dj. There are exactly (jN.) ways of
choosing j elements, so the probability of the axiom being false anywhere in a model is at
most (jN.)(1 --/3)f-j. However, this tends to 0 as N goes to infinity. Therefore, the axiom

xl xj (D == xj+ D’) has asymptotic probability given 7r’/x V, and therefore also
given 7r/ V.

It remains to deal only with the case of a general formula q9 E ((I)) such that T 0. By
the compactness theorem for first-order logic, if T p then there is some finite conjunction
of assertions 1 m E T such that/7’=1i (/9. By the previous case, each such i has
asymptotic probability 1, and therefore so does this finite conjunction. Hence, the asymptotic
probability Pr(q) 7r/x)2)is also 1.

As outlined above, this concludes the proof of the main theorem of this section, which
we now state.

THEOREM 3.27. For any sentence 99 .() andmodel description /x V, Pr(p 7r/x V)
is either 0 or 1.

Note that if p is a simplified atomic description, then there are no named elements in any
model of . Therefore, the only model description augmenting 7r is simply 7r itself. Thus
Proposition 3.10, which is Liogon’kii’s result, is a corollary of the above theorem.

3.4. Computing the relative weights of model descriptions. We now want to compute
the relative weights of model descriptions. It will turn out that certain model descriptions
are dominated by others, so that their relative weight is 0, while all the dominating model
descriptions have equal weight. Thus, the problem of computing the relative weights of
model descriptions reduces to identifying the dominating model descriptions. There are two
factors that determine which model descriptions dominate. The first, and more significant, is
the number of active atoms; the second is the number of named elements. Let oe(gr) denote
the number of active atoms according to

To compute these relative weights of the model descriptions, we must evaluate

#world (gr/x 12). The following lemma gives a precise expression for the asymptotic be-
havior of this function as N grows large.

20 ADAM J. GROVE, JOSEPH Y. HALPERN, AND DAPHNE KOLLER

LEMMA 3.28 Let 7t be a consistent atomic description of size M > ICI over q, and let

(a) If ot(p) 0 and N > v(Tt), then #worldOp) O. In particular, this holdsfor all
N > 2171M.

(b) lfot(Tt) > O, then

#worldv(A]) (N)aN-n2Yi>_2bi(Ni-ni)
where a otOp), n v(Tt), and bi is the number ofpredicates ofarity in .

Proof. Suppose that C ((fl, gl) (f2, g2)) is the characteristic of 7t. Let
be a model of cardinality N, and let Ni be the number of domain elements in 42 satisfying
atom Ai. In this case, we say that the profile of]/V is (N1 N2). Clearly we must have
N 4-... 4- N21,I N. We say that the profile (N N21,I) is consistent with C if f/ -implies that Ni j, while j implies that Ni > M. Notice that if W is a model of
then the profile ofV must be consistent with

For part (a), observe that if ot(ap) 0 and N >]i J, then there can be no models
of cardinality N whose profile is consistent with C. However, if ot(Tt) 0, then Yi J is
precisely v(p). Hence there can be no models of 7t of cardinality N if N > v(p). Moreover,
since v() < 21’IM, the result holds for any N > 2171. This proves part (a).

For part (b), let us first consider how many ways there are of choosing a world satisfying
7t A V with cardinality N and profile (NI N2171). To do the count, we first choose which
elements are to be the named elements in the domain. Clearly, there are (nN) ways in which this
can be done. Once we choose the named elements, their properties are completely determined
by V.

It remains to specify the rest of the properties of the world. Let R be a nonunary predicate
of arity >_ 2. To completely describe the behavior of R in a world, we need to specify which
of the N i-tuples over the domain are in the denotation of R. We have already specified this
for those i-tuples all of whose components are named elements. There are n such i-tuples.
Therefore, we have N n i-tuples left to specify. Since each subset is a possible denotation,
we have 2N’-n’ possibilities for the denotation of R. The overall number of choices for the
denotations of all nonunary predicates in the vocabulary is therefore 2Ei>-2bi(Ni-ni).

It remains only to choose the denotations of the unary predicates for the N’ N n
domain elements that are not named. Let ia be the active atoms in ap, and let hj
Nij gij for j a. Thus, we need to compute all the ways ofpartitioning the remaining

NN’ elements so that there are hj elements satisfying atom Aij, there are (h, hi ha) ways of
doing this.

We now need to sum over all possible profiles, i.e., those consistent with p A V. If
ij A(Tt), then there must be at least M domain elements satisfying Ai. Therefore N# > M,
and hj Nij gij >_ M gi. This is the only constraint on hj. Thus, it follows that

#worldv(!lr A 12) 2Zi>-2 bi(Ni-ni)

{h ha" h+...+h=N’, Yj hj>M-gij hi ha

This is equal to

for

(nN)2i>_2 bi(Ni-ni) S

{hi ha" hl+’"+ha=N’, Vj hj>M-&j}

ASYMPTOTIC CONDITIONAL PROBABILITIES 21

It remains to get a good asymptotic estimate for S. Notice that

hi ha{h ha: hl+’"+ha=N’}

since the sum can be viewed as describing all possible ways to assign one of a possible atoms
to each of N’ elements. Our goal is to show that aN’ is actually a good approximation for S

N’as well. Clearly S < a Let

{hi ha" hj<M, hl+’"+ha--N’} hi ha

Straightforward computation shows that

{hi ha: h<M, hl+’"+ha=N’}

M-1

hi--0 {h2 ha" h2+’"+ha=N’-hl}

< (N’)hl--- (a- 1)N’-h
h,=0 hi!

< MNM(a- 1) N’

h h2 ha

Similar arguments show that Sj < MNM(a 1) N’ for all j. It follows that

S > Z (S1 -Jr-...-I-- Sa)
{h ha:h+’"+ha=N’} hi ha

> aN’ aMNM(a 1) N’

Therefore,

S aN’ aN-n

thus concluding the proof. V1

The asymptotic behavior described in this lemma motivates the following definition.
DEFINITION 3.29. Given an atomic description p over q, let the degree of p, written

A (ap), be the pair (or (Tt), v (p)), and let degrees be ordered lexicographically. We extend this
definition to sentences as follows. For 0 6/2(q), we define the degree of O over q, written
A q’ (0), to be maxv,ut A(k), and the activity count of 0 to be ot

q’ (0) (i.e., the first component
of A* (0)). 1

One important conclusion of this lemmajustifies our treatment of well-definedness (Def-
inition 2.2) when conditioning on unary formulas. It shows that if 0 is satisfied in some
"sufficiently large" model, then it is satisfiable over all "sufficiently large" domains.

LEMMA 3.30. Suppose that 0 ,(), and M d(O) + [Col. Then the following
conditions are equivalent:

(a) 0 is satisfied in some model ofcardinality greater than 2Ipl M,
(b) or* (0) > 0,
(c) for all N > 2171 M, 0 is satisfiable in some model ofcardinality N,
(d) Pr(, 0) is well defined.

22 ADAM J. GROVE, JOSEPH Y. HALPERN, AND DAPHNE KOLLER

Proof. By definition, 0 is satisfiable in some model of cardinality N iff #world (0) > O.
We first show that (a) implies (b). If 0 is satisfied in some model of cardinality N greater than
2I1 M, then there is some atomic description p 6 4 such that p is satisfied in some model
of cardinality N. Using part (a) of Lemma 3.28, we deduce that De (p)> 0 and therefore that
c* (0) > 0. That (b) entails (c) can be verified by examining the proof of Lemma 3.28. That
(c) implies (d) and (d) implies (a) is immediate from the definition of well-definedness.

For the case of sentences in the languages without equality or constants, the condition for
well-definedness simplifies considerably.

COROLLARY 3.31. lfO _,-(79), then Pr(. 0) is well defined iff O is satisfiable.
Proof. The only if direction is obvious. For the other, if 0 is consistent, then it is equiv-

alent to a nonempty disjunction of consistent simplified atomic descriptions. Any consistent
simplified atomic description has arbitrarily large models, r]

We remark that we can extend our proof techniques to show that Corollary 3.31 holds
even if C 0, although we must still require that 0 does not mention equality. We omit details
here.

For the remainder of this paper, we will consider only sentences 0 such that De* (0) > 0.
Lemma 3.28 shows that, asymptotically, the number of worlds satisfying 7t/x 12 is com-

pletely determined by the degree of 7t. Model descriptions of higher degree have many more
worlds, and therefore dominate. On the other hand, model descriptions with the same degree
have the same number of worlds at the limit, and are therefore equally likely. This observation
allows us to compute the relative weights of different model descriptions.

DEFINITION 3.32. For any degree 3 (a, n), let 4’ be the set of atomic descriptions
6 4 such that A(p) 3. For any set of atomic descriptions 4’, we use 34(4’) to denote

U.A,.M().
THEOREM 3.33. Let O ,(q) and A*(0) 3 > (1, 0). Let p be anatomic description

in 4, and let 7t /x 12 ./M* O).
(a) If A() < 3 then Pr(O/x Vl0) O.
(b) IfA(p) 3 then Pr(gt/x]210
Proof. We begin with part (a). Since A* (0) 3 (a, n), there must exist some atomic

description 7t’ 6 4 with A(p’) 3. Let p’/x 12’ be some model description in

#world 7t /x 12)
Prv(/x V O)

#world(O)
#world (!l,/x V)

#world(!P’ A 12’)

(v(N)) (OI" Ilt N-v(llr) 2j-i>-2 bi (Ni -la(llr)i

(Nn)aN-n2-i>_2bi(Ni-ni)
O(NV()-n(ot()/a)N).

The last step uses the fact that n and v(b) can be considered to be constant, and that for any
constant k, () N/k!. Since A(Tt) < 3 (a, n), either ot(Tt) < a or ot(ap) a and

v(p) < n. In either case, it is easy to see that N’()-"(ot()/a)N tends to 0 as N -->

giving us our result.
To prove part (b), we first observe that, due to part (a), we can essentially ignore all model

descriptions of low degree. That is:

#wor a ,(o) v’).

ASYMPTOTIC CONDITIONAL PROBABILITIES 23

Therefore,

as desired, rq

Combining this result with Proposition 3.18, we deduce the following.
THEOREM 3.34. For any 99 E ,() and 0 (q) such that A* (0) 3 > (1, 0),

(7,AV)eM(Ao*’)
Pr(o 7* A

This result, together with the techniques ofthe next section, will allow us to compute asymptotic
conditional probabilities.

The results of Liogon’kii are a simple corollary of the above theorem. For an activity
count a, let ,Aft’a denote the set of atomic descriptions 7t 6 A such that ot (ap) a.

THEOREM 3.35. [31] Assume that C 0, p (cb), 0 -(7"9), and ot79(0) a > O.
Then Pr(0 0) Z1/rG,Ay,a Pr(q9 P)/IA’al.

Proof. By Theorem 3.9, a sentence 0 6/2- (79) is the disjunction of the simplified atomic
descriptions in Aft. A simplified atomic description p has no named elements, and therefore
A(Tt) (ot(Tt), 0). Moreover, AA(ap) {Tt} for any 7t E Aft. The result now follows
trivially from the previous theorem.

This calculation simplifies somewhat if 90 and 0 are both monadic. In this case, we assume
without loss of generality that d(0) d(O). (If not, we can replace 99 with 99 A 0 and 0 with
0 A (99 V --,qg).) This allows us to assume that ,A/0 c_ A’, thus simplifying the presentation.

COROLLARY 3.36. Assume that 90, 0 - (79), and ot79 (0) a > O. Then

Pr(0)

Proof. Since 99 is monadic, q) A 0 is equivalent to a disjunction of the atomic descriptions
9 wA/o _c A0. Atomic descriptions are mutually exclusive; thus, for Aft, Pr(o k)

if 6 .Awo and Pr(o 7t) 0 otherwise. The result then follows immediately from
Theorem 3.35. [3

3.5. Asymptotic probabilities for random structures. We now turn our attention to

computing asymptotic conditional probabilities using the random-structures method. There
are two cases. In the first, there is at least one nonunary predicate in the vocabulary. In this
case, random structures is equivalent to random worlds, so that the results in the previous
section apply without change.

THEOREM 3.37. If 7k q then for any 99 /2() and 0 (q), PrSga*(go 0)
Pr(p 0).

Proof. Since P, there is at least one nonunary predicate in that does not appear
in 0. We can therefore apply Corollary 2.10, and conclude the desired result.

24 ADAM J. GROVE, JOSEPH Y. HALPERN, AND DAPHNE KOLLER

Random worlds and random structures differ in the second case, when all predicates
are unary, but the absence of high-arity predicates makes this a much simpler problem. For
the rest of this section, we investigate the asymptotic probability of q) given 0 using random
structures, for 0, 0 6 /2(q). As discussed earlier, we can assume without loss of generality
that A/0

_
We will use the same basic technique of dividing the structures satisfying 0 into classes,

and computing the probability of on each pa. In the case ofrandom structures, however, we
paaition structures according to the atomic description they satisfy. That is, our computation
makes use of the equation

P*

As for the case of random worlds, we assign weights to atomic descriptions by counting
structures. The following lemma computes #struct (0) for an atomic description 0. In the
case ofrandom worlds, we saw in Lemma 3.28 that ceain model descriptions 0 A V dominate
others, based on the activity count (0) and the number ofnamed elements v(0) of the atomic
description. The following analogue of Lemma 3.28 shows that, for the random-structures
method, atomic descriptions of higher activity count u (0) dominate regardless of the number
of named elements.

LEMMA 3.38. Let 0 be a consistent atomic description ofsize M
(a) g(0) 0 and N > v(O), then #struct(O) O. In particular, this holds for

N > 21PlM.
N(0)-I(b) g(0) > 0 then #struct(O)

Pro@ Pa (a) follows immediately from Lemma 3.28(a), since #struct(O) 0 iff

#world (0) O.
We now proceed to show pa (b). Suppose that C0 ((fl, gl) (f, g)) is the

characteristic of 0. Let S be a structure of cardinality N. For any of the models in S, let Ni be
the number ofdomain elements satisfying atom Ai (because S is an isomohism class, N must
be the same for all worlds in the class). As before, we say that theprofile ors is (N N).
Clearly we must have N1 +...+N N. Recall that the profile (N1 N is consistent
with C0 if implies that
is a structure of 0, then the profile of S must be consistent with C0. In Nct, there is a unique
structure consistent with 0 with cardinality N and profile (N1 N). This is because a
structure is deteined by the number of elements in each atom, the assignment of constants
to atoms, and the equality relations between the constants. The first pag is deteined by
the profile, while the second and third are deteined by 0. It therefore remains to count
only the number of profiles consistent with C0. Let N’ N ieA(O) , and let il ia,
a u(0), be the active components of C0. We want to compute

Notice that, since ieA(O) and a are constants,

I{(gi Xia)" Nil +’"*gia gl}] (X:a-1) (N,)a-1 Na-1
’ 1 (a- 1) (a- 1)"

As in the proof of Lemma 3.28,1et Sj I{(N N)" N1 +’’’+N N’, Nj < M}I.
It is easy to see that

M-1

S1 l{ (N2 N N +’’" + N, X’ N 11
Nil =0

< M(N’)a-2

ASYMPTOTIC CONDITIONAL PROBABILITIES 25

and similarly for all other Sj. Therefore,

N’ + a- 1)S > (S1 --...-1-- Sa)
a-1

> aM(N’)a-2
a-1

(N’)a-1 (N,)a_2-aM
(a-
Na-1
(a-)!

NIt follows that S (aS1)!, as desired.

COROLLARY 3.39. IfO (q), * (0) a > O, and A, then
(a) ifa(Tt) < a then PrS* (p 10) 0,
(b) if ot(Tt) a then Pr*(ap 10)
Proof. Using Lemma 3.38, we can deduce that

Pr*(0)
Na(gr)-l/(Ot() 1)!

Y’eA Na(’)-l/((7t’) 1)!

As in the proof of Theorem 3.33, we can deduce that if a(ap) < a or* (0), then PrS* (ap
0) 0. Therefore

#structv (0) #structv (p’).

Since #structv(O’) is asymptotically the same for all p’ with the same activity count ot(’),
we deduce that ifc(gt)= a, then PrS*(0)= 1/IAff’al. [3

We can now complete the computation of the value of prSo;* (o 0) for the case of unary

THEOREM 3.40. If q), 0 E.(q) and a ot (0) > O, then

Proof. Recall that

prS*(q) O)

(q) O) PrS* (q) O)Pr*(0).

We have already computed PrS*(0). It remains to compute prs* (q) P) for an atomic
description p. Recall that 99/x 0 is equivalent to a disjunction of the atomic descriptions
Ao,0

__
A, and that atomic descriptions are mutually exclusive. Therefore, for A,

it is easy to see that Pr&* (09) if gr Ao*0 and prso;* (o) 0 otherwise. Since

prS*(0) is 0 except if ap Aft’a, it follows from Corollary 3.39 that

tI/,a

prS* (o O)

as desired.

26 ADAM J. GROVE, JOSEPH Y. HALPERN, AND DAPHNE KOLLER

Recall that if 6 E-(72), then A () (c (), 0). Thus, comparing Corollary 3.36
with Theorem 3.40 shows that, for formulas in/2- (72), random worlds and random structures
are the same.

COROLLARY 3.41. Ifp, 0 -(7), thenfor any P D_ p, Pr(tp 0) PrSq’ (0 0).
Note that, although in general the asymptotic conditional probability in the case ofrandom

structures may depend on the vocabulary, for formulas without constant symbols or equality,
it does not.

COROLLARY 3.42. If 99, 0 - (7)), and 7)/o c_ q C’l q’ then Prq’ ((p 0) Prq" (99
0) Pr(q9 0).

4. Complexity analysis. In this section we investigate the computational complexity
of problems associated with asymptotic conditional probabilities. In fact, we consider three
problems: deciding whether the asymptotic probability is well defined, computing it, and
approximating it. As we did in the previous section, we begin with the case of random
worlds. As we shall see, the same complexity results also hold for the random-structures case
(even though, as we have seen, the actual values being computed can differ between random
structures and random worlds). The analysis for the unary case of random structures is given
in 4.6.

Our computational approach is based on Theorem 3.34, which tells us that

Pr(99 0) Z Pr(tp /x
(V)eM(.,4’’)

The basic structure of the algorithms we give for computing Pr(99 0) is simply to enumerate
model descriptions p/ V and, for those of the maximum degree, compute the conditional
probability Pr(0 / ;). In 4.1 we show how to compute this latter probability.

The complexity ofcomputing asymptotic probabilities depends on several factors: whether
the vocabulary is finite, whether there is a bound on the depth of quantifier nesting, whether
equality is used in 0, whether nonunary predicates are used, and whether there is a bound
on predicate arities. If we consider a fixed and finite vocabulary there are just two cases: if
there is no bound on the depth of quantifier nesting then computing probabilities is PSPACE-
complete; otherwise the computation can be done in linear time. The case in which t,he
vocabulary is not fixed, which is the case more typically considered in complexity theory, is
more complicated. The problem of computing probabilities is complete for the class #EXP
(defined below) if either (a) equality is not used in 0 and there is some fixed bound on the
arity of predicates that can appear in 99, or (b) all predicates in 99 are unary. Weakening
these conditions in any waymallowing equality while maintaining any arity bound greater
than one, or allowing unbounded arity even without using equality in 0mgives the same
complexity as the general case (which is complete for a class we call #TA(EXP, LIN),
defined later). All these results for the case of an unbounded vocabulary use formulas
with quantifier depth 2. As suggested in the introduction, the complexity of the problem
drops in the case of formulas of depth 1. A detailed analysis for this case can be found
in [27].

4.1. Computing the 0-1 probabilities. The method we give for computing Pr(99
p/ V) is an extension of Grandjean’s algorithm [20] for computing asymptotic probabilities
in the unconditional case. For the purposes of this section, fix a model description p/);

over . In our proof of the conditional 0-1 law (3.3), we defined a theory T corresponding

ASYMPTOTIC CONDITIONAL PROBABILITIES 27

tO p/X]). We showed that T is a complete and consistent theory, and that 99 6 Z;() has
asymptotic probability iff T 0. We therefore need an algorithm that decides whether

Grandjean’s original algorithm decides whether Pr(q)) is 0 or for a sentence q9 with
no constant symbols. For this case, the theory T consists of all possible extension axioms,
rather than just the ones involving model descriptions extending Dv and consistent with 7z
(see Definition 3.24). The algorithm has a recursive structure, which at each stage attempts
to decide something more general than whether T o. It decides whether T D =:> ,
where

D is a complete description over and the set ,Vj {xl xj of variables, and
/2() is a formula whose only free variables (if any) are in Xj.

The algorithm begins with j 0. In this case, D is a complete description over A’0 and .
Since contains no constants and A’0 is the empty set, D must in fact be the empty conjunction,
which is equivalent to the formula true. Thus, for j 0, T D =, 99 iff T 99. While j 0
is the case of real interest, the recursive construction Grandjean uses forces us to deal with the
case j > 0 as well. In this case, the formula D =, 99 contains free variables; these variables
are treated as being universally quantified for purposes of determining if T D =, 99.

Our algorithm is the natural extension to Grandjean’s algorithm for the case of conditional
probabilities and for a language with constants. The chiefdifference is that we begin by consid-
ering T Dv =* q9 (where 12 is the model fragment on which we are conditioning). Suppose
Dv uses the variables x xn, where n v(gz). We have said that T Dv =* 99 is inter-
preted as T Yx Xn (Dr =* p), and this is equivalent to T (3Xl Xn Dr) =* 99
because 0 is closed. Because :lx Xn Dv is in T by definition, this latter assertion is
equivalent to T 0, which is what we are really interested in.

Starting from the initial step just outlined, the algorithm then recursively examines smaller
and smaller subformulas of q), while maintaining a description D which keeps track of any
new free variables that appear in the current subformula. Of course, D will also extend Dv
and will be consistent with 7t.

We now describe the algorithm in more detail. Without loss of generality, we assume that
all negations in q9 are pushed in as far as possible, so that only atomic formulas are negated.
We also assume that 0 does not use the variables xl, x2, x3 The algorithm proceeds
by induction on the structure of the formula, until the base case--an atomic formula or ,its
negation--is reached. The following equivalences form the basis for the recursive procedure:

1. If is of the form ’ or --,’ for an atomic formula ’, then T D =: iff is a
conjunct of D.

2. If is of the form /x 2, then T D =, iff T D := 1 and T D := 2.
3. If is of the form v 2 then T D=,iffT D=:lOrT D=,2.
4. If is of the form y ’ and D is a complete description over and {xl xj },

then T D =, iff T D’ =, ’[y/xj+l] for some complete description D’ over
and {x Xj+l} that extends D and is consistent with 7z.

5. If is of the form Yy ’ and D is a complete description over and {Xl xj },
then T D = iff T D’ = ’[y/xj+l] for all complete descriptions D’ over
and {Xl xj+} that extend D and are consistent with 7r.

The proof that this procedure is correct is based on the following proposition, which can
easily be proved using the same techniques as for Proposition 3.25.

PROPOSITION 4.1. IfD is a complete description over cb and 2(and 12() is aformula
all ofwhosefree variables are in P(, then either T D = or T D -.

28 ADAM J. GROVE, JOSEPH Y. HALPERN, AND DAPHNE KOLLER

Proof. We know that T has no finite models. By the L6wenheim-Skolem Theorem
12, p. 141], we can, without loss of generality, restrict attention to countably infinite models
ofT.

Suppose X" {x, X2 Xj and that T V:: D = . Then there is some countable
model b/of T, and j domain elements {d dj in the domain of/g, which satisfy D/x --,.
Consider another model b/’ of T, and any {d’ dj} in the domain of U’ that satisfy D.
Because D is a complete description, the substructures over {dl dj} and {d’ dj} are
isomorphic. We can use the back and forth construction of Proposition 3.25 to extend this to
an isomorphism between b/and b/’. But then it follows that {d’ dj} must also satisfy --,.
Since L/was arbitrary, T D =: --,. The result follows. [3

The following result shows that the algorithm above gives a sound and complete procedure
for determining whether T Dv := p.

THEOREM 4.2. Each of the equivalences in steps (1)-(5) above is true.

Proof. The equivalences for steps (1)-(3) are easy to show, using Proposition 4.1.
To prove (4), consider some formula D := 3y ’, where D is a complete description over

Xl xj and the free variables of are contained in {x xj }. Let U be some countable
model of T, and let d dj be elements in b/that satisfy D. If b/satisfies D == 3y ’ then
there must exist some other element dj+ that, together with dl dj, satisfies . Consider
the description D’ over x xj+ that extends D and is satisfied by dl dj+l. Clearly
T V= D’ = "-’’[y/xj+l] because this is false in L/. So, by Proposition 4.1, T D’ =
’[y/xj+] as required.

For the other direction, suppose that T D’ = ’[y/xj+] for some D’ extending D. It
follows that T xj+ D’ = Xj+l’[y/xj+l]. The result follows from the observation that
T contains the extension axiom Yx xj (D =: Bxj+1D’).

The proof for case (5) is similar to that for case (4), and is omitted. [3

We analyze the complexity of this algorithm in terms of alternating Turing machines
(ATMs) [5]. Recall that in an ATM, the nonterminal states are classified into two kinds:
universal and existential. Just as with a nondeterministic TM, a nonterminal state may have
one or more successors. The terminal states are classified into two kinds: accepting and
rejecting. The computation of an ATM forms a tree, where the nodes are instantaneous
descriptions (IDs) of the machine’s state at various points in the computation, and the children
of a node are the possible successor IDs. We recursively define what it means for a node in a
computation tree to be an accepting node. Leaves are terminal states, and a leaf is accepting
just if the machine is in an accepting state in the corresponding ID. A node whose ID is in an
existential state is accepting iff at least one of its children is accepting. A node whose ID is
in a universal state is accepting iff all of its children are accepting. The entire computation is
accepting if the root is an accepting node.

We use several different measures for the complexity ofan ATM computation. The time of
the computation is the number of steps taken by its longest computation branch. The number of
alternations of a computation of an ATM is the maximum number of times, over all branches,
that the type of state switched (from universal to existential or vice versa). The number of
branches is simply the number of distinct computation paths. The number of branches is
always bounded by an exponential in the computation time, but sometimes we can find tighter
bounds.

Grandjean’s algorithm, and our variant of it, is easily implemented on an ATM. Each
inductive step corresponding to a disjunction or an existential quantifier can be implemented
using a sequence of existential guesses. Similarly, each step corresponding to a conjunction
or a universal quantifier can be implemented using a sequence of universal guesses. Note that
the number of alternations is at most Ipl. We must analyze the time and branching complexity

ASYMPTOTIC CONDITIONAL PROBABILITIES 29

of this ATM. Given p/]2, each computation branch of this ATM can be regarded as doing
the following. It

(a) constructs a complete description D over the variables X Xn+ that extends Dv
and is consistent with p, where n v(!#) and k < 1991/2 is the number of variables
appearing in 99,

(b) chooses a formula or --,, where is an atomic subformula of 0 (with free variables
renamed appropriately so that they are included in {xl xn+ }), and

(c) checks whether T D :=> .
Generating a complete description D requires time DI, and if we construct D by adding
conjuncts to Dv then it is necessarily the case that D extends Dr. To check whether D is
consistent with , we must verify that D does not assert the existence of any new element
in any finite atom. Under an appropriate representation of !/r (outlined after Corollary 4.4
below), this check can be done in time O(IDI21I). Choosing an atomic subformula of
p can take time O(101). Finally, checking whether T D =:> can be accomplished by
simply scanning IOl. It is easy to see that we can do this without backtracking over [Ol. Since

IDI > I1, it can be done in time O(IDI). Combining all these estimates, we conclude that
the length of each branch is O(ID121rl + Iol).

Let D be any complete description over and A:’. Without loss of generality, we assume
that each constant in is equal to (at least) one of the variables in A’. To fully describe D
we must specify, for each predicate R of arity i, which of the i-tuples of variables used in D
satisfy R. Thus, the number of choices needed to specify the denotation of R is bounded by
la’l where p is the maximum arity of a predicate in . Therefore, IDI is O(11 la’l"). In the
case of the description D generated by the algorithm, A" is {Xl Xn, Xn+l Xn+}, and
n + k is less than n + Iol. Thus, the length of such a description D is O(ll(n / Iol)).

Using this expression, and our analysis above, we see that the computation time is certainly
O(]121l(n -+- I#1)). In general, the number of branches of the ATM is at most the number
of complete descriptions multiplied by the number of atomic formulas in qg. The first of these
terms can be exponential in the length of each description. Therefore the number of branches
is O(Iqg121’l(n+llp) 2(ll(n/ll)p). We can, however, get a better bound on the number of
branches if all predicates in are unary (i.e., if p 1). In this case, p already specifies all the
properties of the named elements. Therefore, a complete description D is determined when
we decide, for each of the at most k variables in D not corresponding to named elements,
whether it is equal to a named element and, if not, which atom it satisfies. It follows that
there are at most (2I1 q-- n)k complete descriptions in this case, and so at most 1991(2TM -+- n)
branches. Since k < 101/2, the number of branches is certainly O((2I1 -k- n) I1) if p 1. We
summarize this analysis in the following theorem, which forms the basis for almost all of our
upper bounds in this section.

THEOREM 4.3. There exists an alternating Turing machine that takes as input a finite
vocabulary , a model description /x V over , and a formula 99 E .(), and decides
whether Pr(cp 7 /x V) is 0 or 1. The machine uses time O(11211(v(7,) / Iol)) and
O(lpl) alternations, where p is the maximum arity ofpredicates in . If p > 1, the number
ofbranches is 20(ll(v0p)/ll)o), lf p 1, the number ofbranches is O((2t1 -+- v())ll).

An alternating Turing machine can be simulated by a deterministic Turing machine which
traverses all possible branches of the ATM, while keeping track of the intermediate results
necessary to determine whether the ATM accepts or rejects. The time taken by the determinis-
tic simulation is linear in the product of the number of branches of the ATM and the time taken
by each branch. The space required is the logarithm of the number of branches plus the space
required for each branch. In this case, both these terms are O(IDI + 191), where D is the de-
scription generated by the machine. This allows us to prove the following important corollary.

30 ADAM J. GROVE, JOSEPH Y. HALPERN, AND DAPHNE KOLLER

Procedure Compute-Proo (99 O)
a +-- (0, 0)
For each model description 7z/x V do:

Compute Pr(0 P/x 12) using our variant of Grandjean’s algorithm
If A (7*) and Pr(0 A V) 1 then

count(O) count(O) +
Compute Pr(V) using our variant of Grandjean’s algorithm
count() count(p) + Pr()

If A() > and Pr(0 A V) then
()

count()
Compute Pr(A) using our variant of Grandjean’s algorithm
count() Pr(A)

If 8 (0, 0) then output "Pr() not well defined"
otherwise output "Pr() count()/count()".

FIG. 1. Compute-Pr for computing asymptotic conditional probabilities.

COROLLARY 4.4. There exists a deterministic Turing machine that rakes as input a finite
vocabula , a model description over , and a formula (), and decides
whether Pr(A) is 0 or 1. If p > the machine uses time 2llv)+l)) and
space O(]](v() +]])P). If p the machine uses time 2llllg)+l)) and space
o(111Ol log(v() + 1)).

4.2. Computing asymptotic conditional probabilities. Our overall goal is to compute
Pr(0) for some () and 0 (). To do this, we enumerate model descriptions
over of size d(O) + ICI, and check which are consistent with 0. Among those model
descriptions that are of maximal degree, we compute the fraction of model descriptions A V
for which Pr(A V)is 1.

More precisely, let ao * (o). Theorem 3.34 tells us that

The procedure Compute-Pro, described in Fig. 1, generates one by one all model descriptions
of size d(O) 4- ICI over . The algorithm keeps track of three things, among the model
descriptions considered thus far: (1) the highest degree 3 of a model description consistent
with 0, (2) the number count(O) of model descriptions of degree 3 consistent with 0, and
(3) among the model descriptions of degree 3 consistent with 0, the number count(p) of
descriptions such that Pr(q9 !/t /x V) 1. Thus, for each model description !/t /x V
generated, the algorithm computes A(). If A(gr) < 3 or Pr(0 P/x V) is 0, then the
model description is ignored. Otherwise, if A() > 3, then the count for lower degrees
is irrelevant. In this case, the algorithm erases the previous counts by setting
count(O) <--- 1, and count(q9) +-- Pr(q9 /x V). If A() 3, then the algorithm updates
count(O) and count(qg) appropriately.

Examining Compute-Proo, we see that its complexity is dominated by two major quanti-
ties: the time required to generate all model descriptions, and the time required to compute
each 0-1 probability using our variant of Grandjean’s algorithm. The complexity of the latter
was given in Theorem 4.3 and Corollary 4.4. The following proposition states the length of a
model description; the time required to generate all model descriptions is exponential in this
length.

ASYMPTOTIC CONDITIONAL PROBABILITIES 31

PROPOSITION 4.5. IfM > ICI then the length ofa model description of size M over cb is

O(II(21IM)).

Proof. Consider a model description over of size M d(O) + ICI. Such a model
description consists of two parts: an atomic description 7t over and a model fragment V
over which is in A/[(ap). To specify an atomic description , we need to specify the unary
properties of the named elements; furthermore, for each atom, we need to say whether it has
any elements beyond the named elements (i.e., whether it is active). Using this representation,
the size of an atomic description 7t is O(llv(7) / 2171). As we have already observed, the
length of a complete description D over and X’ is O(1112"1). In the case of a description
Dv for V 6 A/l(ap), this is O(llv(p)). Using v(p) < 21IM, we obtain the desired
result.

Different variants of this algorithm are the basis for most of the upper bounds in the
remainder of this section.

4.3. Finite vocabulary. We now consider the complexity of various problems related to

Pr(q9 0) for a fixed finite vocabulary . The input for such problems is simply q0 and 0,
and so the input length is the sum of the lengths of p and 0. Since, for the purposes of this
section, we view the vocabulary as fixed (independent of the input), its size and maximum
arity can be treated as constants.

We first consider the issue of well-definedness.
THEOREM 4.6. Fix a finite vocabulary with at least one unary predicate symbol. For

0 (), the problem ofdeciding whether Pr(. 0) is well defined is PSPACE-complete.
The lower bound holds even if0 -({ P}).

Proof. It follows from Lemma 3.30 that Pr(. 0) is well defined iff ot’ (0) > 0. This
is true iff there is some atomic description p 6 4ff such that c() > 0. This holds iff there
exists an atomic description p of size M d(O) + ICI over tls and some model fragment
]2 6 .M’() such that ot(p) > 0 and Pr(0 7t/) 1. Since we are working within ,
we can take p 1 and 171 to be a constant, independent of 0. Thus, the length of a model
description p/ V as given in Proposition 4.5 is polynomial in 10 I. It is therefore possible to

generate model descriptions in PSPACE. Using Corollary 4.4, we can check, in polynomial
space, for a model description p/ whether Pr(0 P/) is 1. Therefore, the entire
procedure can be done in polynomial space.

For the lower bound, we use a reduction from the problem of checking the truth of quan-
tified Boolean formulas (QBF), a problem well known to be PSPACE-complete [37]. The
reduction is similar to that used to show that checking whether a first-order sentence is true
in a given finite structure is PSPACE-hard [6]. Given a quantified Boolean formula/, we
define a first-order sentence 6 /2-({ P}) as follows. The structure of t is identical to
that of/, except that any reference to a propositional variable x, except in the quantifier, is
replaced by P(x). For example, if/3 is Yx y (x /x y), will be x y (P(x) /x P(y)).
Let 0 be /x 3x P(x) /x x--P(x). Clearly, Pr(, 0) is well defined exactly if/
is true. [3

In order to compute asymptotic conditional probabilities in this case, we simply use
Compute-Pr. In fact, since Compute-Pr can also be used to determine well-definedness,
we could also have used it to prove the previous theorem.

THEOREM 4.7. Fix a finite vocabulary . For p _,() and 0 (q), the problem
of computing Pr(q9 0) is PSPACE-complete. Indeed, deciding ifPr(q9 true) is
PSPACE-hard even if q) - ({P }) for some unary predicate symbol P.

Proof. The upper bound is obtained directly from Compute-Pr in Fig. 1. The algorithm
generates model descriptions one by one. Using the assumption that is fixed and finite, each

32 ADAM J. GROVE, JOSEPH Y. HALPERN, AND DAPHNE KOLLER

model description has polynomial length, so that this can be done in PSPACE. Corollary 4.4
implies that, for a fixed finite vocabulary, the 0-1 probabilities for each model description can
also be computed in polynomial space. While count(O) and count(o) can be exponential (as
large as the number of model descriptions), only polynomial space is required for their binary
representation. Thus, Compute-Pr works in PSPACE under the assumption of a fixed finite
vocabulary.

For the lowerbound, we provide a reduction from QBFmuch like that used in Theorem 4.6.
Given a quantified Boolean formula and a unary predicate symbol P, we construct a sentence

t 6/2- ({ P }) just as in the proof of Theorem 4.6. It is easy to see that Pr(true) 1 iff

fl is true. (By the unconditional 0-1 law, Pr(t true) is necessarily either 0 or 1.) V1

It follows immediately from Theorem 4.7 that we cannot approximate the limit. Indeed,
if we fix e with 0 < e < 1, the problem of deciding whether Pr(q9 0) [0, e] is
PSPACE-hard even for 0, 0 /2-({P}). We might hope to prove that for any nontrivial
interval Jr1, r2], it is PSPACE-hard to decide if Pr(p 0) [rl, r2]. This stronger lower
bound does not hold for the language/2-({P}). Indeed, it follows from Theorem 3.35 that
if is any fixed vocabulary then, for q) E() and 0 /2-(q), Pr(q) 0) must take
one of a finite number of values (the possible values being determined entirely by). So
the approximation problem is frequently trivial; in particular, this is the case for any [rl, r2]
that does not contain one of the possible values. To see that there are only a finite num-
ber of values, first note that there is a fixed collection of atoms over . If 0 does not use
equality, an atomic description can only say, for each atom A over , whether 3x A (x) or
--,3x A (x) holds. There is also a fixed set of constant symbols to describe. Therefore, there
is a fixed set of possible atomic descriptions. Finally, note that the only named elements are
the constants, and so there is also a fixed (and finite) set of model fragments. This shows
that the set of model descriptions is finite, from which it follows that Pr(0 0) takes one
of finitely many values fixed by . Thus, in order to have Pr(q9 0) assume infinitely
many values, we must allow equality in the language. Moreover, even with equality in the
language, one unary predicate does not suffice. Using Theorem 3.34, it can be shown that
two unary predicates are necessary to allow the asymptotic conditional probability to as-
sume infinitely many possible values. As the following result shows, this condition also
suffices.

THEOREM 4.8. Fix a finite vocabulary that contains at least two unary predicates and
rational numbers 0 < rl <_ r2 <_ 1 such that [rl, r2] [0, 1]. For qg, 0 .(79), the problem
ofdeciding whether Pr(p O) 6 [r, r2] is PSPACE-hard, even given an oracle that tells us
whether the limit is well defined.

Proof. We first show that, for any rational number r with 0 < r < 1, we can construct

0r, O such that Pr(qgr Or) r. Suppose r q/p. We assume, without loss of generality,
that P, Q}. Let Or be the sentence

=[p-ix P(x) /k (=[q-ix (P(x) /k Q(x)) x/=]qx (P(x) /k Q(x))) A x (P(x) /x Q(x)).

That is, no elements satisfy the atom P/x --,Q, either q or q 1 elements satisfy the atom
P/x Q, and p- elements satisfy P. Thus, there are exactly two atomic descriptions consistent
with Or. In one of them, 1, there are q elements satisfying P/x Q and p q elements
satisfying P/x --,Q (all the remaining elements satisfy --,P/x Q). In the other, 7t2, there are q
elements satisfying P/ Q and p q elements satisfying P/x --,Q. Clearly, the degree
of 7tl is the same as that of 2, so that neither one dominates. In particular, both define p
named elements. The number of model fragments for 1 is (P-q-l)= (q--1)!(p--q)!(P-1)! The number

(p-l)! Let Pr be 1. Clearlyof model fragments for aP2 is (pl) q!(p-q-1)!

ASYMPTOTIC CONDITIONAL PROBABILITIES 33

Pr(rpr Or)
1/(1)1

It(l)l + 1(2)1
(p- 1)!/((q- 1)!(p- q)!)

(p- 1)!/((q- 1)!(p- q)!)+ (p- 1)!/(q!(p-q- 1)!)
q q

q+(P-q) P

Now, assume we are given rl _< r2. We prove the result by reduction from QBF, as in
the proof of Theorem 4.6. If rl 0 then the result follows immediately from Theorem 4.7.
If 0 < rl q/p, let/3 be a QBF, and consider Pr(/x q)rl Orl /X ::IX --’P(x)). Note that,
since p > 2, Orl implies 3x P (x). It is therefore easy to see that this probability is 0 if/ is
false and Pr(q)rl Or rl otherwise. Thus, we can check if/3 is true by deciding whether
Pr(/x (0rl]0rl /]X-’,P(x)) [rl, r2]. This proves PSPACE-hardness.9 [3

These results show that simply assuming that the vocabulary is fixed and finite is not by
itself enough to lead to computationally easy problems. Nevertheless, there is some good
news. We observed in a companion paper [23] that if is fixed and finite, and we bound the
depth of quantifier nesting, then there exists a linear time algorithm for computing asymptotic
probabilities. In general, as we observed in [23], we cannot effectively construct this algorithm,
although we know that it exists. As we now show, for the case of conditioning on a unary
formula, we can effectively construct this algorithm.

THEOREM 4.9. Fix d > O. For q9 E(b), 0 () such that d(p), d(O) < d, we can
effectively construct a linear time algorithm that decides if Pr(p 0) is well defined and
computes it if it is.

Proof. The proof of the general theorem in [23] shows that if there is a bound d on
the quantification depth of formulas and a finite vocabulary, then there is a finite set Ed of
formulas such that every formula of depth at most d is equivalent to a formula in Ed.
Moreover, we can construct an algorithm that, given such a formula , will in linear time find
some formula equivalent to in Ea. (We say "some" rather than "the," because it is necessary
for the algorithm’s constructibility that there will generally be several formulas equivalent to

in Ea.) Given this, the problem reduces to constructing a lookup table for the asymptotic
conditional probabilities for all formulas in Ea. In general, there is no effective technique for
constructing this table. However, if we allow conditioning only on unary formulas, it follows
from Theorem 4.7 that there is. The result now follows. [3

4.4. Infinite vocabulary---restricted cases. In the next two sections we consider an
infinite vocabulary f2. As discussed in 2.3, there are at least two distinct interpretations for
asymptotic conditional probabilities in the case of an infinite vocabulary. One interpretation of
"infinite vocabulary" views f2 as a potential or background vocabulary, so that every problem
instance includes as part of its input the actual finite subvocabulary that is of interest. So,
although this subvocabulary is finite, there is no bound on its possible size. The alternative is
to interpret infinite vocabularies more literally, using the limit process explained in 2.3. In
the case of the random-worlds method, Proposition 2.1 shows that both interpretations give
the same result. Thus, it is immediate that all complexity results we prove with respect to one
interpretation immediately hold for the other. As we are postponing the discussion of random
structures to 4.6, we present the earlier results with respect to the second, less cumbersome,
interpretation.

9In this construction, it is important to note that although qgrl and Orl can be long sentences, their length depends
only on rl, which is treated as being fixed. Therefore, the constructed asymptotic probability expression does have
length polynomial in 131. This is also the case in similar constructions later in the paper.

34 ADAM J. GROVE, JOSEPH Y. HALPERN, AND DAPHNE KOLLER

As before, we are interested in computing the complexity of the same three problems:
deciding whether the asymptotic probability is well defined, computing it, and approximating
it. As we mentioned earlier, the complexity is quite sensitive to a number of factors. One
factor, already observed in the unconditional case [4], [20], is whether there is a bound on
the arity of the predicates in . Without such a bound, the problem is complete for the class
#TA(EXP,LIN). Unlike the unconditional case, however, simply putting a bound on the arity
of the predicates in is not enough to improve the complexity (unless the bound is 1); we
also need to restrict the use of equality, so that it cannot appear in the right-hand side of the
conditional. Roughly speaking, with equality, we can use the named elements to play the
same role as the predicates of unbounded arity. In this section, we consider what happens if
we in fact restrict the language so that either (1) S2 has no predicate of arity > 2, or (2) there
is a bound (which may be greater than 1) on the arity of the predicates in , but we never
condition on formulas that use equality. As we now show, these two cases turn out to be quite
similar. In particular, the same complexity results hold.

Throughout this section, we take f2 to be a fixed infinite vocabulary such that all predicate
symbols in f2 have arity less than some fixed bound p. Let Q be the set of all unary predicate
symbols in S2, let 79 be the set of all constant symbols in f2, and let T Q t_J 79.

We start with the problem of deciding whether the asymptotic probability is well defined.
Since well-definedness depends only on the right-hand side of the conditional, which we
already assume is restricted to mentioning only unary predicates, its complexity is independent
of the bound p.

The following theorem, due to Lewis [30], is the key to proving the lower bound for
well-definedness (and for some of the other results in this section as well).

THEOREM 4.10. [30] Theproblem ofdeciding whether a sentence .- Q) is satisfiable
is NEXPTIME-complete. Moreover, the lower bound holds evenforformulas ofdepth 2.

Lewis proves this as follows: for any nondeterministic Turing machine M that runs in
exponential time and any input w, he constructs a sentence 6 L;-(Q) of quantifier depth 2
and whose length is polynomial in the size ofM and w, such that is satisfiable iff there is an
accepting computation of M on w.

Our first use ofLewis’s result is to show that determining well-definedness is NEXPTIME-
complete; this result does not require the assumptions that we are making throughout the rest
of this section.

THEOREM 4.11. For 0 /2(T), the problem of deciding ifPr(. 0) is well defined
is NEXPTIME-complete. The NEXPTIME lower bound holds even for 0 .-(Q) where
d(O) <_ 2.

Proof. For the upper bound, we proceed much as in Theorem 4.6. Let q To and let
C 79o. We know that Pr(. 0) is well defined iff there exists an atomic description 7t
of size M d(O) + Igl over q and some model fragment V 6 A/ ’v () such that ot() > 0
and Pr(0 !# /x V) 1. Since all the predicates in q have arity 1, it follows from
Proposition 4.5 that the size of a model description 7r/xV over q is O (I q 1217’1M). Since ql <

10 I, this implies that model descriptions have exponential length, and can be generated by a
nondeterministic exponential time Turing machine. Because we can assume that p 1 here
when applying Corollary 4.4, we can also deduce that we can check whether Pr(0 P/x V)
is 0 or using a deterministic Turing machine in time 20(lOIIqllg(vOp)+a)). Since [ql < [0l,
and v(!#) is at most exponential in 101, it follows that we can decide if Pr(0 P/x 12)
in deterministic time exponential in 10l. Thus, to check if Pr(. 0) is well defined we
nondeterministically guess amodel description/Vofthe right type, and check that ot (ap) > 0
and that Pr(0 P/) 1. The entire procedure can be executed in nondeterministic
exponential time.

ASYMPTOTIC CONDITIONAL PROBABILITIES 35

For the lower bound, observe that if a formula in/2-() is satisfied in some model with
domain N} then it is satisfiable in some model of every domain size larger than N.
Therefore, Z;-(Q) is satisfiable if and only if the limit Pr(.) is well defined. The
result now follows from Theorem 4.10.

We next consider the problem of computing the asymptotic probability Pr(0 0), given
that it is well defined. We show that this problem is #EXP-complete. Recall that #P (see [38])
is the class of integer functions computable as the number of accepting computations of a
nondeterministic polynomial-time Turing machine. More precisely, a function f {0, 1 }*
gg is said to be in #P if there is a nondeterministic Turing machine M such that for any w, the
number of accepting paths of M on input w is f(w). The class #EXP is the exponential time
analogue.

The function we are interested in is Pr(o 0), which is not integer valued. Nevertheless,
we want to show that it is in #EXP. In the spirit of similar definitions for #P (see, for example,
[39] and [34]) and NP (e.g., [17]) we extend the definition of #EXP to apply also to non-
integer-valued functions.

DEFINITION 4.12. An arbitrary function f is said to be #EXP-easy if there exists an
integer-valued function g in #EXP and a polynomial-time-computable function h such that
for all x, f(x) h (g (x)). (In particular, we allow h to involve divisions, so that f (x) may
be a rational function.) A function f is #EXP-hard if, for every #EXP-easy function g, there
exist polynomial-time functions hi and h2 such that, for all x, g(x) h2(f(hl(X))).1 A
function f is #EXP-complete if it is #EXP-easy and #EXP-hard.

We can similarly define analogues of these definitions for the class #P.
We now show that for an infinite arity-bounded vocabulary in which equality is not used,

or for any unary vocabulary, the problem of computing the asymptotic conditional probability
is #EXP-complete. We start with the upper bound.

THEOREM 4.13. If either (a) q), 0 /2(T) or (b) 99 /2(f2) and 0 /2-(T), then
computing Pr(q) 10) is #EXP-easy.

Proof. Let f2e/0, let q T/0, and let 79 and C be the appropriate subsets of q.
Let g0 A* (0). Recall from the proof of Theorem 4.7 that we would like to generate the
model descriptions ap/x 1; of degree g0, consider the ones for which Pr(0 P/x V) 1,
and compute the fraction of those for which Pr(q) Iap/x V). More precisely, consider the set
of model descriptions of size M d(q)/x 0) + ICI. For a degree 3, let countS(O) denote the
number of those model descriptions for which Pr(0 P/x 12) 1. Similarly, let count
denote the number for which Pr(q)/x 0 P/x 12) 1. We are interested in the value of the
fraction count (q)) /count (0).

We want to show that we can nondeterministically generate model descriptions k/x
and check in deterministic exponential time whetherPr(0 P/x 1;) (or, similarly, Pr(q)/x 0
ap/x V)) is 0 or 1. We begin by showing the second part: that the 0-1 probabilities can be
computed in deterministic exponential time. There are two cases to consider. In case (a), q) and
0 are both unary, allowing us to assume that p for the purposes of Corollary 4.4. In this
case, the 0-1 computations can be done in time 2(l/xllllg(v()/l)), where q To,0. As in
Theorem 4.11, I1 <_ Io/ 01 and v(ap) is at most exponential in 101, allowing us to carry out
the computation in deterministic exponential time. In case (b), 0 /2-(T), and therefore the
only named elements are the constants. In this case, the 0-1 probabilities can be computed in
deterministic time 2(ll(v()/l/xl)p), where 20/0. However, as we have just discussed,
v(ap) < I0/x 01, implying that the computation can be completed in exponential time.

1Notice that we need the function h2 as well as h 1. For example, if g is an integer-valued function and f always
returns a rational value between 0 and 1, as is the case for us, then there is no function hi such that g(x) f(hl (x)).

36 ADAM J. GROVE, JOSEPH Y. HALPERN, AND DAPHNE KOLLER

Having shown how the 0-1 probabilities can be computed, it remains only to generate
model descriptions in the appropriate way. However, we do not want to consider all model
descriptions, because we must count only those model descriptions of degree 30. The problem
is that we do not know 30 in advance. We will therefore construct a nondeterministic expo-
nential time Turing machine M such that the number of accepting paths of M encodes, for
each degree 3, both count (q)) and count (0). We need to do the encoding in such a way as to
be able to isolate the counts for 30 when we finally know its value. This is done as follows.

Let be an atomic description p over q of size M. Recall that the degree A (7t) is a pair
(c(Tt), v(Tr))such that (Tr) < 217)1 and v(gr) _< 21PlM. Thus, there are at most E 22171M
possible degrees. Number the degrees in increasing order: 31 3E We want it to be the
case that the number of accepting paths of M written in binary has the form

Plo. Plmqlo. qlm Peo. PEmqEo. qEm,

where Pio... Pim is the binary representation of counti (q)) and qio.., qim is the binary rep-
resentation of countai (0). We choose m to be sufficiently large so that there is no overlap
between the different sections of the output. The largest possible value of an expression of
the form counti (0) is the maximum number of model descriptions of degree 3i over . This
is clearly less than the overall number of model descriptions, which we computed in 4.2.

The machine M proceeds as follows. Let m be the smallest integer such that 2 is more
than the number of possible model descriptions, which, by Proposition 4.5, is 2(II(217IM)p)

Note that m is exponential and that M can easily compute m from . M then nondeterministi-
cally chooses a degree 3i, for E. It then executes E phases, in each of which it
nondeterministically branches 2m times. This has the effect of giving this branch a weight of
22m(E-i). It then nondeterministically chooses whether to compute pio... Pim or qio.., qim.

If the former, it again branches m times, separating the results for counti (qg) from those for
counti (0). In either case, it now nondeterministically generates all model descriptions p/x 12
over . It ignores those for which A(p) :/_ 3i. For the remaining model descriptions 7t/x
it computes Pr(q)/x 0 7t/x 12) in the first case, and Pr(0 gr/x 12) in the latter. This is
done in exponential time, using the same technique as in Theorem 4.11. The machine accepts
precisely when this probability is 1.

This procedure is executable in nondeterministic exponential time, and results in the
appropriate number of accepting paths. It is now easy to compute Pr(p 0) by finding the
largest degree 3 for which count (0) > 0, and dividing count (q)) by count (0).

We now want to prove the matching lower bound. As in Theorem 4.11, we make use of
Lewis’s NEXPTIME-completeness result. As there, this allows us to prove the result even for
q), 0 6/2-(Q) of quantifier depth 2. A straightforward modification of Lewis’s proof shows
that, given w and a nondeterministic exponential time Turing machine M, we can construct a
depth-2 formula 6 12-(Q) such that the number of simplified atomic descriptions over
consistent with is exactly the number of accepting computations ofM on w. This allows us
to prove the following theorem.

THEOREM 4.14. Given - Q), counting the number ofsimplified atomic descriptions
over 79 consistent with is #EXP-complete. The lower bound holds even forformulas of
depth 2.

This theorem forms the basis for our own hardness result.
THEOREM 4.15. Given p, 0 .-(Q) of depth at least 2, the problem of computing

Pr(q) 0) is #EXP-hard, even given an oraclefor deciding whether the limit exists.

Proof. Given q9 6/2-(Q), we reduce the problem of counting the number of simplified
atomic descriptions over 79o consistent with q) to that of computing an appropriate asymptotic
probability. Recall that, for the language/2-(Q), model descriptions are equivalent to sim-

ASYMPTOTIC CONDITIONAL PROBABILITIES 37

A1 A2 A3 A4
0 0

0

FIG. 2. Two atomic descriptions with different degrees.

A1 A2 A3 A4
/xQ: 0 0
A-,Q: 0 0

/xQ: 0
A-,Q: 0 0 0

FIG. 3. Two maximal atomic descriptions.

plified atomic descriptions. Therefore, computing an asymptotic conditional probability for
this language reduces to counting simplified atomic descriptions of maximal degree. Thus,
the major difficulty we need to overcome here is the converse of the difficulty that arose in
the upper bound. We now want to count all simplified atomic descriptions consistent with
while using the asymptotic conditional probability in the most obvious way would only let us
count those of maximum degree. For example, the two atomic descriptions whose character-
istics are represented in Fig. 2 have different degrees; the first one will thus be ignored by a
computation of asymptotic conditional probabilities.

Let 79 be 79 P1 Pk}, and let Q be a new unary predicate not in 79. We let
A1, A/(for K 2k be all the atoms over 79, and let A’ A2/(be all the atoms over
79’ 79 U {Q}, such that A’ Ai/X Q and AK+ Ai/x -,Q for K.

We define 0’ as follows:

--’def VX y Q(x) /x A(Pi(x) Pi(y)) =* Q(y)
i=1

The sentence 0’ guarantees that the predicate Q is "constant" on the atoms defined by 79.
That is, if Ai is an atom over 79, it is not possible to have :Ix (Ai(x) /x O(x)) as well as
:IX (Ai(x) /x --,O(x)). Therefore, if 7t is a simplified atomic description over 79’ which is
consistent with 0’, then, for each < K, at most one of the atoms A’ and A/(+i can be active,
while the other is necessarily empty. It follows that ot(p) < K. Since there are clearly atomic
descriptions of activity count K consistent with 0’, the atomic descriptions of maximal degree
are precisely those for which t(ap) K. Moreover, if ot(p) K, then A’ is active iff AK+i
is not. Two atomic descriptions of maximal degree are represented in Fig. 3. Thus, for each
set I

_
K }, there is precisely one simplified atomic description 7r consistent with 0’

of activity count K where A’ is active in gr iff 6 I. Therefore, there are exactly 2/(simplified
atomic descriptions over 79’ consistent with 0’ for which ot (7r) K.

Let 0 0’/x :Ix Q (x). Notice that all simplified atomic descriptions 7r with or(O) K
that are consistent with 0’ are also consistent with 0, except for the one where no atom in

A’ A% is active. Thus, IA0"g 2/(1. For the purposes of this proof, we call a sim-
plified atomic description p over 79’ consistent with 0 for which ot (p) K a maximal atomic
description. Notice that there is an obvious one-to-one correspondence between consistent
simplified atomic descriptions over 79 and maximal atomic descriptions over 79’. A maximal
atomic description where A’ is active iff 6 I (and AK+i is active for (I) corresponds

38 ADAM J. GROVE, JOSEPH Y. HALPERN, AND DAPHNE KOLLER

to the simplified atomic description over 79 where Ai is active iff 6 I. (For example, the
two consistent simplified atomic descriptions over P1, P2} in Fig. 2 correspond to the two
maximal atomic descriptions over P1, P2, Q} in Fig. 3.) In fact, the reason we consider 0
rather than 0’ is precisely because there is no consistent simplified atomic description over 79
which corresponds to the maximal atomic description where no atom in A’ A’/ is active
(since there is no consistent atomic description over 79 where none of A1 A/ are active).
Thus, we have overcome the hurdle discussed above.

We now define 99Q; intuitively, 99Q is (/9 restricted to elements that satisfy Q. Formally,
we define Q for any formula by induction on the structure of the formula:

Q for any atomic formula ,
(-) =-,,
(Vy (y))a Vy (Q(y) := O(y)).

Note that the size of 99Q is linear in the size of 99. The one-to-one mapping discussed above from
simplified atomic descriptions to maximal atomic descriptions gives us a one-to-one mapping
from simplified atomic descriptions over 79 consistent with 99 to maximal atomic descriptions
consistent with (t90 / 3X Q(x). This is true because a model satisfies 990 iff the same model
restricted to elements satisfying Q satisfies 99. Thus, the number of model descriptions over

consistent with 99 is precisely [Q/0 I.
From Corollary 3.36, it follows that

A79" K 79

Pr(99o 10)

Thus, the number of simplified atomic descriptions over 79 consistent with 99 is (2/
1)Pr(99Q 0). This proves the lower bound. B

As in Theorem 4.8, we can also show that any nontrivial approximation of the asymptotic
probability is hard, even if we restrict to sentences of depth 2.

THEOREM 4.16. Fix rational numbers 0 < rl < r2 < such that [rl, r2] - [0, 1]. For
99, 0 -(Q) of depth at least 2, the problem of deciding whether Pr(99 0) [r, r2] is
both NEXPTIME-hard and co-NEXPTIME-hard, even given an oracle for deciding whether
the limit exists.

Proof. Let us begin with the case where rl 0 and r2 < 1. Consider any 99 6/2-(Q) of
depth at least 2, and assume without loss of generality that 79 79 P Pk }. Choose
Q 79, let 79’ 79 u {Q}, and let be Vx(PI(X) /x /’x Pk(x) / Q(x)). We consider

Pr(99 99 v). Clearly 99 v is satisfiable, so that this asymptotic probability is well defined.
If 99 is unsatisfiable, then Pr(99 99 v) 0. On the other hand, if 99 is satisfiable, then

79’c79 (99) j > 0 for some j. It is easy to see that c79’ (99) ot (99 v) 2j. Moreover,
99 and 99 v are consistent with precisely the same simplified atomic descriptions with 2j
active atoms. This is true since c79’ () < 2j. It follows that if 99 is satisfiable, then
Pr(99 199 v) 1.

Thus, we have that Pr(99 99 v) is either 0 or 1, depending on whether or not 99 is
satisfiable. Thus, Pr(--99 99 v) is in [rl, r2] iff 99 is satisfiable; similarly, Pr(-,99 -’99 v)
is in Jr1, r2] iff 99 is valid. By Theorem 4.10, it follows that this approximation problem is
both NEXPTIME-hard and co-NEXPTIME-hard.

If rl q/p > 0, we construct sentences 99r, and Or, of depth 2 in .-(Q) such that
Pr(99r Or) r.1 Choose [log p], and let 72’’ {Q1 Qe} be a set of predicates

11 The sentences constructed in Theorem 4.8 for the same purpose will not serve our purpose in this theorem, since
they used unbounded quantifier depth.

ASYMPTOTIC CONDITIONAL PROBABILITIES 39

such that 79" A 79’ 13. Let A1 A2 be the set of atoms over 79". We define Or, to be

lx (AI(X) V A2(x) V... V Ap(x)).

Similarly, (Pr, is defined as

=llx (Al(X) v A2(x) v... v Aq(x)).

Recall from 3.1 that the construct "31X can be defined in terms of a formula of quantifier
depth 2. There are exactly p atomic descriptions of size 2 of maximal degree consistent
with Orl; each has one element in one of the atoms A1 Ap and no elements in the rest
of the atoms among A1 Ap, with all the remaining atoms (those among Ap+l A2e)
being active. Among these atomic descriptions, q are also consistent with 0r,. Therefore,
Pr(g)r, Or,) q/p. Since the predicates occurring in q)r,, Orl are disjoint from 79’, it
follows that

Pr(qo A 99r, (99 V ’) /X Or,) Pr(o 199 v). Pr(Cpr, G,) Pr((p 199 v) rl.

This is equal to rl (and hence is in [rl, r2]) if and only if 99 is satisfiable, and is 0 other-
wise.

The lower bounds in this section all hold provided we consider formulas whose quan-
tification depth is at least 2. Can we do better if we restrict to formulas of quantification
depth at most 1? As is suggested by Table 1, we can. The complexities typically drop by
an exponential factor. For example, checking well-definedness becomes NP-complete rather
than NEXPTIME-complete. For the problem of computing probabilities for formulas with
quantification depth 1, we know that the problem is in PSPACE, and is (at least) #P-hard.
Finally, the problem of approximating probabilities is hard for both NP and co-NP. A detailed
analysis of these results can be found in [27]; some related work for a propositional language
has been done by Roth [35].

4.5. Infinite vocabulary---the general case. In 4.4 we investigated the complexity of
asymptotic conditional probabilities when the (infinite) vocabulary satisfies certain restrictions.
As we now show, the results there were tight in the sense that the restrictions cannot be
weakened. We examine the complexity of the general case, in which the vocabulary is infinite
with no bound on predicates’ arities and/or in which equality can be used.

The problem of checking if Pr(o 0) is well defined is still NEXPTIME-complete.
Theorem 4.11 (which had no restrictions) still applies. However, the complexity of the other
problems we consider does increase. It can be best described in terms of the complexity class
TA(EXELIN)mthe class of problems that can be solved by an exponential time ATM with a
linear number of alternations. The class TA(EXP,LIN) also arises in the study of unconditional
probabilities where there is no bound on the arity of the predicates. Grandjean [20] proved a
TA(EXP,LIN) upper bound for computing whether the unconditional probability is 0 or 1 in
this case, and Immerman [4] proved a matching lower bound. Of course, Grandjean’s result
can be viewed as a corollary of Theorem 4.3. Immerman’s result, which has not, to the best
of our knowledge, appeared in print, is a corollary of Theorem 4.18 which we prove in this
section.

To capture the complexity of computing the asymptotic probability in the general case,
we use a counting class #TA(EXP,LIN) that corresponds to TA(EXP,LIN). To define this class,
we restrict attention to the class of ATMs whose initial states are existential. Given such an
ATM M, .we define an initial existential path in the computation tree of M on input w to be
a path in this tree, starting at the initial state, such that every node on the path corresponds to
an existential state except for the last node, which corresponds to a universal or an accepting

40 ADAM J. GROVE, JOSEPH Y. HALPERN, AND DAPHNE KOLLER

state. That is, an initial existential path is a maximal path that starts at the root of the tree
and contains only existential nodes except for the last node in the path. We say that an
integer-valued function f {0, }* -- hV is in #TA(EXP,LIN) if there is a machine M in
the class TA(EXP,LIN) such that, for all w, f(w) is the number of existential paths in the
computation tree ofM on input w whose last node is accepting (recall that we defined a notion
of "accepting" for any node in the tree in 4.1). We extend the definition of #TA(EXP,LIN)
to apply to non-integer-valued functions and define #TA(EXP,LIN)-easy just as we did before
with #P and #EXP in 4.4.

We start with the upper bound.
THEOREM4.17. Forq) E 12(S2)andO ,(T),thefunctionPr(q) 10)isin#TA(EXP,LIN).
Proof. Let f2/0, let q T/0, and let p be the maximum arity of a predicate in .

The proof proceeds precisely as in Theorem 4.13. We compute, for each degree 3, the values
count (0) and count (99). This is done by nondeterministically generating model descriptions
gr/x 12 over , branching according to the degree of 7t, and computing Pr(0/x 0 P/x 12)
and Pr(0 /x 12) using a TA(EXP,LIN) Turing machine.

To see that this is possible, recall from Proposition 4.5 that the length ofa model description
over is O(11(211M)P), This is exponential in I1 and p, both of which are at most IP/x 01.
Therefore, it is possible to guess a model description in exponential time. Similarly, as we saw
in the proof of Theorem 4.13, only exponentially many nondeterministic guesses are required
to separate the output so that counts corresponding to different degrees do not overlap. These
guesses form the initial nondeterministic stage of our TA(EXP,LIN) Turing machine. Note
that it is necessary to construct the rest of the Turing machine so that a universal state always
follows this initial stage, so that each guess corresponds exactly to one initial existential path;
however, this is easy to arrange.

For each model description 7t/xV so generated, we computePr(0 7t/x V) orPr(o/x0
p/x 12) as appropriate, accepting if the conditional probability is 1. It follows immediately
from Theorem 4.3 and the fact that there can only be exponentially many named elements
in any model description we generate that this computation is in TA(EXP,LIN). Thus, the
problem of computing Pr (q) 0) is in #TA(EXP,LIN).]

We now want to prove the matching lower bound. Moreover, we would like to show
that the restrictions from 4.4 cannot be weakened. Recall from Theorem 4.13 that the #EXP
upper bound held under one of two conditions: either (a) q) and 0 are both unary, or (b) the
vocabulary is arity-bounded and 0 does not use equality. To show that (a) is tight, we show that
the #TA(EXP,LIN) lower bound holds even if we allow q) and 0 to use only binary predicates
and equality. (The use of equality is necessary, since without it we know from (b) that the
problem is #EXP-easy.) To show that (b) is tight, we show that the lower bound holds for
a non-arity-bounded vocabulary, but without allowing equality in 0. Neither lower bound
requires the use of constants.

The proof of the lower bounds is lengthy, but can be simplified somewhat by some as-
sumptions about the construction of the TA(EXP,LIN) machines we consider. The main idea
is that the existential "guesses" being made in the initial phase should be clearly distinguished
from the rest of the computation. To achieve this, we assume that the Turing machine has an
additional guess tape, and the initial phase of every computation consists of nondeterministi-
cally generating a guess string t’ which is written on the new tape. The machine then proceeds
with a standard alternating computation, but with the possibility of reading the bits on the
guess tape.

More precisely, from now on we make the following assumptions about an ATM M.
Consider any increasing functions T (n) and A (n) (in essence, these correspond to the time
complexity and number of alternations), and let w be an input of size n. We assume:

ASYMPTOTIC CONDITIONAL PROBABILITIES 41

M has two tapes and two heads (one for each tape). Both tapes are one-way infinite
to the right.
The first tape is a work tape, which initially contains only the string w.
M has an initial nondeterministic phase, during which its only action is to nondeter-
ministically generate a string 9/of zeros and ones, and write this string on the second
tape (the guess tape). The string 9/is always of length T (n). Moreover, at the end
of this phase, the work tape is as in the initial configuration, the guess tape contains
only 9/, the heads are at the beginning of their respective tapes, and the machine is in
a distinguished universal state so.
After the initial phase, the guess tape is never changed.
After the initial phase, M takes at most T (n) steps on each branch of its computation
tree, and makes exactly A (n) alternations before entering a terminal (accepting
or rejecting) state.
The state before entering a terminal state is always an existential state (i.e., A (n) is
odd).

Let M’ be any (unrestricted) TA(T,A) machine that "computes" an integer function f.
It is easy to construct some M satisfying the restrictions above that also computes f. The
machine M first generates the guess string 9/, and then simulates M’. At each nondeterministic
branching point in the initial existential phase of M’, M uses the next bit of the string 9/to
dictate which choice to take. Observe that this phase is deterministic (given 9/), and can thus
be folded into the following universal phase. (Deterministic steps can be viewed as universal
steps with a single successor.) If not all the bits in 9/are used, M continues the execution of
M’, but checks in parallel that the unused bits of 9/ are all O’s. If not, M rejects. It is easy
to see that on any input w, M has the same number of accepting paths as M’, and therefore
accepts the same function f. Moreover, M has the same number of alternations as M’, and at
most a constant factor blowup in the running time. 12 This shows that it will be sufficient to
prove our hardness results for the class #TA(EXP,LIN) by considering only those machines
that satisfy these restrictions. For the remainder of this section we will therefore assume that
all ATMs are of this type.

Let M be such an ATM and let w be an input of size n. We would like to encode the
computation of M on w using a pair of formulas qgw, 0o. (Of course, these formulas depend
on M as well, but we suppress this dependence.) Our first theorem shows how to encode part
of this computation: given some appropriate string 9/of length T (n), we construct formulas
that encode the computation of M immediately following the initial phase of guessing 9/.
More precisely, we say that M accepts w given 9/if, on input w, the initial existential path
during which M writes 9/on the guess tape leads to an accepting node. We construct formulas
po, and Ow, such that Pr(q%0, Ow,) is either 0 or 1, and is equal to iff M accepts w
given 9/.

We do not immediately want to specify the process of guessing 9/, so our initial construc-
tion will not commit to this. For a predicate R, let p[R] be a formula that uses the predicate
R. Let be another formula that has the same number of free variables as the arity of R.
Then o[is the formula where every occurrence of R is replaced with the formula , with an
appropriate substitution of the arguments of R for the free variables in .

THEOREM 4.18. Let M be a TA(T,A) machine as above, where T(n) 2t<m for some

polynomial t(n) and A(n) O(n). Let w be an input string of length n, and 9/ {0, 1}T<n
be a guess string.

12For ease of presentatiov., we can and will (somewhat inaccurately, but harmlessly) ignore this constant factor
and say that the time complexity of M is, in fact, T(n).

42 ADAM J. GROVE, JOSEPH Y. HALPERN, AND DAPHNE KOLLER

(a) For a unarypredicate R, there existformulas pw[R], E/2(f2) andOw /2(T) such
that Pr(qgw[] Ow) iffM accepts w given ’ and is 0 otherwise. Moreover,
Pw uses only predicates with arity 2 or less.

(b) Fora binarypredicate R, there existformulas tp[R], 6/2(2) such thatPr(qgw[
true) iffM accepts w given , and is 0 otherwise.

The formulas qgw[R], Ow, and p[R] are independent of ,, and their length is polynomial in
the representation ofM and w. Moreover, none oftheformulas constructed use any constant

symbols.
Proof. Let 1-’ be the tape alphabet ofM and let S be the set of states of M. We will identify

an instantaneous description (ID) of length e ofM with a string E for E Ew E, where
Ew is 1-" t_J (1-" x S) and E is ({0, 1} t_J ({0, 1} {h})). We think ofthe Ew component ofthe
th element in a string as describing the contents of the ith location in the work tape and also,

if the tape head is at location i, the state of the Turing machine. The E component describes
the contents of the ith location in the guess tape (whose alphabet is {0, }) and whether the
guess tape’s head is positioned there. Of course, we consider only strings in which exactly one
element in F x S appears in the first component and exactly one element in {0, {h appears
in the second component. Since M halts within T(n) steps (not counting the guessing process,
which we treat separately), we need only deal with IDs of length at most T(n). Without loss
of generality, assume all IDs have length exactly T (n). (If necessary, we can pad shorter IDs
with blanks.)

In both parts of the theorem, IDs are encoded using the properties of domain elements.
In both cases, the vocabulary contains predicates whose truth value with respect to certain
combinations of domain elements represent IDs. The only difference between parts (a) and
(b) is in the precise encoding used. We begin by showing the encoding for part (a).

In part (a), we use the sentence 00 to define T (n) named elements. This is possible since

Ow is allowed to use equality. Each ID ofthe machine will be represented using a single domain
element. The properties of the ID will be encoded using the relations between the domain
element representing it and the named elements. More precisely, assume that the vocabulary
has (n) unary predicates P1 Plan), and one additional unary predicate P*. The domain is
divided into two parts: the elements satisfying P* are the named elements used in the process
of encoding IDs, while the elements satisfying --,P* are used to actually represent IDs. The
formula 0o asserts (using equality) that each of the atoms A over P*, P1 Pt(n) in which
P* (as opposed to --,P*) is one of the conjuncts contains precisely one element:

Yx, y P*(x) /x P*(y) /x (Pi(x) Pi(Y)) = x y
i=1

Note that 0o has polynomial length and is independent of ,.
We can view an atom A over P*, P1 Pt(n) in which P* is one of the conjuncts

as encoding a number between 0 and T(n) 1, written in binary: if A contains Pj rather
than --,Pj, then the jth bit of the encoded number is 1; otherwise it is 0. (Recall that T (n),
the running time of M, is 2t(n).) In the following, we let Ai, for 0 T(n) 1,
denote the atom corresponding to the number according to this scheme. Let ei be the
unique element in the atom Ai for 0 T (n) 1. When representing an ID using a
domain element d (where P* (d)), the relation between d and ei is used to represent the th
coordinate in the ID represented by d. Assume that the vocabulary has a binary predicate
Ra for each a 6 E. Roughly speaking, we say that the domain element d represents the
ID a0... O’T(n)-I if Rag (d, ei) holds for 0 T(n) 1. More precisely, we say that d

ASYMPTOTIC CONDITIONAL PROBABILITIES 43

represents ao O’T(n)-I if

"P*(d) A A Yy Ai(y) = Ro(d, y) A A "R,(d, y)
..__

Note that not every domain element d such that P*(d) holds encodes a valid ID. However,
the question of which ID, if any, is encoded by a domain element d depends only on the
relations between d and the finite set of elements e0 ev(m_. This implies that, with
asymptotic probability 1, every ID will be encoded by some domain element. More precisely,
let ID(x) 0... v()- be a foula which is true if x denotes an element that represents
a0... ()-1. (It should be clear that such a foula is indeed expressible in our language.)
Then for each ID a0... af(m-1 we have

Pr(x (ID(x) o... (m-) 0) 1.

For pa (b) of the theorem, we must represent IDs in a different way because we are not
allowed to condition on foulas that use equality. Therefore, we cannot create an exponential
number of named elements using a polynomial-sized foula. The encoding we use in this
case uses two domain elements per ID rather than one. We now assume that the vocabulary Q
contains a (n)-a predicate R for each symbol 6 . Note that this uses the assumption
that there is no bound on the arity of predicates in Q. For/ 0 T(n) 1, let b... b]
be the binary encoding of i. We say that the pair (d0, dl) of domain elements represents the
ID o (n- if

do d, R, (dbi db(. R,(db, da(,,
i=0

Again, we can define a foula in our language ID(xo, Xl) 0... T(m-1 which is true if
xo, x denote a pair of elements that represent o... (,)-. As before, observe that for each
ID 0 (m- we have

Pr(xo, Xl (ID(xo, Xl) 0... T(,)-) true) 1.

In both case (a) and case (b), we can construct foulas polynomial in the size of M and
w that asse ceain propeies. For example, in case (a), Rep(x) is true of a domain element
d if and only if d encodes an ID. In this case, Rep(x) is the foula

By (P*(y) A Vrs)z) R(x, y)) A By (P*(y) A VZw10,llhl)) R(x, y))

where is an abbreviation whose meaning is that precisely one of its disjuncts is true.
In case (b), Rep(xo, Xl) is true of a pair (d0, dl) if and only if it encodes an ID. The

construction is similar. For instance, the conjunct of Rep(xo, Xl) asseing that each tape
position has a uniquely defined content is

Xo Xl A Zl Zt(n) (Zi Xo V Zi Xl) ae a Ra(Zl Zt(n))
i=1

Except for this asseion, the construction for the two cases is completely parallel given
the encoding of IDs. We will therefore restrict the remainder of the discussion to case (a).
Other relevant propeies of an ID that we can foulate are:

44 ADAM J. GROVE, JOSEPH Y. HALPERN, AND DAPHNE KOLLER

Acc(x) (resp., Univ(x), Exis(x)) is true of a domain element d if and only ifd encodes
an ID and the state in ID(d) is an accepting state (resp., a universal state, an existential
state).
Step(x, x’) is true of elements d and d’ if and only if both d and d’ encode IDs and
ID(d’) can follow from ID(d) in one step of M.
Comp(x, x’) is true of elements d and d’ if and only if both d and d’ encode IDs,
and ID(d’) is the final ID in a maximal nonaltemating path starting at ID(d) in the
computation tree of M, and the length of this path is at most T(n). A maximal
nonaltemating path is either a path all of whose states are existential except for the
last one (which must be universal or accepting), or a path all of whose states are
universal except for the last one. We can construct Comp using a divide and conquer
argument, so that its length is polynomial in (n).

We remark that Acc, Step, etc. are not new predicate symbols in the language. Rather, they
are complex formulas described in terms of the basic predicates R. We omit details of their
construction here; these can be found in [20].

It remains only to describe the formula that encodes the initial configuration ofM on input
w. Since we are interested in the behavior of M given a particular guess string ,, we begin
by encoding the computation of M after the initial nondeterministic phase; that is, after the
string V is already written on the guess tape and the rest of the machine is back in its original
state. We now construct the formula lnit[R](x) that describes the initial configuration. This
formula takes R as a parameter, and has the form Init’(x)/x R (x). The formulas substituted
for R (x) will correspond (in a way discussed below) to possible guesses ,.

We begin by considering case (a). We assume the existence of an additional binary
predicate B0. It is easy to write a polynomial-length formula Init’ (x) which is true of a domain
element d if and only if d represents an ID where: (a) the state is the distinguished state so
entered after the nondeterministic guessing phase, (b) the work tape contains only w, (c) the
heads are at the beginning of their respective tapes, and (d) for all i, the th location of the
guess tape contains 0 iff Bo(d, ei). Here ei is, as before, the unique element in atom Ai. Note
that the last constraint can be represented polynomially using the formula

crEw {0,(0,h)}

We also want to find a formula that can constrain B0 to reflect the guess y. This formula,
which serves as a possible instantiation for R, does not have to be of polynomial size. We
define it as follows, where for convenience, we use B1 as an abbreviation for --,B0:

T(n)-I

(1) y(X)--def A y (Ai(y)=: Bi(x, y))
i=0

Note that this is of exponential length.
In case (b), the relation of the guess string , to the initial configuration is essentially the

same modulo the modifications necessary due to the different representation of IDs. We only
sketch the construction. As in case (a), we add a predicate B, but in this case of arity (n).
Again, the predicate B represents the locations of the O’s in the guess tape following the initial
nondeterministic phase. The specification of the denotation of this predicate is done using an
exponential-sized formula , as follows (again taking B to be an abbreviation for --,B)"

’y (X0, Xl) ---def B0 (x0 x0, x0)/x Bl (x0 x0, Xl) /k... / B,:r(n_ (Xl Xl, Xl).

Using these formulas, we can now write a formula expressing the assertion thatM accepts
w given V. In writing these formulas, we make use of the assumptions made about M (that it

ASYMPTOTIC CONDITIONAL PROBABILITIES 45

is initially in the state immediately following the initial guessing phase, that all computation
paths make exactly A(n) alternations, and so on). The formula pw[R] has the following form:

x (Init[R](x) A x2 (Comp(x, x2) =: lx3 (Comp(x2, X3) /k X4 (Comp(x3, X4) ::
3XA(n) (Comp(XA(n)-l, XA(n)) /k AC(XA(n))) .)))).

It is clear from the construction that 99w[R] does not depend on ?’ and that its length is
polynomial in the representations of M and w.

Now suppose W is a world satisfying 0w in which every possible ID is represented by at
least one domain element. (As we remarked above, a random world has this property with
asymptotic probability 1.) Then it is straightforward to verify that P0[] is true in }42 iff
M accepts w. Therefore Pr(po[] 0o) iff M accepts w given }, and 0 otherwise.
Similarly, in case (b), we have shown the construction of analogous formulas pf[R], for a
binary predicate R, and such that Proo(p0[] true) 1 iff M accepts w given 9/, and is
0 otherwise.

We can now use the above theorem in order to prove the #TA(EXP,LIN) lower bound.
THEOREM 4.19. For 99 .(f2)and 0 (T), computing Pr(q9 0) is #TA(EXP,LIN)-

hard. The lower bound holds even if
uses no predicate ofarity > 2, or (b) 0 uses no equality.

Proof. Let M be a TA(EXP,LIN) Turing machine of the restricted type discussed earlier,
and let w be an input of size n. We would like to construct formulas 99, 0 such that from
Pro(g9 0) we can derive the number of accepting computations of M on w. The number of
accepting initial existential paths of such a Turing machine is precisely the number of guess
strings }, such that M accepts w given /. In Theorem 4.18, we showed how to encode the
computation of such a machine M on input w given a nondeterministic guess ?’. We now
show how to force an asymptotic conditional probability to count guess strings appropriately.

As in Theorem 4.18, let T (n) 2t(n) and let 79, P Pt’n) be new unary predicates
not used in the construction of Theorem 4.18. As before, we can view an atom A’ over 79,
as representing a number in the range 0 T (n) 1: if A contains Pj, then the jth bit of
the encoded number is 1; otherwise it is 0. Again, let A, for 0 T(n) 1, denote
the atom corresponding to the number according to this scheme. We can view a simplified
atomic description p over 79, as representing the string y Y0... YT(n)-l such that Yi is 1 if
p contains the conjunct 3z A’ (z), and 0 if p contains its negation. Under this representation,
for every string y of length T(n), there is a unique simplified atomic description over 7
that represents it; we denote this atomic description y. Note that py is not necessarily a
consistent atomic description, since the atomic description where all atoms are empty also
denotes a legal string--that string where all bits are 0.

While it is possible to reduce the problem of counting accepting guess strings to that of
counting simplified atomic descriptions, this is not enough. After all, we have already seen
that computing asymptotic conditional probabilities ignores all atomic descriptions that are
not of maximal degree. We deal with this problem as in Theorem 4.15. Let Q be a new unary
predicate, and let 0’ be, as in Theorem 4.15, the sentence

Yx, y Q(x) /x A(P](x) P](y)) =, Q(y)
j=l

Observe that here we use 0 rather than the formula 0 of Theorem 4.15, since we also want to
count the "inconsistent" atomic description where all atoms are empty. Recall that, assuming
0’, each simplified atomic description over ’ corresponds precisely to a single maximal
atomic description over ’ U Q}. We reduce the problem of counting accepting guess
strings to that of counting maximal atomic descriptions over P’ U Q }.

46 ADAM J. GROVE, JOSEPH Y. HALPERN, AND DAPHNE KOLLER

We now consider cases (a) and (b) separately, beginning with the former. Fix a guess
string ?,. In Theorem 4.18, we constructed formulas qgw[R], 6 (S2) and 0w 6 (3")
such that Pr(0w[] Ow) iff M accepts w given V, and is 0 otherwise. Recall that
the Copula (x) (see equation (1)) sets the ith guess bit to be Vi by forcing the appropriate
one of Bo(x, ei) and BI(X, ei) to hold, where ei is the unique element in the atom Ai. In
Theorem 4.18, this was done directly by reference to the bits gi. Now, we want to derive
the coect bit values from , which tells us that the ith bit is iff z A’ (z). The following
Copula has precisely the desired propey"

(X) =deC Vy P*(y) BI(X, y) BZ Q(z) A (Pj(y) Pj(z))
j=l

Clearly, ; .
Similarly, for case (b), the Copula ’ is"

’(XO, Xl) defYl Yt(n) ((Yj XoVYj--X1))
BI (y yt()) Bz e(z) A (yj Xl Pj(z))

j=l

As in pa (a), .
Now, for case (a), we want to compute the asymptotic conditional probability Pr([]

0 A 0’). In doing this computation, we will use the obseation (whose straightforward proof
we leave to the reader) that if the symbols that appear in 02 are disjoint from those that appear
in 1 and 01, then Pr(1 01 a 02) Pr(1 01). Using this observation and the fact that all
maximal atomic descriptions over’ U Q are equally likely given0 A 0’, by straightforward
probabilistic reasoning we obtain"

Pr([] 0 0’) Pr(w[]lOw O’) Pr(Ov low 0’)

Pr(w[] 0 0’).2T()

We observed before that is equivalent to in worlds satisfying , and therefore

WerL([] 10 a 0’ a O) er(ew[] 10 0 O) Pr(e[] low),

where the second equality follows from the observation that none of the vocabulaw symbols in
WOe or 0’ appear anywhere in 9[e] or in 0. In Theorem 4.18, we proved that Pr(gm[e]

0w) is equal to if the ATM accepts w given g and 0 if not. We therefore obtain that

erL(m[] low 0’) f(w)
2T(n

Since both [] and Ow O’ are polynomial in the size of the representation of M and in
n Iwl, this concludes the proof for paa (a). The completion of the proof for paa (b) is
essentially identical. S

It remains only to investigate the problem of approximating Pr(9 0) for this language.
THEOREM 4.20. Fix rational numbers 0 r r such that [r, re] [0, 1]. For, 0 (), the problem of deciding whether Pr(9 0) [r, re] is TA(EXP,LIN)-hard,

even given an oraclefor deciding whether the limit exists.

ASYMPTOTIC CONDITIONAL PROBABILITIES 47

Proof. For the case of r 0 and r2 < 1, the result is an easy corollary of Theo-
rem 4.18. We can generalize this to the case of r > 0, using precisely the same technique as
in Theorem 4.1 6.

4.6. Complexity for random structures. So far in this section, we have investigated the
complexity of various problems relating to the asymptotic conditional probability using the
random-worlds method. We now deal with the same issues for the case of random structures.
It turns out that most of our results for random worlds carry through to random structures for
trivial reasons.

First, consider the issue of well-definedness. By Proposition 2.3, well-definedness is
equivalent for random worlds and random structures. Therefore, all of the results obtained for
random worlds carry through unchanged for random structures.

For computing or approximating the limit, Theorem 3.37 allows us to restrict attention to

unary vocabularies and unary sentences 0 and 0. In particular, there is no need to duplicate
the results in 4.5. For the remainder of this section, we analyze the complexity of computing
prSq’ (99 0) for 99, 0 (q). As before, we can assume that Aoo

The computational approach is essentially the same as that for random worlds. However,
as we showed in 3.5, rather than partitioning 0 into model descriptions, we can make use of
the assumption that the vocabulary is unary and instead partition it into atomic descriptions
p. That is, for a c* (0),

1. E pr(0lTr)(PrSq’ (99 0)
[Aft,a[1/tC,Aq’a

As for random worlds, we begin with the problem ofcomputing 0-1 probabilities. In 4.1,
we showed how to extend Grandjean’s algorithm to compute Pr(0 /x 12). Fix a unary
vocabulary q, and suppose that p/x 12 is a model description over q, with n v(p). Recall
from Proposition 3.21 that Pr(q9 7t/x 12) Pr(q9 /x qx Xn Dr). However, in the
unary case it is easy to see that 7t/xx Xn DV is equivalent to ap. This is because the only
nontrivial properties of the named elements given by 12 is which atom each of them satisfies
and the equality relations between the constants, and this information is already present in the
atomic description p.

Therefore, we conclude that Pr(o P) is either 0 or 1, because this is so for Pr(q)
p/x 12). Now recall that if 7t 6 t* then p implies 0. In this case, clearly Pr(q) P)
prS&* (0 P) 1. Similarly, if 7t ’ .A*, then p is inconsistent with o and Pr(0 P)

PI* (q) P) 0. So it follows that we can continue to use Grandjean’s algorithm, as
described in 4.1, to compute Prgz* (p P).

THEOREM 4.2 1. There exists an alternating Turing machine that takes as input a finite
unary vocabulary P, an atomic description over q, and aformula 99 .(q), and decides
whether prs* (99) is 0 or 1. The machine uses time O(Iq121l(v(p) + Iol)) and has at

most 0((21.1 + v()) I1) branches and O(1ol) alternations.
As before, we can simulate the ATM deterministically.
COROLLARY 4.22. There exists a deterministic Turing machine that takes as input a

finite unary vocabulary P, an atomic description over P, and a formula q) (q), and
decides whether Pr*(p) is 0 or 1. The machine uses time 20(lllllg(v()/l)) and space
O(l011ql log(v(p) + 1)).

We now analyze the complexity of computing prSq’ (p 0). We begin with the case of a
fixed finite vocabulary q.

48 ADAM J. GROVE, JOSEPH Y. HALPERN, AND DAPHNE KOLLER

THEOREM 4.23. Fix a finite unary vocabulary P with at least one predicate symbol.
For qg, 0 _.(), the problem of computing prSq’ (p O) is PSPACE-complete. Moreover,
deciding ifPr(p true) is PSPACE-hard, even if q9 /2-({P}).

Proof. By Corollaries 3.41 and 3.42, if qg, 0 6/2-({P }) and P 6 q, then Pr(0 0)
PrimP/(q 0) Pr’ (q9 0). Thus, the lower bound follows immediately from Theorem 4.7.

For the upper bound, we follow the same general procedure of Compute-Pro" generating
all atomic descriptions of size d(O) + ICI, and computing Pr* (q9 0). The only difference is
that, rather than counting only model descriptions ofthe highest degree A (Tt) (c (p), v 7t),
we count all atomic descriptions of the highest activity count ot(p). Clearly, since there are
fewer atomic descriptions than model descriptions, and an atomic description has a shorter
description length than a model description, the complexity of the resulting algorithm can only
be lower than the corresponding complexity for random worlds. The algorithm for random
structures is therefore also in PSPACE.

Just as Theorem 4.7, Theorem 4.23 shows that even approximating the limit is hard. That
is, for a fixed e with 0 < e < 1, the problem of deciding whether PrSo* (p 0) 6 [0,] is
PSPACE-hard even for p, 0 6 -({P}). As for the case of random worlds, this lower bound
cannot be generalized to arbitrary intervals [rl, r2] unless we allow equality. In particular, for
any fixed finite language, there is a fixed number of atomic descriptions of size 1, where this
number depends only on the language. Therefore, there are only finitely many values that the
probability prSc* (p 0) can take for p, 0 Z]- (q). However, and unlike the case for random
worlds, for random structures once we have equality in the language, a single unary predicate
suffices in order to have this probability assume infinitely many values.

THEOREM 4.24. Fix afinite unary vocabulary P that contains at least one unarypredicate
and rational numbers 0 < rl < r2 <_ such that [rl, r2] [0, 1]. For qg, 0 E(), the
problem of deciding whether prSq’ (q9 0) 6 [rl, r2] is PSPACE-hard, even given an oracle
that tells us whether the limit is well defined.

Proof. We first prove the result under the assumption that q P }.
For the case of rl 0 and r2 < 1, the result follows trivially from Theorem 4.23. Let

r q/p > 0. As for random worlds, we construct formulas Pr, Or such that prSP} (0r
Or1) r. The formula 0r is 3x P(x) /3<-Px P(x). The formula qgr is x P(x) /<-qx P(x).
Clearly, there are p atomic descriptions consistent with Orl, among which q are also consistent

{P}with (/grl. Thus, rro ((/gr Or q/p rl.
Now, as in Theorem 4.8, let/3 be a QBF, and define f as in that proof. As there,

prSoP}(fl/ (19r Orl / X "-P(x)) is 0 if/3 is false andrl if it is true. Thus, by computing this
probability, we can decide the truth of/, proving PSPACE-hardness in this case.

The result in the case that qJ : P is not immediate as it is for random worlds, since
the asymptotic probability in the case of random structures may depend on the vocabulary.
We define a formula 0’ to be the following conjunction: for each predicate P’ in q P },
0’ contains the conjunct Yx P’ (x). If q contains constant symbols, let c be a fixed constant

symbol in q. Then 0’ also contains the conjunct/p,, P’(c), and conjuncts c c’ for each
constant c’ in q. We leave it to the reader to check that for any formulas o, 0 6 ({P}),

* 0 0’).r (ol0)= (ol A r]

For the case of a finite vocabulary and a bound on the quantifier depth, precisely the same
argument as that given for Theorem 4.9 allows us to show the following.

THEOREM 4.25. Fix d >_ O. For p, 0 _.(q) such that d(cp), d(O) < d, we can effectively
construct a linear time algorithm that decides ifprSdo* (p O) is well defined and computes it

if it is.
We now drop the assumption that we have a fixed finite vocabulary. As we previously

discussed, there are at least two distinct interpretations for asymptotic conditional probabilities

ASYMPTOTIC CONDITIONAL PROBABILITIES 49

in this case. One interpretation of "infinite vocabulary" views f2 as a potential or background
vocabulary, so that every problem instance includes as part of its input the actual finite subvo-
cabulary that is of interest. So although this subvocabulary is finite, there is no bound on its
possible size. The alternative is to interpret infinite vocabularies more literally, using the limit
process explained in 2.3. As we mentioned, for random worlds the two interpretations are
equivalent. However, this is not the case for random structures, where the two interpretations
may give different answers. In fact, from Corollary 2.9, it follows that the random-structures
method reduces to the random-worlds method under the second interpretation. Thus, the com-
plexity results are the same for random worlds and random structures under this interpretation.
As we already observed, even under the first interpretation, the random-structures method re-
duces to the random-worlds method if there is a binary predicate in the language. It therefore
remains to prove the complexity results for random structures only for the first interpretation,
where the vocabulary is considered to be part of the input, under the assumption that the
language is unary. As Example 2.4 shows, in this case, the random-worlds method may give
answers different from those given by the random-structures method. Nevertheless, as we
now show, the same complexity bounds hold for both random worlds and random structures.

As for the case of the finite vocabulary, the lower bounds for computing the probability
(Theorem 4.15) and for approximating it (Theorem 4.16) only use formulas in -(79 for
some 79 C Q. Therefore, by Corollaries 3.41 and 3.42, the lower bounds hold unchanged for
random structures.

THEOREM 4.26. For P C T and p, 0 -(79) of depth at least 2, the problem of
computing prSq’ (o O) is #EXP-hard, even given an oracle for deciding whether the limit
exists.

THEOREM 4.27. Fix rational numbers 0 < rl < r2 < 1 such that [rl, r2] [0, 1]. For
2 and qg, 0 .- (79) ofdepth 2, the problem ofdeciding whether Pr’ (q9 0) 6 [rl, r2]

is both NEXPTIME-hard and co-NEXPTIME-hard, even given an oraclefor deciding whether
the limit exists.

It remains only to prove the #EXP upper bound for computing the asymptotic probability.
THEOREM 4.28. For q c_ 2 and qg, 0 (), the problem ofcomputing prS’ (q9 O) is

#EXP-easy.
Proof. We again follow the outline of the proof for the case of random worlds. Recall that

in the proof of Theorem 4.13 we construct a Turing machine such that the number of accepting
paths of M encodes, for each degree 3, count(qg) and countS(O). From this encoding we
could deduce the maximum degree, and calculate the asymptotic conditional probability. This
was accomplished by guessing a model description p/ V, and branching sufficiently often,
according to A (p), so that the different counts in the output are guaranteed to be separated.
The construction for random structures is identical, except that we guess atomic descriptions
p rather than model descriptions, and branch according to ot(p) rather than according to
A(p). Again, since there are fewer atomic descriptions than model descriptions, and the
representation of atomic descriptions is shorter, the resulting Turing machine is less complex,
and therefore also in #EXP.

5. Conclusions. In this paper and [23], we have carried out a rather exhaustive study of
complexity issues for two principled methods for computing degrees of belief: the random-
worlds method and the random-structures method. These are clearly not the only methods
that one can imagine for this purpose. However, as discussed in [2] and [22], both methods
are often successful at giving answers that are intuitively plausible and which agree with
well-known desiderata. We believe this success justifies a careful examination of complexity
issues.

50 ADAM J. GROVE, JOSEPH Y. HALPERN, AND DAPHNE KOLLER

Here we have focused on the case where the formula we are conditioning on is a unary
first-order formula. As we mentioned in the introduction, in many applications we want to
move beyond first order and also allow for statistical knowledge. Both methods continue to
make sense in this case. Furthermore, as shown in [33], [3], and [27], for a unary language we
can often calculate asymptotic probabilities in the random-worlds method, using a combination
of the techniques in this paper and the principle of maximum entropy. Since a lot is already
known about computing maximum entropy (for example, [7], [9], 19]), this combination may
lead to efficient algorithms for some practical problems.

Aeknowledgrnents. We would like to thank Fahiem Bacchus, with whom we started
working on this general area of research. We would also like to thank Ron Fagin and Moshe
Vardi for useful comments on a previous draft of this paper. Ron’s comments encouraged
us to discuss both the random-structures and the random-worlds methods in this paper. We
would also like to thank Moshe for pointing out the reference [31]. Finally, we would like to
thank Andrew Granville for help with some of the details of Theorem 4.8.

REFERENCES

W. ACKERMANN, Solvable cases of the decision problem, North-Holland, Amsterdam, 1954.
[2] E BACCHUS, A. J. GROVE, J. Y. HALPERN, AND D. KoIIEr,From statistics to belief, in Proc. National Conference

on Artificial Intelligence (AAAI ’92), AIAA Press/MIT Press, New York, 1992, pp. 602-608.
[3] , From statistical knowledge bases to degrees of belief, Tech. Report 9855, IBM Almaden Re-

search Center, San Jose, CA, 1994; Artif. Intell., to appear. Also available by anonymous ftp from
logos.uwaterloo.ca/pub/bacchus or via WWW at http://logos.uwaterloo.ca. A preliminary version of this
work appeared in Proc. International Joint Conference on Artificial Intelligence (IJCAI ’93), Chamb6ry,
France, 1993, pp. 563-569.

[4] A. BLASS, Y. GUREVICH, AND D. KOZEN, A zero-one law for logic with a fixed point operator, Inform. and
Control, 67 (1985), pp. 70-90.

[5] A. K. CHANDRA, O. KOZEN, AND L. J. STOCKMEYER, Alternation, J. Assoc. Comput. Mach., 28 (1981),
pp. 114-133.

[6] A.K. CHANDRA AriD P. M. MERLIN, Optimal implementation of conjunctive queries in relational databases, in
Proc. 9th ACM Symp. on Theory of Computing, Boulder, CO, 1977, pp. 77-90.

[7] E C. CHZFSFMAY, A method of computing generalized Bayesian probability values for expert systems, in
Proc. Eighth International Joint Conference on Artificial Intelligence (IJCAI ’83), Karlsruhe, Germany,
1983, pp. 198-202.

[8] K. CoMvroy, 0-1 laws in logic and combinatorics, in Proc. 1987 NATO Adv. Study Inst. on algorithms and
order, I. Rival, ed., Reidel, Dordrecht, the Netherlands, 1988, pp. 353-383.

[9] W.E. DZMIrqG AND F. F. STEPHAN, On a least squares adjustment ofa sampledfrequency table when the expected
marginal totals are known, Ann. Math. Stat., 11 (1940), pp. 427-444.

10] K.G. DENBIGH AND J. S. DENBIGH, Entropy in Relation to Incomplete Knowledge, Cambridge University Press,
Cambridge, UK, 1985.

[11] B. DlEBEN AND W. O. GOLDFAe,3, The Decision Problem: Solvable Classes of Quantificational Formulas,
Addison-Wesley, Reading, MA, 1979.

[12] H.B. EYDErTON, A Mathematical Introduction to Logic, Academic Press, New York, 1972.
13] R. FAGIN, Probabilities onfinite models, J. Symbol. Logic, 41 (1976), pp. 50-58.
[14] ,The number offinite relational structures, Discrete Math., 19 (1977), pp. 17-21.
15] H. GAIFMAN, Probability models and the completeness theorem, in Internat. Congress of Logic Methodology

and Philosophy of Science, 1960, pp. 77-78. This is the abstract of which [16] is the full paper.
[16] ., Concerning measures in first order calculi, Israel J. Math., 2 (1964), pp. 1-18.
[17] M. GAREY AND D. S. JOHNSON, Computers and Intractability: A Guide to the Theory of NP-completeness,

W. Freeman and Co., San Francisco, CA, 1979.
[18] Y. V. GLEBSKI[, D. I. KOGAN, M. I. LiOGON’K[[, AND V. A. TALANOV, Range and degree of realizability of

formulas in the restrictedpredicate calculus, Kibernetika, 2 (1969), pp. 17-28.
[19] S. A. GOLDMAN, Efficient methods for calculating maximum entropy distributions, Master’s thesis, EECS

Department, MIT, Cambridge, MA, 1987.
[20] E. GRANDJEAN, Complexity of the first-order theory of almost all structures, Inform. and Control, 52 (1983),

pp. 180-204.
[21 A. J. Ge,ovE, J. Y. HALPERN, AND D. KOLLEI, Asymptotic conditional probabilities for first-order logic, in

Proc. 24th ACM Symp. on Theory of Computing, 1992, pp. 294-305.

ASYMPTOTIC CONDITIONAL PROBABILITIES 51

[22] A.J. GROVE, J. Y. HALPERN, AND D. KOLLER, Random worlds and maximum entropy, J.A.I. Res., 2 (1994), pp.
33-38.

[23] ,Asymptotic conditional probabilities: The non-unary case, Research Report RJ 9564, IBM Almaden
Research Center, San Jose, CA, 1993; J. Symbol. Logic, to appear.

[24] I. HACKING, The Emergence ofProbability, Cambridge University Press, Cambridge, UK, 1975.
[25] E.T. JAYNES, Where do we stand on maximum entropy?, in The Maximum Entropy Formalism, R. D. Levine

and M. Tribus, eds., MIT Press, Cambridge, MA, 1978, pp. 15-118.
[26] J.M. KEYNES, A Treatise on Probability, Macmillan, London, 1921.
[27] D. KOLLER, From Knowledge to Belief, Ph.D. thesis, Dept. of Computer Science, Stanford University, 1994.
[28] J.v. KRIES, Die Principien der Wahrscheinlichkeitsrechnung und Rational Expectation, Freiburg, 1886.
[29] H.R. LEWIS, Unsolvable Classes of Quantificational Formulas, Addison-Wesley, New York, 1979.
[30] Complexity results for classes of quantificational formulas, J. Comput. System Sci., 21 (1980),

pp. 317-353.
[31 M.I. LIOGON’KiL On the conditional satisfiability ratio oflogicalformulas, Math. Notes Acad. USSR, 6 (1969),

pp. 856-861.
[32] J. LYNcH, Almost sure theories, Ann. Math. Logic, 18 (1980), pp. 91-135.
[33] J. B. PARIS AND A. VENCOVSKA, On the applicability of maximum entropy to inexact reasoning, Internat.

J. Approx. Reasoning, 3 (1989), pp. 1-34.
[34] S.J. PROVAN AND M. O. BALL, The complexity of counting cuts and ofcomputing the probability that a graph

is connected, SIAM J. Comput., 12 (1983), pp. 777-788.
[35] D. ROTH, On the hardness of approximate reasoning, in Proc. Thirteenth International Joint Conference on

Artificial Intelligence (IJCAI ’93), Chamb6ry, France, 1993, pp. 613-618.
[36] G. SHAFR, Personal communication, 1993.
[37] L.J. STOCKMYER, The polynomial-time hierarchy, Theoret. Comput. Sci., 3 (1977), pp. 1-22.
[38] L.G. VALIANT, The complexity ofcomputing the permanent, Theoret. Comput. Sci., 8 (1979), pp. 189-201.
[39] ., The complexity ofenumeration and reliability problems, SIAM J. Comput., 8 (1979), pp. 410-421.
[40] R. L. VAUGHT, Applications of the Lowenheim-Skolem-Tarski theorem to problems of completeness and

decidability, Indag. Math., 16 (1954), pp. 467-472.

SIAM J. COMPUT.
Vol. 25, No. 1, pp. 52-82, February 1996

() 1996 Society for Industrial and Applied Mathematics
002

A FAST DERANDOMIZATION SCHEME AND ITS APPLICATIONS*

YIJIE HAN

Abstract. This paper presents a fast derandomization scheme for the PROFIT/COST problem. Through the
applications of this scheme the time complexity of O (log n log log n) for the A + vertex-coloring problem using
O((m + n)! log logn) processors on the concurrent read exclusive write parallel random-access machine (CREW
PRAM), the time complexity of O(log2"5 n) for the maximal independent set problem using O((m + n)/log 1"5 n)
processors on the CREW PRAM and the time complexity of O (log25 n) for the maximal matching problem using
O((m + n)! log’5 n) processors on the exclusive read exclusive write (EREW) PRAM are shown.

Key words, derandomization, parallel algorithms, graph algorithms, graph coloring, maximal independent set,
maximal matching

AMS subject classifications. 05C70, 05C85, 68Q20, 68Q22, 68Q25, 68R10

1. Introduction. Recent progress in derandomization has resulted in several efficient
sequential and parallel algorithms [ABI], [BR], [BRS],]HI,]HI[, [KW], ILl[, [L2], [L3],
[MNN], [PSZ], [Rag], [Sp]. The essence of the technique of derandomization lies in the
design of a sample space that is easy to search, in the probabilistic analysis showing that
the expectation of a desired random variable is no less than demanded, and in the search
technique which ultimately returns a good sample point. Raghavan [Rag] and Spencer [Sp]
showed how to search an exponential-size sample space to obtain polynomial-time sequential
algorithms. Their technique cannot be applied directly to obtain efficient parallel algorithms
through derandomization. Alon et al. [ABI], Karp and Wigderson [KW], and Luby [L 1], [L2],
[L3] developed schemes using O(n) random variables with limited independence on a small
sample space and thus obtained efficient parallel algorithms through derandomization. Berger
and Rompel [BR] and Motwani et al. [MNN] presented novel designs in which (log n)-wise
independent random variables are used in randomized algorithms and thenA/’C [Co] algorithms
are obtained through the derandomization of these randomized algorithms.

To obtain efficient parallel algorithms, i.e., algorithms using no more than a linear
number of processors and running in polylog time, Luby [L2], [L3] outlined an elegant frame-
work in which pairwise independent random variables are designed on a sample space that
facilitates binary search. His framework [L2], [L3] consists of a derandomization scheme
for the bit-pairs PROFIT[COST problem and the general-pairs PROFIT/COST problem,
and applications of the scheme to three problems: the A + vertex-coloring problem,
the maximal independent set problem, and the maximal matching problem. By applying
his derandomization scheme, he obtained a linear processor concurrent read exclusive write
(CREW) algorithm for the A + 1 vertex-coloring problem with time complexity
O (log3 n log log n). Although he put the three problems in a very nice setting, his deran-
domization scheme is not efficient enough to improve on parallel algorithms for the maximal
independent set problem and the maximal matching problem obtained through ad hoc designs
[GS2],]IS[. To illustrate his ideas, Luby gave linear processor algorithms for the maximal
independent set problem and the maximal matching problem with time complexity O (log5 n)
through derandomization [L3].

Recently, Han and Igarashi]HI[gave a fast derandomization scheme for the bit-
pairs PROFIT/COST problem. Their scheme yields a fast CREW parallel algorithm for

*Received by the editors January 11, 1991; accepted for publication (in revised form) July 22, 1994. Part of
this paper appeared in Proc. 1991 Workshop on Algorithms and Data Structures, Carleton University, Ottawa, ON,
Canada, Lecture Notes in Comput. Sci. 519, Springer-Verlag, Berlin, New York, 1991, pp. 177-188.

Department of Computer Science, University of Kentucky, Lexington, KY 40506. Current address: Electronic
Data Systems, Inc., 37350 Ecorse Road, Romulus, M148174.

52

DERANDOMIZATION 53

the bit-pairs PROFIT/COST problem with time complexity O (log n) using a linear number
of processors. Han then showed [HI how to obtain an exclusive read exclusive write (EREW)
algorithm with the same time and processor complexities. Their result improves the time
complexity of Luby’s A + vertex-coloring algorithm to O(log n). The most interesting
feature in Han and Igarashi’s scheme [H], [HI] is the design of a sample space which allows
redundancy and mutual independence to be exploited.

In this paper, we give a new scheme to speed up the derandomization process of the
general-pairs PROFIT/COST problem. This scheme allows several bit-pairs PROFIT/COST
problems in one general-pairs PROFIT/COST problem to be solved in one pass. We note that
our scheme cannot be constructed efficiently under the setting of previous derandomization
schemes [L2], [L3] because it would require more than a linear number of processors. The
power of our derandomization scheme allows us to improve the time complexity for the
A + 1 vertex-coloring problem and to obtain new efficient parallel algorithms for the maximal
independent set problem and the maximal matching problem.

A substantial amount of effort has been put into the search for efficient parallel algorithms
for these three problems. There are important special cases where optimal parallel algorithms
are known. Hagerup et al. [HCD] have an optimal parallel algorithm for the 5-coloring of
planar graphs which implies an optimal parallel algorithm for the maximal independent set
problem for planar graphs. Significant progress has also been made on the three problems for
graphs [ABI], [GS 1], [GS2], [HI], [IS], [KW], [L1], [L2], [L3]. In this paper, we only study
these three problems on graphs.

Luby obtained through derandomization a CREW algorithm for the A + vertex-coloring
problem with time complexity O (log n log log n) using a linear number of processors. Han
and Igarashi’s work [HI] improves the time complexity for the A + 1 vertex-coloring problem
to O (log n). In this paper, we improve the time complexity for the A + 1 vertex-coloring
problem to O (log2 n log log n) using O ((m + n)/ log log n) processors on the CREW parallel
random-access machine (PRAM) [FW]. For the maximal independent set problem, the first
N’C algorithm, which was obtained by Karp and Wigderson [KW], has time complexity
O(log4 n) using O(n/log n) processors on the EREW PRAM. Their result has since been
improved to time O (log2 n) using O (mn2) processors on the EREW PRAM by Luby [L 1 and
to time O (log n) using O ((m + n)/ log n) processors on the EREW PRAM by Goldberg and
Spencer [GS1], [GS2]. In this paper, we obtain an EREW algorithm with time complexity
O (log25 n) using O ((m + n)/ log5 n) processors. We are able to achieve the same time
complexity using O((m + n)/log15 n) processors on the CREW PRAM. We also obtain
a CREW algorithm with time complexity O(log2 n) using O(n276) processors. For the
maximal matching problem, Israeli and Shiloach’s concurrent read concurrent write (CRCW)
algorithm [IS] has time complexity O(log n) using O(m + n) processors. In this paper,
we give an EREW algorithm with time complexity O (log25 n) using O ((m + n)/ log5 n)
processors.

Since our algorithms are obtained through derandomization, they are derived at a loss of
efficiency from the original randomized algorithms.

Our approach to the three problems follows that of Luby’s [L2], [L3]. Our results are
obtained through the novel design of sample spaces which follows Han and Igarashi’s work
[H], [HI], the formulation of our fast derandomization process, and the adaptive applications
of the fast derandomization techniques to the three problems.

We have outlined here only the main results achieved. There are ramifications of our
results which we will mention in the remaining sections of the paper.

2. Preliminaries. The bit-pairs PROFIT (BPC) and the general-pairs PROFIT/
COST (GPC) problems as formulated by Luby [L2] can be described as follows.

54 YIJIE HAN

Let x =< Xi E {0, 1}q 0 n >. Each point x out of the 2nq points is

assigned probability 1/2nq. Given function B() i,j ,j(xi, xj), where j,j is defined

as a function {0, 1 }q {0, 1 }q --+ TL. The GPC problem is to find a good point y such that

B(y) > E[B(x)]. B is called the general-pairs BENEFIT function and the fi,j’s are called
the GPC functions. When q 1, the GPC problem is called a BPC problem and the fi,j’s are
called the BPC functions.

The size m of the problem is the number of nontrivial PROFIT]COST functions present
in the input.

Let G (V,E) be a graph with IV] n and]El m. The degree ofv E V is
denoted by d(v). Let A max{d(v)lv V}. The output of the A + 1 vertex coloring is
color(v) {1 A + 1} for all v 6 V such that if (i, j) 6 E, then color(i) color(j).
I

V is an independent set if for v, w E I, v w, (v, w) f E. I is a maximal independent

set if I is not a proper subset of any other independent set. M

E is a matching set if no

two edges in M have a common vertex. M is maximal if it is not a proper subset of any other
matching set.

Han and Igarashi]HI] have formulated the BPC problem as a tree-contraction problem
[MR]. Without loss of generality, assume that n is a power of 2. n 0/1-valued uniformly
distributed mutually independent random variables ri, 0 <_ < n, are used. A random-

variable tree T is built for x. T is a complete binary tree with n leaves plus a node which is
the parent of the root of the complete binary tree (thus there are n interior nodes in T and the
root of T has only one child). The n variables xi, 0 < < n, are associated with n leaves of
T, and the n random variables ri, 0 <_ < n, are associated with the interior nodes of T. The
n leaves of T are numbered from 0 to n 1. Variable xi is associated with leaf i.

Variables xi, 0 < < n, are chosen randomly as follows. Let r--< ri --0 n

1 > and let rio, ril rfiog" be the random variables on the path from leaf to the root of T.
X--’logRandom variable xi is defined to be xi(r (e_.j=0 ij ri -4- riog.) mod 2, where ij is the

jth bit of starting with the least significant bit. It can be verified [H] that random variables
xi, 0 < < n, are uniformly distributed mutually independent random variables.

Due to the linearity of expectation and pairwise independence of random variables in

x, E[B(x)] Zi,j E[fi,j(xi, xj)])-i,j E[fi,j(xi(r), xj(r))] E[B(x r))]. The

problem now is to find a sample point r such that B(r >_ E/B] i,j(fi,j(O, O) +
f/,j(O, 1) + f/,j(1, O) + f/,j(1, 1)).

Han and Igarashi’s algorithm [HI] fixes random variables ri (setting their values to O’s and
1 ’s) one level in a step starting from the level next to the leaves (level O) and going upward on
the tree T until level log n. Since there are log n + interior levels in T, all random variables
will be fixed in log n + steps.

Let random variable ri at level 0 be the parent of the random variables xi and xi#o in the
random variable tree, where i#j is a number obtained by complementing the jth bit of i. ri
will be fixed as follows. Compute f0 E[j,i#0 + #o,i Iri O] (j,i#0(O, O) + fi,i#0(1, 1) +
j#0,i (0, 0) + fi#0,i(1, 1))/2 and fl E[fi,i#0 q- fi#o, ilri 1] (L,i#0(0, 1) + fi,i#0(1, 0) +
j%0,i (0, 1) + j%0,i (1, 0))/2. If f0 > fl, then set ri to 0 else set ri to 1. All random variables
at level 0 will be fixed in parallel in constant time using n processors. This results in a smaller
space with higher expectation for B. Therefore, this smaller space contains a good point.

If ri is set to 0, then xi xi#o; if ri is set to 1, then xi xi#o. Therefore, after ri is
fixed, xi and xi#o can be combined. The n random variables xi, 0 < < n, can be reduced
to n/2 random variables. PROFIT/COST functions f/,j, f/#0,j, fi,j#0, and f/#0,j#0 can also be
combined into one function. It can be checked that the combining can be done in constant
time using a linear number of processors.

DERANDOMIZATION 55

Bit-setting info. column j.

,lllllllllllllllllllllllllllll Bit-setting info.

row j. o o

FIG. 1.

During the combining process, variables X and Xi#0 are combined into a new variable

xLi/2jl), and functions f/,j....f/#0,j f/j#0, and j%0,j#0 are combined into a new function f(i12j Ij/21

After combining, a new function B (1) is formed which has the same form as B but has only
n/2 variables. As we stated above, E[B1)] > E[B].

What we have explained above is the first step of the algorithm in [HI[. This step
takes constant time using a linear number of processors. After k steps, the random vari-
ables at levels 0 to k 1 in the random-variable tree are fixed, the n random variables
{X0, Xl, Xn-1} are reducedto n/2 random variables {x0(> xlk) .Xn/2_l-

(}, and functions

f/,j j 6 {0, 1, n 1 }, have been combined into f.(), i, j 6 {0 1 n/2 1 }.
1,J

After log n steps, B (lgn) ,e(logn) n) (log
J0,0 (X0(lg n)). The bit at the root of the random-X0

/.(log n) e (log n)variable tree is now set to 0 if J0,0 (0, 0) > J0,0 (1, 1), and otherwise. Thus Han and
Igarashi’s algorithm [HI[solves the BPC problem in O(log n) time with a linear number of
processors.

Let n 2k and A be an n n array. Elements A[i, j], A[i, j#0], A[i#0, j], and
A[i#0, j#0] form a gang, which is denoted by ga[li/2], [j/2]]. All gangs in A form ar-
ray ga.

When visualized on a two-dimensional array A (as shown in Fig. 1), a stage of Han
and Igarashi’s algorithm can be interpreted as follows. Let function fi,j be stored at A[i, j].
Setting the random variables at level 0 of the random-variable tree is done by examining the
PROFIT/COST functions in the diagonal gang of A. Function fi,.i then gets the bit-setting
information from ga [/i/2/, /i/2/] and ga LJ/2/, j/2/] to determine how it is to be combined
with other functions in gA [/i/2/, 1j/2/].

A derandomization tree D can be built which reflects the way the BPC functions are
combined. D is of the following form. The input BPC functions are stored at the leaves, JS,.i
is stored in Ao[i, j]. A node A[i, j] at level > 0 is defined if there exist input functions in
the range A0[u, v], 2 < u < (i + 1) 2, j 2 < v < (j + 1) 2. A derandomization
tree is shown in Fig. 2.

Tree D can be constructed [H], [HI] by first sorting the input into the file-major indexing
and then building the tree bottom-up. The derandomization tree helps to reduce the space
requirement for the BPC problem. Han and Igarashi’s algorithm [HI] has time complexity
O (log n) using a linear number of processors.

The algorithm given by Han and Igarashi [HI] is a CREW algorithm. Recently, Hart [H]
has given an EREW algorithm for the BPC problem with time complexity O (log n) using a
linear number of processors.

We now discuss some variations of the above algorithm to be used in 5 and 6.

56 YIJIE HAN

Level 3

Level 2

Level

Level 0

FIG. 2. A derandomization tree. Pairs in the circles and the subscripts ofPROFIT/COSTproblems.

In some applications, the BPC functions cannot be combined in order to obtain an ef-
ficient algorithm. If the functions are not combined, then there could be several BPC func-
tions fl (xil, xj), f2(xi2, xj2) (xik, xk) associated with an interior node r in the random-
variable tree, where xi,, xj, are leaves in the subtree rooted at r. If r is not the root of the whole
random-variable tree, then one of xi,, xj, is in the left subtree of r and the other in the right
subtree of r, < < k.

Let xi be a leaf of a random-variable subtree T. Let the random variables on the path
from xi to the root r of T be set to ao, al al. We define (xi, r)],j_o(aj ij) mod 2.
This function resembles the function defined by Luby [L2], [L3].

In fixing r, we tentatively set r to 0 and 1, respectively, and evaluate ft((xi,, r),
(xj,, r)) + ft((xi,, r) 1, (x,, r) @ 1), 1 < < k, where @ is the exclusive-or function.

We then get the sum of these functions and compare the sum for r 0 with the sum for r 1
to decide whether r should be set to 0 or 1. It takes O (log n) time to get the sum because there
are at most O(n2) functions.

We note that (xi, r) can be evaluated progressively as the derandomization process
proceeds, i.e., (xi, r) (tp (xi, r’) + tr) mod 2, where r is the parent of r’ and is the bit
of corresponding to r.

Thus if the functions are not combined in the derandomization process, a BPC problem
requires O (log2 n) time to solve.

In our applications we also use a combination of Luby’s technique [L2] and Han and
Igarashi’s technique [H], [HI] for solving a BPC problem. The random-variable tree used in
Luby’s algorithm degenerates to a chain of length log n + plus n leaves. Therefore there are
log n 4- 1 random variables r0, rl rlogn associated with the interior nodes in the tree. xi is

-,logchosen randomly by the formula xi z_,j=0 ij.rj+rlogn) mod 2. It can be shown [L2] that
xi’s are pairwise independent random variables. In Luby’s algorithm, the random variables in
the random-variable tree are also fixed one level at a time. His algorithm takes O (log n) time
to fix one level resulting in time complexity O (log2 n). We stress that the random-variable
tree used in Luby’s algorithm has only log n + random variables. Thus the sample space
contains only 2n sample points, while the sample space used in Han and Igarashi’s algorithm
[H], [HI] has 2 sample points.

Combining Luby’s technique and Han and Igarashi’s technique [H], [HI], we could
solve a BPC problem by using a random-variable tree T as shown in Fig. 3(c). T has
S [(log n + 1)/a] blocks, where a isa parameter. Blocks contains levels as toa(s + 1)
of T. Block 0 has Co [n/2 chains. Block s has C,. [Cs-1/2a chains. Each chain

DERANDOMIZATION 57

I ,Blck

(a) (b) (c)

FIG. 3. (a) Luby’s tree. (b) Han and lgarashi’s tree. (c) A tree ofcombination.

in block s has length a running from level as to level a(s + 1) 1. A node at level as in
a chain (except the one in the last chain) has 2a children at level as 1. Block S has
only one chain of length log n + 1 a (S 1). There is a random bit r at each interior node
of T and random variable xi is associated with the ith leaf of T. xi is chosen randomly as

(X--logxi(r z..,j=0 ij rij + ri,og,) rood 2, where rio, ri riog, are the random variables on
the path from leaf to the root of T. It is straightforward to show that the xi’s are uniformly
distributed pairwise independent random variables.

Different random variable trees are shown in Fig. 3.

3. A scheme for the GPC problem. In this section, we present a scheme to speed up
the derandomization process for the GPC problem.

In [L2] and [L3], Luby presented the following derandomization scheme for solving the
GPC problem.

Let y= (Yi E {0, 1} p --0, 1 n- 1). Let x,, p < u < q, be totally
independent random bit strings, each of length n. Let z be a vector of n bits. We write
the BENEFIT function B(xo, Xl xn-1), where each xi is a variable containing q bits,

as B(xq_a Xp+lXp Y), where y contains the least significant p bits of all variables and

xi contains the ith bits of all variables. Define TB(y) E[B(xq_a Xp+lXpY)].Then
E[Tn(xp Y)] E[E y)] T B(y)Xp]]-- E[B(xq_[B(Xq_l Xp+l Z Y)[Z Xp

That is, TB(y can also be obtained by first computing rB(xp y), and TB(y E[TB(xp y)]- TB z Y Pr(Xp= z Xp_ x0= Y). Thus there exists a z such that TB(z Y) >

TB(y). After TB(Xp Y are evaluated for all values of Xp, the problem of finding such a z
is a BPC problem. Because in the GPC problem function B is the sum of GPC functions,
each depending on at most two variables, pairwise independent random variables can be used
for bits in each x,, p + _< u < q. Luby’s algorithm for the GPC problem then uses his

algorithm for the BPC problem to find a z satisfying TB(z y) > E[TB(xpY)] TB(y),

thus fixing the random bits in x-.
Luby’s solution [L2], [L3] to the GPC problem can be interpreted as follows: it solves

the GPC problem by solving q BPC problems, one for each x-. These BPC problems are

solved sequentially. After the BPC problems for x,, 0 < u < v, are solved, BPC functions

fir,jr (Xiv, Xjv) are evaluated based on the setting of bits Xi, Xju 0 bl < 1). Suppose Xiu is
set to Yi, and xj, is set to yj,, 0 < u < v. o,jv (xi,,, x) is evaluated as ,.i, (Yio, Yjv)
E[fi,j(xi, xj)lXio Yio, Xjo Yjo xiv_l Yio-1, xjv-i Yjo_, Xiv Yi., xj yjo],
Yiv, Yjo 0, 1. After BPC functions fio,jo (xi, xj) have been obtained and stored in a table,
the BPC algorithm is invoked to fix xv.

If we are to solve several BPC problems in a GPC problem simultaneously, we must have
BPC functions fiv,jo (xiv, xjo) before the setting of the bits Xiu and x.i,, 0 _< u < v. Since there

58 YIJIE HAN

are a total of 2v bits, we could try out all possible 4 bit patterns. For each bit pattern we
have a distinct function fiv,jv(xiv, xjv). If q O(log n), we need only a polynomial number
of processors to work on all these functions.

If we use Luby’s random-variable tree for each BPC problem, then there are log n +
random variables and 2n sample points for each BPC problem. Thus if we try to solve for x-
before x,, 0 < u < v, are solved, we have to take care of (2n) possible situations. Apparently
more than a polynomial number of processors are needed if v is not a constant. So how about
using Han and Igarashi’s random-variable tree [H], [HI]? There are now n random variables
and 2 sample points for each BPC problem. The situation seems to be even more difficult
to deal with. However, by close examination, we find out that instead we could reduce the
number of processors by using Han and Igarashi’s random-variable tree.

We now present a scheme which allows several x- ’s to be fixed in one pass using Han and
Igarashi’s random-variable tree for each BPC problem.

First we give a sketch of our approach. The incompleteness of the description in this
paragraph will be elaborated on in the rest of this section. Let P be the GPC problem we are
to solve. P can be decomposed into q BPC problems to be solved sequentially. Let P, be the
uth BPC problem. Imagine that we are to solve P,, 0 _< u < k, in one pass, i.e., we are to

fix x0, X xk-1 in one pass, with the help of enough processors. For the moment, we can
have a random-variable tree T, and a derandomization tree D, for P,, 0 < u < k. In Step
j, our algorithm will work on fixing the bits at level j u in T,, 0 < u < min{k 1, j }.
The computation in each tree D, proceeds as we have described in the last section. Note that
BPC functions 3,.i (Xiv, Xjv) depend on the setting of bits xi. xj., 0 bl < U. The main

difficulty with our scheme is that when we are working on fixing x, the x,, 0 < u < v,
have not been fixed yet. The only information we can use when we are fixing the random
variables at level of T, is that random variables at levels 0 to + c 1 are fixed in T,_.,
0 <_ c < u. This information can be accumulated in the pipeline of our algorithm and
transmitted on the bit-pipeline trees. Fortunately, this information is sufficient for us to speed
up the derandomization process without resorting to too many processors. For the sake of a
clear exposition, we first describe a CREW derandomization algorithm. We then show how
to convert the CREW algorithm to an EREW algorithm.

Suppose we have c -=0(m 4i) processors available, where c is a constant. Assign
cm 4" processors to work on P, for x,. We shall work on x,, 0 < u < k, simultaneously in
a pipeline. The random-variable tree for P, (except that for P0) is not constructed before the
derandomization process begins; rather, it is constructed from a forest as the derandomization
process proceeds. A forest containing 2" random-variable trees corresponds to each variable

Xi. in Pu because there are 2" bit patterns for Xij 0 j < U. We use F, to denote the

random-variable forest for P,. We fix the random bits on the/th level of F (for x) under the
condition that random bits from level 0 to level / c 1, 0 < c < v, in Fv-,. have already been
fixed. We perform this fixing in constant time. The 2" random-variable trees corresponding
to each random variable xi, are built bottom-up as the derandomization process proceeds.
Immediately before the step in which we fix the random bits on the/th level of F,, the 2"
random-variable trees corresponding to xi, are constructed up to the/th level. The details of
the algorithm for constructing the random-variable trees will be given later in this section.

Consider a GPC function fi,j(xi, xj) under the condition stated in the last paragraph.
When we start working on x-, we should have the BPC functions fir,jr (Xiv, Xjv) evaluated

and the function values stored in a table. However, because x,, 0 < u < v, have not
been fixed yet, we have to try out all possible cases. There are a total of 4 patterns
for bits xi.,xj., 0 <_ u < v. We use 4 BPC functions for each pair (i, j). We use

DERANDOMIZATION 59

0 1

O0 O0 O0 O0 11 11 11 11 01 01 Ol 01 10 10 10 10

O0 11 01 I0 O0 11 Ol 10 O0 11 01 i0 O0 11 01 10

FIG. 4.

fio,jv (Xiv, xjo)(Yv-lYv-2 Yo, Zv-lZv-2" ZO) to denote the function fio,jo (Xiv, Xjv), obtained
under the condition that (Xiv_lXiv_2 Xio Xjv_lXjv_2 Xjo is set to (Yv-lYv-2 YO,

Zv-lZv-2 ZO).
For each pair (w, w#0) at each level (this is the level in the random-variable forest),

0 < < log n, a bit-pipeline tree is built (Fig. 4) which is a complete binary tree of height
2k. Nodes at even depth from the root in a bit-pipeline tree are selectors, and nodes at odd
depth are fanout gates. A signal true is initially input into the root of the tree and propagates
downward toward the leaves. The selectors at depth 2d select the output by the decision of the
random bits which are the parents of random variables x,,,, x,,#0 in F,/. One random variable
corresponds to each selector. Let random variable r correspond to the selector s. If r is set to
0 then s selects the left child and propagates the true signal to its left child, while no signal
is sent to its right child. If r is set to 1 then the true signal will be sent to the right child and
no signal will be sent to the left child. If s does not receive any signal from its parent then
no signal will be propagated to s’s children no matter how r is set. The gates at odd depth in
the bit pipeline tree are fanout gates, and pointers from them to their children are labeled with
bits which are conditionally set. Refer to Fig. 4, which shows a bit-pipeline tree of height 4.
If the selector at the root (node 0) selects 0 (which means that the random variable which is
the parent of x, and x#00 in the random-variable forest is set to 0), then x,, x0#00, and
therefore the two random variables can only assume the patterns 00 or 11 which are labeled
on the pointers from node 1. If, on the other hand, node 0 selects then x,,, x,#00, the
two random variables can only assume the patterns 01 or 10 which are labeled on the pointers
of node 2. Let us take node 4 as another example. If node 4 selects 0 then x,,, x,,#0;

and This indicates that the bits forthus the pointers of node 9 are labeled with
0 0

(WlW0, w#01w#00) can have two patterns, (01, 01) or (11, 11).
The bit-pipeline tree built for level log n has height k. No fanout gates will be used.

This is a special and simpler case compared to the bit-pipeline trees for other levels. In the
following discussion we only consider bit pipeline tree for levels other than log n.

LEMMA 1. In a bit-pipeline tree there are exactly 2 nodes at depth 2d which will receive
the true signalfrom the root.

Proof Each selector selects only one path. Each fanout gate sends the true signal to
both children. Therefore, exactly 2’ nodes at depth 2d will receive the true signal from the
root. [3

For each node at even depth, we shall also say that it has the conditional-bitpattern (or
conditional bits, bit pattern), which is the pattern labeled on the pointer from p(i). The root
of the bit-pipeline tree has an empty string as its bit pattern.

60 YIJIE HAN

Define Step 0 as the step when the true signal is input to node 0. The function of a
bit-pipeline tree can be described as follows.

Step t: Selectors at depth 2t which have received true signals select 0 or 1 for (wt, w#Ot).
Pass the true signal and the bit-setting information to nodes at depth 2t + 2.

Now consider the selectors at depth 2d. By Lemma 1, a set of 2a selectors at depth 2d
receive the tree signal. We call this set the surviving set S,,,a. We also denote by SI,,,d the
set of bit patterns the 2a surviving selectors have, where w in the subscript is for (w, w#0)
and is the level for which the pipeline tree is built. Let selector s S,a have bit pattern
(Yd- 1Yd-2 Yo, Zd- 1Zd-2 ZO). S compares

(1) (0, O)(Yd-lYd-2 Yo Za-lZa-2 zo)
Wd, w#Oa

+ f() (1 1)(y,l-lya-2..’yo za-lze-2.., zo)
Wd, W#Od

+ a’e()w#0,,w, (0, 0)(Z-lZ,-2 Zo, Yd-lYe-2 YO)

+ ac(),#0,, (1, 1)(z,-lza-2...zo, Ya-lYa-2’’’ Yo)

with

f(l)o,w#o (0, 1)(Y,-Yd-2 YO, Zd-lZd-2 ZO)

+ f()w,,w#% (1, O)(Yd-lYd-2"’" YO, za-xZa-2.., zo)

+ aw#Oa,w(t) (0, 1)(Zd-lZd-2 ZO, Yd- lYd-2 YO)

.qt_ Jr (1)w#Oa,wd (1, O)(Zd-lZd-2 ZO, Yd-lYd-2 Yo)

and selects 0 if the former is no less than the latter and 1 otherwise. Note that the selectors
which do not receive the true signal (there are 4a 2a of them) have bit patterns which are
eliminated.

Let LStw, {oti(c, fl) Sl,,d} and RS,,,d {ill(or, fl)
LEMMA 2. L R S,,,asl,,d {0, 1}d.
Proof Lemma 2 is proved by induction. Assume that the lemma is tree for bit-pipeline

trees of height 2d 2. A bit-pipeline tree of height 2d can be constructed by using a new
selector as the root, two new fanout gates at depth 1, and four copies of the bit-pipeline tree of
height 2d 2 at depth 2. If the root selects 0, then patterns 00 and 11 are concatenated with
patterns in S,d_ ," therefore, both L St,,,d_ and R Sw,d_1 are concatenated with {0, 1 }. The
situation when the root selects is similar.

Now let us consider how functions i,,j (xi, xj) (c,/3) are combined. Take the difficult

case where both and j are odd. By Lemma 2, there is only one pattern p (or’, or) 6 Si#o,
and there is only one pattern p2 (/’,/3) 6 Sj#o,. If the selector having bit pattern pl selects
0, then xi xi#o, else xi 1 xi#o. If the selector having bit pattern p2 selects 0, then
xj xj#o else xj, xj#o. In any case, the conditional-bit pattern is changed to (or’,/3’),

e(/+l) (X X). Note thati.e., f.(t).,, (xi x) (c,/3) will be combined into ,l.ilZJa l.JlZJe lil2Ja,

X[_i/ZJct and yLj/2ja are new random variables, and here we are not using a superscript to denote
this fact. The following lemma ensures that at most four functions will be combined into

L’I Ja,Ljl21a (Xlil2Ja’ XLjl2]a)(Ol’’
Let S {(or’ /3’)l(ot’ or) Si,d, (fl’, fl) S/,d’ Or, fl {0, 1 }.
LEMMA 3. [SI 4d.

DERANDOMIZATION 61

Proof The definition of S can be viewed as a linear transformation. Represent x 6 {0, 1 }d
by a vector of 2d bits with the xth bit set to 1 and the rest ofthe bits set to 0. The transformation
ot - or’ can be represented by a permutation matrix of order 2d The transformation (or, fl) -(or’, fl’) can be represented by a permutation matrix of order 2d+ 1o

Lemma 3 tells us that the functions to be combined are permuted; therefore, no more than
four functions will be combined under any conditional-bit pattern.

We call this scheme of combining combiningfunctions with respect to the surviving set.

We have completed a preliminary description of our derandomization scheme for the GPC
problem. The algorithm for processors working on Xd, 0 < d < k, can be summarized as
follows.

Step (0 < < d)" Wait for the pipeline to be filled.
Step d + (0 < < log n)" Fix random variables at level for all conditional-bit patterns

in the surviving set. (*There are 2d such patterns in the surviving set.*) Combine functions
with respect to the surviving set. (*At the same time the bit-setting information is transmitted
to the nodes at depth 2d + 2 on the bit-pipeline tree.*)

Step d + log n" Fix the only remaining random variable at level log n for the only bit

pattern in the surviving set. Output the good point for x-. (*At the same time, the bit-setting
information is transmitted to the node at depth d 4- 1 on the bit-pipeline tree.*)

THEOREM 1. The GPC problem can be solved on the CREWPRAM in time O((q/k +
1)(logn + k + r)) with O(4km) processors, where r is the time for a single processor to
evaluate a BPCfunction fia,ja(xia, xja)(c, fl).

Proof The correctness of the scheme comes from the fact that as random bits are
fixed, a smaller space with higher expectation is obtained, and thus when all random bits are

fixed, a good point is found. To solve the uth BPC problem is to evaluate Pu (-) E[B(xq_l
Xu+lZY)], z {0,1 where y=< yi {0,1} 0,1 n- 1 > is fixed.

We then view z as a random variable uniformly distributed on [0, 1 }n and find z’ such that

Pu(z’) > E[Pu(z)]. If we have a huge number of processors, we could solve all BPC prob-
lems in parallel by solving each P with all possible y ’s. Such an algorithm is apparently
correct. In our scheme, Pu(-) is evaluated by evaluating E[,j(otfl, ot’fl’)], or, or’ 6 {0, 1],
fl, fl’ {0, 1 }u. This is guaranteed to be correct by linearity of expectation. We use a pipeline
to solve the Pu ’s. Thus our algorithm is still correct while the number of processors needed is
drastically reduced.

With O(4km) processors, k x- ’s are fixed in one pass. Each pass takes O(log n + k +
time, r for evaluating BPC functions (i.e., setting up the function tables for the BPC problems)
and O(logn 4- k) time for fixing all random bits on the random-variable trees. The time
complexity for solving the GPC problem is O ((q / k + 1) (log n + k +

We have not yet discussed explicitly the way the random-variable trees are constructed.
The construction is implied in the surviving set we computed. We now give the algorithm for
constructing the random variable trees. This algorithm will help better understand the whole
scheme.

The ith node under conditional-bit pattern j at the/th level of the random-variable trees
for P, is stored in T,q)[i][j]. The leaves are stored in T,(-1). Initially, bit-pipeline trees for
level -1 are built such that Tu(-1)[i][j] has two children T(-)[i][jO] T+ [i [j], where
j0 and j 1 are the concatenations of j with 0 and 1, respectively. Note that the bit-pipeline
tree constructed here is different from the one we built before, but in principle they are the

62 YIJIE HAN

same tree and perform the same function in our scheme. The algorithm for constructing the
random-variable trees for P. is below.

PROCEDURE RV-TREE
begin

Step (0 < < u): Wait for the pipeline to be filled.

Step u + (0 < < log n):
(*In this step, we will build Tt[i][j], 0 < < n/2t+l, 0 < j < 2". At the

beginning of this step, Tt-l[i][J] has already been constructed. Let T2l[iO][j]
and T(ut_-11[il][j ’] be the two children of _l[i][j] in the random-variable tree.

T,(,-1 [i O] [jO] andTt- 1[i O] [j 1] are the children of T(utf-ll[i O] [j], and Tu(t-1[i 1] [j’O]
and Tt-a[i 1][j’ 1] are the children of Tl[i 1] [j’] in the bit-pipeline tree for level

1. The setting of the random variable r for the pair (iO, 1) at level for
,(t).i.e., the random variable in ,_l [i][j], is known.*)

make Tu(t-1)[iO][jO] and Tu(t-1)[i l][j’r] the children of T}t)[i][jO] in the random-
variable forest for P,; (*jr is the concatenation of j and r.*)

make Tu(t-1)[iO][j 11 and Tu(t-1)[i ll[j’-] the children of Tt)[il[j II in the random-
variable forest for P,; (*7 is the complement of r.*)

make Tt)[il[jO] and T}t[il[j II the children of Zu(21 [i][j] in the bit-pipeline tree
for level t;

fix the random variables in T}t)[il[jO] and T,t)[il[j 1];

Step u + log n:
(*At the beginning of this step, the random-variable trees have been built for T/,

T (log n)0 < < u. Let ",-1 [0][j] be the root of T,_I. The random variable r in
log n)
-1 [0] [j has been fixed. In this step, we will choose one of the two children of

T,(gn [0][j] in the bit-pipeline tree for level log n as the root of T,.*)-1

make Tu(lgn-1)[O][jr] the child of Tu(lgn)[o][jr] in the random-variable tree;

T(logn)make T.(gn[O][jr] the child of.._ [O][j] in the bit-pipeline tree for level log n;

fix the random variable in Tu(lgn)[Ol[jr];

output Tu(lgn)[Ol[jr] as the root of
end

Procedure RV-Tree uses the pipelining technique as well as a dynamic-programming
technique. These are some of the essential elements of our scheme.

An example of the execution of Procedure RV-Tree is shown in Fig. 5.
We now show how to remove the concurrent-read feature from the scheme. The difficulty

here is in the step of combining functions with respect to the surviving set. The size of the
surviving set S is 2 while there are 4 conditional-bit patterns. There are 4 functionsu,k

ff) (x, xk), one for each bit pattern (o, /3) All 4 functions will consult the surviving set
k,Uk

DERANDOMIZATION 63

(e). Step O.

o o o

A A A A
/--...... /--...... ./-..... A

.."
O O O 0

A A A A A A A A
0 0 0 0 0 0 0 0

A , AA ’ /"...iX " AA. AAA. AAA.,.’.,,.
10 01111 10 1011 11 I11111 11 I I111 11 1415 15 4 111$15 i 1111 ll I lll 11
O000111 lOOOOl 111 0011 lOOOO00l 111
0 101010 10 1010 101 0101 0101010 10101

o

0 0 0

A A A A
xo x x x x4 x x.

0 0 0

0 0 0 0

A A A A A A A A
10 II 11 11 0 11 I I 14 Xj 1 I l I

0 0 0 0 0 0 0 0

t, t, .,-... " " A A. A:. ;x :’.. /\
o o o o o o o o o o o

AAAAAAAA AA^AAAAA
101 10 11 111511 t 11 0 11 11 I$ I111 141 11 15 I 1711 r 11 1514 11 I I 11
0 000 11 0000 010 11 101 00000
00110011 0 110001101100110001 10110

(c). Sup 2.

FIG. 5. An execution ofRV-Tree. Darkened lines and bits in boldface are random-variable trees. Dotted lines
are bit-pipeline trees.

64 YIJIE HAN

0 o o

A A A A
o

O 0

A A A A

o

0 0

A A A A
xo]s x x x x zl z zo x x x x,0 x5 r
0 0 0 0 0 0 0 0

-" ..A... :" ...--"--....." \ .-" ..
0 0 0 0 0 0

A A A A A A A A
1 0 0 0 0 0 0 0 0 0 0 0

AAAA AAAAAAAAAAAA
0011001 0111 01111 1001 10010001000
000011110101 10100111100000011110

(d). Step 3.

0

0 0

A A A A
o o o o o

0 o 0

A A A A
0 0 0 0 0 0 0 0

AAAAAAAA
%xtx z x, zsz z, xo x x x3x zSz
1001 O0 0 lOOt 000

0 l11000 0001 110

A
o o

0 0 0 0

AAAA
1oo lO0 0

o 11 1000

(t). s, s.

(e). Step 4.

FIG. 5. (Cont.)

DERANDOMIZATION 65

in order for them to be combined into new functions. The problem is how to do it in constant
time without resorting to concurrent read

We show how to let ,,,#0k (x,k, x,#0)(ot,/3) to acquire the bit pattern o’ which satis-
fies (od,/3) 6 Su, Function f(l) (Xu xv)(ot,/) can then obtain the bit pattern or’ from

f()u,#0k (x, x#0)(or,/) by the pipeline scheme described in [HI.
Suppose we are to solve P, 0 _< u _< k, in one pass. We solve 4 copies of P_ 1; one

copy corresponds to one conditional-bit pattern in P- Jt’()u,v (x, xvk)(o,/) in P can obtain
o’ by following the computation in the copy of P_ which corresponds to (o,/). This can be
done without concurrent read. Now for each of the 4 copies of P_ 1, we solved 4- copies of
P-2; one copy corresponds to one conditional-bit pattern in P_ 1, and so on. Thus to remove
concurrent read we need c2 (m + n) processors for solving P,, 0 < u < k, in one pass, where
c is a suitable constant. Note also that it takes O (k2) time to make needed copies.

THEOREM 2. Tke (7PC problem can be solved on the EREWPRAM in time O((q/v/- +
1)(log n + k + r)) witk O(cm) processors, where c is a suitable constant and r is the lime
[or a single processor to evaluate a BPCfunction [d,d (Xd, Xd)(,).

4. A + 1 vertex coloring. We apply our scheme to Luby’s formulation of the A / 1
vertex-coloring problem [L2], [L3]. First we adapt his formulation and then apply our fast
derandomization scheme to obtain a faster algorithm. Luby showed [L2], [L3] that after
solving a GPC problem a constant fraction of the vertices can be deleted. The main change
now is to show that after solving a GPC problem a constant fraction ofthe edges can be deleted.
We follow the notations and definitions as given by Luby [L2], [L3].

Let G (V, E) be the graph we are to color. Let adj (i) be the set of vertices which
are adjacent to vertex i, and let d(i) be the degree of vertex i. Let availi be the set of
colors which can be used to color vertex i, and let Navaili lavaili I. Let ki be such that
2ki-1 < 4Navaili < 2ki and let Nlisti 2ki Let listi[O Nlisti 1] be an array such that
the first Navaili entries in listi are the elements of availi in sorted order and the remaining
entries in listi have value A. Let q- max{kili V}. Let x-< X {0, 1}q,i V >.

For 6 V, let listi(xi) be the entry in listi indexed by the first ki bits of xi. Also define the
following functions.

For all 6 V, let

1 if listi(xi) availi,
Yi (xi

0 if listi (xi A.

For all (i, j) 6 E, let

if listi (Xi) listj (xj) A,
Yi,j (xi xj 0 otherwise.

The BENEFIT function B is defined as

B(x) T Yi(xi) _ql_. Yi,.j(xi,xj)
j6ad.j(i)

Function B sets a lower bound on the number ofedges deleted [L2], [L3] should the vertex
be tentatively assigned color listi(xi). We will not repeat the definitions of the auxiliary

functions T Yi and T Yi,j(xi, xj), since their definitions can be found in [L2] and [L3]. The

auxiliary function TB is now defined as

d(i) (TB (x)-- v - TYi (xi) + Z
adj (i)

TYi,j (xi, xj))

66 YIJIE HAN

Following Luby’s proof [L2], [L3], we have TYi(A) > 1/8, TYi.j(A, A) > -1/16, and
therefore we have the following lemma.

LEMMA 4. TB (A) >_ IEI/16.
Thus by solving a GPC problem, we are guaranteed to eliminate a constant fraction of

the edges.
Let ckm be the number of processors needed to compute k BPC problems in a GPC

problem in one pass. There will be O(logn) stages in the modified algorithm. Each stage
contains a constant number of GPC problems and reduces the number of edges so that there
will be no more than a 1/c fraction of the edges left. Therefore, during stage there will be e

edges in the remaining graph and c e processors available. Because each stage has O (log n)
BPC problems, the time complexity for stage is O (log2 n/i). Thus the time complexity of

x-,O(logn)the whole algorithm becomes O (z..,i=a log2 n i) O(log2 n log log n).
The number of processors used in the algorithm can be reduced to O ((m + n)/ log log n).

We examine the first O (log log log n) stages. In stage i, we can have c / log log n processors
for each edge under each conditional-bit pattern. Therefore, the tables for the BPC functions
in stage can be computed in time O(logZn log log n/ci), and the overall time for table
construction for the whole algorithm is O (log2 n log log n). The calculation for the time for
constructing the derandomization trees is similar and can be shown to be O (log2 n log log n)
with O ((m + n)/ log log n) processors. In the first O (log log log n) stages, our GPC algorithm
will be invoked with k 1. The time complexity for these stages is

0 c; O (log n log log n).
i=0

The remaining stages take O (log n log log n) time by the analysis in the last paragraph.
THEOREM 3. There is a CREWPRAM algorithm for the A + vertex-coloring problem

with time complexity O(log n log log n) using O((m + n)/ log logn) processors.
We also have, the following theorem.
THEOREM 4. O (mn processors are sufficient to solve the A + vertex-coloringproblem

in time O(log2 n) on the CREWPRAM, where > 0 is an arbitrary constant.

Proof This is because one GPC problem can now be solved in O (log n) time.

5. Maximal independent set. Let G (V, E) be an undirected graph. For W c_ V,
let N(W) {i V I j W, (i, j) E}. Known parallel algorithms [ABI], [KW], [GS1],
[GS2], ILl], [L3] for computing a maximal independent set have the following form.

PROCEDURE GENERAL-INDEPENDENT
begin

I := b;
V "= V;
while V’ : 4 do

begin
Find an independent set I’

V’;

I := I U I"
V’ := V’- (I’t2 N(I’));

end
end

1The problem formulated [L2], [L3] resembles a GPC problem. It is not a GPC problem in the strict sense. For
our purpose, we may view it as a GPC problem because our GPC algorithm applies.

DERANDOMIZATION 67

Luby’s work [L3] formulated each iteration of the while loop in General-Independent as
a GPC problem. We now adapt Luby’s formulation [L1], [L3].

Let ki be such that 2ki-1 < 4d(i) < 2ki. Let q max{kili V}. Let x=< xi
{0, 1}q, 6 V}. The length Ixi[of xi is defined to be ki. Define2

{ if xi(Ixil- 1)... xi(O) 0Ixi[

Yi (xi
0 otherwise,

Yi,.j (xi x.j Yi (xi Yj (xj),

B(--f) Z d(i)
2

i6V

ad, (i) kadj (j),d(k)>d(j) kadj (i)- {j

where X (p) is the pth bit of X
Function B sets a lower bound on the number of edges deleted from the graph [L 1], [L3]

should vertex be tentatively labeled as an independent vertex if xi (0 U 1)q-lxiloIxil. The
following lemma was proven in [L 1, Thm. 1].

LEMMA 5 [L 1]. E [B] > EI/cfor a constant c > O.
Function B can be written as

B(-)--v (Z d(i)) Y(xj)+ Z
iadj(j)

2
(j,k)eE,d(k)>d(j) i6 j)

2
Yj,(xj, x,)

+ Z d(i)
Yj (xj, x)

2
iV j,kadj(i),jk

Z fi(xi) -+" Z fi"j(Xi’ Xj),
(i,j)

where

fi(xi) T
i)

and

fi,j(Xi, Xj) 3(i, j)
2

k i) kV andi,jadj(k)
2 x),

if (i, j) 6 E andd(j) > d(i),
3 (i, j)

0 otherwise.

Thus each execution of a GPC procedure eliminates a constant fraction of the edges from
the graph. It takes O(M(n)) (which is currently O(n2"376) [CW]) processors to compute a

2In Luby’s formulation [L3], Yi (xi) is zero unless the first Ixil bits of xi are ’s. In order to be consistent with
the notations in our algorithm, we let Yi (xi) be zero unless the first Ixil bits of xi are O’s.

68 YIJIE HAN

matrix multiplication in time O(log n) to arrive at the GPC functions j ’s and j,j’s because
d(i) Yj g(xj, x) in function B. We organize our algorithm forof the term -iev 2 Yj,k6adj(i),j#k

the maximal independent set problem into O (log n) stages such that in stage i, the graph has
no more than EI/c vertices and a constant number of GPC problems will be solved in stage
i. By Theorem 1, we achieve time complexity O (log2 n).

THEOREM 5. There is a CREWPRAMalgorithmfor the maximal independent setproblem
with time complexity O(log2 n) using O(M(n)) processors.

Proof The time and processor complexities for computing matrix multiplication domi-
nate. [3

We will give a second algorithm for the maximal independent set problem. We take
advantage of the special properties of the GPC functions to reduce the number of processors
to O(m + n). We cannot use the derandomization scheme in 3 directly because it would
involve a matrix multiplication, as we have seen in the design of our first maximal independent
set algorithm. The structure of our second algorithm is complicated. We first give an overview
of the algorithm.

5.1. Overview ofthe second algorithm. Because we can reduce the number of edges by
a constant fraction after solving a GPC problem, a maximal independent set will be computed
after O (log n) GPC problems are solved. Our algorithm has two stages, the initial stage and
the speedup stage. The initial stage consists of the first O(log5 n) GPC problems. Each
GPC problem is solved in O (log2 n) time. The time complexity for the initial stage is thus

O(log25 n). When the first stage finishes, the remaining graph has size O((m +
There are O (log n) GPC problems in the speedup stage. A GPC problem of size s in the
speedup stage is solved in time O(log2 n/,-) with O(cs log n) processors. Therefore the

yOlogn (log2 n/,/-[)) O(log2" n). Thetime complexity of the speedup stage is O(i=o-,)
initial stage is mainly to reduce the processor complexity while the speedup stage is mainly
to reduce the time complexity.

We used matrix multiplication in our first algorithm because of the term iv d(i)
2

Yj,kadj(i),j76k Yj,k(Xj, Xk) in function B. We shall call this term the vertex-cluster tenn.
There is a cluster C(v) {xwl(v, w) 6 E} for each vertex v. Alternatively we may use

O(veV dZ(v)) processors, d2(v) processors for cluster C(v), to evaluate all GPC func-
tions and to apply our derandomization scheme given in 3. However, to reduce the number
of processors to O (m + n) we have to use a modified version of our derandomization scheme
in 3.

Consider the problem of fixing a random-variable r in the random-variable tree. We
did this in constant time in 3 (Theorem 1). We now outline how r is fixed in the initial
stage. We cannot do it in constant time because the GPC function f (x, y), where x and y
are the leaves in the subtree rooted at r, is in fact the sum of several functions scattered in
the second term of function B and in several clusters. We will not combine BPC functions in
the derandomization process. As we have explained in 2, setting r requires O(log n) time
because of the summation of function values. (Note that the summation of n items can be
done in time 0 (n/p / log n) time with p processors.) A BPC problem takes O (log2 n) time
to solve. We pipeline all BPC problems in a GPC problem and get time complexity O (log2 n)
for solving a GPC problem.

The functions in B have a special property which we will exploit in our algorithm. Each
variable X has a length Ixil _< q O(1og n). Yi,j(xi, xj) is 0 unless the first IXil bits ofxi are
O’s and the first Ixjl bits of x.i are O’s. When we apply our scheme, there is no need to keep
BPC functions Yi,,j, (xi,, xj,) for all conditional-bit patterns because many of these patterns
will yield zero BPC functions. In our algorithm, we keep one copy of Yi,,j, (xi,, xj,) with

DERANDOMIZATION 69

conditional bits set to 0’s. This of course helps reduce the number of processors. In particular,
the random-variable tree for each P, now requires at most O (n) processors, instead of O (c"n)
processors as we have used in 3 on the CREW PRAM.

There are d2(i) BPC functions in cluster C(i), while we can allocate at most d(i) proces-
sors in the very first GPC problem because we have at most O(m + n) processors for the GPC
problem. What we do is use an evaluation tree for each cluster. The evaluation tree TC (i) for
cluster C (i) is a "subtree" of the random-variable tree. The leaves of TC (i) are the variables
in C (i). An interior node of the random-variable tree is not present in TC(i) if none of the
leaves of the subtree rooted at the interior node is in C (i). When we are fixing r, if r is not in
TC(i) then cluster C(i) does not contribute anything. If r is in TC(i) then the contribution
of C(i) can be obtained by evaluating the function f(x, y), where x and y are leaves in the
evaluation subtree rooted at r and x and y are in different subtrees of r. If r has a leaves in the
left subtree and b leaves in the right subtree then the contribution from TC(i) for fixing r is
the sum of ab function values. We will give the details of evaluating this sum using a constant
number of operations.

Let us summarize the main ideas. We do not combine functions and achieve time
O(log2 n) for solving a BPC problem. We put all BPC problem in a GPC problem as one batch
into a pipeline to get O (log2 n) time for solving a GPC problem. We use a special property
of functions in B to maintain one copy for each BPC function for only conditional bits of all
0’s. We use evaluation trees to take care of the vertex cluster term.

We now sketch the speedup stage. Since we have to solve O (log n) GPC problems in this
stage, we have to reduce the time complexity for a GPC problem to o(log2 n) in order to obtain
o(log n) time. We use a modified random-variable tree as shown in Fig. 3(c) in 2. Such a
random-variable tree has S (logn + 1)/a blocks. Each block contains a levels. We fix
a block in a step instead of fixing a level in a step. Each step takes O (log n) time and a BPC
problem takes O (S log n) time. If we have as many processors as we want, we could solve all
BPC problems in a GPC problem by enumerating all possible cases instead of putting them
through a pipeline; i.e., in solving P,, we could guess all possible settings of random variables
for P, 0 < v < u. We have explained this approach in the proof of Theorem 1 in 2. In doing
so we would achieve time O (S log n) for solving a GPC problem. In reality, we have extra
processors, but they are not enough for us to enumerate all possible situations. We therefore
put a BPC problems of a GPC problem in a team. All BPC problems in a team are solved by
enumeration. Thus they are solved in time O (S log n). Let b be the number of teams we have.
We put all these teams into a pipeline and solve them in time O((S + b) log n). The approach
of the speedup stage can be viewed as that of the initial stage with added parallelism which
comes with the help of extra processors.

;.2. The initial stage. We first show how to solve a GPC problem for function B in time
O (log2 n) using O ((rn + n) log n) processors.

O (rn +n) processors will be allocated to each BPC problem. The algorithm for processors
working on Fu has the following form.

Step (0 _< < u)" Wait for the pipeline to be filled.
Step u + (0 _< < log n): Fix random variables at level t.

Step u + log n" Fix the only remaining random variable at level log n. Output the good
point for xu.

We will allow O (log n) time for each step and O (log2 n) time for the whole algorithm.
Note that we do not combine functions with respect to the surviving set and therefore use
O (log n) time for a step.

70 YIJIE HAN

The way Tu is constructed can be described by algorithm MRV-Tree, a modified version
of algorithm RV-Tree in 3. In MRV-Tree we do not enumerate all possible conditional-bit
patterns. Only the bit pattern of all O’s is kept. Thus a node on a bit-pipeline tree may not
have both children. A variable xi only appears in Fu as xi,, with u <]xil because the setting
of random variables in Fu, u > [xi I, is not affected by xiu.

PROCEDURE MRV-TREE
begin

Step (0 < < u)" Wait for the pipeline to be filled.

Step u"

(*In this step, we will build T,)[i][j]. 0 < < n/2 and j are indices for which

T)[i][j] is not empty. At the beginning of this step, T,__) [il[j] has already been
constructed if it is not empty. Random variables xi have been transmitted to depth
u of the bit pipeline tree for level 0.*)

for each node T, [i][j
if T)[i][j] has received either xzi or x2i+1 from T,_) [i][j/2]

(*x2i and x2i+l becomes xziu and xzi+lu in T.*) then
begin

if T,)[i][j] has received xzi then
make it the left child of T,[i][j] in the random-variable forest for P;

if T.)[i][j] has received X2i+l then
make it the right child of Tu)[i][j] in the random-variable forest for P;

fix random variable r in T,)[i][j];

,(0).make T)[i][j] a child of l_ [i][j/2] in the bit-pipeline tree;

if T.)[i][j] has received X2i and IX2il U then
,.(o)transmit xai to lg+[i][jO];

if T.)[i][j] has received X2i+l and IX2i+l] U then
transmit xi#o to +[/][jr];

end
else (*T)[i][j] is empty.*);

Stepu+t(1 <t <logn):
(*In this step, we will build Tu(t)[i][j], 0 < < n/2t+l and j are indices for

which Tu(t)[i][j] is not empty. At the beginning of this step, T,t)1_ [i][j] has already
been constructed. Let TX)[iO][j] and Tt_-11)[i 1][j’] (they may be empty) be the

(t). Zu(t_ltwo children in the random-variable subtree rooted at

_
[i][j] [i0][j0]

and Tt-1)[iO][jl] (they may be empty) are the children of Tt_-ll)[iO][j], and
Tt-)[il][j’O] and Tt-l)[il][j’l] (they may be empty) are the children of

Tl[i 1][j’] in the bit pipeline tree for level 1. The setting of the random
variable r for the pair (i0, il) at level for P,-1, i.e., the random variable in
T(ut)_ [i][j], is known.*)

DERANDOMIZATION 71

if Tu(t-1)[iO][jO] is not empty then
make it the left child of Tu(t)[i][jO] in the random-variable forest for P,;

if Tu(t-1)[i 1][j’r] is not empty then
make it the right child of ru(t)[i][jO] in the random-variable forest for Pu;

if Tu(t-1)[iO][j 1] is not empty then
make it the left child of Tu(t)[i][j 1] in the random-variable forest for

if Tu(t-1)[i 1][j’F] is not empty then
make it the right child of Tu(t)[i][j 1] in the random-variable forest for P,;

if T,(t)[i][jO] is not empty then
(t).make it the left child of S-1 [i][J] in the bit-pipeline tree for level t;

if Tu(t[i][j 1] is not empty then
make it the right child of Tu(t) [i][j] in the bit-pipeline tree for level t;

fix the random variables in T’)[i][jO] and T,t)[i][j 1];

Step u + log n:

(*At the beginning of this step, the random-variable trees have been built for T/,
T (log n)0 < < u. Let *,-1 [O][j] be the root of Tu-1. The random variable r in

log
-1 [O][j] has been set. In this step, we will choose one of the two children of
log
-1 [O][j] in the bit-pipeline tree for level log n as the root of

if Tu(lg 1) [0] [j r is not empty then
begin

make Tu(lgn-1)[O][jr] the child of Tu(lgn)[o][jr] in the random-variable
tree;

log n;

T (log n)make Tfg’O[O][jr] the child Of.u_ [O][j] in the bit-pipeline tree for level

fix the random variable in Tu(lgn)[o][jr];

end

output Tu(lgn)[o][jr] as the root of T.;
end

Note that and j in Tu(t)[i][j] are parameters and T,(t) is not a two dimensional array
here. We can view algorithm MRV-Tree as one which distributes random variables xi into
different sets. Each set is indexed by (u, t, i, j). We call these sets BD sets because they
are obtained on the bit-pipeline trees and the derandomization trees, x is in BD(u, t, i, j)
if x is a leaf in T(t)[i][j]. When u and are fixed, BD(u, t, i, j) sets are disjoint. Because
we allow O (log n) time for each step in MRV-Tree, the time complexity for constructing the
random-variable trees is O (log2 n).

See Fig. 6 for an execution of MRV-Tree.

72 YIJIE HAN

o o

(,). $p O.

]Io

xt

.--" /\/

^ ! \
x x x4

Co). Sep 1.

10 x l:Z

j \
o

o
/

/

^

o o

x2 x x

0

I

^ ! \
z z x x

(c). Step 2.

FIG. 6. An execution of MRV-Tree. Darkened lines in boldface are random-variable trees. Dotted lines are
bit-pipeline trees.

DERANDOMIZATION 73

0 0 0

(d). Sep 3.

0 0

o

^ !
o

o

xl x

X
0

(, Step

FIG. 6. (Cont.)

74 YIJIE HAN

Example. Variables are distributed into the BD sets as shown below.

Step 0:
x0, xl 6 BD(O, O, O, e);
X2, X3 BD(O, 0, 1, e);
x4, x5 BD(0,0,2, e);
x6, x7 6 BD(O, O, 3, e).

Step 1"
X0, X l, X2, X3
X4, X5, X6, X7

X0, Xl
X2, X3

X4

X5
X6, X7

BD(O, 1, O,);
BD(O, 1, 1, e);

e BD(1, O, O, 0);
BD(1, O, 1, 0);
BD(1, O, 2, 0);
BD(1, O, 2, 1);
BD(1, O, 3, 0).

Step 2:
X0, Xl, X2, X3,

x4, xs, x6, x7 BD(O, 2, 0, e);
xo, xl BD(1, 1, 0, 0);
xz, x3 BD(1, 1, 0, 1);
x4 BD(1, 1, 1, 0);

X5, X6, X7 BD(1, 1, 1, 1);
xo, Xl BD(2, O, O, 00);
x2, x3 BD(2, 0, 1, 00);
x4 B D(2, 0, 2, 00);
x5 BD(2, 0, 2, 10);
x6 BD(2, 0, 3, 00);
X7 BD(2, 0, 3, 01).

Step 3:
X0, Xl, X2, X3,

X4, X5, X6, X7
X0, X l, X5, X6, X7

X2, X3, X4
X0, Xl
X5, X7
X6

X2, X3

X4

BD(O, 3, 0,);
BD(1, 2, 0, 0);
BD(1, 2, 0, 1);
B D(2, 1, 0, 00);
BD(2, 1, 0, 10);

6 BD(2, 1, 0, 11);
B D(2, 1, 1, 00);

6 B D(2, 1, 1, 10).

Step 4:
X2, X3, X4 G BD(1, 3, 0, 0);
X2, X3 BD(2, 2, 0, 00);
x4 BD(2, 2, 0, 01).

Step 5"
X2, X3 G BD(2, 3, 0, 00).

Now consider GPC functions ofthe form Yi (Xi) and Yi,j (Xi, Xj except the functions in the
vertex-cluster term. Our algorithm will distribute these functions into sets BDF(u, t, i’, j’)
by the execution of MRV-Tree, where BDF(u, t, i’, j’) is essentially the BD set except it is
for functions. Yi,j is in BDF(u, t, i’, j’) iffboth xi andxj are in BD(u, t, i’, j’), max{kl (the
kth bit of X0R j) 1 t, Ixi > u, and Ixj > u, where XOR is the bitwise exclusive-or
operation, with the exception that all functions belong to BDF(u, log n, 0, j’) for some j’.
The condition max{kl (the kth bit of XOR j) ensures that xi and xj are in different
subtree of the tree rooted at Tu(t)[i’][j’]. The conditions [Xi[> U and [x.jl > u ensure that X
and xj are still valid. The algorithm for the GPC functions for P, is shown below.

PROCEDURE FUNCTIONS
begin

Stept(0<t <u)"
(*Functions in BDF(O, t, i’, A) reach depth 0 of the bit-pipeline tree for level
Wait for the pipeline to be filled;

Stepu+t(0<t <logn)"
(*Let S BDF(u, t, i’, j’).*)
if S is not empty then

begin

DERANDOMIZATION 75

O’S;

for each GPC function Yi,j (Xi Xj E S
compute the BPC function Yi,j. (Xi., Xju) with conditional bits set to all

(*To fix the random bit in T.(’)[i’l[j’], *)
T.(t)[i’][j ’] := 0;
Fo Ye,ss Yi.,j. ((xi, T.(t)[i’][j’]), tP(xj,

+ Y.ss Yi.,i.((xi, T.(t)[i’][J’]) 1, (xj, T.(t)[i’][j’]) 1) + VC;
(*VC is te function value obtained for functions in the vertex-cluster term.

We shall explain how to compute it later. is the exclusive-or operation.*)

Tu(t)[i’][j ’] :-- 1;
F1 --,.,:es Yi.,J. (kI)(xi’ Tu(t)[i’][J’]) tP(xj, Tu(t)[i’][j’]))

+ _..,:es Yi.,j. (tP(xi, T(t)[i’][j’]) (R) 1, tP(xj, Tt)[i’][j’]) @ 1) + VC;

if F0 > F1 then T/t[i’][j ’] := 0
else T2t[i’l[j ’1 :: 1;
(*The random bit is fixed.*)

(*To decide whether Yi,j should remain in the pipeline,*)
for each Yi,j S

begin
if q(xi, Tu(t)[i’][j’]) :/: tP(xj, Tu(t)[i’][j’]) then remove Yi,j;
(* Yi,j is a zero function in the remaining computation of P. and also

a zero function in Pv, v > u.*)

u + 1) then

Yu+ .*)

if(*(xi, Tu(t)[i’l[j’]) *(xj, Tu(t)[i’l[j’l))A(lxil >_ u+ l)/(Ixjl

(*Let b kIl(xi, T.(’)[i’][j’]).*)
put Yi,j into BDF(u + 1, t, i’, j’b); (*Yi,j is to be processed in

end
end

Step u / log n:
if S BDF(u, log n, 0, j’) is not empty then
(*S is the only set left for this step.*)

begin
for each GPC function Yi,j (xi, xj) (Yi (xi)) S

compute the BPC function Yi.,.i (xi, x) (Yi. (xi)) with conditional bits
set to all O’s;

(*To fix the random bit in Tu(lgn)[o][jt],*)
Tu(lgn)[0l[j’l 0;

Fo Y,2es Yi.,j. (qJ(xi, Tu(lgn)[Ol[j’]), tP(xj, Tu(lgn)[Ol[j’l))
+ -ViS Yi. (tll(xi’ T.(lgm[0l[j ’1)) + VC;

ru(lgn)[Ol[j ’] :----- 1;

F1 YYe,eS Yiu,j. (kIJ (Xi’ Tu(lgn)[Ol[j’])’ tP (xj, Tu(lgn)[Ol[j’]))

76 YIJIE HAN

.qt_ ZYiES Yiu (kIl(xi, Tu(lgn[o][J’])) + VC;

if F0 >_ El then T,(lgn[o][j ’] "= 0
else Tu(lgn)[o][j t] :-- 1;
(*The random bit is fixed.*)

(*To decide whether Ti,j should remain in the pipeline,*)
for each Yi,j S

begin
(* Letb Tu(lgn[0][jt]). q(xi, Tfgn[o][j’]) and q(xj, Tfgn[0][j’])

must be equal here.*)
if (q(x/, T,(lg"[0][j]) q(xj, T,(lg[0][j’]) 0) /x (([xi[>_

u 4- 1) v (Ixjl > u + 1))
then

put Yi,j into BDF(u + 1, logn, O, j’b);
else remove Yi,j;

end

(*To decide whether Yi should remain in the pipeline,*)
for each Yi S

begin
(*Let b Tu0gn)[0][j]). *)
if (q(x/, Tfgn[0][j’]) 0)/x ([xil >_ u + 1) then

put Yi into BDF(u + 1, logn, 0, j’b);
else remove Yi;

end
end

end

The functions being evaluated can also be viewed as being pipelined through the deran-
domization trees.

There are O(log n) steps in MRV-Tree and FUNCTIONS, each step takes O(log n) time
and O ((m + n) log n) processors.

Now we describe how the functions in the vertex-cluster term are evaluated. Each function
Yi,j (xi, xj) in the vertex-cluster term is defined as Yi,j (xi, xj) -1 if the first Ixi] bits of xi
are O’s and the first Ixjl bits of xj are O’s, and otherwise as Yi,j (xi, xj) 0. Let (i) [xi[u.
Then Yiu,ju (A, A)(0", 0u) 1/2l(i)+l(j) and Yiu,j, (0, 0)(0u, 0u) 1/2l(i)+l(j)-2 if [xi[> u
and Ixjl > u. Procedure MRV-Tree is executed in parallel for each cluster C(v) to build an
evaluation tree TC (v) for C(v). An evaluation tree is similar to the random-variable tree. The
difference between the random-variable tree and TC(v) is that the leaves of TC(v) consist of
variables from C(v). Let r Tu([i’][j’] be the root of a subtree T’ in TC(v) which is to be
constructed in the current step. Let L and R be the left and right subtrees of T, respectively.
Let rL and rR be the roots of L and R, respectively. At the beginning of the current step, L
and R have already been constructed. Random variables in the interior nodes of L and R have

’Sbeen fixed. Define M(x, b) Yq,(i,x)=b , where are leaves in the subtree rooted at
x. At the beginning of the current step, M(rL, b) and M(rR, b), b 0, 1, have already been
computed and associated with rt. and rn, respectively. During the current step, r is made the
left child of r and rn is made the right child of r. Now r is tentatively set to 0 and 1 to obtain
the value VC for fixing r in procedure FUNCTIONS. We first compute VC(v, r) for each

DERANDOMIZATION 77

v. VC(v, r) 2 Yb:0 M(rL, b)M(rR, b @ r), where @ is the exclusive-or operation. The
d(i VC(v, T.(t[i’][j’]).VC value used in procedure FUNCTIONS is /vlv,(l{ti,ltj,l is not empty} 2 u,v

After setting r, we obtain an updated value for M(r, b) as M(r, b) M(ri, b)+ M(rR, b@r).
If T’ has only one subtree, then VC (v, r) 0 and M(r, b) need to be computed after r is set.

The above paragraph shows that we need only spend O (Tvc) operations for evaluating
VC for all vertex clusters in a BPC problem, where Tvc is the total number of tree nodes of
all evaluation trees. Tvc is O (m log n) because there are a total of O (m) leaves and some
nodes in the evaluation trees have one child.

We briefly describe the data structure for the algorithm. We build the random-variable
tree and evaluation trees for P0. Nodes Tot[i][A] in the random-variable tree and nodes

,v [i][A] in the evaluation trees and functions in BDF(0, t, i, A) are sorted by the pair (t, i).
This is done only once and takes O (log n) time with O(m + n) processors [AKS], [C]. As the
computation proceeds, the random-variable tree and each evaluation tree will split into several
trees; each BDF set will split into several sets, one for each distinct conditional bit pattern. A
BDF set in P, can split into at most two in P,+I. Since we allow O (log n) time for each step,
we can allocate memory for the new level to be built in the evaluation trees. We use pointers
to keep track of the bit-pipeline trees and the evaluation trees. The nodes and functions in
the same BD and BDF sets (indexed by the same (u, t, i’, j’)) should be arranged to occupy
consecutive memory cells to facilitate the computation of F0 and F1 in FUNCTIONS. These
operations can be done in O(log n) time using O((m + n)/log n) processors.

It is now straightforward to verify that our algorithm for solving a GPC problem takes
O (log2 n) time, O (log n) time for each ofthe O (log n) steps. We note that in each step for each
BPC problem we have used O (m + n) processors. This can be reduced to O ((m + n)/log n)
processors because in each step, O (m + n) operations are performed for each BPC problem.
They can be done in O(logn) time using O((m + n)/logn) processors. Since we have
O(log n) BPC problems, we need only O(m + n) processors to achieve time complexity
O (log2 n) for solving one GPC problem.

We use O((m +n)/log5 n) processors to solve the first O(log’5 n) GPC problems in the
maximal independent set problem. Recall that the execution of a GPC algorithm will reduce
the size of the graph by a constant fraction. For the first O (log log n) GPC problems, the time

(--, O (log log n)complexity is O z..,i=l log2"5 n/ci) O(log2"5 n), where c > 1 is a constant. In the ith
GPC problem, we solve O(c log5 n) BPC problems in a batch, incurring O(log2 n) time for
one batch and O (log2"5 n/ci) time for the O (log’5 n/ci) batches. The time complexity for the

(vlog’5remaining GPC problems is O,,..,i=oOogog,, log2 n) O(log2’5 n).

5.3. The speedup stage. The input graph here is the output graph from the initial stage.
The speedup stage consists of the rest of the GPC problems.

We have to reduce the time complexity for solving one GPC problem to under O (log2 n)
in order to obtain an o(log3 n) algorithm for the maximal independent set problem. After the
initial stage, we have a small-size problem and we have extra processor power to help us speed
up the algorithm.

We redesign the random-variable tree T for a BPC problem. We use the design as shown
in Fig. 3(c) in 2. There are S [(logn + 1)/a] blocks in T, where a is a parameter.

We note that the design of T incorporates design techniques from both [H], [HI] and [L2],
[L3]. The advantage of Han and Igarashi’s design [H], [HI] is that random bits can be fixed
independently if these bits are at the same level of T. The advantage of Luby’s design is that
there are fewer random bits in T, which is desirable in the speedup stage of our algorithm for
the maximal independent set problem.

78 YIJIE HAN

LEMMA 6. Ifall random variables in the interior nodes ofa proper subtree T’ of T are

fixed, the random variables xj at the leaves of T’ can only assume two different patterns.
Proof This is because the random variables from the root of T to the parent of the root

of T’ are common to all xj’s at the leaves of T’.]

In fact, we have implicitly used this lemma in constructing the bit-pipeline tree in the
design of our GPC algorithm and in procedure RV-Tree.

The q BPC problems in a GPC problem are divided into b q/a teams (without loss of
generality, assuming it is an integer). Team i, 0 _< < b, has a BPC problems. Let Jw be the
wth team. The algorithm for fixing the random variables for J, can be expressed as follows.

Step (0 _< < w): Wait for the pipeline to be filled.
Step + w (0 _< < S)" Fix random variables in block in random-variable forests for Jw.

Each step will be executed in O(log n) time. Since there are O(b 4- S) steps, the time
complexity is O(log2 n/a) for the above algorithm since q O(log n).

For a graph with m edges and n vertices, to fix random bits in block 0 for P0, we need
2 (m 4- n) processors to enumerate all possible 2 bit patterns for the a bits in block 0. To fix
the bits in block 0 for Pv, v < a, we need 2a(v+l) patterns to enumerate all possible a(v 4- 1)
bits in block 0 for Pu, u < v. For each of the 2(+1) patterns, there are 2 conditional-bit
patterns. Thus we need c"2 (m 4- n) processors for team 0 for a suitable constant c. Although
the input to each team may have many conditional-bit patterns, it contains at most O (m 4- n)
random-variable trees (in the input random-variable forest). We need keep working for only
those conditional-bit patterns which are not associated with empty trees. Thus the number of
processors needed for each team is the same because when team J) is working on block i,
the bits in block have already been fixed for teams Ju, u < w, and because we keep only
nonzero functions. The situation here is similar to the situation in the initial stage. Thus
the total number of processors we need for solving one GPC problem in time O (log2 n/a) is
c2 (m + n) log n/a O(c (m + n) log n). We conclude that one GPC problem can be solved
in time O(log2 n/v/-) with O(ck(m 4- n)logn) processors. Therefore, the time complexity

N--’lgn (log2 n/q/-)) O(log2"5 n).for the speedup stage is O z_,=l

THEOREM 6. There is an EREWPRAMalgorithmfor the maximal independentsetproblem
with time complexity 0 (log2"5 n) using 0 ((m + n)/ log’5 n) processors.

We shall call this algorithm MAX.

5.4. Further improvement. To reduce the processor complexity by another factor of
log n on the CREW model, we need only work on the first O (log log n) GPC problems. These
GPC problems belong to the initial stage.

Consider the first GPC problem. At the beginning ofthe GPC algorithm, all GPC functions
(in BDF (0, t, i, A)), nodes in the random-variab e tree (in T(ot)[i][A]) and nodes in the evalua-
tion trees (in T(t)[i][A]) will be sorted by the parameter (t i) This takes O (m log n/p+log n)0,
time with p processors. A GPC function f will be passed down the bit-pipeline tree in the
procedure FUNCTIONS. At each depth of the bit-pipeline tree, f is involved in a constant
number of operations. Thus each GPC function will account for O (log n) operations, giving
a total of O (m log n) operations. This can be done in time O(m log nip 4- log n) with p
processors. The nodes in the random-variable tree and the nodes in an evaluation tree, as
they pass down the bit-pipeline tree, can be decomposed into several random-variable trees
and evaluation trees, one for each conditional-bit pattern. Each leaf in these trees can be
involved in O (log n) operations in a BPC problem and therefore O (log n) operations in the
GPC problem. This gives time O (m log n/p + log2 n). On the CREW PRAM, we can avoid
evaluating nodes in a evaluation tree which has only one child. As long as we only evaluate

DERANDOMIZATION 79

nodes in the evaluation trees which have two children, the number of operations for evaluating
the nodes in an evaluation tree is proportional to the number of leaves in the tree. This helps
to cut the time for evaluating the evaluation trees to O (m/p + log2 n) for a BPC problem and
to O (m log n/p / log2 n) for the GPC problem. However, a node v at level in an evalua-
tion tree could have its parent p(v) at level + c with c > 1, because now we require that
p(v) have two children. When p(v) is evaluated, we need the value q(v, p(v)). In order to
obtain this value, we keep updated q (v, w) for all leaves v in a random-variable tree and the
current node w. The q (v, w) value for the n leaves in the random-variable forest for a BPC
problem will be updated immediately after the random variables at each level are fixed. This
takes O(n logn/p) time for a BPC problem and O(n log2 n/p) time for the GPC problem. In
summary, the first GPC problem can be solved in time O (m log n/p + n log2 n/p + log2 n)
with p processors. If m > n log n, the time will become O (m log n/p + log2 n).

One might argue that since the evaluation trees are built bottom-up, if a node is not checked
one cannot know whether that node has one or two children. The answer is that we cannot
avoid checking whether a node r in an evaluation tree of Pu has one or two children. But if
we know r has one child, we can avoid checking r’s descendants in the bit-pipeline tree, i.e.,
those nodes in Pv, v > u, which are descendants of r in the bit-pipeline tree.

Our modified algorithm for the GPC problem will first check whether m > n log n. If
m < n log n we first construct G’ induced by vertices in V with degree no greater than log n.
.We then solve the maximal independent set problem for G’ in time O(m log n/p + log2 n),
using an algorithm to be described later. Now the remaining graph can be viewed as satisfying
m > n log n, and the rest of the computation takes O(m log n/p + log2 n) time as explained
above. We therefore achieve time O (m log n/p + log2 n log log n) for the first O (log log n)
GPC problems. The remaining graph can now be solved by MAX.

We now describe an algorithm for finding a maximal independent set for a graph satisfying
A O (log n). This algorithm is obtained by using a modified version of our A + 1 vertex-
coloring algorithm. We first color the graph with A + 1 colors and then find a maximal
independent set by sequencing through these colors.

LEMMA 7 [HI]. A BPC problem can be solved by first sorting the input BPCfunctions
into the file-major indexing, which takes 0(m log n/p + log n) time, and then building the
derandomiz,ation tree and derandomizing the random variables, which takes 0 (m/p + log n)
time, where p is the number ofprocessors used.

The reason that the computation for a BPC problem except the sorting step takes O (m/p/
log n) time is that the derandomization process can be formulated [HI] as a tree-contraction
process [MR]. Note that in order to establish Lemma 7, the derandomization tree D should
take the form such that each interior node of D must have at least two children [HI].

LEMMA 8. The A + 1 vertex-coloring problem can be solved in time O(m log n/p +
logn(log log n)2) using p processors on the CREWPRAM if A O(log n).

Proof Since A O(logn), one GPC problem now contains only O(loglogn) BPC
problems. Since the derandomization trees for all the BPC problems in a GPC problem are
the same, we need only build one derandomization tree and then make O (log log n) copies of
the tree. The time complexity for building the derandomization trees in the GPC algorithm is
O (m log n/p+log n). The time complexity for building the tables is O (m log log n/p/ log n)
for a BPC problem, because A O(log n), and O(m(loglogn)Z/p + logn log logn) for the
GPC problem. The time complexity for the rest of the computation in the GPC algorithm is
O (m log log n/p + log n log log n) using p processors because the BPC problems are solved
sequentially. Thus the first O (log log n) GPC problems can be solved in time

m log n
0 c; + logn(loglogn) O(m logn/p + logn(loglogn))

\ i=1 P

80 YIJIE HAN

using p processors. Now the graph has size O (m/ log2 n). It can be colored using the algorithm
in 4. Note again that each GPC problem has only O (log log n) BPC problems, f]

THEOREM 7. There is a CREWPRAMalgorithmfor the maximal independent setproblem
with time complexity O(log2"5 n) using O((m + n)/ log 1"5 n) processors.

The dominating operations in each step of our maximal independent set algorithm are
memory allocation and summation. These operations can be done in time O (log n/ log log n)
on the CRCW PRAM [P], [Re], [CV]. Therefore, we have the following corollary.

COROLLARY. There is a CRCWPRAM algorithmfor the maximal independent set prob-
lem with time complexity 0 (log2"5 n/ log log n) using 0 ((m + n) log log n/ log 1"5 n) proces-
sors.

6. Maximal matching. Let N(M) {(i,k) E, (k,j) E I3(i, j) M}. A
maximal matching can be found by repeatedly finding a matching M and removing M tON(M)
from the graph.

We adapt Luby’s work [L3] to show that after an execution of the GPC procedure a
constant fraction of the edges will be reduced.

Let ki be such that 2ki-1 < 4d(i) < 2ki. Let q max{kili V}. Let x-< xij
{0, 1}q, (i, j) E}. The length Ixij[ofxij is defined to be max{k/, kj}. Define

1 if Xij(lXij[1) xij(O) 0Ixijl,
Yij (xij

0 otherwise.

Yij,i,j, (xij xi,j, Yij (xij Yi,j, (xi,j,),

ivd(i)adj((Yi.j(xij)+ Yij,jk(Xij,Xjk))B(X
i) kadj(j),k#i

Z Yi.j’ik(Xij’ Xik))j,kadj(i),jCk

where xij (p) is the pth bit of xij.
Function B sets a lower bound on the number of edges deleted from the graph [L3] should

edge (i, j) be tentatively labeled as an edge in the matching set if xi.i (Ot_J 1)q-lxiJlOIxijl The
following lemma can be proven by following Luby’s proof for Theorem 1 in [L1].

LEMMA 9. E[B] >_ IEI/c for a constant c > O.
Function B can be written as

d(i) + d(j) d(i)
B(X Yij(xij + Z Z Yij jk(Xij, Xjk)

2 2
(i,j)E jV i,kad,j(j),i#k

+d(i)2 Z Yij,ik (Xij, Xik)
i6V j,k6adj(i),jTk

By using the same technique as in 5, we can obtain a CREW algorithm for the maximal-
matching problem with time complexity O(log2 n) using O(M(n)) processors. The details
of this algorithm are omitted here.

There are two cluster terms in function B. We only need explain how to evaluate the cluster
d(i) Yij,jk(Xij Xjk)" The rest of the functions can be computed as wetermv i,kadj(j),ik 2

have done for the maximal independent set problem in 5.

DERANDOMIZATION 81

Again we build an evaluation tree TC(v) for each cluster C(v) in the cluster term. Let
l(ij) Ixijl u. Let r T)[i’][j’l be the root of a subtree T’ in TC(v) which is to be
constructed in the current step. Let L and R be the left and right subtrees of T’, respectively.
Let rL and rR be the roots of L and R, respectively. At the beginning of the current step,
L and R have already been constructed. Random variables in the interior nodes of L and R

d(i)Define N(x b) -,,(ij,x)=b 2 2t(iJ)have been fixed. Define M(x, b) q,(ij,x)=b 2,"
At the beginning of the current step, M(rL, b), M(rR, b), N(r, b), and N(rR, b), b O, 1,
have already been computed and associated with r and r, respectively. During the current
step, r is made the left child of r and r is made the right child of r. Now r is tenta-
tively set to 0 and to obtain value VC for fixing r. We first compute VC(v, r) for each
v. VC(v, r) b=o(N(rL, b)M(rR, b r) + M(rL, b)N(rR, b @ r)). The VC value
is --Z{vlT({[i,][j,]isnotempty} YC(y, T(t)[i’][j’]),v After setting r, we obtain updated values
M(r, b) and N(r, b) as M(r, b) M(rL, b)+M(rR, br), N(r, b) N(rL, b)+N(rR, br).

Since this computation does not require more processors, we have the following theorem.
THEOREM 8. There is an EREWPRAM algorithmfor the maximal matchingproblem with

time complexity 0 (log2"5 n) using 0 ((m + n)/ log5 n) processors.
For the maximal-matching problem, we cannot remove another factor of log n from the

processor complexity as we did for the maximal independent set problem because there are
O (m) leaves in the random-variable trees of a BPC problem, while there are only O (n) leaves
in the maximal independent set problem.

Again in the CRCW PRAM algorithm a factor of log log n can be taken out from the time
complexity and put into the processor complexity.

Acknowledgments. The author wishes to thank the anonymous referees for their careful
reviewing and helpful comments on the manuscript. The author also thanks Professor Richard
Cole for making several good suggestions about the paper.

REFERENCES

[AKS]

[ABI]

[BR]

[BRS]

[c]

[Co]

ICy]

[cw]

[GS1]

[GS2]

M. AJTAI, J. KOMLtbS, AND E. SZEMERIDI, An O(N log N) sorting network, in Proc. 15th ACM Symposium
on Theory of Computing, Association for Computing Machinery, New York, 1983, pp. 1-9.

N. ALON, L. BABAI, AND A. ITAI, A fast and simple randomized parallel algorithm for the maximal
independent set problem, J. Algorithms, 7 (1986), pp. 567-583.

B. BERGER AND J. ROMPEL, Simulating (log n)-wise independence, in NC Proc. 30th Symposium on
Foundations of Computer Science, IEEE Press, Piscataway, NJ, 1989, pp. 2-7.

B. BERGER, J. ROMPEL, AND P. SHOR, EfficientNC algorithmsfor set cover with applications to learning and
geometry, in Proc. 30th Symposium on Foundations of Computer Science, IEEE Press, Piscataway,
NJ, 1989, pp. 54-59.

R. COLE, Parallel merge sort, in Proc. 27th Symposium on Foundations of Computer Science, IEEE Press,
Piscataway, NJ, 1986, pp. 511-516.

S. COOK, A taxonomy of problems with fast parallel algorithms, Inform. and Control, 64 (1985),
pp. 2-22.

R. COLE AND U. VISHKIN, Approximate and exact parallel scheduling with applications to list, tree
and graph problems, in Proc. 27th Symposium on Foundations of Computer Science, IEEE Press,
Piscataway, NJ, 1986, pp. 478-491.

D. COPPERSMITH AND S. WINOGRAD, Matrix multiplication via arithmetic progressions, in Proc. 19th
Annnual ACM Symposium on Theory of Computing, Association for Computing Machinery, New
York, 1987, pp. 1-6.

S. FORTUNE AND J. WYLLIE, Parallelism in random access machines, in Proc. 10th ACM Symposium on
Theory of Computing, Association for Computing Machinery, New York, 1978, pp. 114-118.

M. GOLDBERG AND T. SPENCER, A newparallel algorithmfor the maximal independent setproblem, SIAM
J. Comput., 18 (1989), pp. 419-427.

Constructing a maximal independent set in parallel, SIAM J. Discrete Math., 2 (1989),
pp. 322-328.

82 YIJIE HAN

[HCD]

[H]

[HI]

[II]

[IS]

[KW]

[L1]

[L2]

[L3I

[MR]

[MNN]

[PSZ]

[p]

[Rag]

[Re]

[Sp]

T. HAGERUP, M. CHROBAK, AND K. DIllS, Optimalparallel 5-coloring ofplanar graphs, SIAM J. Comput.,
18 (1989), pp. 288-300.

Y. HAN, A parallel algorithm for the PROFIT/COSTproblem, in Proc. 1991 International Conference on
Parallel Processing, 1991, pp. 103-112.

Y. HAN AND Y. IGARASHI, Derandomization by exploiting redundancy and mutual independence, Lecture
Notes in Comput. Sci., 450 (1990), pp. 328-337.

A. ISRAELI AND A. ITAI, A fast and simple randomized parallel algorithm for maximal matching,
Tech. report, Computer Science Deptartment, Technion, Haifa, Israel, 1984.

A. ISRAELI AND Y. SHILOACH, An improved parallel algorithm for maximal matching, Inform. Process.
Lett., 22 (1986), pp. 57-60.

R. KARP AND A. WIGDERSON, Afastparallel algorithmfor the maximal independent setproblem, J. Assoc.
Comput. Mach., 32 (1985), pp. 762-773.

M. Lu3, A simple parallel algorithm for the maximal independent set problem, SIAM J. Comput.,
15 (1986), pp. 1036-1053.

Removing randomness in parallel computation without a processor penalty, in Proc. 29th
Symposium on Foundations of Computer Science, IEEE Press, Piscataway, NY, 1988, pp. 162-173.

Removing randomness in parallel computation without a processor penalty, Tech. report,
89-044, International Computer Science Institute, Berkeley, CA, J. Comput. System Sci., 47 (1993),
pp. 250-286.

G. L. MILLER AND J. H. REIF, Parallel tree contraction and its application, in Proc. 26th Symposium on
Foundations of Computer Science, IEEE Press, Piscataway, NJ, 1985, pp. 478-489.

R. MOTWANI, J. NAOR, AND M. NAOR, The probabilistic method yields deterministic parallel algorithms,
in Proc. 30th Symposium on Foundations of Computer Science, IEEE Press, Piscataway, NJ, 1989,
pp. 8-13.

G. PANTZIOU, P. SPIRAKIS, AND C. ZAROLIAGIS, Fastparallel approximations ofthe maximum weighted cut

problem through derandomization, Lecture Notes in Comput. Sci., 405 (1989), pp. 20-29.
I. PARBERRY, On the time required to sum n semigroup elements on a parallel machine with simultaneous

write, Lecture Notes on Comput. Sci., 227, pp. 296-304.
P. RAGHAVAN, Probabilistic construction of deterministic algorithms: Approximating packing integer

programs, J. Comput. System Sci., 37 (1988), pp. 130-143.
J. H. REIF, An optimal parallel algorithmfor integer sorting, in Proc. 26th Symposium on Foundations of

Computer Sci., IEEE Press, Piscataway, NJ, 1985, pp. 291-298.
J. SeEqCER, Ten Lectures on the Probabilistic Method, Society for Industrial and Applied Mathematics,

Philadelphia, 1987.

SIAM J. COMPUT.
Vol. 25, No. 1, pp. 83-99, February 1996

() 1996 Society for Industrial and Applied Mathematics
OO3

WEIGHTED MULTIDIMENSIONAL SEARCH AND ITS APPLICATION TO
CONVEX OPTIMIZATION*

RICHA AGARWALAt AND DAVID FERNNDEZ-BACA

Abstract. We present a weighted version of Megiddo’s multidimensional search technique and use it to obtain
faster algorithms for certain convex optimization problems in Rd, for fixed d. This leads to speed-ups by a factor
of logd n for applications such as solving the Lagrangian duals of matroidal knapsack problems and of constrained

optimum subgraph problems on graphs of bounded tree-width.

Key words, computational geometry, convex optimization, Lagrangian relaxation, multidimensional search

AMS subject classifications. 52B 12, 52B30, 52B55, 68P10, 68Q25, 68U05

1. Introduction. This paper has three main parts. In the first (2), we present a weighted
version of the multidimensional search technique of Megiddo [27], [17], [10]. The second
part (3) discusses the application of our result to a class of convex optimization problems
in fixed dimension which were studied earlier by Cohen and Megiddo [14], [15] and in a
different context by Aneja and Kabadi [4]. In rough terms, the results in [14], [15], and [4]
can be summarized as follows. Suppose that g is a concave function whose domain Q is
a convex subset of R and that g is computable in O(T) time by an algorithm 4 that only
performs additions, multiplications by constants, copies, and comparisons on intermediate
values that depend on the input numbers. Then g can be maximized in O(T+1) time. Cohen
and Megiddo go on to show that substantial speed-ups are possible by exploiting whatever
parallelism is inherent to algorithm 4. Thus, if 4 carries out D parallel steps, each of which
does at mostM comparisons, the running time will be O ((D log M) T). By applying weighted
multidimensional search and a generalization of Cole’s circuit-simulation technique 16], we
are able to reduce this to O((D + log M)T) in some cases.

Lagrangian relaxation is a source of several problems that fall into the framework described
above [4]. This widely used approach is based on the observation that many hard optimization
problems are actually easy problems that are complicated by a relatively small set of side
constraints. By "pricing out" the bad side constraints into the objective function, one obtains
a simpler convex optimization problem whose optimum solution provides good bounds on the
optimum value ofthe original problem. The third part ofthis paper (4) explains the application
of our results to Lagrangian relaxation problems where the number of bad constraints is fixed.
We give two examples of problems where the methods described in 3 give faster algorithms
than those of [4], 14]: solving the Lagrangian duals of matroidal knapsackproblems 11 and
of certain constrained optimum subgraph problems on graphs of bounded tree-width.

2. Weighted multidimensional search. Let us first introduce some notation. Suppose
A

R is convex and that h R R is an affine function. Define signA (h) as

0 ifh(,) 0 for some e A,
signx (h) + if h(,) > 0 for all) 6 A,

-1 ifh(,) <0forall)A.

Received by the editors December 28, 1992; accepted for publication (in revised form) July 22, 1994. An earlier
version of this paper appears in].

tDepartment of Computer Science, Iowa State University, Ames, IA 50011. The research of this author was
supported in part by an Iowa State University College of Liberal Arts and Sciences Research Assistantship. Current
address" DIMACS (The Center for Discrete Mathematics and Theoretical Computer Science), Rutgers University,
Piscataway, NJ 08855 (agarwala@dimacs.rutgers.edu).

Department of Computer Science, Iowa State University, Ames, IA 50011 (fernande@cs.iastate.edu). The
research of this author was supported in part by the National Science Foundation grants CCR-8909626 and CCR-
9211262. This author’s work was conducted in part at DIMACS, Rutgers University.

83

84 RICHA AGARWALA AND DAVID FERN/NDEZ-BACA

We will write sign for signA when no confusion can arise. A function h is resolved if signA (h)
has been computed. Obviously, if h(k) a0, sign(h) can be immediately determined from
the sign of a0.

Suppose we have a set 7-/of d-dimensional affine functions and an oracle/3d that can
compute sign^ (h) for any h 7-/. The problem is to resolve every h 7-t using as few oracle
calls as possible. The following result is proved in [27], [17], [10].

THEOREM 2.1. For each fixed d > 0 there exist positive constants (d) and or(d),
or(d) < 1/2, and an algorithm SEARCH such that, given a set of affine functions, SEARCH
either returns an affine function h such that signA (h) 0 or resolves every h 7-[’ c__ ,
where 17-t’l _> (d), 17-tl, by making at most 13(d) calls to 13d. Furthermore, the work done by
SEARCH in addition to the oracle calls is O(17-tl).

In reality, the above references have proofs of this result for the case where A is a single
point, but the proof extends easily to the case where A is a convex set. By repeatedly applying
algorithm SEARCH, we can resolve all functions in 7-/with O(log 17-tl) oracle calls. In this
section, we shall prove a weighted version of Theorem 2.1. Let S be a set on which a weight
function w S --+ R+ has been defined. For S’

S, we write w(S’) to denote -]seS, w(s).

We have the following result.
THEOREM 2.2. For each d > O, there exist constants (d) and (d), ot < 1/2, and an

algorithm WEIGHTED-SEARCH with the following property. Given a set 7-(of affine functions
and a weightfunction w 7-[--+ R+, WEIGHTED-SEARCH either returns an affine function h
such that sign (h) 0 or finds a subset ’ c_ 7-[with w(7-[’) >_ or(d) w(7-[) and resolves
every h ’ by making at most 13 (d) calls to 13. Furthermore, the work done by WEIGHTED-
SEARCH in addition to the oracle calls is O(]l).

The proof of this theorem will require some preliminary results, which are discussed next.

2.1. Preliminaries. Procedure WEIGHTED-SEARCH uses two simple algorithms. The
first is MATCH, which, given two sets A and B, attempts to match disjoint subsets of B with
elements of A in a "greedy" manner.

ALGORITHM MATCH
Input: Sets A {al alal} and B {bl blBi} and a weight function w

AtoB R+.
Output: Either FAILURE or disjoint sets $1 SIA such that, for each i, Si {ai t Di

where Di B and w(Di) > w (ai).
begin
jl
for 1 to A[do begin

Di --0
while w(Di) < w(ai) do begin

if j > BI then return FAILURE
Di +-- Di tO bj
j+--j+l

end
Si +-- {ai tO Di

end;
return $1 SIa

end

The running time of this algorithm is clearly O(]BI). We shall say that MATCH succeeds if
it does not return FAILURE. IfMATCH succeeds, then the solution returned obviously satisfies
its output conditions. The next lemma gives one scenario in which MATCH always succeeds.

WEIGHTED MULTIDIMENSIONAL SEARCH AND ITS APPLICATIONS 85

LEMMA 2.3. IfminxeAW(X) > maxyeBW(y) and w(B) > 2w(A), then MATCH succeeds.
Furthermore, each set Si {ai} U Di returned by MATCH satisfies w(Di) < 2w(ai).

Proof. (This is a proof by contradiction.) Suppose the conditions of the lemma hold and
that MATCH returns FAILURE. Then there exists a k, < k < AI, such that, at the kth iteration
of the for loop, MATCH runs out of elements of B to match up with ak; i.e., w(Dk) < w(a)
and B U/k=1Di, where D1 D are the subsets of B constructed by MATCH up to this

point. Thus, =1 w(Dj) w(B). For j k, let Dj {djl, dj2 djlj}. By
construction, for _< j < k- 1, w(Dj)-w(dj#) < w(aj). Thus, for _< j _< k- 1,
w(Dj) < w(aj) + w(djl) <_ 2w(aj), as minxeA W(X) > maxyeBW(y). Together with the
above-mentioned fact that w(D) < w(a), we get that

k k

j=l j=l

which is a contradiction. Therefore, MATCH succeeds, and for each set Si {ai U Di,
w(Di) < 2w(ai).

MATCH is invoked by the following algorithm.

ALGORITHM PAIRING
Input: Sets A, B, a weight function w A U B R+, and a number m such that

W/2 > w(B) > w(A) > (W/2- m), where W w(A t_l B) + m.
Output: k > 0 disjoint sets S1 Sk, and an element e satisfying the following con-

ditions:
(P1) Each Si has the form Si {ci U Di, where e 7 ci, and either

(1) for all i, e, ci A and Di

_
B, or

(2) for all i, e, ci B and Di A.
(P2) for all i, 2w(ci) > w(Oi) >_ w(ci).
(P3) Z--1 W(Ci) + w(e) + m > W/6.

Note: In order to break ties between items with equal weights, we assume an arbitrary
but fixed ordering among the elements in A and in B. Given any two elements x
and y, where either both are in A or both are in B, we will say that x precedes y if
(w(x), x) is lexicographically smaller than (w(y), y).

Step 1. Find a 6 A and b 6 B such that w(A1), w(B) <_ w(A)/3 and w(AII..J
{a}),w(B1 U {b}) > w(A)/3, where A1 {x 6 A x precedes a} and
Bl--{x 6B’xprecedesb}.LetA2=A-AlandB2--B-B.

Step 2. If w(a) > w(b), do the following steps.
Step 2(a). If w(a) + m >_ W/6, then return k 0 and e a.

Step 2(b). Call MATCH with inputs A1 and B2. Let S SIA,I be the
sets returned by this call. Return S SIAII, and e a.

Step 3. If w(a) < w(b), do the following steps.
Step 3(a). If w(b) + m >_ W/6, then return k 0 and e b.
Step 3(b). Call MATCH with inputs B1 and A2. Let S SiB, be the
sets returned by this call. Return $1 SIBll and e b.

LEMMA 2.4. PAIRING correctly computes output satisfying conditions (P1)-(P3).
Proof. If the output is returned in Step 2(a) or Step 3(a), the conditions are trivially

satisfied. We now consider Step 2(b); the analysis for Step 3(b) is similar. By construction,

minxeA1 w(x) > maxyeB2 w(y)and w(B2) > 2w(A)/3 > 2w(A). Since the conditions of
Lemma 2.3 are satisfied, MATCH succeeds and conditions (P1) and (p2) are satisfied. Since

7"lAll W(Ci) w(A1). Therefore, -= w(ci)+w(e)+mMATCH works correctly, we have z_,i=l

86 RICHA AGARWALA AND DAVID FERN/NDEZ-BACA

w(A1) + w(a) + m. Because w(A1) + w(a) > w(A)/3,
k

W(Ci) -Jr- w(e) + rn > w(A)/3 + rn > (w(A) + m)/3.
i=1

Since w(A) + m > W/2, we obtain

k_, w(ci) + w(e) + m > W/6
i=1

as desired. [3

PAIRING can be implemented to run in O(n) time, where n IAI -t- IBI. Step takes
O(n) time as elements a and b can be found by repeated median finding [12]. Steps 2 and 3
also take linear time, since MATCH takes linear time.

2.2. The search algorithm. We shall now prove Theorem 2.2. The implementation of
WEIGHTED-SEARCH that we propose is an extension of Megiddo’s [27] and Dyer’s 17] algo-
rithms for unweighted multidimensional search (see Theorem 2.1). Suppose {h hn },
where hi(k) a) + di. If ai 0, sign(h/) is simply the sign of di, and no oracle calls are
needed. Thus, the presence of hi’s with ai 0 can only help. We shall henceforth assume
that ai :/: 0, for n. In this case, each affine function hi corresponds to a hyperplane
Hi Rd, where Hi {i, hi(1.) 0}. Computing sign(h/) is thus equivalent to determining
whether Hi intersects A and, if not, which side of Hi contains A. We shall find it convenient to
deal interchangeably with hyperplanes and affine functions and to extend the weight function
w to these hyperplanes by making w(Hi) w(hi).

The numbers/3(d) and or(d) are derived recursively with respect to the dimension. For
d 1, the hyperplanes are n real numbers)1 ,kn. In this case, WEIGHTED-SEARCH
finds the weighted median ,km, inquires about its position relative to)*, and resolves either
{)i’i)m} or {i’i Am}. Thus,/(1) and or(l) 1/2. For d > 2 we proceed as
follows.

Form a set {Hi ai2 0}. Each Hi intersects the .-)2 plane
(i.e., the plane where)t. 0 for ’ 1, 2}) in a straight line ail)l nu ai2)2 bi. Since for
every scalar - 0, sign(h0)) sign(l), sign(h())/1), we can rewrite the equations of these
hyperplanes so that ail >_ O. Let the slope oti of Hi be the same as that of ail)l nt- ai2)2 bi
with respect to ;2 0; i.e., let Ol (--ail/ai2). Let or* be the weighted median of the set
{oti where the weight of oti is w(Hi). Now we make the slopes of roughly weighted half of
the hyperplanes nonnegative and weighted half nonpositive by using the change of variables
)2)2 + c*1 and ail ail ot ai2. This change of variables is only done to simplify the
exposition and, indeed, needs to be reversed before making an oracle call. For convenience,
we now drop the primes on) and al. Recalculate the slopes of the hyperplanes after making
this change in variables. All hyperplanes that originally had a slope of oe* will have 0 slope.
Let 0 {Hi oli 0}, -/_ {Hi oli < 0}, and 7-/+ {Hi oli >" 0}.

Let rn w(7-/) + w(7-/0) and W w(7-(). Since 0 is our new weighted median slope,
w(7-/_) _< (W- w())/2 < W/2 and w(7-/_)+ w(0) > (W- w())/2. Therefore,
w(7-(._) > W/2-w(7-g)/2-w(7-(.o) > W/2-m. Similarly, W/2 > w(7-(+) > (W/2-m).
Thus, sets 7g_, 7-[+ and the number rn satisfy the preconditions ofPAIRINGnassuming, without
loss of generality, that w(_) _< w(7-(+). WEIGHTED-SEARCH calls PAIRING(7-[_ 7-/+, m).
Let $1 S1, e be the sets and the element returned, where Si {ci U Di. By output
condition (P3) of PAIRING,

(1) Z W(Ci) .qt_ w(e) + m > W/6.
i=1

WEIGHTED MULTIDIMENSIONAL SEARCH AND ITS APPLICATIONS 87

Next, we resolve the hyperplane associated with e, denoted by He, by calling the oracle directly.
If He intersects A, we return He; otherwise, for the hyperplanes corresponding to elements in
Sa St, we do the following.

Suppose that for each set Si {ci U Di, ci corresponds to a hyperplane Hi 7-[_ and
that Di has a corresponding set of hyperplanes Hi1, Hi2 Hiq +. (The analysis for
the case where ci is associated with a hyperplane in 7-(+ is completely analogous.) For each
i, form pairs (Hi, Hil), (Hi, Hi2) (Hi, Hiqi). By Lemma 2.3, for each and j,

(2) w(Hij) <_ w(Hi).

Consider a typical pair (Hi, Hij). Since Hi and Hij have strictly negative and strictly positive
slopes, respectively, their intersection is a (d 1)-dimensional hyperplane. Through this

(1)intersection, we can draw hyperplanes/iS and Hi whose slopes are -+-oo and 0 respectively.
Mathematically,

d

(ai2aijl ailaij2))Vl (ai2bij aij2bi) Z(ai2aijr aij2air))Vr,
r=3

d

(ai2aijl ailaij2),2 (aijlbi ailbij) (aijlair ailaijr))r.
r=3

Note that Hi and Hi are (d 1)-dimensional hyperplanes. Now, assign a weight of
min(w(Hi), w(Hij)) to each of Hi and HIT). From equation (2), we get that
min(w(Hi), w(Hij)) w(Hij). This along with condition (P2) of PAIRING gives us

(3)
qi qi qi

Z llo(si(lr)) Z -(2)w(Hir Z w(Hir) >_ w(ci)- to(Hi).
r=l r=l r=l

WEIGHTED-SEARCH tO the set of (d 1)-dimensional hyperplanes {Hi{ tORecursively apply
oo. This requires/3 (d l) oracle calls. If an oracle call finds a hyperplane that intersects A,
we return that hyperplane. Otherwise, let Woo and W1 denote the weights of the hyperplanes
resolved from sets 7-1rod and {Hi)}, respectively, and let w({Hi)}) li= qiYr=l to(Hir)"
Then,

(4) Woo -- W1 og(d- 1)(l)(’]-oo).qt_ w({HiT)})).
Let]..(2) be the set of hyperplanes in {Hi7 for which the corresponding Hi)’s have been
resolved in the previous step. Recursively apply WEIGHTED-SEARCH to the set of (d 1)-
dimensional hyperplanes in 1(2) tO ’10. This requires at most fl (d 1) oracle calls. As before,
if we find a hyperplane which intersects A, we return that hyperplane; otherwise, we proceed
as follows. Letting Wo and W12 denote the weights of the hyperplanes resolved from sets 0
and {2), respectively, we have

(5) W0 q- W12 >_ ot(d 1)(w(7-0) q- Wl).

To summarize the algorithm up to this point, observe that we have either found a hyper-
plane which intersects A or, from the original set , we have resolved an element e of weight
w(e), a subset of weight Woo of the planes in oo, and a subset of weight W0 of the planes in
7-/o. In addition to this, we have resolved a subset of weight W1 of the hyperplanes in set Hi)
and a subset of weight W12 of the hyperplanes in set 2). For each hyperplane contributing

88 RICHA AGARWALA AND DAVID FERN/NDEZ-BACA

to W12 we have also resolved its pair in the set {Hi}. However, W1 and W12 represent the
total weights of sets of auxiliary hyperplanes, rather than elements of 7-/. We shall now show
that by resolving such auxiliary hyperplanes, we are guaranteeing the resolution of sufficiently
many hyperplanes from (7-/_ U +) He }.

LEMMA 2.5. Let Wa be the total weight ofthe hyperplanes resolved in (_ 7-[+) {He}.
Then, Wa >_ W12/2.

Proof. Consider a particular set Si Hi U Hi l, Hi2 Hiqi }. The auxiliary hyper-
planes formed by the intersection of hyperplanes in Si are

Suppose Hi(21 Hi -2Hip were resolved in the second recursive call. Then these hyper-
planes contributed to W12. Hence, the contribution, Ci, of the auxiliary hyperplanes resulting
from Si to W12 is Ci Y.=I w(Hi), and W12 can be written as

(6) W12 Ci.
i=1

For each Hi that gets resolved, its corresponding Hi has already been resolved in the first
recursive call. We now rely on an observation of Megiddo [27], who noted that if we know
the position of A relative to both Hi and Hi, we can determine the position of A relative
to at least one of Hi and Hij. Let Ri be the sum of the weights of the hyperplanes resolved
from Si. Since t31= 1Si (7-[_ t3 7-[+) {He} and the Si’s are disjoint,

(7) Wa >_. _Ri
i=1

We have two cases to consider:
Case I. In each pair, Hij is resolved. Then due to equation (3), we have

P P

ei Z to(nij) Z to(ni)) Ci"
j=l j=l

Case II. Hi is resolved in at least one pair. Then equation (3) along with condition (P2)
of PAIRING implies that

p

ei >_. to(Hi)= to(ci) > Z w(Hij)/2 > Z w(Hi)/2 Ci/2.
j=l j=l

Therefore, in either case Ri >_ Ci/2. This along with equations (6) and (7) gives us the
following:

Wa >

_
Ri >_. Ci/2 W12/2.

i=1 i=1

Therefore, Wa >_ W12/2.
Let W be the total weight of the hyperplanes from 7-/that are resolved by our algorithm;

i.e., Wr w(e) + W + Wo + Wa. Using Lemmas 2.4 and 2.5 and equations (3)-(5), we

WEIGHTED MULTIDIMENSIONAL SEARCH AND ITS APPLICATIONS 89

have

Wr >_ w(e) + W + Wo + W12/2
>_ w(e) + W + c(d 1). (w(7-go) + W1)/2

> w(e)+ o(d 1). (w(7-(o)+ ot(d 1). (w(7-/a)+ w({Hi(})})))/2
> ot(d 1)2. w(e) "- W(-[O) -" W(-[exa) "- llO(Ci) /2

i=1

> c(d- 1)2. W/12.

From the preceding discussion, we conclude that the number of oracle calls satisfies
fl(d) 2fl(d 1) + 1, with fl(1) 1, and that the fraction of the total weight satisfies

c(d) > c(d- 1)2/12, with c(1) 1/2. Hence, fl(d) 2d 1 and or(d) 12/242-’.
The same arguments as in 17] can be used to show that the total work done by WEIGHTED-

SEARCH is O (n). We omit the details.

2.3. Improving the efficiency of the search. Following Dyer 17], the efficiency of a
search scheme is the ratio e ot(d)/(d). As for unweighted search, the efficiency of a
weighted search scheme will affect the running time of the algorithms that use the scheme as
a subroutine. The search scheme we have just presented has e that is doubly exponentially
small in d. Borrowing ideas from [17], we shall sketch how to make the efficiency singly
exponentially small.

Let us write S(d, r, or) to denote a weighted search scheme that, given a set of weighted
affine functions in Rd of total weight W, resolves a fraction of total weight c. W using/3 oracle
calls. Thus, the algorithm that we have developed can be denoted by S(d, 2d 1, 12/242-1).
Suppose that we have an S(d 1, fl(d 1), c(d 1)) scheme Sd-1. To obtain a search
procedure for Rd, proceed as follows. First, construct a S(d 1, fl’, cd) procedure with

’ (1 (d 1))r and fl’ r. fl (d 1)

by carrying out r iterations, each of which consists of applying Sd-1 and removing the hyper-
planes that are resolved. Next, use S(d 1, fl’, or’) and the pairing scheme described earlier
to obtain a procedure S(d, fl", cd’), where

or" [1 (1 ot(d 1))r12/12 and " 2. r. (d 1) + 1.

Applying this procedure times gives us aprocedure ,9(d,/3 (d), ot (d)) that solves d-dimensional
hyperplanes with

and

fl(d) fl" l(2r fl(d 1) + 1)

{ }lc(d) 1 (1 ogt’) T[1 (1 c(d 1))r]2

We can use this framework to obtain a scheme S(d, fl(d), or(d), where c(d) > 1/12 for all
d. For d 1, we can easily obtain a scheme S(1, 1, 1/2). Suppose c(d 1) > 1/12. If we
choose 2 and r 15, we get

1512or(d)-- 1- 1--[1-(1-1/12) > 1/12

90 RICHA AGARWALA AND DAVID FERN,NDEZ-BACA

as desired. Now

fl(d) 2. (2. 15. fl(d- 1) + 1) <_ 2(60a-1),

and we have a procedure $(d, 2(60a- 1), / 12) whose efficiency is singly exponentially small.

3. Convex optimization in fixed dimension. An algorithm is piecewise affine if the
only operations it performs on intermediate values that depend on the input numbers are
additions, multiplications by constants, copies, and comparisons [14], [15]. Several well-
known algorithms fall into this category, including many network-optimization algorithms
[13], [33]. Suppose Q c_ Rd is a (possibly empty) convex set defined by a set of at most
linear inequalities, where is some fixed integer. Let g (2 --* R be a concave function. Our
goal is to compute

(8) g*= max{g()) ,k Q}

or, if Q 0, to return a message that this problem is infeasible. Cohen and Megiddo [14],
15] showed that, if g is computable by a piecewise affine algorithm that runs in time T and
makes D sets of at most M comparisons, then problem (8) can be solved in O((D log M)aT)
time. Closely related results were obtained by Norton, Plotkin, and Tardos [29] and Aneja
and Kabadi [4]. Toledo has extended this work to problems involving piecewise polynomial
functions [34]. The main result of this section is to show that weighted multidimensional
search in conjunction with Cole’s circuit-simulation technique 16] can sometimes be used to
solve (8) in O((Dd + logd M)T) time.

To streamline the presentation, for the most part we shall omit any mention of constants
that depend on d. The magnitude of these values is discussed in 3.3.

3.1. The basic scheme. We now review the solution scheme of Megiddo and Cohen
[14], [15] and Aneja and Kabadi [4] as it forms the basis for our algorithm. Our presentation
is somewhat simpler, among other reasons because it avoids the notion of "minimal weak
approximation" used in [14]. We shall assume that problem (8) is bounded. This is done
without loss of generality, since unbounded problems can be handled by Seidel’s technique of
adding "constraints at infinity" [32]. Note also that if g is computable by a piecewise affine
algorithm, it is the lower envelope of a finite set of linear functions 14]. We say that a linear
function f Rd -+ R is active at .0) Q if g(0)) f(.0)) and g(.) _< f()) for all) Q
and we shall write A to denote the set of maximizers of g.

Let us refer to the algorithm that solves a d-dimensional problem of the form (8) as
algorithm Cd. Let H be a hyperplane in Rd, and let g/denote the maximum of g on H; i.e.,

g max{g(L)") U Q}.

Suppose we have an oracle/3a that, as in 2, returns signA (h) for any given affine function h.
Moreover, if h defines a hyperplane H,/3a returns g, assuming H V Q :/: 0.

Obviously, 4 can play the role of C. For d > 1, Ca proceeds as follows. First, it
determines whether Q is empty and, if so, returns a message saying that (8) is infeasible.
Since Q is defined by a fixed number of linear inequalities, this takes O (1) time. If Q - 0, Ca

uses Megiddo’s algorithm simulation technique [25], [26] to do one of two things. The first
option is to find a hyperplane H defined by h(,k) 0 such that signA (h) 0. Then, clearly,
g* g. The second option is to find a linear function f and a set of linear inequalities 12
defining a nonempty convex set Q*

Q such that

(C1) Q* __c A and
(C2) f is active at every ,k Q*.

WEIGHTED MULTIDIMENSIONAL SEARCH AND ITS APPLICATIONS 91

In this case, solving (8) reduces to solving the linear programming problem

max{f(1.) 1. Q*},

which can be done in time linear in L;, since d is fixed [27]. Algorithm Ca relies on the
observation that, because 4 is piecewise affine and its inputs are linear functions of 1., all
the intermediate values of its real variables can be represented implicitly as linear forms in 1..
Using this representation, a single computation path of 4, may correspond to the evaluation
of g(1.) for a set of distinct/.-values.

Suppose that for s _< r, we know how to find a set ’ C Re defined by a set of linear
inequalities/2 such that ’ N A # 0 and such that the outcomes of the first r steps of any
computation path of 4 for every 1.* 6 {2’ are exactly the same (when values are represented
implicitly). We wish to find such a set for s r + 1. Before proceeding, note that finding
{2’ when s 0 is trivial, since we can choose ’ @. For s r + 1, observe that knowing
the outcomes of the first r steps tells us what the (r + 1)st step of 4 will be; we now need to
determine the outcome of this step. If the (r + 1)st step is an addition of two or more numbers,
a multiplication by a constant, or an assignment, Ca does the corresponding operations with
linear forms and proceeds to the next step of 4.

If the (r + 1)st step is a comparison between two variables, Ca compares the corresponding
linear forms fl (1.) and f2(1.) using Ba to resolve the function h(1.) fl (1.) f2(1.). Suppose
h(1.) 0 defines a hyperplane H. If signA (h) 0, then g* is the value of g/ returned
by the oracle, and Ca halts. Otherwise, Ca updates L; by adding the inequality h(1.) > 0 if
sign(h) + or the inequality h(1.) < 0 if sign(h) -1. The next step to be simulated from
4 will be the action corresponding to fa (1.) > f2(1.) or fl (1.) < f2(1.) depending on whether
sign(h) is + 1 or -1. If h is a constant function, the oracle’s job is trivial, since the outcome
of the comparison is independent of 1. and the simulation proceeds accordingly.

If Ca simulates Jl to completion, Q’ will satisfy condition (C 1). Furthermore, the output
of Jl will be a linear function f satisfying condition (C2). Since .A does O(T) comparisons,
]L;] O(T) and the resulting linear program in d variables can be solved in O(T) time [27].
The total time for algorithm Ca is therefore O(T b(d)), where b(d) is the running time of
Ba. We now turn our attention to the implementation of

Implementing the oracle. Let h(1.) /=1 ai1.i + b be the function to be resolved. If
ai 0 for n, sign(h) depends simply on the sign of b. Otherwise, H {1.
h(1.) 0} is a hyperplane in Ra. To resolve h,/3a first determines if H N Q 0. If this
is so, then, since A

Q, we simply need to find a point 1.(0 6 {2 and evaluate signlx(0}(h).

Determining if the intersection of H and {2 is nonempty and finding a point inside Q take
O (1) time, since Q is defined by a set of O (1) linear inequalities and is fixed.

From now on, assume H N {2 7 0. Now, if A H 0, due to concavity of g, the set of
all points U such that g(1.’) > g is contained in only one side of H. This observation leads
to the following result, which is the basis for the implementation of

LEMMA 3.1. Let H {1. h(1.) 0} be a hyperplane in Ra, andfor every real number
a, let H(a) denote the hyperplane given by H(a) {i. h(1.) a}. Then,

+1 if(3e > 0)[g(e) > g41,
signA (h --1 if (qe > 0)[g/(_) > g/],

0 otherwise.

Furthermore, ifsignA(h) +1 [signa(h) -1], then g*() > g* [g*(_) > g*]for all
y (0,], where > 0 is sufficiently small.

The lemma tacitly assumes that H(e) A Q - 0 [H(-e) Q 4= 0] for some e > 0.
If H(e) A {2 0 [H(-e) a Q 0] for every e > 0, we can immediately conclude that

92 RICHA AGARWALA AND DAVID FERN/NDEZ-BACA

sign(h) : +1 [sign(h) : -1]. Thus, we shall continue assuming that H(e) fq Q 5 0 and
H(-e) N Q # 0 for some e > 0.

Lemma 3.1 implies that we can implement/3d by computing g, g/(,) and g4(-,) for
sufficiently small e > 0. Computing g/is a (d 1)-dimensional problem of the same form
as that of computing g*; hence, g/can be calculated by recursively calling Cd-1. We can
also compute g/(* using Cd-l, provided Cd-1 treats e as a symbolic constant whose only
known attribute is being arbitrarily small and positive. (The details of computing g(_, are

analogous and therefore omitted.) The output g/(, of this execution of Cd-1 will depend
linearly on e; i.e., * * and *gn() go + gl.. The values of gH() gH are compared by computing
y sign(g g,)) sign((g go) g1). If Ig g01 > O, d sign(g go), since

is arbitrarily small. Otherwise, d sign(-gl), since is positive. Of course, Cd- will itself
call/d-1, which will introduce a perturbation of its own. In order to deal effectively with the
various symbolic perturbations, we shall establish a certain ordering among them.

The state of the execution of Cd is partially described by sequence of currently active
procedure calls (i.e., calls that have not yet been completed). Let us follow one sequence
of procedure calls Cd --+ 13d -+ Cd-1 -+ d-1 _+ _+ d-r+ cd-r Within this
sequence, for 0 < j < r 1, 13d-j -- d-j-1 corresponds to one of the three calls to
Cd-j-1 done by 13d-J; we refer to this part of the sequence as level j. Each level reduces
the dimension of the problem by one. Also, depending on which of the three calls the level
corresponds to, the call may or may not introduce a perturbation. If it does, we shall refer to
the perturbation as sj. Let ff {il is} 2" {0 r} consist of all j’s such that a
perturbation is introduced up to level j. We assume that 0 < il < r and, for 0 < j < s 1,
0 <_ ij < ij+l < r. The set ff indicates which perturbations are "active" at the current stage
of the execution of Cd. The problem to be solved at level r can thus be expressed as

gr* max{g(,k) . 6 t((5il e/s)}

where Q’(ei, eis) is a (d r)-dimensional subset of Rd defined by the intersection of
O(d) linear inequalities in {.i} and eil ei,.

Now, suppose Cd-r invokes 13d-r to resolve a hyperplane

H(il is) { h(X, il 5i 0}.

For every real number a, let n’(eil is, a) {. h(), 5il is) a}. Then, applying
Lemma 3.1, 13d solves three problems:

gr+l(0) max{g(X) . Q’(’il 6is) 0 Ht(si, 5i, 0)},
,

gr+l(.r+l) max{g(,k) ,k Qt(-il, (?is) V) H (6.i -is 6r+l)}
gr+(-er+) max{g(.) . Q’(eil el,) H’(ei i, -er+)},

where 6r+l > 0. By Lemma 3.1, if there exists an 6r+l > 0 such that gr/l* (6r+1) > gr+l* (0),
then gr+l (’) > gr+l for any , (0, r+l]. Thus, when dealing symbolically with er+, we
can assume that it is arbitrarily smaller than any one of ?il 6is" By the same reasoning,
when dealing with perturbations ei ei, we can always act under the assumption that

(9) 0 .< Sis 6.is_ "" i2 i, 1.

Since t is piecewise affine, all numbers manipulated at any level of the execution of Cd

are linear forms in the ;ki’s and the i’s. Suppose the execution of Cd produces a sequence of
procedure calls that eventually triggers a comparison between two values. If the values involve. (and, possibly, some i’s), the comparison will be handled by an oracle call. Otherwise,

WEIGHTED MULTIDIMENSIONAL SEARCH AND ITS APPLICATIONS 93

we will be comparing linear forms in the es. For a correct implementation of Cd, it suffices
to deal properly with the second kind of comparison. Suppose the two numbers have the
form u u0 + =1 ujeij and v v0 + Y=I vj%. We must compute sign(t), where

t=t0+ysj=ltje#andtj uj vj j s Obviously, iftj-0forj-0,1 ,s,
sign(t) 0. Otherwise, there is a smallest subscript d, 0 < d < s, such that Itdl > 0. By (9),
eid+l eis can be assumed to be arbitrarily smaller than eid. Thus sign(t) sign(td). We
should note that the use of perturbation techniques is common in mathematical programming
13], [31], one example being the lexicographic rule applied in the simplex algorithm. These
methods have also found applications in computational geometry 18]. An earlier application
of perturbation methods to parametric computing was given by Megiddo [28].

Let c(d) be the running time of Cd. Since at any level, the number of perturbations
that Cj will have to deal with is d, and d is fixed, the running time of Cj will be the same,
asymptotically, whether it deals with a perturbed or an unperturbed problem. As we have seen,
c(d) is O(T b(d)), where b(d) is the running time of/3a, and b(d) is O(c(d 1)) because
/3a is implemented via three recursive calls to Ca-1. Since c(0) O(T), we conclude that
c(d) is O(Ta+l).

3.2. Speeding up the search. The main bottleneck in algorithm Ca is the need to apply
oracle/3a to each affine function generated during the simulation of algorithm A. One way
to reduce this problem is to arrange things so that by using a small number of oracle calls,
we are able to resolve a large number of functions. Megiddo [26] proposed a way to do
this in the context of one-dimensional problems, an idea that has subsequently been used in
multidimensional optimization [14], [29]. Megiddo’s approach is to simulate the execution
of a parallel algorithm 4 for computing g()) rather than a sequential one. Suppose ,A uses
M processors and carries out at most D parallel steps. In each step of the simulation, a batch
of at most M comparisons is carried out. In Ca’s simulation of 4, each such comparison
has an associated affine function h which can be resolved using /3d. Every parallel step
produces a set of O(M) hyperplanes. By using Theorem 2.1, we either resolve these O(M)
hyperplanes with O (log M) oracle calls or find a hyperplane H which intersects A. In the
latter case, we reduce the original problem to the (d 1)-dimensional problem of computing
the maximum g/on H f) A, because this maximum will also be a global maximum. Since
/3d is implemented by making at most three recursive calls to Cd-1 the running time of Cd is
O(c(d 1). D. log M + T), where c(d) denotes the running time ofCd. Since c(0) O(T),
the running time of Cd will be O((D log M)aT).

Cole 16] showed that one can improve on Megiddo’s results for certain important special
cases. Like Megiddo’s method, Cole’s technique applies to one-dimensional parametric search
problems, but we shall show that it can be extended to higher dimensions. What follows shall
require some elementary knowledge of combinational circuits as described, say, in [12]. A
combinational circuit is a directed acyclic graph whose nodes are combinational elements
(e.g., adders, min gates, etc.) and where an edge from element el to element e2 implies that
the output of el is an input to e2. Elements of zero fan-in are inputs; elements of zero fan-out
are outputs. An element is said to be active if all its inputs are known, but the associated
operation has not been carried out yet. An element is said to have been resolved when the
associated operation has been carried out.

Now, suppose that the algorithm ,A simulated by Cd is implemented as a combinational
circuit (which is given to us explicitly) of width M and depth D, whose elements are
multiplier gates where one of the two inputs is a constant, min gates, adders, and subtractors.
Megiddo’s approach would simulate level by level, in D steps, where each step would carry
out the operations of the gates at a given level. The operations within a level would be carried
out using Theorem 2.1, with O (log M)) calls to the oracle/3d. In Cole’s approach, each step

94 RICHA AGARWALA AND DAVID FERN/NDEZ-BACA

only resolves a fixed fraction of of the active nodes, using only a constant number of oracle
calls. The choice of which nodes to resolve is guided by a weight function w V() -- R.
To describe the strategy precisely, we will need some notation. The active weight, W, of the
circuit is the sum of the weights of its active elements. Let ot _< 1/2 be a positive number.
An oe-oracle with respect to w or simply an a-oracle- is a procedure that is guaranteed
to resolve a set of active elements whose total weight is at least oe W/2. The following is a
restatement and an extension of a result in 16].

LEMMA 3.2. Let be a combinatorial circuit of width M and depth D. Let dmin
min{d/, do }, where dI (do) denotes the maximumfan-in Oan-out) ofan element of. Then,
there exists a weight function w such that can be evaluated with O(D log dmin + log M)
calls to an or-oracle with respect to w.

Proof. Let the weight function w be defined as follows. The weight of each output
element is 1, and the weight of each internal element is twice the sum of weights of its
immediate descendants. Then scale the weights to make the total weight of input elements
equal to M.

LEMMA 3.3. At the start of the (k + 1)st iteration, k >_ O, the active weight is at most

(1 or/2). m.
Proof. By induction on k. The result holds for k 0 since, at the start of the first iteration,

only the input elements are active and their total weight is M. To prove the inductive step, it
suffices to show that at each iteration the active weight is reduced by a factor of at least or/2.

Suppose element e is resolved. Then e ceases to be active, but all its descendants may
become active. Hence, the resolution of e reduces the active weight by at least w(e)/2. Let
the active weight of the network be W. In one step, the a-oracle resolves a set of elements
whose total weight is at least ot W. Thus, in one step, the active weight is reduced from W to
(1 -/2)W.

LEMMA 3.4. The weight ofany circuit element is at least (2dmin) -o.
Proof. After the initial weight assignment, but prior to scaling, the total weight of the

elements at depth j is at most M(2dmin)D-. Thus, the total weight of the input nodes is at
most M(2drnin) D. Hence the scaling factor is at most (2dmin) D. Since, prior to scaling, every
element has a weight of at least 1, after scaling the weight of any circuit element will be at
least (2dmin) -D.

LEMMA 3.5. Let ?, c(D log 2dmin + log M), where c / log2 (1 or/2) J. Then,
there will be no active elements after k > ?, iterations.

Proof. First, observe that

(10)

V > (D log 2drain + logM) / log2(1 or/2)

(log M. (2dmin) D) /log2(1 or/Z)

lOg(l_a/z)(M- (2dmin)D) -1.

By Lemma 3.3, the active weight at the start of the (k + 1)st iteration is at most (1 et/2). M.
Using (10) and the fact that (1 c/2) is less than 1, we have

(1 or/2)k M_< (1-oe/2).M

< (1 ol/2)lg(l-/z)(m’(2dmin)z))-I M

(2dmin) D.

As the weight of any element in the circuit is at least (2dmin)-D and the active weight is strictly
less than this weight, there are no active elements after the kth iteration. [3

WEIGHTED MULTIDIMENSIONAL SEARCH AND ITS APPLICATIONS 95

By Lemma 3.5, there will be no active elements after c(D log 2dmin -+- log M) steps,
where c depends only on De. Thus, can be evaluated with O (D log dmi + log M) calls to an
De-oracle.

In order to use Lemma 3.2, we need to give an efficient implementation ofthe De-oracle. We
will actually implement a slight variant of the or-oracle, which will allow for early termination
of the simulation in case the optimum if found at some intermediate step. Let A be the set of
active elements of and let A A be the set of adders, subtractors, and constant multipliers.
Each e E T1 can be resolved immediately by simply doing the corresponding operation on the
input linear forms. The remaining active elements are comparators, every one of which has an
associated affine function. Let the set of all such functions be {hi hn}, where hi is
the function associated with ei A -A, and assign a weight of w(ei) to hi. We either resolve
a fixed fraction of the functions with O (1) oracle calls using algorithm WEIGHTED-SEARCH of

2 or, if at any point during its execution, WEIGHTED-SEARCH encounters a hyperplane H (even
an auxiliary one) such that H A A 0, we return g/. In either case, the running time of the
De-oracle is O (c(d 1)), since each oracle call requires O (1) calls to cd-. Thus, Lemma 3.2
leads to an implementation of Cd whose running time is O (c(d 1)(D + log M) + D M).
Since c(0) O(T), we can deduce that the running time ofCd is O((Dd + logd M)T) (note
that the weight function required for the application of Lemma 3.2 can be computed within
this time bound).

3.3. Some remarks on constant factors. The use of schemes involving multidimen-
sional search seems to lead invariably to large constants that depend on d 17]. Using standard
techniques 10], 17], it can be shown that the algorithms described in this section have hidden
constants of the form 2(d2), provided the search algorithm with singly exponentially small
efficiency is used. Some improvements are possible. For the case where all the weights are
powers of 1/4, as would occur if the circuit to be simulated is a comparator-based sorter, we can
obtain a search scheme with c(d) 1/3 and/(d) 2(20d-); the details are technical and
hence omitted. Using this improved scheme, the running time of the optimization algorithm
will still have a constant of the form 2(d2), but the constant inside the O will be smaller.

4. Solving the Lagrangian dual when the number of constraints is fixed. The method
of Lagrangian relaxation, originally developed by Held and Karp [21], [22], is motivated by
the observation that many combinatorial problems that are known to be NP-hard can be viewed
as easy problems complicated by a relatively small set of side constraints. More formally, we
consider optimization problems of the following sort:

(11) Zp --min{crx Ax <_ 0, x X},

where c is a n x vector, A is a d x n matrix, x is a n x vector, and X is a polyhedral subset
of Rd. The set of inequalities Ax < 0 constitutes the complicating set of constraints in the
sense that, in its absence, the problem is polynomially solvable.

The Lagrangian relaxation of (11) is obtained by pricing out the constraints Ax <_ 0 into
the objective function by introducing a vector) ()l)d) of Lagrange multipliers as
follows:

(12) ZD(I,) min{crx + i.tAx x X}.

It is well known that Zo()) < Zp for all, >_ 0 [20]. Thus, if there is a polynomial-time
algorithm to compute Zo(1,) for any fixed i, > 0, problem (12) will provide an efficient
way to obtain a lower bound on the solution to (11). Such a bound can be of great utility in
branch-and-bound methods. The best lower bound on Zp attainable via (12) is given by

(13) Z max{ZD())) > 0}.

96 RICHA AGARWALA AND DAVID FERNANDEZ-BACA

Problem (13) is the Lagrangian dual of (11) with respect to the set of constraints Ax < 0, and

Z9 is the value of the Lagrangian dual.
Computational experiments have repeatedly shown that Z provides excellent lower

bounds on the optimum solution of Z, [20], thus motivating the search for efficient algo-
rithms to solve the Lagrangian dual. One widely used method is subgradient optimization,
first proposed in [22]. Despite its success in practice, this technique is not known to be a
polynomial-time algorithm even if (12) can be solved in polynomial time.

It is well known that if ZD(X) can be computed in polynomial time for each fixed X > 0,
then the Lagrangian dual can be solved in polynomial time [31]. Recently, Bertsimas and
Orlin [6] have presented faster polynomial-time algorithms for certain special cases. An issue
that has received some attention [4] is whether there exist strongly polynomial algorithms to
solve the Lagrangian dual. (An algorithm is said to be strongly polynomial if the number of
arithmetic operations it carries out is polynomially bounded independently of the magnitudes
of the input numbers.) The algorithms discussed above are not strongly polynomial even if
ZD(X) can be computed in strongly polynomial time.

We shall be interested here only in the case where the number d ofcomplicating constraints
is fixed. Since Zo is a concave function [31], if Zo()) is computable in strongly polynomial
time by a piecewise affine algorithm, the results of Megiddo and Cohen described in 3 imply
the existence of strongly polynomial-time algorithms to solve the Lagrangian dual. We focus
our attention on two broad families of problems where weighted multidimensional search
allows us to obtain faster algorithms than the Megiddo-Cohen approach: matroidal knapsack
problems and a class of constrained optimum subgraph problems on graphs of bounded tree-
width.

4.1. Matroidal knapsack problems. What follows presupposes some familiarity with
matroid theory (see, e.g., [23]). Consider a matroid A/[(E,) where E, the ground set, is
a finite set and is a collection of certain subsets of E called independent sets. We assume
that is given in a concise form; i.e., there is an algorithm with running time c(n), polynomial
in n EI, for finding whether a given subset of E is independent. Suppose each element
e e E has a value v(e). In ordinary matroid optimization problems, one must find an optimum
base (maximal independent set) of maximum total value. The standard algorithm for doing
so is the greedy method, which first sorts the elements according to value and then considers
the elements in nonincreasing order. An element e is added to the current set A if A U {e} is
independent. The greedy algorithm takes time O(n log n + nc(n)).

In multiconstrained matroidal knapsack (MMK) problems, in addition to a value, each
e e E has a d-dimensional size vector s(e), and there is a d-dimensional capacity vector C.
The problem is to find a base G* such that

We refer the reader to Camerini et al. 11 for a discussion of the various applications of these
problems, as well as for references. MMK problems are in general NP-hard. We can bound
Z* by solving its Lagrangian dual. Let

ZD())--max{v(e)--)7(eGs(e)--C)}’GE eEG

The Lagrangian dual is

(14) Z min{Zo())) > 0}.

WEIGHTED MULTIDIMENSIONAL SEARCH AND ITS APPLICATIONS 97

In 11], Camerini et al. outline an algorithm for (14) whose running time is not guaranteed
to be polynomial. Noting that the crucial first stage of the greedy method (where all com-
parisons are done) can be carried out in parallel using an O(log n)-depth, O(n)-width sorting
circuit [2], wecan use the Cohen-Megiddo technique to obtain an O((n log n+n.c(n)).log2d n)
algorithm using the approach outlined in 3, with the greedy algorithm playing the role of
algorithm 4. Using Lemma 3.2, and the weighted multidimensional search algorithm, we
obtain a O ((n log n + n c(n)) logd n) algorithm. We note that if the underlying matroidal
problem has a more specialized structure (e.g., if it is the spanning tree problem), even faster
algorithms are possible.

4.2. Constrained optimum subgraph problems. Optimum subgraph problems have
the following form. Given a graph G with real-valued vertex and edge weight functions

wv V(G) -- R and we E(G) -+ R, respectively, find an optimum (i.e., minimum- or
maximum-weight) subgraph H satisfying a property P. Well-known examples of such prob-
lems are minimum-weight dominating set, minimum-weight vertex cover, and the traveling
salesman problem. Let us write val(H) to denote YveV<l-l Wv(V) + ZesE(H) we(e), where
H is a subgraph of G. We can express all optimum subgraph problems as

(15) z opt{val(H) H a subgraph of G satisfying P},

where "opt" is either "min" or "max," depending on the problem.
Even though many optimum subgraph problems are known to be NP-complete, several

researchers have developed methodologies for devising linear-time algorithms for graphs of
bounded tree-width [3], [5], [8], [9], [7], [35] (for a definition of tree-width, see [30]). While
their approaches differ from each other in several respects, in essence they all deal with sub-
graph problems that have certain "regularity" properties that make them amenable to dynamic
programming solutions. The class of regular problems is broad, and includes the subgraph
problems mentioned above, as well as many others, such as the maximum cut problem and
the Steiner tree problem (see, e.g., [3], [9], [7]).

Suppose that, in addition to a weight function, every v V(G) (e E(G)) has a d-
dimensional size vector sv (v) (se (e)). The problem is to solve (15) subject to the knapsack-like
constraint

sv(v)+ se(e)< t,
v6V(H) e6E(H)

where is a d-dimensional capacity vector. Even if the unconstrained problem is solvable in
polynomial time, the constrained one may be NP-hard. Such is the case, for example, for the
dominating set problem on trees (which are graphs of tree-width 1) even if d 1 [24].

For every v V(G), let Wv(v, .) Wv(V) + 1.rsv(v) and for every e E(G), let
We(e,,k) we(e) + 1.rse(e). Let us write Vala(H,)) to denote Yvev(I4 Wv(v, i.) +
_,eee(I-l We(e,)), where H is a subgraph of G. The Lagrangian relaxation of problem (15)
is

(16) Z(.) opt{Val(H, .) H a subgraph of G satisfying P}.

If property P is regular, there exists an O(n)-time algorithm to compute Z(.) for any fixed.. Also, as proved in [19], there exists an O(n)-size, O(logn)-depth combinational circuit
that computes Z() for any fixed). Thus, the results of Cohen and Megiddo summarized
in 3 imply that the Lagrangian dual can be solved in O(n log2d n) time. Using weighted
multidimensional search and Lemma 3.2, we can improve this to O (n logd n).

98 RICHA AGARWALA AND DAVID FERN/NDEZ-BACA

Aeknowledgrnent. We thank the referee for several useful comments.

REFERENCES

R. AGARWALA AND D. FERNANDEZ-BACA, Solving the Lagrangian dual when the number ofconstraints isfixed,
in Proc. 13th Conference on Software Technology and Theoretical Computer Science, Lecture Notes in
Comput. Sci., 652 (1992), pp. 164-175.

[2] M. AJTAI, J. KOML(3S, AND E. SZEMERIDI, A O (n log n) sorting network, in Proc. 15th Annual ACM Symposium
on Theory of Computing, Association for Computing Machinery, New York, 1983, pp. 1-9.

[3] S. ARNBORG, J. LAGERGREN, AND D. SEESE, Easy problems for tree-decomposable graphs, J. Algorithms,
12 (1991), pp. 308-340.

[4] Y. E ANFJA AND S. N. KABADI, Polynomial algorithmsfor lagrangean relaxations in combinatorial problems,
manuscript.

[5] S. AIN3OIG AND A. PRosIurowsII, Linear time algorithmsfor NP-hardproblems restricted to partial k-trees,
Discrete Appl. Math., 23 (1989), pp. 11-24.

[6] D. BFrtTSIMAS AND J. B. OltXN, A technique for speeding up the solution of the Lagrangean dual, Math.
Programming, 63 (1994), pp. 23-45.

[7] M.W. BERN, E. L. LAWLER, AND A. L. WONG, Linear time computation ofoptimal subgraphs ofdecomposable
graphs, J. Algorithms, 8 (1987), pp. 216-235.

[8] H.L. BODLAENDER, Dynamic programming on graphs with bounded tree-width, Tech. report RUU-CS-88-4,
University of Utrecht, Utrecht, The Netherlands, 1988.

[9] R.B. BORIE, R. G. PARKER, AND C. A. TOVEY, Automatic generation oflinear-time algorithmsfrom predicate-
calculus descriptions of problems on recursively-constructed graph families, Algorithmica, 7 (1992),
pp. 555-582.

10] K.L. CIArt:SON, Linear programming in O (n x 3d2 time, Inform. Process. Lett., 22 (1986), pp. 21-24.
[11] P. M. CAMERINI, E MAFFIOLI, AND C. VERCELLIS, Multi-constrained matroidal knapsack problems, Math.

Programming, 45 (1989), pp. 211-231.
12] T.H. COgMEN, C. E. LEISERSON, AND R. L. RIVEST, Introduction to Algorithms, MIT Press, Cambridge, MA,

1990.
13] V. CrvAa’AI, Linear Programming, W. H. Freeman, San Francisco, 1983.
14] E. COHEN, Combinatorial algorithmsfor optimization problems, Tech report STAN-CS-91-1366, Department

of Computer Science, Stanford University, Stanford, CA, 1991.
[15] E. COHEN AND N. MEGIDDO, Maximizing concave functions in fixed dimension, Complexity in Numerical

Optimization, E M. Pardalos, ed., World Scientific, Singapore, 1993, pp. 74-87.
[16] R. Cotz, Slowing down sorting networks to obtain faster sorting algorithms, J. Assoc. Comput. Mach.,

34 (1987), pp. 200-208.
17] M.E. DYg, On a multidimensional search technique and its application to the Euclidean one-centre problem,

SIAM J. Comput., 15 (1986), pp. 725-738.
18] H. EDLSBRUNNI, Algorithms in Combinatorial Geometry, Springer-Verlag, Heidelberg, 1987.
19] D. FERNANDEZ-BACA AND G. SLUTZKI, Parametric problems on graphs ofbounded tree-width, J. Algorithms,

16 (1994), pp. 108-430.
[20] M. L. FISHER, The Lagrangian relaxation method for solving integer programming problems, Management

Science, 27 (1981), pp. 1-18.
[21] M. HEID AND R. M. KARP, The traveling salesman problem and minimum spanning trees, Oper. Res.,

18 (1970), pp. 1138-1162.
[22] The traveling salesman problem and minimum spanning trees: Part II, Math. Programming, 6 (1971),

pp. 6-25.
[23] E. LAWLER, Combinatorial Optimization: Networks and Matroids, Holt, Rinehart, and Winston, New York,

1976.
[24] J. MCHUGH AND Y. PgI, Best location of service centers in a treelike network under budget constraints,

Discrete Math., 86 (1990), pp. 199-214.
[25] N. MEGIDDO, Combinatorial optimization with rational objective functions, Math. Oper. Res., 4 (1979),

pp. 414-424.
[26] ,Applyingparallel computation algorithms in the design ofserial algorithms, J. Assoc. Comput. Mach.,

30 (1983), pp. 852-865.
[27] ,Linear programming in linear time when the dimension isfixed, J. Assoc. Comput. Mach., 31 (1984),

pp. 114-127.
[28] A note on sensitivity analysis in algebraic algorithms, Tech. report RJ 4958, IBM Almaden Research

Center, San Jose, CA, 1985.
[29] C.H. NORTON, S. A. PLOTKIN, AND]. TARDOS, Using separation algorithms infixed dimension, J. Algorithms,

13 (1992), pp. 79-98.

WEIGHTED MULTIDIMENSIONAL SEARCH AND ITS APPLICATIONS 99

[30] N. ROBERTSOrq AND P. D. SFYMOUR, Graph minors II: Algorithmic aspects oftree-width, J. Algorithms, 7 (1986),
pp. 309-322.

[31] A. ScIIJW, Theory ofLinear and Integer Programming, Wiley, Chichester, UK, 1986.
[32] R. SzIIZI, Small-dimensional linear programming and convex hulls made easy, Discrete Comput. Geom.,

6 (1991), pp. 423-434.
[33] R. E. TARJAN, Data Structures and Network Algorithms, Society for Industrial and Applied Mathematics,

Philadelphia, 1983.
[34] S. TotzDo, Maximizing non-linear concavefunctions infixed dimension, Complexity in Numerical Optimiza-

tion, E M. Pardalos, ed., World Scientifice, Singapore, 1993, pp. 429-446.
[35] T. V. WIMEr, Linear algorithms on k-terminal graphs, Ph.D. thesis, Tech. report URI-030, Department of

Computer Science, Clemson University, Clemson, SC, 1987.

SIAM J. COMPUT.
Vol. 25, No. 1, pp. 100--116, February 1996

() 1996 Society for Industrial and Applied Mathematics
004

RAY SHOOTING AMIDST CONVEX POLYHEDRA AND POLYHEDRAL
TERRAINS IN THREE DIMENSIONS*

PANKAJ K. AGARWAL AND MICHA SHARIR

Abstract. We consider the problem of ray shooting in a three-dimensional scene consisting of m (possibly
intersecting) convex polyhedra or polyhedral terrains with a total of n faces, i.e., we want to preprocess them into a
data structure, so that the first intersection point of a query ray and the given polyhedra can be determined quickly. We
present a technique that requires O ((mn):+) preprocessing time and storage, and can answer ray-shooting queries in
O(log n) time. This is a significant improvement over previously known techniques (which require O(n4+) space
and preprocessing) if m is much smaller than n, which is often the case in practice. Next, we present a variant of
the technique that requires O(n TM) space and preprocessing, and answers queries in time O(ml/4nl/2+e), again a

significant improvement over previous techniques when m << n.

Key words, arrangements, ray shooting, range searching, data structures, parametric search, random sampling

AMS subject classifications. 52B 11, 68P05, 68Q20, 68Q25

1. Introduction. The ray-shooting problem can be defined as follows:
Given a collection F ofn objects in d, preprocess F into a data structure
so that one can quickly determine thefirst object off intersected by a query
ray.

The ray-shooting problem has received much attention in the last few years because of
its applications in computer graphics and other geometric problems [1], [3], [4], [5], [6],
[9], [10], [14], [17], [21], [28]. Most of the work to date studies the planar case, where
F is a collection of line segments in 2. Chazelle and Guibas proposed an optimal algo-
rithm for the special case where F is the boundary of a simple polygon [17]. Their algo-
rithm answers a ray-shooting query in O (log n) time using O (n) space; simpler algorithms,
with the same asymptotic performance bounds, were recently developed in [14] and [22].
If F is a collection of arbitrary segments in the plane, the best-known algorithm answers
a ray-shooting query in time O(log(1) n) using O(S l+e) space and preprocessing [1],

[6], [9], where s is a parameter that varies between n and n2. Although no lower bound
is known for this case, it is conjectured that this bound is close to optimal. In spite of
some recent developments, the three-dimensional ray-shooting problem seems much harder
and it is still far from being fully solved. The general three-dimensional ray-shooting prob-
lem is to preprocess a collection of n triangles, so that the first triangle hit by a query ray
can be computed efficiently. If the triangles are the faces of a convex polyhedron, then
an optimal algorithm, with O(log n) query time and linear space, can be obtained using
the hierarchical decomposition scheme of Dobkin and Kirkpatrick [20]. If the triangles
form a polyhedral terrain (a piecewise-linear surface intersecting every vertical line in ex-

*Received by the editors February 16, 1993; accepted for publication (in revised form) July 22, 1994.
A preliminary version of this paper appeared in Proc. 4th ACM-SIAM Symp. on Discrete Algorithms, 1993,
pp. 260-270.

Department of Computer Science, P.O. Box 90129, Duke University, Durham, NC 27708-0129. This work was
supported by National Science Foundation grant CCR-91-06514.

tSchool of Mathematics, Tel Aviv University, Tel Aviv 69978, Israel, and Courant Institute of Mathematical
Sciences, New York University, New York, NY 10012. This work was supported by National Science Foundation
grant CCR-91-22103 and by grants from the U.S.-Israeli Binational Science Foundation, the G.I.F. (the German-
Israeli Foundation for Scientific Research and Development), and the Fund for Basic Research administered by the
Israeli Academy of Sciences.

1Throughout this paper, bounds of this kind mean that, given any arbitrarily small positive constant e, the
algorithm can be fine-tuned so that its performance satisfies the bound; the multiplicative constants in such bounds
usually depend on e and tend to cxz as e $ 0.

100

RAY SHOOTING AMIDST POLYTOPES 101

actly one point), then the technique of Chazelle et al. [15] yields an algorithm that requires
O(n2+e) space and answers ray-shooting queries in O(logn) time. Nontrivial solutions to
the general problem were obtained only recently; see [4], [6], and [10] for some of these
results. The best-known algorithm for ray shooting among triangles in three dimensions
is due to Agarwal and Matouek [5]; it answers a ray-shooting query in time O(s--) af-
ter O(s 1+) space and preprocessing. The parameter s can range between n and n4. If
s assumes its maximum value, queries can be answered in O(logn) time; see [5], [6],
and [28] for more details. We remark that no nontrivial lower bounds are known for the
three-dimensional problem as well, although such bounds are known for the related simplex
range-searching problem [12], which is used as a subprocedure in the solutions just men-
tioned.

The performance of these algorithms is rather inefficient when n is large, so a natural
objective is to find special cases where this performance can be improved. The case that
we consider here is where the three-dimensional scene is formed by m convex polyhedra or
polyhedral terrains with a total of n faces (general nonconvex polyhedra can be decomposed
into convex pieces and be replaced by these pieces). In many typical instances of the problem
rn is much smaller than n; for example, curved objects, like balls, cylinders, cones, etc., are
usually approximated by a polyhedron with a large number of faces. Our goal is to develop
an algorithm whose performance depends on both m and n, and is much better than that of the
general technique when rn << n.

In this paper we achieve this goal, presenting a technique that uses O((mn)2+e) storage
and answers ray-shooting queries in O(log2 n) time. Our algorithm is the first algorithm for
ray shooting among convex polyhedra (or polyhedral terrains) whose performance depends
on both rn and n and matches the performance of [5] when rn n. We also present another
algorithm that answers a query in time O (m 1/4n 1/2+) using O (n +) space and preprocessing,
so it matches the bound of [5] when rn n, but is considerably faster when m << n.

In [7] we have presented an algorithm to preprocess a collection of rn convex polygons
in the plane, with a total of n vertices, into a data structure of size O(mn log m), so that a
ray-shooting query can be answered in O(log2 n log2 m) time. If the polygons are disjoint, or
the starting point of the ray always lies in the common exterior of the polygons, then the space
and preprocessing can be improved to O ((m2 -+- n) log m). The algorithm works even for a
collection of disjoint simple polygons.

A problem related to ray shooting among a collection of convex polyhedra in three di-
mensions is the so-called stabbing problem, where one wants to determine whether a query
line intersects all polyhedra. This problem seems to be easier than the ray-shooting problem:
Pellegrini and Shor [29] have described a data structure of size O(n2+e) that can answer a
stabbing query in O (log n) time.

We will first describe, in 2, the overall structure of the algorithm. We next present, in 3,
an algorithm for detecting an intersection between a query segment and a collection of convex
polyhedra or polyhedral terrains, which is the main subroutine used in our algorithm. For the
sake of convenience, we describe the algorithm only for a collection of convex polyhedra, but
the same technique works for polyhedral terrains as well. Next, in 4, we develop a variant of
the technique for answering a query efficiently if only close-to-linear space is allowed. In 5,
we give an application of our results to translational motion planning in 3: given m convex
polyhedral obstacles, with a total of n faces, and a polyhedral object B, with k vertices, free
to translate amidst them, we show how to preprocess them in time and space O((kmn)Z+e),
so that, given any free placement z of B and direction u, we can compute in time O (log2 kn)
the first obstacle to be hit as B is translated from z in direction u. Again, this is a substantial
improvement over previous results when m << kn. We conclude in 6 with a discussion of
our results and a few open problems.

102 PANKAJ K. AGARWAL AND MICHA SHARIR

2. The overall algorithm. Let 7 P1 Pm be a set of m convex polyhedra, let

ni be the number of edges in Pi, and put n -i= ni (we prefer to have n denote the total
number of edges, rather than the number of faces, of the Pi ’s; by Euler’s relation, these two
quantities differ only by a small multiplicative factor). Without loss of generality assume
that each face of Pi is triangulated; otherwise we can triangulate all faces of Pi by adding
0 (hi) additional edges. For the sake of convenience, we split the boundary of each Pi into
its top portion (visible from z +cx) and its bottom portion (visible from z -x). We
construct separate data structures for the top portions and for the bottom portions, and answer
a ray-shooting query by searching in both structures and by selecting the output point nearest
to the ray origin. In what follows we describe only the data structure for the top portions of
the given polyhedra; with a slight abuse of notation, we will refer to these top portions also as
"polyhedra." We note that this step is not required if the Pi’s are polyhedral terrains.

Our general ray-shooting scheme is based on the parametric searching technique of Agar-
wal and Matougek [4]. In this technique we build a data structure for solving segment-
intersection detection queries, each asking whether a query segment e intersects any of the
(top portions of the) given polyhedra. Given a query ray p, we replace it by the segment aw,
where a is the origin of p and w is the first point of intersection between p and the given
polyhedra. We query the data structure with the segment aw. Of course, we do not know w
(our goal is to find it!), so we feed our data structure with a generic, unspecified input w. As
we will see below, each step of the algorithm asks a question of the following form: given a
query point p and a hyperplane h, determine whether p lies above, below, or on h; here p
is either the origin a of p, the Plticker point of the line containing p, or the generic point w.
In the first two cases, we can answer the question in O (1) time. To determine the position
of w with respect to a plane h, it is sufficient to determine whether a and w lie on the same
side of h. We compute the intersection point r of p and h. If p does not intersect h, we
can immediately conclude that a and w lie on the same side of h. Otherwise, we invoke the
segment-intersection detection procedure with the segment aa. If ar intersects any of the
polyhedra in 7, then a and w lie on the same side of h; otherwise they lie on the opposite
sides of h. This also restricts the allowed range of w. When the algorithm terminates, we
obtain the exact location of w, thereby answering the original ray-shooting query. It is shown
in [4] that the performance of this parametric searching technique is only slightly worse (by
a logarithmic factor) than the cost of a single (explicit) segment-intersection detection query;
see [4] for more details.

3. Segment-intersection detection. We now present an algorithm for the segment-inter-
section detection problem, i.e., preprocess 7 into a data structure, so that one can quickly
determine whether a query segment intersects any of the polyhedra in 7. In this section we
aim to achieve fast (polylogarithmic) query time, at the expense of storage and preprocessing.
The opposite case, that of using only close-to-linear storage at the expense of query time, will
be studied in 4. We will construct two data structures. The first one, denoted as q1(7),
determines whether e intersects a face of some Pi whose xy-projection does not contain any
of the endpoints of the xy-projection of e. The second data structure, denoted as q2(7),
determines whether e intersects a face of some Pi whose xy-projection contains one of the
endpoints of the xy-projection of e. Throughout this section we will use F* to denote the
xy-projection of an object ?’ in 3, and A* to denote {F* ’ 6 A for a set A of such objects.

3.1. First data structure. In this subsection we describe a data structure kid (J) that
determines whether the query segment intersects a face of some Pi whose projection does not
contain any endpoint of e*. Let Ei denote the set of edges of Pi. We project them onto the
xy-plane, and let Ei* denote the set of resulting projected segments. Let E* [.-Ji=l Ei We

RAY SHOOTING AMIDST POLYTOPES 103

FIG. 1. A canonical subset G ofthe outputfor a query segment g" (i) g intersects all segments ofGfrom below;
(ii) g intersects all segments of Gfrom above.

preprocess E* into a data structure of size O(n2+e), using a variant of the technique described
in Agarwal and Sharir [6], so that the set of all segments of E* intersected by a query segment
inthe xy-plane can be represented as O(log n) pairwise disjoint precomputed subsets. The
algorithm of [6] constructs a multilevel partition tree on E*. Roughly speaking, it stores a
family of subsets of E*, called canonical subsets, into a tree-like data structure. There are at
most O((n/2J)2+) canonical subsets of size between 2j-1 and 2J. For a given query segment
g, the canonical subsets that form the query output can be computed in O(log n) time, and
there is a constant number of output subsets of size between 2j-1 and 2 for each j 0,
Furthermore, for each canonical subset G of the query output, either the left endpoints of all
segments in G lie above the line containing the query segment g, or all of them lie below that
line. In the first case g, considered as a rightward-directed segment, intersects all of these
segments from below, and in the second case it intersects all of them from above. (In the
xy-plane, a rightward-directed segment g is said to intersect another segment e from "below"
if they intersect and the left endpoint of e lies above the line containing g; intersection from
"above" is defined symmetrically; see Fig. 1.) See [4] and [6] for details. In what follows we
only consider the case where g intersects all segments of G from below.

Let F* be a canonical subset of E*, and let F be the set of corresponding pohyhedra
edges, and put v [1-’* [. Let 1-’’ 1-’* fq E, and let/z <_ v denote the number of nonempty

1-’"s. Set s [v/#]. We orient the edges of 1-’* from left to right. We preprocess 1-" so
that, for a (directed) query line in 3 whose xy-projection intersects all segments of I’*, one
can quickly determine whether passes above or below the edges in 1-’. The way in which
we have oriented the xy-projections of the edges in 1-’ and of ensures that the above/below
relationships between and these edges are determined solely by the sign of the relative
orientations between and the lines containing these edges. This will enable us to determine
whether a query segment intersects any of the given polyhedra, as will be described in more
detail below. The relative orientation of two oriented lines , in 3 is defined to be the
orientation of any simplex abcd, where a, b 6 , c, d 6), so that is oriented from a to b
and) is oriented from c to d. Equivalently, it is also the sign of the inner product between the
two vectors in projective 5-space representing the Pliicker coordinates of the two lines. (For
the sake of convenience, we will not distinguish between the projective 5-space and the affine
5-space 5.) To be more precise, can be mapped to a point zr(e), called a Pliicker point,
and ,k can be mapped to a hyperplane ()), called a Pliicker hyperplane, in 5, so that has
positive orientation with respect to) if and only if 7r(g) lies above the hyperplane r ()). The
PRicker points of all lines in 3 lie on a quadric surface, known as the Pliicker surface, in
More details concerning Plticker’s coordinates and relative orientations can be found in 15]
and [31].

Recall that we are only preprocessing the upper portions of the polyhedra, which implies
that the (relative) interiors of edges of 1"’ are pairwise disjoint. We define a linear ordering for

104 PANKAJ K. AGARWAL AND MICHA SHARIR

a set G of nonintersecting segments in the xy-plane" let e, e’ be two segments in G; e -< e’
if the x-projections of e and e’ overlap and e’ lies above e along a vertical line (parallel to the
y-axis), if the x-projections of e and e’ are disjoint and e lies to the left of e’. This is indeed a
linear ordering, and it can be computed in O(t log t) time, as shown by Guibas, Overmars, and
Sharir [21]. They have also shown that, for any e, e’ G, if e -< e’ and a rightward-directed
line intersects both of them from below, then it intersects e before e’.

We sort each F[according to this ordering and, abusing the notation slightly, we denote
*. * e*). We mark the first, thethe resulting sequence also by I" Suppose F (e el, ti

For each marked edge esj letlast, and every sth edge of 1-’’, i.e., we mark e0 e e e* *

F(ej) {esj+l, esj+2 eu}, where u min{t/, (s + 1)j}, be the set of edges of Pi whose
xy-projections form the block of edges of I’’ following e*j and ending at the next marked
edge. Let G be the set of edges of polyhedra in 79 corresponding to the marked segments of
1-’*, each oriented so that its xy-projection is rightward directed; note that

Ial _< / < -+2 < ti)+Z/z <3/z.

We will construct on G a data structure based on a partitioning scheme due to Chazelle, Sharir,
and Welzl [18]. For a segment , 6 3, this structure decomposes G further into canonical
subsets, so that, for each canonical subset of G, either all the corresponding original polyhedra
edges lie above V or all of them lie below V. Next, for each canonical subset Q in the output,
we determine whether there is an edge in some (e), for e 6 Q, that passes on the other side
of ?’, thereby implying that , intersects the polyhedron Pi containing e. In more detail, this
is done as follows.

Map the (directed) line containing each segment of G to its Pliicker hyperplane in 5;
let H denote the set of resulting hyperplanes, and put HI _< 3/z. Set r to be some
sufficiently large constant. We compute a (1/r)-net R of H of size O(r logr). (We call a
subset R

H a (1/r)-net if every (relatively open) simplex intersecting more than IHl/r

hyperplanes of H intersects a hyperplane of R; it is well known that there exists such an
R with the prescribed size.) R can be computed in O(t) time if r is constant [11], [23].
We triangulate the arrangement 4(R). Let E denote the simplices of the triangulation that
intersect the PRicker surface. By a result of Aronov, Pellegrini, and Sharir [8], the number
of simplices in E is O(r4 log5 r). By construction, each simplex in ,E intersects at most t/r
hyperplanes of H.

For each A 6 F,, let H/ H denote the set of hyperplanes that intersect the interior of
A. We also associate with A two other subsets U/ and Lzx of H; Uzx is the set of hyperplanes
that lie fully above A, and Lzx is the set of hyperplanes that lie fully below A.

We construct two auxiliary data structures on Uzx and Lzx. Let

U{I’(e) e is an edge corresponding to a hyperplane in Uzx},

zx U{l"(e) e is an edge corresponding to a hyperplane in Lzx}.

Note that lUll, Itzxl _< st. We map the lines containing the edges of Uzx to their PRicker
hyperplanes in 5 and preprocess their lower envelope for point-location queries, using an
algorithm of Clarkson [19]. That is, we preprocess the hyperplanes into a data structure, so
that we can quickly determine whether a query point lies below all hyperplanes. Similarly,
we map the edges of Lx to their PRicker hyperplanes and preprocess their upper envelope for
similar point location queries. Each point location structure requires O((st)2+) space and
preprocessing time, for any 3 > 0, and answers a query in O(log st) time; see [19] for details.

Our data structure needs one more ingredient: for each simplex A 6 ,E and for each
polyhedron Pi we consider the first (marked) edge, if any, of 1-’i that contributes a hyperplane

RAY SHOOTING AMIDST POLYTOPES 105

to Uzx U L zx. For each such edge e, let fl, f2 be the two faces of Pi incident to e (if e is
the first or the last edge of 1-’i, it is possible that only one of these faces is defined). Let Fzx
be the collection of at most 2t resulting faces. We preprocess Fzx for segment-intersection
detection queries using the techniques described in [5] and [6]. It requires O(t4+a) space
and preprocessing time, for any 3 > 0, and can determine in O (log t) time whether a query
segment intersects any triangle in Fzx.

Finally, we recursively preprocess Hzx, for each simplex A 6 8. The recursion stops
when Inl falls below some specified constant no. The resulting structure is a tree T T(I’)
of depth O(log n), each of whose nodes has degree at most O(r4 log5 r). We repeat the same
procedure for all canonical subsets 1" of E. This completes the description ofthe data structure.

Let us analyze the space and preprocessing time of the above structure. First let us
analyze the space required by the tree structure T(F) constructed on a canonical subset I’.
Let S(u) denote the space required by the subtree of T constructed on a set Hzx consisting of
u hyperplanes. Since the degree of each node in T is O(r4 log5 r), and the auxiliary structure
stored at each child requires O(s2+au2+ + u4+a) space, we get the following recurrence:

S(u) < u (s2+au2+ u4+clr
4 log5r S - + c2 +

ifu < no,

if u > no,

where Cl, C2, and no are some appropriate absolute constants. The solution of this recurrence
is

(1) S(u) < As2+a’u4+’,

for another 3’ > 0 that tends to 0 with 3 and for some sufficiently large constant A A (3’).
Indeed, arguing inductively, (1) obviously holds for u < no, and for u > no we have

r4 (u) (s2+6u2+3 u4+S(u) <cl logSr .S +c2 +

<clr4logSrAs2+a’(u)4+a’ ($2+3bt2+ /g4+6)-- 6"2

_< NS2+’/4+’

provided that 3’ > 3 and r, A are sufficiently large. Hence, the total space required by T is

S(t) 0($2+6’t4+’)-- 0([1)/]]2+6’114+’ O(1)2+’/z2+’),

because/x < v. We calibrate 3 so that 3’ is equal to the original e. Since there are O ((n/2J)2+e)
canonical subsets of E* of size between 2j-1 and 2j, the overall space required by the data
structure is

[.] ((n):z+e) (2+e)mZ+e))2+e’0 - 0(2j O((mn),

for another e’ > 0 that tends to 0 with e. Hence the total storage required by the data structure is
O((mn)2+) for any e > 0. Following a similar analysis, one can show that the preprocessing
time is also O((mn)2+).

106 PANKAJ K. AGARWAL AND MICHA SHARIR

3.2. Second data structure. Next, we describe the second data structure kI/2(J’)), which,
given a query segment ?,, determines whether there is a face f of some polyhedron Pi such
that F intersects f and that f* contains one of the endpoints of ?’*. The data structure is again
based on the partitioning scheme due to Chazelle et al. 18]. As in the preceding subsection,
we consider here only the top portions of the given polyhedra. Choosing a sufficiently large
constant parameter r, we partition the plane, in O(n) time, into a collection A of O(r2)
triangles, so that each triangle intersects at most n/r edges of E* [23]. With each triangle
A 6 A, we associate a subset Ex _c E*, andasubset Fzx offaces ofpolyhedra in 79. Anedge e*
belongs to Ex ifthe boundary ofone ofthe triangles incident to e* (i.e., the projected polyhedra
faces) intersects A. A face f belongs to Fx if A C f*. It is easily seen that]Ex _< 5n/r and
[Fzx[< m. We preprocess the triangles of Fzx for segment-intersection detection queries, as in
the first data structure [5], [6]. This structure requires O(m4+3) space and preprocessing time,
for any 3 > 0, and answers a query in O (log m) O (log n) time. We recursively preprocess
each Ex and its associated collection of incident faces, and thereby obtain the entire structure.
Note that each recursive processing of a set Ex involves nzx O (n/r) edges, at most 2nzx
incident faces, and mA < n zx polyhedra to which these edges and faces belong, kIJ2 C]")) is thus
a tree of height 0 (log n).

If we denote by S’(m, n) the maximum space required by 2(79) for a collection of m
polyhedra with n edges, then S’(m, n) satisfies the following recurrence:

o(1)
Cl r2S’ (m, n) < S’(m zxj

if n < no,

nzxj) + c2m4+3 if n > no,

5nwhere mzx2 < nzx2 < 7-, for each j, and no, c, 2 are appropriate constants. The solution of
this recurrence is

(2) S’ (m, n) < B(mn)2+e,

for some constant B and another e > 0 that tends to 0 with 3. Indeed,

Cl r2
S’(m, n) <

_
S’(maj, nzxj) + c2m4+3

j=l

(.5mr__n_)
2+e

< Cl r2B + c2m4+3

c2 m3-e52+eC1 +B-mn-Z+e(
\ r B n

< B(mn)2+e,

provided that e > 3 and r, B are chosen sufficiently large. The last inequality follows from the
fact that m < n. A similar analysis yields the same bound on the preprocessing time needed
to construct the structure.

3.3. Answering a query. We now describe how to answer a query. Let F be a query
segment in 3, oriented so that its xy-projection is rightward directed, and let be the directed
line containing F- We want to determine whether F intersects any Pi.

DEFINITION 3.1. A segment F lies above another segment e in 3 if their xy-projections
intersect and the vertical line through this intersection meets F at a point higher than the point
at which it meets e.

RAY SHOOTING AMIDST POLYTOPES 107

FIG. 2. Illustration ofLemma 3.2.

The query answering procedure is based on the following simple lemma.
LEMMA 3.2. A segment ?’ pq in 3 intersects a polyhedron Pi 79 if and only if at

least one of thefollowing two conditions holds:
(i) Aface of Pi, whose xy-projection contains an endpoint of V*, intersects ?,.
(ii) There is a face f of Pi such that V lies below (resp., above) one of the edges el of

f and lies above (resp., below) another edge e2 of f. Moreover, assume that ?’* intersects e
after e; then, for any canonical subset F* of E* that contains e2, either e is the first edge in
F, or there is a marked edge e* in I’ such that e2 (e), and V lies below (resp., above) e
and above (resp., below) e2.

Proof. The "if" part is obvious. For the "only if" part, assume that V intersects Pi but
does not intersect the faces of Pi whose projections contain the endpoints of ?’*. Let z be the
leftmost intersection point of Pi and V, and let f be the face of Pi containing z. Since the
endpoints of V* do not lie in f*, ?,* completely crosses f* (see Fig. 2). Let e’ and e be the
edges of f* intersected by ,* in this order. Since z is the only intersection point of V and f,
either el lies below V and e2 lies above ?,, or vice-versa.

If isAssume that e2 lies above ,. Let * be a canonical subset of E* containing e2. e2
not the first edge in F’, then let e* be the last marked edge in F immediately preceding e,
i.e., e2 6 (e). Recall that the first edge of 1-’i* is marked, so e* is always properly defined.
Since z is the leftmost intersection point of V and Pi, and e2 lies above ,, it is easily seen that
e lies below V. This completes the proof of the lemma. q

In view of the above lemma we can answer a query as follows. First of all, we determine,
using q2(79), whether there is a face f of some polyhedron Pi such that V intersects f and
an endpoint of V* lies in f*. If we find such a face, we stop right away. In more detail, we
query the structure with the left endpoint p* of V*. We follow a path in q2(79) starting from
the root. At each node we do the following. If v is a leaf, we determine explicitly whether V
intersects any of the faces associated with v. Otherwise, let A be the set of triangles associated
with v. We determine (say, by brute force) the triangle A 6 A that contains p*. We query the
auxiliary structure to determine whether any face of Fzx intersects ,. If the answer is yes, we
stop. Otherwise we descend to the child of v corresponding to the triangle A and recursively
search within Ex. We apply the same procedure to the right endpoint of V. The correctness
of this procedure is easy to verify.

Next, we query q (79) with V. First, we find all segments of E* intersected by V*. Let
F* be a canonical subset in the query output. Without loss of generality assume that the left

108 PANKAJ K. AGARWAL AND MICHA SHARIR

endpoints of all segments in 1-’* lie above ,*, and all their right endpoints lie below y*, so that
/* intersects all segments of F* from below. In this case ?, lies above (resp., below) a segment
e of F (with both ?,* and e* being rightward directed) if and only if the relative orientation
of ?’ with respect to e is positive (resp., negative); see [15]. By Lemma 3.2, it suffices to
determine whether there is a 1-" such that either , intersects a face incident to the first marked
edge of 1-’i, or l-’i contains a marked edge e that lies below (resp., above) , but an edge of
F(e) lies above (resp., below) y. We map the (directed) line e containing , to its Plticker
point zr(e) in I5. We determine the simplex A E that contains zr (e) (since zr(e) lies on the
PRicker surface, F, contains such a simplex). First, we determine in O(log n) time whether, intersects any triangle of F/x. If the answer is "yes," we stop right away. Otherwise, we
continue as follows.

By construction, yr(e) lies above all hyperplanes of L zx and below all hyperplanes of
U/x, and therefore , lies above (resp., below) all edges e corresponding to the hyperplanes
of L/x (resp., U/x). We now have to determine whether y lies below (resp., above) any edge
in L,x (resp., Uzx). To do so, we locate zr(e) in the upper envelope of L/x (resp., in the
lower envelope of U,x). If zr(e) does not lie above the upper envelope of L/x, then zr(e) lies
below some hyperplane of Lzx, which implies that), passes below the corresponding edge,
and therefore intersects one of the polyhedra. We handle Uzx symmetrically. This completes
the description of the query answering procedure. The correctness of the procedure is easy to
verify, in view of Lemma 3.2.

Let Q(u) be the maximum query time spent at a subtree of T consisting of u hyperplanes.
Since we spend O(logn) time in querying the auxiliary structure stored at u, we get the
following recurrence:

(3) Q(u) < Q(u/r) + O(log u).

The solution of (3) is easily seen to be O(loge u) if r > is constant, so the total time
spent in querying the first data structure, for a fixed canonical set F* of size v, is O(loge v).
The solution of (3) can be improved to O(log v) by choosing r n. However, if r v,
we cannot use a brute-force method to find the simplex of the partitioning F, in PRicker 5-
space, which contains the query point. Instead, we preprocess the hyperplanes containing the
facets of simplices in E for answering point location queries using the algorithm of Chazelle
and Friedman [16]. Their algorithm preprocesses a collection of n hyperplanes in ’ into
a data structure of size O(nd+), so that a point location query can be answered in time
O(log n). Thus, the simplex containing a query point can be computed in time O(log v) using
O((r4 log5 r)5+) O(r 10+) O(13e(10+8)) space, for an arbitrarily small constant > 0.
It is easily seen that this additional structure does not affect the asymptotic bound on the total
storage required by T. One can similarly modify the algorithm of Agarwal and Sharir [6],
so that the overall query time of the first data structure, summed over all canonical subsets of
E*, also reduces to O (log n); see [10] and [27] for details. A similar analysis shows that the
time spent in querying 2(79) is O(log2 n) if r is chosen to be a constant, and that it can be
improved to O (log n) by choosing r n, modifying the structure as above.

Hence, we obtain the following theorem.
THEOREM 3.3. Let 79 P1 Pm be a collection ofm (possibly intersecting) convex

polyhedra in 3 with a total of n edges. Given any e > O, we can preprocess 79 in time
O((mn)2+) into a data structure of size O((mn)2+e), so that an intersection between 79 and
a query segment in 3 can be detected in 0 (log n) time.

Remark 3.4. Notice that we never used the fact that the Pi’s are convex polyhedra.
The only property we needed was that the xy-projections of edges in each Ei were pairwise
disjoint (and that the projected faces enclosed by the edges of E’ formed a simply connected

RAY SHOOTING AMIDST POLYTOPES 109

planar region). Hence, the above algorithm also works for polyhedral terrains. We need
the nonintersecting property of E[to order the segments of a canonical subset I" using the
algorithm of Guibas, Overmars, and Sharir [21]. This is the only step that does not extend
to arbitrary nonconvex polyhedra. We leave it to the reader to verify that our technique does
indeed carry over to the case of polyhedral terrains.

We can now plug the above procedure into the general parametric searching procedure
of Agarwal and Matougek [4]. We have explained in 2 how this is done. To complete the
description, one has to check that the operations that are performed by the above segment-
intersection detection procedure conform to the set-up of 2. In particular, we have to ensure
that we can simulate the segment-intersection detection algorithm on the segment oct, where
o is the starting point of the ray and r is the (unknown) first intersection point of the query ray
and 79 as described in 2. First of all, observe that the coordinates of the PRicker point of the
line e containing a query segment depend only on e and not on the endpoints of V, so the data
structures constructed on Plticker hyperplanes or PRicker points can be searched explicitly,
without having to generate any generic comparison, so no oracle calls are required at all. All
the other data structures, constructed in two or three dimensions, are searched either with the
endpoints of the query segment, or with their xy-projections, or with the point dual to the line
supporting V*. For example, the first level of P2(79) is searched with an endpoint of *, and
the first level of the two-dimensional segment-intersection structure is searched with the line
supporting ?’* (actually with the point dual to that line). We leave it to the reader to verify,
based on the techniques described in [6] and [5], that each comparison generated by both data
structures arises in one of the following tests.

(i) Does a tetrahedron contain an endpoint of , ?
(ii) Does a triangle in the xy-plane contain an endpoint of *?
(iii) Does the point dual to the line supporting V* lie in a given triangle in the xy-plane?

Since all of the above questions can be reduced to determining whether a given half-space
contains or, we can indeed use the general parametric search technique, as described in 2.
We thus obtain the main result of the paper.

THEOREM 3.5. Let 79 P1 Pm} be a collection ofm (possibly intersecting) convex
polyhedra or polyhedral terrains in]3 with a total of n edges. Given any e > O, we can
preprocess 79 in time O((mn)2+) into a data structure of size O((mn)2+), so that the first
intersection point of 79 and a query ray can be computed in 0 (log2 n) time.

4. Data structures with almost linear size. In this section we consider the problem of
preprocessing 79 into a data structure of size O(nl+e), so that a ray-shooting query can be
answered in time O(ml/4nl/2+e). We will use a similar approach to that in the preceding
sections, except that we will replace each of the data structures used above by an alternative
structure that uses only close-to-linear storage. As above, the structures that we will obtain
are multilevel partition trees, composed of rather standard components, but, for the sake
of completeness, we will provide a brief description of them. The overall structure of the
algorithm is the same as in 3, that is, the algorithm uses parametric searching to replace
ray-shooting queries by segment-intersection detection queries. These queries are handled,
on a conceptual level, exactly as above. For the new data structures, we need the following
notation.

DEFINITION 4.1. Let S be a set of n points in ’ and let r < n be some parameter. A
simplicial r-partition for S is a collection 1-I ($1, A 1) (St, At) }, where $1 St
form a partition of S, < 2r, Iail <_ [n/r], and/k is a simplex containing Si. The maximum
number ofsimplices intersected by a hyperplane is called the crossing number of 1-I.

Matougek has shown that there exists a simplicial r-partition with crossing number
O(r 1-1/d) [25], [26]. Agarwal and Matougek [5] proved that if S lies on an algebraic surface

0 PANKAJ K. AGARWAL AND MICHA SHARIR

of some fixed degree, then the crossing number can be improved to O(r1-1 logd/(d-l r).
Moreover, if r O (1), such a simplicial partition can be computed in linear time.

4.1. First data structure. We begin by describing the modified version of the first data
structure, denoted as q1(79). Using the technique of Agarwal and Sharir [6], one can pre-
process the set E of polyhedron edges into a data structure of size O(n+e), consisting of
O((n/2J) +e) canonical subsets of size between 2j- and 2J, for each j 0, so that all
segments of E* intersected by a query segment in the xy-plane can be reported as a collection of
O(n /2+e) pairwise disjoint canonical subsets; moreover, for each j there are O((n/2J) 1/2+e)
canonical subsets of size between 2j-1 and 2 in the query output. For each canonical subset
in the query output, the query segment meets all its edges from below, or meets all of them
from above. Let 1-" be a canonical subset of this level of the data structure. We construct a
secondary data structure T(1-’) on F, similar to the one in the previous section. Put v IFI
and define/z and s as in 3.1. Let G be the set of marked edges of 1-’ as defined in the previous
section. We map the lines containing the segments of G (oriented from left to right) to their
PRicker points (rather than hyperplanes as in the previous section) in IR5. Let S be the set of
resulting points; put SI. Let r be some appropriate constant. Since all points of S lie on
the (quadratic) PRicker surface, we can construct, as remarked above, a simplicial r-partition
I-I {(S1,/1) (Su, Au)} of S with crossing number O(r3/4 log5/4 r). Let ti [Sil, for

u. We construct a secondary structure for each Si, of the form described below, and
then preprocess each pair (Si, /i) recursively. The resulting structure is a two-level partition
tree of depth O (log n). Let E(Si) denote the edges of E corresponding to the points in Si,
and let

i U{ F(e) e E(Si) }.

Put i Uil < sti. We map each line containing an edge of U to its PRicker point in
IR and preprocess the set of resulting points into a linear-size data structure that answers
empty half-space queries (given a query half-space g in R, it determines whether g contains

any point of i) in time O(g/2+), for some 0 < < e; see [24]. We also preprocess the
triangles incident to the edges in E(Si) for segment-intersection detection queries, using the
algorithm of Agarwal and Matougek [5]; it requires O(ti1+) space and answers a query in

time 0(t3i/4+). This completes the description of the first data structure. Since a secondary
structure constructed on u points requires O(u l+a) space, the total space required by the first
data structure for a fixed canonical subset I" with v edges is O(vl+). Summing it over all
canonical subsets of F*, we obtain

[lgn]

(t,/_)l+e (1+3)) 1-t-e)
[log nl_, 0(2 O(n y 2J(’-e O(nl+e),

j=l j=l

since 3 < e. The preprocessing time is also o(na+e).
4.2. Second data structure. Next, we describe the modified version of the second data

structure, denoted as q2(79). We will construct a four-level partition tree. The first three
levels of q2(79) will filter out the faces of polyhedra in 79 whose xy-projections contain an
endpoint of V, and the fourth level will determine whether any of these faces intersect the
query segment.

In more detail, let F be the set of faces of polyhedra in 79, and let F* denote the set of
the xy-projections of these faces. By our assumption, each face in F* is a triangle. We split
each face f 6 F into two subtriangles by drawing a plane parallel to the yz-plane through the
"middle" vertex of f, as shown in Fig. 3. We will continue to denote the new set of faces by

RAY SHOOTING AMIDST POLYTOPES 111

FIG. 3. Splitting each triangle into two triangles.

F and the set of their xy-projections by F*. Each triangle in F* has one vertical edge (i.e.,
parallel to the y-axis) and two nonvertical edges. Let I denote the set of the x-projections
of triangles in F*. We construct a segment tree B on I; see [30] for details on segment
trees. Every node v of B is associated with an interval 3v and stores a "canonical" subset
I (v) of I, where each interval in I (v) contains v (but does not contain p(, where p(v) is
the parent of v). Moreover, vB II (v)[O(n log n). We preprocess each canonical subset
separately.

Let F*(v) denote the set of triangles corresponding to the intervals in I (v); put
IF*(v)l. We construct a partition tree 7- T(v) on F*(v). For each triangle/X 6 F*(v),
pick one of its nonvertical edges. Let V denote the set of points in the xy-plane, dual to the
lines supporting these edges. Each node w of 7- will be associated with a subset of V and a
triangle. The root u is associated with V and the entire xy-plane. Let r be some appropriate
constant. We construct, in linear time, a simplicial r-partition FI (V1, rl) (Vu, 75u)}
for V with crossing number O(/-) [25], [26]. We create a child wi of u corresponding to each
pair (V/, z’i) and store a two-level auxiliary structure at wi, as detailed below. We recursively
preprocess V/ and attach the resulting tree of auxiliary substructures to wi. The recursion
stops when the number of points in V/falls below some prespecified constant.

The auxiliary structure at wi is constructed as follows. For each point p 6 V/, we pick the
other nonvertical edge of the triangle corresponding to p. Let Wi denote the set of points dual
to lines supporting these edges; Wil < It We construct a partition tree on W as above.
The root of the partition tree is associated with Wi and the entire xy-plane. We compute a
simplicial r-partition l"I {(Wil, r/l) (Wiui, "giui)} for Wi, create a child wi of the root
for each pair (Wij, "Cij), and recursively preprocess Wij. Let Fij denote the set of faces in F(v)
corresponding to points in Wij. If Fij contains two faces of the same polyhedron, we do not
store any structure at wi (because, for any projected endpoint p of a query segment, any set Fij
that will be picked up by the query will have the property that all its projected triangles contain
p, so an Fij of the above kind will never have to be processed by any query). Otherwise we
preprocess Fij for segment-intersection detection queries in 3-space, using the algorithm of
Agarwal and Matougek [5], and store it at the node corresponding to (Wij, rij) as its auxiliary
structure. This completes the description of the second data structure. Following the same
analysis as for P1(79), one can show that the total space and preprocessing time required are
O(nl+e).

4.3. Answering a query. A segment-intersection detection query is answered exactly
the same way as in 3.3. That is, we first query P2(79) and determine whether any of the
faces, whose xy-projections contain an endpoint of F, intersects F. If F does not intersect
any such face, then we determine, using q1(79), whether e intersects any other face of the
polyhedra in 79.

Let p be the left endpoint of F*. We want to determine whether any face whose xy-
projection contains p intersects . A triangle f* 6 F* contains p if and only if the following
three conditions are satisfied:

2 PANKAJ K. AGARWAL AND MICHA SHARIR

(i) the x-projection of f* contains the x-coordinate of p,
(ii) one of the nonvertical edges of f* lies above p, and
(iii) the other nonvertical edge of f* lies below p (in the xy-plane).

To filter out the faces whose xy-projections satisfy these three conditions, we query the segment
tree B (the first-level structure of q2 (79)) with p and compute the O(log n) nodes of B whose
associated intervals contain the x-coordinate of p. Let v be such a node of B, and let denote
the line dual to p. We query the (second-level) partition tree 7- 7-(v) with . We start at
the root and at each node w, visited by the algorithm, we do the following. Let (V, r) be
the pair associated with w. If w is a leaf, we directly determine whether), intersects any of
the triangles of F corresponding to points in V. So assume that w is an internal node. If z
intersects , we visit all the children of w. Otherwise, we visit the auxiliary structure stored at
w. Without loss of generality assume that lies fully above ; the other case can be handled
symmetrically. We search the (third-level) auxiliary partition tree stored at w with in the
same way as we searched T(v). That is, at each node of this third-level structure, we do
the following. Let (W’, r’) be the pair associated with . If intersects the triangle ’, we
recursively search at each child of . If ’ lies fully above , then both nonvertical edges
of triangles in F*,, the set of triangles of F*(v) corresponding to the points in W’, lie above
the left endpoint of V*, which implies that p lies below all triangles in Fr*,. Consequently,
we do not search the subtree rooted at any further. Finally, if r’ lies fully below , we can
conclude that p lies in the triangles of F*,. Let F, c_ F (v) denote the set of faces ofpolyhedra
corresponding to triangles in F*,. Using the fourth-level auxiliary structure stored at , we test
whether , intersects any of the triangles in F,. If , intersects a triangle of F,, we stop right
away, otherwise we continue with the overall search. If no face of F(v), whose xy-projection
contains p, intersects V, we repeat the above step with the right endpoint of ,.

If the above procedure does not detect an intersection between 79 and ,, we query q (Jg)
as follows. We determine the segments of E* intersected by the xy-projection V* of the query
segment ,. Let 1-" be a canonical subset of the output to this subquery. We map the line
containing , to its PRicker hyperplane h, and query the secondary structure (partition tree)
constructed on the marked edges of 1-’ with h. The root of the partition tree stores asimplicial
r-partition 1-I {($1, A1) (S, &)}. For each simplex /xi in l-I, we test whether h
intersects Ai. If h intersects Ai, we recursively search the substructure constructed on Si.
On the other hand, if h does not intersect Ai, all points in Si lie either above h or below h,
say above h. Then, as is easily checked, we know that all edges e E (Si) lie above ?’, so it
suffices to determine whether , intersects any of the faces incident to any edge in E (Si), or
whether any edge of U lies below ,. Both of these conditions can be tested, by querying the
third-level substructures stored with E(Si), in time O(U3/4+ -’l- S"1/2+3) (where u [Sil and
su > IUi I). This completes the description of the algorithm for answering a query.

We now analyze the total time spent in answering a query. First let us consider the time
spent in querying 2(79). For < < 4, let Q(i)(m, n) denote the maximum query time at
an th level structure (including the time spent at its auxiliary structures), storing n triangles
which belong to rn different polyhedra. Since the above procedure visits only O(log n) nodes
of the segment tree,

(4) Q(I (m, n) O(log n). Q(2)(m, n).

The fourth-level structure of 2(79) has at most one triangle from each polyhedron, so m n
and, by [5], Q(4)(m, n) 0(m3/4+), for any > 0. Finally, for 2, 3 (i.e., for partition
trees constructed on sets of nonvertical edges of triangles), a line intersects only 0(4’7)
triangles of the r-partition constructed on the set of points associated with any tree node.
Therefore the query line recursively searches only O (/7) children of any interior node, which

RAY SHOOTING AMIDST POLYTOPES 113

yields the following recurrence:

(5) Q(i)(m, n) < Q(i)(mi, ni) + Q(i+l)(m, n) ifn > no,
i=1
O(1) ifn < no,

where no, cl are appropriate constants, and ni < n/r, mi <_ rn for each i. We claim that the
solution of the above recurrence is

(6) Q(i)(m, n) <_ Aml/4n 1/2+,

for any e > 0. We will prove the recurrence for 3; a similar proof works for 2.
Equation (6) is obviously true for n < no (provided A is chosen sufficiently large); and for
n > no, we have, for an appropriate constant c2 > 0,

Q(3)(m, n) < Q(3)(mi, ni) -+- c2m3/4+8

i=1

c1/7
<

_
Am]/4 (_)l/2+e + c2m3/4+8

i=1

< Aml/4nl/2+ Cl 3/4+8-I--c2m

<_ Aml/4n 1/2+s,

provided that e > 3 and that the constants r, A are chosen sufficiently large (we also use here
the obvious fact that rn < n).

Similarly, we can show that Q2(m, n) O(ml/4nl/2+e). Plugging (6) into (4), we can
conclude that the maximum query of 2(79) is O(ml/4nl/2+e).

Next, we analyze the query time of’l (’P) Recall that we spend O(u3/4+8 + (SU) 1/2+8)
time at a third-level substructure of size u. Let Q2 (u) denote the maximum query time of
the second-level partition constructed on a subset of u marked edges of I’. Since the crossing
number of the simplicial r-partition stored at each node of the (second-level) partition tree is
O(r3/4 log5/4 r), we obtain the following recurrence:

(7) Q(2)(u) <clr3/410g5/4r.Q(2)()+c2(u3/4+8-t-- (sb/)1/2+8),

where 1, 2 are appropriate constants. The solution of the above recurrence is easily checked
to be

Q(2)(u) 0(s1/2+8u3/4+8).

Hence, the total time spent in querying a single first-level canonical subset 1-’ is

0(sl/2+11,3/4+8 O l/3/4+8 0 ([j,1/41)1/2+8).

Recall that there are O((n/2J)+) first-level canonical subsets of size between 2j- and U,
so the overall query time of the first data structure is at most

0 0 (ml/42j(1/2+8)) O(ml/4nl/2+g),
j=l

114 PANKAJ K. AGARWAL AND MICHA SHARIR

where e’ >_ e 4- 3 is another arbitrarily small constant. Putting everything together, we obtain
the following theorem.

THEOREM 4.2. Let T9 P1 Pm be a collection ofm (possibly intersecting) convex
polyhedra or polyhedral terrains in 3 with a total of n edges. Given any e > O, we can
preprocess 7) in time 0 (n +) into a data structure ofsize 0 (n +e), SO that one can determine
in time O(ml/4n 1/2+e) whether a query segment intersects any polyhedron (or polyhedral
terrain) in 7)

Again, we plug this procedure into the parametric search technique to answer a ray-
shooting query. We leave it to the reader to verify that each comparison can be reduced to
determining whether the first intersection of the ray and 7) lies in a query half-space. Hence,
we can conclude with the following theorem.

THEOREM 4.3. Let P1 Pm} be a collection ofm (possibly intersecting) convex
polyhedra or polyhedral terrains in IR with a total of n edges. Given any e > O, we can
preprocess in time 0 (n 1+) into a data structure ofsize 0 (n l+e), so that thefirst intersection
point, ifany, ofa query ray with the polyhedra of7) can be computed in O(ml/4n 1/2+e) time.

5. Application to motion planning. An interesting application of our algorithm for ray
shooting amidst convex polyhedra is the following motion-planning problem in J. Suppose
we have a convex polyhedral object B bounded by k faces, which is free to translate amidst a
collection of m convex polyhedral obstacles, A1 Am, with a total of n faces. Preprocess
them into a data structure so that, given any free placement Z of B and a direction u, we can
efficiently find the first obstacle, if any, to be hit as we translate B from Z in direction u.

This problem can be easily reduced to the ray-shooting problem amidst a collection of
intersecting convex polyhedral objects. We simply compute the Minkowski differences (also
known as expanded obstacles)

A Ai Bo {x y Ix 6 Ai, y e Bo},

for m; here B0 denotes some standard placement of the object B. If Ai has ni
faces, then A] is a convex polyhedron consisting of at most O(kni) faces, so the total number
of faces of the expanded obstacles is O(kn).

Now, given a free placement Z of B and a direction u, we can find the first obstacle to
be hit by B when it is translated from Z in direction u by performing a ray-shooting query
with the ray (z, u) amidst the expanded obstacles A, where z is the displacement of B from
its standard placement B0 to the placement Z. The first expanded obstacle that the ray hits
corresponds to the first obstacle that B hits. Applying the results in the previous sections, we
thus obtain the following corollary.

COROLLARY 5.1. Given a collection of m convex polyhedral obstacles with a total of
n faces and a convex polyhedral object B with k faces, we can preprocess them, in time
O((kmn)2+e), into a data structure of size O((kmn)2+), so that, given any placement Z of
B and direction u, we can determine, in 0 (log2 kn) time, the first obstacle, ifany, that B hits
when translatedfrom Z in direction u.

6. Conclusion. In this paper we presented two data structures for answering ray-shooting
queries among a collection ofm convex polyhedra or polyhedral terrains with a total ofn faces.
The first method answers a query in O(log2 n) time using O((mn)2+) space and preprocessing
time, while the second method achieves O(ml/4n 1/2+e) query time, using O(n 1+) space
and preprocessing time. When m << n, both methods are significantly better than previous
techniques, which either require O (n4+) space and preprocessing for a polylogarithmic query
time, or require O (n3/4+) query time for almost-linear storage and preprocessing. Of course,
whenm , n, our algorithms perform as well as the previous ones. Form 1, the performance

RAY SHOOTING AMIDST POLYTOPES 115

of our algorithms matches that of the best known algorithm for ray shooting in a polyhedral
terrain [4], 15], but is not as good as the best known technique for a single convex polyhedron.

We conclude by mentioning some open problems:
1. If rn 1, neither of our structures achieves close-to-optimal performance for the case

of a single convex polyhedron. For example, the space and preprocessing time of our
first technique are O (n2+), in contrast with the technique of [20], which can answer a
ray-shooting query in O(log n) time, using O(n) space and O(n log n) preprocessing.
It is clear from this that we are not fully exploiting the fact that the given polyhedra
are convex. It would be interesting to improve our techniques further so that their
performance approaches that of [20] for the case of a single convex polyhedron. (We
are also not exploiting at all the pairwise disjointness of the given polyhedra.) A
plausible goal to shoot for might be to improve our first technique so that it yields a
data structure that requires only O(m4+e -t- n) or O(m3+en) space and preprocessing.

2. How far can our techniques be extended? It seems unlikely that any improvement
over the general previous techniques can be obtained for ray shooting among arbitrary
nonconvex polyhedra, but perhaps there are useful special cases, beyond the case of
terrains, for which faster techniques exist.

3. One application of our algorithms is for the case of a small number ofcurved surfaces,
each approximated by a polyhedral surface with a large number of faces. An alter-
native attack on this case would be to drop the polyhedral representation altogether
and to develop special techniques for ray shooting amidst curved objects. This is
a more difficult problem for general surfaces, although some progress has recently
been done for the case of ray shooting amidst spheres (see [2] and [5]).

4. Finally, as mentioned in the introduction, no nontrivial lower bounds are known for
any of the ray-shooting problems.

Acknowledgments. The authors thank Mark de Berg and other attendants of the 2nd
Utrecht Workshop on Computational Geometry and Its Application for raising the problem
studied here.

REFERENCES

E K. AGARWAL, Ray shooting and other applications of spanning trees with low stabbing number, SIAM J.
Comput., 21 (1992), pp. 540-570.

[2] P.K. AGARWAL, L. GUIBAS, M. PELLEGRINI, AND M. SHARIR, manuscript, 1993.
[3] P.K. AGARWAL, M. VAN KREVELD, AND M. OVERMARS, Intersection queriesfor curved objects, J. Algorithms,

15 (1993), pp. 229-266.
[4] P. K. AGARWAL AND J. MATOUEK, Ray shooting and parametric search, SIAM J. Comput., 22 (1993),

pp. 794-806.
[5] Range searching with semi-algebraic sets, Discrete Comput. Geom., 11 (1994), pp. 393-418.
[6] P. K. AGARWAL AND M. SHARIR, Applications of a new space partitioning technique, Discrete Comput.

Geom., 9 (1993), pp. 11-38.
[7] ,Ray shooting amidst convex polygons in 2D, J. Algorithms, to appear.
[8] B. ARONOV, M. PELLEGRINI, AND M. SHARIR, On the zone ofa surface in a hyperplane arrangement, Discrete

Comput. Geom., 9 (1993), pp. 177-188.
[9] R. BAR YEHUDA AND S. FOGEL, Variations on ray shooting, Algorithmica, 11 (1994), pp. 133-145.

[10] M. DF BEFOG, D. HALPERIN, M. OVERMARS, J. SNOEYINK, AND M. VAN KREVELD, Efficient ray shooting and
hidden surface removal, Algorithmica, 12 (1994), pp. 30-53.

11 B. CIAZEIL, Cutting hyperplanesfor divide-and-conquer, Discrete Comput. Geom., 10 (1993), pp. 145-158.
[12] , Lower bounds on the complexity of polytope range searching, J. Amer. Math. Soc., 2 (1989),

pp. 637-666.
13] B. CHAZELLE AND H. EDIS3RUrqNR, An optimal algorithmfor intersecting line segments in the plane, J. ACM,

39 (1992), pp. 1-54.
14] B. CHAZtE, H. EOISBRtJNtq, M. GRIGYI, L. GtmAS, J. HZSIrGE, M. SHAI, AYD J. SOIN:, Ray

shooting in polygons using geodesic triangulations, Algorithmica, 12 (1994), pp. 54-68.

116 PANKAJ K. AGARWAL AND MICHA SHARIR

15] B. CHAZELLE, H. EDELSBRUNNER, L. GUIBAS, M. SHARIR, AND J. STOLFI, Lines in space: Combinatorics and al-
gorithms, Tech. rep. 491, Dept. ofComputer Science, New York University, February 1990; Algorithmica,
to appear.

16] B. CHAZELLE AND J. FRIEDMAN, A deterministic view ofrandom sampling and its use in geometry, Combina-
torica, 10 (1990), pp. 229-249.

17] B. CHAZELLE AND L. GUIBAS, Visibility and intersection problems in plane geometry, Discrete Comput. Geom.,
4 (1989), pp. 551-589.

18] B. CHAZELLE, M. SHARIR, AND E. WELZL, Quasi-optimal upper bounds for simplex range searching and new
zone theorems, Algorithmica, 8 (1992), pp. 407-430.

[19] K. L. CLARKSON, A randomized algorithm for closest-point queries, SIAM J. Comput., 17 (1988),
pp. 830-847.

[20] D. DOBKIN AND D. KIRKPATRICK, Determining the separation ofpreprocessed polyhedra: A uni3ed approach,
Proc. 17th Internat. Colloq. Automata, Languages and Programming, 1991, pp. 400-413.

[21] L. GUIBAS, M. OVERMARS, AND M. SHARIR, Ray shooting, implicit point location, and related queries in
arrangements of segments, Tech. Rep. 433, Dept. of Computer Science, New York University, March
1989.

[22] J. HERSHBERGER AND S. SURI, A pedestrian approach to ray shooting: Shoot a ray, take a walk, J. Algorithms,
18 (1995), pp. 403-431.

[23] J. MATOUEK, Approximations and optimal geometric divide-and-conquer, J. Comput. System Sci., 50 (1995),
pp. 203-208

[24] , Reporting points in halfspaces, Computational Geometry: Theory and Applications, 2 (1992),
pp. 169-186.

[25] ,Efficient partition trees, Discrete Comput. Geom., 8 (1992), pp. 315-334.
[26] .,Range searching with efficient hierarchical cuttings, Discrete Comput. Geom., 10 (1993), pp. 157-182.
[27] K. MEHLHORN, Data Structures andAlgorithms, III. Multi-Dimensional Searching and Computational Geom-

etry, Springer-Verlag, Berlin, Heidelberg, New York, 1985.
[28] M. PELLEGRINI, Ray shooting in triangles in 3-space, Algorithmica, 9 (1993), pp. 471-494.
[29] M. PELLEGRINI AND P. SHOR, Finding stabbing lines in 3-space, Discrete Comput. Geom., 8 (1992), pp. 191-208.
[30] F. PREPARATA AND M. SHAMOS, Computational Geometry: An Introduction, Springer-Verlag, Heidelberg, 1985.
[31 D.M.H. SOMMERVILLE, Analytical Geometry in Three Dimensions, Cambridge University Press, Cambridge,

UK, 1951.

SIAM J. COMPUT.
Vol. 25, No. 1, pp. 117-132, February 1996

() 1996 Society for Industrial and Applied Mathematics
005

A NEW CHARACTERIZATION OF TYPE-2 FEASIBILITY*

B. M. KAPRON AND S. A. COOK{

Abstract. K. Mehlhom introduced a class of polynomial-time-computable operators in order to study poly-time
reducibilities between functions. This class is defined using a generalization of A. Cobham’s definition of feasibility
for type-1 functions to type-2 functionals. Cobham’s feasible functions are equivalent to the familiar poly-time
functions. We generalize this equivalence to type-2 functionals. This requires a definition of the notion "poly time
in the length of type-1 inputs." The proof of this equivalence is not a simple generalization of the proof for type-1
functions; it depends on the fact that Mehlhorn’s class is closed under a strong form of simultaneous limited recursion
on notation and requires an analysis of the structure of oracle queries in time-bounded computations.

Key words, type-2 computability, polynomial time, notational recursion, oracle Turing machine

AMS subject classifications. 68Q05, 68Q15, 03D65, 03D20

1. Introduction. A type-1 function is a mapping from 11 to 1. We will denote the set of
all functions by NI. A type-2functional is a mapping from (rl) l to 1, for some k and
I. More specifically, we will call a mapping of this sort afunctional with rank (k, l).

For type-1 functions, there is a well-established notion of computational feasibility.
Namely, a function is feasible if it is computable in polynomial time on a Turing machine.
More specifically, a function f is poly time if there is a Turing machine (TM) M and a polyno-
mial p such that for all x, M with input x computes f (x) and runs in time p(n), where n Ix I,
and for x N, Ixl denotes the length of the binary notation ofx, that is log(x + 1)]. This no-
tion of feasibility is robust in the sense that it is independent of the computational model used,
assuming that the model is "reasonable." In 1], Cobham presented a machine-independent
characterization of computational feasibility, via an inductive definition. Cobham’s definition,
while important, lacks the intuitive appeal of the machine-based characterization because, in-
tuitively, feasibility depends on a notion of bounding computational resources (in this case
running time) in a general computational model in some natural way.

Questions about feasibility arise when dealing with type-2 functionals as well, for exam-
ple, in the study of reducibilities [9], computable analysis [5], and descriptive set theory [10].
Mehlhorn’s study [9] of feasible reducibilities appears to be one of the first to consider the
notion of feasibility for type-2 functionals. Here, a class of poly-time operators is defined,
using a generalization of Cobham’s definition. Subsequent studies, such as [10] and [4], take
Mehlhom’s approach. The work done to date in this area does not address the question of
whether there is a natural machine-based definition of Mehlhom’s class. In this paper, we
provide an affirmative answer to the question.

2. A computational model for functionals. Our model for type-2 computability is a
generalization of the familiar multitape oracle Turing machine (OTM). However, we allow
arbitrary type-1 functions as oracles, rather than subsets of 11. Note that we also use the term
oracle Turing machine to refer to this modified model. In addition to the normal work tapes,
there is an oracle-query tape and an oracle-answer tape for each function input. These tapes
are infinite in one direction. In order to query a function oracle at an input x, we write x
(in binary) on the corresponding query tape, move the read head on the oracle tape to the

*Received by the editors February 23, 1994; accepted for publication (in revised form) July 25, 1994. A
preliminary version of this paper appeared as [7].

Department of Computer Science, University of Victoria, Victoria, BC V8W 3P6, Canada (bmkapron@
csr.uvic.ca). The work of this author was completed while at the University of Toronto as part of his Ph.D. the-
sis [6].

{Department of Computer Science, University of Toronto, Toronto, ON M5S 1A4, Canada (sacook@
theory,toronto,edu).

117

118 B.M. KAPRON AND S. A. COOK

beginning, and enter a query state for that oracle. In the next step, the value of the function
at the specified input is written (in binary) at the beginning of the corresponding answer tape,
and the head of the answer tape is returned to the leftmost position. The rest of the answer
tape is overwritten with blanks. There is also a special, read-only input tape. One work tape
is specified as the output tape.

An OTM M computes a functional FM of rank (k, l) if it has k oracle-query states, and
for all fl f and xa x, whenever M is started with Xl xt written in binary (and
separated by blanks) on its input tape, and when j is the function associated with query state
i, M halts with FM(, Y) written at the beginning of its output tape, followed by blanks and
with the read head of the work tape in the leftmost position. In this case we say that M has

function inputs f f and number inputs x xt and that M is a rank-(k, l) OTM.
The running time of a Turing machine is normally just the number steps that it executes

before halting. This is also the case for OTMs with set oracles. With function oracles, on the
other hand, there are two possible conventions for the cost of an oracle call. The first is to
charge one time step, reflecting our intuition that oracles are like subroutines with unlimited
power. However, it is also reasonable to charge the length of the value returned by the oracle,
reflecting the fact that the answer returned by the oracle must still be written down on the output
tape. More formally, if we query oracle f at input Y, the associated cost is max{ 1, If (Y)I}.
Thus we have an I/O cost associated with an oracle call. We choose the latter convention.

DEFINITION 2.1. The running time of an OTM with a given input is the sum of the costs

of the steps it executes. We denote by TM(f Y) the running time ofM on inputs f and
Because of the way we charge for oracle calls, the number of steps in a computation is

not equal to its running time, as oracle calls are atomic steps with nonunit cost. We denote by
Steps(M, f, Y, t) the least number of steps that M must execute on inputs f, Y so that the sum
of the costs of those steps is at least t. In the case that > TM(, Y), we adopt the convention
that teps(M, f, Y, t) denotes Steps(M, f, , TM(f, Y)) +_.1. We will write Steps(t)when
M, f, and are understood. We will also denote by St(f, 2) the value Steps(Tt(f, Y)),
that is, the total number of steps taken by M on inputs f and before halting. It is important
to note that the computation of an OTM for a given function input depends only on the values
of the function at those points which are actually queried during the computation. This is
formalized as follows (we will restrict our attention to rank-(1, 1) functionals for the sake of
simplicity.)

DEFINITION 2.2. For any function f, any rank-(1, 1) OTM M, and any t, x E N, let
Q(M, f, x, t) denote the query set consisting ofall y such that M with inputs f and x queries

f at y within Steps(t) steps ofits execution. For any set Q N and anyfunction f, let fQ, the
query restriction of f, be thefunction such that fQ(y) f(y) for all y , and f(y) 0
otherwise.

PROPOSITION 2.3. If Q Q(M, f, x, t), then the first Steps(t) steps of the execution of
M on inputs f and x are identical to itsfirst Steps(t) steps on inputs f and x.

3. Basic feasible functionals. Cobham gave an inductive definition oftype- feasible
functions in terms ofcertain initial functions and closure conditions. The most important aspect
of this definition is closure under limited recursion on notation. Cobham’s feasible functions
coincide exactly with the familiar poly-time functions. Mehlhorn [9] generalized Cobham’s
definition to type-2 functionals to define the class of polynomial-time operators. We will
consider a functional version of this generalization based on that given by Townsend 10]. We
differ somewhat from Townsend, who considers functionals over {0, }*. Also, we include all

1Recently, A. Ignjatovi6 [6] showed that the main result of this paper also holds in the unit cost model. His
techniques differ significantly from ours.

A NEW CHARACTERIZATION OF TYPE-2 FEASIBILITY 119

type-1 poly-time functions as initial functionals. This simplifies the closure schemes needed
for argument manipulation. Note that we will refer to functionals in this class as basicfeasible
functionals (BFFs) rather than poly-time functionals. An explanation of this terminology is
given in [4]. We first introduce some schemes for defining functionals.

DEFINITION 3.1. F is definedfrom H, G1 GI by functional composition iffor all f
and ,

F(1, .) n(f, a (f, .’) al (f, ,)).

F is definedfrom G by expansion iffor all f, , , and v,
F(I, if,, Y, V) G(?,).

F is definedfrom G, H, and K by limited recursion on notation (LRN) iffor all f, , and y,

F(f , O) G(f),

F(f , y) H(f , y, F(f , [J)),

IF(f, , y)l _< IK(f , y)l.

y>0,

DEFINITION 3.2. Let X be a set oftype-2functionals. The class ofbasic feasible functionals
defined from X (BFF(X)) is the smallest class offunctionals containing X, all type-1 poly-time
functions and the applicationfunctional Ap, defined by Ap(f, x) f(x), and which is closed
underfunctional composition, expansion, and limited recursion on notation. If F BFF(X),
we say that F is basic feasible in X. The basic feasible functionals (BFFs) are just BFF(O).2

lfafunctional F is in BFF({F1 Fn}), we say that F is feasible in F1 Fn.
The BFFs have a strong closure property with respect to computation by OTMs. We now

define this property.
DEFINITION 3.3. A class X offunctionals has the Ritchie-Cobham property iffor all F,

F X iff there is an OTM M and some G X so that M computes F andfor all inputs f
and Y, the running time ofM is bounded by G(f,)I.

The following result is due to Mehlhorn [9].
THEOREM 3.4. The BFFs have the Ritchie-Cobham property.
Mehlhorn proved this result for the model in which oracle calls have unit cost. It is not hard

to adapt Mehlhorn’s proof to prove the forward direction for our model. Note that simulating
the application functional Ap requires more running time in our model because of the extra
cost associated with an oracle call. However, this overhead can easily be incorporated into the
time bound.

Sufficiency in our model follows from Mehlhorn’s result. However, we need a somewhat
stronger result in 5, which we now outline. We will show that for any OTM M, there is a BFF
RUnM such that the value of RUnM(f, Y, T), where T 6 N, is an encoding of a sequence of
instantaneous descriptions (IDs_.) which give the history of the first Steps(M, f, , IT I) steps
of M’s execution with inputs f and :7. Below, we give an outline of how RUnM is defined
by limited recursion on notation (LRN) on T. Also, it is not hard to define a BFF Output
so that if x codes a sequence of IDs, then Output(x) is the contents of the output tape of
the last ID in the sequence. So if F is computed by an OTM M for which there is a BFF

2In [8], the definition of BFF(X) also includes closure underfunctional substitution. Results of Townsend 10]
show that this definition is equivalent to the one given here.

120 B.M. KAPRON AND S. A. COOK

G so that for all inputs 3
7 and 2, the running time of M is bounded by IG(f,)1, we have

F(f, :7) Output(Runi(f, 2, G(f,))), and so F is a BFF.
In order to define Runi, we first use standard low-level encoding techniques, similar to

those of [9], to define a BFF NeXtM such that NextM(f, , i) retums the ID which follows
from ID of M on inputs 37 and , assuming that is a valid ID for M. In the case where the
state associated with is an oracle-query state, we use the Ap functional to obtain the resulting
value. Now, to compute RUnM(f, , T), we use LRN on T to iterate NeXtM ITI times, starting
with M’s initial configuration. However, during each iteration, we also check that the overall
running time (including the cost incurred for oracles calls) does not exceed IT I:. If this is
not the case, we "exit" from the iteration at this point. Finally, note that IRUnM(f, , T)I is
O(ITI(II / ITI)), independently of f. Full details of this construction can be found in [7].

This result provides some evidence of the naturalness of the BFFs. However, it does not
provide a purely machine-based characterization of type-2 feasibility. We will now introduce
such a characterization.

4. Basic poly-time functionals. Recall that a type-1 function f is poly time if there is
a TM M and a polynomial p such that M computes f and, for all inputs x, the running time
of M with input x is bounded by p(Ixl). Hence a function is feasible if it is computable in
time polynomial in the size of its input. A naive generalization of this characterization to
type-2 functionals would lead us to propose that a functional is feasible if it is computable in
time polynomial in the lengths of its inputs, where now its inputs include functions as well
as numbers. In order to formalize this proposal, we need to answer two questions. The first
is, what is the "length" of a function input f? Since f is an infinite object, there can be no
single n N which measures the length of f. However, for each x there is an associated
length If (x)I, which is also the cost of querying f at x. Viewing f as a subroutine, there is
a worst-case complexity for calling f, given this query cost. It is this complexity which we
define to be the length of f.

DEFINITION 4.1. For any f er N, the length of f, denoted If I, is thefunction defined by

max If(y)l.
lyl<n

Given this definition for the length of a function, we are presented with a second question:
when is a functional "polynomial in" the length of a function? We answer this question by
generalizing polynomials to allow function variables.

DEFINITION 4.2. First-order variables are elements of the set {n l, n2 }. Second-order
variables are elements of the set {L1, L2 }. Second-order polynomials are defined in-
ductively: any c N is a second-order polynomial; first-order variables are second-order
polynomials; and if P and Q are second-order polynomials and L is a second-order variable,
then P + Q, P Q, and L P are second-order polynomials.

We will refer to second-order polynomials as polynomials when the context makes this
distinction clear. Suppose P is a polynomial, all of whose first-order variables are among
n ns and all of whose second-order variables are among L1 Lt. Then for any se-

quence fl ft of functions and any sequence X Xs of numbers, P (f,), P evaluated
at f, denotes some natural number. For example, if

(1) Po LI(LI(nl hi)) + LI(L(n) Ll(nl)) q- Ll(nl) -+- 4

and f(x) x2, then

A NEW CHARACTERIZATION OF TYPE-2 FEASIBILITY 121

Po(f, 2) f(f(2 2)) + f(f(2) f(2)) + f(2) + 4

(42)2 -I- (22. 22)2 "+- 22 q-4

520.

We are now ready to introduce a type-2 analogue for the poly-time functions, based on
our generalizations of polynomials and lengths for functions.

DEFINITION 4.3. A functional F is basic poly time if there is an OTM M and a second-
order polynomial P such that M computes F, andfor allf and , TM(f) is bounded by
P(Ifll IAI, IXll Ix/I).

Note that if M and P are as in the preceding definition, we will say that P bounds the
running time ofM.

5. Equivalence of basic feasible and basic poly-time functionals. We have proposed
a new definition for type-2 feasibility, namely basic poly-time computability. In this section,
we will show that our new definition coincides with Mehlhorn’s. We begin with the following
theorem.

THEOREM 5.1. Every BFF is basic poly time.
In order to prove the theorem, we require the following easily demonstrated facts.
LEMMA 5.2. Suppose P and Q are polynomials withfirst-order variables n nl and

second-order variables L1 Lk+l. Then for all i, <_ <_ l, there is a polynomial P’ so
thatfor all ,, ,

pt(,) p(, Xl xi-1, Q(fi,,), Xi+l Xl).

LEMMA 5.3. Suppose P is a polynomial withfirst-order variables n nl and second-
order variables L Lk Thenforallmonotone nondecreasing g g andallx xt
andfor all i, < < l, and all y, if y > xi, then

P@,, Xl Xi-1, y, Xi+l Xl) > P(,).

ProofofTheorem 5.1. By,Theorem 3.4, it suffices to show that if F is a BFF, then there is
a polynomial P so that for all f,, IF(f,)1 _< P(Ifl IAI, IXll Ix/I). We proceed
by induction on the definition of F. The result is clear when F is an initial function. We now
consider each definition scheme. In each case, we assume that F is defined from functionals for
which the theorem holds. The case ofexpansion is straightforward. If F is defined from F, G,
and K by LRN and P is a bounding polynomial for K, then it is also a bounding polynomial
for F (since IF(f, Y)I <_ IK(f, Y)l). Now suppose that F is defined from H, G1 GI
by functional composition, and suppose that P is a bounding polynomial for H and Pi is a
bounding polynomial for Gi, < < 1. By Lemma 5.2, there is a polynomial P’ such that

for all f and ,
e’(If IAI, Ixll Ixzl)

P(IfI IAI, PI(Ifll IAI, Ixl Ix/I)

el(Ifll IAI, Ixl Ix/I)),

soby Lemma5.3, IG(f,)l <_ e’(Ifl IAI, IXll Ix/I).

122 B.M. KAPRON AND S. A. COOK

Surprisingly, the converse of 5.1 is also true, so that the BFFs and the basic poly-time
functionals coincide. We begin by considering an example which illustrates some of the
problems associated with proving the converse.

Let F1 be defined as follows:

F1 (f, x) { x(/Zk < x)(maxi_<k If(i)[k) if such a k exists,

otherwise.

It is easy to see that this functional is basic poly time. For inputs f and x we can compute
F1 in time bounded by cl[Ifl(Ixl)]2 + c2 for constants Cl and c2 as follows: just evaluate f
at successive inputs, starting with 0, until we find a point k such that Fl(f, x) k or reach
x. Now we will make at most F1 (f, x) + 1 such evaluations, and each evaluation returns a
value with length bounded by Ifl(Ixl). The approximate run-time bound is then obtained by
noting that F (f, x) < Ifl(Ixl). This approach to computing F does not allow us to conclude
that F is a BFE In particular, it appears that with such an approach, computing F1 for certain
inputs f and x would require a recursion with an exponential number of iterations. However,
this problem can be avoided with a nested recursion, as we will now show. In order to do so,
we need to consider the auxiliary function F2:

F2(f x) { x(IZk < Fl (f x))(f (k) maxo<i<Fl(f,x) f (i)) if such a k exists,

otherwise.

Fz(f, x) returns the smallest point y, 0 <_ y < Fl(f, x), such that y maximizes f over
{0 Fl(f, x)}. SoifFl(f, x) < x, If(Fz(f,x))l Fl(f, x). Otherwise, If(Fz(f,x))l >
x. Let

and let

F(f, x) (F1 (f, x), Fz(f, x))

G(f, x, y) (F(f, min([xl, y)), F2(f, min(lxl, y))),

where (., .) is a poly-time pairing function. Clearly G is basic feasible (we can use LRN on
x to do a "brute-force" search). Let # be the rank (0, 2) BFF defined by x#y 2Ixllyl. We
define F using LRN, as follows:

F(f, 0) (0, 0),

r(f,x) --if FIl(F(f, [J)) < [J then r(f, [),
else G(f, f(II(F(f, [])))#2, x),

IF(f, x)l < I(x, x)l,

where Ill and Ile are poly-time projection functions. So FI (f, x) 1-I (F(f, x)).
To simplify the presentation of our result, we will restrict our attention to functionals of

rank (1, 1). Basically, we want to show that if F is computed by an OTM M with running
time bounded by P, then there is a BFF G so that for all f and x, the running time of M
is bounded by [G(f, x)[. More formally, our goal is to find a BFF G so that F(f, x)
Output(RunM(f, x, G(f, x))). Now if there were a BFF H such that IH(f, x)l > Ifl(Ixl),
our task would be trivial, since we could then obtain the BFF G from H. It is not hard to show
that there is no BFF H with the required property.

LEMMA 5.4. For any BFF F, if f is a O-l-valuedfunction, then there is a polynomial p
such thatfor all x, IF(f, x)l < p(Ixl).

A NEW CHARACTERIZATION OF TYPE-2 FEASIBILITY 123

Proof. Use a straightforward induction on the definition of F. [3

THEOREM 5.5. If H is a functional such thatfor all f and x, IH(f, x)] > [f](lx[), then
H is not basic feasible.

Proof. Assume that H is a BFF, and let f be a 0-1-valued function. By Theorem 3.4 and
Lemma 5.4, there is an OTM M and a polynomial p such that for all x, H (f, x) is computable
by M in time p(]x [). So in computing H(f, x), M can query f at no more that p(lx]) different
inputs, and thus for some x0 there is a y, lYl < Ix01, so that M, on input f and x0, does not

query f at y. Let f’ be defined by

2.H(f,x)+l if x--y,
f’ (x)

f(x) otherwise.

Now by Proposition 2.3, M behaves identically with inputs f, x0 and f’, x0, so that

H f’IH(f, xo)l (f, xo)l I(Ixol) IH(f, xo)l + 1,

and we have derived a contradiction. [3

Our goal now is to try to simplify P in such a way that the value of P(lf[, [x[) can be
feasibly computed without using a functional such as H. We begin by noting the following
facts regarding running times.

LEMMA 5.6. Suppose M is an OTM and P is a polynomial which bounds the running time

of M. For any f, x, and t, if Q Q(M, f, x, t) and > P(IfI, Ixl), then S4(fQ, x) <
Steps(t).

Proof. Suppose this is not the case for some t, and let Q Q(M, f, x, t). Since

St(fQ, x) Steps(T4(f, x)) and Steps is monotone increasing, T4(f, x) > t. So
TM(fQ, x) > P(lfel, Ixl), contrary to Proposition 2.3. U

LEMMA 5.7. Suppose M is an OTM and P is a polynomial which bounds the running
time of M. For any f, x, t, and t’, if Q Q(M, f, x, t), Q’ Q(M, f, x, t’), and t’ >

P(IfI, Ixl), then either I’1 > I1 or SM(f,, x) < Steps(t’).
Proof. Suppose I’1 I1. Then Q’ Q, so P(If’I, Ixl) P(IfI, Ixl). But then

t’ > P(IfQ,[, Ixl), and so by Lemma 5.6, SM(f,, x) < Steps(t’). U
We denote by t(M, f,x,r) the least value such that Steps(t) St(f,x) or

IQ(M, f, x, t)l r. We will abbreviate this by t(r) in appropriate contexts.
LEMMA 5.8. Suppose t(M, f, x, r) and Q Q(M, f, x, t) for r N. If Steps(t) <

St(f x), then Steps(t) < S4(f, x).
Proof. Given that Steps(t) < St(f, x), M with input f and x must query f at r distinct

inputs before halting. But then by Proposition 2.3, the same is true of M with inputs f, x.
The result follows by the minimality of t. [3

We now want to show that for our bounding polynomial P, there is a d 6 N and a
first-order polynomial/3 so that for any query set Q, there are points q qd in Q such that

P(IfI, Ixl) /(If(ql)l If(qd)l, Ixl).

This will reduce our problem of finding a basic feasible bounding function forM to the problem
of finding BFFs which gives us such ql qd in Q(M, f, x, P(Ifl, Ixl)), We now describe

the method for obtaining the first-order polynomial/3.
DEFINITION 5.9. Let P be a polynomial. We define d P), the depth of P, by induction on

P" d(c) d(ni) -O;d(Pnt-O) d(P.O) max{d(P),d(O)};andd(L(P)) l+d(P).
Let P be a polynomial with depth d. For < c < d, let P PI be an enumeration

of the depth-c subpolynomials of P which have the form L(Q), where L is a second-order

124 B.M. KAPRON AND S. A. COOK

variable and d(a) c 1. If pjc L (O), let O a. Clearly, for any Q there is a

first-order polynomial , < < c, 1 < < kc, such that for all ff and Y,

Q(’,) O(P1 (’,) P, (,) P;_-] (’, -), ’)).

Now suppose that M is an OTM and that P is a depth-d polynomial bounding the running
time of M. For any inputs f and x and any t, there are q qd Q(M, f, x, t) so that for,

< c <dand <j <kc,

(2) Iqcl < max Q](IfQI, Ixl)
<j<kc

and

(3) If(qc)l >_ max ec(Ifl, Ixl).
<j<kc

But then there are first-order polynomials Qc, < c < d such that for < j < kc,

(4) aff(IfQI, Ixl) _< Oc(If(ql)l If(qc-1)l, Ixl).

Similarly, there is a first-order polynomial/3 such that

e(Ifl, Ixl) _< /;(If(q)l If(qd)l, Ixl).

As an example, for the polynomial P0 given in (1), we have

e0(Ifl, Ixl) _< Ifl(Ifl(Ixl)) + Ifl([Ifl(Ixl)]) + Ifl(Ixl) + 4

<_ Ifl(If(ql)l) / Ifl(If(q)l) + If(ql)l + 4

< If(q2)l-t-If(q2)l + If(ql)l-t-4,

where Iqll _< Ixl2 and Iq21 _< If(ql)l 2. So wehave 01 nl,)2 n, and/3 2.n2+n1+4.
DEFINITION 5.10. Let M be an OTM whose running time is bounded by the depth-d

polynomial P. For <_ c <_ d, the cth maximizing argument for M, f, x, and is the least-
value qc satisfying (2) and (3)for Q Q(M, f, x, t). The cth maximizing argument for
M, f, x, and is denoted qc(M, f, x, t), or just qc(t) when M, f, and x are understood.

Recall that for any first-order polynomial p(nl nk) with positive coefficients, there is
a poly-time function fp SO that lip(X1 xk)l p(lxll Ixl), for all Xl Xk. Since

the application functional is a BFE for 01 0d,/3, there are BFFs GO. Go,G so
that for all f, x, q qd,

]at)c(f, ql qc-1, x)l O.c(If(ql)l If(qc-)l, Ixl), <_ c <_ d,

and

IGp(f, ql qd, x)l /3(If(q)l If(qa)l, Ixl).

Now suppose that there are BFFs G1 Gd such that for < c < d,

If(Gc(f x))l >_ If (qc(M, f, x, P(Ifl, Ixl))l.

We could then define a basic feasible bounding functional G by

G(f,x) Gp(f, Gl(f,x) Gd(f,x),x).

A NEW CHARACTERIZATION OF TYPE-2 FEASIBILITY 125

As a first step toward finding such functionals, we will introduce a parameter r, which bounds
the number of inputs at we allow M to query f. Formally, if d(P) d, let Max_ArgOt,
< c < d, be the functional of rank (1, 2) defined by

r)= / 0 if r=0,
Max_Arg(f, x,

/ qc(M, f, x, t) + otherwise,

where is the smallest value such that SM(f, x) < Steps(t) or IQ(M, f, x, t)l > r. In general,
we will denote such a by (M, f, x, r), or just (r) in the appropriate context.

CLAIM 5.11. For any OTM M with running time bounded by a polynomial P with depth
d, Max_Arg is a BFFfor 1 < c < d.

Given this claim, we only need to show that we can feasibly eliminate the use of the
parameter r. If we could show that there is a BFF R such that for all f and x, R(f, x)
IQ(M, f, x, P(Ifl, Ixl))l, we would be finished, because we would then have

Max_ArgO(f, x, R(f x)) qc(M, f, x, P(Ifl, Ixl)).

What we will actually show is that there is a constant d and a sequence rl rd of "approx-
imations" to R(f, x) such that rl is basic feasible in f, x and rc+l is basic feasible in rc, f,
and x, and such that a basic feasible bounding functional G can be obtained from the rc’S.
Intuitively, rc is an upper bound on R(f, x), assuming that M queries f only at points y such
that lYl < Iqcl. Given r, let

(5) T G(f, Max_ArgO(f, x, r) Max_Arga(f, x, r) 1, x),

and Q Q(M, f, x, t), where t(r). If SM(f, x) < Steps(t), ITI >_ P(Ifl, Ixl), and so
F(f, x) Output(RunM(f, x, T)). Otherwise, S(fQ, x) > Steps(t) by Lemma 5.8, and
so, by Lemma 5.6, e(Ifl, Ixl) >_ t. By the definition of T, ITI >_ e(Ifl, Ixl). Finally,
since each query made by M has at least unit cost, >_ r. Combining these inequalities gives
TI >_ r. Now there is a BFF A which satisfies

If(A(f, x))l max If(Y)I.
y<_lxl

Since ITI >_ r, If(A(f, 2#T))I >_ Ifl(Irl). In other words, if M on inputs f and x runs for
long enough to query f at r inputs, then we can feasibly compute an upper bound of Ifl(lrl)
from f, x, and r.

We will now give an example to show how we take advantage of the approach described
above. Recall the polynomial P0 given in (1).

e0(Ifl, Ixl) -Ifl(Ifl(Ixle)) / Ifl([Ifl(Ixl)]e) + Ifl(Ixl) + 4.

Suppose P0 bounds the running time of M which computes the functional F. For inputs f
and x, we will begin by trying to find ql. For any Q, Iql <_ Ixl _< Ix#xl. So we begin by
setting rl x#x. Let T1 be T as defined in (5), for r r. Now if M halts before making r
queries, it halts in Steps(I T I) steps, so we do not need to go any further, since IZl will bound
the running time of M. Otherwise, we have a value ll A(f, 2#T) so that If(ll)l > If(q)l.
Since Iq2l < If(ql)l 2, we now try r2 f(ll)#f(l), and let T2 be T as defined by (5) for
r r2. Again, if M halts in Steps(IT21) steps, we are done. Otherwise, we have a value
12 A(f, 2#T2) so that If(12)l >_ [f(q2)l. Under the assumption that for inputs f and x, M
does not halt in Steps(ITll) or Steps(IT21) steps, the running time of M must be bounded by
2. If(/2)[-+- [f(l)l -+- 4. So if Pad is the rank (0, 2) BFF defined by Pad(x, y) x 2lyl and

G(f, x) max{T1, T2, Pad(Pad(2#Ap(f,/2), Ap(f, l)), 16)},

126 B.M. KAPRON AND S. A. COOK

then

F(f, x) Output(Run/(f, x, G(f, x))).

Formalizing this argument for arbitrary bounding polynomials, we obtain our main result.
THEOREM 5.12. If F is a rank-(1, 1) basic poly-timefunctional, then F is basicfeasible.
Proof. Suppose that F is a computed by an OTM M such that for all f and x, the running

time of M with inputs f, x is bounded by P(lfl, Ixl), where d(P) d. Let

rl -Go(f,x),
Tc G?(f, Max_ArglM(f, x, rc) Max_ArgdM(f, x, r.) 1, x),

lc A(f, 2#Tc),

re G O.c(f, 11 lc-, x),

l<c<d,

l<c<d,

2<_c<d,

and define G by

G(f, x) max{G(f, 11 ld, X), T1 Td}.

An argument similar to that given in the example shows that for all f and x,

F (f, x) Output(Run(f, x, G(f, x))). []

It remains to demonstrate Claim 5.11. We want to show that Max_ArgO4 is a BFF for
_< c < d. To do so, we also consider for < c _< d, the functional Max_Arg_Unaryt of

rank (1, 2) such that for all f, x, r, and R, if lRI r then

Max_ArgO(f, x, r) Max_Arg_UnarY4 (f, x, R).

We begin by showing that Max_Arg_Unary is feasible for case where d 1.
LEMMA 5.13. For any OTM M with running time bounded by a depth-1 polynomial P,

Max_Arg_Unary is basicfeasible.
Proof. Max_Arg_Unary is defined by LRN on R. Max_Arg_Unary (f, x, 0) 0. Now

Rsuppose that we have defined Max_Arg_Unary(f, x, [-J). Let t(gJ I), Q Q(t),
and

T 2. G/; (f, Max_Arg_Unaryt (f, x, J 1, x) + 1.

Finally, let h Runt (f, x, T). We claim that h encodes enough of the computation of M so
that Max_Arg_Unary(f, x, R) can be feasibly computed from h. If St(f, x) < Steps(t),
then ITI > P(Ifl, Ix[), so the claim holds. Otherwise, by Lemma 5.8, St(fQ, x) >

Steps(t). Since T is defined so that IT] > P(IfQI, Ixl), we have, by Lemma 5.7, that
RIQ(M, f, x, ITI)I > IQ(M, f, x, t)l. Since t(]]-fJ I), it follows that IQ(M, f, x, ITI)I >

IRI, and again the claim holds. Since IMax_Arg_Unary (f, x, R)I is bounded by IGo_ (f, x)l,
we conclude that Max_Arg_Unaryt is basic feasible. [3

LEMMA 5.14. For any M with running time bounded by a depth-1 polynomial P,
Max_Arg is basic feasible.

Proof. Max_ArgO4 is defined by LRN on r. We set Max_Arg (f, x, 0) 0. Now suppose
that we have defined Max_ArgOt f, x, [J). Let Let t(J), Q Q(t), and

T- 2. G(f, Max_ArgO4(f, x, [])- 1,x)+ 1.

A NEW CHARACTERIZATION OF TYPE-2 FEASIBILITY 127

Finally, let h RUnM(f, x, T). If SM(f, x) < Steps(t), ITI > P(If[, Ix[), and so h encodes
the whole history of M’s execution on inputs f, x and we can obtain Max_ArgO(f, x, r) via
a feasible computation on this history.

Otherwise, SM(fQ, x) > Steps(t) by Lemma 5.8, so by Lemma 5.6, P([fQ[, [x[) >_ t.
Now T is defined so that TI > P(I fl, Ix I), so IT] > t. Since every query has at least unit
cost, >_ J, and so we have TI > r. It is easy to show that there is a poly-time function
s(x, y) so that if Ixl > y, then Is(x, Y)I Y. So

Max_ArgOt f, x, r) Max_Arg_Unary (f, x, s(T, r)).

Since

IMax_ArgM(f, x, R)I < IGo, (f, x)l,

we conclude that Max_Arg is basic feasible. 3
It is not hard to see that this argument can be extended to give a simultaneous definition

of Max_Arg_Unaryt f, x, r) and Max_ArgO(f, x, y), 1 < c _< d, assuming that the running
time ofM is bounded by a depth-d polynomial. So before we can conclude that these functions
are BFFs as in Claim 5.11, we must extend LRN to allow simultaneous definitions. We begin
by considering a simple extension of LRN.

DEFINITION 5.15. F1 Fk are efined from G, H, and K by simultaneous limited
recursion on notation (SLRN) iffor all f, 2, and y,

Fi(f 2, O) Gi(f,.), < < k,

Fi(/, 2, y) Hi(f, 2, y, (f 2, lJ)), Y > 0, _< _< k,

Ifi(f, , Y)I _< Igi(f, , y)l, _< _< k.

LEMMA 5.16. If F1 Fk are defined from G, H, and K by SLRN, then Fi is basic

feasible in G, H, and K, <_ < k.

Proof. Recall that for k 6 N, there are poly-time functions .xl .Xk (Xl x) and
I-l/, _< _< k, such that 1-I/((xl Xk)) xi. Now it is not hard to see that we can

define, using LRN, a functional F, basic feasible in G, H, and K, such that Fi(f, 2, y)
n(F(f , y)). [3

It would appear that SLRN is too weak to allow the simultaneous definition of the func-
tionals Max_ArgOt, < c < d. The problem arises in attempting to provide bounds for these
functionals. By (2) and (4), we know that

IMax-Argt (f, Y, Y)I _< IGOc(f, Max-ArgOt (f, , Y)- Max_Arg4- (f, Y, y)- 1, x)l

and Max_Arg_Unary(f, , r) is similarly bounded. However, the bounding conditions for
SLRN do not allow such a general form ofbounding. We now introduce a form of simultaneous
recursion which does.

DEFINITION 5.17. F F are_defined from G, H, and K by multiple limited
recursion on notation (MLRN) iffor all f, 2, and y,

Fi(f,i,O) Gi(f,), < < k,

Fi(f Y, y) Hi(f, , y, (f 2, Y > 0, < < k,

128 B.M. KAPRON AND S. A. COOK

]F1 (f, ., Y)I < IK1 (f, ., Y)I,

lEg(f, , y)l IKi(f,., y, Fl(f,., y) Fi-l(?, , y))l, 2 _< _< k.

MLRN is a generalization of a scheme introduced by Cook in [2]. The apparent power of
this scheme compared to SLRN arises from the use of weaker bounds for IF/(f, Y, y)[, which
require bounding only in terms of F1 Fi-1. Otherwise, MLRN is identical to SLRN.
Surprisingly, it is no more powerful than SLRN.

THEOREM -5" 18. IfF1 Fk are defined by MLRNfrom G, H, and K, then Fi is basic

feasible in G, H, and K, 1 < < k.
This is a result which is interesting in its own right. We postpone its proof to the following

section, and continue now with the thread of our main result.
Proof of Claim 5.11. We extend the proof of Lemma 5.14, to allow a simultaneous

definition of Max_Arg_Unaryt, < c < d, using MLRN. We then use these functionals to
give a simultaneous definition of Max_ArgOt, _< c _< d, again using MLRN.]

6. Feasibility ofMLRN. This section is devoted to the proof of Theorem 5.18. Our first
step is to consider an apparently weaker version of MLRN.

DEFINITION 6.1. F1 Fk are defined from G, H, and K by weak multiple limited
recursion on notation (WMLRN) iffor all f, , and y,

Fi(f ,., O) Gi(f,c), < <_ k,

Fi(?,., y) Hi(?,Y., y, Fl(f,., I A) F(L , y > o, _<i _< k,

IF1 (f, i, Y)I [Kl(f, ., Y)I,

Ifi(f,Y, y)l < [gi(f,., y, Fi_l(f, 2, Y))I, 2 <_ _< k.

Once we show that the BFFs are closed under WMLRN, we obtain a proof of Theorem
5.18, as follows.

ProofofTheorem 5.18. We show that there are functionals F; F, basic feasible in

G, H, and K, so that for 1 < _< k,

F(f ., y) (F1 (f , y) Fi (f ., y)).

F/’ F are defined by WMRLN, as follows:

F/’(f, Y, 0) (Gl(f,) Gi(f,)),

F/’(f, Y, y) (HI(Z, 5 y, H((F;(f, Y,

kHi(f,2, y, l-I((F;(f, 2, Y > 0,

[F;(f 2, Y)I < [Kl(f,., Y)I,

[F[(f,i, y)[_< [(Kl(f, , y), K:(f, 2, y, 1-ISl-l(F[_l(f, , y)))

i-l(Ff_1(,., y)))) [-4Ki(f ., y, I-Iil-l (Fi_l (f ., y)) H

It remains to show that the BFFs are closed under WMLRN. Suppose F1 Fk are
defined by WMLRN. By introducing extra parameters z zg so that Fi is bounded in

A NEW CHARACTERIZATION OF TYPE-2 FEASIBILITY 129

terms of Zi-1 rather than Fi-1, it is possible to define by SLRN functionals E1 Ek so that
Ei agrees with Fi when supplied with appropriate values for Zl zk-1. This is formalized
in Lemma 6.2 below. It then remains to define Z z-1 with the required property. In fact,
functionals giving appropriate values for Zl Zk-1 can be defined by WMLRN. Then, by
induction on k, we can conclude that the Fi’s are definable using SLRN. This is formalized in
Lemma 6.3 below. We will write x

_
y if for some i, x ly/2ij.

LEMMA 6.2. Suppose that F1 Fk are definedom G, I-I, and K by WMLRN. Then
there arefunctionals E1 Ek, basicfeasible in G, H, and K, so thatfor all Zl Zk-1,

ytl Yk-1 and all y, if

(6) IFi(f, , v)l _< Igi(f, ., Yi-1, Zi-1)I, 2 < _< k,

for all v c_ y, then

Ei(f , ,-, y) Fi(f ., y), < <_ k.

Proof. Let L1 L be defined as follows:

L1 (f, , ’, g, y) K1 (f, , y),

Li(f Y., ’,-, y) Ki(f , y;_, zi-1), 2 _< <_ k.

Let H H be defined as follows:

Hi(f, , y-", , y,) { Hi(f, , y,) if IHi(f , y, ’)l < ILi(f ,, y", , y))[,

L (f, ., y", 7z, y) otherwise.

Finally, let G’ G’ be defined as follows:

Gti f . f " G f .
E1 Ek are defined by SLRN from G’, H’, and L. Clearly, Ei is bounded by Li, < < k.
We now show by induction on y that if (6) holds for all v __. y, then

fEi(f,,, y’,-, y) Fi(,Y, y), < < k.

This follows directly when y 0. Now suppose it is the case for [2 J" Assume that (6) holds
for all v c_ y. Then it holds for all v

_
[2 J, and by the induction hypothesis we have

Ei(f "" Y’, ", Fi(f ., LJ), _<i _< k,

and so

Hi(f 2, y, E(f,, ?,’, LJ) Et(f,., y’,, LJ)) Fi(f,., y), < < k.

Now IFl(f, , Y)I _< IKl(f, 2, Y)I and by our assumption that (6) holds for all v y, for
2_<i <kwehave

IFi(f , Y)i < [Li(f ., ;’,-, Y)I.

We then conclude, referring to (6), that Ei (f , ’, , y) Fi (f , y). D

130 B.M. KAPRON AND S. A. COOK

LEMMA_, 6.3.. If F1 , Fk are defined by WMLRNfrom d, IYI, and , then Fi is basic

feasible in G, H, and K, < < k.

Proof. We proceed by induction on k >_ 2. When k 2, we show that there is a functional

P, basic feasible in G, H, K so that for all y and all v c__ y,

(7) [F2(f,Y, v)[<_ [Kz(f, ,, [Ii(P(f, , y)), 1-I2(P(f, ., Y)))I.

Having defined such a P, we can conclude from the preceding lemma that

Fi(f,Y, y) Ei(f,Y, FIa(P(f,., y)), Flz(P(f, Y, y)), y), 1,2,

so that Fi is basic feasible in G, H, and K, 1, 2. It is easy to see that if P satisfies

(8) P(f , y) (v, Fl(f 2, v)),

where v

_
y maximizes IK2(f, Y, v, F1 (f, Y, v))l, then P will satisfy (7) for all v

_
y. So

it suffices to find a BFF P which satisfies (8) for all y. Now define P as follows:

P (37, Y, 0) (0, G1 (f, .)),

p(f . Y) [(y, Zl) if IK2(f, Y, y, zl)1 > IK2(f, 2, FII(q), rI2(t)))l,
y>O,

/ tt otherwise,

where

and

Zl H,(f,, y, El(j,;, FIl(tl), FI2(,1), []), E2(f,, 1-I1(tl), Fie(t1),

We will show that P satisfies (8) for all y, by induction on the notation of y. This follows
directly when y 0. Now assume that P satisfies (8) for J. Then P satisfies (7) for

all v c_ [J, so that by the preceding lemma, z Fl(f, , y). But then, by the induction
hypothesis and the definition of P,

[(y, F1 (f, ., y)) if IKz(f, ., y, F1 (f, ., Y))I > [Kz(f, , v, F1 (f, ’, v))l,
P(f ., y)

(v, Fl(f, Y, v)) otherwise,

where v

_
[J maximizes]K2(f, Y’, v, F, (jT, y, v))]. It is then clear that P satisfies (8) for

y, as required. Finally, since P satisfies (8) for all y,

[P(f ,Y., Y)I < [(y, maxKl(f,., v))l,
vy

so that, in fact, P is definable by LRN from functionals basic feasible in , , and/.
Now assume that the result holds for k 1. W.e show vali1ity for k as follows: we will

show that there are P1 Pk-1, basic feasible in G, H, and K so that for 2 < < k,

(9) IF(f,Y, v)l < IK/(f, :7, l"Ii(Pi-l(f,., y)), n2(Pi_,(f,Y, y)))l

for all y and all v

y. By the preceding lemma, we will then have

Fi(f,., y) Ei(f,., nl(P(f, , y)) nl(Pi_(f,Y, y)), rI2(Pl(f, , y))

rI2(Pi-l(f,Y, y), y)),

A NEW CHARACTERIZATION OF TYPE-2 FEASIBILITY 131

SO that Fi is basic feasible in G, H, and K, < < k. We will attempt to define P1 Pk-1
by WMLRN. By the induction hypothesis, we can then conclude that P1 P-I are basic

feasible in G, H, and K. It is easy to see that for 1 < < k 1, if Pi satisfies

(10) Pi(f Y, y) (vi, Fi(f , 1)i)),

where l) y maximizes Ig//l (f, , vi, Fi(f, , vi))[, then Pi will satisfy (9) for all v c_C_ y.
So it suffices to find BFFs P1 Pk-1 which satisfy (10) for all y. Define P1 P-I as
follows:

Pi(f , O) (0, Gi(f)),

if lgi+l(f,, Y, Zi)l >_ IKi+l(f,, Ill(t/), II2(ti))l,Pi(f , Y) { ti

(y’ zi)

where

and

otherwise,

Zi Hi(f, 2, y, El(f,2, Hl(tl) Ill(t-l), Il2(h) II2(tk-1))

E(f,., 1-II(tl) I-II(tk-1), II2(tl) l-I2(tk-1)))

ti-Pi(,,LJ).

y>0,

Pi(f 2, Y)

{ (y, Fi(f , y))

(l)i, Fi(f ,, l)i))

if lKi+l(f,, y, Fi(f,, Y))I >- IKi+l(f 2, l)i, Fi(f,., vi))l,

otherwise,

where Vi y maximizes IKi+l(f,Y, Ui, Fi(f,., vi))l. It is then clear that for < k- 1,
Pi satisfies (10) for y, as required.

It remains to show that P1 P-1 are bounded in such a way so that they are definable
by WMLRN. The bound for P1 is obtained as in the base case. Now for 2 < < k 1, we
conclude from the definition of Pi that

IFl2(Pi(f , Y))I _< max IFi(f , v))l.
vC_y

We also conclude from the definition of F that

IFi(f,, l))l <_ [gi(f,, v, Fi-l(f,,
Combining these equalities with the fact that for < < k 1, Pi satisfies (10) for all y, we
see that

IrI2(Pi(f,2, y))l _< IKi(f,2, FIl(Pi_l(f,;, y)), Iq2(Pi_1(f,2, y))).

Finally, since IHl(Pi(f,2, Y))l < lyl, P1 P-I are definable by WMLRN from func-

tionals basic feasible in G, H, and K. [3

We now show, by induction on the notation of y, that the Pi’s satisfy (10) for all y. This is clear
when y 0. Assume that for < < k 1, Pi satisfies (10) for z

2]. Then for < < k 1,

Pi satisfies (9) for all v

_
] z2 J, so that by the preceding lemma, zi Fi (f, , y). But then,

by the induction hypothesis and the definition of Pi, for < < k we have

132 B.M. KAPRON AND S. A. COOK

REFERENCES

A. COBHAM, The intrinsic computational difficulty offunctions, Proc. 1964 International Congress for Logic,
Methodology, and the Philosophy of Science, North-Holland, Amsterdam, 1964.

[2] S.A. COOK, Iterated recursion is PV-definable, manuscript, 1989.
[3] , Computability and complexity of higher-type functions, in Logic from Computer Science, Springer-

Verlag, Berlin, 1992, pp. 51-72.
[4] S.A. COOK AND B. M. KAPRON, Characterizations of the basic feasible functionals offinite type, in Feasible

Mathematics, Birkhauser, Boston, 1990, pp. 71-95.
[5] H. FRIEDMAN AND K. KO, Computational complexity of real functions, Theoret. Comput. Sci., 20 (1982),

pp. 323-352.
[6] A. IGNJATOVI, Onfeasibility in higher types, manuscript, 1994.
[7] B.M. KAPRON, Feasible computation in higher types, Tech. report 249/91, Department of Computer Science,

University of Toronto, Toronto, ON, 1991.
[8] B. M. KAPRON AND S. A. COOK, A new characterization ofMehlhorn’s poly-time functionals, in Proc. 32nd

IEEE Symposium on Foundations of Computer Science, San Juan, PR, 1991, pp. 342-347.
[9] K. MEHLHORrq, Polynomial and abstract subrecursive classes, J. Comput. System Sci., 12 (1976), pp. 147-178.

[10] M. TOWNSEND, Complexityfor type-2 relations, Notre Dame J. Formal Logic, 31 (1990), pp. 241-262.

SIAM J. COMPUT.
Vol. 25, No. 1, pp. 133-168, February 1996

() 1996 Society for Industrial and Applied Mathematics
006

LINEAR TIME AND MEMORY-EFFICIENT COMPUTATION*
KENNETH W. REGAN

Abstract. A realistic model of computation called the block-move (BM) model is developed. The BM regards
computation as a sequence of finite transductions in memory, and operations are timed according to a memory cost

parameter #. Unlike previous memory-cost models, the BM provides a rich theory of linear time, and in contrast
to what is known for Turing machines (TMs), the BM is proved to be highly robust for linear time. Under a wide
range of/z parameters, many forms of the BM model, ranging from a fixed-wordsize random-access machine (RAM)
down to a single finite automaton iterating itself on a single tape, are shown to simulate each other up to constant
factors in running time. The BM is proved to enjoy efficient universal simulation, and to have a tight deterministic
time hierarchy. Relationships among BM and TM time complexity classes are studied.

Key words, computational complexity, theory of computation, machine models, Turing machines, random-
access machines, simulation, memory hierarchies, finite automata, linear time, caching

AMS subject classifications. 68Q05, 68Q10, 68Q15, 68Q68

1. Introduction. This paper develops a new theory of linear-time computation. The
block-move (BM) model introduced here extends ideas and formalism from the block-transfer
(BT) model of Aggarwal, Chandra, and Snir [2]. The BT is a random-access machine (RAM)
with a special block-transfer operation, together with a parameter /x N -- N called a
memory-access costfunction. The RAM’s registers are indexed 0,1,2 and/z(a) denotes
the cost of accessing register a. A block transfer has the form

copy [al bl] into [a2... b2],

and is valid ifthese intervals have the same size m and do not overlap. With regard to a particular
#, the charge for the block transfer is m +/z(c) time units, where c max{ al, bl, a2, b2 }. The
idea is that after the initial charge of/z(a) for accessing the two blocks, a line of consecutive
registers can be read or written at unit time per item. This is a reasonable reflection of
how pipelining can hide memory latency, and accords with the behavior of physical memory
devices (see [3], p. 1117, or [34], p. 214). An earlier paper [1] studied a model called HMM
which lacked the block-transfer construct. The main memory-cost functions treated in these
papers are /Zlog(a) := [log2(a + 1)], which reflects the time required to write down the
memory address a, and the functions/zd(a) := [al/dq with d 1, 2, 3 which model the
asymptotic increase in communication time for memory laid out on a d-dimensional grid. (The
cited papers write f in place of/z and ot for 1/d.) The two-level input (I/0) complexity
model of Aggarwal and Vitter [3] has fixed block size and a fixed cost for accessing the outer
level, while the uniform memory hierarchy (UMH) model of Alpern, Carter, and Feig [5]
scales block size and memory access cost upward in steps at higher levels.

The BM makes the following changes to the BT. First, the BM fixes the wordsize of
the underlying machine, so that registers are essentially the same as cells on a Turing tape.
Second, the BM provides native means of shuffling and reversing blocks. Third and most
important, the BM allows other finite transductions S besides copy to be applied to the data
in a block operation. A block move has the form

S [al bl] into [a2... b2].

*Received by the editors June 17, 1993; accepted for publication (in revised form) July 28, 1994. This research
was supported in part by NSF Research Initiation Award CCR-9011248.

’Department of Computer Science, State University of New York at Buffalo, 226 Bell Hall, Buffalo, NY 14620-
2O00.

133

134 KENNETH W. REGAN

If x is the string formed by the symbols in cells al through bl, this means that S(x) is written
to the tape beginning at cell a2 in the direction of b2, with the proviso that a blank B appearing
in the output S(x) leaves the previous content of the target cell unchanged. This proviso
implements shuffle, while reverse is handled by allowing bl < al and/or b2 < a2. The
block move is valid if the two intervals are disjoint and meets the strict boundary condition
if S(x) neither overflows nor underflows [a2... b2]. The work performed in the block move
is defined to be the number Ixl of bits read, while the memory-access charge is again/z(c),
c max{ al, bl, a2, b2 }. The lz-time is the sum of these two numbers. Adopting terms from
[5], we call a BM M memory efficient if the total memory-access charges stay within a constant
factor (depending only on M) of the work performed, and parsimonious if the ratio of access
charges to work approaches 0 as the input length n increases.

In the BT model, Aggarwal, Chandra, and Snir [2] proved tight nonlinear lower bounds of
(R)[n logn] with/z =/zl, (R)[n loglogn] with/z]Zd, d > 1, and (R)[n log* n] with/z]./,log,
for the so-called "touch problem" of executing a sequence of operations during which every
value in registers R1 Rn is copied at least once to R0. Since any access to Ra is charged the
same as copying Ra to R0, this gives lower bounds on the time for any BT computation that
involves all of the input. In the BM model, however, the other finite transductions can glean
information about the input in a way that copy cannot. Even under the highest cost function

#1 that we consider, many interesting nonregular languages and functions are computable in
linear time.

1.1. Previous models. It has long been realized that the standard unit-cost RAM model
[21], [31], [18] is too powerful for many practical purposes. Feldman and Shapiro [22]
contend that realistic models A/l, both sequential and parallel, should have a property they call
"polynomial vicinity," which we state as follows: let C be a data configuration, and let Hc
stand for the finite set of memory locations (or data items) designated as "scanned" in C. For
all > 0, let It denote the set of locations (or items) such that there exists an A/l-program
that, when started in configuration C, scans within time units. Then the model A/t has
vicinity v(t) if for all C and t, Iltl/IncI <_ v(t). In three-dimensional space, real machines
"should have" at most cubic vicinity. The RAM model, however, has exponential vicinity even
under the log-cost criterion advocated by Cook and Reckhow 18]. So do the random-access
Turing machine (RAM-TM) forms described in [30], [26], [7], [14], [64], and so do TMs
with tree-structured tapes (see [57], [63], [51], [52]). Turing machines with d-dimensional
tapes (see [31], [60], [50]) have vicinity O(td), regardless of the number of such tapes or
number of heads on each tape, even with head-to-head jumps allowed. The standard TM
model, with d 1, has linear vicinity. The "RAM with polynomially compact memory" of
Grandjean and Robson [29] limits integers that can be stored and registers a that can be used
to a polynomial in the running time T. This is not quite the same as polynomial vicinitymif
<< T, the machine within steps could still address a number of registers that is exponential

in t. The BM has polynomial vicinity under/xd (though not under//dog), because any access
outside the first a cells costs more than time units. The theorem of [56] that deterministic
linear time on the standard TM (DLIN) is properly contained in nondeterministic TM linear
time (NLIN) is not known to carry over to any model of superlinear vicinity.

1.2. Practical motivations. The BM attempts to capture, with a minimum of added
notation, several important properties of computations on real machines that the previous
models neglect or treat too coarsely. The motivations are largely the same as those for the BT
and UMH. As calibrated by #, memory falls into a hierarchy ranging from relatively small
amounts of low-indexed fast memory up through to large amounts of slow external storage.
An algorithm that enjoys good temporal locality of reference, meaning that long stretches of
its operation use relatively few different data items, can be implemented as a BM program

LINEAR TIME AND MEMORY-EFFICIENT COMPUTATION 135

that first copies the needed items to low memory (figuratively, to a cache) and is rewarded
by a lower sum of memory-access charges. Good spatial locality of reference, meaning that
needed data items are stored in neighboring locations in approximately the order of their need,
is rewarded by the possibility of batching or pipelining a sequence of operations in the same
block move. However, the BM appears to emphasize the sequencing of data items within a
block more than the BT and UMH do, and we speak more specifically of good serial access
rather than spatial locality of reference. The BM breaks sequential computation into phases
in which access is serial and the operation is a finite transduction, and allows "random" access
only between phases. Both I-time(n) and the count R(n) of block moves provide ways to
quantify random access as a resource. The latter also serves as a measure of parallel time,
since finite transductions can be computed by parallel prefix sum. Indeed, the BM is similar
to the Pratt-Stockmeyer vector machine [61], and can also be regarded as a fixed-wordsize
analogue of Blelloch’s "scan" model [11].

1.3. Results. The first main theorem is that the BM is a very robust model. Many diverse
forms of the machine simulate each other up to constant factors in/x-time, under a wide range
of cost functions/x. Allowing multiple tapes or heads, expanding or limiting the means of tape
access, allowing invalid block moves, making block boundaries preset or datadependent in a
block move, and even reducing the model down to a single finite automaton that iterates itself
on a single tape make no or little difference. We claim that this is the first sweeping linear-time
robustness result for a natural model of computation. A "linear speed-up" theorem, similar
to the familiar one for Turing machines, makes the constant factors on these simulations as
small as desired. All of this gives the complexity measure #-time a good degree of machine
independence. Some of the simulations preserve the work (w) and memory-access charges
(Ix-acc) separately, while others trade w off against #-acc to preserve their sum.

Section 2 defines the basic BM model and also the reduced form. Section 3 defines all
the richer forms, and 4 proves their equivalence. The linear speed-up theorem and some
results on memory efficiency are in 5. The second main result of this paper, in 6, shows
that like the RAM but unlike what is known for the standard multitape Turing machine model
(see [36], [24]), the BM carries only a constant factor overhead for universal simulation. The
universal BM given is efficient under any/zd, while separate constructions work for//log. In
consequence, for any fixed/x /xd or/Xog, the BM complexity classes D/xTIME[t] form a
tight deterministic time hierarchy as the order of the time function increases. Whether there
is any hierarchy at all when/x rather than varies is shown in 7 to tie back to older questions
of determinism versus nondeterminism. This section also compares the BM to standard TM
and RAM models and studies BM complexity classes. Section 8 describes open problems,
and 9 presents conclusions.

2. The block-move model. We use . for the empty string and B for the blank character.
N stands for 0, 1, 2, 3, }. Characters in a string x of length m are numbered xoxl Xm-.
We modify the generalized sequential machine (GSM) of [36] so that it can exit without
reading all of its input.

DEFINITION 2.1. A generalized sequential transducer (GST) is a machine S with compo-
nents (Q, F, 3, p, s, F), where F Q is the set ofterminal states, s Q \ F is the start state,

(Q \ F) x I" --+ Q is the transition function, and p (Q \ F) x I" --+ * is the output
function. The I/O alphabet F may contain the blank B.

A sequence (qo, xo, ql, xl qm-1, Xm-l, qrn) is a halting trajectory of S on input x

if qo S, qm F, XOXl... Xm-1 is an initial substring of x, and for 0 <_ < rn- 1,
6(qi, xi) qi+l. The output S(x) is defined to be P(qo, xo).p(q, x) P(qm-1, Xm-1).

By common abuse of notation we also write S(.) for the partial function computed by S.
Except briefly in 8, all finite-state machines we consider are deterministic. A symbol c is an

136 KENNETH W. REGAN

FIG. 1. BM with allowed head motions in a pass.

endmarker for a GST S if every transition on c sends S to a terminal state. Without loss of
generality, B is an endmarker for all GSTs.

The intuitive picture of our model is a "circuit board" with GST "chips," each of which
can process streams of data drawn from a single tape. The formalism is fairly close to that for
Turing machines in [36].

DEFINITION 2.2. A block machine (BM) is denoted by M Q, E, I’, 3, B, So, F), where
Q is a finite set consisting ofGSTs, move states, and halt states;
F is the set of halt states;
every GST has one of thefour labels Ra, La, OR, or 0L;
move states are labeled either [a/21, 2a, or 2a+ 1;
E is the I/0 alphabet of M, while the work alphabet I" is used by all GSTs;
the start state So is a GST with label Ra; and
the transition function is a mappingfrom (Q \ F) to Q.

We find it useful to regard GSTs as "states" in aBM machine diagram, reading the machine
in terms of the specific functions they perform, and submerging the individual states of the
GSTs onto a lower level. M has two tape heads, called the "cell-0 head" and the "cell-a head,"
which work as follows in a GST pass (Fig. 1). Let r [i stand for the symbol in tape cell i, and
for i, j 6 N with j < allowed, let cr[i j] denote the string formed by the symbols from
cell to cell j.

DEFINITION 2.3. A pass by a GST S in a BM works asfollows, with reference to the current
address a and each of thefour modes Ra, La, OR, OL

(Ra) S reads the tape moving rightwardfrom cell a. Since B is an endmarkerfor S, there
is a cell b > a in which S exits. Let x r[a... b] and y := S(x). If y), the
pass ends with no change in the tape. For y), let c := lYl 1. Then y is written
into cells [0... c], except that if Yi B, cell is left unchanged. This completes the
pass.

(La) S reads the tape moving leftwardfrom cell a. Unless S runs off the left end of the
tape (causing a "crash"), let b < a be the cell in which S exits. As before let
x cr[a.., b], y :-- S(x), and ify), c lYl- 1. Thenformally,for 0 < < c,

if yi B then r[i] "= Yi, while if yi B then cr[i] is unchanged.
(OR) S readsfrom cell O, necessarily moving right. Let c be the cell in which S halts. Let

x := r[0... c], y := S(x), and b a + lYl 1. Then y is written rightwardfrom
a into cells [a... b], with the same convention about B as above.

(OL) This is the same as OR, except that b a lYl q- 1, and y is written leftwardfrom
a into [a...b].

Here a, b, and c are the access points of the pass. Each of the four kinds ofpasses is valid if
either (i) y), (ii) a, b, c < 1, or (iii) c < min{ a, b }. The case y) is called an empty
pass, while if Ix 1, then it is called a unit pass.

In terms of 1, Ra and La execute the block move S [a... b] into [0... c], except that
the boundaries b and c are not set in advance and can depend on the data x. Similarly OR and

LINEAR TIME AND MEMORY-EFFICIENT COMPUTATION 137

non-B

Start
a := 2a+l a := 2a+l

(* Current address
is now > 2n+l*)

put right pull right
copy c -- c@Append $ to output

to rest ofM

FIG. 2. A BM that makes afresh track.

0L execute S [0... c] into [a... b]. We make the distinction that in a pass, the read and write
boundaries may depend on the data, while in a block move (formalized in the next section),
they are set beforehand. The tape is regarded as linear for passes or block moves but as a
binary tree for addressing. The root of the tree is cell 1, while cell 0 is an extra cell above
the root. The validity condition says that the intervals [a... b] and [0... c] must not overlap,
with a technically convenient exception in case the whole pass is done in cells 0 and 1. If a
pass is invalid, M is considered to "crash." A pass of type Ra or La figuratively "pulls" data
to the left end of the tape, and we refer to it as a pull; similarly, we call a pass of type OR or
OL a put. Furthering the analogy to internal memory or to a processor cache, these pass types
might be called afetch and writeback, respectively. An La or 0L pass can reverse a string on
the tape.

DEFINITION 2.4. A valid computation by a BM M Q, E, I’, 6, B, So, F) is defined
asfollows. Initially a O, the tape contains x in cells 0... Ix I- with all other cells blank,
and So makes the first pass. When a pass by a GST S ends, let c be the character read on
the transition in which S exited. Then control passes to 3(S, c). In a move state q, the new
current address a’ equals /a/2J, 2a, or 2a + according to the label of q, and letting d be
the character in cell a’, control passes to state (q, d). All passes must be valid, and a valid
computation ends when control passes to a halting state. Then the output, denoted by M(x),
is defined to be r[0... m- 1], where r[m] is the leftmost non-E character on the tape. If
M is regarded as an acceptor, then the language of strings accepted by M is denoted by
L(M) "= x E*IM(x) halts and outputs I }.

The convention on output is needed since a BM cannot erase, i.e., write B. Alternatively,
for an acceptor, F could be partitioned into states labeled ACCEPT and REJECT.

DEFINITION 2.5. A memory-cost function is anyfunction IX N --+ N with the properties
(a) IX(0) 0, (b) (a)ix(a) < a, and (c) (N > 1)(a)ix(Na) < Nix(a).

Our results will only require the property (c’)" (N > 1)(3N’ > 1) (a) ix(Na) <

N’ix(a). While property (c) can be named by saying that ix is "sublinear," we do not know
a standard mathematical name for (c’), and we prefer to call either (c) or (c’) the tracking
property for the following reason.

EXAMPLE 2.1. Tracking. Figure 2 diagrams a multichipBM routine that changes the input
x xoxl""Xn-1 to x0@xl@""" Xn-2@Xn-1 @ $, where @ acts as a "surrogate blank;’ and
only @ or B appears to the right ofthe $. This divides the tape into two tracks ofodd and even
cells. A BM can write a string y to the second track by pulling it as ByoByl Bym- Bym,
since the blanks B leave the contents of the first track undisturbed. Two strings can also be
shuffled this way. Since ix(2a) < 2ix(a), the tracking no more than doubles the memory-access
charges.

The principal memory cost functions we consider in this paper are the log-costfunction
ixlog (a) := [log2 (a + 1)], and for all d > 1, the d-dimensional layout function ixd (a) :=
a/d]. These have the tracking property.

138 KENNETH W. REGAN

DEFINITION 2.6. For any memory-costfunction IX, the Ix-time ofa valid pass that reads x
and operates the cell-a head in the interval [a b] is given by Ix(a) + Ixl + #(b), The work

ofthe pass is Ixl, and the memory-access charge is Ix(a) + Ix(b). A move state that changes a
to a’ performs 1 unit of work and has a memory-access charge of Ix(a) + Ix(a’). The sum of
the work over allpasses in a valid computation is denoted by w({), the total memory-access
charges by Ix-acc(), and the total Ix-time by Ix() := w({) + Ix-acc().

Intuitively, the charge for a pass is Ix(a) time units to access cell a, plus Ixl time units for
reading or writing the block, plus Ix(b) to communicate to the central processing unit (CPU)
that the pass has ended and to reset the heads. We did not write max{ Ix(a), Ix(b) because b
is not known until after the time to access a has already been spent; this makes no difference
up to a factor of two. Replacing Ixl by Ixl + IS(x)l or by max{ Ixl, IS(x)l }, or adding Ix(c) to
Ix(a) + Ix(b), also make no difference in defining w or Ix-acc, this time up to a constant factor
that may depend on M.

DEFINITION 2.7. For any input x on which a BM M has halting computation , we define
thefollowing complexity measures.
Work: w(M, x) := w().
Memory access: Ix-acc(M, x) := Ix-acc(?).
Ix-time: Ix-time(M, x) := w(M, x) + Ix-acc(M, x).
Space: s(M, x) := the maximum ofa for all access points a in .
Pass count: R(M, x) := the total number ofpasses in .

M is dropped when it is understood, and the above are extended in the usual manner to
functions w(n), Ix-acc(n), Ix-time(n), s(n), and R(n) by taking the maximum over all inputs
x of length n. A measure of space closer to the standard TM space measure could be defined
in the extended BM models of the next section by placing the input x on a separate read-
only input tape, but we do not pursue space complexity further in this paper. The pass count
appears to be sandwiched between two measures of reversals for multitape TMs, namely the
now-standard one of [59], [35], [16] and the stricter notion of [43], which essentially counts
keeping a TM head stationary as a reversal.

DEFINITION 2.8. For any memory-cost function Ix and recursive function N --+ N,
DIxTIME[t] stands for the class of languages accepted by BMs M that run in time t(n), i.e.,
such thatfor all x, Ix-time(M, x) < t(Ixl). TLIN standsfor DIxlTIME[O(n)].

We also write DIxTIME[t] and TLIN for the corresponding function classes. Section 7
shows that TLIN is contained in the TM linear-time class DLIN. We argue that languages and
functions in TLIN have true linear-time behavior even under the most constrained implemen-
tations.

We do not separate out the work performed from the total memory-access charges in
defining BM complexity classes, but do so in adapting the following notions and terms from
[5] to the BM model.

DEFINITION 2.9. (a) A BM M is memory efficient, under a given memory-costfunction
Ix, if there is a constant K such thatfor all x, Ix-time(M, x) <_ K. w(M, x).

(b) M is parsimonious under Ix if Ix-time(M, x)/w(M, x) --+ 1 as]xl ec.
Equivalently, M is memory efficient under Ix if Ix-acc(M, x) O(w) and parsimonious

under Ix if Ix-acc(M, x) o(w), where the asymptotics are as Ixl --+ ec. The intuition, also
expressed in [5], is that efficient or parsimonious programs make good use of a memory cache.

Definition 2.9 does not imply that the given BM M is optimal for the function f it
computes. Indeed, from Blum’s speed-up theorem 12] and the fact that Ix-time is a complexity
measure, there exist computable functions with no Ix-time-optimal programs at all. To apply
the concepts of memory efficiency and parsimony to languages and functions, we use the
following relative criterion.

LINEAR TIME AND MEMORY-EFFICIENT COMPUTATION 139

Start

),)
(,

$,X), $,, (, B,$
B, B,, ,, $,$

$,
Accept Reject B,L Exit and Restart

FIG. 3. Reduced-form BMfor the language ofbalanced parentheses.

DEFINITION 2.10. (a) A function f is inherently /z-efficient iffor every BM Mo that
computes f, there is a BM M1 that computes f and a constant K > 0 such that for all x,

x) < K.w(Mo, x).
(b) f is inherently/z-parsimonious iffor every BM Mo computing f there is a BM M1

computing f such that lim suPlxl_ x)/w(Mo, x) < 1.
By definition,/z-parsimony ==/z-efficiency, and if f is inherently efficient (resp., par-

simonious) under/z a, then f is inherently efficient (resp., parsimonious) under every memory-
cost function/z </zl.

Just for the next three examples, we drop the validity condition on rightward pulls; that is,
we allow the tape intervals [a... b] and [0... c] to overlap in an Ra move. This is intuitively
reasonable so long as the cell-0 head does not overtake the cell-a head and write over a cell
that the latter has not read yet. Theorem 4.1 will allow us to drop the validity condition with
impunity, but the proof of Theorem 2.1 below requires that it be in force.

EXAMPLE 2.2. Balanced parentheses. Let D1 standfor the language of balanced paren-
thesis strings over Z := (,) }. Let the GST S work as follows on any x * Ifx), S
goes to a terminal state marked ACCEPT; ifx begins with "/", S goes to REJECT. Else S erases
the leading "/" and thereafter takes bits in twos, translating

() (())) 0 z)(.
Ifx ends in "/" or Ix] is odd, S also signals REJECT. Then S has theproperty thatfor any x 5)

that it does not immediately reject, x D1 == S(x) D1. Furthermore, IS(x)l < Ixl/2.
We can think of D1 as being self-reducible in a particularly sharp sense.

Figure 3 shows the corresponding BM in the "reduced form" defined below. The "$"
endmarker is written on the first pass and prevents leftover "garbage" on the tape from
interfering with later passes. We take thisfor granted in some later descriptions ofBMs. For
any memory-costfunction/z, the running time ofM is bounded by

(2)
log

y /z(0) %- 2 %- /z(2i),
i=0

which is O(n) evenfor/z =/zl. Hence the language D1 belongs to TLIN.
EXAMPLE 2.3. Counting. Let :-- a, b }. We can build a GST S with alphabet

F a, b, O, 1, $, B that runs as follows on inputs of the form x’ xu$ with x 6 a, b }*
and u O, 1 }*: S erases bits xo, x2, x4 ofx and remembers Ix] modulo 2. S then copies
u, and on reading the final $ (or on the first pass, B), S outputs 05 if]x was even, $ if Ix

140 KENNETH W. REGAN

was odd. S is also coded so that ifx), S goes to HALT. Let M be the BM which iterates
S on input x. Then M(x) halts with Ix in binary notation on its tape ollowed by "$" and
"garbage"). The Ix-timefor this iteration is likewise 0 (n) evenfor Ix Ix 1.

EXAMPLE 2.4. Simulating a TM. Let T :-- (Q, E, F, 8, B, qo, F) be a single-tape TM in
the notation of [36]. Define the ID alphabet ofT to be I" :-- (Q x F) U F U {/x, $ }, where
/x, $ F. The simulating BM M on an input x xo" "Xn-1 makes a rightward pull that
lays down the delimited initial ID /x(qo, xo)xlx2... Xn-l$ ofT(x). The finite control ofT is
turned into a single GST S with alphabet F that produces successive IDs in the computation
with each pass. Whenever T writes a blank, M writes @. Let T be programmed to move its
head to cell 0 before halting. Then thefinal pass by M removes the/x and $ and leaves exactly
the output y := T(x) on the tape. Actually, because a BM cannot erase tape cells, y would
befollowed by some number ofsymbols @, but Definition 2.4 still makes y the output of M.
Hence the BM is a universal model ofcomputation.

The machines in Examples 2.2-2.4 only make rightward pulls from cell 0. Each is really a
GST that iterates on its own output, a form generally known as a "cascading finite automaton"
(CFA). Up to small technical differences, CFAs are comparable to the one-way "sweeping
automata" studied by Ibarra et al. [37]-[41], [15]. These papers characterize both one-way
and two-way arrays of identical finite-state machines in terms of these and other automata and
language classes. The following shows that the BM can be regarded as a generalization ofthese
arrays, insofar as a BM can dynamically change its origin point a and direction of operation.

DEFINITION 2.11. The reduced form oftheBMmodel consists ofa single GST S whose ter-
minalstatesq havelabelsll(q) a,/a/2J, 2a, 2a+l, HALT }andlz(q) Ra, La, OR, OL }.
The initial pass has mode Ra with a O. Whenever a pass by S exits in some state q with

11 (q) HALT, the labels ll (q) and/2(q) determine the address and mode for the next pass.
Computations and complexity measures are defined as before.

THEOREM 2.1. Every BM M is equivalent to a BM M’ in reducedform, up to constant

factors in allfive measures ofDefinition 2.7.
Proof. The idea is to combine all the GSTs ofM into a single GST S and save the current

state ofM in cells 0 and 1. Each pass ofM is simulated by at most six passes of M’, except for
a "staircase" of O (log n) moves at the end which is amortized into the constant factors. This
simulation expands the alphabet but does not make any new tracks. The details are somewhat
delicate, owing to the lack of internal memory when a pass by M’ ends, and require the validity
condition on passes. The full proof is in the appendix, rq

In both directions, the tape cells used by M and M’ are almost exactly the same, i.e., M
is simulated "in place." Hence we consider the BM and the reduced form to be essentially
identical. The idea of gathering all GSTs into one works with even less technical difficulty
for the extended models in the next section.

3. Extensions of the BM. We consider five natural ways of varying the BM model: (1)
Remove or circumvent the validity restriction on passes. (2) Provide "random addressing"
rather than "tree access" in move states. (3) Provide delimiters al, bl, a2, b2 for block moves
S[al bl] into [a2... b2], where the cell bl in which S exits is determined or calculated
in advance. (4) Require that for every such block move, b2 is such that S(x) exactly fills
[a2... b2]. (5) Provide multiple main tapes and GSTs that can read from and write to k-many
tapes at once. These extensions can be combined. We define them in greater detail, and in the
next section, prove equivalences among them and the basic model.

DEFINITION 3.1. A BM with buffer mechanism has a new tape called the buffer tape and
GST chips S with thefollowing six labels andfunctions:
(RaB) The GST S reads x from the main tape beginning in cell a and writes S(x) to the

buffer tape. The output S(x) must have no blanks in it, and it completely replaces any

LINEAR TIME AND MEMORY-EFFICIENT COMPUTATION 141

previous content of the buffer. Taking b to be the cell in which S exits, the
lz-time is (a) + Ix] + (b) as before.

(LAB) This is defined asfor RaB, but reading leftwardfrom cell a.

(BAR) Here S draws its input x from the buffer, and S(x) is written on the main tape starting
in cell a. Blanks in S(x) are allowed and treated as before. When S exits, even if it
has not read all of the buffer tape, the buffer is flushed. With b the destination of the
last output bit (or b a if none), the I-time is likewise I(a) + Ixl + #(b).

(BaL) This is defined asfor BaR, but writing S(x) leftwardfrom cell a.

(OB) This is defined as for RaB, but using the cell-O head to read the input, and l-time

(BO) This is defined as for BaR, but using the cell-O head to write the output; likewise,
I-time]xl + I(C).

All six types ofpasses are automatically valid. Further details ofcomputations and complexity
measures are the same as before. A BM with limited buffer mechanism has no GSTs with
labels BO or OB and consequently has no cell-O head.

The original BM’s moves of type Ra or La can now be simulated directly by RaB or LaB
followed by B0, while OR or 0L is simulated by 0B followed by BaR or BaL. For the limited
buffer mechanism, the simulation is trickier, but for/z --/d we will show that it can be done
efficiently. The next extension allows "random access."

DEFINITION 3.2. The address mechanism adds an address tape and new load moves
labeled RaA, LaA, and OA. These behave and are timed like the buffer moves RaB, LaB, and
OB, respectively, but direct their output to the address tape instead. As with the buffer, the
output completely replaces the previous content of the address tape. Addresses are written
in binary notation with the least significant bit leftmost on the tape. The output a’ of a load
becomes the new current address. Move states may be discarded without loss ofgenerality.

EXAMPLE 3.1. Palindromes. Let Pal denote the language ofpalindromes over a given
alphabet . We sketch a BM M with address mechanism that accepts Pal. On input x, M
makes a fresh track on its tape via Example 2.1 and runs the procedure of Example 2.3 to
leave n :-- [xl in binary notation on this track. In running this procedure, we either exempt
rightwardpullsfrom the validity condition or give M the buffer mechanism as well. Thefresh-
track cell which divides the right half ofx from the left halfhas address n’ := 2[n/2J + 1. A
single OA move can read n but copy the first bit as 1 to load the address n’. M then pokes a
$ into cell n’. Another load prepends a "0" so as to address cell 2n, and M then executes a

leftward pull that interleaves the left half ofx with the right half A bit-by-bit comparefrom
cell 0finishes the job. M also runs in linear I 1-time.

The address mechanism provides for indirect addressing via a succession of loads and
makes it easy to implement pointers, linked lists, trees, and other data structures and common
features of memory management on a BM, subject to charges for the number and size of the
references.

Thus far, all models have allowed data-dependent block boundaries. We call any of the
above kinds of BM M self-delimiting if there is a subalphabet l-’e of endmarkers such that all
GSTs in M terminate precisely on reading an endmarker. (If we weaken this property slightly
to allow a GST S to exit on a nonendmarker on its second transition, then it is preserved in
the proof of Theorem 2.1.) The remaining extensions preset the read block [al bl] and the
write block [a2... b2], and this is when we speak of a block move rather than apass. Having bl
fixed would let us use the original GSM model from [36]. However, the machines that follow
are always able to drop an endmarker into cell bl and force a GST S to read all of [a b].
Hence we may ignore the distinction and retain "GST" for consistency.

DEFINITION 3.3. A block move is denoted by S [a...b] into [a2... b2] and has this

effect on the tape: Let x := o’[al ...b]. Then S(x)’is written to the tape beginning at a2

142 KENNETH W. REGAN

and proceeding in the direction of b2, with the proviso that each blank in S(x) leaves the
target cell unchanged, as in Definition 2.3. The block move is valid so long as the intervals
[al...bl] and [a2...b2] are disjoint. It underflows if lS(x)l < Ib2 -a21 + and overflows
iflS(x)l > Ib2- a2l-k- 1.

By default we tolerate underflows and overflows in block moves. We draw an analogy
between the next form of the BM and a text editor in which the user may mark a source and
destination block and perform an operation on them. One important point is that the BM does
not allow insertions and deletions of the familiar "cut-and-paste" kind; instead, the output
flows over the destination block and overwrites or lets stand according to the use of B in
Definition 2.3. Willard [69] describes a model of a file system that lacks insertion and deletion
and gives fairly efficient algorithms for simulating them. Many text processors allow the user
to define and move markers for points of immediate access in a file. Usually the maximum
number of markers allowed is fixed to some number m. Adopting a term from data structures,
we give the machine fourfingers, with labels al, bl, a2, b2, which can be assigned among the
m markers and which delimit the source and destination blocks in any block move. Finger a
may be thought of as the "cursor." The dual use of "al" as the fixed label of a finger and as the
number of the cell its assigned marker currently occupies may cause some confusion, but we
try to keep the meanings clear below. The same applies to a2, bl, and b2, and to later usage of
these labels to name four special "address tapes."

DEFINITION 3.4. A finger BM has four fingers, labeled al, bl, a2, b2, and some number
m > 4 ofmarkers. Initially, one marker is on the last bit of the input, while all other markers
and allfourfingers are on the first bit in cell O. An invocation ofa GST S executes the block
move S [al b] into [a2... b2]. The work performed by the block move is Ib all -+- 1,
while the memory-access charge is Ix(c), where c max{ a, bl, a2, b2 }. In a move state,
each marker on some cell a may be moved to cell ka /21, 2a, or 2a + 1 (or kept where it is),
and the fourfingers may be redistributed arbitrarily among the markers. The cost ofa move
state is the maximum of Ix(a) over all addresses a involved in finger or marker movements;
those remaining stationary are not charged.

One classical difference between "fingers" and "pointers" is that there is no fixed limit on
the number of pointers a program can create. Rather than define a form of the BM analogous
to the pointer machines of Sch6nhage and others [45], [66], [67], [49], 10], we move straight
to a model that uses "random-access addressing," a mechanism usually considered stronger
than pointers (for in-depth comparisons, see [9], [10] and also [68]). The following BM form
is based on a random-access TM (RAM-TM; cf. "RTM" in [30] and "indexing TM" in [14],
[64], [8]), and is closest to the BT.

DEFINITION 3.5. A RAM-BM has one main tape, four address tapes, which are labeled
al bl a2, and b2 and given their own heads, and afinite control comprised ofRAM-TM states
and GST states. In a RAM-TM state, the current main-tape address a is given by the content

oftape a. The machine may read and change both the character in cell a and those scanned
on the address tapes and move each address tape head one cell left or right. In a GST state S,
the address tapes give the block boundariesfor the block move S [aa bl] into [a2... b2] as
described above, and control passes to some RAM-TM state. A RAM-TM step performs work
1 and incurs a memory-access charge of max{ Ix(a), Ix(b) }, where b is the rightmost extent

ofan address tape head. Block moves are timed as above. Both a RAM-TM step and a block
move add to the pass count R(n). Other details of computations are the same as for the
basic BM model.

A fixed-wordsize analogue of the original BT model of [2] can now be had by making
copy the only GST allowed in block moves. A RAM-BM with address loading can use block
moves rather than RAM-TM steps to write addresses.

LINEAR TIME AND MEMORY-EFFICIENT COMPUTATION 143

DEFINITION 3.6. AfingerBM or aRAM-BM obeys the strict boundary condition ifin every
block move S [al bl] into [a2...b2], [S(x)[[b2 a2[+ 1.

This constraint is notable when S is such that IS(x)[varies widely for different x of the
same length. The next is a catch-all for further extensions.

DEFINITION 3.7. For k >_ 2, a k-input GST has k-many input tapes and one output tape,
with Q \ F) x Fk Q and p (Q \ F) x Fk --+ 1-’*. Each input head advances one cell
at each step.

DEFINITION 3.8. A multitape BM has some number k > 2 of main tapes, each possibly
equipped with its own address and buffer tapes, and uses k-input GSTs in passes or block
moves.

Further details of computations and complexity measures for multitape BMs can be in-
ferred from foregoing definitions, and various validity and boundary conditions can be formu-
lated. The proofs in the next section will make the workings of these machines clear.

Finally, given two machines M and M’ of any kind and a cost function #, we say M’
simulates M linearly in lz if #-time(M’, x) O(Iz-time(M, x)) + O([x[). The extra "O(n)"
is stated because like the RAM-TM, several BM variants give a sensible notion of computing
in sublinear time, while all the simulations to come involve an O (n)-time preprocessing phase
to set up tracks on the main tape. Now we can state the following theorem.

THEOREM 3.1 (main robustness theorem). For any rational d >_ 1, allforms of the BM
defined above simulate each other linearly in tZd-time.

Ifwe adapted a standard convention for TMs to state that every BM on a given input x takes.
time at least Ix[+ (cf. [36]), then we could say that all the simulations have constant-factor
overheads in #d-time.

4. Proof of the main robustness theorem. The main problems solved in the proof are:
(1) how to avoid overlaps in reading and writing by "tape-folding" (Theorem 4.1), (2) how
to simulate random access with one read head whose movements are limited (Lemma 4.6),
and (3) how to precompute block boundaries without losing efficiency (Lemma 4.11 through
Theorem 4.15). Analogues of these problems are known in other areas of computation, but
solving them with only a constant-factor overhead in/z-time requires some care. Some of the
simulations give constant-factor overheads in both w and lz-acc, but others trade off the work
against the memory-access charges. We also state bounds on w’ and lz-acc’ for the simulating
machine M’ individually, and on the number R’ of passes M’ requires, in or after proofs. The
space s’ (n) is always O (s (n)).

4.1. Simulations for data-dependent block boundaries. The first simulation uses the
tracking property tz(Na) <_ Ntz(a) from Definition 2.5 and does not give constant-factor
overheads in all measures. We give full details in this proof, in order to take reasonable
shortcuts later.

THEOREM 4.1. For every BM M with buffer, there is a BM M’ such thatfor every #, M’
simulates M linearly in tz-time.

Proof. Let M have the buffer mechanism. Let C be the largest number of symbols output
in any transition of any GST in M. Let K := 1og2(2C + 6) and N := 2/(. The BM M’ first
makes N-many tracks by iterating the procedure of Example 2.1. The track comprising cells
0, N, 2N, 3N represents the main tape of M, while the two tracks flanking it are "marker
tracks." The track through cells 2, N + 2 represents the buffer tape. The other tracks are
an "extension track," a "holding track," C-many "pull bays," and C-many "put bays." M’ uses
the symbol @ to reserve free space in tracks and uses/x and $ to mark places in the tape. A
$ also delimits the buffer track so that leftover "garbage" does not interfere. Two invariants

144 KENNETH W. REGAN

are that before every simulated pass by M with current address a, the current address a’ of
M’ equals Na, and the tracks apart from the main and buffer tracks contain only blanks and

@ symbols.
The move a 2a by M is simulated directly by a’ := 2a’ in M’. The move a 2a+ 1

is simulated by effecting a’ [a’/2J K-many times, then a’ 2a’ + 1, and then a’ := 2a’
K-many times. The move a := la/2] is simulated by effecting a’ "= la’/21 (K + 1)-many
times, and then a’ := 2a K-many times. Since K is a constant, the overhead in tx-acc for
each move is constant. Henceforth we refer to "cell a on the main track" in place of a’.

We need only describe how M’ simulates each of the six kinds of pass by M. Since M
has the 0B and B0 instructions, we may assume that the current address a for the other four
kinds is always > 1. For each state q of a GST S of M, M’ has a GST S’q which simulates S
starting in state q, and which exits only on the endmarker $. We write just S’ when q s or
q is understood.

(a) RaB. M’ chooses al 2a, pokes/x to the left of cell a, and pokes $ to the left of
cell al. M’ then pulls Yl S’[a... al- 1] to the C-many pull bays. By the choice of C,
lyll _< Ca, and so the pull is valid.

If the cell b in which S exits falls in the interval [a... al- 1], then S’ likewise exits in
cell b. Since the exit character has no $, the transition out of S’ communicates that S has
exited. M’ then makes (K + 1)-many moves a 2a so that M’ now addresses cell Nal on
the main track, which is cell N2al overall. M’ puts y "= Yl onto the extension track and then
pulls y onto the buffer track. One more put then overwrites the used portion of the extension
track with @ symbols. M’ then effects a := La/21 (K + 1)-many times so that it addresses
the original cell a again, and re-simulates S in order to overwrite the copy of y on the pull
bays by @ symbols. All of these passes are valid. M’ finally removes the/x and $ markers at
cells a and al. The original time charge to M was/z(a) + m + (b), where m b a + 1.
The time charged to M’ in this case is bounded by
lz(Na) + 2 + lz(Na 1) +/z(Nal) + 2 + tz(Na 1)

+ tx(Na) + Nm + lz(Nb)
+ 2Klz(N2a)
+ 3/z(N2al) + 3N2m + 3/z(N2a + N2(m 1))

+ 2Ktx(N2a) + tx(Na) + Nm + Iz(Nb) + 2/z(Na) + 4 + 2/z(Na)

(poke/x and $)
(simulate S)

(move to cell Nal)
(put and pull y)

(clean up)

< (14N -k- 8NZK + 12NZ)/z(a) nt- (3N2 + 2N)m + 2N/z(b) + 4. (m-1 _< a).
So far, both the work w’ and the memory-access charges lz-acc’ to M’ are within a constant
factor of the corresponding charges to M.

If S does not exit in [a... al- 1], S’ exits on the $ marker. This tells M’ to do a dummy
pull to save the state q that S was in when S’ hit the $, and then to execute a put that copies
Yl from the pull bays to the put bays rightward from cell a. M’ then effects a "= 2a so now
a al, lets a2 2al, pokes another $ to the left of cell a2, pulls Y2 Stq[al ...a2- 1] to
the pull bays, and then puts Y2 into the put bays rightward of cell al. Since the $ endmarker
is in cell Nal 1, this move is valid; nor does Y2 overlap Yl. If S didn’t halt in [al a2-1],
M saves the state q’ that S was in when S hit cell a2, setting things up for the next stage
with a3 2a2. The process is iterated until S finally exits in some cell b in some interval

[aj_ aj 1]. Then y YlY2"’" Yj equals S[a... b]. M moves to cell Naj, puts y onto
the extension track rightward of cell Naj, pulls y to the buffer track, and "cleans up" the
extension track as before. M then takes (K+ 1)-many steps backward to cell aj_ and cleans
up the pull and put bays with a pull and a put. Finally, M effects a "= /a/21 until it finds
the /x originally placed at cell a, meanwhile removing all of the $ markers, and then re-
moves the/x. This completes the simulated pull by S.

LINEAR TIME AND MEMORY-EFFICIENT COMPUTATION 145

Let j be such that aj < b < aj+l. Then the number m of symbols read by S is at least
aj a. An induction on j shows that the running totals of both w’ and/z-acc’ stay bounded
by Dm, where D is a constant that depends only on M, not on a or j. Hence the/z-time for
the simulation by M’ is within 2D times the/z-time charged to M for the pass. (However,
when j > 0,/z-acc’//z-acc may no longer be bounded by a constant.)

(b) 0B. M’ first runs S on cell 0 only and stores the output Y0 on the first cells of the C-
many put bays. M’ then follows the procedure for RaB with a 1. The analysis is essentially
the same.

(c) LaB. M’ first pokes a/x to the left of cell a and $ to the left of cell/a/2/. The/x allows
M’ to detect whether a is even or odd; i.e., whether it needs to simulate a := 2a or a := 2a+
to recover cell a. M’ then pulls Yl := S’[a... La/2J] to the pull bays. Note that cell la/2J
is included; M’ avoids a crash by remembering the first 2C-many symbols of yl in its finite
control. If S didn’t exit in [a.../a/2]], M’ remembers the state q that S would have gone to
after processing cell la/2/. M’ then copies cells [0... la/2/- 1] of the main track into cells
[la/2/+ 1 a] of the holding track, and does a leftward pull by S’q to finish the work by S,
stashing its output y2 on the put bays. If S’q does not exit before hitting the $, then S ran off
the left end of the tape and M crashed. Let y :-- YlY2. Since [y[< Ca, M’ can copy y to the
buffer via cell Na of the extension track by means similar to before, and "clean up" the pull
and put bays and holding and extension tracks before returning control to cell a. Here both w’
and/z-acc stay within a fixed constant factor of the corresponding charges to M for the pass.

(d) BaR. M’ marks cell a on the left with a $, and does a dummy simulation of S on cells
[0... a- 1 of the buffer track. If S exits in that interval, M puts S[0... a- directly onto
the main track, and this completes the simulated pass. If not, M’ puts Y0 :-- S[0... a- 1]
onto the holding track rightward of cell a, and remembers the state q in which S’ hits the $.
M’ then follows the procedure for simulating RaB beginning with S’q, except that it copies
@aYOYl Yj to the extension track via cell Naj. The final pull then goes to the main track but
translates @ by B so that the output written by M lines up with cell a of the main track. There
is no need to "clean up" the read portion of the buffer tape since all writes to it are delimited.
A calculation similar to that for RaB yields a constant bound on the and work for the
simulated pass, though possibly not on the charges.

(e) B0. Under the simulation, this is the same as 0B with the roles of the main track and
buffer track reversed and @ translated to B.

(f) BaL. M’ marks cell a on the left with $ and puts yl := S[0... a- 1] rightward from
cell a of the holding track. If S exits in that interval of the buffer tape, M’ then pulls Yl to
the left end of the holding track. Note that if [Yll > a-t- 1, then M was about to crash. M’
remembers the first symbol c’ of yl in its finite control to keep this last pull valid just in case

lYll a + 1. Then M’ puts c’ into cell a, pokes a $ to the left of cell /a/2J, and executes a
"delay-1 copy" of the holding track up to the $ into the main track leftward from cell a. If
a B or @ is found on the holding track before the $, meaning that]Yll < La/2/, the copy
stops there and the simulated BaL move is finished. If not, i.e., if [Yl[> /a/2/, then the delay
allows the character cI’ in cell/a/21-1 of the holding track to be suppressed when the $ is hit,
so that the copy is valid. Since [Yl[> la/2/, M’ can now afford to do the following: poke
a $ to the right of cell a, effect a :-- 2a, and do a leftward pull of cells [2a... a + 1] of the
holding track into cells [0... a- 1 of the main track, translating @ as well as B by B to leave
previous contents of the main track undisturbed. This stitches the rest of y beginning with c"
correctly into place. M also cleans up cells [0... 2a] of the holding track by methods seen
before, and removes the $ signs.

If S does not exit in [0... a- 1], M’ executes a single Ra move starting S’ from cell a,
once again holding back the first character of this output Y2 just in case Yl was empty and

146 KENNETH W. REGAN

ly2l a+ 1. If this pull is invalid, then likewise ly2l > a+ and M crashed anyway. M’ then
concatenates Y2 to the string y kept on the holding track to form y, and does the above with
y. As in LaB, the overhead in both w and Ix-acc is constant. This completes the proof. [3

The converse simulation of a BM by a BM with buffer is clear and has constant-factor
overheads in all measures, by remarks following Definition 3.1. It is interesting to ask whether
the above can be extended to a linear simulation of a concatenable buffer (cf. [46]), but this
appears to run into problems related to the nonlinear lower bounds for the touch problem in
[2]. The proof gives w’(n) O(w(n) + n) and R’(n) O(R(n) logs(n)). For Ix-acc’,

;--,log bthe charges in the rightward moves are bounded by a constant times z..,j=0 Ix(b/2J) For
IX Ixd this sum is bounded by 2dixd (b), and this gives a constant-factor overhead on Ixd-acc.
However, for # #log there is an extra factor of log b.

COROLLARY 4.2. A BM that violates the validity conditions on passes can be simulated
linearly by a BM that observes the restrictions.

We digress briefly to show that allowing simultaneous read and overwrite on the main
tape does not alter the power of the model, and that the convention on B gives no power other
than shuffle. A two-input Mealy machine (2MM) is essentially the same as a 2-input GST with
p:(Q\F) xF2-- 1-’*.

PROPOSITION 4.3. Let M be a BM with thefollowing extension to the buffer mechanism:
in a put step, M may invoke any 2MM S that takes one inputfrom the buffer and the other
from the main tape, writes to the main tape, and halts when the buffer is exhausted. Then M
can be simulated by a BM M’ with buffer at a constant-factor overhead in all measures, for
all Ix.

Proof. To simulate the put by a 2MM S, M’ copies the buffer to a separate track so as to
interleave characters with the segment of the main tape of M concerned. Then M’ invokes a
GST S’ that takes input symbols in twos and simulates S. Finally M’ copies the output of S’
from its own buffer over the main tape segment of M.

PROPOSITION 4.4. At a constant-factor overhead in all measures, for all Ix, a BM M can
be simulated by a BM M’ that lacks B but has the following implementation of shuffle: M’
has the above buffer extension, but restricted to thefixed 2MM which interleaves the symbols
of its two input strings.

Proof. Let F’ consist of I" together with all ordered pairs of characters from F; then the
fixed 2MM can be regarded as mapping I’* x 1-’* onto 1-" *. Now consider any GST S of M
that can output blanks. Let S’ write a dummy character @ in place of B, and let M’ shuffle
the output of S’ with the content of the target block of the main tape. Finally M’ executes a
pass which, for all 1, C2 G I" with 1 @, translates (1, @) to C and (1, C2) to c2. [-]

Besides the tracking property, our further simulations require something which, again for
want of a standard mathematical name, we call the following.

DEFINITION 4.1. A memory-access costfunction Ix has the tape-compression property if
(V > 0)(B8 > 0)(Va)Ix([Sa]) < e Ix(a).

LEMMA 4.5. For any d > 1, the memory-cost function Ixd has the tape compression
-,log b

property. In consequence, z_,i=0 Ixd(rb/2i]) O(Ixd(b)).
Proof. Take < ed. If of the form 1/2 satisfies (a) for := 1/2, then by elementary--log b

calculation, for all but finitely many b, z_,i=0 Ix([b/2i]) <- 2kIx(b). [3

Lemma 4.5 promises a constant-factor overhead on the memory-access charges for "stair-
cases" under Ixd, whereas an extra log factor can arise under Ixlog. The simulation of random
access by tree access in the next lemma is the lone obstacle to extending the results that follow
to Ixog. Since any function Ix(m) with the tape-compression property must be [m for some
e > 0, this pretty much narrows the field to the functions Ixd. To picture the tree we write UP,
DOWN LEFT, and DOWN RIGHT in place of the moves La/21, 2a, and 2a+ by M’.

LINEAR TIME AND MEMORY-EFFICIENT COMPUTATION 147

LEMMA 4.6. For every BM M with address mechanism, there is a basic BM M’ such that

for all d >_ 1, M’ simulates M linearly under lzd.
Proof. We need to show how M’ simulates a load step of M that loads an address

from cells [a0... b0] of the main tape. Let m := la0 b01 -+- 1. M’ makes one spare track
for operations on addresses. M’ first pulls aa in binary to the left end of this track. By
Theorem 4.1 we may suppose that this pull is valid. The cost is proportional to the charge of
/z(a0) + m + #(b0) to M for the load. By our convention on addresses, the least significant
bit of al is leftmost. In this pull, M’ replaces the most significant "1" bit of al by a "$"
endmarker. M’ then moves UP until its cell-a head reaches cell 1. With k [log2 a0], the
total memory-access charges so far are proportional to Y/=0/z(2i), which is bounded by a
fixed constant times (a0) by Lemma 4.5. Since the number of bits in al is bounded by Cm,
where C depends only on M, the work done by M’ is bounded by 2Cm + k. Since k </z(a0),
we can ignore k. Hence the lz-time charged so far to M’ is bounded by a fixed constant of that
charged to M for the load.

M’ now executes a rightward pull that copies all but the bit b before the $ endmarker,
b being the second most significant bit of a l. This pull is not valid owing to an overlap on
the fresh track, but by Corollary 4.2 we may suppose that it is valid. If b 0 M’ moves
DOWN LEFT, while if b 1, M’ moves DOWN RIGHT. M’ then executes a put that copies the
remainder of al (plus the $) rightward from the new location a. M’ iterates this process until
all bits of a are exhausted. At the end, a a l. Because of the tracking, M’ moves DOWN
LEFT once more so that it scans cell 2a, which is cell a of the main track. This completes the
simulated load. Recalling lal] _< Cm, and taking :-- [logz(al), the Iz-time for this second
part is bounded by a constant times

(3) Z/z(2i) + 2(m i) +/z(2 + 2(m i)).
i=0

By Lemma 4.5, the total memory-access charges in this sum are bounded by a fixed constant
times/z(al). The work to simulate the load is proportional to m l, that is, to (log al)2, which
causes an extra log factor over the work by M in the load. The key point, however, is that since
M loaded the address a, M will be charged/d(al) on the next pass, which is asymptotically
greater than (log al)2. Hence the d-time of M’ stays proportional to the #d-time of M.

COROLLARY 4.7. For every BM M with both the address and buffer mechanism, we can

find a basic BM M’, and a BM M" with the limited buffer mechanism, such thatfor any d > 1,
M’ and M" simulate M linearly under

Proof. The constructions of Lemma 4.6 and Theorem 4.1 yield M’. For M", we may first
suppose that M is modified so that whenever M loads an address a, it first stores a spare copy
of a at the left end of a special track. Now consider a pass of type B0 or 0B made by M. M"
invokes a GST that remembers cell 0 and writes to the address tape. Then with a’ 1, M"
simulates the pass by a Ba’R or Ra’B move. M" then recovers the original address a by loading
it from the track. Thus far M" is a BM with address and buffer that doesn’t use its cell 0 head.
The method of Lemma 4.6 then removes the address mechanism in a way unaffected by the
presence of the buffer.

We remark that Lemma 4.6 and Theorem 4.1 apply to different kinds of pass by M, with
two exceptions. First, pulling to the left end of the track in the proof of Lemma 4.6 may
require simulating a buffer. However, this can be accounted against the cost to M for the load.
Second, the buffer is needed for overlaps in the further processing of al. However, this is
needed for at most O(log log(al))-many passes, each of which involves O(log al) work, and
these costs are dominated by the time to process al itself. Hence in Corollary 4.7, the bounds

148 KENNETH W. REGAN

from Lemma 4.6 and Theorem 4.1 are additive rather than compounded, and with IX Ixd
we obtain for M’ Ixd-acc’(n) O(ixd-acc(n)), Ixlog-aCc’(n) O(ixlog-acc(n) logs(n)),
w’(n) O(w(n) + n + R(n) logs(n)), and R’(n) O(R(n) logs(n)).

LEMMA 4.8. For every RAM-BM M, we can find a BM M’ with the address and buffer
mechanisms, such that for any memory-cost function IX that is (log n), M’ simulates M
linearly under Ix.

Proof. First, M’ makes separate tracks for the address tapes and worktapes of M, and
also for storing the locations of the heads on these tapes of M. Whenever M begins a block
move S [al... hi] into [a2... b2], M’ first computes the signs of bl al and b2 a2, and
remembers them in its finite control. M then loads the true address of cell a on the main tape,
and pulls the data through a copy of S labeled RaB or LaB--depending on sign--to the buffer.
Then M’ loads 0 to access a2, loads a2 itself, and finally copies the buffer right or left from
cell a2. Since Ix is f2 (log n), the Ix-time charged to M’ is bounded by a fixed constant times
the charge of + Ibl all / max{ Ix(al), Ix(a2), Ix(bl), Ix(b2) incurred by M. Similarly the

Ix-acc charge to M’ has the same order as that to M, though if Ibl all < log(b1), this may
not be true of the work.

If M executes a standard RAM-TM transition, the cost to M is / Ix(al) / Ix(c), where al
is the cell addressed on the main tape and c is the greatest extent of an address tape or worktape
head of M. M’ first loads al and writes the symbol written by M into location a with a unit
put. Then M’ loads each of the addresses for the other tapes of M in turn, updates each one
with a unit pull and a unit put, remembers the head movement on that tape, and increments
or decrements the corresponding address accordingly. The time charge for updating the other
tapes stays within a fixed constant factor of Ix(c).

Remark. It would be nice to have the last simulation work when the charge to M for a
RAM-TM transition is just / Ix(al). The difficulty is that even though [a[< a, it need not
hold that c < al, since M might be using a lot of space on its worktapes. The issue appears to
come down to whether a multitape TM running in time can be simulated by a BM in Ix-time
O(t). We discuss related open problems in 8.

LEMMA 4.9. AfingerBM can be simulated by a BM with address and buffer mechanisms,
with the same bounds as in Lemma 4.8.

Proof. M’ stores and updates the finitely many markers on separate tracks in a similar
manner to the last proof. The extra work per block move simulated to write or load these
addresses is O (log s (n)) as before. Both here and in Lemma 4.8, R’ (n) O (R (n)).

THEOREM 4.10. Let M be a RAM-BM, a finger BM, or a BM with the address and

buffer mechanisms. Then we canfind a BM M’ that simulates M linearly under any
Proof. This follows by concatenating the constructions of the last two lemmas with that

of Corollary 4.7. Since R’(n) O(R(n)) in the former, the bounds on work and pass count
remain w’(n) O(w(n) / n / R(n) logs(n)) and R’(n) O(R(n) logs(n)).

This completes the simulation of most of the richer forms of the model by the basic BM,
with a constant factor overhead in Ixd-time. By similar means, one can reduce the number of
markers in a finger BM all the way to four. In going up to the richer forms, we encounter the
problem that the finger BM and RAM-BM have preset block boundaries for input, and if the
strict boundary condition is enforced, also for output.

4.2. Simulations for preset block boundaries. The simulation in Theorem 4.1 does not
make M’ self-delimiting because it does not predetermine the cell b 6 [a0... a in which its
own simulating GST S’ will exit. We could try forcing S’ to read all of [a0... all, but part
(a) of the proof of Theorem 4.1 had a := 2a0, and if, e.g., Ix(a0) and b a is small,
M’ would do much more work than it should. However, if one chooses the initial increment
e to be too small in trying a :-- a0 / e, a2 :-- a0 / 2e, a3 :-- a0 / 4e the sum of the

LINEAR TIME AND MEMORY-EFFICIENT COMPUTATION 149

Ix-access charges may outstrip the work. To balance the charges we take e "= Ix(a0). This
requires M’ to calculate Ix(a) dynamically during its computation and involves a concept of
"time-constructible function" similar to that defined for Turing machines in [36].

DEFINITION 4.2. Let tx be a memory-costfunction, and let N -- N be any function.
Then is Ix-time constructible if (n) is computable in binary notation by a BM M in Ix-time
O(t(n)).

Note that the time is in terms of n, not the length of n. We use this definition for Ix
itself, in saying that Ix is Ix-time constructible. The following takes d to be rational because
there are real numbers d >_ such that no computable function whatever gives [ml/d to
within a factor of 2 for all m. In this section it would suffice to estimate [ml/d by some
binary number of bit length]ml/d, but we need the proof idea of incrementing fingers and the
exact calculation of Ixd(m) for later reference.

LEMMA 4.11. For any rational d > 1, the memory cost function Ixd is Ixa-time con-
structible by afinger BM that observes the strict boundary condition.

Proof. For any rational d >_ 1, the function [m TM] is computable in polynomial time,
hence in time (logm)(l) by a single-tape TM T. The finger BM M simulates the tape of
T beginning in cell 2, and tracks the head of T with its "main marker" m 1. M also uses a
character @ which is combined into others like so: if T scans some character c in cell a, M
scans (c, @). M then uses two unit block moves S[a... a] into [0... 0] and S[0... 0] into
[a... a] to read and write what T does. It remains to simulate the head moves by T.

To picture a tree, we again say UP, DOWN LEFT, and DOWN RIGHT in place of moves
from a to [a/2], 2a, or 2a+ 1. M can test whether a is a left or right child by moving Up and
DOWN LEFT and seeing whether the character scanned contains the @. If T moves right and a
is a left child, M then intersperses moves Up and DOWN RIGHT with unit block moves to and
from cell 0 to change (c, @) back to c and place @ into cell a+ 1. If instead a is a right child,
M introduces a new marker m5 into cell and writes/x there. M moves m5 DOWN LEFT to
count how far U1 m has to go until it reaches either a left child or the root (i.e., cell 1). By
unit block moves, M carries @ along with m l, and by assigning a finger to marker ms, can
test whether m5 is on cell 1. If m reaches a left child, M moves it Up, DOWN RIGHT, and then
DOWN LEFT until m comes back to the/x. Then m is in cell a+ 1. If m hits the root marked
by/x, then a had the form 2 1, and so M moves m DOWN LEFT k times. The procedure
for decrementing m when T moves left is similar, with RIGHT and LEFT reversed.

For each step by T, the work by M is proportional to log a. By Lemma 4.5 for Ixa, the
total memory-access charge for incrementing or decrementing a finger in cell a is O(ixa(a)).
Since a < (log m)1, the total Ixa-time for the simulation is still a polynomial in log m, and
hence is o(ixct(m)). q

This procedure can also be carried out on one of 2/(-many tracks in a larger machine,
computing a -+- 2/(instead of a -4- 1 to follow head moves by T. The counting idea of the next
lemma resembles the linear-size circuits constructed for 0-1 sorting in [55].

LEMMA 4.12. The function #a(x), which gives the number of occurrences of "a" in a

string x a, b }*, is computable in linear Ix 1-time by a BM that observes the strict boundary
condition.

Proof. The BM M operates two GSTs $1 and $2 that read bits of x in pairs. Each records
the parity p of the number of pairs "ab" or "ba" it has seen thus far, and if Ix is odd, each
behaves as though the input were xb. $1 outputs the final value of p to a second track. $2
makes the following translations

b if p--0,
aa - a, bb b, ab,ba - a if p

to form a string x’ such that Ix’l [Ixl/2]. Then #a(x) 2#a(x’) + p. This is iterated until

150 KENNETH W. REGAN

no a’s are left in x, at which point the bits p combine to form #a(x) in binary notation with
the least significant bit first.

M begins with one marker rnl in cell n- 1. We first note that even setting up the two
tracks requires a trick to get two more markers to cell n- 1. M starts a marker m5 in cell
and moves it DOWN LEFT or DOWN RIGHT according to whether m is on a left or right child.
When rn reaches cell 1, m5 records n- in reverse binary notation. Then M starts moving rn
back up while ferrying me and rn3 along with rn 1. Then M places rn2 and rn3 into cells 2n and
4n-l, and with reference to Example 2.1, executes (c - c@)[0...n-l] into [2n... 4n-l]
and copy[2n... 4n- 1] into [0... 2n- 1]. This also uses one increment and decrement of a
marker as in the proof of Lemma 4.11.

M uses a new marker m6 to locate where the next bit p will go, incrementing m6 after
running S1. In running $2, always IS2(x’)l FIx’l/2q, and by appropriate parity tests using
its markers m l, m2, and rn3, M can place its fingers so that all these moves are valid and meet
the strict boundary condition. For the kth iteration by $2, these three markers are all on cells
with addresses lower than n/2g-z, and even if each needs to be incremented by with the help
of ms, the/Zl charges for simulating the iteration still total less than a fixed constant times
n/2-2. This also subsumes the O(log2 n) charge for updating m6. Hence the sum over all
iterations is still O (n). [3

THEOREM 4.13. For every BM M and rational d > 1, we can find a finger BM M’ that
simulates M linearly under lZd and observes the strict boundary condition.

Proof. As in the proofof Theorem 4.1, let C be the maximum number of characters output
in any GST transition of M, and let K log2 (2C + 6). M’ first makes N 2K tracks, by
using the last proof’s modification of the procedure of Example 2.1. Besides 2C-many tracks
for handling the output of passes and one track for the main tape of M, M’ uses one track to
record the current address a of M with the least significant bit rightmost, one to compute and
store e txd(a) via Lemma 4.11, one to store addresses aj below, two for Lemma 4.12, and
one for other arithmetic on addresses. M’ uses eight markers. Marker m occupies cell Na
to record the current address a of M. A move to [a/2J by M is handled by moving m UP
K + times and DOWN LEFT K times, and other moves are handled similarly. Meanwhile,
marker m6 stays on the last bit of the stored address a, and updating a requires only one
marker increment or decrement and O (log log a) work overall. From here on we suppress the
distinction between a and Na and other details that are the same as in Theorem 4.1.

First consider a rightward pull by M that starts a GST S from cell a0 on its main tape. M’
has already stored a0 in binary, and computes e "= txd(aO). Since #d(aO) < ao, e fits to the
left of marker m6 in cell lal. M’ then places m3 into cell lal/ and m4 into cell 2lal/ and
executes two block moves from []al 0] and [0... la]] into [lal/ 1... 2lal/ 1] that shuffle
a0 and e on their respective tracks with the least significant bits aligned and leftmost. M’ then
executes add [lal/ 1... 21al/ 1] into [lal... 0] to produce al. A final carry that would make
[all > [a0l and cause a crash can be caught and remembered in the finite control of M’ by
running a "dummy addition" first and then marking cell 21al / to suppress its output by the
GST add. Then M’ "walks" marker m2 out to cell al by using m3 to read the value of al and
m5 to increment m3.

Next M’ walks m4 out to cell e (i.e., Ne), and keeps m3 in cell 0. Let S’ be a copy of S
which pads the output of each transition out to length exactly C, and which sends its output z
to the C-many tracks used as "pull bays." S’ is also coded so that if S exits, S’ records that fact
and writes @c in each transition thereafter. Then M’ can execute S’[al a2] into [0... e] in
compliance with the strict boundary condition. Now M’ can calculate the number of non-@
symbols in z by the method of Lemma 4.12. To write the true output yl S[ao... al] and
ensure the block move is valid, M’ must still use the pull bays to hold Yl, so M’ calculates

LINEAR TIME AND MEMORY-EFFICIENT COMPUTATION 151

i’ := [i/C] (actually, i’ N[i/Cq). Next M walks m4 out to cell i’ and can finally simulate
the first segment of the pass by S by executing S[a a2] into [0... i’].

If S exited in [ao... al], M’ need only transfer the output y of the last pass onto the
left end of the main track. This can be done in two block moves after locating markers into
cells i’, Ci’, and 2Ci’. Else, M’ transfers y instead to the put bays and assigns a new marker
m7 to the "stitch point" in the put bays for the next segment of y. The final marker m8 goes
to cell al and is used for the left end of the read block in all succeeding segments. In three
block moves, M’ can both double e to 2e and compute a2 "= ao + 2e using add as before.
If and when the current value of e has length greater than laol, M’ reassigns marker m6 to
the end of e rather than ao, incrementing it each time e is doubled. Then M walks m2 out
to cell a2 and, remembering the state q of S where the previous segment left off, produces
y2 Sq[a + 1 ...a2] by the same counting method as before. To stitch Y2 into place on the
put bays, M converts the current location of m7 into a numeric value k, adds it to ly21,
and finds cells + k and 2i + k for two block copies. In case S did not exit in [al a2], m7
is moved to cell + k, m8 to a2, m2 to a3 ao + 4e, and the process is repeated.

Let b be the actual cell in which S exits, and let j > 0 be such that aj < b < aj+l. Then
the lzd-time charged to M for the pull is at least

(4) tj Id(ao) + Id(aO + 2J-le) + 2J-le >_ 2e + 2J-le.

(For j 0, read "2j-l’’ as 0.) By Lemma 4.5, the memory access charge for walking a marker
out to cell aj is bounded by a constant (depending only on d) times txd(aj). The charges for
the marker arithmetic come to a polynomial in log aj, and the charges for stitching segments
yj into place stay bounded by the work performed by M’. Hence the lzd-time charged to M’
is bounded by a constant times

j-1

(5) blj #d(aO) --t- y lzd(aO + 2 e) + e + 2 e.
=o =o

J (2i+1 2j 2J+2eThenuj < e + Y’i=o #d ao) + e < + 2Je < lOtj
For a leftward pull step by M, M’ uses the same choice of e :=/xd(a0). If e > ao/2, then

M’ just splits [0... a0] into halves as in the (LAB) part of the proof of Theorem 4.1. Else, M’
proceeds as before with aj+l ao 2Je and checks at each stage whether aj+l >_ ao/2 so
that the next simulated pull will be valid. If not, then the amount of work done by M thus far,
namely 2j-1 e, is at least ao/4. Thus M’ can copy all of [aj... 0] to another part of the tape
and finish it off while remaining within a constant factor of the charge to M. The remaining
bounds are much the same as those for a rightward pull above.

For a rightward or leftward put, marker m is kept at the current address a, cell 0 is
remembered in the finite control, and the procedure for a rightward pull is begun with a0
and ms assigned there. Here e 1, and the rest is a combination of the (BAR) or (BaL) parts
of the proof of Theorem 4.1 to ensure validity, and the above ways to meet the strict boundary
condition in all block moves. [3

Remarks. This simulation can be made uniform by providing d as a separate input. It can
also be done using 8 tracks rather than 2C + 6, though even taking e #d(ao)/C does not
guarantee that the third stage of a rightward pull, which reads [a0 + 2e, a0 + 4e], will be valid.
The fix is first to write the strings yj further rightward on the tape, then assemble them at the
left end. Theorem 4.13 preserves w(n) + Ixd-acc(n) up to constant factors, but does not do
so for either w(n) or lzd-acc(n) separately. When d < 1, the case b a gives a worst-case
extra work of a 1/d, while the case of b 2a gives a total memory-access charge of roughly
2(loga)(d 1)/d times/xd(a). This translates into w’(n) O(w(n) + n + R(n)s(n) TM)

152 KENNETH W. REGAN

and Iza-acc’(n) O(lza-acc(n)logs(n)). However, when d 1, both w and lzl-acc are
preserved up to a factor of 10N. Allowing that/z(a0) can be estimated to within a constant
factor in O(loga0) block moves, the pass count still carries R’(n) O(R(n)log2 s(n))
because each movement in walking a marker to aj adds to R’. The following shows some
technical improvements of having addressing instead of tree access.

THEOREM 4.14. Let lz /Zlog or lZ lza with d rational. Then every BM M can be
simulated linearly under lz by a RAM-BM M’ with address loading that observes the strict
boundary condition.

Proof. For/za the simulation of the finger BM M from the last proof by a RAM-BM is
clearmthe RAM-BM can even use RAM-TM steps for the address arithmetic. For/Zlog, the
point is that M’ can take e :=]a0], and we may presume e is already stored. The calculated
quantities aj can be loaded in one block move. (Using RAM-TM steps to write them would
incur/Zog access charges proportional to log a0 log log a0.) The tradeoff argument of the proof
of Theorem 4.13 works even for/Zlog, and the above takes care of a constant-factor bound on
the other steps in the simulation. This also gives R’(n) O(R(n) logs(n)). [3

The tradeoff method of Theorem 4.13 seems also to be needed for the following "tape-
reduction theorem."

THEOREM 4.15. For every rational d > 1, a multitape BM M can be simulated linearly
in lZd-time by a one-tape BM M’.

Proof. Suppose that M uses k tapes, each with its own buffer, and GSTs S that produce
k output strings as well as read k inputs. We first modify M to a machine M that has k main
tracks, k address tracks, one "input track," and one "buffer track." For any pass by M with
S, M’ will interleave the k inputs on the input track, do one separate pull for each of the k
outputs of S, and interleave the outputs on its buffer track. When M subsequently invokes a
k-input GST T to empty its buffers, M’ uses a one-tape GST that simulates T on the buffer
track, invoking it k times to write each of the k outputs of T to their destinations on the main
tracks.

It remains only to show how M’ marks the portions of the inputs to interleave. As in the
proof of Theorem 4.13, there is the difficulty of not knowing in advance how long S will run
on its k inputs. The solution is the same. M’ first calculates the maximum aj of the addresses
al a on its address tracks and then calculates e #d(aj). For each i, < < k, M
drops an endmarker into cell ai --t-- e according to the direction on main track i. Then M’ copies
only the marked-off portions of the tracks, putting those on its input track, and simulates the
one-tape version S of S. If $1 exits within that portion, then M continues as M’ does. If $1
does not exit within that portion, M’ tries again with ai q- 2e, ai -+- 4e until it does. The
same calculation as in Theorem 4.13, plus the observation that if the direction on track j is
leftward then no track uses an address greater than 2aj, completes the proof.

Finally, we may restate Theorem 3.1 in a somewhat stronger form.
THEOREM 4.16. For any rational d > 1, all of the models defined in 3 are equivalent,

linearly in lza-time, to a BM in reduced form that is self-delimiting with "$" as its only
endmarker.

Proof. This is accomplished by Theorems 2.1 through 4.15. The procedures of Lemmas
4.13 and 4.6 and Theorem 4.1 are self-delimiting and need only one endmarker $. The trick
of writing $ on special tracks into the cell immediately left or right of the addressed cell a
allows $ to survive the proof of Theorem 2.1 without being "tupled" into the characters co, c,
or Ca. [3

With all this said and verified, we feel justified in claiming that there is one salient
Block Machine model, and that the formulations given here are natural. The basic BM is the
tightest for investigating the structure of computations, and helps the lower bound technique

LINEAR TIME AND MEMORY-EFFICIENT COMPUTATION 153

we suggest in Section 8. The richer forms make it easier to show that certain functions do
belong to D/zaTIME[t (n)].

5. Linear speed-up and efficiency. The following "linear speed-up" theorem shrinks
the constants in all the above simulations, at the usual penalty in alphabet size. First, we give
a precise definition.

DEFINITION 5.1. The linear speed-up property for a model of computation and measure

oftime complexity states thatfor every machine M with running time (n), and every > O,
there is a machine M’ that simulates M and runs in time t(n) + O(n).

In the corresponding definition for TMs in [36], the additive O(n) term is n + 1 and is
used to read the input. For the DTM, time O (n) properly contains time n + 1, while for the
NTM these are equal [13]. For the BM under cost function/z, the O(n) term is n +/z(n).

THEOREM 5.1. With respect to any unbounded memory costfunction lz that has the tape
compression property, all ofthe BM variants described in 2 and 3 have the linear speed-up
property.

Proof. Let the BM M and > 0 be given. The BM M’ uses two tracks to simulate
the main tape of M. Let 3 in the tape-compression property be such that for almost all n,
/z(3n) < (e/12C) /z(n). Here C is a constant that depends only on M. Let k := [1/23],
let "@" stand for the blank in F, and let F’ := F U B }. M’ uses B only to handle its own
two tracks. We describe M’ as though it has a buffer; the constant C absorbs the overhead for
simulating one if M’ lacks the buffer mechanism. On any input x of length n, M’ first spends
O(n) time units on a pull step that writes x into In/kq-many characters over the compressed
alphabet F’ on the main track. Thereafter, M’ simulates M with compressed tapes. In any
pass by M that writes output to the main tape, M’ writes the compressed output to the alternate
track. M’ then uses the pattern of@ symbols in each compressed output character to mask the
elements of each main track character that should not be overwritten, sending the combined
output to the buffer. One more pass writes the result back to the main tape. If the cost to M
for the pass was/z(a) + Ib al +/z(b), the cost to M’, allowing for the tracking, is no more
than

3 [lz(2[a/kq) + (2/d)lb- al-+- 2 + lz(2[b/k])]
_< (/2)/z(a) + (/2)lb- al-+-6 + (/2)#(b).

The "+2" and "+6" allow for an extra cell at either end of the compressed block. Since/z
is unbounded, we have/z(a) (/2) + 6 < #(a) for all but finitely many a. The main
technical difficulty of the standard proof for TMs is averted because/z absorbs any time that
M might spend moving back and forth across block boundaries. The compression by a factor
of holds everywhere except for cells m on the main tape, where m is least such that
/z(m) > 12/, but M’ can keep the content of these cells in its finite control. The remaining
details are left to the reader. For BMs with address tapes, we may suppose that the addresses
are written in a machine-dependent radix rather than in binary. [3

COROLLARY 5.2. For all of the simulations in Theorems 2.1-4.15, and all > O,
(a) if M runs in lz,t-time t(n) og(n), then M’ can be constructed to run in #d-time

t(n) for all butfinitely many n.

(b) ifM runs in lzd-time O(n), then M’ can be made to run in lZ-time (1 +)n.
Mostly because of Lemma 4.6 and Theorem 4.13, the above simulations do not guarantee

constant factor overheads in either w or lz-acc. They do, however, preserve/z-efficiency.
PROPOSITION 5.3. For all ofthe simulations ofa machine M by a machine M’ in Theorems

2.1-4.15, and memory cost functions lz they holdfor, if M is lz-efficient then M’ is also #-

efficient.

154 KENNETH W. REGAN

Proof. Let K1 be the constant from the simulation of M by M’, and let K2 come from
Definition 2.9(a) for M. Then for all but finitely many inputs x, we have

/z-time(M’,x) <_ Kl(/z-time(M,x) + Ixl) KI(K2(w(M,x) + Ixl) 2K1K2w(M’,x).

The last inequality follows because every simulationhas w(M’, x) > w(M, x) and w(M’, x) >

Ix l. Hence M’ is/z-efficient.
So long as we adopt the convention that every function takes work at least n+l to compute,

we can state the following corollary.
COROLLARY 5.4. For any memory-costfunction/zd, with d >_ 1 and rational, the notion

of a language or function being memory efficient under/zd does not depend on the choice
among the above variants of the BM model.

We do not have analogous results for parsimony. However, the above allows us to conclude
that for d 1, 2, 3 memory efficiency under/zd is a fundamental property of languages
or functions. Likewise we have a robust notion of the class D/zTIME[t(n)] of functions
computable in/z-time (n), for any time bound (n) _> n. The next section shows that for
any fixed d, the classes D/zTIME[t (n)] form a tight hierarchy as the time function varies.

6. Word problems and universal simulation. We use a simple representation of a list
(x Xm) of nonempty strings in * by the string x#... #Xm#, where # . More

precisely, we make the last symbol c of each element a pair (c, #) so as to separate elements
without adding space, and also use pair characters (c, @) or (c,$) to mark selected elements.
The size of the list is m, while the bit length of the list is n Y-i= Ixil. We let r stand
for max{]xil 1 < < m }. Following [16] we call the list normal if the strings xi all have
length r. We number lists beginning with X to emphasize that the xi are not characters.

LEMMA 6.1. (a) Thefunction mark(Y, y), which marks all occurrences of the string y in
the normal list belongs to TLIN.

(b) The function shuffle, which is defined for normal lists
(Y Ym) of the same length and element size r by shuffle(Y, iV (Xl, yl, x2, Y2
Xm, Ym), belongs to TLIN. Here r as well as m may vary.

Remark. Even if the lists Y and f are not normal, mark and shuffle can be computed
in linear/z-time so long as they are balanced in the sense that (k)(i)2- < Ixil <_ 2.
This is because a balanced list can be padded out to a normal list in linear/z -time (we do not

give the details here), and then the padding can be removed. To normalize an unbalanced list
may expand the bit length quadratically, and we do not know how to compute shuffle in linear

IXl-time for general lists.

Proof. (a) Let r be the element size of the normal list Y. If lYl :/- r, then there is nothing to
do. Else, the BM M uses the idea of "recursive doubling" (cf. the section on vector machines
in [6]) to produce y, where k loge rnq. This time is linear as a function of n rm. Then
M interleaves Y and y on a separate track, and a single pass that checks for matches between
signs marks all the occurrences of y in Y (if any).

(b) Suppose rn is even. M first uses two passes to divide Y into the "odd list" x@rx3
@r Xm_l@r and the "even list" @rx2@rx4@r @rxm" Single passes then convert these to

Xl@3rx3@3r’’’ Xm_l@3r and @2rx2@3rx4@3r... @3rxm" A pull step that writes the second
over the first but translates @ to B then produces 2’ Xl@rx2@rx3@r @rXm. Ifm is odd
then the "odd list" is x @rx3@r @rXm and the "even list" is @rx2@rx4@r @rXm- @r,
but the final result ’ is the same. By a similar process, M converts f to f’ @ryl@r Y2""
@rym@r. Writing ’ on top of 2’ and translating @ to B then yields shuffle(Y,). This
requires only a constant number of passes.

A monoid is a set H together with a binary operation defined on H, such that is
associative and H has an element that is both a right and a left identity for . We fix attention

LINEAR TIME AND MEMORY-EFFICIENT COMPUTATION 155

on the following representation of the monoid oftransformations .AA s of a finite-state machine
S. All s acts on the state set Q of S and is generated by the functions gc c E E }, defined
by g(q) 6(q, c) for all q E Q, by letting o be composition of maps on Q, and closing
out the gc under o. Here we ignore the output function p of S, intending to use it once the
trajectory of states S enters on an argument z is computed. We also remark that A//s need not
contain the identity mapping on Q, though it does no harm for us to adjoin it. By using known
decomposition theorems for finite transducers [47], [32], [48], we could restrict attention to
the cases where each g either is the identity on Q or identifies two states (a "reset machine")
or each g is a permutation of Q and AA s is a group (a "permutation machine"; cf. [17]).
These points do not matter here. We encode each state in Q as a binary string of some fixed
length k, and encode each element g of A//s by the list q#g(q)#.., over all q 6 Q. Without
loss of generality, we extend Q to Q’ "= 0 2- 1 and make g the identity on elements
q>n.

The wordproblem for monoids is as follows: given alist , gngn-I g2gl ofelements
of the monoid, not necessarily distinct, compute the representation of gn gn-1 ’’" (C) g2 gl.

Let us call the following the trajectory problem" given and some w 6 0, }, compute the
n-tuple (gl (w), gz(gl (w)) (w)). The basic idea of the following is that "parallel prefix
sum" is #-efficient on a BM.

LEMMA 6.2. There is a fixed BM M that, for any size parameter k, solves the word and
trajectory problemsfor monoids acting on O, } in #l-time O(n k2). In particular, these
problemsfor anyfixedfinite monoid belong to TLIN.

Proof. Let T be a TM which, for any k, composes two mappings ha, h2 0, 1 }
0, 1 } using the above representation. For ease of visualization, we make T a single-tape
TM which on any input of the form hz#h# uses only the 2k 2 cells occupied by the input
as workspace, and which outputs h2 o hi# shuffled with "@" symbols so that the output has
the same length as the input. We also program T so that on input h#, T leaves h unchanged.
The running time t(k) of T depends only on k and is O(k2*)2. As in Example 2.4, we can
create a GST S whose input alphabet is the ID alphabet of T, such that for any nonhalting ID
I of T, S(I) is the unique ID J such that 1 J.

The BM M operates as follows on input , gn#gn-l#"" #gz#gl#. It first saves , in
cells [(nk. 2* + 1)... (2nk. 2)] of a separate storage track. We may suppose that n is even;
if n is odd, gn is left untouched by the current phase of the recursion. M first sets up the initial
ID of T on successive pairs of maps, viz. Aqogn#g-# A qogn-z#g-3#" A qogz#g#. Then
M invokes S in repeated left-to-right pulls, until all simulated computations by T have halted.
Then M erases all the @’s, leaving (g gn-1)#(gn-2 gn-3)#" (g2 gl)# on the tape. The
number of sweeps is just (k), and hence the total/ a-time of this phase is <_ 2t (k). n O(n).

M copies this output to cells [((n/2)k. 2* + 1)... (nk. 2)] of the storage track, and then
repeats the process, until the last phase leaves h "= g gn-1 ’’" g2 g on the tape. Since
the length of the input halves after each phase, the total #-time is still O (n). This finishes
the word problem.

To solve the trajectory problem, M uses the stored intermediate results to recover the path
(w, gl(w), gz(gl (w)) h(w)) (110, 11)1, 1102 ll)n) ofthe given w 6 {0, }. Arguing
inductively from the base case (w, h(w)), we may suppose that M has just finished computing
the path (w, w2, w4 w,-2, w). M shuffles this with the string g#g3#gs#... #gn-1 and
then simulates in the above manner a TM T’ that given a g and a w computes g(w). All this
takes # -time 0 (n).]

The following presupposes that all BMs M are described in such a way that the alphabet
1-’t ofM can be represented by a uniform code over 0, }*. This code is extended to represent
monoids .A//as described above.

156 KENNETH W. REGAN

THEOREM 6.3. There is a BMM and a computablefunction code such thatfor any BM
M and rational d > 1, there is a constant K such that for all inputs x to M, M on input
(code(M), code(x), d) simulates M(x) within pcd-time K.pca-time(M, x).

Proof. M uses the alphabet F "= 0, 1, @,$, (0, #), (1, #), (@, #), A, B }. By The-
orem 2.1, we may suppose that M has a single GST S (Q, 1-’t, 1-’t, 3, p, so). Let
k := [log2 IIMIq, and let/be the least integer above log2 IQI that is a multiple of k. The code
function on strings codes each c 6 1-’t by a 0-1 string of length k, except that the last bit of
code(c) is combined with # and B is coded by @k-1 (@, #).

The monoid .Ad of transformations of S is encoded by a k-tuple of elements of the form
code(c)code(gc) over all c 6 Ft. Here code(gc) is as described before Lemma 6.2. Dummy
states are added to Q so that code(gc) has length exactly 21 2l; then code(All) has length
exactly 2k(k + 21.21). Let C be the maximum number of symbols written in any transition
of M. The code of S includes a string code(p) that gives the output for each transition in 3,
padded out with @ symbols to length exactly C (i.e., length Ck under code). The rest of the
code of M lists the mode-change information for each terminal state of S. Finally, the input
x to M is represented by the string code(x) of length Ix12.
M has four tracks: one for the main tape of M, one for the code of M, one for simulating

passes by M, and one for scratchwork. Mt uses d to compute e "= pc(a), and follows just
the part of the proof of Theorem 4.13 that locates the cells aj a 4- 2j- e, in order to drop
$ characters there. This allows M to pull off from its main track in cells [a... aj] the code
of the first m :-- 2j-1 e/4k characters of the string x that M reads in the pass being simulated.
(If this pass is a put rather than a pull, then e and x is in cells [1 2J-l].) Then M
changes code(z) to

z’ "= (code(zo))j (code(zl))j (code(zm-1))j,

where m "= Izl and j 2(1 + 2(1/k)2l). This can be done in linear pcl-time by iterating
the procedure for shuffle in Lemma 6.1(b). Now for each i, 0 < < m 1, the ith segment of
z’ has the same length as code(JM). Next, M uses "recursive doubling" to change code(./M)
to (code(./M))m. This also takes only O(m) time. Then the strings z’ and (code(2k4))m are
interlaced on the scratchwork track. A single pass that matches the labels code(c) to segments
of z’ then pulls out the word gz :--- gzo gz gzm-"

M evaluates this word by the procedure of Lemma 6.2, yielding the encoded trajectory
s’ :-- (so, Sl, Sm) of S on input z. By a process similar to that of the last paragraph, M
then aligns s’ with (code(p)) and interleaves them, so that a single pass pulls out the output
y of the trajectory. Then code(y) is written to the main tape, erasing the symbols A used for
padding and translating @ to B. The terminal state Sm of the trajectory is matched against the
list that gives the mode information for the next pass of M (Lemma 6.1 (a)), and M changes
its mode and/or current address accordingly.

If the original pass by M cost pc-time pc(a) + m + pc(b), then the simulation takes pc-time
pc(4a) + O(m) + pc(4b). The constant in the "O(m)" depends only on M. We have described

M as though there were no validity restrictions on passes, but Theorems 4.1 and 2.1 convert

Met to a basic BM while keeping the constant overhead on pc-time, rq

Remarks. This result implies that there is a fixed, finite collection of GSTs that form
an efficient "universal chipset." It might be interesting to explore this set in greater detail.
The constant on the "O(m)" is on the order of 22(1+)(/q- k). We inquire whether there are
other representations of finite automata or their monoids that yield notably more efficient
off-line simulations than the standard one used here. The universal simulation in Theorem
6.3 does not preserve w or pce-acc individually because it uses the method of Theorem 4.13
to compensate for its lack of "foreknowledge" about where a given block move by M will

LINEAR TIME AND MEMORY-EFFICIENT COMPUTATION 157

exit. The simulation does preserve memory efficiency, on account of Proposition 5.3. If,
however, we suppose that M is already self-delimiting in a way made transparent by code,
then we obtain constant overheads in both w and/z-acc, and the simulation itself becomes
independent of

THEOREM 6.4. There is a BM Mt and a computable function code such that for any
memory-costfunction/Z and any self-delimiting BM M, there is a constant K such thatfor
all inputs x to M, M on input x’ (code(M), code(x)) simulates M(x) with w(U, x’) <

Kw(M, x) and/z-acc(U, x’) < K/z-acc(M, x).
Proof. The function code is changed so that it encodes the endmarkers of M by strings

that begin with "$." Then M pulls off the portion x of its main track up to $. The rest of the
operation ofM is the same, and the bounds now require only the tracking property of/z. (If
the notion of "self-delimiting" is weakened as discussed before Definition 3.3, then we can
have Mt first test whether a GST S exits on the second symbol of x.) [3

To use these results for diagonalization, we need two preliminary lemmas. Recall that a
function is constructible if (n) is computable in binary notation in/z-time O(t (n)).
Since all of n must be read, must be (log n).

LEMMA 6.5. Ifa BMM is started on an input oflength n, then anypass by M either takes
/z 1-time 0 (n) or else no more than doubles the accumulated before the pass.

Proof. Any portion of the tape other than the input that is read in the pass must have been
previously written in some other pass or passes. (Technically, this uses our stipulation that B
is an endmarker for GSTs.) Thus the conclusion follows.

LEMMA 6.6. For any memory-costfunction/z that is constructible, a BM M can
maintain a running total of its own with only a constant-factor slowdown.

Proof. To count the number m Ib a + of transitions made by one of its GST chips
S in a given pass, a BM M can invoke a "dummy copy" of S that copies the content x of the
cells up to where S exits to a fresh track, and then count Ix on that track by the O (m)-time
procedure of Example 2.3. Then M invokes S itself and continues operation as normal. Since

/z is f2 (log n), the current address a can be copied and updated on a separate track in
O(/z(a)). Also in a single pass, M can add a and m in O(/z(a) + m), and thus obtain
b itself. M then calculates/z(b) in O(/z(b)), and finally adds k :=/z(a) + m +/z(b)
to its running total of In case is much longer than k, we want the work to be
proportional to Ikl, not to It I. Standard "carry-save" techniques, or alternatively an argument
that long carries cannot occur too often, suffice for this. [3

THEOREM 6.7. Let d > 1 be rational, and let tl and t2 befunctions such that t2 is/zd-time
constructible, and tl is o(t2). Then D/zTIME[tl] is properly contained in D/zTIME[t2].

Proof. The proof of Theorem 6.3 encoded BMs M over the alphabet 1-’v, but let code’
recode M over (00 t2 11)*. We build a BM Mo that accepts a language D e D/zTIME[t2] \
D/zTIME[tl] as follows. Mo has two extra tracks on which it logs its own as in
Lemma 6.6. On any input x, Mz first calculates n := Ixl, and then calculates t2(n) on its
"clock track." Next, Mo lets w be the maximal initial segment of doubled bits of x. Since
the set code(M) M is a BM is recursive, MD can decide whether to is the code’ of a BM
M in some time U (n). The device of using to ensures that there are o-many inputs in which
any given BM M is presented to Mo. If to is not a valid code, Mo halts and rejects.

If so, Mo runs Mt on input code(M).code(x), except that after every pass by M, Mo
calculates the of the pass and subtracts it from the total on its clock tape. If the total
ever falls below t2(n)/2, Mo halts and rejects. Otherwise, if the simulation of M(x) finishes
before the clock "tings," Mo rejects if M accepts, and accepts if M rejects. By Lemma 6.5,
the total of Mo never exceeds t2(n).

Now let L be accepted by a BM M/ that runs in tl(n). Let K1 be the constant
overhead for M to simulate ML in Theorem 6.3, and let K2 be the overhead in Lemma 6.6.

158 KENNETH W. REGAN

Since tl is o(t2), there exists an x such that t2(Ixl)/tl(Ixl) > 4K1K2, the maximal initial
segment w 6 (00t3 11)* ofx is code’(ML), and U(Iwl) < Ixl. Then the simulation of ML(x)
by MD finishes within (1/2)t2(Ixl), and MD(X) M(x). [3

It is natural to ask whether the classes D/zdTIME[t (n)] also form a tight hierarchy when
is held constant and d varies. The next section relates this to questions of determinism versus
nondeterminism.

We observe finally that the BM in its original, reduced, and buffer forms all give the same
definition of D/zlogTIME[t (n)], and we have the following theorem.

THEOREM 6.8. For any time functions tl, t2 such that tl (n) > n, tl o(t2), and t2 is

/zlog-time constructible, D/zlogTIME[q] is properly contained in D/zogTIME[t2].
Proof. Here the strict boundary condition is not an issue, but the efficient universal

simulation still requires delimiting the read block in advance. The idea is to locate cells
al, a2, a3 in the proof of Theorem 4.13 without addressing by the following trick. As
in Theorem 4.14, the current address a0 is already stored and e la01. In a rightward pull,
rather than add a0 -+:. e, M’ puts a0 itself in binary rightward from cell a0 on a separate track,
appending an endmarker $. By "recursively doubling" the string a0, M’ can likewise delimit
the cells a2, a3 Leftward pull steps are handled similarly, and put steps do not need/zog (a0)
at all. This is all that is needed for the efficient universal simulation. The remainder follows as
above, since/zog is/zog-time constructiblemin fact,/zog(a) lal is computable in/z-time
O(lal). 3

A similar statement holds for the perhaps-larger/zog-time classes for the BM variants that
do use addressing.

7. Complexity theory and the BM model. Our first result shows that the construction
in the Hennie-Stearns theorem [33], which states that any multitape TM that runs in time
(n) can be simulated by a two-tape TM in time (n) log (n), is memory efficient on the BM

under/zl. It has been observed in general that this construction is an efficient caching strategy.
DTIME[t(n)] refers to TM time, and DLIN stands for DTIME[O(n)].

THEOREM 7.1. For anyfunction t, DTIME[t (n)]

D/zTIME[t (n) log t(n)].

Proof. With reference to the treatment in [36], let M1 be a multitape TM with alphabet
1-’ that runs in time (n), and let M2 be the two-tape TM in the proof. The k-many tapes of

M1 are simulated on 2k-many tracks of the first tape of M2 so that all tape heads of M1 are
maintained on cell 0 of each track. M2 uses its second tape only to transport blocks of the form
[2j- 2J-1 from one part of the first tape to another. The functions used in these moves are
homomorphisms between the alphabets -’2k and Fk that pack and unpack characters in blocks.
Thus a BM M3 simulating M2 can compute each move in a single GST pass. By the structure
of the blocks, any pass that incurs a memory-access charge of/zl (2j) 2J simulates at least
2j-1 moves of M2. Hence the work and the/Zl charges to M3 are both O(t(n)logt(n)). [3

We do not know whether the random-access capability of a BM can be exploited to give an
O(t log t) simulation that holds the work to O(t), even for/z --/zog. Indeed, O(t log t) is the
best bound we know for all memory-cost functions/z between/zlog and/zl. One consequence
of this proposition is that sets in DLIN can be padded out to sets in TLIN.

COROLLARY 7.2. (a) For every L DLIN, the language x#0Ixl og Ixl x 6 L belongs
to TLIN.

(b) TLIN contains P-complete languages, so TLIN c_ NC P NC.
Hence it is unlikely that all TLIN functions can be computed in polylog-many passes like the
examples in this paper. If a BM quickly compresses the amount of information remaining to
be processed into cells [0... x/-ff], it can then spend O (/-ff) time accessing these cells in any
order desired and still run in linear/z 1-time.

THEOREM 7.3. Let M be a BM that runs in (n) and space s (n). Then we canfind
a DTM T that simulates M in time O[t(n)s(n)//z(s(n))].

LINEAR TIME AND MEMORY-EFFICIENT COMPUTATION 159

Proof. T has two tapes, one for the main tape of M and one used as temporary storage
for the output in passes. (If M has the buffer mechanism, then the second tape of T simulates
the buffer.) Let s stand for s(n). Consider a move by M that changes the current address a to

[a/2J. T can find this cell in at most 3a/2 steps by keeping count with its second tape. Since

s/a _> 1, the tracking property/Z(Na) < N/Z(a)with N :--s/a gives a//z(a) <_ s//z(s).
Hence the ratio of the time used by T to the/z-time charged to M stays O[s//z(s)]. The
same holds for the moves a "= 2a and a := 2a + 1. T has every GST S of M in its finite
control, and simulates a pull by writing S[a... b] to its second tape, moving to cell 0, copying
S[a... b] over the first tape, and moving back to cell a. Both this and the analogous simulation
of a put by T take time O(a + b), and even the ratio of this to the memory-access charges
/z(a) +/z(b), not even counting the number of bits processed by M, keeps the running total
of the time logged by T below t(n)s//z(s). [q

COROLLARY 7.4. For any time bound t(n) > n, D/zlTIME[t(n)] c_ DTIME[t(n)]. In
particular, TLIN __. DLIN.

More generally, for any d > 1, D/zdTIME[t(n)] DTIME[tZ-I/d)(n)]. Allowing TMs
to have d-dimensional tapes brings this back to a linear-time simulation.

LEMMA 7.5. For any integer d > 1 and time bound t(n) > n, a BM M that runs in

/za-time t(n) can be simulated in time O(t(n)) by a d-dimensional TM T.
Proof. T has one d-dimensional tape on which it winds the main tape of M in a spiral

about the origin, and one linear tape on which it buffers outputs by the GST S of M. In any
pass that incurs a/za charge of a 1/, T can walk between cell a and the origin within a/

steps and complete the move. rq

Let us say that a language or function in D/zdTIME[O(n)] has dimension d. For a
problem above linear time, we could say that its dimensionality is the least d, if any, for which
the problem has relatively optimal BM programs that are/za-efficient (see Definition 2.10).
The main robustness theorem is our justification for this concept of dimensionality. Lemma
7.5 says that it is no less restrictive than the older concept given by d-dimensional Turing
machines. For d > we suspect that it is noticeably more restrictive. The d-dimensional tape
reduction theorem of Paul, Seiferas, and Simon [58] gives t’(n) roughly equal to t(n)+/,
and when ported to a BM, incurs memory access charges close to t(n) 1+2/c. Intuitively, the
problem is that a d-dimensional TM can change the direction of motion of its tape head(s) at

any step, whereas this would be considered a break in pipelining for the simulating BM, and
thus subject to a memory-access charge.

We write RAM-TIMElg for time on the log-cost RAM. A log-cost RAM can be simulated
with constant-factor overhead by a TM with one binary tree-structured tape and one standard
worktape [57], and the latter is simulated in real time by a RAM-TM.

PROPOSITION 7.6. For any timefunction t,

(a) RAM-TIMEIg[t(n)] D/zlogTIME[t (n) log (n)].
(b) D/zogTIME[t(n)] __. RAM-TIMEg[t(n)logt(n)].
Proof. Straightforward simulations give these bounds. (The extra log (n) factor in (b)

dominates a factor of log log n that was observed by [44] for the simulation of a TM (or
RAM-TM) by a log-cost RAM.) [3

For quasilinear time, i.e., time qlin n(logn) (1), the extra logn factors in Theorem
7.1 and Proposition 7.6 do not matter. Following Schnorr [65], we write DQL and NQL
for the TM time classes DTIME[qlin] and NTIME[qlin]. Gurevich and Shelah [30] proved
that RAM-TIMEg[qlin] is the same as deterministic nearly linear time on the RAM-TM
and several other RAM-like models, and perhaps more surprisingly, that the nondeterministic
counterparts of these classes are all equal to NQL.

COROLLARY 7.7. (a) D/z TIME[qlin] DQL.
log(b) D/zlogTIME[qlin] RAM-TIME [qlin] c NQL.

160 KENNETH W. REGAN

Hence the objective of separating the classes D/zTIME[O(n)], as/z varies from //1 through
/za to/Zog, by anything more than factors of O(logn), runs into the problem of whether
DQL NQL, which seems as hard as showing P :fi NP. Whether they can be separated by
even one log n factor is discussed in the next section.

8. Open problems and further research. The following languages have been much
studied in connection with linear-time algorithms and nonlinear lower bounds. We suppose
that the lists in Laup and Lint are all normal.

(a) Pattern matching: Lpat p#t (u, v 6 0, }*)t upv }.
(b) Element (non)distinctness: Ldup {Xl#’" "#Xm (i, j) < j/x xi =xj }.
(c) List intersection: Lint Xl#"" #Xm, yl#""" #Ym (i, j)X yj }.
(d) Triangle: Lzx {A A is the adjacency matrix of an undirected graph that contains

a triangle}.
Lpat belongs to DLIN (see [25], [23]), and was recently shown not to be solvable by a one-way
non-sensing multihead DFA [42]. La,p and Lint can be solved in linear time by a RAM or
RAM-TM that treats list elements as cell addresses. L zx is not believed to be solvable in linear
time on a RAM at all. The best method known involves computing A2 + A, and squaring
n n integer matrices takes time approximately N 1188, where N n2, by the methods of
[19]. (For directed triangles, cubing A is the best way known.)

OPEN PROBLEM 1. Do any ofthe above languages belong to TLIN? Ifnot, prove nonlinear
lower bounds.

A BM can be made nondeterministic (NBM) by letting 3(q, c) be multiply valued and,
more strongly, by using nondeterministic GSTs or GSM mappings in block moves. Define
NTLIN to be linear time for NBMs of the weaker kind. Then all four of the above languages
belong to NTLIN. Moreover, they require only O (log n) bits of nondeterminism.

OPEN PROBLEM 2. Is NTLIN - TLIN? For reasonable lZ and time bounds t, is there a

general separation ofN/zTIME[t (n) from D/zTIME[t (n)]?
Grandjean [27], [28] shows that a few NP-complete languages are also hard for NLIN

under TM linear time reductions, and hence by the theorem of [56] lie outside DLIN, not
to mention TLIN. However, these languages seem not to belong to NTLIN, nor even to
linear time for NBMs of the stronger kind. The main robustness theorem and subsequent
simulations hold for the weaker kind of nondeterminism, but our proofs do not work for the
stronger because they rerun the GST S used in a pass. We suspect that different proofs will
give similar results. A separation of the two kinds can be shown with regard to the pass-
count measure R(n), which serves as a measure of parallel time (e.g., R(n) polylog(n)
and polynomial work w(n) by deterministic BMs characterizes NC [62]). E van Emde Boas
[personal communication, 1994] has observed that while deterministic BMs and NBMs of the
weaker kind belong to the second machine class of [68] with R(n) as time measure, NBMs
of the stronger kind have properties shown there to place models beyond the second machine
class. Related to Open Problem 2 is whether the classes D/zaTIME[O(n)] differ as d varies.
It is also natural to study memory-efficient reductions among problems.

The following idea for obtaining such separations and proving nonlinear lower bounds in

/z-time on a deterministic BM M suggests itself: let Ft,x stand for the set of access points
used in the computation of the BM M on input x. In order for M to run in linear #-time, I’t,x
must thin out at the high end of memory. In particular for/z --/z l, there are long segments
between access points that can be visited only a constant number of times. The technical
difficulty is that block moves can still transport information processed in low memory to these
segments, and the proof of Theorem 7.1 suggests that a lower bound of f2[n log n] may be the
best achievable in this manner. In general, we advance the BM as a logical next step in the
longstanding program of proving nonlinear lower bounds for natural models of computation.

LINEAR TIME AND MEMORY-EFFICIENT COMPUTATION 161

In particular, we ask whether the techniques used by Dietzfelbinger, Maass, and Schnitger [20]
to obtain lower bounds for Boolean matrix transpose and several sorting-related functions on
a certain restricted two-tape TM can be applied to the differently restricted kind of two-tape
TM in Theorems 7.1 and 7.3. The latter kind is equivalent to a TM with one worktape and
one pushdown store with the restriction that after any Pop, the entire store must be emptied
before the next PUSH.

We have found two variants to the BM model that seem to depart from the cluster of
robustness results shown in this paper. They relate to generally known issues of delay in
computations. The first definition is the special case for GSTs of Manacher’s notion of a
"fractional on-line RAM algorithm with steady-paced output" [53].

DEFINITION 8.1. Let d > 0 and e > 1 be integers. A GST S runs in fixed output delay d/e
iffor every terminal trajectory (qo, xo, ql Xm-1, qm),andeach < m-2,]P(qi, xi)] d

if e divides + 1, 0 otherwise. For the exiting transition, [P(qm-, Xm-1)[depends only on
(m mode). The quantity C d/e is called the expansion factor of S.

Note that the case d 0 is allowed. Every GST function g can be written as e o f, where
f is fixed delay and e is an erasing homomorphism: pad each output of the GST for g to the
same length with "@" symbols, and let e erase them. A k-input GST with stationary moves
allowed may keep any of its input heads stationary in a transition. Such a machine can be
converted to an equivalent form coded like an ordinary GST in which every state q has a label
j 6 1 k such that q reads and advances only the head on tape j.

DEFINITION 8.2. (a) A BM runs in fixed output delay ifevery GST chip in M runs infixed
output delay.

(b) A pause buffer BM is a BM with buffer whose put steps may use 2-input GSTs with
variable input delay (cf Proposition 4.3).

Put another way, the BM model presented in this paper requires fixed delay in reading
input but not in writing output, while (a) requires both and (b) requires neither. We did not

adopt (b) because we feel that stationary moves by a 2-GST in the course of a pass require
communication between the heads, insofar as further movements depend on the current input
symbols, and hence should incur memory-access charges. We defend our choice against a
similar criticism that would require (a) by contending that in a single-tape GST pass, the
motion of the read head is not affected by the write head, and the motion of the write head
depends only on local factors as bits come in to it. Also, every BM has a limit C on the number
of output bits per input bit read by a GST. The main robustness theorem (Theorem 3.1), in
particular the ability to forecast the length of the output of a pass by fixed-delay means shown
in Theorem 4.13, satisfies our doubts about this.

The robustness results in this paper do carry over to the case of fixed output delay.
THEOREM 8.1. For any rational d > 1, the fixed-delay restrictions of the BM and all the

variants defined in 3 simulate each other up to constantfactors in #d-time.
Proof. All auxiliary operations in the simulations in 4 use GSTs that run in fixed output

delay, except for the second, unpadded run of the GST S in Theorem 4.13. However, if S
already runs in fixed output delay, so does this run.]

Under the proof of Theorem 2.1, the corresponding notion for the reduced form of the
model is "fixed delay after the initial transition." Our proof of efficient universal simulation
does not quite carry over for fixed output delay because the quantities k and in the proof
of Theorem 6.3 may differ for different M. The operations that pull off the word gz and the
padded output code(y) run in "stride" a function of k and l, but this is not fixed. We believe
that the proof can be modified to do so under a different representation scheme for monoids.

Whether a similar robustness theorem holds for the pause-buffer BM leads to an open
problem of independent interest: can every k-input GST be simulated by a composition tree

162 KENNETH W. REGAN

of two-input GSTs when stationary moves are allowed? The questions of the power of both
variants versus the basic BM can be put in concrete terms.

OPEN PROBLEM 3. Can the homomorphism Er2 0, 1, 2 }* --+ 0, }*, which erases all
2’s in its argument, be computed in linear IX 1-time by a BM that runs in fixed output delay?

OPEN PROBLEM 4. For every two-input GST S with stationary moves allowed, does the

function S’(x#y) := S(x, y) belong to TLIN?
THEOREM 8.2. (a) The answer to Open Problem 3 is "yes" ifffor every memory-cost

function IX and BM M, there is a BM M’ that runs in fixed output delay and simulates M
linearly under Ix.

(b) The answer to Open Problem 4 is "yes" ifffor every memory-cost function Ix and
pause-buffer BM M, there is a BM M’ that simulates M linearly under Ix.

Proof. For the forward implication of (a), M’ pads every output by M with @ symbols,
coding the rest over 0, }*, and runs Er@ on a separate track to remove the padding. That
of (b) is proved along the lines of Proposition 4.3. The reverse implications are immediate,
and all this needs only the tracking property of Ix. [3

Alon and Maass [4] prove substantial time-space tradeoffs for the related "sequence-
equality" problem SE[n]: given x, y 6 0, 1, 2 }n, does Er2(x) Er2(y)? We inquire
whether their techniques, or those of [54], can be adapted to the BM. The BM in Theorem
7.1 runs in output delay 1/2, 1, or 2 for all passes, so the two kinds of BM can be separated
by no more than a log factor. A related question is whether every language in TLIN, with or
without fixed output delay, has linear-sized circuits.

Further avenues for research include analyzing implementations of certain important
algorithms on the BM, as done for the BT and UMH in [2], [5]. Here the BM is helped by its
proximity to the Pratt-Stockmeyer vector machine, since conserving memory-access charges
and parallel time often lead to similar methods. One can also study storage that is expressly laid
out on a two-dimensional grid or in three-dimensional space, where a pass might be defined
to follow either a one-dimensional line or a two-dimensional plane. We expect the former not
to be much different from the BM model with its one-dimensional tape, and we also note that
CD-ROM and several current two-dimensional drive technologies use long one-dimensional
tracks. The important issue may not be so much the topology of the memory itself, but whether
"locality is one-dimensional" for purposes of pipelining.

Last, we ask about meaningful technical improvements to the simulations in this paper.
The lone obstacle to extending the main robustness theorem for Ix Ixog is the simulation
of random access by tree access in Lemma 4.6. The constants on our universal simulation
are fairly large, and we seek a more efficient way of representing monoids and computing the
products. Two more questions are whether the BM loses power if the move option a :-- 2a+
is eliminated, and whether the number m of markers in a finger BM can be reduced to m-
or to 4 without multiplying the number of block moves by a factor of log (n).

9. Conclusion. In common with motivations expressed in [2] and [5], the BM model
fosters a finer analysis of many theoretical algorithms in terms of how they use memory and
how they really behave in running time when certain practicalities of implementation are
taken into account. We have shown that the BM model is quite robust and that the concept
of functions and languages being computable in a memory-efficient manner does not depend
on technical details of setting up the model. The richer forms of the model are fairly natural
to program, providing random access and the convenience of regarding finite transductions
such as addition and vector Booleans as basic operations. The tightest form of the model is
syntactically simple, retains the bit-string concreteness of the TM, and seems to be a tractable
object of study for lower bound arguments. The robustness is evidence that our abstraction is
"right."

LINEAR TIME AND MEMORY-EFFICIENT COMPUTATION 163

In contrast to the extensive study of polynomial-time computation, very little is known
about linear-time computation. Owing to an apparent lack of linear-time robustness among
various kinds of TMs, RAMs, and other machines, several authorities have queried their
suitability as a model for computation in O(n) time. Since we have/z as a parameter we
have admittedly not given a single answer to the question, "What is linear time?", and leave
TLIN, D/zTIME[O(n)], and D#3TIME[O(n)] as leading candidates. However, the BM
model does supply a robust yardstick for assessing the complexity of many natural combi-
natorial problems and for investigating the structure of several other linear-time complex-
ity classes. It has a tight deterministic time hierarchy right down to linear time. The ef-
ficient universal simulator which we have constructed to show this result uses the word
problem for finite monoids in an interesting manner. The longstanding program of show-
ing nonlinear lower bounds in reasonable models of computation has progressed up to ma-
chines apparently just below the BM (under 1) in power, so that attacking the problems
given here seems a logical next step. The authors of [3] refer to the "challenging open
problem" of extending their results when bit manipulations for dissecting records are avail-
able. The bit operations given to the BM seem to be an appropriate setting for this prob-
lem. A true measure of the usefulness of the BM model will be whether it provides good
ground for developing and connecting methods that solve older problems not framed with
the term "BM." We offer the technical content of this paper as appropriately diligent spade-
work.

Appendix: Proof of Theorem 2.1. For every move state q in M we add a new GST
Sq that performs a 1-bit empty pull just to read the currently scanned character d, and then
sends control to 3 (q, d). This modification no more than doubles the # access charges, and
gives M the following property" for any pass by a GST Si, the next GST S to be invoked (or
HALT) is a function only of and the character c that caused Si to exit, and there is at most one
intervening move. Henceforth we assume that M has this form, and number its GST chips by
So St, with So as start chip.

M’ uses an alphabet 1-" which includes the alphabet of M, a surrogate blank @, tokens
so sr for the chips of M, markers mu, mL, ml, mno, m/-/} for the three kinds ofmove,

"no move," and HALT, special instruction markers Io 112 }, plus certain tuples of length
up to 7 of the foregoing characters. We also use @ to indicate that the symbol written to cell 0
is immaterial.

During the simulation, the first component of every tuple in a cell is the character ci I"
in that cell of the tape of M. Except initially, cell holds both co and cl, so that cell 0 can be
overwritten by other characters. This also allows M’ to simulate all moves by M without ever
moving its own cell-a head back to cell 0. The markers I0 and 11 tell M’ when the cell-a head
ofM is in cell 0 or 1. For a _> 2, the heads of M and M’ coincide. The other main invariant of
the simulation is that the only cell besides cells 0 and to contain multiple symbols is cell a.
The two initial moves of M’ set up these invariants.

Character(s) read Action (Initial mode is Ra, a 0.)
co, c Pull [co, cl] to cell 0, a :-- a, mode :-- OR.

[co, Cl], Cl Put @ into cell 0 and [cl, co, so, I0] into cell 1, a 2a + 1, mode :--
Ra.

The first move must automatically be executed every time M’ moves its tape head to a new
cell a, a > 2, since this cell and cell a + 1 will always contain single characters over .
However, the second move is unique to the initialization because cell 1 will never again hold
a single character. The cell-a head of M’ is now on cell 1, but the I0 enables M to record that
the cell-a head of M is still on cell 0.

164 KENNETH W. REGAN

The lone GST S of M’ includes two copies of each GST Si of M. The first is a "dummy
copy" which simulates Si but suppresses output until it picks up the character c that causes

Si to exit. On this exiting transition, the dummy outputs a token s for the next GST S
and a token m for the intervening move, or mno for none, or m/-/for HALT. The other copy
simulates the actual pass by Si. It has special states that distinguish whether Si has written
zero, one, or at least two output symbols in the pass, since the first one or two symbols of
the output y are altered. If S performs a pull and lYl > 2, we define c "= Y0 if Y0 - B,
but c0"-c0ify0 B. Similarlyc -ylifyl B, butc "-clifyl B. On the tape
of M’ the output y looks like [c, c][c’1, co]y2""yl, where [Yl. For lYl < 1,

andtreat the missing yl and/or Y0 as B. Besides these functional conventions on s, m, c0,
c 1, we omit reference to the address a if it is not changed and omit the second character read
by S when it does not affect control at the large initial branch. Let Si be the current GST
of M.
Character(s) read Action (Current mode is Ra, a 1.)
[Cl, co, si, I0] By the validity conditions (Definition 2.3), the output y by Si has

length at most 2. Hence the next-move token m and next-GST token

s can be picked up and the output y written in one pass, without
needing the dummy copy of Si. If m m/-/, S pulls @ to cell 0 and
[Cfl, c0, 112] to cell 1. Ifm mR, pulls @[Ctl, c0, s, 11] to signify that
the cell-a head of M is now on cell 1. Else S pulls @[Ctl, co, s, I0],
and this step repeats. In each case, mode :- Ra.

[Cl, co, I12] Pull co into cell 0, Cl into cell 1, and HALT.

[Cl, Co, si, 11] Simulate Si as for [Cl, co, si, I0] to get m, s, and y, but treat Cl as the
I12] ifm=mfirst input character to Si. If m m/-/pull @ [c1, co,

pull @ [c1, c0, s, I0], and if m mno, pull @[c’1, c0, s, I1]. In these
three cases, the address of M’ stays at 1. If m mL, then pull
@[c1, c0, s] and effect a 2a. If m mR, pull @[c1, c0, s] and
effect a :-- 2a + 1. In every case, the mode stays Ra.

The last two cases give a > 2. When a > 2, the next pass by S encounters a single
character Ca 6 T" on its start transition (possibly Ca B), and S must perform the first

operation above. This overwrites the @ in cell 0. However, the new character [c’1, c, s] in
cell prevents the initial sequence from recurring, viz. the following:

Character(s) read Action (Current mode is Ra, a > 2.)
Ca, Ca+l Pull [Ca, Ca+l] to cell O, a a, mode "= OR.

B Pull [@, @, I0] to cell O, a "= a, mode := OR.

[Ca, Ca+l], [Cl, co, si] Put [Ca, CO, Cl, Si, 12] into cell a. If the label of Si is La then mode
La, else mode "= Ra.

[Ca, co, Cl, si, 12] If Si is labeled 0L or OR, then pull [co, Cl, ca, si, 16] into cell 0, and
mode the mode of Si. Else S simulates the dummy copy of Si to
find m and s, treating Ca as the first input character to Si, and pulls
[co, Cl, Ca, m, s, si, 13] to cell 0 with mode OR.

[co, Cl, ca, m, sl, si, 13] Put [Ca, co, Cl, m, s, si, 14] into cell a, mode the mode of Si.

[a,O,l,m, Sk, Si, I4] Simulate the pull move by Si, translating its output y to

[Co c1, Ca, m, 15][c1 cO, s/]Y2 Yl, and change mode to OR. Re-
mark: For Ca to be correct, it is vital that cell a not be overwritten in
this pull.

LINEAR TIME AND MEMORY-EFFICIENT COMPUTATION 165

[Co, C1, Ca, m, 15] Put Ca into cell a. On exit, if m mno then leave a unchanged, if
m mr; effecta := I_a/2_],ifm mi effecta := 2a, andifm mR
effect a :-- 2a + 1. In each of these four cases, mode :-- Ra. For
m mH, see below.

If the last move was up, i.e., a to la/21, we may now have a again. Since the
"sentinel" in cell is always correctly updated to the next GST Si, this is handled by the
following:

[C1, CO, Si] Same as for [Cl, co, Si, 11].

If still a _> 2, then S once again senses single characters in cells a and a + 1, and the
cycle repeats. The other branch with instruction 6 goes as follows:
[co, Cl, Ca, si, I6] Here Si is labeled 0L or OR, and this is the current mode. S treats

co, Cl as the first two input characters in simulating the dummy copy
of Si, and puts [Ca, co, Cl, m, s, si, 17] into cell a with mode :-- Ra.

[Ca, co, Cl, m, s, si, 17] Pull [co, Cl, Ca, m, sk, si, 18] into cell 0, mode := the mode of Si.
[Co, C1, Ca, m, sk, Si, I8] Simulate the put by Si. If the output y is empty or begins with B, let

ca "= Ca. Else let c Yo. Copy y as [c’a, co, Cl, m, s, I9], and set
mode OR.

[ca, co, Cl, m, s, 19] Pull [co, Cl, Ca, m, 15] to cell 0 and [Cl, co, s] to cell 1, mode := Ra.

The validity conditions prevent cell a from being overwritten in a pull. It is possible for
cell to be overwritten by a leftward put that exits after just one input bit, but this can only
happen if a < C, where C is the maximum number of bits a leftward pull chip of M can
write in its first transition. The problem can be solved either by exploiting the ability of M
itself to remember C-many characters in its finite control, or by reprogramming M so that
no leftward pull chip outputs more than one symbol on its first step. Details are left to the
reader.

The final halting routine involves a "staircase" to leave the tape exactly the same as that
of M at the end of the computation. It picks up in the case [co, Cl, Ca, m, 15] with m m/-/.

[Co, C1, Ca, ml-l, 15] Put [ca, co, cl, I10] into cell a, mode Ra.

[Ca, CO, C1, I10]

[C0, C1, Ca, Ill]

Pull [co, cl, Ca, Ill] to cell 0 and [Cl, co, I12] to cell 1, with mode
OR.
Put Ca into cell a, effect a /a/2J, mode "= Ra.

Ca, Ca+ Pull [Ca, Ca+l] to cell 0, mode "= OR.

[Ca, Ca+l], [C1, CO, 112] Put ca into cell a, effect a := [a/21, mode Ra.

[Cl, co, I12] As above, pull co into cell 0, Cl into cell 1, and HALT.

M’ uses exactly the same tape cells as M, making at most eight passes of equal or less cost
for each pass by M. The final "staircase" down from cell a is accounted against the/z-charges
for M to have moved out to cell a. Hence both the number of bits processed by M’ and the
/z-acc charges to M’ are within a constant factor of their counterparts in M.

For the converse simulation ofthe reduced form S by aBM M, the only technical difficulty
is that S may have different exiting transitions on the same character c. The solution is to run
a dummy copy of S that outputs a token for the state in which S exits. Then is used to
send control to the move state of M’ that corresponds to the label 11 (t), and thence to a copy
of S with the pass-type label/2(t). The details of running the dummy copy are the same as
above. [3

166 KENNETH W. REGAN

By using more "instruction markers" one can make the mode of M’ always follow the
cycle Ra, OR, La, OL. Hence the only decision that need depend on the terminal state of the
lone GST S is the next origin cell a.

Acknowledgments. I would like to thank Professor Michael C. Loui for comments on
preliminary drafts of this work and for bringing [2] and [5] to my attention. Professors Pierre
McKenzie and Gilles Brassard gave me a helpful early opportunity to test these ideas at
an open forum in a University of Montreal seminar. Special thanks are due to Professors
Klaus Ambos-Spies, Steven Homer, Uwe Sch6ning, and other organizers of the 1992 Schloss
Dagstuhl Workshop on Structural Complexity for inviting me to give a presentation out of
which the present work grew. Last, I thank an anonymous referee and several colleagues for
helpful suggestions on nomenclature and presentation.

REFERENCES

[1] A. AGGARWAL, B. AIPERN, A. CHANDRA, AND M. SNIR, A model for hierarchical memory, in Proc. 19th
Symposium on the Theory of Computing, Association for Computing Machinery, New York, 1987,
pp. 305-314.

[2] A. AGGARWAL, A. CHANDRA, AND M. SNIR, Hierarchical memory with block transfer, in Proc. 28th Foundations
of Computer Science, IEEE Computer Society Press, Los Alamitos, CA, 1987, pp. 204-216.

[3] A. AGGARWAL AND J. VITTER, The input-output complexity of sorting and related problems, Comm. Assoc.
Comput. Mach., 31 (1988), pp. 1116-1127.

[4] N. ALON AND W. MAASS, Meanders and their application to lower bound arguments, J. Comput. System Sci.,
37 (1988), pp. 118-129.

[5] B. ALPERN, L. CARTER, AND E. FEIG, Uniform memory hierarchies, in Proc. 31st Foundations of Computer
Science, IEEE Computer Society Press, Los Alamitos, CA, 1990, pp. 600-608.

[6] J. BALCAZAR, J. DiAZ, AND J. GABARR3, Structural Complexity Theory, Springer-Verlag, Berlin, New York,
1988.

[7] O. M. BARRINGTON, N. IMMERMAN, AND H. STRAUBING, On uniformity within NC in Proc. 3rd Structures,
IEEE Computer Society Press, Los Alamitos, CA, 1988, pp. 47-59.

[8] ,On uniformity within NC J. Comput. System Sci., 41 (1990), pp. 274-306.
[9] A. BEN-AMRAM AND Z. GALIL, Lower boundsfor data structure problems on RAMs, in Proc. 32nd Foundations

of Computer Science, IEEE Computer Society Press, Los Alamitos, CA, 1991, pp. 622-631.
[10] On pointers versus addresses, J. Assoc. Comput. Mach., 39 (1992), pp. 617-648.
11 G. BIELLOCH, Vector Modelsfor Data-Parallel Computing, MIT Press, Cambridge, MA, 1990.
12] M. BItM, A machine-independent theory of the complexity of recursive functions, J. Assoc. Comput. Mach.,

14 (1967), pp. 322-336.
[13] R. BOOK AND S. GREmACH, Quasi-realtime languages, Math. Systems Theory, 4 (1970), pp. 97-111.
14] A. CHANDRA, D. KOZEN, ANO L. STOCKMEYER, Alternation, J. Assoc. Comput. Mach., 28 (1981), pp. 114-133.
[15] J. CHANG, O. IBARRA, AND A. VERGIS, On the power of one-way communication, J. Assoc. Comput. Mach.,

35 (1988), pp. 697-726.
16] J. CHEN AND C. YAP, Reversal complexity, SIAM J. Comput., 20 (1991), pp. 622-638.
[17] M. CONNER, Sequential machines realized by group representations, Inform. and Comp., 85 (1990),

pp. 183-201.
[18] S. COOK AND R. RECKHOW, Time bounded random access machines, J. Comput. System Sci., 7 (1973),

pp. 354-375.
19] D. COPPERSMITH AND S. WINOGRAD, Matrix multiplication via arithmeticalprogressions, J. Symbolic Comput.,

9 (1990), pp. 251-280.
[20] M. DIETZFELBINGER, W. MAASS, AND G. SCHNITGER, The complexity ofmatrix transposition on one-tape off-line

Turing machines, Theoret. Comput. Sci., 82 (1991), pp. 113-129.
[21 C. EGOT Arid A. ROBINSON, Random-access stored-program machines, J. Assoc. Comput. Mach., 11 (1964),

pp. 365-399.
[22] Y. FELDMAN AND E. SHAPIRO, Spatial machines: A more-realistic approach to parallel computation, Comm.

Assoc. Comput. Mach., 35 (1992), pp. 60-73.
[23] P. FISCHER, A. MEYER, AND A. ROSENUERG, Real-time simulations of multihead tape units, J. Assoc. Comput.

Mach., 19 (1972), pp. 590-607.
[24] M. F3RER, Data structuresfor distributed counting, J. Comput. System Sci., 29 (1984), pp. 231-243.
[25] Z. GAIII AND J. SEIFERAS, Time-space optimal string matching, J. Comput. System Sci., 26 (1983),

pp. 280-294.
[26] E. GRAEDEI, On the notion of linear-time computability, Internat. J. Found. Comput. Sci., (1990),

pp. 295-307.

LINEAR TIME AND MEMORY-EFFICIENT COMPUTATION 167

[27] E. GRANDJEAN, A natural NP-complete problem with a nontrivial lower bound, SIAM J. Comput., 17 (1988),
pp. 786-809.

[28] ,Anontrivial lower boundfor an NPproblem on automata, SIAM J. Comput., 19 (1990), pp. 438-451.
[29] E. GRANDJEAN AND J. ROBSON, RAM with compact memory: A robust and realistic model of computation,

in Proc. 4th Annual Workshop in Computer Science Logic, Lecture Notes in Comput. Sci., 533, (1991),
pp. 195-233.

[30] Y. GUREVICH AND S. SHELAH, Nearly linear time, in Proc. Logic at Botik, Lecture Notes in Comput. Sci.,
363 (1989), pp. 108-118.

[31] J. HARTMANIS AND R. STEARNS, On the computational complexity of algorithms, Trans. Amer. Math. Soc.,
117 (1965), pp. 285-306.

[32] .,Algebraic Structure Theory ofSequential Machines, Prentice-Hall, Englewood Cliffs, NJ, 1966.
[33] E HENNIE AND R. STEARNS, Two-way simulation of multitape Turing machines, J. Assoc. Comput. Mach.,

13 (1966), pp. 533-546.
[34] T. HEYWOOD AND S. RANKA, A practical hierarchical model ofparallel computation I: The model, J. Parallel

Distrib. Comput., 16 (1992), pp. 212-232.
[35] J.-W. HONG, On similarity and duality ofcomputation I, Inform. and Comp., 62 (1985), pp. 109-128.
[36] J. HOPCROFTAND J. ULLMAN, Introduction to Automata Theory, Languages, andComputation, Addison-Wesley,

Reading, MA, 1979.
[37] O. IBARRA, Systolic arrays: Characterizations and complexity, in Proc. 1986 Conference on Mathematical

Foundations of Computer Science, Lecture Notes in Comput. Science, 233 (1986), pp. 140-153.
[38] O. IBARRA AND T. JIANG, On one-way cellular arrays, SIAM J. Comput., 16 (1987), pp. 1135-1153.
[39] O. IBARRA AND S. KIM, Characterizations and computational complexity ofsystolic trellis automata, Theoret.

Comput. Sci., 29 (1984), pp. 123-153.
[40] O. IBARRA, S. KIM, AND M. PALLS, Designing systolic algorithms using sequential machines, IEEE Trans.

Comput., 35 (1986), pp. 531-542.
[41 O. IBARRA, M. PALLS, AND S. KIM, Some results concerning linear iterative (systolic) arrays, J. Par. Dist. Comp.,

2 (1985), pp. 182-218.
[42] T. JIANG AND M. LI, K one-way heads cannot do string-matching, in Proc. 25th Symposium on the Theory of

Computing, Association for Computing Machinery, New York, 1993, pp. 62-70.
[43] T. KAMEDA AND R. VOLLMAR, Note on tape reversal complexity oflanguages, Inform. and Control, 17 (1970),

pp. 203-215.
[44] J. KATAJAINEN, J. VAN LEEUWEN, AND M. PENTTONEN, Fast simulation of Turing machines by random access

machines, SIAM J. Comput., 17 (1988), pp. 77-88.
[45] A. KOLMOGOROV AND V. USPENSKII, On the definition ofan algorithm, Uspekhi Mat. Nauk, 13 (1958), pp. 3-28;

English translation, Russian Math. Surveys, 30 (1963), pp. 217-245.
[46] R. KOSARAJU, Real-time simulation of concatenable double-ended queues by double-ended queues, in Proc.

lth Symposium on the Theory of Computing, 1979, pp. 346-351.
[47] K. KROrIN AND J. RHODES, Algebraic theory ofmachines I: Prime decomposition theoremforfinite semigroups

and machines, Trans. Amer. Math. Soc., 116 (1965), pp. 450-464.
[48] K. KROqN, J. RHODES, AND B. TILSON, The prime decomposition theorem of the algebraic theory ofmachines,

in Algebraic Theory of Machines, Languages, and Semigroups, M. Arbib, Ed., Academic Press, New
York, 1968, Chap. 4-9.

[49] D. LEVANT, Descriptive characterizations of computational complexity, J. Comput. System Sci., 39 (1989),
pp. 51-83.

[50] M. LouI, Simulations among multidimensional Turing machines, Theoret. Comput. Sci., 21 (1981),
pp. 145-161.

[51] ., Optimal dynamic embedding of trees into arrays, SIAM J. Comput., 12 (1983), pp. 463-472.
[52] .,Minimizing access pointers into trees and arrays, J. Comput. System Sci., 28 (1984), pp. 359-378.
[53] G. MANACHER, Steady-paced-output and fractional-on-line algorithms on a RAM, Inform. Process. Lett.,

15 (1982), pp. 47-52.
[54] Y. MANSOUR, N. NISAN, AND P. TIWARI, The computational complexity ofuniversal hashing, Theoret. Comput.

Sci., 107 (1993), pp. 121-133.
[55] D. MULLER AND E PREPARATA, Bounds to complexities ofnetworksfor sorting and switching, J. Assoc. Comput.

Mach., 22 (1975), pp. 195-201.
[56] W. PAUL, N. PIPPENGER, E. SZEMERIDI, AND W. TROTTER, On determinism versus nondeterminism and related

problems, in Proc. 24th Foundations of Computer Science, IEEE Computer Society Press, Los Alamitos,
CA, 1983, pp. 429-438.

[57] W. PAUL AND R. REISCHUK, On time versus space II, J. Comput. System Sci., 22 (1981), pp. 312-327.
[58] W. PAUL, J. SEIFERAS, AND J. SIMON,An information-theoretic approach to time boundsfor on-line computation,

J. Comput. System Sci., 23 (1981), pp. 108-126.
[59] N. PIPPENGER, On simultaneous resource bounds, in Proc. 20th Foundations of Computer, 1979, pp. 307-311.
[60] N. PIPPENGER AND M. FISCHER, Relations among complexity measures, J. Assoc. Comput. Mach., 26 (1979),

pp. 361-381.

168 KENNETH W. REGAN

[61 V. PRATT AND L. STOCKMEYER, A characterization of the power of vector machines, J. Comput. System Sci.,
12 (1976), pp. 198-221.

[62] K. REGAN, A new parallel vector model, with exact characterizations ofNCk, in Proc. lth Symposium on
Theoretical Aspects of Computer Science, Lecture Notes in Comput. Sci., 778 (1994), pp. 289-300.

[63] R. REISCHUK, A fast implementation of multidimensional storage into a tree storage, Theoret. Comput. Sci.,
19 (1982), pp. 253-266.

[64] W. Rtzzo, On uniform circuit complexity, J. Comput. System Sci., 22 (1981), pp. 365-383.
[65] C. SCHNORR, Satisfiability is quasilinear complete in NQL, J. Assoc. Comput. Mach., 25 (1978), pp. 136-145.
[66] A. SCHONHAGE, Storage modification machines, SIAM J. Comput., 9 (1980), pp. 490-508.
[67] A nonlinear lower boundfor random-access machines under logarithmic cost, J. Assoc. Comput.

Mach., 35 (1988), pp. 748-754.
[68] P. VAN EMDE BOAS, Machine models and simulations, in Handbook of Theoretical Computer Science, vol. A,

J. V. Leeuwen, Ed., Elsevier, New York, MIT Press, Cambridge, MA, 1990, pp. 1-66.
[69] D. WILLARD, A density control algorithmfor doing insertions and deletions in a sequentially orderedfile in a

good worst-case time, Inform. and Comput., 97 (1992), pp. 150-204.

SIAM J. COMPUT.
Vol. 25, No. 1, pp. 169-192, February 1996

1996 Society for Industrial and Applied Mathematics
007

ON THE COMPOSITION OF ZERO-KNOWLEDGE PROOF SYSTEMS*

ODED GOLDREICHt AND HUGO KRAWCZYK

Abstract. The wide applicability of zero-knowledge interactive proofs comes from the possibility of using these
proofs as subroutines in cryptographic protocols. A basic question concerning this use is whether the (sequential
and/or parallel) composition of zero-knowledge protocols is zero-knowledge too. We demonstrate the limitations of
the composition of zero-knowledge protocols by proving that the original definition of zero-knowledge is not closed
under sequential composition; and that even the strong formulations of zero-knowledge (e.g., black-box simulation)
are not closed under parallel execution.

We present lower bounds on the round complexity of zero-knowledge proofs, with significant implications for
the parallelization of zero-knowledge protocols. We prove that three-round interactive proofs and constant-round
Arthur-Merlin proofs that are black-box simulation zero-knowledge exist only for languages in BPP. In particular,
it follows that the "parallel versions" of the first interactive proofs systems presented for quadratic residuosity,
graph isomorphism, and any language in NP, are not black-box simulation zero-knowledge, unless the corresponding
languages are in BPP. Whether these parallel versions constitute zero-knowledge proofs was an intriguing open
questions arising from the early works on zero-knowledge. Other consequences are a proof of optimality for the
round complexity of various known zero-knowledge protocols and the necessity of using secret coins in the design
of "parallelizable" constant-round zero-knowledge proofs.

Key words, zero-knowledge, cryptographic protocols, interactive proofs

AMS subject classifications. 68Q99, 94A60

1. Introduction. In this paper we investigate the problem of composing zero-knowledge
proof systems. Zero-knowledge proof systems, introduced in the seminal paper ofGoldwasser,
Micali, and Rackoff [GMR], are efficient interactive proofs which have the remarkable prop-
erty of yielding nothing but the validity of the assertion. Namely, whatever can be efficiently
computed after interacting with a zero-knowledge prover, can be efficiently computedoainput
of a valid assertion. Thus, a zero-knowledge proof is computationally equivalent to an answer
of a trusted oracle.

A basic question regarding zero-knowledge interactive proofs is whether their compo-
sition remains zero-knowledge. This question is not only of theoretical importance, but is
also crucial to the utilization of zero-knowledge proof systems as subprotocols inside crypto-
graphic protocols. Of particular interest are sequential and parallel composition. Candidate
"theorems" (whose correctness we investigate) are listed here.

Sequential Composition. Let FI1 and FI2 be zero-knowledge proof systems for languages
L1 and L2, respectively. Then, on input Xl o x2, first executing FI1 on xl and afterwards
executing FI2 on x2 constitutes a zero-knowledge interactive proof system for L1 o L2.

Parallel Composition. Let FI1 and FI2 be as above. Then, on input x x2, concurrently
executing FI on input x and FI2 on x2 constitutes a zero-knowledge interactive proof system
for L L2. (Concurrent execution means that the th message of the composed protocol
consists of the concatenation of the ith messages in H1 and FI2, respectively.)

Sequential composition. Soon after the publication of [GMR1], several researchers no-
ticed that the formulation of zero-knowledge proposed therein (hereafter referred as the orig-
inal formulation) is probably not closed under sequential composition. In particular, Feige

*Received by the editors August 30, 1993; accepted for publication (in revised form) July 28, 1994. This
research was partially supported by the Fund for Basic Research Administered by the Israeli Academy of Sciences
and Humanities. A preliminary version of this paper appeared in the Proc. 17th ICALP, Lecture Notes in Computer
Science, Vol. 443, Springer-Verlag, Berlin, 1990, pp. 268-282.

Department of Computer Science, Technion, Haifa, Israel.
tlBM T. J. Watson Research Center, Yorktown Heights, NY 10598 (hugo@watson.ibm.com). This research

work was performed while this author was with the Department of Computer Science, Technion, Haifa, Israel.

169

170 ODED GOLDREICH AND HUGO KRAWCZYK

and Shamir [Fei] proposed a protocol conjectured to be a counterexample to the Sequential
Composition "Theorem." In this paper we use the ideas of [Fei] and new results on pseudo-
random distributions [GK] to prove that, indeed, the originalformulation of zero-knowledge
is not closed under sequential composition. Our proof is independent of any intractability
assumption. It applies to the notion of computational zero-knowledge (see 2), and uses
computationally unbounded provers. (So far no proof exists for the same result with provers
limited to polynomial time, or for statistical or perfect zero-knowledge.)

The reader should be aware that the Sequential Composition Theorem was proven (by
Goldreich and Oren [GO], [Ore]) for a stronger ("nonuniform") formulation ofzero-knowledge
suggested by several authors (cf. [Fei], [GMR2], [GO], [Ore], and [TW]). The Sequential
Composition Theorem is crucial to the utilization of zero-knowledge interactive proofs in
cryptographic applications and in particular to the construction of cryptographic protocols for
playing any computable game [Yao], [GMW2].

Parallel composition. Parallel composition of interactive proofs is widely used as a
means of decreasing the error probability of proof systems, while maintaining the number of
rounds. Of course, one would be interested in applying these advantages of parallelism to
zero-knowledge protocols as well. Parallelism is also used in multiparty protocols in which
parties wish to prove (the same and/or different) statements to various parties concurrently.
Unfortunately, we show in this paper a counterexample to the Parallel Composition Theo-
rem. Namely, we introduce a pair of protocols which are (computational) zero-knowledge
with respect to the strongest known definitions (including the nonuniform formulation dis-
cussed above and the "black-box simulation" formulation discussed below) yet their parallel
composition is not zero-knowledge (not even in the "weak" sense of the original [GMR1]
formulation). Also in this case, our proof does not rely on any unproven hypotheses; on the
other hand, it uses in an essential way the unbounded computational power of the prover and
the computational notion of zero-knowledge. Based on intractability assumptions, Feige and
Shamir [FS2] show a perfect zero-knowledge protocol with a polynomial-time prover which
fails parallel composition. Our results below on three-round zero-knowledge proofs imply a
similar result, but our case requires a superlogarithmic number of repetitions, while in [FS2]
two repetitions suffice.

By the above result we have ruled out the possibility of proving that particular interactive
proofs are zero-knowledge by merely arguing that they are the result of parallel composition
of various zero-knowledge protocols. But this does not resolve the question of whether
concrete cases of composed interactive proofs are zero-knowledge. In particular, since the
first presentation of the results in [GMR1] and [GMW1], it was repeatedly asked whether
the "parallel versions" of the interactive proofs presented for quadratic residuosity, graph
isomorphism, and any language in NP are zero-knowledge.

Round complexity of zero-knowledge proofs. In this paper we prove a general result
concerning the round complexity of zero-knowledge interactive proofs which, in particular,
resolves the question of parallelization of the above-mentioned protocols. This general result
states that only BPP languages have three-round interactive proofs which are black-box sim-
ulation zero-knowledge. Since the parallel versions of the above examples are three-round
interactive proofs (with negligible cheating probability for the prover) it follows that these inter-
active proofs cannot be proven zero-knowledge using black-box simulation zero-knowledge,
unless the corresponding languages are in BPP. This (negative) result is proven for computa-

This result applies to interactive proofs in which the prover can convince the verifier of accepting a false assertion
with only negligible probability. The above-mentioned languages have three-round zero-knowledge interactive proofs
in which the prover has a significant (e.g., constant) probability of cheating.

ON THE COMPOSITION OF ZERO-KNOWLEDGE PROOFS 171

tional zero-knowledge proofs and therefore applies to statistical and perfect zero-knowledge
as well.

Loosely speaking, we say that an interactive prooffor a language L is black-box simulation
zero-knowledge if there exists a (probabilistic polynomial-time) universal simulator which,
using any (even nonuniform) verifier V* as a black box, produces a probability distribution
which is polynomially indistinguishable from the distribution of conversations of (the same)
V* with the prover, on inputs in L. This definition of zero-knowledge is more restrictive than
the original one, which allows each verifier V* to have a specific simulator Sv,. Nevertheless,
all known zero-knowledge protocols are also black-box simulation zero-knowledge. This fact
cannot come as a surprise since it is hard to conceive of a way of taking advantage of the full
power of the more liberal definition.

It is not plausible that our result could be extended to four-round interactive proofs since
such proofs are known for languages believed to be outside BPP. The protocols for quadratic
nonresiduosity [GMR1] and graph nonisomorphism [GMW1] are such examples. In addi-
tion, zero-knowledge interactive proofs of five rounds are known for quadratic residuosity and
graph isomorphism [BMO1], and, assuming the existence of claw-free permutations, there
exist five-round zero-knowledge interactive proofs for any language in NP [GKa]. Moreover,
our results extend to zero-knowledge arguments2, for which Feige and Shamir [FS 1] pre-
sented (assuming the existence of one-way functions) a four-round protocol for any language
in NE Our result implies that the round complexity of this protocol is optimal (as long as
BPP 7 NP).

Constant-round Arthur-Merlin proofs. When restricting ourselves to Arthur-Merlin
interactive proofs, we can extend the above result to any constant number of rounds. We show
that only BPP languages have constant-round Arthur-Merlin proofs which are also black-box
simulation zero-knowledge.

Arthur-Merlin interactive proofs, introduced by Bahai [Bab], are interactive proofs in
which all the messages sent by the verifier are the outcome of his coin tosses. In other words,
the verifier "keeps no secrets from the prover." Our result is a good reason to believe that the
only feasible way of constructing constant-round zero-knowledge interactive proofs is to let
the verifier use "secret coins." Indeed, the above-mentioned constant-round zero-knowledge
proofs, as well as the constant-round statistical zero-knowledge proofs of [BMO2], use secret
coins. Thus, secret coins do help in the zero-knowledge setting. This should be contrasted
with the result of Goldwasser and Sipser [GS], which states that Arthur-Merlin interactive
proofs are equivalent to general interactive proofs (as far as language recognition is concerned).
They show that any language having a general interactive proof (IP) of k rounds also has an
Arthur-Merlin (or AM) proof of k rounds. Using our result we see that in the zero-knowledge
setting such a preservation of rounds (when transforming IP into AM) is not plausible (e.g.,
graph nonisomophism).

Our result concerning Arthur-Merlin proofs is tight in the sense that the languages con-
sidered above (e.g., graph nonisomorphism, every language in NP) have unbounded (i.e.,
co (n -round, for every unbounded function co N -- N) Arthur-Merlin proof systems which
are black-box simulation zero-knowledge. In particular, we get that bounded-round Arthur-
Merlin proofs which are black-box zero-knowledge exist only for BPP, while unbounded round
proofs of the same type exist for all PSPACE (if one-way functions exist [IY], [B*], [Sha]).
That is, while the finite hierarchy of languages having black-box zero-knowledge Arthur-

2Interactive arguments (also known as "computationally sound proofs" and "computationally convincing proto-
cols") differ from an interactive proof system in that the soundness condition of the system is formulated with respect
to probabilistic polynomial-time provers, possibly with auxiliary input (see [BCC]). Namely, efficient provers cannot
fool the verifier into accepting an input not in the language, except with negligible probability.

172 ODED GOLDREICH AND HUGO KRAWCZYK

Merlin proofs collapses to BPP (= AM(0)), the corresponding infinite hierarchy contains all
of PSPACE. This implies (assuming the existence of one-way functions) a separation between
the two hierarchies.

Organization. In 2 we outline the definitions of interactive proofs and zero-knowledge,
and introduce some terminology and notation used throughout the paper. Section 3 presents
the definitions and results concerning pseudorandom distributions that are used for disproving
the composition theorems. In 4 and 5 we present these disproofs for the case of sequential
and parallel composition, respectively. Finally, in 6 we present the lower bounds on the round
complexity of black-box simulation zero-knowledge proofs. We stress that this last section
is technically independent from 3, 4, and 5 and can be read without going through these
sections.

2. Preliminaries. The notions ofinteractive proofs and zero-knowledge were introduced
by Goldwasser, Micali, and Rackoff [GMR1]. Here, we give an informal outline of these
notions. For formal and complete definitions, as well as the basic results concerning these
concepts, the reader is referred to [GMR1], [GMW], and [GMR2].

An interactive proof is a two-party protocol in which a computationally unrestricted
prover, P, interacts with a probabilistic polynomial-time verifier, V, by exchanging messages.
Both parties share a common input x. At the end of the interaction the verifier computes a
predicate depending on this input and the exchanged messages in order to accept or reject the
input x. Such a protocol, denoted (P, V), is called an interactive prooffor a language L if the
following two conditions hold.

Completeness property. For any positive constant c and sufficiently long x 6 L, Prob(V
accepts x) > 1 Ix -c.

Soundness property. For any positive constant c and sufficiently long x 9(L, Prob(V
accepts x) < Ix -c, no matter how the prover behaves during the protocol.

(The above probabilities are taken over the coin tosses of both the prover and the verifier.)
In other words, we require that on inputs belonging to L the probability that the prover P
"convinces" V to accept the common input is almost 1, while on inputs outside L there is no
prover that can fool V into accepting, except with negligible probability.

Note. Notice that we define an interactive proof to have a negligible probability of error.
Some authors define this probability to be just a constant (e.g., g). The latter is motivated by
the fact that constant-error interactive proofs can be converted into negligible-error proofs by
parallel repetition. However, in the setting of zero-knowledge interactive proofs, our results
show that such parallel repetition may sacrifice the zero-knowledge property.

An interactive proof in which the honest verifier chooses all its messages at random (i.e.,
with uniform probability over the set of all strings of the same length as the message) is called
an Arthur-Merlin interactive proof [Bab]. That is, in an Arthur-Merlin proof system the only
nontrivial computation carded out by the honest verifier is the evaluation of a polynomial-time
predicate at the end of the interaction, in order to decide the acceptance or rejection of the
input to the protocol. We say that such a verifier uses public coins. (Notice that there is no
"public coin" restriction on the cheating verifiers.)

We say that an interactive proofhas k rounds if there are a total of k messages (alternately)
exchanged between the prover and verifier during the protocol (i.e., we count messages from
both parties). In general, the number k can be a function k(Ixl) of the input length. The
notation IP(k) stands for the class of languages having k-round interactive proofs, and AM(k)
stands for languages having k-round Arthur-Merlin interactive proofs.

An interactive proofis called zero-knowledge ifon inputx 6 L no probabilistic polynomial-
time verifier (i.e., one that may arbitrarily deviate from the predetermined program) gains
information from the execution of the protocol except the knowledge that x belongs to L.

ON THE COMPOSITION OF ZERO-KNOWLEDGE PROOFS 173

This means that any polynomial-time computation based on the conversation with the prover
can be simulated, without interacting with the real prover, by a probabilistic polynomial-time
machine ("the simulator") that gets x as its only input. More precisely, let (P, V*)(x) denote
the probability distribution generated by the interactive machine (verifier) V*, which inter-
acts with the prover P on input x 6 L. We say that an interactive proof is zero-knowledge
if for all probabilistic polynomial-time machines V*, there exists a probabilistic expected
polynomial-time algorithm My. (called the simulator) that on inputs x L produces prob-
ability distributions My. (x) that are polynomially indistinguishable from the distributions
(P, V*) (x). (This notion of zero-knowledge is also called computational zero-knowledge.)3

The above formalization of the notion of zero-knowledge is taken from the original paper
by Goldwasser, Micali, and Rackoff [GMR]. Later, stronger formulations of zero-knowledge
were introduced in which the simulation requirement is extended to deal with stronger veri-
fiers [Fei], [GMR2], [GO], [Ore], [TW], namely, verifiers with nonuniform properties (e.g.,
probabilistic polynomial-time verifiers that get an additional auxiliary-input tape), or verifiers
modeled by polynomial-size circuits.

One further formulation ofzero-knowledge is called black-box simulation zero-knowledge
[GO], [Ore]. This formulation differs from the former by requiring the existence of a ("univer-
sal") simulator that, using any (nonuniform) verifier V* as a black box, succeeds in simulating
the (P, V*) interaction. In other words, there exists a probabilistic expected polynomial-time
oracle machine M such that for any polynomial-size verifier V* and for x 6 L, the distributions
(P, V*)(x) and Mv* (x) are polynomially indistinguishable.

Remark. A complete formalization of the notion ofblack-box simulation zero-knowledge
requires dealing with the following technical problem. The simulator uses V* as a black box.
This means that the simulator is responsible, during the simulation process, for feeding into
the black box the external parameters that determine the behavior of V*. These parameters
are the string representing the input to the protocol, the contents of the random tape of V*,
and the messages of the prover. A problem arises when feeding the random coins used by V*.
Although the number of coin tosses used by a particular verifier V* is bounded by a polynomial,
there is no single polynomial that bounds this number for all possible verifiers. On the other
hand, the simulator M runs (expected) time that is bounded by a specific polynomial. So, how
can this simulator manage to feed a verifier requiring more coin tosses than this bound? In
[BMO2] this problem is overcome by stating the existence of two random tapes for M. The
first is used in the regular way for M’s computations. The second can be entirely fed by M into
V* in a single step. That is, M can feed the random coins for the black box in an "intelligent
way" as long as the number of coins does not exceed the time capability of M; beyond this
number it can only feed truly random bits. We stress that this formalization is general enough
to include all known zero-knowledge proofs.

An alternative solution to the above problem is to have,for each polynomial p, a simulator
Mp which simulates all verifiers V* that use at most p(Ixl) random coins on any input x.
Clearly, the running time of the simulator Mp may depend on the polynomial p, and then the
above difficulty is overcome. This second formulation is weaker than the one proposed in
[BMO2], but it suffices for the results proved in our paper and is therefore adopted here. (In
fact, our results in 6 only require the existence of a simulator that simulates deterministic
verifiers, i.e., Mp with p 0.)

Basedon the above remarkwe give our definition ofblack-box simulation zero-knowledge.

3Other definitions were proposed in which it is required that the distribution generated by the simulator be
identical to the distribution of conversations between the verifier and the prover (perfect zero-knowledge), or at least
statistically close (statistical zero-knowledge). See [GMR2] for further details.

174 ODED GOLDREICH AND HUGO KRAWCZYK

DEFINITION. An interactiveproof P, V) is calledblack-box simulation zero-knowledge if
for every polynomial p, there exists a probabilistic expectedpolynomial-time oracle machine
Mp such that for any polynomial-size verifier V* that uses at most p(n) random coins on
inputs of length n, andfor x L, the distributions (P, V*)(x) and MVp (x) are polynomially
indistinguishable.

Note. The notion of polynomial indistinguishability in the above definition can be for-
malized based on nonuniform polynomial-size distinguishers or uniform polynomial-time
distinguishers which have black-box access to the corresponding V*. Our results apply to
both formalizations.

Terminology. Throughout this paper we use the term negligible to denote functions that
are (asymptotically) smaller than over any polynomial, and the term nonnegligible to denote
functions that are greater than over some fixed polynomial. More precisely, a function f
from nonnegative integers to reals is called negligible if for all constants c and sufficiently large
n, f(n) < n-c. The function f is called nonnegligible if there exists a constant c such that
for all (sufficiently large) n, f (n) > n-c. (Observe that nonnegligible is not the complement
of negligible.)

Notation. We use the notation e 6n S for"the element e is chosen with uniform probability
from the set S."

3. On evasive and pseudorandom sets. In the demonstration of counterexamples for
the "composition theorems" we make use of pseudorandom distributions which have some
interesting "evasiveness" properties. These properties and the corresponding proofs are given
in [GK] and cited here without proof.

Roughly speaking, a distribution on a set of strings of length k is pseudorandom if this
distribution cannot be efficiently (i.e., in time polynomial in k) distinguished from the uniform
distribution on the set of all strings of length k. In order to formalize this notion one has to
define it in asymptotical terms and refer to collections of distributions (called pseudorandom
ensembles), rather than single distributions. The notion of a "pseudorandom set" is made
precise in the following definition.

DEFINITION 3.1. A set S c_ {0, 1} is called ((k),e(k))-pseudorandom if for any
(probabilistic) circuit C ofsize r (k) with k inputs and a single output

IPc(S) pc({0, llk)l _< e(k),

where pc(S) (resp., pc({0, }k)) denotes theprobability that C outputs 1 when given elements
of S (resp., {0, 1 }), chosen with uniform probability.

Note that a collection of uniform distributions on a sequence of sets $1, $2 where
each S is a (r(k), e(k))-pseudorandom set, constitutes a pseudorandom ensemble, provided
that both functions (n) and e-1 (n) grow faster than any polynomial. Therefore, we shall
refer to such a sequence of sets as a pseudorandom ensemble.

We now present the concept of "evasive sets." Informally, evasiveness means that it is
hard, for efficient algorithms, to find strings which belong to these sets.

DEFINITION 3.2. Let $1, $2 be a sequence of (nonempty) sets such that for every
n, Sn c_ {0, 1}Qn, for a fixed polynomial Q. Such a sequence is called a polynomially
evasive (denoted P-evasive) ensemble iffor any probabilistic polynomial-time algorithm A,
any constant c, any sufficiently large n, and any x O, }n,

Prob(A (x) 6 S) < n-c,
where the probability is taken over the random coins ofalgorithm A.

The following theorem states the existence of a P-evasive ensemble which is also pseu-
dorandom.

ON THE COMPOSITION OF ZERO-KNOWLEDGE PROOFS 175

THEOREM 3.1 [GK]. There exists a P-evasive pseudorandom ensemble S1, S2 with
Q(n) 4n. Furthermore, there exists a Turing machine which on input outputs the set

Sn.
For disproving the parallel composition theorem we shall need a stronger notion ofevasive-

ness. Namely, one which also resists nonuniform algorithms. This definition of evasiveness
involves a collection of sets for each length, rather than a single set per length as in the uniform
case.

DEFINITION 3.3. Let Q(.) be a polynomial, andfor n 1, 2 let Sin) be a collection

of2n sets {SIn) sn,}, where each Sn {0, 1} ainu. The sequence SI1, S12 is called
a nonuniform polynomially evasive (denoted P/poly-evasive) ensemble iffor any c > O,
sufficiently large n, and any (probabilistic) circuit C of size n (with n inputs and Q(n)
outputs)

Prob(C(i) 6 Si) < --g,
where the probability is taken over the random coins of C and 6 2n}, both with

uniform probability.
That is, a sequence Six), S/2) is a P/poly-evasive ensemble if any circuit of size

polynomial in n, which gets a randomly selected index of one of the sets in SIn, cannot
succeed in outputting an element in that set, except for a negligible probability.

Remark. Notice that in the definition of P-evasive ensembles the (uniform) algorithm
trying to hit an element in the evasive set Sn gets as input a string x of length n, which can be
seen as an auxiliary input. The crucial difference between this "uniform" definition and the
definition of P/poly-evasiveness is that in the latter the auxiliary input is allowed to be of any
length polynomial in the length of the target strings, while in the former the auxiliary input is
properly shorter than the target strings in the set

The following theorem states the existence of a P/poly-evasive ensemble which is com-
posed of pseudorandom sets.

THEOREM 3.2. There exists a P/poly-evasive ensemble SI, S12 with Q(n) 4n, such
thatfor every n, each Sn) is a (2n/4, 2-n/4)-pseudorandom set ofcardinality 2 Furthermore,
there exists a Turing machine which on input In outputs the collection S

The proof of this theorem is given in the appendix.

4. Sequential composition of zero-knowledge protocols. A natural requirement from
the notion of zero-knowledge proofs is that the information obtained by the verifier during
the execution of a zero-knowledge protocol will not enable him to extract any additional
knowledge from subsequent executions of the same protocol. That is, it would be desirable
for the sequential composition of zero-knowledge protocols to yield a protocol which is itself
zero-knowledge. Such a property is crucial for applications of zero-knowledge protocols in
cryptography (for details and further motivation, see [GO] and [Ore]).

We prove that the original definition of (computational) zero-knowledge introduced by
Goldwasser, Micali, and Rackoff in [GMR1], is not closed under sequential composition.
Several authors have previously observed that this definition probably does not guarantee the
robustness of zero-knowledge under sequential composition, and hence have introduced more
robust formulations ofzero-knowledge [Fei], [GMR2], [GO], [Ore], [TW]. But so far, no proof
has been given for the claim that computational zero-knowledge (with uniform verifiers) fails
under sequential composition.

Intuitively, the reason that a zero-knowledge protocol could not be closed under sequential
composition is that the definition of zero-knowledge requires that the information transmitted
in the execution of the protocol is "useless" for any polynomial-time computation; it does not

176 ODED GOLDREICH AND HUGO KRAWCZYK

rule out the possibility that a cheating verifier could take advantage of this "knowledge" in
a subsequent interaction with the (nonpolynomial time) prover for obtaining valuable infor-
mation. This intuition (presented in [Fei]) is the basis of our example of a protocol which
is zero-knowledge in a single execution but reveals significant information when composed
twice in a sequence. This protocol, presented in the proof of the following theorem, uses a
P-evasive ensemble as defined in Definition 3.2 and whose existence is stated in Theorem 3.1.

THEOREM 4.1. Computational zero-knowledge ([GMR1]formulation) is not closed under
sequential composition.

Proof. Let $1, $2 be a P-evasive pseudorandom ensemble as described in Theorem
3.1. Also, let K be an (arbitrary) hard Boolean function, in the sense that the language
LI {x K(x) 1} is not in BPP (we use this function as a "knowledge" function).

We present the following interactive-proof protocol (P, V) for the language L {0, 1 }*.
(Obviously, this language has a trivial zero-knowledge proof in which the verifier accepts
every input without carrying out any interaction. We intentionally modify this trivial protocol
in order to demonstrate a zero-knowledge protocol which fails sequential composition.)

Let x be the common input for P and V, and let n denote the length of x. The verifier
V begins by sending to the prover a random string s of length 4n. The prover P checks
whether s Sn (the nth set in the P-evasive ensemble defined above). If this is the case (i.e.,
s 6 Sn), then P sends to V the value of K (x). Otherwise (i.e., s ’ Sn), P sends to V a string
so randomly selected from S. In any case the verifier accepts the input x (as belonging to

L).
We stress that the same P-evasive ensemble is used in all the executions of the protocol.

Thus, the set Sn does not depend on the specific input to the protocol, but only on its length.
Therefore, the string so, obtained by the verifier in the first execution of the protocol, enables
him to deviate from the protocol during a second execution in order to obtain the value of
K(x’), for any x’ of length n (and in particular for x’ x). Indeed, consider a second
execution of the protocol, this time on input x’. A "cheating" verifier, which sends the string
s so instead of choosing it at random, will get the value of K (x’) from the prover. Observe
that this cheating verifier obtains information that it could not compute by itself. There is
no way to simulate in probabilistic polynomial time the interaction in which the prover sends
the value of K(x’); otherwise ihe language LK would be in BPP (indeed, such a simulator
could be used as a probabilistic polynomial-time algorithm for computing the function K with
negligible error probability. To see that, notice that the real prover in an interaction with the
above cheater verifier on inputs (x, x’) will output k(x’) with probability 1. Therefore, the
simulator must output the correct value of k(x’) with probability almost 1, or otherwise, its
output is polynomially distinguishable from the real conversations). Thus, the protocol is not
zero-knowledge when composed twice.

On the other hand, the protocol is zero-knowledge (when executed once). To show
this, we present for any verifier V*, a polynomial-time simulator My. that can simulate the
conversations between V* and the prover P. There is only one message sent by the prover
during the protocol. It sends the value of K(x) when the string s sent by the verifier belongs to
the set Sn, and a randomly selected element of S otherwise. By the evasivity condition of the
set S, there is only a negligible probability that the first case holds. Indeed, no probabilistic
polynomial-time machine (in our case, the verifier) can find such a string s Sn, except with
negligible probability (no matter what the input x to the protocol is). Thus, the simulator can
succeed by always simulating the second possibility, i.e., the sending of a random element so
from Sn. This step is simulated by randomly choosing so from {0, }4n rather than from S.
The indistinguishability of this choice from the original one follows from the fact that each
Sn is a pseudorandom subset of {0, }4n, and that the prover chooses so from S with uniform
probability. q

ON THE COMPOSITION OF ZERO-KNOWLEDGE PROOFS 177

Remark. The argument presented in the above proof generalizes to any language L having
a zero-knowledge interactive proof. Simply modify the zero-knowledge proof for L as in the
proof of Theorem 4.1.

Remark. Another example of a zero-knowledge protocol which is not closed under se-
quential composition was independently found by D. Simon [Sim]. His construction assumes
the existence of secure encryption systems.

5. Parallel composition of zero-knowledge protocols. In this section we address the
question of whether zero-knowledge interactive proofs are robust under parallel composition.

Clearly, we cannot expect the original Goldwasser-Micali-Rackoff (GMR) definition to
satisfy this condition: it is easy to see that a zero-knowledge protocol which is not closed under
sequential composition can be transformed into another zero-knowledge protocol which fails
parallel composition.

In light ofthe fact that auxiliary-input zero-knowledge is robust under sequential composi-
tion [GO], [Ore], it is an interesting open question whether this formulation of zero-knowledge
is also robust under parallel composition. The main result of this section is that this is not
the case. We prove the existence of protocols which are zero-knowledge even against nonuni-
form verifiers (e.g., auxiliary-input zero-knowledge), but which do not remain zero-knowledge
when executed twice in parallel. As in the case of sequential composition our results concern
only computational zero-knowledge.

The ideas used for the design of a protocol which fails parallel composition are simi-
lar to those used for the sequential case. There, we have used the pseudorandomness and
evasiveness of some sets to construct the intended protocol. We also use this method here.
The main difficulty of extending these properties to the present case is that now we need an
evasive collection which resists even nonuniform verifiers. Clearly, a P-evasive ensemble
will not satisfy this condition, since for any set of strings there exist nonuniform verifiers
which can output elements in this set (e.g., by getting such a string as auxiliary input). In-
stead, we use the notion of P/poly-evasive ensembles as defined in Definition 3.3. Based on
Theorem 3.2, which states the existence of such ensembles, we prove the main result of this
section.

THEOREM 5.1. Computational zero-knowledge (even with nonuniform verifiers) is not
closed under parallel composition.

Proof. We present a pair of protocols (P1, V1) and (P2, V2) which are zero-knowledge
when executed independently, but whose parallel composition is provably not zero-knowledge.

We use some dummy steps in the protocols in order to achieve synchronization between
them. Of course, one can modify the protocol, substituting these extra steps by significant
ones. The version we give here prefers simplicity over naturality. Both protocols consist of
five steps and are described below (see also Fig. 1).

The first protocol is denoted (P1, V2). Let x be the input to the protocol and let n denote
its length. The protocol uses (for all its executions) a P/poly-evasive ensemble S(1, S(2
with the properties described in Theorem 3.2. It also involves a hard Boolean function K as in
the proof of Theorem 4.1. The prover P1 begins by sending to VI an index 6 2n }.
After two dummy steps the verifier V1 sends to P1 a string s 6 {0, 1 }4. The prover P checks
whether s S}n). If this is the case then it sends to V1 the value of K (x), (otherwise an empty
message). This concludes the protocol.

The second protocol (Pz, V2) uses the same P/poly-evasive ensemble S(1, S(2 as
protocol (P, V1) does. The first step of the protocol is a dummy one. In the second step
the verifier Ve sends to P2 an index j 6 1 2n }. The prover P2 responds with a string
r Sn. After two more dummy steps the protocol stops.

We show that each of the above protocols is indeed zero-knowledge (even for nonuni-
form verifiers). For the first protocol, there are two steps of the prover to be simulated. In the

178 ODED GOLDREICH AND HUGO KRAWCZYK

el

iR{1, "’,2n}

dummy step

if s e S}")" K(x)-

V1

dummy step

seR {0,1}4n

step P 2

2

3

4

5

dummy step

dummy step

V2

’J R {1, "",2n}

dummy step

FIG. 1. Protocols (P1, V1) and (Pz, V2) with input x.

first step Pi sends an index 6R 1 ,2 }. The simulator does the same. In the second
step, the prover sends the value of K(x) only if the verifier succeeds in presenting him with a
string which belongs to the set S:n). By the evasivity condition of the sequence S(1), S(2)

this will happen with negligible probability and therefore the simulator can always simulate
this step as for the case where the verifier sends a string s ’ S:n). (Observe that the circuits
in the definition of P/poly-evasive ensembles only get as input the index of the set to be hit.
Nevertheless, in our case the circuits also have an additional input x. Clearly, this cannot help
them find an element in S:n); otherwise, circuits which have such a string incorporated will
contradict the evasiveness condition.)

In the second protocol, (Pz, V2), the only significant step of the prover P2 is when it
sends an element r 6R Sn) in response to the index j sent by the verifier. In this case the

simulator will send a string r’ 6R {0, 1 }4n. Using the pseudorandomness property of the set

S)n) that the simulator’s choice is from thewe get polynomially indistinguishable prover’s
one.

Finally, we show that the parallel composition ofthe above protocols into a single protocol
(P, V) is not zero-knowledge. Let V* be a "cheating" verifier which behaves as follows.
Instead of sending a randomly selected index j (corresponding to the second step of the
subprotocol (P2, V2)) it sends the index received from P as part of P1 ’s first step. Thus,
j i, and the prover P will respond with a string r S:n). In the next step this V* will send
string r to P instead of the "random" string s that V1 should send to P1. The prover P will
verify that r S:n) and then will send the information K (x). By the hardness of the function
K this step cannot be simulated by a probabilistic polynomial-time machine. Therefore, the
composed protocol (P, V) is not zero-knowledge.

Remark. The two protocols (P1, V1) and /P2, V2) can be merged into a single zero-
knowledge protocol which is not robust under parallel composition. In this merged protocol,
the verifier chooses (at random) an index 6 1, 2}, sends it to the prover, and then both
parties execute the protocol (Pi, Vi). When executing two copies of this protocol in parallel,
the verifiers may choose and 2, respectively, thus forcing a parallel execution of
(Pa, V1) and (Pz, V2), which we have shown not to be zero-knowledge.

6. On the round complexity of zero-knowledge proofs. In this section we present
lower bounds on the round complexity of black-box simulation zero-knowledge interactive
proofs. We show that only languages in BPP have constant-round Arthur-Merlin interactive
proofs which are black-box simulation zero-knowledge. (For a definition of black-box simu-
lation zero-knowledge and Arthur-Merlin interactive proofs, see 2.) We have the following
theorem.

ON THE COMPOSITION OF ZERO-KNOWLEDGE PROOFS 179

THEOREM 6.1. A language L has a constant-roundArthur-Merlin interactiveproofwhich
is black-box simulation zero-knowledge ifand only if L BPP.

In 6.1 we present a proof for a special case of this theorem, namely, for the case of a three-
round Arthur-Merlin protocol. The general case is proved in 6.2 using careful extensions of
the ideas presented for this special case.

The three-round case can also be extended to general interactive proof systems. That is,
we also have the following theorem, proved in 6.3.

THEOREM 6.2. A language L has a three-round interactive proof which is black-box
simulation zero-knowledge ifand only if L BPP.

(We remark that [GO] and [Ore] show that two-round (auxiliary-input) zero-knowledge
proofs--not necessarily black-box simulation---exist only for BPP languages.)

Our results are optimal in the sense that there exist Arthur-Merlin interactive proofs, for
languages believed to be outside BPP, with unbounded number of rounds and which are black-
box simulation zero-knowledge. Similarly, there exist four-round interactive proof protocols
(using private coins) which are also black-box simulation zero-knowledge. For further details
about these protocols, and some consequences concerning the hierarchy of languages having
zero-knowledge Arthur-Merlin proofs, see 1.

It is interesting to note that our results hold also for a weakernotion ofblack-box simulation
zero-knowledge, namely, one which only requires the existence of a black-box simulator
that succeeds in simulating conversations with deterministic (nonuniform) verifiers. The
sufficiency of this condition follows from the proofs below. Also, the formulation of the
completeness condition of an interactive proof (see 2) can be relaxed in the following way.
We have defined the completeness condition by requiring that the prover convince the verifier of
accepting an input in the language with probability almost (i.e., minus a negligible fraction).
For the correctness of our results it suffices to require just a nonnegligible probability. (In
this section we use this weaker formulation of the completeness condition.) On the other
hand, the requirement of a negligible probability of convincing the verifier to accept an input
not in the language (the soundness condition) is essential. (For example, three-round zero-
knowledge protocols exist for all languages in NP ifthe soundness condition is formulated with
probability 7 [GMW1].) Finally, our results hold also in the setting of interactive arguments
[BCC], i.e., "interactive proofs" in which the prover is limited to probabilistic polynomial-time
computations, possibly getting an auxiliary input.

6.1. The ease AM(3).
The protocol (P, V). Consider an Arthur-Merlin protocol (P, V) for a language L,

consisting of three rounds. We use the following notation. Denote by x the input for the
protocol, and by n the length of this input. The first message in the interaction is sent by
the prover. We denote it by o. The second round is the V, which sends a string/3. The
third (and last) message is from P, and we denote it by ?’. The predicate computed by the
verifier V in order to accept or reject the input x is denoted by Pv, and we consider it, for
convenience, as a deterministic function Pv (x, , , 9/). (For the general case, see Remark
6.2.) We will also assume, without loss of generality, the existence of a polynomial (n) such
that Iotl 1/31 l(n).

The simulation process. Let this three-round Arthur-Merlin protocol (P, V) be black-
box simulation zero-knowledge. Denote by M the guaranteed probabilistic expected poly-
nomial-time black-box simulator which, given access to the black-box V*, simulates (P, V*).
The process of simulation consists of several "tries" or calls to the interacting verifier V* ("the
black box"). In each such call the simulator M feeds the arguments for V*. These arguments
are the input y (which may be different from the "true" input x), the random coins for V*,
and a string ot representing the message sent by the prover P. In our case, it suffices for our

180 ODED GOLDREICH AND HUGO KRAWCZYK

results to consider a simulator that is just able to simulate conversations with deterministic
(nonuniform) verifiers. In particular, this simulator does not care about feeding the black-box
V* with random coins. This simplifies our proof by avoiding any reference to these random
coins for V*, and strengthen our result (since it holds even under the sole existence of this
weak kind of simulator).

After completing its tries the simulator outputs a conversation (y, c, r, ,).
We shall make some further simplifying assumptions on the behavior of the simulator M,

which will not restrict the generality. In particular, we assume that some cases, which may arise
with only negligible probability, do not happen at all. This cannot significantly effect the suc-
cess probability of the simulator. In other words, any black-box simulator which successfully
simulates (P, V*) conversations of deterministic verifiers V* can be changed into another sim-
ulator for which the following conventions hold and which has the same success probability as
the original simulator, except for a possibly negligible difference. We assume the following:

The conversations output by M always have the form (x, t, r, ,) (i.e., y x), and
that the string fl equals the message output by V* when fed with inputs x and t. Note
that these conditions always hold for the real conversations generated by the prover
P and the (deterministic) verifier V*. Therefore, the simulator must almost always
do the same. (Otherwise, a distinguisher which has access to V* would distinguish
between the simulator’s output and the original conversations.)
The simulator M explicitly tries, in one of its calls to V*, the arguments x and c
appearing in the output conversation. (For example, once the simulator decides on
the output conversation with a specific parameter or, it explicitly feeds V* with x and
this value of or, regardless of whether it asked ct before or not. In any case, the answer
of the deterministic V* to the pair (x, or), will be always the same.)
The simulator runs in (strictly) polynomial time. (In Remark 6.1 below we show
how to handle the general case in which the simulator runs in expected polynomial
time.) We denote by t(n) a polynomial bounding the number of calls tried by M
before outputting a conversation.

The simulator as a subroutine. Our goal is to present a BPP algorithm for the language
L. The idea is to use the simulator M in order to distinguish between inputs in and outside L.
For that, we use the simulator itself as a subroutine of the BPP algorithm. We do not make any
assumption on the internal behavior of this simulator, but just use the following observation.
The behavior of the simulator M, interacting with a verifier V*, is completely determined by
the input x, the random tape RM used by M, and the strings output by V* (in response to the
arguments fed by the simulator during its tries). Therefore, in order to operate M, we just
need to feed it with an input x, a tape of random coins, and a sequence of responses to its
messages ct. Below we formally describe a computation process that uses M as a subroutine.
(We stress that in this process there is no explicit verifier present.)

Fix an input x of length n, a string Rt (of length q(n), where q(.) is a polynomial
bounding the number of random coins used by M on inputs of length n), and (n)
(arbitrary) strings /(1), /(2) fl(t), each of length l(n). Activate M on input x with its
random tape containing Rt. For each y and c tried by M, respond with a message/3 from
the above list/31, fl(2) fl(t) according to the following rule. (This rule depends on the
strings ct but not on y.) To the first ct presented by M respond with/31. For subsequent
c’s check whether the same string ot was presented by M. If so, respond with the same/3
as in that case; if it is the first time this ot is presented then respond with the first unused
/3 i) in the list. That is, if c is the ith different string presented by M then we respond with

fli. We denote the ith different ot by ot i). Clearly, ct i) is uniquely determined by x, Rt,

ON THE COMPOSITION OF ZERO-KNOWLEDGE PROOFS 181

and the strings/(1) /(i-1), i.e., there exists a deterministic function OtM such that
ot i) OtM(X, RM, fll) fli-). We denote by convM (x RM, fll flt) (x, c, fl,
the conversation output by the simulator M when activated with these parameters (notice that
strings fli) always suffice for answering all tries of M). By our convention on the simulator

M, there exists i, _< _< t, such that ot ot i) and/3
DEFINITION. We say thatavector(x, RM, fll flt)) is M-good if cOnVM(X, RM, fll,
flO) is an accepting conversation for the (honest) verifier V, namely, if convM(x, RM,

/(1) i (t)) (X, Or, fl, /) and pv(x, or, fl, ?’) ACCEPT. We say that (x, RM, /(1)
flt) is (M, i)-good (or i-goodfor short) if it is M-good and ot ot i), fl fli).

The main property of M-good strings is stated in the following lemma.
LEMMA 6.3. Let (P, V) be a three-round Arthur-Merlin protocol for a language L.

Suppose P, V) is black-box simulation zero-knowledge, and let M be a black-box simulator
as above. Then,

1. for strings x outside L, only a negligible portion of the vectors (x,
are M-good;

2. for strings x in L there exists a nonnegligible portion of the vectors (x, RM, tiC1)
flCO) that are M-good. (This nonnegligible portion is at least one half of the com-
pleteness probability of the protocol (P, V), i.e., at least half the probability that P
convinces V to accept x.)

Before proving this key lemma, we use it to prove Theorem 6.1 for the case of the three-
round Arthur-Merlin interactive proof.

Proof of Theorem 6.1 (for the case AM(3)). By Lemma 6.3 we get the following BPP
algorithm for the language L. On input x"

*select at random a vector (RM, 3 cl)

*accept x if and only if (x, RM, 3Cl) 3 ct)) is M-good.
The complexity of this algorithm is like the complexity of testing for M-goodness. The
latter is polynomial-time since it involves running the simulator M which is polynomial-time,
and evaluating the predicate Pv, which is also polynomial-time computable. The success
probability of the algorithm is given by Lemma 6.3.

ProofofLemma 6.3. (1) Assume that the portion of M-good vectors (x, R,
for x’s not in L is not negligible. This means that there exist infinitely many x (L for which the
portion of M-good vectors is nonnegligible. For each such x, there exists an index i0, < i0 <
t, for which a nonnegligible fraction of the vectors (x, R, flC) flt)) are/0-good (since
there are only polynomially many possible values for i0). Thus, there exists a nonnegligible
number ofprefixes (x, R, flCl) /(i0-1)), each with a nonnegligible number of/0-good con-
tinuations (fl(io) fl(t)) (i.e., such that (x, R, 1(1) fl(io-1), fl(io) /(t)) are/o-good).
Let (x, R, fl(1) fl(io-1)) be such a prefix, and let ot (i) OtM(X, R, fl(1) fl(io-1)). For
each/o-good continuation (flCio) riCO) machineM outputs a conversation (x, tx (i) tiC/o), ?,)
for which pv(x, ot (i), tiC/o), ?,) ACCEPT. In particular, there exists a nonnegligible number
of flCio) for which this happens.

In other words, for each x as above, there exists a string otx(= ot ci)) for which the set
B(x, Otx) {fl ?’, Pv (x, Ctx, fl, ’) ACCEPT} is of nonnegligible size among all possible
strings ft. Consider now a ("cheating") prover that sends this ctc as its first message. If V
responds with fl B(x, o6c), the prover sends the corresponding ,, which convinces V to

accept. Since V selects its messages fl at random, then the probability of being convinced
by the above prover is (at least) as big as the relative size of B(x,), i.e., nonnegligible.
Concluding, we have shown the existence of a prover that for infinitely many x’s outside L
convinces V to accept with nonnegligible probability. This contradicts the soundness condition
of the protocol (P, V), and this part of the lemma follows.

182 ODED GOLDREICH AND HUGO KRAWCZYK

(2) We show that for strings x in L a nonnegligible portion ofthe vectors (x, RM,/(1)
flt)) are M-good. We do it by considering the behavior of the simulator M when receiving
"random-like" responses from the verifier. This behavior is analyzed by introducing a partic-
ular family of "cheating" verifiers, each of them associated to a different hash function from
a family of (n)-wise independent hash functions. The (n)-wise independence (where (n)
is the bound on the number of simulator’s tries) achieves the necessary randomness from the
verifiers’ responses.

Let x 6 L and let n denote its length. Consider a family of hash functions Hn which
map/(n)-bit strings into/(n)-bit strings, such that the locations assigned to the strings by a
randomly selected hash function are uniformly distributed and (n)-wise independent. (Recall
that (n) is the length of messages ot and/3 in the Arthur-Merlin protocol (P, V) for L, while
t(n) is the bound on the number of M’s tries.) For properties and implementation of such
functions, see, e.g., [Jof], [WC], and [CG]; in particular, we observe that such functions can
be described by a string of length (n) (n), i.e., polynomial in n.

For each hash function h Hn we associate a (deterministic nonuniform) verifier Vh*,
which responds to the prover’s message ot with the string fl h(c) (Vh* has wired in the
description of h). Consider the simulation of (P, Vh*) conversations by the simulator M.
Fixing an input x, a random tape RM for M, and a function h Hn, the whole simulation is
determined. In particular, this (uniquely) defines a sequence of ot’s tried by the simulator, and
the corresponding responses fl of Vh*. We denote by ot (1), (2) Ot (s) the different values
of (x in these tries. When s < t, we complete this sequence to
by adding s strings ot in some canonical way, such that the resultant ot (1) ot (t) are all
different. Let fl(i) h(ot(i)), 1 <_ < t, and define v(x, RM, h) (x, RM, fl(1) fl(t)).
Part (2) of the lemma follows from the following two claims.

CLAIM 1. For x 6 L, there is a nonnegligible portion of the pairs (RM, h) for which the
vector v (x, RM, h) is M-good.

Proof. For any input x to the protocol (P, V), let Px denote the probability that the
prover P convinces V (the honest verifier) to accept x. In other words, Px is the probability,
over the coin sequences Rp of the prover P, and (random) choices fl of V, that the resultant
conversation (x, ot (x, Rp), 1, (X, Rp, 1)) is accepting. By the completeness property of the
protocol (P, V), we get that for x’s in L the probabilities Px are nonnegligible.

Let x L and consider the interaction between the real prover P and the verifiers Vh* on
the input x. Each coin sequence Rp determines the message c and the corresponding response
h (cg) by Vh*. By the uniformity property of the family Hn we get that for every or, all fl’s are
equiprobable as the result of h(cg). Therefore, the probability that P and Vh* (for h uniformly
chosen from Hn) output an accepting conversation is exactly the same as the probability, Px,
that P and V output such a conservation.

Finally, since the simulator M succeeds in simulating (P, Vh* conversations for all func-
tions h Hn, we get that for each h the probability that M outputs an accepting conversation
when interacting with Vh* is almost the same (up to negligible difference) as the probability
that P and Vh* output an accepting conversation. This last probability, for h Hn, is Px. We
conclude that the probability, over random RM and h, that v(x, RM, h) is M-good is almost

Px and thus nonnegligible. The claim follows.
CLAIM 2. For all strings x and RM, and for h chosen with uniform probability from Hn,

the vector v(x, RM, h) is uniformly distributed over the set {(x, RM,
{0, 1}/(n) }.

Proof. Recall the function aM introduced above. Observe that

V(X, RM, h) (x, RM, fl(1) /(t))
if and only if for every i, 1 < < t,

h(otM(X, RM,/(I) /(i-I))) /(i).

ON THE COMPOSITION OF ZERO-KNOWLEDGE PROOFS 183

On the other hand, by the uniformity and (n -independence property of the family Hn, we
have that for any different elements a at in the domain of the functions h 6 Hn, the
sequence h(al) h(at) is uniformly distributed over all the possible sequences bl bt
for bi in the range of the functions Hn.

Thus, for all strings x and RM, and for fixed/(1) /(t), the probability (for h 6R Hn)
that v(x, RM, h) (x, RM,/(1) /(t)) equals the probability that for every i, 1 < < t, h
maps O/(i) OlM(X RM,/(1) /(i-1)) into/(i). Since, by definition, all O/(i) ’S are different,
then we can use the above property of the family H,, to get that the latter probability is the
same for every sequence/3 /3t (i.e., we put ai Ol (i) and bi fl(i)). The claim
follows. [3

Claim 2 states that for any R, the value of v(x, R, h) is uniformly distributed over
all possible vectors (x, R, fl(l fl(t). On the other hand, by Claim 1, a nonnegligible
portion of v(x, R, h) are M-good, and then we get that a nonnegligible portion of the vectors
(X, RM,/(1) /(t)) are M-good.

The lemma follows. [3

Remark 6.1 (expected polynomial-time simulator). For simplicity we have assumed that
the given simulator, M, for the protocol (P, V) runs in (strictly) polynomial time. Neverthe-
less, in the definition of zero-knowledge we allow this simulator to run in expected polynomial
time. We show that our results also hold in this general case by transforming a given expected
polynomial-time simulator M into a strictly polynomial-time simulator M’, and showing that
Lemma 6.3 holds for this new simulator. Then, we can use the modified simulator M’ in the
BPP algorithm for the language L.

The simulator M’ behaves like M, but its running time is truncated after some (fixed)
polynomial number of steps, denoted s(n). We show how to choose this polynomial s(n). Let
T(n) be a polynomial bounding the expected running time of M, and let p(n) be a (lower)
bound on the probability that the prover P convinces the (honest) verifier V to accept an input
in L of length n. We define s(n) to be 2. T(n)/p(n). Since lip(n) is polynomially bounded
(by the completeness condition of the protocol (P, V)), then s (n) is polynomially bounded.
With this modification of M the proof of Lemma 6.3 remains valid, except for a more delicate
argument in the proof of Claim 1. The required changes follow.

In that proof we claimed that "for each h the probability that M outputs an accept-
ing conversation when interacting with Vh* is almost the same (up to a negligible differ-
ence) as the probability that P and Vh* output an accepting conversation." This is true for
the original simulator M, but not necessarily for M’. Since we cut the running of M af-
ter s(n) steps, then there exist cases in which M’ does not complete the original behavior
of M. Nevertheless, by the choice of s(n), the probability (over the coin tosses of M’)
that this happens (i.e., the running time of M exceeds s(n)) is at most p(n)/2. Thus,
for any h, the probability that the truncated simulator, M’, outputs an accepting conver-
sation when interacting with Vh* differs from the probability that P and Vh* output an ac-
cepting conversation by at most p(n)/2. For h 6R H, this last probability was shown
(in the original proof of Claim 1) to be at least p(n), and then we get that the proba-
bility, over random RM, and h, that v(x, RM,, h) is M’-good is (up to a negligible differ-
ence) larger than p(n)/2, and then nonnegligible. Therefore, Claim follows in this case
also.]

Remark 6.2 (randomized Pv). We have assumed that the only coin tosses of the (honest)
verifier V during the Arthur-Merlin protocol (P, V) are the bits corresponding to the string
/3 sent to the prover, and that no additional coin tosses are used in order to compute the
accepting/rejecting predicate Pv. This restriction can be removed from the above proof by
using finer arguments, as done in our treatment of the general IP(3) case (of 6.3).

More generally, any AM(k) protocol in which the predicate pv depends on the whole
conversation and some additional random string can be transformed into an AM(k + 1) pro-
tocol in which no such additional string is used: simply let the verifier send this random string as

184 ODED GOLDREICH AND HUGO KRAWCZYK

its last message. Hence, since we prove our result for any constant-round AM protocol, we
can assume that Pv is deterministic. [3

Remark 6.3 (interactive arguments). We now show how to generalize the above proof of
the case AM(3) in order to prove the same result in the setting of interactive arguments, i.e.,
"interactive proofs" in which the soundness condition is required only with respect to provers
limited to probabilistic polynomial-time computations, possibly getting an auxiliary input.
We have to prove Lemma 6.3 in this setting. Notice that part (2) of the lemma relies on the
completeness and zero-knowledge properties of the interactive proof, but these properties are
not influenced by the soundness condition. Therefore, this part ofthe proof automatically holds
for interactive arguments. The other part, part (1), relies on the soundness of the interactive
proof, thus a modification is required in the proof to deal with provers having just polynomial
power.

In that proofwe showed, by contradiction, the existence of infinitely many x’s not in L for
which a cheating prover can convince the verifier to accept x with nonnegligible probability.
The success of this prover was shown by proving, for each such x, the existence of a message
Cx that for nonnegligibly many fl’s a string , exists such that pv(x, x, , F) ACCEPT. In
the interactive arguments, setting the sole existence of such an Otx is not sufficient. The limited
prover should find in probabilistic polynomial time this string and the corresponding response
?, to the message/3 sent by V. We describe such a prover P*, which uses the simulator M in
order to find the required strings. It begins by choosing 6R 1 and random strings Rt,
fl(1) /(i-1). Then it computes ot OlM(X RM, 1(1) 1(i-1)) and sends this ot to V.
Once V responds with/3, the prover P* chooses t-i random strings 1(/+1) /(t), computes
(using the simulator M) the conversation cOnVM(X, RM,/3(1 /(/-1), 1, (/+1)](t)),
and sends to V the message y appearing in this conversation. If the chosen vector is/-good
then this y convinces V to accept the conversation. We analyze the probability of such an
event.

There exists a nonnegligible probability that P* chooses i, 1 _< _< t, for which the
number of/-good vectors is nonnegligible (we saw that such an exists). On the other hand,
the whole vector (x, RM,/(1) 1(/--1) /(t)) is chosen at random (except for x)" the
/3 component by the verifier (the protocol is Arthur-Merlin!) and the other components by
P*. Therefore, there is a nonnegligible probability that the resultant vector is/-good, in which
case V accepts x. This way P* works in polynomial time and has a nonnegligible probability
of convincing V to accept x, from which we derive the required contradiction. [3

6.2. The ease AM(k): Secret coins help zero-knowledge. In this section we consider
constant-round Arthur-Merlin interactive proofs. We show that a language having such an
interactive proof which is also black-box simulation zero-knowledge belongs to BPP, thus
proving Theorem 6.1. We present this proof based on the proof for the particular case of
AM(3) as given in 6.1. The basic ideas are similar, but their implementation is technically
more involved in this general case. We highly recommend familiarity with 6.1 before going
through the present section.

The protocol (P, V). Let (P, V) be a k-round Arthur-Merlin protocol for a language L.
For simplicity of the exposition we make some assumptions on the form ofthe protocol without
restricting the generality of the proof. We consider protocols in which both the first and last
messages are sent by the prover. By adding dummy messages any protocol can be converted
into one of this form. Notice that in such a protocol, the number of rounds is always an odd
number k 2. m + 1. The prover P sends m + messages which we denote by c1 Om
and F, respectively. The m messages by V are denoted fll tim. The input to the protocol
is denoted by x, and its length by n. The predicate computed by the verifier V in order to
accept or reject the input x is denoted by Pv, and we assume it to be a deterministic function of

ON THE COMPOSITION OF ZERO-KNOWLEDGE PROOFS 185

the conversation Pv (x, Otl,/1 O/m, tim, F)" (Our results hold also for interactive proofs in
which Pv depends on an additional random string. See Remark 6.2.) We need the following
technical convention. We assume that all prover messages in the protocol have a form that
allows them, by only seeing the ith message oti, to uniquely reconstruct all previous messages
sent by the prover during the conversation. This is easily achieved by simple concatenation
of previous messages (using a delimiter or some length convention). We also assume the
existence of a polynomial (n) such that all prover’s and verifier’s messages on an n-length
input have length l(n) (e.g., using dummy padding). Finally, we let the verifier V check
whether the received messages conform to the above conventions, and reject the conversation
if not.

The simulation process. We denote by M the black-box simulator for the protocol
(P, V). The simulation process consists of several tries by the simulator M. Each try in-
volves feeding the verifier V* (i.e., the black box representing it) with a value y as the input to
the protocol, and the messages oti, 1 < < m, that simulate the messages sent by P. (Again,
we do not care about random coins for V*; we just need a simulator that is able to simulate
conversations with deterministic verifiers.) The simulator M chooses these arguments, in the
successive tries, depending on the random tape RM and the responses/i output by the black
box V* during the current and previous tries. After each try the simulator may decide to output
a conversation of the form (y, 0/1, /1 Om, tim, /) or to perform a new try. We assume that
the output conversation has y x (i.e., the input component in the conversation corresponds
to the actual input being simulated), that the ot messages appearing in the output conversation
fit our convention on the form of the prover’s messages, and that the simulator explicitly tries
the output conversation. Namely, it operates (in one of the tries) the black box V* on input x
and 0/1 O/m as appearing in the output conversation, and, respectively, gets as responses to
V* the strings fll tim, also appearing in this conversation. These assumptions are appar-
ently restricting ones, since the simulator is allowed to output conversations that are not "legal
conversations" between the prover P and the simulated verifier V*. Nevertheless, a simulator
that succeeds simulating the (P, V*) conversations will output such illegal conversations with
only negligible probability (otherwise the simulated conversations can be easily distinguished
from the true ones). Finally, we consider, for the sake of simplicity, only simulators that run in
(strictly) polynomial time. The necessary changes in the proof for handling the general case
in which the simulator runs in expected polynomial time are analogous to the ones described
in Remark 6.1 for the case AM(3). We denote by ’(n) a polynomial bounding the number
of calls to V* tried by M before outputting a conversation, and put t(n) rn (n) (notice
that (n) constitutes an upper bound on the total number of messages ct tried by M during the
whole simulation).

The simulator as a subroutine. Our goal is to present a BPP algorithm for the language
L, and we use the simulator M to achieve it. The way M is used is similar to the way we used
the simulator in the AM(3) case (see 6.1). In the present case, the behavior of the simulator
M when "interacting" with a verifier V* is determined by the input x to the protocol, the
random tape RM, and the strings fl output by V* as responses to the strings fed by M during
the different tries. Also, here we define a computational process that uses M as a subroutine.

Fix an input x of length n, a string RM, and t(n) strings fll), fl2) flt), each of
length l(n). Activate M on input x with its random tape containing RM. For each message
ct presented by M, respond in the following way. (The responses will depend on the strings
or, but not on y.) If ot is "illegal," then respond with a special "reject-message." By illegal
we mean a message ot that does not fit our above conventions on the form of the prover’s
messages. For legal ct’s we respond (impersonating a black-box verifier) with one of the fl’s
from the above list fll) flt) according to the following rule. If the same ct was previously

186 ODED GOLDREICH AND HUGO KRAWCZYK

presented by M (i.e., during a previous try), respond with the same fl as in that case. If ot

is the ith different (legal) string presented by M since the beginning of the simulation, then
respond with fl(i). We denote the ith different c by c (i) Clearly, c(i is uniquely determined by
x, RM, and the strings fl(1) fl(i-l. That is, there exists a deterministic function OeM
such that O/(i) OlM(X RM,/(1) /(i-1)). We denote by cOnVM(X, RM,/(1) /(t))
(y, ot, fl Om, tim, Y) the conversation output by the simulator M when activated with
these parameters (notice that strings fl(i) always suffice for answering all tries of M). By
our convention on the simulator M and on the form of the prover’s messages it follows
that there exists a sequence of indices _< < i < < im <_ such that for each

otj, flj, j 1 m, appearing in the output conversation, oj o (i) and flj fl(#). This is
true since the simulator always outputs a conversation which was explicitly generated in one
of its tries. The increasing property of the sequence of indices ij is enforced by the special
form of the "legal" messages c, namely, by the fact that we respond to message lYj only if
we had previously responded to the messages ot otj_ 1. In the present setting we use the
following definition of M-good vectors.

DEFINITION. We say that a vector (x, RM,/3(1) fl(t)) is M-good if cOnVM(X, RM,
fl() fl(t)) is an accepting conversationfor the (honest) verifier V. We say that (x RM fl(1),

fl(t)) is (il, i2 im)-good if it is M-good and the corresponding conversation has

oj o(# and fl fl(#),for j m.
The following lemma is analogous to Lemma 6.3.
LEMMA 6.4. Let k 2. m + be a constant, and let (P, V) be a k-round Arthur-Merlin

protocolfor a language L. Suppose (P, V) is black-box simulation zero-knowledge, and let
M be a black-box simulator as above. Then

1. for strings x outside L, only a negligible portion of the vectors (x, RM, fl(1) fl(t))
are M-good;

2. for strings x in L there exists a nonnegligible portion of the vectors (x, RM, /3 (1)

fl(t)) that are M-good. (This nonnegligible portion is at least one half ofthe complete-
ness probability of the protocol P, V), i.e., half the probability that P convinces V to

accept x).
ProofofTheorem 6.1. Using Lemma 6.4 we get that the algorithm described in the proof

of Theorem 6.1 for the special case of AM(3) (see 6.1) is a BPP algorithm for the language
L. S

Proof of Lemma 6.4. This proof is essentially analogous to the proof of Lemma 6.3,
although some delicate modifications are required.

(1) Assume that the portion of M-good vectors (x, RM, fl(1) fl(t)) for x’s not in L
is not negligible. This means that there exist infinitely many x ’ L for which the portion of
M-good vectors is nonnegligible. Observe that there are only polynomially many different
sequences <_ i < i2 < < im <_ (i.e., (t)), and m is a constant), and then note that
for each x, as above, there exists a sequence (i, i2 im) for which nonnegligibly many
vectors (x, RM,/3 (1) fl(t)) are (il, i2 im)-good. Next, we describe a prover P* which
convinces the (honest) verifier V to accept any of the above inputs x ’ L with nonnegligible
probability, thus contradicting the soundness condition of the protocol (P, V).

The prover P* begins by choosing a sequence (il, i ira) at random. Then, it chooses
random strings RM, fl(1) /(i1-1) and uses them to compute Cl OIM(X, RM, fl(1)
fl(il-1)). It sends oil to V and receives back the response ill. Now P* chooses random
fl(i-) fl(i2-) and computes c2 OM(X, RM, fl() fl(i,-1), ill, fl(il+) fl(i2-1)).
After receiving the response f12 from the verifier, P* selects new random strings fl(i2+)
/(i3-1)) and computes c3 OM(X, RM, fl() fl(i,-l, fl, fl(i,+ fl(i-, fl2,
fl(iz/a) fl(i3-1)). This process continues until all messages ci, fli, <_ <_ m, are com-
puted and exchanged. When the resultant vector (x, RM, fi(fl(i,-1), ill, fi(i,+l

ON THE COMPOSITION OF ZERO-KNOWLEDGE PROOFS 187

/(i2-1), f12 /(t)) is (i 1, i2 im)-good, then computing the function cOnVM on this vector
results in an accepting (for V) conversation (x, Oil, fll am, tim, Y) (with oei, fli, as defined
above). But then, by sending this y, the prover P* convinces V to accept. The probability that
this happens equals the probability that the above vector (x, RM, fl(1) fl(i,-1), ill, fl(i+l),

fli2-1), f12 flit)) is (il, i2 /.,)-good. Since this sequence of indices and all the
vector components (excluding x) are chosen at random (recall that V chooses its messages,
fll fl.,, at random!) then this probability is nonnegligible.

(2) The proof of this part is analogous to the corresponding proof in Lemma 6.3. We
use a set Hn of t(n)-independent hash functions (t(n) as defined in this section) to define
a family of verifiers Vh*. For all h Hn, the verifier Vh* responds to a legal message ot

sent by the prover with h(oe), and with a rejection message if oe is illegal. The statements
for Claims 1 and 2 remain the same, as does the proof of Claim 2. The proof of Claim
needs a more delicate argument, as follows. As in the AM(3) case we consider the interaction
between the prover P and a verifier Vh*, but now this interaction generates a conversation
of the form (x, Oil,/1 0m, tim,). In particular, for each h and random tape Rp for P
a unique sequence of messages fll tim (the responses of Vh*) is determined. We have
to show that for every tape Rp all sequences fll fl., are equiprobable for h 6R Hn.
The proof of this property uses a similar argument as in the proof of Claim 2: observe that
the pair Rp and h generates the responses fll tim if and only if, for every i, 1 _< <

m, h (op (x, Rp, fll fli-1)) fli. (Here otp stands for the function computed by P in
order to determine its next message or.) Thus, the probability (for h 6/ Hn) that a given
sequence fll tim is generated is like the probability that for every i, _< _< m, h maps
oe(x, Re, fl fli-) into fli. Since the functions Hn are m-independent (by definition
they are (n)-independent, but m _< (n)), and the messages Oil c", output by P are all
different by convention, we get that the latter probability is the same for every sequence

From this property of the pairs Rp and h we conclude that the probability that P and V*
(for h Hn) output an accepting conversation is exactly the same as the probability that P
and the honest V output such a conversation.

The rest of the proof follows as in Claim of Lemma 6.3
Remark 6.4. Notice that the prover P* described in the proof of part (1) of Lemma

6.4 is a polynomial-time prover. The other parts of the proof of Theorem 6.1 also hold for
such provers, and then we get that our result remains valid also in the setting of interactive
arguments.

6.3. The ease IP(3). In the setting of general interactive proofs the (honest) verifier is
not restricted to choosing all its messages at random, but can compute them based on the input
x, a random ("secret") string r, and the previous messages of the prover. In the case of three
rounds this means that the only message sent by V during the protocol is computed by means
of a (deterministic) function fly(x, r, or), where ot is the first message sent by P. Also, in
this case V accepts or rejects a conversation based on a predicate Pv (x, r, c, ?,) (g is the last
message sent by P).

Here we outline the proof of Theorem 6.2, based on the proof presented in 6.1 for the
AM(3) case.

ProofofTheorem 6.2 (outline). Let L be a language having a three-round interactive proof
which is black-box simulation zero-knowledge. Let P, V) be such a protocol and let M be the
corresponding black-box simulator. The simulation process consists of several tries; in each
of them the simulator feeds the black box V* with arguments y (the input) and ot (the prover’s
message), and gets an answer fl from V*. (Again, it suffices to consider a simulator just able
to simulate conversations with deterministic verifiers, so this simulator does not feed V* with

188 ODED GOLDREICH AND HUGO KRAWCZYK

a random tape.) We assume the same conventions on the simulator as the ones described in

6.1 for the proof of the AM(3) case.
The simulator always outputs a conversation of the form (x, of,/3,),), where x and of

are fed into the black-box V* in one of the simulator tries, and/3 is the response of
V* to these arguments.
The simulator runs in strictly polynomial time. In particular, t(n) stands for the
polynomial bound on the number of tries made by M on inputs of length n during
the simulation process (the case of expected polynomial-time simulators is handled
exactly as in Remark 6.1).

The main modification with respect to the proof of the AM(3) case is in the way we
use the simulator M as a subroutine for constructing the BPP algorithm for the language L.
Recall that the whole simulator process is completely determined by the input to the protocol,
x, the contents of M’s random tape, Rt, and the responses by the verifier. This was true
for the AM(3) case and remains true here. In the former case we used M as a subroutine by
feeding it with x and a randomly chosen string RM. Then, we used (n) random strings
/(1) /(t) as the response of the virtual verifier. In the present case we choose a string
Rt, as before, and random strings denoted r (1) r (t), each of length l(n), where l(n) is
a (polynomial) bound on the number of random bits used by the (honest) verifier in the IP(3)
protocol (P, V). The idea is to use these strings as the random coins of the virtual verifier for
responding to M’s tries. More precisely, for each try by the simulator, consisting of an input
y to the protocol and a message of, we compute/ fly(Y, r(i), or), and feed it into M as the
verifier’s response to of. For each new try we use a new r (i) (in increasing order of i), except
in the case in which the present of was also presented in a previous try. If so, we use the same
r (i) as in that case.

Note that a unique conversation is determined by x, Rt, and the strings r (1 r (t).
Thus, as in the case AM(3), we can define convt (x, Rt, r (l r (t)) to be the conversation
output by M when the described process is finished. Also, we denote by of(i) the ith different
of output by M during the simulation. Clearly, Of (i) is uniquely determined by x, Rt, and the
strings r (1) r (i-1)" thus we denote Of(i) OfM(X RM r (1) r (i-1))

By our convention on M, if conv(x, R, r(1 r (t) (x, of, fl, ,), then M explicitly
tried the arguments x and of during the simulation, and got as response the string/. This
means that there exists (at least one) i, < _< t, such that/3 fly(x, r (i), of). This fact is
used in the following definition.

DEFINITION. We say thata vector (x, RM r(r(t) is M-good ifconv(x R4 r(1

r ()) (x, of, fl, y) and pv(x, r (i, of, y) ACCEPT, where is the minimal valuefor which
fl fly(x, r (i), of). According to this value of i, we call the conversation (M, i)-good (or
i-goodfor short).

Using this re-definition of the notion of M-goodness, Lemma 6.3 of 6.1 also holds in
the present (IP(3)) case, by just changing the/(i) notation by r (i) in the formulation of the
lemma. Theorem 6.2 then follows by using the BPP algorithm as described in the proof of
the AM(3) case. For the proof of Lemma 6.3 in the present case we note the following simple
modifications. In the proof ofpart (1) we use the same reasoning as in the corresponding proof
in 6.1 but applied to the strings r (i) instead of/(i. We note that the soundness probability
of the protocol is now defined over the random coins used by V, i.e., over the choices r (i).
For the proof of the other part of the lemma we slightly modify the definition of the verifiers

Vh*. We still use the same family of hash functions, but the verifier Vh* works as follows" on
message of sent by the prover, Vh* responds with/3 --/3v (x, h (of), o), i.e., it computes fl as the
honest verifier does, but using h (Of) as the random coins of V. The rest of the proof (including
Claims 1 and 2) remains essentially unchanged (up to the replacement of "responses/3 (i’’ by
"random coins r(i)").

ON THE COMPOSITION OF ZERO-KNOWLEDGE PROOFS 189

Remark 6.5. As in the previous cases also, the IP(3) case extends to the setting of
interactive arguments. The modifications in the proof are analogous to the ones described in
Remark 6.3.

7. Concluding remarks. Although the results presented in this paper are negative in
nature, we believe that they have played a positive role in the development of the field.

We believe that sequential composition is a fundamental requirement of zero-knowledge
protocols. It is analogous to requiring that adding two algebraic expressions, each evaluating
to zero, yields an expression which evaluates to zero. Furthermore, sequential composition is
required when using zero-knowledge proofs as tools in the design of cryptographic protocols
(an application which is the primary motivation of zero-knowledge). Thefact that the original
formulation of zero-knowledge is not closed under sequential composition establishes the
importance ofaugmenting thisformulation by an auxiliary input (cf. [GO], [Ore], [TW], and
[Gol]). It should be stressed, of course, that all known zero-knowledge proofs also satisfy the
augmented formulation.

Parallel composition is the key to improving the efficiency (in terms of number ofrounds)
of zero-knowledge protocols, but we do not believe that it is a fundamental requirement.
Carrying the analogy of the previous paragraph, one cannot require that "interleaving" two
expressions (each evaluating to zero) yields an expression which evaluates to zero. The fact
that all knownformulations of (computational) zero-knowledge are not closed under parallel
composition motivates the introduction ofweaker notions such as witness indistinguishability
[FS2] which sufficefor many applications. Namely, instead of strengthening the hypothesis of
the alleged Parallel Composition Theorem (as was done in the case ofSequential Composition),
one relaxes the conclusion of the Parallel Composition Theorem (and this weaker conclusion
turns to suffice in many applications).

The fact that ("nontrivial") black-box zero-knowledge proofs cannot be both of AM
type and of constant number of rounds establishes the importance of "private coins" in the
design of constant-round zero-knowledge proofs. In other words, in the process of such
proofs, the verifier must "commit" (and later "decommit") to some pieces of information.
In fact, such commitments are the core of the constant-round zero-knowledge proofs (and
arguments) for any language in NP presented in [BCY], [FS], and [GKa] (relying on various
reasonable intractability assumptions) and in the (unconditional) zero-knowledge proof for
graph isomorphism presented in [BMO].

Appendix: Proof of existence of P/poly-evasive pseudorandom ensembles. In this
appendix we present the proof of Theorem 3.2. We first restate the theorem.

THEOREM 3.2. There exists a P/poly-evasive ensemble S(1 S(2 with Q (n) 4n, such
thatfor every n, each S}nl is a (2n/4, 2-n/4)-pseudorandom set ofcardinality 2n Furthermore,
there exists a Turing machine which on input outputs the collection S(nl

Proof. For any integer n, we denote byR(nl the collection of sets S c_ {0, }4n ofcardinality
2 which are (2n/4, 2-/4)-pseudorandom, and by C(n the set of (deterministic) circuits of size
2n/4 having n inputs and 4n outputs.

We prove the theorem by showing, for any large enough n, the existence of 2n sets

S1 S2 from R() such that for any circuit C 6 C(), and 6n {1 2n}, Prob(C(i) 6

Si) < 2-n/4. Denoting this collection of 2n sets by Sira, we get that the resultant sequence S(),
S(2) by a P/poly-evasive ensemble that satisfies the conditions of Theorem 3.2. We stress

that considering only deterministic circuits does not restrict the generality, since we can wire in
such a circuit a sequence of "random coins" that maximizes the probability Prob(C(i) Si).

We turn to show the existence of a collection of sets as described above. We do it by
proving that there exists a positive probability to randomly choose 2 sets S $2, from
R(n) with the above evasivity property.

190 ODED GOLDREICH AND HUGO KRAWCZYK

For a fixed C C(n) and a fixed i, 1 <_ < 2n, consider the probability, denoted
Probs(C(i) S), that the element C(i) belongs to the set S, for S uniformly chosen over all
subsets of {0, }4n of size 2n. Clearly,

/24n

Prob(C(i) 6 S)= 1 \(22n) 2" 1

--24- < 22----.
\2

We call a set S c_C_ {0, 1 }4n, SI 2n, C-bad if there exists some i, <_ < 2n, such that
C(i) S. Fixing a circuit C, we have that for S uniformly chosen over all subsets of {0, }4n
of size 2n,

2

Probs(S is C-bad) _< -Probs(C(i) 6 S) < 2n2-2n 2-n.
i=1

In [GK] it is proven that the measure ofR(n) (i.e., the proportion of sets S which are (2n/4, 2-n/4)-
pseudorandom) is at least 2-2n/4 Therefore, for each circuit C 6 C(n the probability,
hereafter denoted as pc, to uniformly choose from R(n) a set S which is C-bad is

pc Probs(S is C-bad IS 6 R(n)) <
2-2n/4

We now proceed to compute the probability that for a fixed circuit C C(n) a collection of
2n randomly chosen sets from R(n) contains a significant portion of C-bad sets. We define as
"significant" a fraction Pc + 3n. (The quantity 3n will be determined later.) Let p be a random
variable assuming as its value the fraction of C-bad sets on a random sample of 2 sets from
R(n). Clearly, the expected value of p is Pc. Using Hoeffding’s inequality [Hoe] (see also
[GK]) we get that

Prob(p >_ Pc + 3n) < e-22n3,

i.e., this quantity bounds the probability of choosing at random 2 sets from R(n) among which
the fraction of C-bad sets is larger than Pc + 6n.

Recall that we are interested in choosing 2" sets that are evasive for all circuits C C(n).
That is, we require that for any C, the number of C-bad sets among the 2 sets we choose
is negligible. In order to bound the probability that 2n randomly selected sets do not satisfy
this condition, we multiply the above probability, computed for a single circuit, by the total
number of circuits in C(n) which is at most 2(2"/4)2 22n/2 Putting n 2-n/4/"/ we get

22n/2 e-22n32n 22n/2 e-22n2--1 22n/2 e-2n/2 < 1.

We conclude that there exists a positive probability that 2 sets S1 $2, chosen at random
from R(n) have the property that for any circuit C C(n) the fraction of C-bad sets among
S S2n is less than Pc + an. Therefore, such a collection of sets does exist.

Finally, we bound, for this fixed collection $1 S2n, and for any circuit C 6 C(n), the
probability Probi(C(i) S)i), for randomly chosen from {1 2n}. We have

Probi(C(i) Si)- Probi(C(i) SilSi is C-bad). Probi(Si is C-bad)

+ Probi(C(i) SilSi is not C-bad) Probi(Si is not C-bad)

2-n 2-n/4
< (Pc + 3n) + 0 < + < 2-n/4.

2-2n/4

ON THE COMPOSITION OF ZERO-KNOWLEDGE PROOFS 191

Therefore, we have shown for every circuit C of size 2n/4 that Probi(C(i) E Si) < 2-n/4, thus
proving the required properties of the sets $1 $2,.

Such a collection can be generated by a Turing machine by considering all possible collec-
tions {S1 S2n} and checking whether they evade all the circuits in the set
C(’) 1

Acknowledgments. Silvio Micali was one ofthe only researchers to strongly object to the
"intuition" that the parallel versions of the interactive proof systems for quadratic residuosity,
graph isomophism, and all languages in NP, are zero-knowledge. The results in this paper are
rooted in this clear vision of Silvio. We are grateful to him for that.

REFERENCES

[Bab]
[BMO1]

[BMO2]

[B*]

[BCC]

[BCY]

[CG]

[Fei]
[FS1]

[FS2]

[Gol]

[GKa]

[GK]

[GMW1]

[GMW2]

[GO]

[GM]

[GMR1]

[GMR2]

[GS]

[Hoe]

[IY]

[Jof]

L. BABAI, Trading group theoryfor randomness, in Proc. 17th ACM STOC, 1985, pp. 421-429.
M. BELLARE, S. MICALI, AND R. OSTROVSKY, Perfect zero knowledge in constant rounds, in Proc. 22nd

ACM STOC, 1990, pp. 482-493.
The (true) complexity of statistical zero knowledge, in Proc. 22nd ACM STOC, 1990,

pp. 494-502.
M. BEN-OR, O. GOLDREICH, S. GOLDWASSER, J. HASTAD, J. KILLIAN, S. MICALI, AND P. ROGAWAY,

Every thing provable is provable in ZK, in Advances in Cryptology--Crypto ’88 Proceedings,
S. Goldwasser, ed., Lecture Notes in Comput. Sci. 403, Springer-Verlag, Berlin, 1989, pp. 37-56.

G. BRASSARD, D. CHAUM, AND C. CRIPAU, Minimum disclosureproofs ofknowledge, J. Comput. Systems
Sci., 37 (1988), pp. 156-189.

G. BRASSARD, C. CRIPAU, AND M. YUNG, Everything in NP can be argued in perfect zero-knowledge in
a bounded number ofrounds, in Proc. 16th ICALE Stresa, Italy, 1989.

B. CHOR AND O. GOLDREICH, On the power of two-point based sampling, J. Complexity, 5 (1989),
pp. 96-106.

U. FEIGE, Interactive proofs, M.Sc. thesis, Weizmann Institute, 1987.
U. FEIGE AND A. SHAMIR, Zero knowledgeproofs ofknowledge in two rounds, in Advance in Cryptology--

Crypto ’89 Proceedings, Lecture Notes in Comput. Sci. 435, G. Brassard, ed., 1989, pp. 526-544.
Witness indistinguishability and witness hiding protocols, in Proc. 22nd ACM STOC, 1990,

pp. 416-426.
O. GOLDREICH, A uniform-complexity treatment of encryption and zero-knowledge, J. Cryptology,

6 (1993), pp. 21-53.
O. GOLDREICH AND A. KAHAN, HOW tO construct constant-round zero-knowledge proofsystemsfor NP,

J. Cryptology, to appear.
O. GOLDREICH AND H. KRAWCZYK, Sparse pseudorandom distributions, Random Structures and Algo-

rithms, 3 (1992), pp. 163-174.
O. GOLDREICH, S. MICALI, AND A. WIGDERSON, Proofs thatyield nothing but their validity or all languages

in NP have zero-knowledge proofs, J. Assoc. Comput. Mach., 38 (1991), pp. 691-729.
How to play any mental game or a completeness theorem for protocols with honest majority,

in Proc. 19th ACM STOC, 1987, pp. 218-229.
O. GOLDREICH AND Y. OREN, Definitions andproperties ofzero-knowledge proofsystems, J. Cryptology,

6 (1993), pp. 1-32.
S. GOLDWASSER AND S. MICALI, Probabilistic encryption, J. Comput. System Sci., 28, (1984),

pp. 270-299.
S. GOLDWASSER, S. MICALI, AND C. RACKOFF, Knowledge complexity ofinteractive proofs, in Proc. 17th

ACM STOC, 1985, pp. 291-304.
, The knowledge complexity of interactive proof systems, SIAM J. Comput., 18 (1989),

pp. 186-208.
S. GOLDWASSER AND M. SIPSER, Private coins versus public coins in interactive proof systems, in

Advances in Computing Research: A Research Annual, Vol. 5 (Randomness and Computation,
S. Micali, ed.), 1989, pp. 73-90.

W. HOEFFDING, Probability inequalitiesfor sums ofbounded random variables, J. Amer. Statist. Assoc.,
58 (1963), pp. 13-30.

R. IMPAGLIAZZO AND M. YUNG, Direct minimum-knowledge computations, in Advances in Cryptology--
Crypto ’87 Proceedings, C. Pomerance, ed., Lecture Notes in Comput. Sci. 293, Springer-Verlag,
1987, pp. 40-51.

A. JOFFE, On a set of almost deterministic k-independent random variables, Ann. Probab., 2 (1974),
pp. 161-162.

192 ODED GOLDREICH AND HUGO KRAWCZYK

[Ore]

[Sim]
[Sha]
[TW]

[WC]

[Yao]

Y. OREN, On the cunning power ofcheating verifiers: Some observations about zero-knowledge proofs,
in Proc. 28th IEEE Symp. on OCS, 1987, pp. 462-471.

D. SIMON, Issues in the definition ofzero-knowledge, M.Sc. Thesis, University of Toronto, 1988.
A. SHAMIR, IP PSPACE, in Proc. 31st IEEE Symp. on FOCS, 1990, pp. 11-15.
M. TOMPA AND H. WOLL, Random self-reducibility and zero-knowledge interactive proofs ofpossession

of information, in Proc. 28th IEEE Symp. on FOCS, 1987, pp. 472-482.
M. N. WEGMAN AND J. L. CARTER, New hashfunctions and their use in authentication and set equality,

J. Comput. Systems Sci., 22 (1981), pp. 265-279.
A. C. YAO, How to generate and exchange secrets, in Proc. 27th IEEE Symp. on FOCS, 1986,

pp. 162-167.

SIAM J. COMPUT.
Vol. 25, No. 1, pp. 193-206, February 1996

() 1996 Society for Industrial and Applied Mathematics
008

THE ISOMORPHISM CONJECTURE HOLDS RELATIVE TO AN ORACLE*

STEPHEN FENNERt, LANCE FORTNOW, AND STUART A. KURTZ

Abstract. The authors introduce symmetric perfect generic sets. These sets vary from the usual generic sets by
allowing limited infinite encoding into the oracle. We then show that the Berman-Hartmanis isomorphism conjecture
holds relative to any sp-generic oracle, i.e., for any symmetric perfect generic set A, all NpA-complete sets are
polynomial-time isomorphic relative to A. Prior to this work, there were no known oracles relative to which the
isomorphism conjecture held.

As part of the proof that the isomorphism conjecture holds relative to symmetric perfect generic sets, it is also
shown that pA=FewpA for any symmetric perfect generic A.

Key words, computational complexity, relativization, isomorphism conjecture

AMS subject classification. 68Q15

1. Introduction.
Is it possible to define a notion of genericity such that all NP-complete sets are p-isomorphic?

Judy Goldsmith and Deborah Joseph [6]

We construct an oracle relative to which the Berman-Hartmanis isomorphism conjecture
], [2] is true. This conjecture holds that any two NP-complete sets are isomorphic to one

another by a polynomial-time computable and invertible one-one reduction. The isomorphism
conjecture has been the subject ofconsiderable research. We recommend the surveys by Joseph
and Young [11] and Kurtz, Mahaney, and Royer [15].

The attempt to construct oracles relative to which the isomorphism conjecture either
succeeded or failed began soon after the conjecture was made in 1976.

Success was first obtained in finding oracles relative to which the conjecture fails. In 1983,
Kurtz (in an unpublished manuscript) constructed an oracle relative to which the conjecture
failed. Hartmanis and Hemachandra [8] later combined Kurtz’s construction with Rackoff’s
construction 18] of an oracle relative to which P UP (and thus no one-way functions exist
[7]). In 1989, Kurtz, Mahaney, and Royer [16] showed that the conjecture fails relative to
a random oracle; and Kurtz [12] gave an improved version of his original construction that
showed that the conjecture fails relative to a Cohen generic oracle.

The attempt to construct an oracle relative to which the conjecture succeeds has proven
much more difficult. Even partial successes have been viewed as important advances. In
1986, Goldsmith and Joseph [6] constructed an oracle relative to which a partially relativized
version of the isomorphism conjecture holds. Namely, they constructed an oracle A such that
all of the p-complete sets for NPA are pA-isomorphic.

An m-degree is an equivalence class of sets all many-one reducible to each other. In
1987, Kurtz, Mahaney, and Royer [13] gave a relativized version of their collapsing degree
construction [14] and showed that there is an oracle A relative to which some m-degree in
NPA collapses. Finally, in 1989, Homer and Selman [9], [10] gave an oracle relative to which
the complete degree for E collapsed.

We introduce a new notion of genericity, define the symmetric perfect generic sets (a.k.a.
the sp-generic sets), and present the following theorem.

*Received by the editors May 3, 1993; accepted for publication (in revised form) August 2, 1994.
tUniversity of Southern Maine, 96 Falmouth Street, Portland, ME 04103 (fenner@cs.usmsas.

maine.edu). The research of this author was partially supported by NSF grant CCR 92-09833.
tUniversity of Chicago, 1100 E. 58th Street, Chicago, IL 60637 (fortnow@cs.uchicago.edu). The research of

this author was partially supported by NSF grants CCR 90-09936 and CCR 92-53582.
University of Chicago, 1100 E. 58th Street, Chicago, IL 60637 (stuart@cs.uchicago.edu).

193

194 STEPHEN FENNER, LANCE FORTNOW, AND STUART A. KURTZ

THEOREM 1.1. Relative to any symmetric perfect generic set A, all NP-complete sets are
polynomial-time isomorphic.

We improve upon the work of Goldsmith and Joseph [6] by allowing NP-complete sets
via relativized reductions.

After describing the mathematical background needed for this paper, in 3 we will describe
sp-generic sets and give some of their properties. In 4 we show that pa Fewpa for any
sp-generic A, which will form a necessary part of our proof that the isomorphism conjecture
holds relative to any sp-generic oracle. In 5 we will give some intuition for the proof of the
isomorphism conjecture, followed by the detailed proof.

2. Mathematical preliminaries. The natural numbers are denoted by N. The cardinality
of a set X is denoted by X II. Let E {0, }.

We will use lower case Greek letters for partial functions from E* -- {0, }. We say
r extends cr to mean that r is equal to cr everywhere that r is defined. We often identify
a language A

E* as its characteristic function, for instance, in saying A extends r. The

everywhere-undefined function is denoted by 0. Two functions are compatible if they agree
everywhere both are defined. For compatible r and r, the smallest partial function extending
both is denoted r U r. We use dom(r) and range(r) to represent the domain and range of r,
respectively.

We say a computation path of an oracle Turing machine using r is defined if r(x) is
defined for all queries x along that path. If M is an oracle nondeterministic Turing machine,
we say that M (x) accepts on a path p if all queries to the oracle made along p are in the
domain of r and are answered according to r, and p ends in an accepting state.

We will sometimes need a machine to know the domain of r as well as the values of r on
its domain. For these machines, we will define the total function - E* x {0, -- {0, as
follows"

ifx 6 dom(r) and r(x) i,
Y(x i)

0 otherwise.

By abuse of terminology we will on occasion use the expression "fA(x)" to refer to one
of (i) the value fa(x), (ii) the function x w- fa(x), or (iii) the computation of a particular
machine computing f on input x using oracle A. We will try to make clear which interpretation
of "fA (X)" we mean when it cannot easily be inferred from context.

A one-one polynomial-time function fa is invertible relative to A if there exists a
polynomial-time function ga such that for all x 6 E*, ga(fa(x)) x. Note that ga does not
have to recognize the range of fa.

For a function f and an oracle A, let fa(-1) (Z) be the set of strings x such that fa (X) Z.

Let CNFa be a relativized version of CNF formulae (see [6]). We will also consider the
formulae in a closed form,.e.g., instead of a formula looking like (x v y), it will look like
3xBy(x v y). This will allow us to talk about "true" and "false" formulae and make it easier
to combine formulae with other expressions. Because we only talk about Npa-completeness,
we only allow "3" as a quantifier. SATa consists of the true formulae relative to the oracle A.

Using standard encoding tricks and simple modifications of the theorems of Cook [4] and
Berman and Hartmanis [2], we get that the following properties of CNFa and SATa hold for
all oracles A:

1. For every nondeterministic oracle Turing machine M that runs in time O (ni), there
exists a polynomial-time unrelativized function f such that
(a) f reduces L(MA) to SATA, and
(b) for all x,]/(x)l O(IxlZi).

RELATIVIZED ISOMORPHISM CONJECTURE 195

2. Every formula p 6 CNFA has a representation as a binary string. Every binary string
represents a formula in CNFa.

3. Every formula represented by a binary string of n bits can only depend on A on
strings of length shorter than n.

4. There is an unrelativized polynomial-time padding function P such that for all for-
mulae q9 and strings z,
(a) P (q), z) is true if and only if q) is true,
(b) IP(0, z)l > max(lqgl, Iz[), and
(c) from P (qg, z) we can in unrelativized polynomial time recover 0 and z.

Berman and Hartmanis [2] observed that for any languages B and L such that B is NPA-
complete and has such a padding function and L in NPA, there is a one-to-one length-increasing
invertible reduction from L to B.

Let (i0, il) using the standard pairing function. Let f0 be an enumeration of
functions where fi simulates the deterministic oracle Turing machine with code i0 running
in time ni. Let M0 be an enumeration of nondeterministic oracle machines where Mi
simulates the Turing machine with code running in time n

We use FP to represent the class of polynomial-time computable functions.

3. Symmetric perfect generic sets. In this section, we define the specific type of generic
set that we use in this paper. We will later show that the isomorphism conjecture holds to all
such generics.

DEFINITION 3.1. A sequence (ai)ieN of integersforms an iterated-polynomial sequence if
there exists a polynomial p such that p(n) > n2 for all n, ao > 2, and ai+l p(ai) for all i.

DEFINITION 3.2. A partial characteristicfunction r E* -- {0, 1 is a symmetric perfect
forcing condition if there is an iterated-polynomial sequence (ai)ieN such that

In other words, r(x) is undefinedfor all x such that Ixl ai for some N. Note that r(x)
may be undefined on other x as well.

We generally refer to symmetric perfect forcing conditions as sp-conditions. As opposed
to most types of forcing conditions, sp-conditions cannot necessarily be coded into finite
objects.

The name symmetric perfect is intended to describe the topological structure of the con-
ditions and to honor our intellectual debts. Topologically, we can view a symmetric perfect
condition r as a complete binary tree, the branchings of which correspond to points x at which
r(x) is undefined. The paths of a complete binary tree form a closed set without isolated
points in their natural topology, i.e., they are perfect.

From a scholarly point of view, our symmetric perfect conditions are special cases of
Gerald Sacks’s pointed perfect conditions [20]. The unique contribution of Sacks was to

recognize that forcing conditions need not be recursive (as they are in the standard finite
extension arguments or in the recursion theoretic minimal degree construction). Rather, it is
sufficient that r be recursive in each of its members. This is his notion of pointedness. Our
conditions are pointed because they can be conceived of as a complete binary tree which has
been pruned at a coinfinite recursive set of points. This pruning is symmetric in that we remove
either all of the left branchings at x (by setting r (x) 1) or all of the right branchings at x
(by setting r (x) 0).

DEFINITION 3.3. A set S of symmetric perfect forcing conditions is dense iffor every
sp-condition r, there exists an sp-condition cr in S such that cr extends r.

196 STEPHEN FENNER, LANCE FORTNOW, AND STUART A. KURTZ

DEFINITION 3.4. A language A is symmetric perfect generic (sp-generic) iffor every
definable dense set S of sp-conditions, there is acr S extended by A.

By definable we mean the set {81 cr 6 S} is a rll class (see [19]).
The following theorem is a simple adaptation of the Baire category theorem.
THEOREM 3.1. Every sp-condition r is extended by an sp-generic language A.
Proof. Let D1 be an enumeration of the definable dense sets. Let or0 r. For

every > 0, let cri cr for some cr 6 Di such that cr extends cri_l. For all x 6 E*, let
A(x) lim/-i(x, 1).

DEFINITION 3.5. A proposition P(A) is said to be forced by an sp-condition r if P (A) is
truefor all oracles A extending z.

Note that this definition is simpler but different from the usual definition of forcing on
generic sets.

If P (A) is a first-order proposition in A, then the set S of conditions that force P(A) is
definable since r 6 S if and only if for all A extending or, P(A) holds.

We can already see the power of sp-generic sets by the following lemma.
LEMMA 3.2. Given any sp-condition r and any language X, there is an sp-condition cr

extending r such that r forces X pA.

Proof. Let (ai)i eN be the iterated-polynomial sequence such that r is undefined on strings
of length (ai)ieN. For each i, let bi a2i and di a2i+l. Let f(x) xOlJ, where j is the
smallest value such that Ix01Jl di for some i. Clearly j is bounded by a polynomial in Ix I,
f is one-one and range(f) A dom(r) 0. Define or(y) as

or(y)

r (y) if y dom(r),
ify=f(x) andx X,

0 if y f(x) and x ’ X,
undefined otherwise.

Thus for any A extending tr, x 6 X if and only if f(x) 6 A. The partial function cr is
undefined on strings of length (bi)iN, SO O" is an sp-condition.

Of course, Lemma 3.2 does not imply that there is an sp-generic set G such that for every
set X, X is polynomial-time Turing reducible to G. Lemma 3.2 only implies that all X such
that the predicate "X 6 pA,, is first-order definable are encoded into all sp-generics.

4. P FewP relative to sp-generics. In this section, we will show that, relative to sp-
generics, acceptance of nondeterministic machines with a small number of accepting paths
can be decided in polynomial time.

THEOREM 4.1. If A is an sp-generic oracle, then pa Fewpa.
This proof will build on ideas from Blum and Impagliazzo [3], Hartmanis and Hemachan-

dra [8], and Rackoff [18].
An immediate corollary follows.
COROLLARY 4.2. For any sp-generic oracle A, pa upa.
Let Ri be the requirement "Either there is some input x such that M/a (x) has more than

n accepting paths, or L(MiA) pa.,,
By our enumeration of Turing machines at the end of 2, if A satisfies Ri for all i, then

pa FewpA.
Fix i. The set of sp-conditions that force Ri is definable since Ri is a first-order proposition

in A. We will show that the set of sp-conditions that force Ri is dense. Then any sp-generic
A will extend a r such that r forces Ri. We will show that these sets are dense by showing
how to extend any sp-condition r to another condition cr such that cr forces Ri.

Let M Mi and let r be an sp-condition. Suppose r does not force "For all x, Ma (x)
has at most Ix accepting paths." For some A extending r and some x, we will have that

RELATIVIZED ISOMORPHISM CONJECTURE 197

MA(x) has more than Ixl accepting paths. Let a r t_J (A restricted to strings of length at
most]xli). Clearly a extends r and forces "For some x, MA(x) has more than Ixl accepting
paths." To see that a is an sp-condition, pick a c such that ac > Ix and let bj ac+j for all
j6N.

For the rest of this section, we will assume r forces "For all x, Ma(x) has at most Ixl
accepting paths."

By Lemma 3.2, there is an sp-condition a extending r such that cr forces SAT 6 pa.
Suppose A extends a. We will show that L(MA) pA.
Consider the following algorithm for computing MA(x) using A as an oracle. The idea

is the same as that used in [3]. We repeatedly look for some extension ot of the partial oracle
(not necessarily compatible with A) which makes M have the maximum possible number of
accepting paths. To ensure consistency with A, we then answer all queries in the domain of
according to A.

In the algorithm below, we maintain the following invariants for all j"
A extends Vj,

Fj+ extends
[j+l[[Yj[-k- ni+l, and
dom(yj) A dom(r) 0 (this fact is not crucial for the proof).

BEGIN ALGORITHM
?’0+-0.
FOR j +-- 0 TO Ix 12i 1 DO

Let n be the largest number for which there is an ot extending ?,j such that
ot is compatible with r, and
MU(x) has at least n distinct accepting paths.

Choose some ot that satisfies these two conditions with minimal domain, meaning that
dom(c) contains only those queries made along n distinct accepting paths which are
not in dom(r). If n 0, then ot 0.

Yj+l +-- (A restricted to dom(c)).
/* This trick is borrowedfrom [3]. It will be explained later. */

ENDFOR
},’ 4--- /ixl2i. /* Note that A extends ,. */

IF MUr (x) has an accepting path
THEN accept
ELSE reject.

END ALGORITHM.

Theorem 4.1 now follows from the following two lemmas.
LEMMA 4.3. The above algorithm runs in polynomial time relative to SAT and thus

relative to A.
Proof. We show that there is a fixed polynomial bound on both the size of yj and the

running time of the jth iteration of the FOR loop for all j < Ix[2i. Assume, inside the jth
iteration of the FOR loop, that yj has polynomial size. By our assumptions about the behavior
of machine M on oracles extending r, we have 0 < n < Ix i. For any such n, the question--
given t’j---of whether there exists an c extending gj compatible with r such that MU(x) has
at least n accepting paths is an NP question and hence can be answered by a single query to
SAT (such an ot can always be chosen to have polynomial size: only include oracle queries
not already in dom(r) made along n distinct accepting paths). Thus n can be determined using
polynomially many queries to SAT. Once n is found, a polynomial-size ot causing MU(x)
to accept on n distinct paths can be constructed bit by bit in a straightforward way by making

198 STEPHEN FENNER, LANCE FORTNOW, AND STUART A. KURTZ

NP queries of the form "Given a sequence of k bits, is there such an ot whose first k +
bits are 0?" Similarly, we can construct the n paths. Once such an ot is found, dom(ot) can
be made to be minimal simply by eliminating any queries in dom(c) dom(?,i) not made
along any accepting path ofMU(x); thus we can find a minimal ot with at most polynomially
many additional NP queries. The size of dom(ot) dom(vj) is at most a polynomial in Ixl
independent of j, so we can compute Vj+I by asking polynomially many queries to A, and its
size is the same as that of or. We thus have that for all j < Ix 12i, the size of Fj and the running
time of the jth iteration of the FOR loop are both bounded by a fixed polynomial in Ix I, and
thus the entire FOR loop runs in polynomial time, and ’lxl2i has size polynomial in Ix I.

Since after the FOR loop, has polynomial size, we can determine whetherMU(x) has
an accepting path by asking one additional NP question. Thus, the entire algorithm runs in
polynomial time relative to A, which proves Lemma 4.3. [3

LEMMA 4.4. The above algorithm correctly decides Ma (x).
Proof. Suppose MA(x) has exactly k accepting paths. Let/ be the partial function of

minimal domain such that
A extends/3, and
MU(x) has k distinct accepting paths.

Since k <_ Ixl and each path of MA(x) can make only Ixl queries, the size of dom(/3) is at
most Ix 2i (if k 0, then/3 0).

CLAIM 4.5. After the FOR loop, ?’lxl2i , extends .
Lemma 4.4 immediately follows from Claim 4.5 and the fact that A extends . Indeed,

since MU(x) and MA(x) have the same number of accepting paths, we know that M (x)
and Ma (x) have the same number of accepting paths because extending a partial oracle can
never decrease the number of accepting paths. Thus we accept if and only if Ma (x) has at
least one accepting path.

It remains only to prove Claim 4.5. This is similar to the incompatibility argument in,

[3]. It suffices to show that dom(/3)

_
dom(?,), since both/3 and , are compatible with A.

Suppose that for some j < Ix 2i we have Ildom(/3) -dom(gj)[I > 0. If the ot chosen
in the jth iteration of the FOR loop does not extend/3, then it must be incompatible with
/, otherwise the union/3 U c would causeM(x) to have at least one more accepting
path than M (x) (the extra path is "contributed" by/3). This contradicts the fact that ot was
chosen to allow the maximum possible number of accepting paths of MUr (x). Hence/3 and
Vj+I share at least one additional point in their domains, so Ildom(/) dom(?’j+l) < g 1.
Since Ildom(/) dom(’0) _< Ixl 2i, we must have Ildom(/3) dom(’)ll 0, which proves
the claim. [3

5. The isomorphism conjecture.

5.1. Intuition. In this section, we give some of the ideas of the proof that the isomor-
phism conjecture holds relative to sp-generic oracles. A full and complete proof is presented
beginning in 5.2.

We first consider how researchers created oracles for which the isomorphism conjecture
fails. Typically, they would create a hard function fa and an oracle A such that fA(SATA)
is NP-complete but not isomorphic to SATa. One approach is to have fA scramble SAT in a
way that no reduction to fA (SATA) could be invertible. Kurtz, Mahaney, and Royer used this
approach to show that the isomorphism conjecture fails to a random oracle [16]. However,
since we know that pa upa for sp-generic oracles A (Corollary 4.2), any such scrambling
function can be unscrambled.

When Kurtz showed that the isomorphism conjecture fails for regular generic oracles
12] and Hartmanis and Hemachandra created an oracle A relative to which the isomorphism

conjecture fails while pZ upa NpA [8], they had to use a different approach. They

RELATIVIZED ISOMORPHISM CONJECTURE 99

created functions fA that work as follows: For 99 a boolean formula represented as a string,
define a (99) by

A(99) A(9901)A(9901 1)... A(9901n),

where n is the number of variables in 99. Let 0 be a small true instance of SATA and define

fa by

if A (99) is a satisfying assignment of 0,

otherwise.

Note that for any oracle A and this kind of fA, fA (NATA) is NpA-complete. Using an A
that encodes solutions to SATa Kurtz and Hartmanis and Hemachandra show that fA (SATA)
contains large gaps and, for reasons of density alone, cannot be isomorphic to SATa

In order to hint at how we prove our main result, we will describe how for sp-generic sets
A, fA(SATA) must be isomorphic to SATa.

The oracles designed by Kurtz and Hartmanis and Hemachandra that prevent isomor-
phisms to SATa work by having a (99) be a satisfying assignment to 99. Since we are trying to
create an oracle A such that the isomorphism conjecture holds, we will call the computation
fA(99) bad if A(99) is a satisfying assignment to 99, and all other computations fa(99) we
will call good. Note that if fA(99) is good, then fa(99) 99. Whether fa(99) is good will, of
course, depend on A.

Berman and Hartmanis [2] show that in order to have SATA isomorphic to fA(SATA)
we need only find a polynomial-time one-one length-increasing invertible function gA that
reduces SATa to fA(SATA). Our ga(99) will work as follows: Find a formula ap such that

1. IPl > I01,
2. ap is true relative to A iff 99 is true relative to A,
3. fa() is good.

Then ga(99) fa() is our reduction. The trick is for ga(99) to find such a .
We use a straightforward combinatorial argument to show that there exists an invertible

polynomial-time function h(99, w) such that the following hold:
1. For all w, Ih(99, w)l > Iol.
2. For all w and sp-generic A, h(99, w) is true relative to A if and only if 99 is true relative

to A.
3. For all sp-generic A, there exists a to such that fA(h(99, to)) is good.

Now all gA has to do is find a w such that fa(h(99, to)) is good. We will use fa tO help gA
in this task.

Let s(99) be the formula that encodes the NP statement "99 is true and there exists a to

such that fa(h(99, to)) is good." Clearly, for A, Is(q))l > Iq)l and s(99) is true if and only if 99
is true because there always is a to such that fa(h(99, to)) is good.

We now create ga(99) as follows: Look at the computation of fA(s(99)). If fA(s(99)) is
good, then output fa(s(99)) S(0). Otherwise, a(s(99)) is a satisfying assignment to s(99),
and thus from a(s(99)), we can obtain a to such that fa(h(99, to)) is good. The function ga
then outputs fa(h(99, w)) h(99, w) for that to. Notice that gA is not only length-increasing
but also one-one and invertible.

Of course there is no a priori reason that a general reduction has to act like fa. We will,
however, force a general fA to look similar to the fA described above or not be a reduction.

Suppose fa reduces SATa to L(MA), where fa is an arbitrary deterministic function
running in time n and Ma is a nondeterministic Turing machine also running in time n Let
us define h(99, to) to be a formula that encodes the following:

(99 A 3y(99, w, y, 1) 6 A) v y(99, y, 0) e A,

200 STEPHEN FENNER, LANCE FORTNOW, AND STUART A. KURTZ

where the y’s are quantified over strings of length exactly Iqgl If we put at least one string of
the form (q), w, y, 1) into A and no strings of the form (q), y, 0) into A, then q) is true if and
only if h(q), w) is true.

We now need a notion of goodness for fa(h(q), w)) for arbitrary fA. We would like
to call fa(h(q), w)) good if fa(h(q), w)) fails to find a satisfying assignment to h(99, w).
However such a thing could be hard to verify. We could, however, determine which queries to
A are made by fa(h(q), w)). Thus we call fa(h(99, w)) good if fa(h(o, w)) does not query
any string (99, w, y, 1) such that (99, w, y, 1) A, i.e., fA(h(o, w)) does not find this part of
a satisfying assignment to h(99, w). If fa(h(99, w)) is good, then we can alter the truth value
of h(q), w) without affecting the value fa(h(99, w)).

Suppose fa(h(q), w)) is good and q Ifa(h(q), w))l < Iol. Then Ma(q) cannot ask
questions of the form (q), w, y, 1) or (q), y, 0) because they are too long. We can prevent fa
from being a reduction by setting h(99, w) to true if Ma(q) rejects or setting h(q), w) to false
if Ma (q) accepts.

Suppose fa(h(, Wl)) fa(h(O, w2)) and neither of these computations ask questions
about whether (p, Wl, y, 1), (, y, 0), (0, we, y, 1), or (0, y, 0) are in A. Then we can prevent
fa from being a reduction by setting h(p, Wl) to true and h(O, w2) to false.

We can combine the above techniques under the auspices of sp-generics to produce a
reduction g that is length-increasing and almost one-one. Using the fact that pa FewpA
for sp-generic A and applying this construction twice we can produce a one-one length-
increasing reduction g. Grollmann and Selman [7] show that we get g invertible for free since
pa upa for sp-generic A.

5.2. Proof of the relativized isomorphism conjecture. In order to formally prove The-
orem 1.1, we need the following technical lemma, whose proof we defer to 5.3.

LEMMA 5.1. Let A be an sp-generic set, Ma a relativized nondeterministic polynomial-
time Turing machine, and fa a relativized polynomial-time reductionfrom SATa to L(MA).
There is a polynomial-timefunction ga and a polynomial p(n) such that thefollowing hold:

1. ga reduces SATa to L(MA);
2. ga is length increasing;
3. for all q E*, if llga(-l(q)ll > 1, then

(a) Ilfa(-1)(q)ll > 1,
(b) q is in L(MA),
(c) Ilga-l)(q)ll < P(Iql).

ProofofTheorem 1.1 (assuming Lemma 5.1). Let L be NPA-complete. There must exist
a nondeterministic polynomial-time machine M and a polynomial-time function f such that
L L(MA) and fa reduces SATA to L. Apply Lemma 5.1 and let gA be the function that
fulfills the properties of this lemma.

Let T {ql Ilga-)(q)ll > 1}. Note that T is in FewPa because of 2 and 3(c), and thus
T is in pa since pa Fewpa relative to sp-generic oracles (Theorem 4.1).

Let 0 be a fixed member of SATa such as (3x)x v 2. Define fa (q)) as follows"

ga(o) if ga(qg) T,fa (0) ga (99) otherwise.

Note that fa is a reduction from SATa to L because of 3(b).
Apply Lemma 5.1, this time to fa, and let a be the resulting function. Note that the

only possible q such that IIa-)(q)ll > 1 is q ga(o) because of 3(a).
Let Ga(q)) fi,a(p(q), q)), where P is the padding function for SATa. Berman and

Hartmanis [2] show that the claim below immediately implies that SATA is pA-isomorphic to
L. [3

RELATIVIZED ISOMORPHISM CONJECTURE 201

CLAIM 5.2. The function GA is a one-one length-increasing reduction from SATA to L
whose inverse is computable in FPa.

Clearly Ga is a reduction. Sincea and P are length increasing, then Ga is length increas-
ing. Also, Ga is one-one. Suppose Ga(p) GA(); thena(p(o, q)) ,a(p(, q)) q,
but this contradicts the fact that a is length increasing.

By Corollary 4.2, we know that pa upa. Grollmann and Selman [7] show that
pa upa implies that all one-one length-increasing polynomial-time functions relative to
A are invertible relative to A. This proves the claim, fl

5.3. Proof of Lemma 5.1. We define requirement Ri as follows: "Lemma 5.1 holds for

fa fia and Ma M/A. Note that by the definitions of fi and Mi in 2, all pairs of
reductions and machines will be covered by some Ri.

Fix i. Let Si be the set of sp-conditions that force Ri. Since the statement of Lemma 5.1
is first-order definable in A, we have that Si is a definable set of conditions. We need now
show that Si is dense. Then any sp-generic A will extend a r such that r forces Ri. We will
show Si is dense by showing how to extend any sp-condition r to another condition r such
that r forces Ri.

Fix and let r be an sp-condition and (aj)jN be the corresponding iterated-polynomial
sequence. We will create an sp-condition cr with corresponding sequence (bj)jN that forces
Ri. Let f 3 and M Mi.

Suppose r does not force ,,fa reduces SATa to L(MA). For some A extending r and
some q), we will have that either q) is true and fA(q)) q/_ L(MA) or q) is false and fa(q)) E

L(MA). Let rn max(lol/, [fa(q))[i). Let r r t2 (A restricted to strings of length at most
m). Clearly, cr extends r and forces ,,fa does not reduce SATa to L(MA) and thus forces
Ri. To see that r is an sp-condition, pick a c such that ac > rn and let bj ac+j for all j E N.

For the remainder ofthis proofwe will assume that r forces "fA reduces SATa to L(MA).,,
Pick an e such that aj+e > a for all j. Since p(n) > n2 for all n by Definition 3.1, any

e > log2(3i) will suffice. Pick a c such that ac is sufficiently large to avoid all the degenerate
cases in this proof. For all j, let bj ac+2ej and dj ac+2ej+e. This proof will never do
any encoding on strings of length bj, guaranteeing that cr is an sp-condition. In fact, all of the
interesting coding for cr will occur for strings of length dj. Initially, set cr r and also define
r (x) 0 for every x dom(r) such that x does not have length bj or dj for some j.

Let p be an arbitrary CNFA formula. Pick the smallest j such that dj > 4lcpl We define
special tupling functions (0, y, 0), (p, w, y, 1), and (p, w, y, 2) where we are only interested
in w and y as they range over strings of length ldj/4/. We design these tupling functions so
that they have disjoint ranges over strings of length exactly dj. Since Iq)l, lYl, and Iwl are all
bounded by dj/4, such an encoding is not hard to achieve.

Let h(cp, w) be the formula that encodes

(q)/,, By(q), w, y, 1) 6 A) v By(q), y, O) 6 A.

In other words, create a nondeterministic oracle Turing machine M such that MA accepts
if this expression is true and apply the relativized version of Cook’s theorem, mentioned in

2. We will have Ih(cp, w)l O(df).
Define fa(h(q), w)) as follows: Simulate fa(h(qg, 11o)). Whenever fA(h(q), to)) queries

a string of the form (0’, w’, z, 1), fA will query (q)’, w’, z, 2).
We say the computation fa(h(q), tO)) is good if, for all z, fA(h(q), to)) queries (p, w, z, 2)

then (q), w, z, 2) A. Note that whether fa(h(q), w)) is good does not depend on whether
any string of the form (q)’, w’, z, 1) is in A.

Let r(cp) be the formula that encodes

3w[(By(q), w, y, 1) A) and fa(h(q), w)) is good].

202 STEPHEN FENNER, LANCE FORTNOW, AND STUART A. KURTZ

Let s(qg) be the formula that encodes

(q)/x r(99)) v 3y(q), y, 0) e A.

By suitable padding in Cook’s theorem [4], we can construct s and h such that each is
one-one and range(h) A range(s) 0. Note that h, r, and s can be computed in unrelativized
polynomial time.

LEMMA 5.3. There is a way to set r on the strings oflength (dj)jey such that thefollowing
hold:

1. cr forces "For everyformula 99, r(p) is true’.’
2. For every q) and w, there is exactly one y such that r (q), w, y, 1)) 1.
3. For all p and y, cr (qg, y, 0)) O.
4. For all p, y, and w, tr((tp, w, y, 1)) o-((qg, w, y, 2)).

This is a combinatorial lemma that follows mainly because there are many more ways to
set cr than there are extensions to cr that [a(h(qg, w)) could query. We will give a complete
proof of Lemma 5.3 in 5.4.

Note that fa(h(qg, w)) fa(h(qg, to)) for all w and A where A extends or. Also note that
r forces "For every q9 and w, q9 is true if and only if h(0, w) is true if and only if s(o) is true."

We now describe the algorithm for ga (qg).

BEGIN ALGORITHM
(1) Simulate fa(s(qg)) and let S be the set of w such that fa(s()) queried a string of the

form (p, w, y, 1).
(2) If for some w 6 S, fa(h(qg, tO)) is good, then output fa(h(, tO)) for the first such w.
(3) Otherwise output fa(s()).
END ALGORITHM.

CLAIM 5.4. For any A extending r, thefunction ga is a reductionfrom SATa to L(MA).
Proof. The fact that ga is a reduction now follows from the construction of ga and the

fact that r forces fa tO be a reduction. U
We now show that cr forces gA to fulfill conclusions (2) and (3)(a-c) of Lemma 5.1.

We will show that if there exists an oracle A extending such that gA fails to fulfill these
conditions, then there exists an oracle B extending r such that f does not reduce SAT to
L(M). This contradicts the assumption that r forces f to be such a reduction.

We will create a B that disagrees with A only on strings longer than formulas involved in
the assumed failure of some part of (2) or (3)(a-c) for gA. This will guarantee that the truth
values of these formulas will remain unchanged.

First, we show that the sp-condition forces that gA is length-increasing, thus fulfilling
condition (2) of Lemma 5.1.

Suppose by way of contradiction that IgA(qg)l < [q)l. Let q gA(q)). Note that MA(q)
cannot look at any string of the form (q), y, 0), (0, w, y,), or (q), w, y, 2) because they are
too long.

We have two cases each with two subcases.
1. q fa(h(q), w)) output by the algorithm for gZ(qo) in step (2):

(a) Ma(q) rejects. There must be some y such that fa(h(qg, w)) did not query
(0, y, 0). Then with B A U {(q), y, 0)}, fn would not be a reduction.

(b) Ma(q) accepts. By the definition of the functions gZ and fZ and by parts
(3) and (4) of Lemma 5.3, we have that fZ(h(q), w)) queries (q), w, z, 1) only
if (0, w, z, 1) A. Then with B equal to A minus all strings of the form
(qg, w, z,), f would not be a reduction.

2. q fa(s(q))) output by the algorithm for gA(qg) in step (3):
(a) Ma(q) rejects. There must be some y such that fZ(s(99)) did not query

(p, y, 0). Then with B A U {(qg, y, 0)}, f would not be a reduction.

RELATIVIZED ISOMORPHISM CONJECTURE 203

(b) MA(q) accepts. Let S be the set from the definition of gA. Let B equal A
minus all strings of the form (0, w, z, 1) for w ’ S. If r(99) is false relative to
B, then fB is no longer a reduction since fB (S(qg)) fa(s(qg)) q, s(p) is
false relative to B, and q E L(MB).
Suppose r(p) is true relative to B. By the definition of r(tp), we have that for
some w E S, fB (h(q, w)) is good. Note that the computation of fS (h(go, to))
is identical to the computation of fA(h(99, w)). Since fB(h(0, w)) is good,
then fA(h(99, w)) is also good, and so the algorithm for gA would have output
fA(h(99, w)) in step (2).

Thus gA is length increasing.
Suppose for some A extending a and some q, JigA(-1) (q)]1 > 1. Clearly, by the definition

ofgA and the fact that h and s are both one-one with range(h) Y range(s) 0, fA- 1) (q)II >
1. Thus we have fulfilled condition (3)(a) of Lemma 5.1. We need to show how to fulfill
conditions (3)(b) and (3)(c).

Suppose q L(MA). Let p and t/be such that gA() gA(rl) q. We can assume
without loss of generality that IP[-< [r[< [q[. There must be some y such that neither
ga() nor ga(r]) queries (r/, y, 0). Let B A U {(r/, y, 0)}. Suppose ga() fa(v and
ga(r]) fa(lZ for some formulas # and v. Then fB(v) fB(#) q but v is false and #
is true relative to B, and thus fB is not a reduction. Thus we have fulfilled condition (3)(b) of
Lemma 5.1.

We will now show how to fulfill condition (3)(c) with p +2 where is the running time
of ga. Suppose q L(MA) and Ilga(-1)(q)[I >_ P(Iql) t(lql) + 2. Let 7t be a minimum-
length formula such that ga() q. By the pigeonhole principle, there is some formula
r/ 7t such that ga(rl) q and ga() does not ask any queries of the form (0, w, z, 1) or
(r/, w, z, 2). Suppose ga() fa(v for some formula v.

Note that the value fa(v) and the truth value of v cannot depend on whether strings of
the form (, w, z, 1) are in A. Since ga() simulates fa(v) and ga() does not ask any
queries of the form (, w, z, 1), then fa (V) does not ask any queries of the form (, w, z, 1).
The truth value of v can only depend on whether strings of the form (7t, y, 0), (p, w, y, 1),
and (, w, y, 2) are in A and the truth value of 7t and whether fa(h(O, w)) is good for some
w. None of these depend on whether strings of the form (r/, w, z, 1) are in A.

We have two cases.
1. q ga(rl) fa(h(rl, m)) output by the algorithm for ga(rl) in step (2). By the defi-

nition of ga andfa and by Lemma 5.3, we have that fa(h(rl, w)) queries (, w, z, 1)
only if (r/, w, z, 1) A. Thus if we let B equal A minus all strings of the form
(r/, w, z, 1), the following four properties hold:
(a) h(r/, w) is false relative to B,
(b) v is true,
(c) fB(h(rl, w)) fa(h(rl, to)) fA(h(rl, to)) ga(rl) q, and
(d) q ga()= fa(v fB(v).

Thus fB will not be a reduction.
2. q fa(s(rl)) output in step (3) of the algorithm. Let Sbe the set from the definition

of ga. Let B equal A minus all strings of the form (r/, w, z, 1) for w S. Note that
fB(s(rl)) fa(s(r])). Also, r(r/) is false relative to B for the same reasons as in
case (2)(b) of the proof of condition (2) above, and thus s(r) is also false relative to
B. Thus

fB(s(o)) fA(s(rl) gA(r]) q gA() fA(v fB(v
and v is true relative to B, and thus fB is not a reduction.

Thus we have fulfilled condition (3c). We have now fulfilled all of the conditions of
Lemma 5.1. V]

204 STEPHEN FENNER, LANCE FORTNOW, AND STUART A. KURTZ

5.4. ProofofLemma 5.3. We will use relativized Kolmogorov complexity for this proof.
For an excellent background in Kolmogorov complexity, see the book by Li and Vitinyi 7].

We need to find a 0. extending r that fulfills the conditions of Lemma 5.3. Note that by
our construction of the dj sequence, we have that dj > d/2. Fix j and let e be the least

integer such that dj_ < 4.i and u be the greatest integer such that dj > 4u For j 0, let
e 0. The values e and u bound the lengths of formulae tp such that (99, y, 0),/tp, w, y, 1),
and (99, w, y, 2) all have length dj.

Let z Iwl lYl ldj/4/. Let rn z2 Ye<e<u 2e" Let x be a string of length rn such

that K (x) > m, i.e., x is Kolmogorov random with respect to r.
View x as a concatenation of strings x0,0 of length z, where 99 ranges over all formulae

of length between e and u and w ranges over all strings of length z. Set 0. ((99, w, xo,w, 1))
0((99, w, x,w, 2)) 1 for all 99 and w, and set 0. to zero for all other strings of length dj.

Clearly, this 0. fulfills conditions (2)-(4) of Lemma 5.3. We still need to show that
forces "For all formula 99, r(0) is true."

Suppose there is some oracle A extending 0. such that for some formula 99, r(tp) is false
relative to A. We will show how to describe x with a string of length much shorter than x,
contradicting the fact that x is Kolmogorov random.

Recall that h(t#, w) has length O(df). Thus fa (h(99, w)) has running time at most O(dfi).
Thus fA can only depend on the strings in A’ = A<bj+.

Initialize B to be A’ with all the strings of the form (99, w, y, 2) removed.
Create a string v as follows:

1. Initially set v e.
2. For w ranging over strings of length z do the following:

(a) For j 1 to 1h(99, w)l i,
ifthe jth query of fa(h(99, w)) exists and is a string (99, w’, y, 2) A’- B,
then mark j and add (99, w’, y, 2) to B.

(b) Concatenate to v the number of marked j followed by a list of marked j. Write.
these numbers with leading zeros if necessary to keep the lengths consistent in
order to make the encoding simpler.

The orders in which w and j are chosen in this procedure play an important role in
allowing us to keep the description of A’ small.

Since r(tp) is false relative to A then for every w, fa (h(tp, w)) queries the unique string of
the form (p, w, y, 2) in A (and thus in A’). Thus every such string will be added to B in step
w of the above procedure if not before. At the end of this procedure, we will have B A’.

The length of v is bounded by 0(2 log dj) because there are 2 strings in A’- B initially.
Note that each (99, w, y, 2) A’ can only contribute to one marking.

Now we claim that we can construct A’ and thus x using an oracle for and the tuple
(A-<bJ, v, 99, x’), where x’ is the concatenation ofx,w for all formulae ap # p oflength between
and u, and w ranging over all strings of length z. We can reconstruct A’ by repeating the

procedure above using v to tell us which queries of the form (tp, w, y, 2) are in A’.
We can encode the tuple (A<-b, v, 99, x’) as a string of length IA<-bl/ Iol / 1991 / Ix’l plus

an additional O (dj) bits to encode the length of each piece.
The total length is bounded by O (dj + 2b+l / O (2 log dj + dj + rn z2 < rn 0 (1).

There might exist a finite number of j such that this inequality fails. We can eliminate this
possibility by an appropriate choice of ac in the beginning of 5.3.

We have created a fixed Turing machine that outputs x with oracle and input (A-<b, v,
x’), a tuple whose length is strictly less than Ix l. This contradicts the fact that x was Kol-
mogorov random relative to .

6. Conclusions and open questions. Later work by Fenner, Fortnow, Kurtz, and Li [5]
show that relative to sp-generics, P BPP NP N co-NP SPP but the polynomial-time

RELATIVIZED ISOMORPHISM CONJECTURE 205

hierarchy is proper. They also look at notions of genericity in a broader sense and show several
interesting oracle results based on these ideas.

We have shown that relative to sp-generic oracles the isomorphism conjecture holds.
Several obvious open questions remain:

Does the isomorphism conjecture hold in the unrelativized world? Despite Theo-
rem 1.1, the authors believe the evidence supports the position that the conjecture
does not hold. Theorem 1.1 shows that a proof of this result will require nonrelatizing
techniques.
How complicated must an oracle A be such that the isomorphism conjecture holds
relative to A? By Lemma 3.2 we can easily see that there are no sp-generic oracles
in the arithmetic hierarchy. However, we can fulfill just the requirements necessary
for the isomorphism conjecture with a set recursive in the halting problem.
Is there a recursive oracle A? One could wonder whether we could recursively fulfill
all the necessary requirements. We could use time-bounded Kolmogorov complexity
in 5.4, but determining whether r forces f to be a reduction is not decidable.
However, we believe that a careful finite-injury argument could lead to a recursive
oracle.
Is there an oracle relative to which the isomorphism conjecture is true and the
polynomial-time hierarchy collapses? A related question is whether there exists
an oracle A such that pa upa and NPa EXPa This oracle A also would imply
that the isomorphism conjecture holds (see [10]).

Acknowledgments. This paper grew from discussions at the Dagstuhl workshop on struc-
tural complexity theory with many people, especially Ted Slaman, Bill Gasarch, Steve Homer,
and Alan Selman.

We would like to thank other people for helpful discussions on the isomorphism conjecture
over time: Steve Mahaney, Jim Royer, and Mike Sipser.

We also thank Richard Beigel, Bill Gasarch, Steve Homer, and Jim Royer for their com-
ments on earlier drafts of this paper. We would also like to thank the anonymous referee for
his or her extensive comments.

And, of course, we would like to acknowledge Juris Hartmanis for bringing this challeng-
ing problem to the world.

Note added in proof. John Rogers [21], extending the ideas in this paper, has created a
relativized world where the isomorphism conjecture holds and P 5 UP, i.e., one-way functions
exist.

REFERENCES

1] L. BERMaN aND J. HaRTMaNIS, On isomorphism and density ofNP and other complete sets, in Proc. 8th ACM
Symposium on the Theory of Computing, ACM, New York, 1976, pp. 30-40.

[2] .,On isomorphism and density ofNP and other complete sets, SIAM J. Comput., (1977), pp. 305-322.
[3] M. BttM aND R. IM’aGtIaZZO, Generic oracles and oracle classes, in Proc. 28th IEEE Symposium on Foun-

dations of Computer Science, IEEE, New York, 1987, pp. 118-126.
[4] S. Coo, The complexity of theorem-proving procedures, in Proc. 3rd ACM Symposium on the Theory of

Computing, ACM, New York, 1971, pp. 151-158.
[5] S. FNNrt, L. FORTNOW, S. Ktma’z, aND L. LI, An oracle builder’s toolkit, in Proc. 8th IEEE Structure in

Complexity Theory Conference, IEEE, New York, 1993, pp. 120-131.
[6] J. GOLDSMITH AND D. Jos’H, Three results on the polynomial isomorphism of complete sets, in Proc. 27th

IEEE Symposium on Foundations of Computer Science, IEEE, New York, 1986, pp. 390-397.
[7] J. GROLLMANN AND A. SELMAN, Complexity measures for public-key cryptosystems, SIAM J. Comput.,

17 (1988), pp. 309-355.
[8] J. HaTMaNIS AND L. HMaCHaNDRa, One-way functions and the nonisomorphism of NP-complete sets,

Theoret. Comput. Sci., 81 (1991), pp. 155-163.

206 STEPHEN FENNER, LANCE FORTNOW, AND STUART A. KURTZ

[9] S. HOMER AND A. SELMAN, Oracles for structural properties: The isomorphism problem and public-key
cryptography, in Proc. 4th IEEE Structure in Complexity Theory Conference, IEEE, New York, 1989,
pp. 3-14.

10] ., Oraclesfor structural properties: The isomorphism problem andpublic-key cryptography, J. Comput.
System Sci., 44 (1992), pp. 287-301.

[11] D. JOSEPH AND P. YOUNG, Self-reducibility: Effects of internal structure on computational complexity,
in Complexity Theory Retrospective, A. Selman, ed., Springer-Verlag, Berlin, New York, 1990,
pp. 82-107.

[12] S. KURTZ, The isomorphism conjecture fails relative to a generic oracle, Tech. report 88-018, Department of
Computer Science, University of Chicago, 1988.

[13] S. KURTZ, S. MAHANEY, AND J. ROYER, Progress on collapsing degrees, in Proc. 2nd IEEE Structure in Com-
plexity Theory Conference, IEEE, New York, 1987, pp. 126-131.

14] Collapsing degrees, J. Comput. System Sci., 37 (1988), pp. 247-268.
[15] ------, The structure of complete degrees, in Complexity Theory Retrospective, A. Selman, ed., Springer-

Verlag, Berlin, New York, 1990, pp. 82-107.
[16] , The isomorphism conjecture fails relative to a random oracle, J. Assoc. Comput. Mach., (1995),

to appear.
17] M. LI AND P. VIT,,NYI, An Introduction to Kolmogorov Complexity andIts Applications, Texts and Monographs

in Computer Science, Springer, New York, 1993.
[18] C. RACKOFF, Relativized questions involving probablistic algorithms, J. Assoc. Comput. Mach., 29 (1982),

pp. 261-268.
[19] H. ROGERS, Theory ofRecursive Functions and Effective Computability, MIT Press, Cambridge, MA, 1987.
[20] G. SACKS, Forcing with perfect closed sets, Proc. Sympos. Pure Math., 13 (1971), pp, 331-356.
[21 J. ROGERS, The isomorphism conjecture holds and one-wayfunctions exist relative to an oracle, in Proc. 10th

IEEE Structure in Complexity Theory Conference, IEEE, New York, 1995, pp. 90-101.

SIAM J. COMPUT.
Vol. 25, No. 1, pp. 207-233, February 1996

() 1996 Society for Industrial and Applied Mathematics
009

A UNIFIED APPROACH TO DYNAMIC POINT LOCATION, RAY SHOOTING,
AND SHORTEST PATHS IN PLANAR MAPS*

YI-JEN CHIANG, FRANCO P. PREPARATA, AND ROBERTO TAMASSIA

Abstract. We describe anew technique for dynamically maintaining the trapezoidal decomposition ofa connected
planar map dX/[with n vertices and apply it to the development of a unified dynamic data structure that supports point-
location, ray-shooting, and shortest-path queries in A4. The space requirement is O(n log n). Point-location queries
take time O(log n). Ray-shooting and shortest-path queries take time O(log n) (plus O(k) time if the k edges of the
shortest path are reported in addition to its length). Updates consist of insertions and deletions of vertices and edges,
and take O(log n) time (amortized for vertex updates). This is the first polylog-time dynamic data structure for
shortest-path and ray-shooting queries. It is also the first dynamic point-location data structure for connected planar
maps that achieves optimal query time.

Key words, point location, ray shooting, shortest path, computational geometry, dynamic algorithm

AMS subject classifications. 68U05, 68Q25, 68P05, 68P10

1. Introduction. A number of operations within the context of planar maps (or subdi-
visions, as determined by a planar graph embedded in the plane) have long been regarded as
important primitives in computational geometry. First and foremost among these operations is
planar point location, i.e., the identification of the map region containing a given query point;
shortest-path and ray-shooting queries have also been considered very prominently.

Starting with the pioneering work in planar point location of the 1970s 10], 18], over the
years several techniques have been developed, culminating in asymptotically time- and space-
optimal methods [12], [17], [29] that are also of sufficiently practical flavor. Such methods,
however, refer to the static case where no alteration of the map is allowed during its use. Due
to the obvious importance of the dynamic setting, in recent years considerable attention has
been devoted to the development of dynamic point-location algorithms [2], [6], [8], [14], [15],
[21], [25], [26], [31].

All the known dynamic point-location results are for connected maps, since maintaining
region names in a disconnected map would require solving half-planar range searching in a
dynamic environment, for which no polylog-time algorithm is known. The best results to date
for dynamic point location in an n-vertex connected map are due to Cheng and Janardan [6]
and Baumgarten, Jung, and Mehlhorn [2]. The technique of [6] achieves O (log2 n) query time,
O(log n) update time, and O(n) space. The data structure of [2] has query and insertion time
O(log n log log n) and deletion time O (log2 n), using O(n) space, where the time bounds are
amortized for the updates. In many real-time applications, point-location queries are executed
more frequently than updates, so that it is often desirable to achieve optimal O (log n) query
time in a dynamic setting. The only previous technique that supports O (log n)-time queries
in a dynamic environment is restricted to monotone maps [8]. For a survey of dynamic point-
location techniques and other dynamic algorithms in computational geometry, see Chiang and
Tamassia [9].

Algorithmic research on shortest-path and ray-shooting queries has also experienced
steady progress, resulting in time-optimal techniques for the static setting [1], [5], [7], [16],

*Received by the editors January 8, 1992; accepted for publication (in revised form) August 3, 1994. An
extended abstract of this paper was presented at the 4th ACM-SIAM Symposium on Discrete Algorithms, Austin,
Texas, January 1993. This research was supported in part by National Science Foundation grants CCR-90-07851
and CCR-91-96176, U.S. Army Research Office grants DAAL03-91-G-0035 and DAAH04-93-0134, and the Office
of Naval Research and the Defense Advanced Research Projects Agency under contract N00014-91-J-4052, ARPA
order 8225.

tDepartment of Computer Science, Brown University, Providence, RI 02912-1910 ({yjc,franco,rt}@cs.
brown.edu).

207

208 Y.-J. CHIANG, E R PREPARATA, AND R. TAMASSIA

[19]. In particular, the linear-space data structures of Chazelle and Guibas [5] and of Guibas
and Hershberger 16] support in O (log n) time ray-shooting and shortest-path queries, respec-
tively, in a simple polygon with n vertices. No polylog-time method was previously known
in a dynamic setting, although a polylog-time ray-shooting technique by Reif and Sen [28],
designed for monotone polygons, may be extensible to the general case. Sublinear-time tech-
niques are known only for ray-shooting queries [1], [7], with O(/- polylog(n)) query/update
time; they support ray shooting in a set of possibly intersecting segments without taking
advantage of the structure of planar maps.

A property that appears to greatly facilitate the development of dynamic point-location
techniques is monotonicity [8], [15], [25]. Whereas the restriction to monotone maps is quite
adequate for many important applications, the exclusion of more general maps is a severe
shortcoming. In the static case, a connected map can be reduced to monotone (or, as we
say in this paper, normalized) by the straightforward insertion of (auxiliary) diagonals. The
same approach, when attempted for the dynamic setting, could lead to onerous updates, such
as when the insertion of an edge causes the removal of a very large number of normalizing
diagonals. A rather complicated and only partially documented technique due to Fries [13]
is reported to assure that only a logarithmic number of normalizing diagonals be involved in
any update.

In this paper we combine the feature just stated with the underpinnings of the trapezoid
method, whose search efficiency both in theory [4], [23] and practice [11] is well established.
This leads to the adoption of horizontal normalizing diagonals, called lids. The method rests
on three major components:

1. a normalization structure that transforms a connected map into a monotone one by the
addition of horizontal diagonals, while guaranteeing that no more than a logarithmic
number of such diagonals are affected by insertions/deletions of edges/vertices,

2. a hull structure that stores the convex hulls of the chains and subchains of the mono-
tone subregions, so that ray-shooting and shortest-path queries can be efficiently
performed,

3. a location structure that represents a recursive decomposition of the normalized map
into trapezoidal regions, and supports point-location queries in optimal time.

It is important to underscore that a single tree structure--the normalization structure--
provides the unifying framework for the three applications considered. In fact, this structure,
while ensuring efficient updates by controlling the size of the modifications, can be naturally
augmented with node-appended secondary structures to support shortest-path andray-shooting
queries. It can also be supplemented with a distinct, but tightly coupled, location structure
designed for efficient point location. The main normalization structure and its two auxiliary
components act in a tightly integrated fashion. Point location is crucially used in shortest-path
and ray-shooting queries and in the update of the normalization structure.

The fundamental constituents of our data structures are monotone chains and trapezoids
determined by edges and horizontal lines through vertices. This provides the unifying frame-
work for the three applications mentioned earlier. Indeed, a simple augmentation of the nor-
malization structure provides the right environment for all three queries, as we shall illustrate.
It should be underscored that, although their linkings are obviously elaborate, the elementary
data structures employed are particularly simple, so that not only asymptotic efficiency is
established, but also practical potential is apparent.

Our main results are outlined in the following theorem.
THEOREM 1.1. There exists a fully dynamic data structure that supports point-location,

ray-shooting, and shortest-path queries in a connected planar map .All with n vertices. The
space requirement is 0 (n log n). Point-location queries take time 0 (log n). Ray-shooting
and shortest-path queries take time O(log n) (plus O(k) time ifthe k edges ofa shortestpath

DYNAMIC POINT LOCATION, RAY SHOOTING, AND SHORTEST PATHS 209

are reported in addition to its length). Updates take O(log n) time (amortized for vertex

updates).
As a corollary, we can also perform stabbing queries, i.e., determine the k edges of map

A4 intersected by a query segment, in O((k + 1) log n) time.
The contributions of this work can be summarized in the following points:

We present the first polylog-time dynamic data structure for shortest-path queries in
connected planar maps. All previous data structures for shortest paths are static and
take linear time for either queries or updates when used in a dynamic environment.
We provide the first polylog-time dynamic data structure for ray-shooting queries in
connected planar maps. The previous best result is O (V/-ff polylog(n)) query time.
We present the first dynamic data structure for point-location queries in connected
planar maps with optimal O (log n) query time and polylog update time. The previous
best result is O (log n log log n) query time.
We provide the first dynamic point-location data structure that checks the validity
of an edge insertion, i.e., whether the new edge does not intersect the current edges
of the map. Previous dynamic point-location data structures did not have such a
capability due to the lack of an efficient dynamic ray-shooting technique.

In 2 we briefly review the terminology of planar maps and the basic data structures
used by our method. The mechanics of the dynamic maintenance of a normalized map are
described in 3, while 4, 5, and 6 are respectively devoted to shortest-path, point-location,
and ray-shooting queries.

2. Review ofbackground. For the geometric terminology used in this paper, see [24]. A
connectedplanarmap is a subdivision ofthe plane into polygonal regions whose underlying
planar graph is connected. The map is augmented with two vertical rays, one directed toward
y + and the other toward y -cxz, respectively issuing from the vertices of .A/[with
maximum and minimum y-coordinates. Thus, all but two regions of A//are bounded simple
polygons. In the following, n denotes the number of vertices of the planar map A// currently
being considered. Also, we assume that no two vertices of j/have the same y-coordinate;
the degenerate cases can be handled by standard techniques and will not be discussed in this
paper.

In the plane we have an orthogonal frame of reference (x, y). A polygonal chain is
monotone if any horizontal line intersects it in a single point or in a single interval or not at
all. A simple polygon r is monotone if its boundary consists of two monotone chains. A cusp
of a polygon is a vertex v whose internal angle is greater than 7r and whose adjacent vertices
are both strictly above (lower cusp) or strictly below (upper cusp) v. A polygon is monotone
if and only if it has no cusps. A map is monotone if all its regions are monotone.

The trapezoidal decomposition of a connected map A/[is obtained by drawing from each
vertex v of A/[two horizontal rays that either remain unbounded or terminate when they first
meet edges of A//. The resulting segments are called splitters. It is easily verified that a region
of /with s vertices is partitioned by the splitters into s 1 trapezoids (see Fig. 1). The
trapezoidal decomposition of .A//is geometrically dualized by mapping each of the obtained
trapezoids r to an arbitrary point 6(r) in the interior of 3. Each of the splitters is mapped to
an edge between images of trapezoids in the usual way. We let 6(V/) denote the resulting
dual graph, which is a forest of trees since the trapezoids of a single region r 6 .A//dualize
to a tree 6(r) (because r has no holes). Note that each node of 3(r) has degree at most four.
Let si, 1, 2, denote either a splitter or an extreme vertex of region r. Then SLEEVE(s1, s2)
denotes the union of the trapezoids traversed by the shortest path within r between any point
of s and any point of s2. (Note the duality between "sleeves" in region r and paths in tree

3(r).) In a notationally consistent manner, 3(s) denotes the edge of 6(r) that is the dual of
splitter s.

210 Y.-J. CHIANG, E R PREPARATA, AND R. TAMASSIA

Our data structures are based on a variety of balanced search trees. We observe that
all the standard operations on balanced search trees (insertion, deletion, split, and join) can
be performed by means of a logarithmic number of more basic primitives, which we call
"elementary joins and splits," defined as follows:

An elementary join of two binary trees T1 and T2 forms a new tree T by making T1
and T2 the left and right subtrees of a new root node.
An elementary split yields the left and right subtrees T1 and T2 of T by removing its
root.

In particular, a simple rotation can be viewed as a sequence of four elementary splits and
joins.

Three special types of data structures will be used in this paper: biased binary trees [3],
B B[ot]-trees [20], and dynamic trees [30].

A biased binary tree [3] is a binary search tree whose leaves store weighted items. Let
w be the sum of all weights. We have that the depth of a leaf with weight wi is at most
log(w/wi) -+- 2, and each of the following update operations can be done in O(log w) time:
change of the weight of an item, insertion/deletion of an item, and split/splice of two biased
trees [3].

A B B[oe]-tree [20] (where oe is a fixed real, with 2 < c _< is a binary search tree
and has the following important properties (among others):

A BB[oe]-tree with n nodes has height O(logn).
Assume that we augment a BB [oe]-tree with secondary structures stored at its nodes.
Let the subtree with root # have g leaves, and let the time for updating the secondary
structures after a rotation at node/Z be O(g log g). Then the amortized time of an
update operation in a sequence of n insertions and deletions starting from an initially
empty BB [c]-tree is O (log n).

Dynamic trees [30] are designed to represent a forest of rooted trees, with each edge
directed toward the root of its tree (and called an arc). Some important operations (among
others) supported by dynamic trees include the following:

link(/z, v). Add an arc from/Z to v, thereby making/Z a child of v in the forest. This
operation assumes that/z is the root of one tree and v is a node of another tree.

cut(/z). Delete the arc from/Z to its parent, thereby dividing the tree containing/Z into
two trees.

evert(/z). Make/Z the root of its tree by reversing the path from/Z to the original root.
Each arc of the trees is classified as solid or dashed, so that each tree is partitioned into

a collection of solid paths, connected by dashed arcs. A solid path is maintained by a data
structure called a path tree. Using biased binary trees [3] as the standard implementation of
path trees, each of the above operations takes O(log n) time, where n is the size of the tree(s)
in the forest involved.

3. The dynamics of trapezoidal decompositions. Given a connected map A4, our ob-
jective is first to systematically transform (normalize) it into a monotone map, and then to
illustrate how to efficiently maintain it under a dynamic regimen of edge and vertex inser-
tions/deletions.

3.1. Normalization. We first address the problem of normalization. Each region r of
A/[is handled individually. We refer to a region r, bounded or unbounded. In the following,
we denote by m the current number of vertices in r.

We imagine representing 3(r) as a dynamic tree A(r) [30] (see Fig. 1). We choose an
arbitrary node of 3(r) as the root, which immediately forces a direction on each edge, referred
to hereafter as an arc and directed toward the root. Since we have chosen to dualize each

DYNAMIC POINT LOCATION, RAY SHOOTING, AND SHORTEST PATHS 211

root P11
28

P2

P9
P

37

23

Plo

P8

P6

P5

13

FIG. 1. Example ofa region r and its dynamic tree A(r) (P1 Pll are solid paths).

trapezoid to a point in its interior, the y-component of each arc has a well-defined sign. An arc
is usually denoted either by a single letter or by an ordered pair (origin, destination). The arcs
are classified as follows: letting w (/z), weight of/z, denote the number of nodes in the subtree

w(v) and light otherwise.rooted at node/z, an arc (/z, v) is classified heavy if w(/z) >_ 7
Consequently, at most one heavy arc enters a node of A(r). Note that the attributes {light,
heavy} pertain uniquely to the weight structure of the dynamic tree A(r).

Arcs are also classified as solid or dashed to enforce the property that at most one solid
arc enters a node of A (r). The maximal paths of consecutive solid arcs (possibly consisting
of a single node) are called solid paths, and each corresponds to a sleeve of r. Note that the
attributes {dashed, solid} pertain to a given, but otherwise arbitrary, decomposition of r into
sleeves.

The weight structure and the sleeve decomposition are tied by the following weight in-
variant, which holds before and after the execution of data structure operations (queries or
updates): heavy arcs are solid and light arcs are dashed. However, during the execution of
operations, we may change heavy arcs to dashed and light arcs to solid, and thus loose the
original correspondence. The weight invariant is restored at the completion of each operation.

Region r contains a set of splitters, called lids, which are the duals of the following arcs:
Rule 1. All dashed arcs.
Rule 2. Any two consecutive solid arcs whose y-components have opposite signs.

212 Y.-J. CHIANG, E R PREPARATA, AND R. TAMASSIA

(a) (b)

FIG. 2. ProofofLemma 3.1.

Note that each lid is generated by a vertex of r. The set of lids normalizes r. Namely, we
have the following lemma.

LEMMA 3.1. The set of lids partitions r into a collection ofmonotone polygons.
Proof. Let c be a cusp of polygon r. We consider the two arcs of A (r) which are the duals

of the two splitters issuing from c. If at least one of them is dashed (see Fig. 2(a)), then there
is at least one lid issuing from cusp c corresponding to the dashed arc (Rule 1). If on the other
hand both arcs are solid, then one must have a positive y-component and the other a negative
one, or otherwise they would enter the same node of A (r) and thus would violate the property
that at most one solid arc enters a node (see Fig. 2(b)). Then these two arcs are consecutive
solid arcs with y-components of opposite signs, and there are two lids from c corresponding
to these arcs (Rule 2). Hence there is always at least one horizontal lid issuing from each cusp
c of r, thereby achieving a decomposition of r into monotone polygons. 1

LEMMA 3.2. Each directed path of the dynamic tree A(r) contains at most log2 m light
arcs.

Proof. Moving away from the root, each light arc traversed reduces the size of the current
subtree by at least one half, since w(child) < w(parent). [3

COROLLARY 3.3. Any straight line drawn in region r crosses 0 (log m) lids.

Proof. The weight invariant is always preserved before and after the execution of data
structure operations. Each lid then corresponds to either (i) a light arc (Rule 1, since dashed arcs
are light) or (ii) a solid arc at which the solid path containing this arc changes monotonicity
with respect to the y-axis (Rule 2). By Lemma 3.2, any straight line drawn in r crosses
O (log m) lids of type (i). Now consider the lids of type (ii). Lemma 3.2 also implies that
goes through O(log m) solid paths. Observe that each solid path P can be partitioned into
maximal monotone subpaths, and can go through at most one such monotone subpath, thus
crossing at most two lids of solid arcs of P. It follows that the number of lids of type (ii)
crossed by is also O (log m). [3

3.2. The double-thread data structure. It is intuitively clear that insertion or deletion
of an edge may substantially modify the set of trapezoids, whereas it alters only slightly the
structure ofregion boundaries. For this reason, we adopt a data structure that represents a solid
path of A(r) by two "threads"; these two threads respectively correspond to two chains whose
union is the boundary of the sleeve associated with the solid path. The proposed structure is
referred to as double-thread data structure for region r, denoted by DT (r).

Each arc c of A (r) can be drawn to intersect its dual splitter issuing from some vertex
v of r. Therefore we associate c with v. Notice that each vertex v in 34 is associated with
two arcs: if v is a cusp of some region r, then the two splitters issuing from v both lie in r
and thus cross two arcs of A(r); otherwise, v belongs to two regions rl and r2 and the two

DYNAMIC POINT LOCATION, RAY SHOOTING, AND SHORTEST PATHS 213

splitters issuing from v cross respectively an arc of/k(rl) and an arc of/k(r2). Instead of
maintaining the nodes of A(r), we choose to maintain the arcs of A(r) using the vertices of
r as their representatives, by associating each node of A(r) to the arc issuing from it. As a
consequence, each solid path P is represented by two binary trees lthread(P) and rthread(P),
referred to as thread trees, whose implementation is described below. Recall that each solid
path is directed toward the root. Each vertex v associated with an arc on solid path P is
classified as follows: walking along P toward the root, vertex v is classified left if it lies to
the left of P and right otherwise. Notice that if P is followed by a dashed arc c (every solid
path except the one terminating at the root of A (r) has this property), then we also include c
as an arc on solid path P in our representation.

The arcs of a solid path P can be partitioned into maximal monotone (on the basis of
the signs of their y-components) subpaths Q1, Q2 Q/. Our thread trees lthread(P) and
rthread(P) are each implemented as a two-level (called lower and upper) balanced binary tree
(i.e., the roots of lower-level trees are leaves of the upper-level tree). Referring to lthread(P),
in the lower level, we have a balanced binary tree Itree(Qi) for each Qi, where the leaves of
ltree(Qi store the left vertices of Qi in their path order. Thread tree rthread(P) is analogously
organized, with rtree(Qi) storing the right vertices. The roots of ltree(Qi) and rtree(Qi) are
bidirectionally linked. In the upper level, lthread(P) (and analogously rthread(P)) has the
roots of ltree(Q1), Itree(Q2) ltree(Q) as leaves in their path order. A bidirectional link
also exists between the roots of lthread(P) and rthread(P). An example is shown in Fig. 5(a).

Any node on P might be pointed to (via dashed arcs) by some other solid paths in the
dynamic tree A(r). Suppose that P’ points to P via an arc or’ associated with vertex v’. Two
situations may now occur: (i) vertex v’ is also associated with an arc of P (e.g., see paths
P2, P3, and P4 in Fig. 1 with P PI). Then v’ is a left or right vertex of P (thus stored
as a lower-level leaf of lthread(P) or rthread(P)). We establish a pointer from each root of
lthread(P’) and rthread(P’) to that lower-level leaf v’ (see Fig. 5(b)). The possible instances
of this situation are illustrated in Fig. 3(b and d). (ii) vertex v’ is not associated with an arc of
P (e.g., see paths P5 and P7 in Fig. with P P1). This occurs if P changes monotonicity
(by crossing both splitters of a cusp c) at the node reached by arc or’. In this case, in order
to provide a destination for the pointers from the roots of lthread(P’) and rthread(P’), we
introduce an auxiliary leaf, called a coupler (usually denoted by letter H), inserted between
the two consecutive subtrees (both either ltrees or rtrees) of the thread tree not containing cusp
c (see Fig. 5(b)). The possible instances of this situation are illustrated in Fig. 3(c and e).

Note that a pointer destination may be needed when a solid path P begins (Fig. 4(b and
c) and Fig. for P P1). In this case, we adopt the convention to insert a coupler preceding
either ltree(Q 1) or rtree(Q), where Q is the initial monotone subpath of P (see Fig. 5(b)).
The overall data structure DT (r) consists therefore of two rooted trees of in degree at most 4
(see Fig. 5(b)).

We now define a new parameter of nodes of DT(r) (DT-nodes), called charge, which
will be used to maintain the weights of the nodes of the dynamic tree A (r). Each DT-node
corresponding to a vertex of r (a leaf of a lower-level tree) is labeled distinguished; the charge
of a DT-node is the number of the distinguished nodes in the subtree of which it is the root.

According to its definition, the weight w(/z) of a node # of A(r) is the number of the
nodes in the subtree of which it is the root, or, equivalently, the number of the arcs in this
subtree plus the arc ot issuing from/z. It is immediate that, denoting by v the vertex associated
with arc ot and by Qi the monotone subpath containing or, this number is obtained as the sum
of two items: (1) the sum of the charges of all lower-level leaves (actually leaves or couplers)
up to and including v in the thread tree containing v, and (2) in the other thread tree, the sum
of the charges of all lower-level leaves preceding v*, where v* is the first vertex on monotone
subpath Qi whose splitter follows the splitter issuing from v, or if v* does not exist (because

214 Y.-J. CHIANG, E R PREPARATA, AND R. TAMASSIA

(b) (c)

(d) (e)

FIG. 3. All possible cases in which a solidpath P crosses a splitter issuingfrom a cusp c. Note that P does not

change monotonicity (i.e., crosses only one splitter issuingfrom c) in (b) and (d), and P changes monotonicity (i.e.,
crosses both splitters issuingfrom c) in (a), (c), and (e).

(a)

P

(b) (c)

p

FIG. 4. All possible cases in which a solid path P starts. Note that a coupler of P is needed to provide a
destination of pt and P" in (b) and (c).

Qi terminates at v), the sum of the charges of all lower-level leaves up to and including the
last leaf of the appropriate subtree of Qi (either ltree(Qi) or rtree(Qi)). For example, let us
look at w(/zl) and w(/z2) in Fig. 6. For w(/z2), v* s, thus w(/x2) is the sum of the charges
of all lower-level leaves of rthread(P) from left up to and including v which corresponds
to/z2, and the charges of all lower-level leaves of lthread(P) up to and including coupler
H; for w(/zl), v* does not exist, and thus w(/z) is the sum of the charges of all lower-level
leaves of rthread(P) up to and including v which corresponds to/z a, and the charges of all
lower-level leaves of lthread(P) up to and including u. Clearly, we can locate v* or decide its
nonexistence in logarithmic time, using the y-coordinate of v to perform a binary search on
either ltree(Qi) or rtree(Qi) of the thread tree that does not contain v.

The preceding discussion establishes the following lemma.

DYNAMIC POINT LOCATION, RAY SHOOTING, AND SHORTEST PATHS 215

(a)

lthre
20 19 7 6 5 32 33 34 3435394042

(b)
lthread(P /./Qthread(P3)

lthread(Pll

rthread(P11)/Z Z////
"---’////j2019 J/// 7655 /Nthread(P3)

lthread(P1)//thread(Pv)J/ /\ kA
rthread(Pao lN6 x’fhread(Ps)

2526 J rthread(P; thread(P6)
lthread(P8)---" "-7thread(Ps) thread(P6)

910
_.J 13141516

rthread(P8)
2223

lthread(P9)3229) lthread(p4333434353)3669404thread(P2)
rthread(P rthread(P4)e/ ./"thread(P2)

423132
3839

FIG. 5. Double-thread data structure DT(r) for region r in Fig. 1: (a) basic thread treesfor P1; (b) complete
structure of DT(r). The bidirectional pointers linking pairs of corresponding thread trees and thread subtrees are
omitted.

LEMMA 3.4. The space complexity of the normalization structure for an n-vertex map is
O(n).

Our data structure has an auxiliary component, called dictionary. The dictionary stores
the names of vertices, edges, and regions, so that their representatives occurring in various
places in the normalization structure, hull structure, location structure (see 4 and 5), etc.,
can be efficiently accessed. The edges of a region r are also maintained in the dictionary by a
balanced binary tree according to their circular order, with the root of the tree storing the name
of r. We store with each edge e two pointers respectively to its left and right representatives in
such trees, so that given e, the region r to its left (respectively, right) can be found by accessing
its left (respectively, right) representative and walking up to the root of the tree of r. It is easy
to see that accessing and updating the dictionary can be performed in logarithmic time, and

216 Y.-J. CHIANG, E P. PREPARATA, AND R. TAMASSIA

(a) (b)

...tv vz...

FIG. 6. Weights w(/zl), to(/z2) ofnodes /Zl /z2 ofthe dynamic tree A(r): w(/z2) is the sum ofthe charges ofall
lower-level leaves ofrthread(P from left up to and including the occurrence of v which corresponds to Iz2, and the
charges ofall lower-level leaves oflthread(P) up to and including coupler H; w(lzl) is the sum ofthe charges ofall
lower-level leaves ofrthread(P) up to and including the occurrence of v which corresponds to lxl, and the charges
ofall lower-level leaves oflthread(P) up to and including u.

that the dictionary does not affect the space complexity of our data structure. Therefore we
omit any further discussion of the dictionary in the rest of the paper.

3.3. Update operations. We define the following update operations on a connected map
A:

INSERTEDGE(e, Vl, v2, r; rl, r2). Insert edge e (vl, v2) into region r such that r is
partitioned into two regions r and

REMOVEEDGE(e, Vl, v2, rm, r2; r). Remove edge e (Vl, v2) and merge the regions
and r2 formerly on the two sides of e into a new region r.

INSERTVERTEX(V, e; el, e2). Split the edge e (u, w) into two edges el (u, v) and
e2 (v, w) by inserting vertex v along e.

REMOVEVERTEX(v, el, e2; e). Let v be a vertex with degree two such that its incident
edges el (u, v) and e2 (v, w), are on the same straight line. Remove v and merge el and
e2 into a single edge e (u, w).

ATTACHVERTEX(Vl, e; 192). Insert edge e (vl, vz) and degree-one vertex 132 inside some
region r, where vl is a vertex of r.

DETACHVERTEX(V, e). Remove a degree-one vertex v and edge e incident on v.
With the above repertory, the following theorem is immediate.
THEOREM 3.5. An arbitrary connected map .All with n vertices can be assembledfrom

the empty map, and disassembled to obtain the empty map, by a sequence of O(n) opera-
tions drawnfrom the set {point-location query, INSERTVERTEX, REMOVEVERTEX, INSERTEDGE,
REMOVEEDGE, ATTACHVERTEX, DETACHVERTEX}.

Now we show that ATTACHVERTEX and DETACHVERTEX can be simulated by a sequence of
O (1) operations taken among the first four ofthe repertory and point-location query. Referring
for simplicity to ATTACHVERTEX(Vl, e; V2), we have the following emulation routine: perform

DYNAMIC POINT LOCATION, RAY SHOOTING, AND SHORTEST PATHS 217

Pl

FIG. 7. Example ofsplice(P1, P2 P’, P").

a point-location query of v2 to obtain the region r containing it (which also provides the
trapezoid containing v2), compute the two horizontal projection points v’ and v" of v on the
boundary of r, insert vertices v’ and v’, insert edge (v’, v’), insert vertex v on (v’, v’), insert
edge e, remove edges (v’, v) and (v2, v’), and finally remove vertices v’ and v’.

In the rest of this section, we describe how to implement the first four operations of
the above repertory on the dynamic tree A(r) of an arbitrary region r (a simple polygon),
represented by the double-thread data structure described above.

3.3.1. Primitive dynamic-tree operations. We begin by considering some elementary
dynamic-tree operations expose, conceal, and evert introduced in [30], in terms of which the
operations ofthe above repertory can be immediately expressed. In the course ofsome updates,
we may change a solid arc to dashed and vice versa and thus violate the weight invariant; thus
we need the capability to restore such weight invariant. Such actions are effected by the
operations expose and conceal introduced in [30]. Operation expose(Iz), for some node/z
of A(r), transforms the unique path P from node/z to the root of A(r) into a solid path,
by changing the dashed arcs in P to solid and the solid arcs incident to P to dashed. Since
this transformation may violate the weight invariant of dynamic trees, the inverse operation
conceal(P) is used to remove the violation, by identifying all the light arcs in P and making
them dashed, and also identifying all heavy arcs (if any) among the arcs incident to P and
making them solid.

The primitive operation used in expose and conceal is splice(P1, P2; P’, P’), acting on
two given paths P1 and Pa to produce two new paths P’ and P" (see Fig. 7). Originally, solid
path P2 points to node/z of solid path P1 via a dashed arc or. Denoting by t’ the (solid) arc
of P1 terminating at/z (if any), splice exchanges the roles of ot and or’, i.e., it creates two new
solid paths P’ and P" with P" pointing to P’ via dashed arc c’ (again, P" and or’ might be
empty).

Operation splice(P, P:; P’, P’) essentially involves splitting and concatenating both
threads of the paths concerned. Specifically, lthread(P1) is split into lthread(P") and
Ithread(P’), and then lthread(P) is concatenated with lthread(P") to form lthread(P’);
this happens analogously for rthread. Operation slice may require either the insertion or the
deletion of a coupler (see, for example, splicing P4 to P (insertion) and P5 to P1 (deletion) in
Fig. 1). Since a constant number of splits/concatenations have to be performed, we have the
following lemma.

218 Y.-J. CHIANG, E R PREPARATA, AND R. TAMASSIA

LEMMA 3.6. Operation slice can be executed in 0 (log m) time on the double-thread data
structure.

Since each directed path in A(r) contains at most log2 m light arcs by Lemma 3.2 (each
accessible by climbing to the root of an O(log m)-depth thread tree), expose uses at most
log2 m slice operations and therefore is executed in O (log2 m) time.

Given a solid path P, operation conceal(P) identifies the light arcs of P which have to be
made dashed and the heavy arcs (if any) incident to P which have to be made solid in order to
comply with the weight invariant of dynamic trees. It can be carried out by finding the topmost
(i.e., closest to the root of A(r)) light arc oe, splitting P at oe, removing the subpath from the
root up to and including oe, and then repeating the process for the remaining solid path, until
no light arc is found. The heavy arcs incident to P can then be identified (and made solid) in
a straightforward way: each time a light arc (/x, v) is found, we check all (up to three) arcs
incident to v to see if any one of them is heavy; finally, we also apply this checking process to
the arcs incident to the bottommost node of P. So the main issue for performing conceal(P)
is how to find the topmost light arc.

Before describing its adaptation to the double-thread data structure, we briefly review
the standard implementation of operation conceal as proposed by Sleator and Tarjan [30].
Let the dynamic-tree nodes of solid path P be stored left to right as the leaves of a balanced
binary tree T(P), called in [30] a path tree. Each leaf " of T(P) stores local_weight(),
defined as the sum of the local weights of all dashed-arc children (which are the roots of
some other path trees) of ’, if any, plus (to account for " itself). For each internal node r/,

local_weight(o) is defined as the sum of the local weights of its children. Note the similarlity
between the local weights of nodes in path tree T (P) and charges of nodes in thread trees
lthread(P) and rthread(P) defined in 3.2. Actually, parameters local_weight and charge
are identical except for their usages in computing w(#)--the weight of a dynamic-tree node
#. In T(P), w(#) is the left-to-right prefix sum of the local weights of the leaves, whereas
in thread trees, w(/z) is contributed by the prefix sums of the charges of the leaves in both
lthread(P) and rthread(P) (see 3.2). Let T be the subtree of T (P) rooted at internal node
r/. Denoting by ;k the rightmost leaf in T, and by the leaf adjacent to) on the left, variable

lefttilt(l) is defined by lefttilt(rl)=w() local_weight()). We recall that arc (, ,k) of P is
light if and only if w() < w(,k), i.e., w() < g(w() + local_weight(X)), which yields
lefttilt(tl) < O.

Moreover, define leftmin(l)/=min{lefttilt(O) 0 is an internal node of T}. It follows that if
leftmin(rl) >_ O, then there is no light arc between any two adjacent leaves of T. Also, variable
netleft(l) is defined as leftmin(rl) if /is the root of T(P) and leftmin(l) leftmin(parent(rl))
otherwise. Correspondingly, variables netright(rl), rightmin(rl), and righttilt(rl) are defined
symmetrically in a straightforward manner by summing the local weights from right to left for
the purpose of reversing the path direction. In summary, each internal node /of T(P) stores
three values: local_weight(tl), netleft(rl), and netright(rl).

To find the topmost light arc in P, we traverse a path from the root of T (P) with the
following advancing mechanism. Assume inductively that, for the current node r, parameter
leftmin(tl) (< 0) is known. Let r/’ and r/" be the left and right children of /, respectively, and
be the leftmost leaf of T,,. From the definition

netleft(l") leftmin(l") leftmin(l),

we obtain leftmin(rl"). If leftmin(rl") < 0, then we proceed to r/". Otherwise, we compare
local_weight(tl’) and local_weight(). If local_weight(rl’) < local_weight(), then the arc
leading to is the sought light arc; else, we compute leftmin(l’) leftmin(rl) + netleft(tl’)
(which is necessarily < 0) and proceed to r/’ (this establishs the inductive step). By this

DYNAMIC POINT LOCATION, RAY SHOOTING, AND SHORTEST PATHS 219

process, akin to binary search, the topmost light arc can be found in O(log m) time. Recall
that by Lemma 3.2, there are at most log2 m light arcs in T (P).

We are now ready to consider the implementation of conceal for the double-thread data
structure. We treat thread trees lthread(P) and rthread(P) independently as two path trees,
with parameter charge playing the role of local weight. By the method just illustrated, we
identify at most log2 m light arcs from each of lthread(P) and rthread(P). Note that a light
arc (,)) in P assures the existence of a light arc (’,)) in either lthread(P) or rthread(P)
that contains leaf ,, where ’ is the left-neighboring leaf of ;. Indeed, in T(P), the sum
w() of the local weights up to and including satisfies w() < local_weight(X). But in
the appropriate thread tree (i.e., either lthread(P) or rthread(P) that contains)), the sum w’
of the charges up to and including ’ is only a fraction of w() (w() is contributed by both
Ithread(P) and rthread(P)), so that w’ < w() < local_weight()) charge()), and (’,))
is light. Hence 2 log2 rn light arcs from lthread(P) and rthread(P) give all possible candidates
for light arcs in P. For each such candidate (’,)), we perform a binary search in the paired
thread tree to locate the point just before), at the same time accumulate the total charge
up to and including this point in that tree, then compute w() by adding w" to w’, and check
if w() < charge()) (= local_weight())). Therefore, we find 2 log2 m candidates, perform
2 log2 rn binary searches for checking, identify at most log2 rn light arcs in P (and also at most
log2 rn + heavy arcs incident to P), and then split and join P accordingly--each of these
operations within O (log m) time. This leads to the following lemma.

LEMMA 3.7. The update ofthe double-thread data structure as required by the operation
conceal can be performed in 0 (log2 rn) time.

Operation evert(tx), for an arbitray node/z of A(r), moves the root of A(r) to/x while
preserving the weight invariant. If we can reverse the direction of a solid path, then evert(tx)
can be carried out as follows: we perform expose(#) to obtain a solid path P from/z to the
original root, reverse the direction of P (which effectively moves the root to/x), and then
perform conceal(P) to comply with the weight invariant. We add a "direction" bit to each
node of the thread trees, so that when we reverse the direction of a solid path P, the direction
bit of the root of lthread(P) is complemented, indicating that the meanings of left and right
subtrees of lthread(P) are interchanged; this is done similarly for the direction bit of the root
of rthread(P). Also, these two complemented bits indicate that lthread(P) means rthread(P)
and vice versa. Given the direction bits and operations expose and conceal, we can perform
evert in the double-thread data structure in O (log2 m) time.

In the following, if/z is a node of A (r) and a an incoming arc of/z, the notations expose(a)
and expose(#) are equivalent, and similarly for evert.

LEMMA 3.8. Given splitters sl and s2 of region r with rn vertices, SLEEVE(S1, $2) and the
corresponding solid path between (Sl) and (s2) can be constructed in O(log2 m) time, by
means of O(log2 m) elementary splits of thread trees.

Proof. We obtain a solid path between 6(Sl) and 6(s2) by evert(3(sl)) and expose((s2)).
Each of operations evert and expose uses O(log m) elementary splits/joins and takes
O (log2 m) time.

The double-thread structure adds two new primitive operations to the original reper-
tory of dynamic trees. Operation part(P, e; P1, P2) on a solid monotone path P separates
lthread(P) and rthread(P), and creates two new solid paths P1 and P2 by adjoining lthread(P)
and rthread(P) to a new edge e. Namely, lthread(P) lthread(P), rthread(P) e,
lthread(P2) e, and rthread(P2) rthread(P). The operation pair(P1, P2; P, e) is the
inverse operation ofpart(P, e; PI, P) and is implemented similarly.

LEMMA 3.9. Operations part and pair have time complexity 0 (1).
As we shall see in the next section, operations part and pair are crucial in the efficient

execution of INSERTEDGE and REMOvEEDGE.

220 Y.-J. CHIANG, F. P. PREPARATA, AND R. TAMASSIA

3.3.2. Insertion and deletion ofedges and vertices. Operation INSERTEDGE(e, Vl, 1)2, r;
rl, rE) is carded out as follows:

1. For 1, 2, if v is an extreme vertex of r, let si vi, else let si be a splitter of r
induced by vi. If vi is a cusp of r, then there are two such splitters; by viewing edge
e (Vl, vg) as issuing from vi, si is taken as the left splitter of vi if e goes toward left
(and as the right splitter otherwise), so that SLEEVE(S1, $2) is the smallest monotone
sleeve that contains e.

2. Construct SLEEVE(S1,S2) and the corresponding solid path P by performing
evert(3(sa)) and then expose(3(s2)).

3. Insert edge e by performing part(P, e; P, P), so that there are new solid paths P1
and P2 respectively in new regions rl and r2.

4. For each of the (up to three) solid paths previously pointing to the head of P, make
it point to the head of P if it lies in rl, and to the head of P2 if it lies in r; do this
similarly for the solid paths previously pointing to the tail of P. Note that P1 and P2
have the same orientation as P.

5. Create a new dynamic tree z(ra) for rl, by putting the root at the end of P1 that is
closer to Vl (which does not change the direction of P1), then performing operation
conceal(P1); similarly create a new dynamic tree A(r2). Note that the conceal
operations readily splice the solid paths pointing to the heads and tails of P1 and of
P2 if necessary.

We analyze the time complexity of the above operation. Steps 1, 3, and 4 take O(1) time,
and the other steps globally involve a fixed number of evert, expose, and conceal operations,
so that the total time required for updating the double-thread data structure is O (log2 m).

Operation REMOVEEDGE(e, Vl, v2, rl, r2; r) is the inverse operation of INSERTEDGE. We
first evert Vl and then expose v2 in both A(rl) and x(r2), pair the two solid paths into one,
and conceal it. This can also be done in O (log2 rn) time.

Operation INSERTVERTEX(v, e; el, e2) is performed as follows. We insert v with
charge(v) 1 into Ithread(P) and rthread(P) for some solid paths P and P’ of differ-
ent regions r and r, where both lthread(P) and rthread(P’) contain two endpoints v and v2
of e. In dynamic tree A(r), we perform expose on the one of Vl and v2 that is farther from
the root to obtain a solid path, and then perform conceal on this path; in A (r’) we perform
exactly the same operations. It is easy to see that operation INSERTVERTEX is executed in
O (log2 m) time. Operation REMOVEVERTEX is the inverse operation of INSERTVERTEX and can
be completed within the same time bound.

4. Shortest.path queries. In this section, we illustrate how the normalization data struc-
ture can be modified, by appending secondary data structures collectively called hull structure,
to answer the following queries:

PATHLENGTH(ql, q2, r). Return the length of a shortest path inside region r between query
points q and qa.

PATH(ql, q2, r). Return the shortest path inside region r between query points ql and qa
as a chain of segments.

First, by point location (see 5) we can check whether q and qa belong to r. Note that
we need to specify within which region the shortest path is sought to avoid ambiguities when
both q and qa belong to edges of the subdivision. We now show that the above queries can
be supported in worst-case time O(log3 n) and O(log3 n + k), respectively, where k is the
number of segments in the shortest path reported by PATH.

The notion of hourglass is central to our current problem. We adopt the terminology
proposed by Guibas and Hershberger 16].

DYNAMIC POINT LOCATION, RAY SHOOTING, AND SHORTEST PATHS 221

(6’,8,9,11)

(a) (b) (c)

b2 S2 (25,26)a2
26

10’ 25
24’ (24’,25)

23
22’-
21
20’

18

(1,2,3)

17
16
15’
14

13’
12 (12,14,15’)

(18,8,9,11)
(18,21,23,26)

(6’,8,9,11)

(18,21,23,26)

(16,5,18) (5,6’

(1,2,16,)([14,16) z/.
(3,5).(15,,16)
(1,2,3)4 15

(4,,5,6’)7’18)

(34’)_(15’,16,17)

FIG. 8. Example of representation of hourglasses in the nodes of ltree(Q) and rtree(Q) of a monotone path
Q. (b) The sleeve of Q (directedfrom left to right): the parallel lines drawn on it represent set Y; the points on the
sleeve with labels ofthe type i’ delimitfragments ofthe same edge; the hourglass between the extreme splitters ofthe
sleeve is shown grey filled. (a) Pruned tree Itree(Q): the nodes of ltree(Q) are those drawn with thick lines, while
the nodes drawn with thin lines denote the subtrees of3) pruned away to construct ltree(Q); the grey-filled nodes are
associated with closed sleeves, and the white-filled nodes are associated with open sleeves. Next to each white-filled
node Ix we show the subchain Of HOtmGL,SS(Ix) stored at Ix. (c) Pruned tree rtree(Q) (similar comments as in (a)
apply). (d) Hourglasses ofthe grey-filled nodes and oftheir children. The subchains stored at each node are labeled
and shown with thick lines.

Consider two nonintersecting diagonals Sl (al, bl) and s2 (a2, b2) of r, where
the endpoints have been named so that the counterclockwise cyclic sequence of points in
the boundary of r includes the subsequence (al, a2, b2, bl). The hourglass of sl and s2,

denoted HOURGLASS(S1, $2), is the subregion of r formed by the union of all the shortest paths
PATH(q1, qz, r) with ql sl and q2 s2 (see Fig. 8(b)). It is known that the boundary of
HOURGLASS(s1, s2) is the concatenation of Sl, PATH(al, a2, r), $2, and PATH(b2, bl, r). Let a
be the subchain of r counterclockwise from a to a2, and define/3 similarly for b2 and bl. The
hourglass has one of the following special structures (as analyzed in [16]):

Open hourglass. Ifthe convex hulls inside r ofot and/3 do not intersect, then PATH(al, a2, r)
is the convex hull ofthe subchain ofot clockwise from a to a2, and similarly for PATH(b2, bl, r).

222 Y.-J. CHIANG, E E PREPARATA, AND R. TAMASSIA

Closed hourglass. If the convex hulls of c and/3 intersect, then there exist vertices Pl
and p2 of ot U/ such that PATH(al, a2, r) f) PATH(bl, b2, r) PATH(pl, P2, r). Without loss
of generality, assume that pl is in or. Then PATH(a, p, r) is the convex hull inside r of the
subchain of ot from a to Pl, while PATH(bl, Pl, r) is the union of segment (Pl, Pl) and the
convex hull inside r of the subchain of from b to P’I, where ptl is the vertex of/3 closer to bl
on the two tangents from Pl to/3. Similar arguments apply to p2. The union of PATH(a/, Pi, r)
and ’ATH(bi, Pi, r) (i 1 or 2) is called afunnel 19]. Vertices Pl and P2 are called the apices
of the hourglass, and the path between them the string of the hourglass (see Fig. 8(b)).

If we represent an hourglass by its string and the (two to four) convex chains forming the
rest of its boundary, and for each polygonal chain represented, we also store its length, then
given HOURGLASS(s1, $2), it is possible to compute PATHLENGTH(ql, q2, r) in O(log n) time for
any two points q 6 S and q2 6 s2 by means of O (1) common-tangent computations. Also,
given HOURGLASS(s1, s2) and HOURGLASS(s2, s3) in r, with s and s3 on opposite sides of the
line containing s2, it is possible to compute HOURGLASS(s1, s3) in time O(log n) by means of
O (1) common-tangent computations and O (1) split and join operations on the chains forming
the two hourglasses.

We now consider the modifications of the normalization data structure that enable the
support of the given path queries. As we shall see, only three items are needed, i.e.,

(i) the choice of an appropriate implementation of the trees ltree and rtree introduced in

3.2;
(ii) the appending of secondary data structures (collectively called "hull structure") to

the nodes of ltrees and rtrees. The hull structure stores at the nodes of ltrees and rtrees the
hourglasses of the corresponding sleeves; it establishes an implicit correspondence between
the two chains of a monotone sleeve, allowing both efficient access to the hourglass of the
sleeve and fast pairing or parting of the two chains as required by edge insertion or deletion;

(iii) a separate BB[ot]-tree 3) (called Y-tree) that determines a hierarchical partition of the
plane into horizontal strips, according to which ltrees and rtrees are implemented.

We first describe the adopted representation of polygonal chains. A concatenable queue,
called chain tree, will be used to represent a polygonal chain ,. The chain tree T for , is a
balanced tree and has in-order thread pointers. Each node/z of T corresponds to a subchain, of V and stores the endpoints of V, the common point of the subchains of the children of

?,,, and the length of ,. It should be clear that this information can be updated in O (1) time
per elementary join or split, so that splitting or splicing two chain trees takes logarithmic time.
With this representation, it is possible to find the two tangents from a point to a convex chain
and the four common tangents between two convex chains in logarithmic time [24].

We now give the details of our representation of hourglasses. An open hourglass is
represented by storing its two convex chains into chain trees. A closed hourglass is represented
by storing into separate substructures the four convex chains forming the funnels, and the string
between the apices. The convex chains of the funnels and the string are each stored into a
chain tree.

Without loss of generality, we assume that the degree of each vertex of A/[is at most
3. This is not restrictive since we can expand a vertex v with degree d > 3 into a chain of
degree-3 vertices connected by edges of infinitesimal length. Since the sum of the degrees
of all vertices of A/[is O(n), the total number of vertices after the expansion is still O (n).
Every update operation in the original map A/[can be simulated with O (1) operations in the
modified map with bounded-degree vertices.

We consider the ordered sequence Y ofthe y-coordinates ofthe vertices ofA/[and establish
a one-to-one correspondence between Y and the leaves of a BB[c]-tree 3, called Y-tree, which
is added as a separate tree into the data structure. Tree 3; determines a hierarchical partition of

DYNAMIC POINT LOCATION, RAY SHOOTING, AND SHORTEST PATHS 223

the plane into horizontal strips according to the well-known segment-tree scheme. Each node
of Y corresponds to a canonical interval of y-coordinates. A vertical interval (y’, y") with
y’, y" 6 Y is uniquely partitioned into O (log n) canonical intervals, called the fragments of
(y’, y"), and their associated nodes in y are called the allocation nodes of (y’, y"). We extend
this terminology to any geometric entity that is uniquely associated with a vertical interval,
such as an edge, a monotone chain, or a monotone sleeve.

We now introduce the useful notion of the "pruned tree." A pruned tree of a rooted tree
T is a tree S that can be obtained from T by removing from it the subtrees rooted at a selected
subset of its nodes. Pruned trees of a balanced tree T support the full repertory of concatenable
queue operations. Each operation takes O (log n) time and is performed by means of O (log n)
elementary joins and splits between pruned trees whose roots are associated with sibling nodes
in T. A sequence I of k consecutive intervals with endpoints in Y will be stored in a pruned
subtree of Y, whose leaves are the allocation nodes of the intervals of I and whose internal
nodes are the ancestors of such leaves. It is easy to verify that the pruned tree associated with
I has O(k logn) nodes and O(logn) height.

Now, we show how to modify the normalization structure so that hourglasses can be
dynamically maintained (see Fig. 8). We denote with Q a maximal monotone subpath of a
solid path P and specify the implementation of ltree(Q) and rtree(Q). We use pruned trees
augmented with chain trees as secondary structures. Our scheme uses ideas from [22] and
[16].

Trees ltree(Q) and rtree(Q) are implemented by means of pruned trees with respect
to 3).
Let/ be a node of ltree(Q) (nodes of rtree(Q) are handled identically) and v the
parent of/z. Node/ has a pointer to the corresponding node y of 3). Also, if/ is not
a leaf, then we establish a back pointer from y to/. We do not set up back pointers
from y to leaves of ltree(Q) (or of rtree(Q)) in order to obtain efficient updates,
as we shall see later. Consider the subpath Q’ of Q associated with the subtree of
ltree(Q) rooted at/z. We denote with SLEEVE(//) the sleeve of Q’, with S1 and $2

the splitters that delimit SLEEVE(/Z), with HOURGLASS(/z) the hourglass of Sl and s2
(namely, HOURGLASS(s1, $2)), and with CHAIN(/Z) the "left chain" of SLEEVE(/), i.e.,
the chain formed by the edge fragments stored at the leaves of the subtree of ltree(Q)
rooted at
We distinguish several subcases:

If/z is a leaf of ltree(Q), then/z stores the corresponding edge fragment.
If HOURGLASS(//) is open and HOURGLASS(V) is closed, then /z stores in a
secondary data structure the right convex hull of CHAIN(#).
If both HOURGLASS(/z) and HOURGLASS(V) are open, then/z stores in a sec-
ondary data structure only the endpoints of CHAIN(//) and the portion of the
right hull of CHAIN(/) that is not stored at an ancestor of
If HOURGLASS(//) is closed and # is the root of ltree(Q), then/z stores in
secondary data structure the (up to five) components of HOURGLASS(/).
If HOURGLASS(//) is closed and/z is not the root, then/z stores the apices and
the length of the string of HOURGLASS(/Z) plus the subchains of the funnels of
HOURGLASS(/z) that are not stored at the ancestors of/z.

The upper levels (see 3.2) of thread trees lthread(P) and rthread(P) are essentially
identical (except for the couplers). Also, an internal node/z in the upper level of
lthread(P) stores the length and the endpoints of the string of HOURGLASS(#). The
corresponding node of rthread(P) stores exactly the same information.

LEMMA 4.1. The space requirement of the hull structure is 0 (n log n).

224 Y.-J. CHIANG, E R PREPARATA, AND R. TAMASSIA

Proof. We only need to determine the space used by the secondary structures (the
chain trees) that augment the ltrees and rtrees. Consider the set S of all segments s such
that s is either an edge fragment or the tangent segment in the hourglass of a node in
Itree or rtree. We claim that the size of S is O(n log n). By standard segment-tree ar-
guments, the number of edge fragments in S is O(n log n). For the tangent segments,
consider the hourglasses HOURGLASS(/Z) HOURGLASS(#’), and HOURGLASS(/z") of a node
/z and its children /z’ and /z". Note that SLEEVE(/Z’) and SLEEVE(/Z") share a common
splitter, say s2, and the other splitters Sl of SLEEVE(///) and s3 of SLEEVE(/Z") lie on op-
posite sides of s2. It follows that HOURGLASS(//) HOURGLASS(s1, $3) is obtained from
HOURGLASS(/z’) HOURGLASS(Sl, s2) and HOURGLASS(/x") HOURGLASS(s2, s3) by O(1)
common-tangent computations, and thus each node/z contains O (1) tangent segments. Again,
by segment-tree arguments, the total number of nodes in ltrees and rtrees is O (n log n), hence
the total number of tangent segments in S is O (n log n). Also, each segment of S is stored
O(1) times in the data structure, since it can have representatives in an allocation node (for
an edge fragment), in the highest open hourglass, and in the highest monotone hourglass, and
there may be two such nodes for each segment (recall that edges have two "sides," and the
corresponding nodes in the paired ltree and rtree may have duplicate information). We con-
clude that the secondary structures are a collection of balanced trees with a total of O (n log n)
nodes, and hence use total space O (n log n). rq

Query operations PATHLENGTH(ql, q2, r) and PATH(ql, q2, r) are performed as follows:
1. Find the trapezoids r and r2 of the trapezoidal decomposition of r containing q and

q2, using the point-location machinery of 5. Let sl and s2 be the splitters on the
boundary of r and r2, such that ql and q2 are on opposite sides of SLEEVE(Sl, S2).

2. Create the solid path P for SLEEVE(sI, s2) (P is the path between edges 3(s) and
6(s2) of 3(r)), by means of evert(3(s)) and expose((s2)). The secondary struc-
ture stored at the root of lthread(P) (or rthread(P)) yields a representation of
HOURGLASS(s1, $2).

Given the representation of HOURGLASS(s1, $2), after computing in time O(logn) the
tangents from q and q2 to the appropriate funnels, we can answer PATHLENGTH(q, q2, r) and
PATH(ql, q2, r) in time O(1) and O(k), respectively (where k is the number of edges of the
shortest path reported). Finally, we conceal the path exposed in step 2 to satisfy the weight
invariant.

Regarding updates, we have the following lemma (see the example in Fig. 9).
LEMMA 4.2. An elementary split orjoin oftwo thread trees in the normalization structure

augmented with the hull structure takes time 0 (log n).
Proof. After an elementary split or join of two solid thread trees, we need to update

only the secondary data structures of their roots. Since such data structures represent the
hourglasses of the corresponding sleeves, they can be updated in O (log n) time (see Fig. 9).
Note that for a nonmonotone solid path the updates are limited to its leftmost or rightmost
monotone subpath. For this reason it is sufficient to store only the length of the string in the
nodes of the upper levels of the lthread and rthread trees. 1

As a consequence, splitting a solid path or joining two solid paths takes time O (log2 n).
Note that parting or pairing ltree(Q) and rtree(Q) of a monotone path Q (because of an edge
insertion or deletion in the corresponding sleeve) takes O (1) time. The lemma below follows
from Lemmas 3.8 and 4.2.

LEMMA 4.3. Queries PATHLENGTH(q, q2, r) and PATH(q1, q2, r) are performed in time
O(log3 n) and O(log3 n + k), respectively, where k is the number ofedges ofthe shortestpath
reported.

Now, we discuss how operation INSERTVERTEX(v, e; el, e2) affects the new data structure.
First, we insert a new node y(v) into 3). Let/z be one of the two nodes in the ltree and rtree

DYNAMIC POINT LOCATION, RAY SHOOTING, AND SHORTEST PATHS 225

(a)

(b)

FIG. 9. Example of update of the secondary structures in an elementary join of two solid paths. (a) Geometric
construction ofthe hourglass. (b) Construction ofthe representation ofthe root hourglass by means ofsplit andjoin
operations on the chain trees in the re;’resentation of the hourglasses of the children nodes.

that stores the fragment of edge e where v is inserted, and let y be the corresponding node
of 32. Before the insertion of v, there is a pointer from/z to y but no back pointer from y to

/z, since/x is a leaf of a pruned tree. After the insertion of v, the fragment of e stored in/z
is further partitioned into O (log n) fragments (but the total number of fragments of e is still
O(log n)) according to the subtree of 3) rooted at y (y(v) has already been inserted into this
subtree); we allocate these edge fragments into a new tree T,, expand leaf/z to T,, establish
a pointer from y to/z, and rename all fragments of e to el or e2 appropriately.

The insertion of y(v) into 3) may cause rebalancing operations in 3; carried out by means
of rotations. A rotation between a node y’ and its child y" implies that horizontal cuts at y"
now take priority over horizontal cuts at y’. It is easy to see that the rotation only affects
the subtrees of the ltrees and rtrees rooted at the nodes pointed to by y’. We rebuild such
subtrees from scratch, which can be done in time proportional to their size. Note that prior
to the rotation, a leaf/x of ltree or rtree corresponding to y’ stores an edge fragment that
spans the canonical vertical interval I of y’, and thus/x is not affected by the rotation (except
that after the rotation we have to redirect the original pointer of/z to y’ so that it now points
to y", since y" now corresponds to I). Since there may be a large number of such leaves
/z that do not require rebuilding, we do not establish a back pointer from y’ to leaf/z in
our data structure (as we have already seen), so that inefficient checking for the necessity
of rebuilding is avoided. Also, the redirection of all pointers of leaves/z from y’ to y" can
be done efficiently when we rotate y’ with y": we switch the contents of the physical nodes
y’ and y" to interchange the roles of the physical nodes y’ and y" (and then carry out the

226 Y.-J. CHIANG, F. R PREPARATA, AND R. TAMASSIA

rotation appropriately by O(1) elementary splits and joins), so that all these pointers are
effectively redirected, though no actual changes are made to the pointers. Now we show that
the rebuilding of the subtrees of ltrees and rtrees caused by a rotation in 32 can be performed
efficiently.

LEMMA 4.4. Let y be a node of32 whose subtree has leaves. The subtrees of ltrees and
rtrees with the hull structure appended whose roots are pointed to by node y have total size
O(log) and can be built in time 0(log

Proof. The subtree of 3) rooted at y has exactly 2 nodes. Thus there are O()
vertices inside the canonical vertical interval I of node y. The leaves of the subtree rooted at
a node pointed by y store the edge fragments that are inside I but do not span I. Hence, the
edges contributing to such fragments must be incident on some vertex inside I. Since each
vertex has bounded degree, there are O () such edges. Also, since the subtree of 3; has height
O (log), each such edge has O (log) fragments inside I. We conclude that the total number
of leaves in the subtrees rooted at node pointed by y is O(log), and hence their total size
is also O(log).

By the properties of BB[ot]-trees, we derive the following lemma.
LEMMA 4.5. The amortized rebalancing time of the Y-tree 32 in a sequence of update

operations is 0 (log2 n).
We conclude the following.
THEOREM 4.6. Shortest-path queries PATHLENGTH(ql, q2, r) and PATH(ql, q2, r) in an n-

vertex connectedplanarmap can beperformed in worst-case time 0 (log n) and 0 (log n+k),
respectively (where k is the number of edges of the shortest path reported), using a fully
dynamic data structure that uses space 0 (n log n) and supports updates of the map in time
O (log3 n) (amortizedfor vertex updates).

Remark. In a concrete situation where vertices are a priori restricted to a fixed set of
ordinates, tree 3; is static; ifwe then implement the trees ltree and rtree by means of contracted
binary trees [27] of depth < log IYI (whose maintenance requires no rotation), then the update
times become O(log2 n log IYI), in the worst case.

The following arc two additional types of queries that can be supported by the described
data structure without any modification.

TRAILLENGTH(ql, q2lel ee). Allowing edges el e to be deleted, are points ql

and q2 reachable to each other? If so, then return the length of the shortest path.
TRAIL(ql, qz[el ee). Allowing edges el ee to be deleted, are points ql and q2

reachable to each other? If so, then return the shortest path.
An immediate application is that viewing the edges of the map as walls, we are allowed

to put doors on edges el ee. Can a pointlike robot at position ql reach position q27 If so,
then report the shortest path or its length.

Clearly, by using REMOVEEDGE, point-location query (see 5), PATHLENGTH or PATH, and
INSERTEDGE operations, queries TRAILLENGTH and TRAIL can be answered in worst-case time
O((+ 1) log n) and O((+ 1) log n + k), respectively, where k is the number of edges of
the shortest path reported.

5. Point location. In this section, we consider the problem of answering point-location
queries.

LOCATE(q). Find the region containing query point q. If q is on an vertex or edge, then
return that vertex or edge.

Our dynamic point-location data structure is inspired by the static trapezoid method [23]
and its dynamic version for monotone maps [8]. It uses the normalization and hull structures as
the underpinning of update operations. Queries are instead performed in a location structure,
a binary tree called trapezoid tree.

DYNAMIC POINT LOCATION, RAY SHOOTING, AND SHORTEST PATHS 227

(a) M

t t2 t3

(b) T

R7
FIG. 10. Example of the construction of trapezoid tree 7-for map ./M. (a) Recursive decomposition of 34 by

vertical and horizontal cuts. (b) Trapezoid tree 7- associated with the decomposition in part (a).

The trapezoid tree defines a binary partition of the plane obtained by means of vertical
and horizontal cuts. It differs in many substantial aspects from the trapezoid trees used in [8],
[23], the most striking difference being that it is not balanced.

The trapezoid tree 7- for map Ad is based on the Y-tree 3 (see 4) and on the normalization
of .A4 as reflected by the normalization structure (see 3). We view the unnormalized map
3/[as a trapezoid with its sides at infinity. If a trapezoid r contains more than a single edge
fragment in its interior, we recursively decompose it into trapezoids whose vertical spans are
canonical vertical intervals, according to the following rules (see Fig. 10):

Vertical cut. If r is a coupler or is vertically spanned by a monotone subpath Q and the
hourglass H of SLEEVE(Q) is open, we decompose by one of the supporting tangents of H.

Horizontal cut. If no vertical cut is possible, then we decompose r by cutting it along the
horizontal line at the y-coordinate associated with the (unique) allocation node of r in 2F.

Note that a vertical cut always takes priority over a horizontal cut. If more vertical cuts
are possible, their order is arbitrary. We represent the above decomposition of 3A by means
of a binary tree 7" (see Fig. 10). Each node of 7" is associated with a trapezoid r of the
decomposition and the partitioning object (a tangent or a horizontal line) of r, and stores
the representation of such object. Nodes of 7- are classified into three categories (and the
association): a Q)-node (a vertical cut), a V-node (a horizontal cut), and a D-node (a terminal
trapezoid of the decomposition and its edge fragment).

The above decomposition process is closely related to the one induced by the segment
tree. In particular, the leaves of 7- are in one-to-one correspondence with the fragments of the
edges of 3A, so that tree 7- has O(n logn) leaves. Since each node stores a constant amount
of information, we have that the space requirement of the trapezoid tree 7- is O (n log n).

It is clear that a point-location query LOCATE(q) can be performed by traversing a root-
to-leaf path in T, where at each internal node/z we branch left or right depending on the

228 Y.-J. CHIANG, E R PREPARATA, AND R. TAMASSIA

discrimination of the query point q with respect to the partitioning object stored at/z. Indeed,
the leaf reached identifies an edge that is first hit by a horizontal ray through q. Since we
did not impose any balance requirement on 7", the query time could be linear in the worst
case.

To speed up queries, we implement 7" as a dynamic tree [30], i.e., 7" is decomposed
into solid paths (which should not be confused with the solid paths in the normalization
structure), connected by dashed arcs (see Fig. 11). Each solid path is associated with a path
tree, implemented as a biased search tree [3]. Note that the sequence of nodes of a solid path
of 7- identifies a sequence of nested trapezoids. For example, in path tree T (P1) of Fig. 11 (c),
leaf tl identifies the trapezoid of the entire map AA, and leaf t4 identifies the trapezoid whose
right side is at infinity and whose other sides are t2, l, and 12. A point-location query starts at
the root of the path tree of the topmost solid path of 7" (e.g., the root of T(P1) in Fig. 1 l(c)).
At a given internal node of a path tree, we consider the rightmost node in the left subtree
of r/(readily available given thread pointers). We discriminate q against the trapezoid
and go to the left or right child of r/according to whether q is inside or outside (recall that
a solid path is stored bottom-to-top in the left-to-right leaves of its path tree). When we reach
a leaf of a path tree (which represents a node/z of 7"), we always exit on a dashed arc, and
we always know the exit except for the case of the last node of the solid path, in which case
we go to its left or right child by discriminating q against the partitioning object of/x. For
example, in Fig. 11 (c), when we reach leaf ll of T (P1), we know that the next node to visit is
the root of T (P2), since that is the only exit; when we reach leaf 13 of T(P2), we discriminate
q with 13 and move down right to T (Ps) by the fact that q is above 13. By this process, we
will finally reach a leaf of a path tree with no exit (representing a leaf of T), which identifies
an edge of the region containing q.

Using biased search trees [3] as the standard implementation of path trees, we have the
following lemma.

LEMMA 5.1. The time complexityfor a point-location query is 0 (log n).
Proof. Let (Vl,/Zl) (re, lze) be the sequence of dashed arcs traversed by the query

algorithm, with 1) the parent of/zi. (Note that/ze is the leaf reached by the query algo-
rithm.) Also, let/z0 be the root of 7". Since the path trees are implemented as biased
search trees, we have that the number of nodes visited in the solid path of vi is at most
log(weight(tZi_l)/weight(vi)) + 2. Hence, the time complexity of a point-location query
is O(Yi= log(weight(lzi_)/weight(vi))). Since weight(lzi) < weight(vi), the above sum
telescopes, and we have that a point-location query takes time O (log n).

To perform update operations, we establish bidirectional links between the trapezoid tree
and the normalization structure. Let/z be a node of 7". We have the following:

If/z is a Q)-node, let Q’ be the subpath of a monotone path Q associated with the
vertical cut at/ (i.e., the sleeve of QI spans the trapezoid of/z and has an open
hourglass). We establish pointers between/z and the nodes of ltree(Q) and rtree(Q)
associated with Q’.
If/z is a V-node, let Q’ and R be subpaths of monotone paths Q and R such that Q’
and R’ span the leftmost and rightmost regions in the trapezoid of/z. We establish
pointers between/z and the nodes of ltree(R) and rtree(Q) associated with R’ and
Q’, respectively. Also, we establish a back pointer from the allocation node y of
in y to

If/z is a D-node, we establish pointers between/z and the two nodes in the normal-
ization structure associated with the same edge fragment.

Note that every node of a thread tree associated with an open hourglass is pointed to by
exactly two nodes of 7".

DYNAMIC POINT LOCATION, RAY SHOOTING, AND SHORTEST PATHS 229

(a)
3 r6 12
r4

rt iz e]/ \ q3 r8 .\

tl t2 t3

(b) q (c) T(P1)

R7 "P5

FIG. 11. Representing trapezoid tree T by a dynamic tree. (a) The same decomposition of./ as in Fig. 10(a).
(b) Decomposing trapezoid tree 7- ofFig. 10(b) into solidpaths P1, P2 (c) Actual data structure representing 7-,
where T Pi is the path tree for solid path Pi in 7-. The left-to-right leaves of T Pi represent bottom-to-top nodes

of Pi, which in turn correspond to smaller-to-bigger nested trapezoids.

Now, we discuss how update operations affect the trapezoid tree. Since the decomposition
described by 7- is determined by the monotone paths, we update the trapezoid tree whenever
monotone paths are changed in the normalization structure. We only need to consider the
effects on the trapezoid tree of elementary splits, joins, partings, and pairings of monotone
paths. Each such elementary operation in the normalization structure corresponds to perform-
ing O(1) link and cut operations in the trapezoid tree. Details are shown in Figs. 12 and 13.
Link and cut operations are performed in O (log n) time by standard dynamic tree algorithms.
Regarding vertex insertions, a rotation at a node y in the Y-tree 3; caused by a vertex update
is handled by rebuilding the subtrees of 7" whose roots are V-nodes pointed by y. With an
argument analogous to the one of Lemma 4.4, we can prove the following lemma.

LEMMA 5.2. Let y be a node of 3) whose subtree has g. leaves. Then the subtrees of 7"
whose roots are pointed to by y have total size 0 (g. log e) and can be built in time 0 (g. log).

Hence the amortized cost of rebalancing 3) in a sequence of updates is O (log2 n). We
conclude the following.

THEOREM 5.3. Point-location queries LOCATE(q) in an n-vertex connected planar map
can be performed in worst-case time 0 (log n) using a fully dynamic data structure that uses
space O(n log n) and supports updates of the map in time O(log n) (amortized for vertex

updates).
Note that query LOCATE(q) is used in the update of the hull structure.

230 Y.-J. CHIANG, E R PREPARATA, AND R. TAMASSIA

C B D

FIG. 12. Update of the trapezoid tree in consequence ofan elementary split ofa monotone path in the normal-
ization structure.

FIG. 13. Update ofthe trapezoid tree caused by parting a monotonepath in the normalization structure because
ofan edge insertion.

6. Ray shooting. In this section, we consider the problem of performing ray-shooting
queries of the following type:

SHOOT(q, d). Find the first vertex or edge hit by a query ray (q, d) in direction d originating
at point q.

DYNAMIC POINT LOCATION, RAY SHOOTING, AND SHORTEST PATHS 231

We show that the dynamic point-location data structure in the previous section also sup-
ports ray-shooting queries in worst-case time O (log3 n). Without loss of generality, assume
that (q, d) is oriented upwards. The ray-shooting algorithm is as follows.

First, we perform LOCATE(q) to determine the region r containing q. If q lies on a vertex or
edge, an infinitesimal perturbation ofq in direction d enables us to find the first region r entered
by the ray. Query LOCATE(q) also identifies the monotone sleeve SLEEVE(Q) of r containing
q and the splitter S of SLEEVE(Q) immediately below q. We find the first intersection q’ of
(q, d) with the boundary of SLEEVE(Q). If q’ is on a vertex or edge of r, then we report q’
and stop; else (q’ is on a lid of SLEEVE(Q)) we apply the algorithm recursively to the new ray
(q’, d).

We find the first intersection q’ of (q, d) with the boundary of SLEEVE(Q) by the process
below:

1. Find the topmost splitter s2 in SLEEVE(Q) such that HOURGLASS(s1, s2) is open, by
means of O(log n) elementary splits and joins of subpaths of Q that yield a new
monotone path R such that SLEEVE(s1, s2) SLEEVE(R). Note that the boundary
of SLEEVE(R) is part of the boundary of SLEEVE(Q) except for possibly s and s2,

where s2 is part of the boundary of SLEEVE(Q) if and only if s2 is the top lid of
SLEEVE(Q).

2. Find the first intersection p of (q, d) with the boundary of SLEEVE(R).
3. If p is not on s2, or if p is on s2 but se is the top lid of SLEEVE(Q), then p is on the

boundary of SLEEVE(Q) and thus the desired intersection q’. Return p and stop.
4. Else (p is on s2 and s2 is not the top lid of SLEEVE(Q)), set s := s2, q := p, and go to

step 1. Note that this situation can occur at most twice, since s2 is the topmost splitter
above s such that HOURGLASS(s1, s2) is open, and any straight line can completely
go through at most one such hourglass, with the bottom and top portions of the line
possibly in the two (below and above) adjacent hourglasses (see Fig. 14).

In step 2, the first intersection p of (q, d) with the boundary of SLEEVE(R) can be found
by a binary search in the trees ltree(R) and rtree(R) as follows: at a current node/z with
children/z’ and/x", where CHAIN(/z’) is below CHAIN(/z"), we determine the intersection of
(q, d) with the convex hull of CHAIN(//). If the intersection is on a real edge or on a lid,
then we are done. Else it is on a (fictitious) convex hull edge; we then compute the complete
convex hulls of CHAIN(/Z’) and CHAIN(/"), and repeat the process on/z’ or on/x" depending
on whether or not (q, d) intersects with the convex hull of CHAIN(/Z’), respectively.

The computation of point q’ can be done in O(log2 n)time: step 1 performs O(logn)
elementary joins and splits of solid subpaths of Q, each in O(log n) time by Lemma 4.2;
step 2 takes O (logz n) time, with O (log n) time on each node visited during the binary search;
finally, the steps are executed at most three times by step 4. The number of recursive calls
to compute a sequence of such points q’ is O (log n), since the query ray intersects O (log n)
lids by Corollary 3.3. At the end, we conceal the path of A(r) traversed by the query ray to
restore the weight invariant. We conclude with the following theorem.

THEOREM 6.1. Ray-shooting queries SHOOT(q, d) in an n-vertex connected planar map
can be performed in worst-case time 0 (log3 n) using afully dynamic data structure that uses
space 0 (n log n) and supports updates of the map in time 0 (log n) (amortizedfor vertex

updates).
Theorem 6.1 also provides the capability of checking the validity of an edge insertion, i.e.,

whether the new edge does not intersect the current edges of the map. Moreover, as a corollary,
we can perform stabbing queries, namely, determine the k edges of the map intersected by a
query segment, in time O((k + 1) log3 n).

232 Y.-J. CHIANG, E P. PREPARATA, AND R. TAMASSIA

top lid of
SLEEVE(Q)

SLEEVE(Q)

side of
SLEEVE(Q)

FIG. 14. The situation in step 4 ofthe processfor computing qt can occur at most twice. For 1, 2, 3, si+l is
the topmost splitter above si such that HOURGLASS(S/, Si+l is open. As shown, the situation ofstep 4 occurrs twice
when (q, d) hits s2 and s3, respectively. Note that (q, d) cannot reach s4, or otherwise HOURGLASS(S2, S4) would be
open and s3 would not be the topmost splitter above s2 such that HOURGLASS(S2, S3) is open.

REFERENCES

E K. AGARWAL AND M. SHARIR, Applications ofa new partition scheme, Discrete Comput. Geom., 9 (1993),
pp. 11-38.

[2] H. BAUMGARTEN, H. JUNG, AND K. MEHLHORN, Dynamic point location in general subdivisions, in Proc. 3rd
ACM-SIAM Symposium on Discrete Algorithms, 1992, pp. 250-258.

[3] S.W. BENT, D. D. SLEATOR, AND R. E. TARJAN, Biased search trees, SIAM J. Comput., 14 (1985), pp. 545-568.
[4] G. BILARDI AND E P. PREPARATA, Probabilistic analysis ofa new geometric searching technique, unpublished

manuscript, 1981.
[5] B. CHAZELLE AND L. J. GUIBAS, Visibility and intersection problems in plane geometry, Discrete Comput.

Geom., 4 (1989), pp. 551-581.
[6] S.W. CHENG AND R. JANARDAN, New results on dynamic planar point location, SIAM J. Comput., 21 (1992),

pp. 972-999.
[7] ,Space efficient ray shooting and intersection searching: Algorithms, Dynamizations, andApplications,

in Proc. 2nd ACM-SIAM Symposium on Discrete Algorithms, 1991, pp. 7-16.
[8] Y.-J. CHIANG AND R. TAMASSIA, Dynamization ofthe trapezoid methodfor planar point location in monotone

subdivisions, Internat. J. Comput. Geom. Appl., 2 (1992), pp. 311-333.
[9] ,Dynamic algorithms in computational geometry, Proc. Institute for Electrical and Electronics Engio

neering, G. Toussaint, ed., 80 (1992), pp. 1412-1434.
10] D. E DOBKIN AND R. LIPTON, Multidimensional searching problems, SIAM J. Comput., 5 (1976), pp. 181-186.
[11] M. I. EDAHIRO, I. KOKUBO AND T. ASANO, A new point-location algorithm and its practical efficiency--

comparison with existing algorithms, ACM Trans. Graphics, 3 (1984), pp. 86-109.
[12] H. EDELSBRUNNER, L. J. GUI3AS, AND J. STOLFI, Optimal point location in a monotone subdivision, SIAM J.

Comput., 15 (1986), pp. 317-340.
[13] O. FRIES, Zerlegung einer planaren unterteilung der ebene und ihre anwendungen, M.S. thesis, Institut ftir

Angnewandte Mathematic und Informatik, Universittit Saarlandes, Saarbrticken, Germany, 1985.
[14] O. FRIES, K. MEHLHORN, AND S. N.,HER, Dynamization ofgeometric data structures, in Proc. 1st ACM Sym-

posium on Computational Geometry, 1985, pp. 168-176.

DYNAMIC POINT LOCATION, RAY SHOOTING, AND SHORTEST PATHS 233

15] M.T. GOODRICH AND R. TAMASSIA, Dynamic trees and dynamicpoint location, in Proc. 23rd ACM Symposium
on Theory of Computing, 1991, pp. 523-533.

16] L.J. GumAs AND j. HERSHBERCER, Optimal shortestpath queries in a simple polygon, J. Comput, System Sci.,
39 (1989), pp. 126-152.

[17] D.G. KIRK’ATICK, Optimal search in planar subdivisions, SIAM J. Comput., 12 (1983), pp. 28-35.
18] D. T. LEE AND E P. PR.PARATA, Location of a point in a planar subdivision and its applications, SIAM J.

Comput., 6 (1977), pp. 594-606.
[19] .,Euclidean shortest paths in the presence ofrectilinear barriers, Networks, 14 (1984), pp. 393-410.
[20] K. MEHLHORN, Data Structure and Algorithms 1: Sorting and Searching, Springer-Verlag, Heidelberg,

Germany, 1984, pp. 189-199.
[21] M.H. OV.RMARS, Range searching in a set of line segments, in Proc, 1st ACM Symposium on Computational

Geometry, 1985, pp. 177-185.
[22] M.H. OVERMARS AND J. VAN LEEtJWN, Maintenance of configurations in the plane, J. Comput. System Sci.,

23 (1981), pp. 166-204.
[23] E P. PEPARATA, A new approach to planar point location, SIAM J. Comput., 10 (1981), pp. 473-483.
[24] E P. PREPARATA AND M. I. SHAMOS, Computational Geometry: An Introduction, Springer-Verlag, New York,

1985.
[25] E P. PREPARATA AND R. TAMASSIA, Fully dynamic point location in a monotone subdivision, SIAM J. Comput.,

18 (1989), pp. 811-830.
[26] ,Dynamicplanarpoint location with optimal query time, Theoret. Comput. Sci., 74 (1990), pp. 95-114.
[27] E E PREPARATA, J. VITTER, AND M. YVINEC, Computation ofthe axial view ofa set ofisothetic parallelepipeds,

ACM Trans. Graphics, 9 (1990), pp. 278-300.
[28] J.H. REIF AND S. SEN, An efficient output-sensitive hidden-surface removal algorithm and its parallelization,

in Proc. 4th ACM Symposium on Computational Geometry, 1988, pp. 193-200.
[29] N. SARNAK AND R. E. TARJAN, Planar point location using persistent search trees, Commun. Assoc. Comput.

Mach., 29 (1986), pp. 669-679.
[30] D. D. SLEATOR AND R. E. TARJAN, A data structure for dynamic trees, J. Comput. System Sci., 24 (1983),

pp. 362-381.
[31] R. TAMASSIA, An incremental reconstruction methodfor dynamicplanarpoint location, Inform. Process. Lett.,

37 (1991), pp. 79-83.

SIAM J. COMPUT.
Vol. 25, No. 2, pp. 235-251, April 1996

1996 Society for Industrial and Applied Mathematics
001

APPROXIMATE MAX-FLOW MIN-(MULTI)CUT THEOREMS
AND THEIR APPLICATIONS*

NAVEEN GARGt, VIJAY V. VAZIRANIt, AND MIHALIS YANNAKAKIS$

Abstract. Consider the multicommodity flow problem in which the object is to maximize the
sum of commodities routed. We prove the following approximate max-flow min-multicut theorem:

min multicut < max flow < min multicut,
O(log k)

where k is the number of commodities. Our proof is constructive; it enables us to find a multicut
within O(logk) of the max flow (and hence also the optimal multicut). In addition, the proof
technique provides a unified framework in which one can also analyse the case of flows with specified
demands of Leighton and Rao and Klein et al. and thereby obtain an improved bound for the latter
problem.

Key words, approximation algorithm, multicommodity flow, minimum multicut

AMS subject classifications. 68Q25, 90B10

1. Introduction. Much of flow theory, and the theory of cuts in graphs, is built
around a single theoremmthe celebrated max-flow min-cut theorem of Fort and Fulk-
erson [FF] and Elias, Feinstein, and Shannon [EFS]. The power of this theorem lies
in that it relates two fundamental graph-theoretic entities via the potent mechanism
of a min-max relation.

The importance of this theorem has led researchers to seek its generalization to
the case of multicommodity flow. In this setting, each commodity has its own source
and sink, and the object is to maximize the sum of the flows subject to capacity
and flow conservation requirements. The notion of a multicut generalizes that of a
cut and is defined as a set of edges whose removal disconnects each source from its
corresponding sink. Clearly, maximum multicommodity flow is bounded by minimum
multicut; the question is whether equality holds. This can be established for some
special cases, e.g., if there are only two commodities [Hu]; however, one can construct
very simple examples to show that equality does not hold in general. Consider a tree
of height one with three leaves. Each pair of leaf vertices form the source-sink pair
for a commodity. All edges have unit capacities. The max flow in this graph is -,
whereas the minimum multicut is 2.

Why does the theorem hold for a single commodity, and why does the gener-
alization fail? For an explanation, consider the LP formulation of the maximum
multicommodity flow problem. As shown in 5, the dual of this is the LP relaxation
of the minimum multicut problem, i.e., the optimal integral solution to the dual is the
minimum multicut. In general, the vertices of the dual polyhedron are not integral.
However, for the case of a single commodity, they are integral (see [GV] for an exact
characterization), and the max-flow min-cut theorem is simply a consequence of the
LP-duality theorem. For the multicommodity case, the LP-duality theorem shows
only that maximum flow is equal to the minimum fractional (i.e., relaxed) multicut.

In this situation, the best one can hope for is an approximate max-flow min-
cut theorem. In ground-breaking work, Leighton and Rao [LR] gave the first such

Received by the editors January 19, 1993; accepted for publication (in revised form) August 5,
1994.

Department of Computer Science and Engineering, Indian Institute of Technology, Delhi, India.
AT&T Bell Laboratories, Murray Hill, NJ 07974 (mihalisresearch.att.com).

235

236 N. GARG, V. V. VAZIRANI, AND M. YANNAKAKIS

theorem. Let us consider a second formulation of the multicommodity flow problem
that has also been widely studied in the past. In this formulation, a demand, D,
is specified for each commodity, i. The object is to determine the maximum num-
ber, f, called throughput, such that fD amount of each commodity can be routed
simultaneously, subject to capacity and conservation constraints. (Equivalently, the
object is to determine the minimum number, u, such that if the capacity of each edge
is multiplied by u, then all the demands can be simultaneously satisfied. Clearly, at
optimality f .) The analogue of a minimum cut in this case is a sparsest cut into
two parts, one that minimizes the ratio of capacity of the cut to the demand across
the cut. Let a be this minimum. Clearly, f <_ a, and once again equality does not
generally hold.

Leighton and Rao considered a special case of the above-stated formulation, called
uniform multicommodity flow, in which there is a commodity corresponding to each
pair of vertices and all the demands are unity. They proved the following approximate
max-flow min-cut theorem:

O(log n)
< f < a,

where n is the number of vertices in the graph. Subsequently, Klein et al. [KARR]
managed to attack the arbitrary demands problem, and proved that

O(log C log D)

where C is the sum of capacities of all edges and D is the sum of all demands.
However, one restriction they impose is that all capacities and demands be integral.
The lower bound was later improved to a/O(logn log D) by Tragoudas [Trag]. [LR],
[KARR], and [Trag] also give polynomial-time algorithms for finding an approximation
to the sparsest cut, the factors being O(logn) and O(log Clog D) (or O(log n log D)),
respectively.

We address the first version of the multicommodity flow problem, henceforth
referred to as the maximum multicommodity flow problem, and prove the following
approximate max-flow min-multicut theorem:

M
O(log k) <- f < M,

where f is the max flow, M is the minimum multicut, and k is the number of com-
modities. We also show that our theorem is tight up to a constant factor, and we
give a polynomial-time algorithm for finding a multicut within O(log k) of the optimal
fractional, and therefore also of the integral multicut.

Our general approach is similar to that of Leighton and Rao [LR] and Klein et al.
[KARR]. We consider the LP-relaxation of the minimum multicut problem and use
its optimal solution to define a graph with distance labels on the edges. Starting from
a source or a sink, we grow a region in this graph until we find a cut of small enough
capacity separating the root from its mate. The region is removed and the process is
repeated. Our method differs in several respects from previous methods. It dispenses
with the discretization of the edge distances and employs a technique that leads to
quicker termination of the region growth process and thus produces a better bound on
the capacity of the cut. These techniques are encapsulated in the two region-growing
lemmas of 4, which use the idea of packing cuts to grow regions.

APPROXIMATE MAX-FLOW MIN-MULTICUT THEOREMS 237

Our analysis is also useful in the demands version of the multicommodity flow
problem. It establishes a unified framework in which simpler proofs of the theorems
of Leighton and Rao and Klein et al. can be given by dispensing with tokenizing
distances. We also avoid the dynamic resetting of the parameters for region growing
and restarting the procedure. In both cases we use heavily ideas from the original
papers. Using our lemmas, we improve the [KARR] and [Trag] results to

O(log k log D)

We also dispense with the restriction that capacities be integral. Furthermore, Plotkin
and Tardos [PT] give a method of scaling demands so that the log D factor in these
results can be replaced by log k, thus yielding an improved bound of O(log2 k) on the
gap between f and a.

The following problem is a generalization of the uniform multicommodity flow
problem considered by Leighton and Rao and by Tragoudas. It was called the product
multicommodity flow problem in [LR] and the complete concurrent flow problem in
[Trag]. In this problem, each vertex has a nonnegative weight w(v) (assumed to be
positive integer in [LR] and [Trag] but this is not essential), and there is a commodity
for each unordered pair u, v of vertices, with a demand of w(u)w(v). The object again
is to maximize the throughput subject to capacity and conservation constraints. Let

a=min
Cv(s)

where w(S) in the sum of weights of vertices in S.
Let W be the sum of weights of all vertices, and C be the sum of all edge capacities.

Then, Leighton and Rao prove c/O(logmin(w c)) < f < a, where Wmin is the
Omin Cmin

weight of the lightest vertex, and Cmin is the minimum over all vertices of the sum
of capacities of edges incident at the vertex. Tragoudas improves the lower bound to
/O(log n) [Trag]. Using our techniques, we improve this result to

O(log k)

where k is the number of vertices having nonzero weight.
The multicut problem finds numerous applications, e.g., in circuit partitioning

problems. It was first stated by Hu in 1963 [Hu]. For k 1, the problem coincides
with the ordinary min cut problem. For k 2, it can also be solved in polynomial
time by two applications of a max-flow algorithm [YKCP]. The problem was proven
NP-hard and MAX SNP-hard for any k >_ 3 by Dalhaus et al. [DJPSY]. Because of the
MAX SNP-hardness, there is no polynomial-time approximation scheme for multicut
for k >_ 3 (assuming P NP) [ALMSS]. Note that, in the demands case, the sparsest
cut problem can be solved in polynomial time for fixed k (or k O(log n)) because
in this case we are concerned only with cuts into two parts, and thus we can try all
possible partitions of the sources and sinks into two parts and compute the minimum
cut for each partition.

Dahlhaus et al. [DJPSY] studied the multiway cut (or multiterminal cut) prob-
lem: given a set of "terminal" vertices T, find a minimum weight set of edges that
disconnects every terminal from every other terminal. This is the special case of
the multicut problem where there is one commodity for every pair of vertices from
the subset T. [DJPSY] gave a factor-of-2 approximation algorithm for this case and

238 N. GARG, V. V. VAZIRANI, AND M. YANNAKAKIS

showed that it can be used to approximate the general multicut problem within a
factor of 2 with a running time that has k in the exponent. Thus the running time is
polynomial only for fixed k.

Klein et al. [KARR] used their approximation algorithm for the sparsest cut
to give an O(log n) approximation algorithm for multicut. They also gave some
applications of the multicut problem obtaining approximation algorithms with ratio
O(log3 n) for the following problems: deleting the minimum number of clauses to make
a 2CNF formula satisfiable, deleting the minimum number of edges from a graph
to make it bipartite, and a via minimization problem in VLSI. Our improvement for
multicut gives us an O(log n) approximation algorithm for these problems.

2. LP formulations for max multicommodity flow. Given an undirected
graph G (V, E), a capacity function c" E +, and k pairs of vertices (not nec-
essarily distinct) {s, t } 1 _< i <_ k, we associate a commodity, i, with the pair {s, t}
and designate s as the source and t as the sink for commodity i. A multicommod-
ity flow is a way of simultaneously routing commodities from their sources to sinks,
subject to capacity and conservation constraints.

The assumption that each commodity has a single source and a single sink can
be made without loss of generality. The more general case where a commodity may
have a set S of sources and a set T of sinks can be easily reduced to this one by
adding a new source s with edges to the vertices in S and a new sink t with edges
to T.

A multicommodity flow in which the sum of the flows over all the commodities
is maximized will be called a max (multicommodity) flow. A multicut is defined as a
set of edges whose removal disconnects each {s, t } pair. The weight of the multicut
is the sum of the capacities of the edges in it. The MULTICUT problem is to find a
multicut of minimum weight.

We say that two vertices share index if they form the source-sink pair for
commodity i.

Assume that there exist edges (t, s) in G, 1 _< i _< k. These edges are special; the
only flow allowable on edge (t, s) is commodity i flowing from t to s. There are no
capacity restrictions on these edges. This allows us to view max flow as a circulation
in which the sum of the flows in the edges (t, s), 1 <_ <_ k, is to be maximized. Let

f denote the flow of commodity/in edge (i,j). The LP formulation of the problem
is as follows:

k

maximize
i--1

subject to f- f_<0 ViEV VlE[1,...,k],
(j,i)eE (i,j)eE

k k k

/=1 /=1 i=1

0 V(i,j) e E Vle [1,...,

The first set of inequalities says that the total flow of each commodity into vertex
i is at most the total flow out of it. Note that, if these inequalities hold for each vertex
i V, then in fact they must all hold with equality, thereby implying flow conservation
at each node. This is because a deficit in the flow balance at one node must imply a

APPROXIMATE MAX-FLOW MIN-MULTICUT THEOREMS 239

surplus at some other. The second set of inequalities are capacity constraints on the
edges; the total flow over all commodities summed in both directions is at most the
capacity of the edge.

The dual of this LP is

minimize dijcij
(,j)eE

k

V(i,j) eE-U{(ti, si)} Vle[1 k]subject to dj >_ p pj
i--1

p p _> 1 Vle [1.. k],

> 0 w e v w e kl,

k

dij >_ 0 V(i,j) E E- U{(ti,si)}.
i--1

The variable dij can be viewed as a distance label on the edge (i, j) and p as
the potential corresponding to commodity on vertex i. Thus the dual problem is an
assignment of potentials to vertices and distance labels to edges so that the potential
difference (for each commodity) across each edge is no more than the distance label of
that edge. Furthermore, the potential difference between the source and the sink for
each commodity should be at least 1. These two conditions imply that the distance
between each s, t under the distance label assignment dj is at least 1. The following
LP (with, however, exponentially many constraints) expresses this much more simply.

minimize dece
eEE

subject to deq (e) >_ l Vq
eEE

de >_ 0 Ve E E,

where q denotes the jth path in G (under some arbitrary numbering) from si to

ti and q (e) is the characteristic function of this path, i.e., q (e) 1 if e E q, 0
otherwise.

Clearly the distance labels of a feasible solution to the first LP give a feasible so-
lution to the second LP with the same objective function. Conversely, given a feasible
solution to the second LP compute potentials on the vertices for each commodity as
follows:

p length of the shortest path from vertex to the sink for commodity l,

under distance labels de.

It can be shown that these potentials, together with the distance labels de, are a
feasible solution to the first LP with the same objective function. Hence the two
formulations of the dual are equivalent.

The dual program can now be viewed as an assignment of nonnegative distance
labels de to edges e E, so as to minimize -eE dece’ subject to the constraint that

240 N. GARG, V. V. VAZIRANI, AND M. YANNAKAKIS

each {si, ti} pair be at least a unit distance apart. An integral solution to the dual
problem corresponds to a multicut; the edges with de 1 form a multicut. Hence,
the dual is the LP relaxation of the MULTICUT problem.

3. Overview of the algorithm. In this section we will give a high-level de-
scription of our algorithm, justifying the steps taken on intuitive grounds.

Our goal is to pick a set of edges of small capacity whose removal separates all
si, ti pairs; the total capacity of edges picked should be within a small factor of the
max flow (our factor is O(log k)). Clearly, such edges will be bottlenecks for the max
flow, so one possibility is to find a max flow using an LP subroutine and start with
the set of saturated edges. A better possibility is to find an optimal solution to the
dual LP and consider the set of edges having positive distance labels. Notice that, by
complementary slackness, de > 0 = Ek=l fj + Ek:l fji -ce, where e (i, j), i.e., e
must be saturated in every max flow. Moreover, the edges D {elde > 0} constitute
a multicut.

The entire set D may have a very large capacity; we wish to pick a small capacity
subset that is still a multicut. The optimal dual solution is the most cost effective way
of picking a fractional multicut. This provides the clue that, for our purpose, edges
with large distance labels should be more important than edges with small distance
labels. Our algorithm indirectly gives preference to edges having large distance labels.
We start by defining the length of edge e in G as de. We then find disjoint sets, called
regions, such that for each set S, Cv(s) _< e. wt(S), where Cv(8) is the capacity of
the cut (S, S), e is an appropriately chosen parameter, and wt(S) is roughly cede,
where the sum is over all edges having at least one endpoint in S. No region contains
both source and sink of any pair, and for each commodity either the source or the
sink is in some region. Under these conditions, the union of the cuts of the regions is
a multicut and has capacity bounded by 2eF, where F is the value of the maximum

The overall approach of finding the optimal fractional solution to the dual LP
and then growing regions was introduced by Leighton and Rao [LR] for the uniform
multicommodity flow problem. The procedure for growing regions is similar to a
graph clustering technique first proposed by Awerbuch in [Aw] (for graphs without
capacities or lengths on the edges), and is also similar to that used by Leighton and
Rao [LR] and Klein et al. [KARR] (for graphs with capacities and lengths) in the
context of multicommodity flows. Each region is formed by growing out radially, with
respect to the edge lengths de, from one of the sources, as in the usual shortest path
computation; the region is grown as long as it accumulates weight fast enough. The
reason for adopting radial growth is that this maximizes the weight of the region for
a given bound on the pairwise distance between vertices in the region. The region-
growing process is formally described in the next section. The main differences from
[LR] and [KARR] are in the initialization of the process (assignment of initial weights
wt for the roots of the regions), the elimination of the discretization of the lengths of
the edges, and the use of auxiliary variables associated with the layers of the radial
growth. The idea of packing cuts is used for growing the regions and for accounting.
This yields simpler proofs, as well as a more precise bound on e.

4. Two crucial lemmas. In this section we shall prove two region-growing lem-
mas that will be central to our multicut algorithm. We shall prove these in sufficient
generality so that they can be applied to the other versions of the multicommodity
flow problem as well.

APPROXIMATE MAX-FLOW MIN-MULTICUT THEOREMS 241

Given a graph G (V, E), a capacity function c" E - + and distance labels
d E + on the edges, define B eeE dece. A subset of vertices V’ C_ V is
provided to the region-growing algorithm as the set of candidate roots from which
regions will be grown. In our case, V’ is the set of sources and sinks. We associate
a variable Ys with each subset S c V; initially ys 0 for all S. The cut associated
with a set S, denoted by V(S), is the set of edges with exactly one end point in S.
The capacity of the cut, Cv(), is Yeev(s) ce.

4.1. Growing a region. A region is grown in a radial manner starting from
root vertex, r. The order in which vertices are included in the region is the same as
the order in which Dijkstra’s algorithm finds shortest paths to vertices from r. We
begin by picking a vertex, r e Y’, and assign it a weight wt(r) B/q, where q IY’l.

At any point in the algorithm we identify a set, A, as the active set and raise its
variable YA. Initially, the active set is {r}. Define the weight enclosed by the set A as

SgA

It is important that the ys’s must form a packing, i.e.,
Thus, if while raising YA we find that Yeev(s)Ys de for some edge e

V(A), u e A, we make the set A O {v} active, i.e., A -- A O {v}, and start increasing
the variable corresponding to it. We keep growing the active set in this manner, one
vertex at a time, until

(1) CV(A) _< e. wt(A)

is satisfied, where e is a constant that will be set appropriately while applying the
lemma. Let T denote the active set for which condition 1 is satisfied.

Define the radius of A, rad(A) SCA YS.
LEMMA 4.1. rad(T) < ln(q + 1)/e.
Proof. The claim is trivial if rad(T) 0, so assume rad(T) > 0. Let $1, $2,..., St

denote the successive sets for which the variable ys > 0. It is easy to check that these
sets are nested, i.e., if < j then Si C Sj. In what follows we denote the value of the
variable y& by yi and Cv(&) by C.

Since, while raising the variable y& from 0 to y, condition 1 was not satisfied

> wt(&).

From our definition of the weight enclosed by a set, it follows that

wt(S) wt(&_l) + yiC

> wt(&_l) +

where for i 1 we let wt(So) wt(r) in the above equation. Note that wt(&_l) > 0
for all i and hence 0 < ey < 1. Thus,

wt(&) >
(1 -eyi)"

242 N. GARG, V. V. VAZIRANI, AND M. YANNAKAKIS

Hence,

(1 eyl)(1 ey2)’." (1 eyt)

B
q(1 yl)(1 eY2)""" (1 eYt)"

Since the ys’s form a packing (Ve E E’ ’s:eev(s)Ys _< de), it follows that

i--1 eeW(Si) S:eV(S) eE

=B,

and hence,

Therefore,

B
q(1 yl)(1 Y2)""" (1 eyt)

<_wt(S)

which implies that

_<q+l.

Taking natural logs we get

E ln(1 eyi) -1 _< ln(q + 1).
i--1

From (2) it follows that 0 < eyi < 1, 1 <_ i <_ 1. Since ln(1 x) -1 > x for 0 < x < 1,

eEy < ln(q + 1).
i--1

Thus, rad(T) =y < ln(q + 1)/e. [l

Let distd(u, v) denote the shortest path distance between u and v under the
distance label assignment d. Consider vertex v E T. Let S be the first set containing
v, i.e., v S S-1. Then from the manner in which we grow the region it follows
that

distd(r,v) rad(Si_).

COROLLARY 4.2.
2rad().

For all u, v e T, distal(r, u) <_ rad(T) and distal(u, v) <_

APPROXIMATE MAX-FLOW MIN-MULTICUT THEOREMS 243

4.2. Growing disjoint regions. Having grown a region rooted at an arbitrary
vertex in W, remove all vertices contained in the region and grow another region
starting from a new root picked from W. Continue in this manner until the residual
graph contains no vertex of V. Let 71,72..., Tp denote the regions formed. It is
easy to see that these are disjoint. Clearly, p <_ IVI q.

Let M V(71) U V(72) t5... V(7p).
LEMMA 4.3. eeM Ce

_
2eB.

Proof. Let Gi (V, Ei) be the graph obtained by deleting vertices contained in- (G1 G). Furthermore, let Cv(s)j=7j denote the capacity of the cut V(S) in

G. Note that eeM Ce -P__ C7(7).
Each region 7 satisfies condition 1. Therefore, C(n) _< e. wt(7), 1 _< i <_ p.

Hence,

p p

Cv(n,)
i-1 i-1

Y8Cv(S) + Zwt(ri)
i=1 SC_7 i=1

where r is the root of region 7. Since the ys’s form a packing,

P

ysCv() <- Z dece B.
i=1 SC7 eEE

Also,

P B
wt(r) --p <_ B.

i=l
q

Thus, P__ C(n, <_ 2eB, and hence

When growing region Tj in the graph Gj, we have that
B. However, the proof of Lemma 4.1 goes through without any modifications. Re-
garding (3), note that rad(S_1) is now the shortest path distance between r and v in
the graph Gj; the shortest distance between these vertices in G might be even smaller.
Hence Corollary 4.2 still holds.

COROLLARY 4.4. P < 4eB= Cv(n)
Proof. An edge in M occurs in at most two cuts V(), 1 i p. Thus,

P

i--1 eM

The time complexity of growing disjoint regions is O(m+n log n) as our algorithm
is essentially the same as Dijkstra’s algorithm for shortest paths.

5. Approximate max-flow min-multicut theorem. Clearly, the max flow,
F, is less than the weight of the minimum multicut, M, i.e., F <_ M.

The main result of this section is an algorithm that finds a multicut of weight at
most F. O(log k). We state this as a theorem for later reference.

244 N. GAI:tG, V. V. VAZIRANI, AND M. YANNAKAKIS

THEOREM 5.1 (approximating the minimum multicut). Consider an instance

of the MULTICUT problem specified by a graph G (V, E), a capacity function
c" E +, and k pairs of vertices. One can, in polynomial time, find a multicut
separating the specified pairs of vertices having weight within a factor O(log k) of the
maximum flow over these pairs.

Since M is the minimum multicut, M _< F. O(log k). Thus the ratio of the
optimal integral solution to the optimal fractional solution of the dual program is at
most O(log k).

COROLLARY 5.2 (approximate max-flow min-multicut theorem). F _< M _<
F. O(og

Furthermore, this bound on the ratio of the minimum multieut and maxflow is
tight, as shown in Theorem 5.4.

For planar graphs, Tardos nd Vazirani [TV] obtain a constant factor approxima-
tion for the minimum multieut. Garg, Vazirani, and Yannakakis [GVY] approximate
the minimum multieut on trees to within twice the optimal. They also give a faetor-
approximation algorithm for maximum integral multieommodity flow on trees, and
they show that even for planar graphs the integrlity gap for flow is unbounded,
thereby ruling out LP duality based methods for approximating maximum integral
multieommodity flow. Both these results lso establish approximate max-flow min-
multieut theorems.

5.1. Finding the multicut. First, solve the dual LP to obtain a set of distance
labels, de, e E E. Next, grow regions as in 4. The constant e and the set V’ are
chosen to ensure that V(71) to V(72) tO... t2 V(7p) is a multicut.

The vertices of V that are the source for some commodity form the set V’, i.e.,
V’ U={s}. Thus, s tgj=j, 1 <_ <_ k. Now if we can choose e so that no two
vertices in 7i, 1 <_ i _< p, share an index, we shall be finished.

LEMMA 5.3. If e 21n(k + 1), then no two vertices in i share an index.

Proof. Note that q --IV’I _< k. Therefore, if e 2 ln(k / 1), then, by Lemma 4.1,
rad(7) < 1/2. Hence, by Corollary 4.2, the distance between any two vertices in 7 is
less than 1. Since the assignment of distance labels to edges is such that the distance
between any two vertices sharing an index is at least 1, no two vertices in 7 share
an index. [3

Substituting this choice of e into Lemma 4.3, we find that the multicut obtained
has weight at most 4B ln(k + 1). Since B J’eeE dece F, the max flow, the weight
of the multicut is within a factor 41n(k / 1) of the max flow.

5.2. A tight example.
THEOREM 5.4. For all k, n, k <_ n, there exists an n vertex graph, G, and gt(k2)

pairs of vertices in G such that the ratio between the minimum multicut and the max
flow is (log k).

Proof. As in [LR], we use an expander graph and similar arguments, but here we
need to choose an appropriate set of source-sink pairs and consider cuts into many
parts. Let G (V, E) be a k-vertex, bounded degree expander graph (each vertex has
degree at most d, for an appropriate constant d). Every vertex has at most vertices

within distance logd (). Thus, G has t(k2) pairs of vertices that are a distance
logd () or more apart. Let these be the pairs for the MULTICUT instance. All
edges of the graph have unit capacity, and hence the total capacity of the edges is

O(k). Since each flow path is 9t(log k) long, the maximum flow is O(k/log k).
The optimum multicut induces a partition of the vertex set of G. Since G is

APPROXIMATE MAX-FLOW MIN-MULTICUT THEOREMS 245

an expander, any set S in the partition has gt(ISI) edges running across it, provided
IS _< . Any subgraph with more than vertices has pairs that are logd () apart,
and hence contains a pair of vertices that share an index. Thus, no set in the partition
induced by the multicut has more than vertices, and so each set S in the partition
has ft(ISI) edges running across it. Hence the number of edges in the multicut is t(k).
This yields a ratio of ft(log k) between the weight of the minimum multicut and the
maxflow.

Note that splitting an edge by adding vertices on the edge does not change the
max flow or the minimum multicut. We modify G into an n-vertex graph by adding
an appropriate number of vertices on the edges of G. D

We remark that, in the case of the multiway cut problem [DJPSY] (i.e., the
special case of the multicut problem where the given set of source-sink pairs for the
commodities consists of all pairs of vertices from a given subset S of terminals), the
gap between min cut and max flow is much smaller; it is at most 2- [Cu]. Of
course, if S is the whole set of vertices (i.e., there is one commodity for every pair
of vertices), the problem is trivial and there is no gap: max flow min cut total
capacity of the graph.

6. Multicommodity flow with specified demands. We next consider the
case when along with the source and sink for commodity i, 1 _< i _< k, we are also
specified a demand, dem(i), for the commodity. A multicommodity flow is feasible if
it meets the demand for each commodity.

As in 4 we define the cut associated with S, denoted by V(S), as the set of edges
with exactly one end point in S. The capacity of the cut, Cv(s), is -eev(s) ce. The
set S separates commodity i if and only if exactly one of {si, ti } is in S. The demand
across the cut, Dr(s), is the sum of the demands of all commodities separated by
set S. Clearly, the following condition is necessary for the existence of a feasible
multicommodity flow.

Cut condition. For all S C_ V, Cv(s) >_ Dr(s).
However, this condition is not sufficient. Extensive work has been done on char-

acterizing graphs with distinguished sources and sinks for which the cut condition is
both necessary and sufficient. Again, no complete characterization is known.

Klein et al. view this problem as follows: they wish to find the minimum factor,
u, by which the capacity of the edges should be raised to ensure a feasible flow.
Equivalently, they wish to find the maximum factor, f, such that it is possible to
route simultaneously an amount f. dem(i) of each commodity while satisfying the
capacity constraints. At optimality f -.

Let q denote a path in G from s to t and q (e) be the characteristic function
of this path, i.e., q (e) 1 if e e q, 0 otherwise. Then an LP formulation for this
problem is

maximize f

subject to
i,j

f>_O

Ve E,

l<_i<_k,

Vq ,

246 N. GARG, V. V. VAZIRANI, AND M. YANNAKAKIS

where] is the flow along the path q. Thus, multicommodity flow is feasible if and
only if f is at least 1.

We can formulate the dual LP which now calls for an assignment of nonnegative
distance labels, de, to edges e E E so as to minimize yeEdeCe, subject to the
constraint E=I distd(sz, h)dem(1) _> 1, where distd(u, v)is the shortest path distance.
between u and v under this assignment of distance labels. At optimality, we have

dc f
How does f relate to the structure of the graph? The cut condition motivates

the following definition. Define the sparsest cut as the cut that minimizes the ratio

Cv(s)/Dv(s). Let

Clearly, f _< a. Klein et al. show that the "throughput" f is at least a/O(log C log D),
where C is the sum of all capacities and D is the total demand. This was later
improved to a/O(log n log D) by Tragoudas [Trag].

We improve this result by providing a tighter bound on f.
THEOREM 6.1.

O(log k log D)
Thus, for a multicommodity flow to be feasible it is necessary that the sparsest cut
ratio, a, be at least 1 and sufficient that it be O(log k log D).

Plotkin and Tardos [PT] give a method of scaling demands so that the log D
factor in Theorem 6.1 can be replaced by log k. Hence, they improve the bound in
Theorem 6.1 to O(log2 k).

For uniform multicommodity flow on bounded degree expanders, the ratio be-
tween f and a is O(log n) (n is the number of vertices) [LR]. We can, as in Theorem
5.4, modify this by adding new vertices on edges to get a graph on n vertices and k
commodities (k _< n(2-1) for which f a/O(logk). It is an open problem to bridge
the gap between the O(log2 k) bound of [PT] and this O(log k) example.

For planar graphs, Klein, Plotkin, and Rao [KPR] show that multicommodity
flow is feasible if the sparsest cut ratio, a, is logarithmic.

6.1. Proof of Theorem 6.1. First solve the dual LP to obtain a set of distance
labels, de, e E E. By LP duality we have that the optimal "throughput" f is equal
to B eeE dece. We will find a cut whose ratio of capacity to demand is within a
factor p 16 ln(k + 1)log D of f (and hence also of the optimal ratio

As in Klein et al., the algorithm proceeds in phases. Each phase involves growing
regions as in 4. If the source sj and sink tj of a commodity belong to the same
region in a phase we will say that commodity j is routed during that phase. In each
phase we only consider the commodities that have not been routed so far, i.e., the
set V’ of candidate roots consists of the vertices that are sources for some unrouted
commodity. Thus, q IV’I <_ k. Let the residual demand at phase i, Di, be the total
demand over commodities which have not been routed in phases 1 to i- 1. We set
the rate of expansion for phase i to ei pDi/8. The purpose is to route a significant
fraction of the demand while keeping the cut small. (Contrast this with Lemma 5.3
where e was chosen so that no commodity had its endpoints in the same region.)

We claim that at least one of the regions Ty in one of the phases has ratio of capac-
ity to demand at most pf. Suppose that this is not the case, i.e., Cv(nj)/Dv(Tz) > pf

APPROXIMATE MAX-FLOW MIN-MULTICUT THEOREMS 247

for all regions. We will derive a contradiction to the constraint E=I distd(sl, tl)dem(1)
>1.

Consider phase i. The residual demand after phase is

P 1 P

j=l j=l

From Corollary 4.4 we get

4eiB 4eif DiDi+l <_
pf pf 2

Since q _< k it follows from Lemma 4.1 and Corollary 4.2 that any two vertices in
the same region are less than 2 ln(k + 1)/i apart. Thus for any commodity that is
routed in phase we have

2 ln(k + 1) 16 ln(k + 1)distd(sl, tl) <
e pDi

Therefore, the sum of the quantities distd(st, h)dem(1) over the commodities routed in
phase is less than 16 ln(k + 1)/p. Since the residual demand is halved in each phase,
all the commodities are routed after at most log D phases. Therefore, the sum over
all commodities is

k
16 ln(k + 1) log DE distd(st, h)dem(1) <

/=1 P
=1,

a contradiction.

7. Product multicommodity flow. In this section, we will use our region-
growing lemmas to establish an improved bound for the product multicommodity
flow problem (defined in the introduction). If all the vertex weights are unity, this
also gives a cleaner proof for the uniform multicommodity flow problem by dispensing
with discretization (the rest of the ideas remain essentially the same). Another case
of special interest is when a subset of the vertices (say k in number) have unit weights
and the rest have weights zero. We call this the k-terminal uniform multicommodity
flow problem. It can be viewed as the analogue of the multiway cut problem in the
demands case. For this case, the gap between the maximum throughput and the
minimum ratio of a cut is O(log k).

As stated in the previous section, the example of Leighton and Rao can be easily
adapted to show that the O(log k) gap is essentially tight for the k-terminal uniform
multicommodity flow problem (up to a constant factor). It is interesting to note that,
in both the minimum multicut problem and the sparsest cut problem, there is a log k
discrepancy between the uniform case (where we have all pairs among a given set of
terminals) and the general case (arbitrary set of pairs): in the multicut problem the
integrality gap is 2- - in the uniform case versus O(log k) in the nonuniform case.
In the sparsest cut problem it is O(log k) versus O(log2 k). The first three of these
bounds are essentially tight. Only the last gap is not known to be tight; we do not
have an example for the sparsest cut problem that takes advantage of nonuniformity.

In the product multicommodity flow problem each vertex v has a (nonnegative)
weight w(v), and there is a commodity for each unordered pair u, v of vertices with

248 N. GARG, V. V. VAZIRANI, AND M. YANNAKAKIS

demand w(u)w(v). Let

a=min
Cv(s)

s _v

The throughput f is clearly bounded from above by a.
The dual program again calls for an assignment of nonnegative distance labels,

de, to the edges e E E, so that eEE dece is minimized subject to the constraint that
Yu,vey w(u)w(v)distd(u, v) >_ 1, where the sum extends over all unordered pairs of
vertices. At optimality we have

y dec f.
eE

THEOREM 7.1. For the product multicommodity flow problem, the maximum
throughput f and the minimum ratio a of a cut satisfy the inequalities

O(log k)
where k is the number of vertices having nonzero weight. We can find in polynomial
time a cut whose ratio is within a factor O(log k) of the minimum ratio.

A closely related quantity to the ratio of a cut V(S) is its flux:

Let

C(s)
min(w(S), w(S))

fl=min
Cv(s)

sc_v min(w(S), w(S))

Recall that I/V denotes the sum of the weights of all the vertices. Since <
max(to(S), w()) _< W, it follows that - G fl < (W. Therefore, Theorem 7.1
implies that the minimum flux fl lies between and fW. O(log k). Also, a cut ap-
proximates the minimum ratio c within a factor O(log k) if and only if it approximates
the minimum flux fl within a factor O(log k).

7.1. Proof of Theorem 7.1. We follow the structure of the Leighton-Rao proof
for the uniform multicommodity flow problem, except that we shall use the lemmas of
4. Also, it is not necessary to readjust adaptively the expansion rate e of the regions
and restart the procedure. First solve the dual LP to obtain a set of distance labels
d. By LP duality, we have that f is equal to B eE dece. We shall find a cut
whose flux is at most fW(4 ln(k + 1)4- 1); thus its ratio of capacity to demand is
within a factor 2(41n(k 4- 1) 4- 1) of the throughput f and hence also of the optimal
ratio a.

We find a good cut in two stages. In the first stage we grow regions as in 4 with
V’ as the set of vertices with nonzero weight; IV’I- k. We choose e W/4f. If
one of the regions has flux at most/) we are finished. Suppose this is not the case.
We show then that one of the regions contains vertices of weight at least -. If every
region T4 contains vertices of weight less than -, then its flux is

Cv(n) Cv(ra) >
min(w(T4), w())

APPROXIMATE MAX-FLOW MIN-MULTICUT THEOREMS 249

Therefore,
p p

i=1 i=1

However, by Corollary 4.4 we have
p

i--1

We conclude that one of the regions, say 7,, has weight at least -. Let r be the
root of region

In the second stage we reset all the variables Ys to zero and grow a region from
root r as in 4. However, now we do not check for condition 1 and stop only when
all vertices are included in the region. Let (r} S1 c $2 c c St denote
the sets with
Assume that this is not the case; we shall derive a contradiction to the constraint

’u,vev w(u)w(v)distd(u, v) >_ 1.
First observe that distd(u, v) <_ distd(r, u) + distd(r, v). Therefore,

E w(u)w(v)distd(u, v) <_ W
u,v6V

E w(v)distd(r, v).
v6V

If Si is the smallest set containing vertex v then distd(r, v) scs Ys. Let St 7
be the first set in the chain that contains all the vertices of ,. The set 7 may be
a proper superset of 7,, because some nodes may have been deleted from the graph
in the previous stage by the time we grew the region around r. In any case, however,
rad(T) <_ rad(7,). Since IV’I k, by Lemma 4.1

ln(k + 1) 4f ln(k + 1)rad(T) <
e Wfl

The total weighted distance of all the vertices from r is

 s(w s(w +
vV S SC S_

iow

E ys(W- w(S))

_
W E ys

_
w. tad(n) <

SCT SCT

4f ln(k + 1)

Since w(T) >_ -, all supersets of T have weight at least --.
these sets if Cv(s) /(W w(S)) >_/ and thus

Hence, the flux for

E ys(W- w(S))<
1 1

sD_n - Edec f
e6E

Therefore, ’vev w(v)distd(r, v) < (41n(k + 1) + 1) < --, and hence

E w(u)w(v)distd(u, v)< 1,
u,v6V

a contradiction.

250 N. GARG, V. V. VAZIRANI, AND M. YANNAKAKIS

8. Applications. Several graph problems can be viewed as edge deletion prob-
lems. We wish to find a minimum weight set of edges whose removal yields a graph
with a desired structure [Ya]. Klein et al. [KARR] propose a method for approxi-
mating such a problem when the property r can be specified as a 2CNF formula so
that deleting edges from the graph corresponds to deleting clauses in the formula. In
particular, they show how to model the minimum edge deletion graph bipartization
problem, i.e., deleting a minimum weight set of edges so that the resulting graph is
bipartite. The 2CNF deletion problem is defined as follows.

A 2 CNF formula, F, is a weighted set of clauses of the form
P Q where P, Q are literals. Find a minimum weight set
of clauses the deletion of which makes the formula satisfiable.

Klein et al. showed that this problem can be reduced to the minimum multicut prob-
lem. Construct a graph G(F) whose vertex set is the set of literals in F. For each
clause of the kind P _= Q include two edges (P, Q) and (P, Q) of capacity equal to
the weight of the clause P --_ Q.

LEMMA 8.1. A 2CNF formula, F, is satisfiable if and only if no connected
component of the graph G(F) contains both a literal and its complement.

Proof. An edge (P, Q) in G(F) implies that the literals P and Q take the same
truth value. Thus, if a literal and its complement occur in the same connected com-
ponent then the 2CNF formula is not satisfiable.

Conversely, note that if two literals P, Q are in the same connected component
then their complementary literals P, Q are also in the same connected component.
Thus, the components can be paired, so that in each pair one component contains a
set of literals and the other contains the complementary literals. We can now obtain
a satisfying assignment by setting, for each pair of components, the literals of one
component to true (and the other’s to false).

Let M be a minimum weight set of edges whose removal separates the pairs of
complementary literals in G(F) and let W be the minimum weight set of clauses
whose deletion makes F satisfiable. Then we have the following lemma.

LEMMA 8.2. wt(W) <_ wt(M) <_ 2wt(W).
Proof. The minimum multicut, M, in G(F) corresponds to a set of clauses (of

weight at most wt(M)) whose deletion makes the formula satisfiable. Hence, wt(W)
wt(M).

Each clause of F corresponds to two edges in G(F). Thus the set W corresponds
to a multicut in G(F) of weight at most 2wt(W). Therefore, wt(M) <_ 2wt(W).

Finding the set of edges, M, is exactly the MULTICUT problem on the graph
G(F) with every pair of complementary literals forming a source-sink pair. Thus, the
number of pairs, k, is equal to the number of variables in the formula, n, and hence
by Theorem 5.1 we can approximate M to within a factor O(logn). Using Lemma
8.2 we get the following theorem.

THEOREM 8.3. Given a 2CNF =_ formula, one can in polynomial time find a set
of clauses of weight at most a factor O(logn) of the minimum weight set of clauses
whose deletion makes the formula satisfiable.

COROLLARY 8.4. The edge-deletion graph bipartization problem can be approxi-
mated within a factor O(log n) in polynomial time.

We leave open the question of whether these problems can be approximated within
some constant factor. We know they are both MAX SNP-hard [PY] and hence do not
have a polynomial-time approximation scheme unless P NP [ALMSS].

APPROXIMATE MAX-FLOW MIN-MULTICUT THEOREMS 251

Acknowledgment. We wish to thank Phil Klein for simplifying the formulation
in 6, which made the presentation more uniform.

[ALMSS]

[AT]

[Cu]

[DJPSY]

[EFS]

[FF]

[GV]

[GVY]

[Hu]
[KARR]

[KPR]

[KST]

[LR]

[PY]

[PT]

[TV]

[Ya]
[YKCP]

REFERENCES

S. ARORA, C. LUND, R. MOTWANI, M. SUNDAN, AND M. SZEGEDY, Proof verifica-
tion and hardness of approximation problems, in Proc. 32nd IEEE Symposium on
Foundations of Computer Science, IEEE Press, Piscataway, NJ, 1992, pp. 14-23.

S. AWERBUCH, Complexity of network synchronization, J. Assoc. Comput. Mach., 32
(1985), pp. 804-823.

W. H. CUNNINGHAM, The optimal multiterminal cut problem, DIMACS Series in Dis-
crete Mathematics and Theoretical Computer Science, 5 (1991), pp. 105-120.

E. DAHLHAUS, D. S. JOHNSON, C. H. PAPADIMITRIOU, P. D. SEYMOUR, AND M.
YANNAKAKIS, The complexity of multiway cuts, in Proc. 24th ACM Symposium
on Theory of Computing, Association for Computing Machinery, New York, 1992,
pp. 241-251.

P. ELIAS, A. FEINSTEIN, AND C. F. SHANNON, A note on the maximum flow through a
network, IRE Trans. Inform. Theory IT, 2 (1956), pp. 117-119.

L. R. FORT, JR. AND D. R. FULKERSON, Maximal flow through a network, Canad. J.
Math., 8 (1956).

N. GARG AND V. V. VAZIRANI, A characterization of the vertices and edges of the s-
cut polyhedron, with algorithmic applications, in Proc. Integer Programming and
Combinatorial Optimization, 1993.

N. GARG, V. V. VAZIRANI, AND M. YANNAKAKIS, Primal-dual approximation algo-
rithms for integral flow and multicut in trees, with applications to matching and
set cover, in Proc. 20th International Collection on Automata, Languages, and Pro-
gramming, Springer-Verlag, Berlin, New York, Heidelberg, 1992, pp. 64-75.

T. C. Hu, Multicommodity network flows, Oper. Res., 11 (1963), pp. 344-360.
P. KLEIN, A. AGRAWAL, R. RAVI, AND S. RAO, Approximation through multicommodity

flow, in Proc. 31st Symposium on Foundations of Computer Science, IEEE Press,
Piscataway, NJ, 1990, pp. 726-737.

P. KLEIN, S. PLOTKIN, AND S. RAO, Excluded minors, network decomposition, and
multi-commodity flow, in Proc. 25th ACM Symposium on Theory of Computing,
Association for Computing Machinery, New York, 1992, pp. 682-690.

P. KLEIN, C. STEIN, AND E. TARDOS, Leighton-Rao might be practical: faster approxi-
mation algorithms for concurrent flow with uniform capacities, in Proc. 22nd ACM
Symposium on Theory of Computing, Association for Computing Machinery, New
York, 1990, pp. 310-321.

F. T. LEIGHTON AND S. RAO, An approximate max-flow min-cut theorem for uni-

form multicommodity flow problems with application to approximation algorithms,
in Proc. 29th IEEE Symposium on Foundations of Computer Science, IEEE Press,
Piscataway, NJ, 1988, pp. 422-431.

C. H. PAPADIMITRIOU AND M. YANNAKAKIS, Optimization, approximation and com-
plexity classes, J. Comput. System Sci., 43 (1991), pp. 425-440.

S. PLOTKIN AND E. TARDOS, Improved bounds on the max-flow rain-cut ratio for multi-
commodity flows, in Proc. 25th ACM Symposium on Theory of Computing, Associ-
ation for Computing Machinery, New York, 1992, pp. 691-697.

E. TARDOS AND V. V. VAZIRANI, Improved bounds for the max-flow min-multicut ratio

for planar and Kr,r-free graphs, Inform. Process. Lett., 47 (1993), pp. 77-80.
S. TRAGOUDAS, Improved approximation for the minimum-cut ratio and the flux, Math.

Systems Theory, to appear.
M. YANNAKAKIS, Edge-deletion problems, SIAM J. Comput., 10 (1981), pp. 297-309.
M. YANNAKAKIS, P. C. KANELLAKIS, S. C. COSMADAKIS, AND C. n. PAPADIMITRIOU,

Cutting and partitioning a graph after a fixed pattern, in Proc. 10th International
Collection on Automata, Languages, and Programming, Springer-Verlag, Berlin,
New York, Heidelberg, 1983, pp. 712-722.

SIAM J. COMPUT.
Vol. 25, No. 2, pp. 252-271, April 1996

() 1996 Society for Industrial and Applied Mathematics
0O2

ROBUST CHARACTERIZATIONS OF POLYNOMIALS WITH
APPLICATIONS TO PROGRAM TESTING*

RONITT RUBINFELDt AND MADHU SUDAN$

Abstract. The study of self-testing and self-correcting programs leads to the search for robust
characterizations of functions. Here the authors make this notion precise and show such a charac-
terization for polynomials. From this characterization, the authors get the following applications.
Simple and efficient self-testers for polynomial functions are constructed. The characterizations pro-
vide results in the area of coding theory by giving extremely fast and efficient error-detecting schemes
for some well-known codes. This error-detection scheme plays a crucial role in subsequent results on
the hardness of approximating some NP-optimization problems.

Key words, coding theory, program correctness, low-degree polynomial testing

AMS subject classifications. 68Q25, 68Q40, 68Q60

1. Introduction. The study of program checkers [Blu88], [BK89], self-testing
programs [BLR90], and self-correcting programs [BLR90], [Lip91] was introduced in
order to allow one to use a program P to compute a function without trusting that P
works correctly. A program checker checks that the program gives the correct answer
on a particular input, a self-testing program for f tests that program P is correct on
most inputs, and a self-correcting program for f takes a program P that is correct on
most inputs and uses it to compute f correctly on every input with high probability.
The program checker, self-tester, and self-corrector may call the program as a black
box, are required to do something other than to actually compute the function, and
should be much simpler and at least different from any program for the function f
in the precise sense defined by [BK89]. It is straightforward to show that checkers,
self-testers, and self-correctors for functions are related in the following way: If f has
a self-tester and a self-corrector, then it can be shown that f has a program result
checker. Conversely, if f has a checker, then it has a self-tester (though not necessarily
a self-corrector). It is argued in [BK89] and [BLR90] that this provides an attractive
alternative method for attacking the problem of program correctness.

One of the main goals of the research in the area of self-testing/correcting pro-
grams and program checking is to find general techniques for finding very simple and
efficient self-testers, self-correctors, and checkers for large classes of problems. In
fact, some success towards this goal has been achieved. For example, in [BK89], it
is shown how to use techniques from the area of interactive proof systems in order
to write checkers. Using these and other techniques, checkers (and hence self-testers)
have been found for a variety of problems [AHK], [BK89], lauD90], [Kan90], [BFLS91],
[BF91]. If a function is random self-reducible, i.e., the value of the function at any

Received by the editors September 23, 1993; accepted for publication (in revised form) August
9, 1994. This paper unifies and extends part of the results contained in Gemmell et al. [GLRSW91]
and Rubinfeld and Sudan [RS92].

Department of Computer Science, Cornell University, Ithaca, NY 14853 (ronitt@cs.cornell.edu).
The research of this author was supported by Office of Naval Research Young Investigator grant
N00014-93ol-0590, United States-Israel Binational Science Foundation grant 92-00226, DIMACS
(the Center for Discrete Mathematics and Theoretical Computer Science, Princeton University), and
National Science Foundation grant NSF-STC88-09648. Part of this work was done while this author
was at Princeton University.

I.B.M. Thomas J. Watson Research Center, P.O. Box 218, Yorktown Heights, NY 10598
(madhuwatson.ibm.com). Part of this work was done while this author was a student at the
University of California at Berkeley under the support of National Science Foundation Presidential
Young Investigator grant CCR-8896202.

252

ROBUST CHARACTERIZATION OF POLYNOMIALS 253

input can be inferred from its value at randomly chosen inputs, then it has a self-
corrector [BLR90], [Lip91]. This provides self-correctors for a surprising range of
functions, including the class of linear functions (homomorphisms between groups)
and polynomials.

In the direction of characterizing functions that have self-testers, some success
has been achieved in [BLRg0]. They give a number of methods of constructing self-
testers for functions, some of which we mention here. They observe that any checker
for a function can be used to construct a self-tester for the function. They present
a particular method of constructing self-testers for a variety of functions based on a
method of bootstrapping from tests over smaller domains. They also show another
method of constructing self-testers for all linear functions, i.e., functions that act as
homomorphisms between groups, in other words satisfy f(x)- f(y) f(x -y) for a
group operation +.

The main focus of this paper is to study and understand the functions which have
self-testers and to broaden the class of functions that are known to have self-testers.
The linearity tester of [BLRg0] is the starting point for this paper. A particularly
interesting feature of this linearity tester is that it breaks the task of self-testing a
function into the two tasks of (I) testing it for certain "structural properties" and (2)
using the structural property to then identify the function precisely. In this paper,
we introduce a new notion--a function-family tester--which helps delineate these two
tasks more clearly. We first introduce some terminology.

We work with functions defined over some finite domain T. The distance between
two functions f and g over the domain T is the fraction of points x E :D where the
two functions disagree:

d(f,g) =_ I{x e t)lf(x g(x)}

We say that two functions are e-close if d(f, g) <_ e. In some of the informal discussions
that follow, we drop the e and just describe two functions as being close. In such cases,
it is implied that we are talking of some small enough e. In terms of this notion, a
self-tester for a function f may be defined as follows.

An e-self-tester T for a function f over a domain :D is a (randomized) oracle
program that takes as input a program P and behaves as follows:

It accepts P if d(P, f) O.
It rejects P (with high probability) if P and f are not e-close.
It behaves arbitrarily otherwise.

1.1. Testers for function families using robust characterizations. Let
be a family of functions. An e-function-family tester T for the family 9 takes as input
a program P and tests if there exists a function f $" such that P is e-close to f.

The notion of a function-family tester captures the notion of verifying properties
of a function as follows: Let P be a property we wish to test for. Let " be the
family of all functions that have the property 7). Then a function-family tester for
9 can be used to test if a program P "essentially" has the property P (i.e., there
exists a function with property P that is close to P). To make some of these abstract
definitions concrete, let us work with the simple example of the property of linearity
among functions from Zp to Zp. For this example, the family of functions we work
with is ’linear {fala e p, fa(X) a. x}. Thus a tester for the family of linear
functions verifies that the computation of a program P is essentially linear.

The existence of a function-family tester for any class of functions implies a power-
ful characterization of the family. In particular, consider any program that is rejected

254 RONITT RUBINFELD AND MADHU SUDAN

by the tester. In order to reject the program, the tester will have found some evidence
in the small set of sampled points which "proves" that P can not be a member of. In other words, all members of must satisfy some property on the set of inputs
that are examined by the family tester. Thus all members of " satisfy a "local" prop-
erty (by local we mean a property on a set of small size--we define this notion more
formally in 2). Moreover, if all such local properties are satisfied, then the tester
accepts the function, implying that these local constraints form a characterization of
the family. Thus in order for a function family to have a tester, it needs to have a local
characterization. In our example, such a local characterization of linear functions is
the property that ’x, y E Zp, f(x) + f(y) f(x + y). If a function is not linear then
there exists a counterexample of size three that proves that it is not linear.

However, local characterizations do not form a sufficient condition for the con-
struction of testers. Typically an exact local characterization of a family of functions
involves a universal quantification, which is not feasible to verify. In our example, the
characterization of linear functions by the property Vx, y E _.p, f(X) -- f (y) f(x + y)
is not useful to test a purported linear function, since we cannot hope to efficiently
test that this holds for all possible pairs x and y. Thus for a characterization to be
useful for testing, it needs to be "robust," involving the words "for most" rather than
"for all." Specifically, let $" be the function family that satisfies the properties at all
inputs and let f be any function that satisfies the properties at most inputs. Then f
must be close to some g $" (see 2 for a more formal definition). In our example,
if f(x) + f(y) f(x + y) is satisfied by f for most x, y, then f(x) c.x for most x
and some constant c.

1.2. Our results on function family testing. One of the main emphases of
this paper is to find robust characterizations for the family of low-degree univariate
and multivariate polynomials. In 3, we start by describing some (well-known) local
characterizations of univariate and multivariate polynomials and then prove that some
of these characterizations are actually robust characterizations. As an immediate
consequence, we get function-family testers for all low-degree polynomials over finite
fields. For the case of polynomials over Zp, our testers are very simple and do not
even need to multiply elements of the field. Our testers are the first testers that
directly attempt to test the total degree of a polynomial (as opposed to the testers of
[BFLS91], [FGLSS91], and [AS92], all of which test that the degree in each variable is
not too large). The proof of correctness of our tester also is different from the proofs
of correctness of the other testers in that it does not rely on an inductive argument
based on the number of variables. This allows for its "efficiency" to be independent
of the number of variables and provides the hope for the existence of a tester with
nearly optimal efficiency.

A second emphasis of this paper is the notion of test sets that allows us to use
the results on function-family testing to obtain self-testers for specific functions. In-
formally, a test set is a set of points from the domain such that no two functions from
the family " agree with each other on all the points from the test set. Our self-tester
for a specific function f would require, as a description of f, its value on all points in
a test set. The complexity (running time) of the self-tester will depend on the size of
the test set.

1.3. Other implications of low-degree testing. The task of constructing
family testers for the family of low-degree polynomials is closely related to the task
of error detection in Reed-Solomon codes. In fact, a low-degree test can be described
as a "randomized" error detector that determines whether the number of errors in a
received word is small or not. In this sense, the error detectors we construct have the

ROBUST CHARACTERIZATION OF POLYNOMIALS 255

feature that they are highly efficient and can be used to get estimates on the distance
of a received word from a valid codeword. This perspective can similarly be applied
to the results of [BLR90] to get randomized error-detecting and correcting schemes
for the Hadamard codes that probe the received word in only a constant number of
bits to detect an error or find any bit of the codeword closest to the received word.
In fact, it has been observed by M. Naor [Nao92] that these results can be used to
construct codes for which error-detection/correction can be performed by uniform
quasipolynomial-sized circuits of constant depth. In 7, we define the notion of a
"locally testable code"ma notion that precisely describes the relationship between
testing and error-correcting codes. We also provide applications of our testers to the
construction of "locally testable codes" in the section.

A different perspective on the construction of family testers is to view it as the
following approximation problem"

Given a family of functions $" and a function P, estimate the distance
d(P, .T’) between P and 9v to within a small multiplicative error.

A tester for a function family essentially yields such an approximator (provided
d(P, .T’) is smaller than half) by defining some new quantities 5(P, ’) that are easy
to estimate by random sampling and then showing that some approximate relations
hold between 5(P, .T’) and d(P, .T’). For example, the linearity test of [BLR90] may be
viewed as trying to approximate the distance d(f, $-inear). To approximate this dis-
tance, they define the quantity 5(f, 5inear) --= Pr[f(x)+ f(y) : f(x + y)] which is easy
to approximate. Then they show that 5(f,.T’iner)/3 <_ d(f,-’linear) 9/2(f, ’linear).
The testers given here define similar quantities related to low-degree polynomials and
show similar approximate relationships. Such inequalities may be of independent
interest.

The task of low-degree testing forms a central ingredient in the proof of MIP
NEXPTIME due to [BFL91]. The tester given here provides an alternate mechanism
that works in their setting. The efficiency of low-degree testing also becomes very im-
portant to the ensuing results on hardness of approximations [FGLSS91], [ALMSS92],
and therefore a lot of attention has been paid to this problem [BFL91], [BFLS91],
[FGLSS91], [AS92]. However, all these results focus on tests that are close variants of
the test given in [BFL91]. The low-degree test given here is fundamentally different
from the ones mentioned above and originated from independent considerations in
the work of [GLRSW91]. The efficiency of the tester shown here may also be found
in [RS92]. It turns out that this tester is particularly well-suited to such multiple
prover applications and provides a one round, constant prover proof that a function
is a low degree polynomial over finite fields. This is observed in subsequent work of
[ALMSS92] (see also [Sud92]) and follows by using an improved analysis for Lemma 5.3
from [AS92]. This turns out to play a crucial role in the NP PCP(log n, O(1)) result
of [ALMSS92], which in turn provides hardness results for a wide variety of approxi-
mation problems. An exact description of the relevance of the various testers and the
chronology of contributions maybe found in 8.

1.4. Organization of the paper. The rest of this paper is organized as follows.
In 2 we formally define the notions of local characterizationsmexact and robust.
Section 3 lists some (well-known) exact characterizations of low-degree polynomials.
Sections 4 and 5 show that two of these exact characterizations are robust. In 6, we
describe the applications of these characterizations to self-testing of programs. In 7,
we define a notion of locally testable codes (based on the notion of probabilistically
checkable proofs) and show applications of our testers to such codes. Section 8 contains
some concluding remarks.

256 RONITT RUBINFELD AND MADHU SUDAN

2. Local characterizations: Exact and robust. In this section, we make
precise the notion of a local characterization and what we mean by exact and robust
characterizations. We will also isolate a parameter associated with the robust charac-
terizations that captures the efficiency of the tester suggested by the characterization.

We will use 7) to represent a finite domain. We will consider here families of
functions " where f E " maps elements from :/9 to a range 7. We illustrate these
definitions using the example of linear functions. Here the domain and range are Zp
and the family of functions is {fala e Zp where fa(x) a. x}.

DEFINITION 2.1 (neighborhoods). A k-local neighborhood N is an ordered tuple
of (not necessarily distinct) k points from 9 A k-local collection of neighborhoods
iV" is a set of k-local neighborhoods.

DEFINITION 2.2 (properties). A k-local property 79 is a function from (7))k
to {0, 1}. We say that a function f satisfies a property 79 over a neighborhood N if
79(((x, f(x))}zeN) 1.

DEFINITION 2.3 (exact characterizations). A property P over a collection of
neighborhoods A/" is an exact characterization of a family offunctions . if a function
f satisfies 79 over all neighborhoods N A/" exactly when f .. The characterization
is k-local if the property 79 (and the collection A/’) is k-local.

In our example, the collection of neighborhoods Af {(x, y,x+y)lx y Zp}. The
property :P is 3-local and is satisfied by f on the triple (x,x2,x3) if f(x) + f(x2)
f(x3). Thus over the collection of neighborhoods Af, 79 gives a 3-local characterization
of the family of linear functions.

DEFINITION 2.4 (robust characterizations). A property 79 over a collection of
neighborhoods A/" is said to be an (e,)-robust characterization of ., if whenever a

function f satisfies 79 on all but a fraction of the neighborhoods in A/’, it is e-close
to some function g yc. Moreover, all members of . satisfy 79 on all neighborhoods
in A/’.

To continue with the example of linear functions, the theorem of [BLRg0] can be
used to say that :P over the neighborhood Af is a ((-c), -c)-robust character-
ization of linear functions for any constant c.

The exact constant e determining closeness is not very important for the family
of multivariate polynomials. For most of the characterizations we consider here, it
can be shown that any function f is ((1 + o(1)))-close to some member g of " if f is

1/4-close to g and violates only a frction of the neighborhood constraints. Thus for
the purposes of this paper, we fix the value of e to be 1/4.

In order to test if f is close to some member of ’, one would need to sample at
least 1/2 of the neighborhoods in Af and test if 79 holds on these neighborhoods. Hence,
the parameter 1/2 is referred to as the efficiency of the characterization.

3. Exact characterizations of polynomials. In this section, we start by de-
scribing some (well-known) exact local characterizations of polynomial functions. In
later sections, we will show that some of these characterizations can be made robust.

The family of degree-d polynomials can be characterized in a number of ways. The
different characterizations arise from looking at different collections of neighborhoods
iV’. The property P has to remain invariant in the following sense: P will be satisfied
by f on a neighborhood N if there exists a polynomial that agrees with f on all points
in N. The complexity of a neighborhood test, i.e., testing whether a constraint is being
satisfied by a neighborhood, is also influenced by the choice of the neighborhood.
Thus by choosing the characterizations appropriately, we might be able to tradeoff
the simplicity of the neighborhood test against the number of times the test needs
to be repeated. The different characterizations also have to be qualified by different

ROBUST CHARACTERIZATION OF POLYNOMIALS 257

restrictions on the underlying ring. For instance, some characterizations hold only
for finite fields while others hold only for rings of the form Z,. We will take care
to point out the restrictions on the characterizations. We give examples of possible
neighborhoods and their corresponding tests.

1. Univariate polynomials. The following characterization of univariate polyno-
mials holds for a function f mapping a ring R to itself.
(a) Characterization. f R R is a polynomial of degree at most d if and

only if Vx0,... ,Xd+l E R, there exists a polynomial gxo x+l of degree
at most d such that f(x) go +(x).

(b) Neighborhood structure. A[Rd+2, i.e., all possible (multi)subsets of R
of size d + 2.

(c) Complexity of neighborhood test. A test of the above nature involves find-
ing the (unique) degree d polynomial g that agrees with f at the points
x0,... ,Xd and then evaluating g(Xd+l) and verifying that this equals
f(xd+l). Standard interpolation techniques (see, for instance, [dW70])
imply that this is equivalent to computing coefficients a0,...,ad+l,

-d+lwhere the {a}’s depend only on the {x}’s, and verifying that z_,=0

f(x) O. The a’s can be computed using elementary algorithms with
O(d2) additions, subtractions, and multiplications over R.

2. Univariate polynomials using evenly spaced points. This characterization
works over the ring Zm. Let a (dl)(--1)i+l. The interpolation identity
for degree d polynomials on evenly spaced points, x, x + h,..., x + (d + 1). h,
reduces to z_,=o af(x + i. h) O. We refer to x as the starting point and h
as the offset.
(a) Characterization. f m Zm is a polynomial of degree at most d if

and only if Vx, h Zm, -,=o af(x + h) O.
(b) Neighborhood structure. Define the neighborhood sets Nx,h =-- {x + i.

d-ih}=o. Then the neighborhood collection is A[Ux,heZ. Nx,h.
(c) Complexity of neighborhood test. Notice that the constants a are now

independent of x and h and can be precomputed once and for all. In
fact, due to the special relationship between the a’s, given the value
of f at the points x + i. h, we can compute the above summation with
O(d2) additions and subtractions and no multiplications (see appendix).

3. Multivariate polynomials using lines. This characterization applies to m-
variate functions over a finite field F. Define the notion of a line through
the space Fm as follows: For 2, e F", the line 1, through 2 with offset

h is the set of points {2+i.1i e F}. We will often refer to the line in
its parametric form l,h(i). Observe that a polynomial f of total degree d,
restricted to a line l,h (i) becomes a univariate polynomial of degree at most
d in the parameter i. This gives us the following characterization of degree d
polynomials over sufficiently large finite fields (IFI >_ 2d + 1).
(a) Characterization. The function f Fm e-. F is a polynomial of degree

at most d if and only if V2, t Fm, f restricted to 1,(i) is a univariate

polynomial in of degree at most d (see appendix for a proof).
(b) Neighborhood structure. Let the neighborhoods be lines. Then A/

The above characterization is not the tightest possible in its requirement of the parameter IFI.
Indeed, for the case of fields of prime order this can be improved to the optimal case IFI _> d + 2
and this has been shown recently in [FS94]. For arbitrary finite fields, it turns out that IFI >_ d + 2
is not a sufficient condition for this characterization to hold. A counterexample to this effect is also
shown in [FS94].

258 RONITT RUBINFELD AND MADHU SUDAN

(C) Complexity of neighborhood test. In this form the characterization is
not very local since the counterexamples are lines, i.e., collections of

IFI points. But this characterization is interesting to us because it says
that the characterization of multivariate polynomials can be reduced to
the characterization of univariate polynomials (on these lines). Thus
we find that we can now use, for instance, characterization 1 to find
counterexamples of size at most d/2. The complexity of a neighborhood
test here is no more than the complexity of the neighborhood test in
characterization 1.

4. Multivariate polynomials using axis parallel lines. This characterization is a
specialization of the characterization above, in terms of spec)al lines--axis-
parallel lines. We say that a line is axis parallel if the offset h contains only
one nonzero coordinate.
(a) Characterization. f Fm F is a polynomial of degree at most d in

each variable if and only if V axis-parallel lines, f restricted to the line
is a univariate polynomial of degree at most d. Notice that here we
characterize polynomials differently, i.e., in terms of individual degree in
each variable rather than total degree.

(b) Neighborhood structure. The neighborhoods here are sets of the form

N, -: {(l,...,_1,t,,...,,_l)lt e F}, for every choice of e
Fm- and every choice of E {1,..., m}. Then

(c) Complexity of neighborhood test. The complexity of a neighborhood test
is the same as the complexity of characterization 1.

5. Multivariate polynomials: Evenly spaced points. A combination of character-
izations 2 and 3 gives the following characterization of polynomials over Zp,
provided p is large enough for characterization 3 to hold.
(a) Characterization. f Zn p is a polynomial of degree at most d if

and only ifVh, e Z, Li=0 af(5+ifz) O, where a (-1)+1 (dtl)
(b) Neighborhood structure. The neighborhoods here are of the form N,h

{5 + i1i e {0,..., d + 1}}. Then A/" =- U,hezF N,h"
(c) Complexity of neighborhood test. The complexity of this neighborhood

test is the same as the complexity in characterization 2.
6. Multivariate polynomials: Evenly spaced points 2. This characterization is

a trivial consequence of the characterization above and seems weaker since
its neighborhood structure is larger than those of the ones above. But it
turns out that this characterization is much more useful due to the kind of
robustness it yields. This characterization holds for polynomials over Zp, for
p> 10d.
(a) Characterization. f - Zp is a polynomial of degree at most d if and

only ifV, e , the values of f at the points {+ifz]i e {0,..., 10d}}
agree with some univariate polynomial g of degree at most d in t.

(b) Neighborhood structure. The neighborhoods here are sets of the form

N, {5 + ifzli e {0,..., 10d}}. Then Af U,hz N,.
(c) Complexity of the neighborhood test. Once again it turns out that the

complexity of this test is within a constant factor of the complexity of

ROBUST CHARACTERIZATION OF POLYNOMIALS 259

the test in characterization 2, i.e., O(d2) additions and subtractions and
no multiplications (see appendix).

All characterizations above turn out to be robust. The robustness of characteriza-
tion 1 is straightforward and omitted here (see, for instance, [Sud92]). The robustness
of 4 follows from the work of [BFL91] (see also [BFLS91], [FGLSS91], [AS92], [Lun92]).
The robustness of characterizations 2, 3, 5, and 6 are presented in 4 and 5.

A typical robust characterization theorem for degree d polynomials in m variables
over a finite field F would go as follows:

There exists a 0 (which may be a function of d, m, and IFI) such
that for _< 0, if the fraction of neighborhoods where P satisfies the
local constraints is at least 1 -, then P is e-close to solne degree-d
polynomial (where e is some function of).

An important parameter in determining the efficiency of a tester is the relationship
between 0 and m, d, and IFI. For instance, if o dm log IFI’ then this implies that we
will have to te.t that the local property holds for at least dm log IFI randomly chosen
neighborhoods before we can satisfy ourselves that P is close to some polynomial.
Our main thrust will be to get a theorem that holds for as high a 0 as possible.2

In what follows, we show first that characterization 5 above is robust with 0
O(). This proof gives a simple and efficient tester for the family of multivariate
polynomials that works with O(d3) probes into f. Robustness of the characterizations
in 2 and 3 follow as special cases. This bound on 0 is in contrast to the robustness
of 4 that has an inherent dependency on m.

Next we show the robustness of characterization 6. The efficiency of this test is
analyzed modulo the efficiency of a certain test for bivariate polynomials and is shown
to be within a constant factor of the bivariate test. We also show that the efficiency of
the bivariate test is O(d), giving a test for multivariate polynomials that works with
O(d2) probes into f.

4. A robust characterization of polynomial functions. In this section, we
prove the robustness of characterization 5. We consider a function (program) P
mapping m variables from Zp to 2:p and prove the following theorem.

THEOREM 4.1. For o 2(4+2)2, if P" Zn .p satisfies

d+l]Pr P(x) 7 E ciP(x +i. h) N o,
x’hE tZn i--1

then there exists a degree-d polynomial g Zn -, Zp that is 25-close to P.
This theorem makes very minimal requirements on the field size required for its

validity. The theorem is valid whenever characterization 5 holds, and Friedl and
Sudan [FS94] have shown that this holds for p >_ d + 2--the smallest conceivable field
size for which the test could be defined. We do not know of other testers that work
with such a minimal requirement on the field size.

xd+aP(x + ih)} where maj of a set is theWe define g(x) to be majhEzF {z.=
function that picks the element occurring most often (choosing arbitrarily in the case
of ties). First we show that g is 25-close to P. Later in this section, we show that g
is a low-degree polynomial.

2 A secondary parameter of interest is the relationship between e and 5. In all the proofs that
follow, we will only show that e 25. Actually, once such a result is shown, it can be shown again
that any e > 5 works.

260 RONITT RUBINFELD AND MADHU SUDAN

LEMMA 4.2. g and P agree on more than a 1 25 fraction of the inputs from

’d-t-1 ciP(x +Proof. Consider the set of elements x such that Prh[P(x) z_,i=l

i, h)] < 1/2. If the fraction of such elements is more than 25, then it contradicts the
Iv’d+1 P(x+i,h) 0] 5. For all remaining elements, P(x)condition that Prx,htz.,i=0 ci

O
in the following lemmas, we show that the function g satisfies the interpolation

formula for all x and h and is therefore a degree-d polynomial. We do this by first
showing that for all x, g(x) is equal to the interpolation of P at x by most offsets t.
We then use this to show that the interpolation formula is satisfied by g for all x, h.

v’d+l aP(x + i h)] > 1 2(d + 1)5.LEMMA 4.3. For all x E Z, Prh [g(x) z_,i=l

Proof. Observe that hi,h2 En Z implies that when and j do not equal 0,

x + , hl n Z and x + j , h2 n Z

[]d+l

Pr P(x+i,hl)=EajP(x+i,hl+j,h2 >_1-5
hi,h2

Pr P(x+j,h2)= ciP(x+i,hl+j,h. >_1-.

d+l d+l d+l

Prh,h EaP(x + i hi) EEaicjP(x + i* hi -- j* h2)
i=1 i=1 j=l

d+l

]EcjP(x+j*h2)
j--1

_> 1 2(d + 1)5.
The lemma now follows from the observation that the probability that the same

object is drawn twice from a set in two independent trials lower bounds the probability
of drawing the most likely object in one trial. Suppose the objects are ordered so that
p is the probability of drawing object i, and Pl _> p2 _> "". Then the probability of
drawing the same object twice is p <_ PlP Pl. D

LEMMA 4.4. For all x,h Z if 5 < x’d+l h) 0 (and2(d+2)2, then z_,i=0 aig(x +
thus g is a degree-d polynomial [dW70]).

Proof. Observe that, since hi + ih2 R Zn, we have for all 0 N _< d + 1,

Pr (x + h) E ojP((x + i h) + j (hi + ih2)) _> 1 2(d + 1)5.
h,h,

j=l

Furthermore, we have for all 1 _< j _< d + 1

Pr [aP((x+j,hl)+i,(h+j,h))=O] >_1-5.
h ,h2

ki=0

Putting these two together, we get

]Pr aig(x + . h) E aj aiP((x + j . hl) + . (h + j . h2)) O >0.
h,h2

ki- j=l i=0

Combining the two, we get

ROBUST CHARACTERIZATION OF POLYNOMIALS 261

The lemma follows since the statement -=o cg(x / h) 0" is independent
of h and h2, and therefore if its probability is positive, it must be 1.

Proof of Theorem 4.1. Theorem 4.1 follows from Lemmas 4.2 and 4.4. []

5. Efficient tester for polynomials. In this section, we prove the robustness
of characterization 6. Recall that this characterization uses the collection of neighbor-
hoods Af {Nx,hlx, h e :n}, where Nx,h (x,x + h,...,x + 10dh). The following
theorem shows that the efficiency of this characterization is O(d), i.e., if a function
satisfies the consistency test on all but a O() fraction of the neighborhoods, then it
is close to a polynomial.

THEOREM 5.1. There exists a constant c such that for 0 <_ <_ -, if f is a

function from Z to Zp that satisfies the neighborhood consistency test on all but a
5 fraction of the collection of neighborhoods A/" {N,hlx, h E Zn} (where N,h
{x, x + h,..., x + lOdh}), then there exists a polynomial g Z - Zp of total degree
at most d such that d(f,g) <_ (1 + o(1))5 (provided p > 10d.)

In the rest of this section, we prove this theorem for the case d _> 1. (The case
d 0 amounts to proving that f is a constant and is omitted as a straightforward
exercise.)

Fix a function f that satisfies the neighborhood constraints on all but a 5 fraction
of the neighborhoods.

The proof follows the same basic outline as the one in 4, but in order to achieve
the better efficiency, we use ideas that can be thought of in terms of error correction.
Thus many of the steps that were quite simple in 4 require more work here. In
4, the function g was defined to be the value that occurs most often (for most h)
when one looks at the evaluation at x of the unique polynomial that agrees with the
values of f at x + h,..., x + (d + 1)h. Here we view the values of a polynomial at
x/ h,..., x+ lOdh as a codeword. Intuitively, the values of f at x/ h,..., x+ lOdh will
often have enough good information in it to allow us to get back to a correct codeword.
The function g defined below can be thought of as the value that occurs most often
(for most h) when one looks at the polynomial defined by the error correction of the
values of f at x,x + h,..., x + lOdh evaluated at x. We then show that g has the
following properties:

1. g(x) f(x) with probability at least 1-5-0(5) if x is picked randomly from
z;

2. On every neighborhood N,h, g is described by a univariate polynomial of
degree d.

Notice that characterization 6 now implies that g is a degree d polynomial.
Notation. For x,h Z, we let P,h(i) be (the unique) polynomial in that

satisfies Px,h(i) f(x / ih) for at least 6d values of {0,..., 10d}. If no such
polynomial exists, then P,h is defined to be error.

Let g’g - gp be g(x)=_ pluralitYh{Px,h(O)}

where the plurality is taken over P’s that are not error.
In 4, it is shown that if one computes the value of a polynomial function at

x by interpolating from the values of the function along offset h that are in turn
computed by interpolating from the values of the function along offset h2, then one
would get the same answer as if one had computed the value of the function at x by
interpolating from the values of the function along offset h2 that are in turn computed
by interpolating from the values of the function along offset h. This is not hard to
see because it turns out that an interpolation is a weighted summation and obtaining
the identity amounts to changing the order of a double summation (see, for instance,

262 RONITT RUBINFELD AND MADHU SUDAN

Lemma 4.3). Here g is actually an interpolation of the error correction of the values
of the function, which is no longer a simple algebraic function of the observed values.
We repair the situation by constructing a bivariate polynomial Q(i, j) that agrees with
f(x / i. hi / j h2) for most values of i and j. This allows us to get back to simple
interpolation where we work with the function Q(i, j) rather than f. Lemma 5.2 shows
when such a bivariate polynomial can be set up to agree with a matrix of values mj.
Lemma 5.3 shows how to use this polynomial to simulate the effect of the interchange
in the order of the summation.

The following lemma follows directly from the axis parallel characterization of
polynomials.

LEMMA 5.2. For X, Y C Zp with IXI, [Y[> d + 2, if {ri}iz and {cj}jey are
univariate (degree-d) polynomials such that for all E X and j Y, ri(j) c(i),
then there exists a polynomial Q(., .) such that for all i,j Q(i,j) ri(j) cj(i).

LEMMA 5.3 (matrix polynomial lemma). Given families of univariate degree-d
polynomials {ri lo4 and {cj lo4 lo4,1o4

Ji=o =o and a matrix {mij Ji=0,j=0 that satisfy the following:
For 90% of the i’s in {0,..., 10d}, ri(j) mij for all j e {0,..., 10d}.
For 90% of the j’s in {0,..., 10d}, cj (i) mj for all i {0,..., 10d}..

Then there exists a bivariate polynomial Q(., .) of degree d in each variable such that
Vio,jo {0,..., 10d} the following holds:

For at least 90% of the i’s in {0,..., 10d}, Q(i, jo) mijo.
For at least 90% of the j’s in {0,..., 10d}, Q(io, j) mioj.

Proof. Let X be the set of good rows of M, i.e., those with the property that
r(j) equals cj(i) for all values of j {0,..., 10d}. Similarly, let Y be the set of
good columns. It can now be seen that the conditions of Lemma 5.2 are applicable,
implying that there exists a polynomial Q(i,j) such that Q(i,j) ri(j) cj(i) for
all (i, j) X Y, where IXI and IYI are both at least 94. But for any i X, there
exists a unique polynomial describing all the elements in its row and Q agrees with
it on 90% of its elements. Thus, for i e X, Q(i, j) mj for all j {0,..., 10d}. In
particular this holds for j j0, i.e., for all i X, Q(i, jo) mijo. Similarly, by using
the columns indexed by Y, one can show that Q(io,j) mioj for all j E Y. The
lemma follows, since the cardinalities of X and Y are at least 9d.

The following lemmas are analogous to Lemmas 4.2-4.4 of 4. Lemma 5.4 and
Corollary 5.5 roughly correspond to Lemma 4.3. Lemma 5.4 essentially states that
the plurality in the definition of g is actually an overwhelming majority. This may
be obtained by setting i0 0 in the statement of the lemma. The slightly stronger
statement used here is needed later. Lemma 5.6 is similar to Lemma 4.2 and shows
that g and f agree at all but a i + o(i) fraction of the places. Lemma 5.7 shows that
g is a multivariate polynomial of degree d.

LEMMA 5.4. There exists a constant cl such that for 1 c15, the following
holds:

Vx e F" i0 e {0 10d} Pr [Px,h, (io) Px+ioh,,h:(O)] > 1 --51.
hi,h2

Proof. Pick hi, h2 eR Zn and define M (mij} to be the matrix given by
mij f(x+ih+jh2). We show that M satisfies the conditions required by Lemma 5.3
(with j0 0), with probability at least 1- 5. This suffices to prove the lemma, since
this implies that the polynomial P,h is the polynomial Q(i,j) restricted to j 0
and that Px+ioh,,h is Q(io,j). Thus Px,h, (io) Px+ioh,,h: (0) Q(io, 0).

Any row of the matrix, other than the 0th row, represents a random neighborhood
(independent of x) and satisfies the neighborhood constraint with probability 1 -5.
Thus with probability at least 1- 105, we have that the fraction of rows that do not
have a degreed polynomial describing them is at most 0.1. An analogous argument

ROBUST CHARACTERIZATION OF POLYNOMIALS 263

can be made for the columns. Thus M satisfies the conditions required by Lemma 5.3
with probability at least 1 20ti. The lemma is satisfied with the choice of cl
20. El

COROLLARY 5.5. For x e Z,i e {0,...,10d}, Prh [9(x +ih)= Px,h(i)] >_
1 2il.

Proof. Let B be the set of h’s that violate Px,h(i) majoritYh {P+h,hl (0)}.
For all h B, notice that g(x / ih) P,h(i). Also for h in B, the probability, for
a randomly chosen hi, that P+h,h (0) P,h(i) is at least 1/2. Thus with probabil-

ity at least IBI we find that a randomly chosen pair (h, hi) violates the condition2pro

Px+h,h (0) Px,h(i). Applying Lemma 5.4, we get that is at most 261. El
We next show that g and f agree in most places.
LEMMA 5.6. d(f,g) <_ i(1 + o(1)).
Proof. Let B’ be the set of x’s that satisfy f(x) P,h(O) for at least 1 261

fraction of the h’s in Z. Observe that due to Corollary 5.5, for all x B’, f(x)
is the same as g(x) (g(x) can disagree with Px,h(O) on at most a 261 fraction of the

Thus we find thath’s). The size of B as a fraction of Z can be at most

6(1 + o(1)) [’!d(f g) <_ 1-2
Notation. For x, h E Z we define t(g)

x,h (i) to be (the unique) polynomial in

that satisfies ,t)(g),h (i) g(x + ih) for at least 9d values of E {0, 10d}. If no such

polynomial exists, then t)(g) is defined to be error.x,h

LEMMA 5.7. There exists a constant 7 such that if 6 < then Vx, h g(x)

x(a)

Proof. As in the proof of Lemma 5.4, we will pick a convenient matrix on which
we will apply Lemma 5.3. This time the matrix of choice is obtained by picking
h, h Z and letting ra g(x + ih + j(h + ih)).

We will now show that Lemma 5.3 can be applied to this matrix with high prob-
ability (for i0 j0 0). Observe that every row {mi=0 represents a random
neighborhood containing the fixed point x + ih, and hence Corollary 5.5 implies that
P+,+(j) agrees with m for any choice of j with probability 1 2i. Thus,
for every i, with probability at least 1- 2cd, P+,I+.(j) agrees with m for
all but fraction of the j’s. Thus with probability at least 1 22cd51, this holds
for at least 90% of the rows, including the row 0. By picking c > 10, we sat-
isfy the conditions required of the rows in Lemma 5.3. A similar argument based
on the columns shows that the conditions required of the columns are also true with
probability 1 20cd1 -o(1) (all columns except for the 0th one represent random
neighborhoods). Thus the conditions required for Lemma 5.3 are satisfied with prob-
ability at least 1 42cdil o(1).

Applying Lemma 5.3, we find that there exists a bivariate polynomial Q(i, j) such
that it agrees with mi0 for 90-/o of the i’s. Thus t(a)

,h (i) Q(i, 0). We now argue that
moo Q(0, 0), and this will complete the proof, since moo g(x).

By Lemma 5.3 we find that moy Q(0, j) for 90% of the j’s implying (g) (j)x,hl
Q(O,j). By Corollary 5.5, we also find that moo Px,h (0) with probability at least
1- 261. In order to show that this equals Q(0, 0), it now suffices to show that

,h (’) P,h (’).
This last part follows from the following observation: For j O, x + jhl is

distributed uniformly over Fm, and thus with probability 1 (1 + o(1))i, we have
g(x + jhl) f(x + jhl) (by Corollary 5.5). Hence with probability at least 1- 105-
o(1), g(x + jhl) f(x + jh) for 90% of the j’s. But both the polynomials Px,h (j)

264 RONITT RUBINFELD AND MADHU SUDAN

and P(g) (j) agree with f(x+jhl)and g(x+jhl) for 90% of the j’s, respectively. ThusXhl

,hi (’) must agree with Px,hl (’) on at least 80% of the inputs, implying P(g) ()

Thus with probability at least 1- (42cd51 + 25 + 105+o(1)) (over random choices
()of h and h), the identity g(x) ,h(0) holds. But this event is deterministic

(independent of h and h2) and hence if its probability is positive then it must always
hold. If 5 < 1/((20)(541)d), then 1 1/(541d) nd thus the above probability is
positive.

Proof (of Theorem 5.1). Lemma 5.7 implies that along each line l,h, g can be
described by a univariate polynomial of degree at most d. Characterization 6 can now
be applied to infer that g is a polynomial of total degree at most d. om Lemma 5.6,
we now know that f and g differ in at most 5(1 + o(1)) fraction of the places. This
completes the proof.

6. Self-testing polynomials. In this section, we complement the results of
[BF90] and [Lip91] by showing how to construct a self-tester for any polynomial
function. The results can lso be generalized to give self-testers and self-correctors
for functions in finite dimensional function spaces that are closed under shifting and
scaling.

Previously, program testing was thought of as the following: Pick a random input
x and verify that P(x) f(x) by computing f via another program. This method has
two problems: first, it relies on believing the other program to be correct, and second,
since testing is often done at runtime [BLR90], it negates the benefits of designing
faster programs, since the computation time will be dominated by the computation
time of the old program.

As in [BLR90], our testers are of a nontraditional form and use the robust char-
acterization of the function being tested. The tester is given a short specification
of the function in the form of properties that the function must have and verifies
that these properties "usually" hold. We show that these properties are such that if
the program "usually" satisfies these properties, then it is essentially computing the
correct function.

6.1. Test sets. Given that a function computes a polynomial, we want a way
of specifying that it is the correct polynomial. We do this by specifying the function
value of the polynomial at a number of inputs. It is easy to see that the number
of inputs required is exactly the number of inputs necessary to determine whether
two degree-d polynomials are distinct. Since any two degree-d univariate polynomial
functions can only agree on d points, it suffices to check whether or not the polynomial
functions agree at any d + 1 points to determine whether or not they are distinct. On
the other hand, distinct multivariate polynomials can agree t an unbounded number
of points. However, it is well known that there exists a set of (d + 1)m points such
that no two degree-d, m-variate polynomials can agree at all points in the set. We
make the following definition.

DEFINITION 6.. We say that T {(xl,Yl),..., (xt,Yt)} i8 a (d,m)-polynomial
test set if there is only one degree-d, m-variable polynomial f such that for all
[1,... ,t], f(x) y. A (d, m)-test set need only be of size (d + 1)m.

When the number of variables is smM1, the provision that the value of the function
is known on at least (d+ 1)m points is not very restrictive, since the degree is assumed
to be small with respect to the size of the field. Suppose one has a program for the
RSA function x3 mod q. aditional testing requires that the tester know the value
of f(x) for random values of x. Here one only needs to know the following simple
and easy to generate specification: f is a degree-3 polynomial in one variable, and

ROBUST CHARACTERIZATION OF POLYNOMIALS 265

f(0) 0, f(1) 1, f(--1) --1, f(2) 8. These function values are the same over
any ring Zq of size at least 9.

6.2. Testing algorithm. Our self-tester for a polynomial of degree d with m
variables assumes that the specification of the polynomial is given by the value of the
function on a (d, m)-polynomial test set.

THEOREM 6.2. If f is a degree-d polynomial in m variables over Zp, and the
value of f is given on a (d, m)-polynomial test set, then for e <_ O(1/d2), f has an

(2(d+2), 4e)-self-tester on Zp with O((d / 1)m/e / d max(d2 7)) calls to P.
The self-testing is done in two phases, one verifying that the program is essentially

computing some degree-d polynomial function g and the other verifying that the g is
the correct polynomial function by verifying that g (rather than P) is correct on the
polynomial test set.

We now give the self-testing program that is used to prove Theorem 6.2.
For simplicity, in the description of our self-testing program, we assume that

whenever the self-tester makes a call to P, it verifies that the answer returned by P
is in the proper range, and if the answer is not in the proper range, then the program
notes that there is an error.

We use x ER Z to denote that x is chosen uniformly at random in Zn.

PROGRAM POLYNOMIAL-SELF-TEST (P, e,/, /- ((Xl, f(xl)),..., (x,, f(x,))))

Degree Test
log (1//)) timesRepeat O(

d+l h) 0Pick x, h ER Z and test that z_,=0 aP(x +
Reject P if the test fails more than an e fraction of the time.

Equality Test
For j going from 1 to t do

Repeat O(log (d/))times
x-d+ oiP(xj / h).Pick h R Z and test that f(xj) z.i=

Reject P if the test fails more than 1/4th of the time.

[x-d+10iP(x + i6.3 Correctness of algorithm: Notation. Let 5 Prx,h,i=0
h) 7 0]. We say program P is e-good if 5 _< and Vj e {1,...,t}, Prh[f(x)
yd+l P(xy+i,h)] > -3

4 We say Pis e-bad if either 5 > 2eorifj such thati=10zi
x-d-F1Prh[f(xj) z_,i= aiP(xj +i, h)] < 1/2. (Note that there are programs that are

neither e-good or e-bad.)
The following lemma is easy to prove.
LEMMA 6.3. With probability at least 1 , an e-good program is passed by

Polynomial-Self-Test. With probability at least 1 1, an e-bad program is rejected by
Polynomial-Self- Test.

It is easy to see that if a program P 2(d+2)-computes f, then it is e-good. On the
other hand, we need to show that if P does not 4e-compute f, then it is e-bad. We
show the contrapositive, i.e., that if P is not e-bad, then it 4e-computes f.

If P is not e-bad, then 5 <_ 2e. Under this assumption, we show that there exists
a function g with the following properties:

1. g(x) P(x) for most x.
X"d+l2. Vx, t z_,i=0 aig(x + it) 0, and thus g is a degree-d polynomial.

3. g(xj)= f(xj) for j {0,1,...,d}.

266 RONITT RUBINFELD AND MADHU SUDAN

The function g is as defined in the previous section on robust characterizations,
and properties 1 and 2 follow from the lemmas proved there. In order to show property
3, we also have the following lemma.

LEMMA 6.4. g(xj)= f(xj).
Proof. The proof follows from the definition of g and the fact that P is not

bad.
THEOREM 6.5. The program Polynomial-Self- Test is an 2(3._2) 4e)-self-testing

program for any degree-d polynomial function over Z specified by its values at any
(d, m)-polynomial test set T, if e <_ 4(d+2)2.

Proof. The proof follows from Lemmas 6.3, 4.4, and 6.4. [:]

7. Locally testable codes. In this section, we introduce some definitions re-
lated to coding and show the implications of low-degree testing to generating codes
with nice properties.3 We start by describing some standard parameters associated
with error-correcting codes.

An n-letter string over the alphabet E is an element of En. Given a string w E En,
the ith character of w is denoted wi. Given strings w, w E E, the relative distance
between w and w’, denoted d(w, w’)is the fraction of indices e {1,..., n} where

(Here onwards we will drop the term relative from the description of this
parameter.)

DEFINITION 7.1 (error-correcting code). A (k, n, A, a)-code consists of an alpha-
bet E such that log IEI a and a function C Ek - En, such that for any two strings
m, m’ e Ek, the distance between C(m) and C(m’) is at least A.

For the purposes of this section, we will restrict our attention to error-correcting
codes within a small range of the above parameters which are interesting for the
applications to probabilistically checkable proofs. We call these the good codes. Such
codes need to have constant relative distance. The encoded message is allowed to be
much larger than the original message size, as long as the final length is polynomially
bounded. Perhaps the most interesting aspect is the alphabet size. While the ultimate
goal would be to get codes which work over a constant-sized alphabet, getting an
alphabet size which is significantly smaller than the message size (smaller than any
nonconstant polynomial) turns out to be an important intermediate goal. Here we
choose this parameter to be polylogarithmic in the message size.

DEFINITION 7.2 (good code). A family of codes {C} with parameters (k, n, Ai, a)
is good if ki c, ni is upper bounded by some polynomial in ki, Ai > O, and ai is
upper bounded by some function growing as polylog(ki).

A wide variety of codes described in practice satisfy the properties required of a
good code. In particular we describe the polynomial codes.

DEFINITION 7.3 (polynomial codes). Fix some e > O. The polynomial codes
{Pm} are chosen by letting d Iml+ and picking a finite field F of size between
10d and 20d. The code achieves km (m+d) and nm= IFIm over the alphabet F and
works as follows: The message is viewed as specifying the coefficients of a degree-d
polynomial in m variables and the encoding consists of the value of this polynomial at
all inputs.

It may be verified that {Pm} forms a good code with distance at least 0.9. In what
follows, we will describe how this family of codes and a related code have extremely
"good" local checkability properties. The following definition formalizes the notion of
local checkability. Informally, the definition expects that by probing a string in just

3 These definitions are motivated by subsequent work in the area of proof checking where our
tester has found applications, most notably that of [ALMSS92].

ROBUST CHARACTERIZATION OF POLYNOMIALS 267

p (randomly chosen) letters, the verifier can test if it close to a valid codeword and if
not rejects it with probability at least 5.

DEFINITION 7.4 (locally testable code). For a positive integer p and a positive
real number , an (n, k, A, a)-code C over the alphabet E is (p, 5)-locally testable if
the following exist:

a probability space which can be efficiently sampled,
functions q,q2,...,qp : - (1,...,n}, and
a boolean function V

with the property that for all w E Fn, if

Pr IV(r, wq(),.., wq(r)) 0] < 6
rE

then there exists a (unique) string m e Ek such that d(w, C(m)) < A/2. Conversely,
if w C(m) for some m, then Y(r, wql(r),... wqp(r)) 1 for all r e .

Before we describe the kind of locally checkable codes that our testers provide, we
attempt to motivate the definition above by showing that (seemingly minor) modifi-
cations of the above definitions yield important concepts in proof checking--namely,
probabilistically checkable proofs. We consider especially probabilistically checkable
proofs over a large alphabet in which the number of alphabets that a verifier is allowed
to probe is a parameter. This concept is an important ingredient in the recursive con-
struction of probabilistically checkable proofs [AS92], [ALMSS92], [BGLR93] and is
also of independent interest in complexity theory [LS91], [FL92a]. The original defini-
tion of probabilistically checkable proofs is due to [AS92] based on an implicit notion
in [FGLSS91]. A very closely related notion--that of holographic proofs--appears
in the work of [BFLS91]. The particular choice of parameters made in the following
definition is due to [BGLR93].

DEFINITION 7.5 (PCP). Given functions r,p, a, 5 Z+ - Z+, a language L C
{0, 1}* is said to be in PCP[r,p, a,] if there exists a polynomially growing function
n(l) and an alphabet of size a(l) such that for all integers > 0 the following exist:

a probability space which can be sampled using r(1) bits,
functions q, q2,..., qp(k) t {1,..., n(1)},
a boolean function V: {0, 1}t t EP -. {0, 1},

with the property that for all x {0, 1}t, /f w En(t) satisfies

Pr IV(x, r, Wq(r),... Wqp()) 0] < 6,
rEt

then x L. Conversely, if x L, then there exists w En(/) such that for all r 12,
V(x, r, wq(), wq()) 1.

It turns out that there is strong correlation between PCP[log, p, polylog, 5] and
good codes which are (p, 5)-locally checkable. In particular, the codes we describe
next translate into such probabilistically checkable proofs.

The robust characterization of polynomials described in Theorem 5.1 shows that
the polynomial codes are (d + 2, (1/d))-locally testable. Observe further that for the
polynomial codes, the growth of d is polylogarithmic in k. It seems that the approach
above cannot hope to give codes which are testable using fewer than (d) probes.
However, this is not the case. We describe next a simple way of modifying the codes
so as to give codes with appreciably better local testability. These codes are obtained
by observing that the codes we have constructed so far use a much smaller alphabet
size than necessary for "goodness."

DEFINITION 7.6 (polynomial-line codes). Fix some > O. The polynomial-line
codes {Lm} are chosen by letting t [m+ and picking a finite field F of size

268 RONITT RUBINFELD AND MADHU SUDAN

between 10d and 20d. The code achieves km= (m+d/(d + 1) and nm IFI2m overm
m-t-dthe alphabet Fd+l As in the polynomial codes, the message again consists of d

field elements and is viewed as a degree-d polynomial specified by its coefficients. Given
a message polynomial p, the codeword is constructed as follows: For every pair offield
elements &, h E Fm, let l,h be the line through with offset h as in characterization

3. p restricted to l,h is a univariate polynomial of degree d. Let C,h Fd+l

be the vector of coe]ficients of this univariate polynomial. The codeword consists of

It is easy to see that the polynomial-line codes are also good codes. The proof of
Theorem 5.1 can be transformed to show that the polynomial-line codes are locally
testable with a constant number of probes. More specifically, the following can be
shown.

PROPOSITION 7.7. The polynomial-line codes are (2, f(1/d))-locally testable.
Better analysis of some portions of our proof yields even better statements about

the polynomial-line codes. This is described in the next section.

8. Conclusions. There has been a spate of results about low-degree tests in the
last few years. A brief listing includes the low-degree test of [BFL91] and [Lun92],
which was the first test for multivariate polynomials, the results of [BFLS91] and
[FGLSS91], obtained independently from and concurrently with ours (from [GLRSW91]
and [RS92]), and subsequent works [AS92], [ALMSS92], [FHS94], [PS94], and [FS94].
Here we summarize some of their achievements along with a comparison with our
results. We start by distinguishing the merits of our tester from those of [BFL91] and
[BFLS91].

8.1. Program checking. The test of [BFL91] and [Lun92] in the program-
checking setting allows the self-tester to be convinced that the program is computing
a multivariate polynomial function of low degree in polynomial time. However, the
tests are somewhat complicated to perform, because they involve the reconstruction of
a univariate polynomial, given its values at a number of points (which in turn requires
multiplications and matrix inversions), and later the evaluation of the reconstructed
polynomial at random points. If the given function is a function of a single variable,
then the tester of [BFL91] and [Lun92] is no simpler than a program evaluating the
polynomial. Therefore it does not have the "little-oh" property defined in [BK89] nor
is it different from the program evaluating the polynomial, in the sense defined by
[BLR90], and it does not give a self-tester or checker. Our test in contrast is different,
since it requires no multiplications to perform the test.

8.2. Relationship with proof checking. The low-degree tester forms a cru-
cial ingredient in the recent results on proof checking. Our result from 4 gives a very
simple proof of one of the relatively hard parts of the proof of MIP=NEXPTIME
shown by [BFL91]. The hardness of the analysis of the tester of [BFL91] (and its sim-
plifications; see, for instance, [FGLSS91]) is in their need to rely on the isoperimetric
properties of the m-dimensional grid. Our proof, on the other hand, does not seem to
require any combinatorics and is instead based on elementary algebraic/probabilistic
techniques. This difference may be explained as follows: The success of the test does
indeed depend on the isoperimetric properties of a graph related to the neighborhood
structure. In the case of the test of [BFL91], this graph turns out to be in the m-
dimensional grid. In our case, the underlying graph turns out to be a complete graph.
This graph is obviously much easier to analyze because its properties and hence the
proof are devoid of any combinatorial statements.

We now describe some of the subsequent results and the role of our tester in these

ROBUST CHARACTERIZATION OF POLYNOMIALS 269

results. The contrast is described in terms of locally testable codes.

8.3. Locally testable codes. The low-degree test described in [BFL91] and
[BFLS91] gives rise to good codes which also have nice local checkability property.
A sequence of improvements [BFL91], [BFLS91], [FGLSS91] culminated in the work
of [AS92], which achieves asymptotically optimal bounds for such codes by showing
that they are (2, t(1/m))-locally testable. The highlight of [AS92] is that the locality
bounds are independent of the degree of the polynomial that they work with. However,
the dependence of on m is inherent for such codes and t 0 as m -o c. The
polynomial-line codes described in 7 seem to have no inherent reason why should
go to zero. This turns out to be indeed the case. In [ALMSS92], it is observed that a
combination of the analysis of [AS92] and that of 5 implies that there exists a constant
> 0 such that the polynomial-line codes are (2,)-locally testable, provided that the

field F is of cardinaltity at least d2. As mentioned in 7, this translates into a proof
of NP C PCP[log, O(1), polylog, (1)] in [ALMSS92]. By employing the technique of
recursive proof checking, due to [AS92], on such proof systems [ALMSS92] go on to
prove that NP c PCP[log, O(1), O(1), t(1)]. The local testability of the polynomial-
line codes has been further improved in two ways recently. [PS94] have shown that
the polynomial-line codes are (2,)-locally checkable over linear-sized fields as well,
for some g > 0. In a different direction, it is shown in [FS94] that the polynomial-line
codes are (2,)-locally checkable for all < .

Appendix.

A.1. Evenly spaced points. The following algorithm may be used to test if a
function f(0) on m evenly spaced pointsmx, x+h,... ,x+(m-1)h--(where m > d+l)
agrees with a degree-d polynomial.

fori- ltod-ldo
for j- ltom-i

f(i)(x -jh) f(i-1)(z / (j - 1)h)- f(-)(x + jh)
endfor

endfor
verify f(d+)(x - jh) O, for all j E (0,..., m d 2}.

The correctness of this algorithm follows from the following well-known fact:
FACT A.1. f()(x) is a degree-(d- i) polynomial if and only if f(-) is a degree-

(d- + 1) polynomial.
(Follows from the fact that f() acts as the discrete derivative of f(i-1).)
This implies that f(d) is a constant if and only if f(0) is a degree-d polynomial,

implying in turn that f(d+l) is identically zero if and only if f(0) is a degree-d polyno-
mial. Observe further that the algorithm performs O(md) additions and subtractions
and no multiplications. Finally, it can also be checked that in case m d + 2, then
algorithm simply verifies that -,=o af()(x + ih) O, where a (-1)TM (d+l

A.2. Characterizations.
LEMMA A.2 (axis-parallel lines), f Zn Zp is a polynomial in m variables of

degree at most d in each variable if and only iffor all i e {1,..., m}, j e Zp (j i),
f(l,. -1, xi, ig,..., m) is a polynomial in xi of degree at most d.

Proof [Sketch]. It is clear that every polynomial of degree d in each variable re-
stricted to axis-parallel lines behaves as a univariate polynomial of degree d. The
other direction can be proved by induction on m. The base case m 1 is obvi-
ous. For general m > 1, let f(zl,...,Xm-) be the function f(xz,...,Xm-l,i).
By induction f is a polynomial of degree d in m- 1 variables. Now consider the

270 RONITT RUBINFELD AND MADHU SUDAN

d (d)function h(xl,...,Xm)- =o (Xm)f(Xl,...,Xm--) (where id) is the unique
polynomial of degree d in one variable that is 1 at Xm and 0 for other values of
xm e {0,...,d}).

It is clear by construction that h is a polynomial of degree at most d in each
variable. We now argue that f and h are identical. Fix x =/,..., Xm- m-1.
It is clear that h(xl,...,Xm) f(xl,... ,Xm) for x, e {0,... ,d}. Moreover, both h
and f are degree-d polynomials in Xm which agree at d + 1 places. Hence f and h
must agree at all values of Xm. Since this held for any choice of fl’s, f and h agree
everywhere. [:]

LEMMA A.3 (general lines). For p >_ 2d + 1, f Z -. Zp is a polynomial in m

variables of total degree at most d if and only if V&, Z f(+ t) is a univariate
polynomial in t of degree at most d.

Proof. It is clear that every polynomial restricted to lines must become a degree-d
polynomial in the parameter describing the line. Here we prove the other direction of
the characterization. We first observe that since the set of all lines includes the axis
parallel lines, we can use Lemma A.2 to show that f is a polynomial in m variables
with degree at most d in each variable. Having got this weak characterization, we will
now strengthen this to a tighter one. By induction on the number of variables, we
can assume that f restricted to any value of the last variable Xm is a polynomial of
total degree at most d in the variables x,..., Xm-. Thus f becomes a function in

x through Xm of total degree d’ _< 2d.
Assume for contradiction that d’ > d. Now consider the function f(t. t) for

6 Zn. The coefficient of td’ is a polynomial in of degree d’ which with probability
d’at least 1- should be nonzero. (Note that to make this probability positive, we

need 2d < p.) Thus f restricted to this line is a polynomial of degree d’ > d, which
violates the given condition on f. [:]

Acknowledgments. We are very grateful to Avi Wigderson for suggesting that
our tester in 4 can be made more efficient, as well as his technical help in proving
the theorems of 5. We are also very grateful to Sasha Shen for pointing out that
the tester given in [GLRSW91] works for multivariate polynomials. In particular,
characterization 3 and its relevance to our test are due to him. We are grateful to
Dick Lipton for illuminating conversations on the use of the testers presented here,
and to Mike Luby, Shaft Goldwasser, and Umesh Vazirani for technical suggestions.
We would also like to thank Dieter van Melkebeek and the anonymous referees for
pointing out numerous errors in earlier versions.

REFERENCES

[AHK]

[ALMSS92]

[AS92]

[Bab93]

[BF90]

L. ADLEMAN, M. HUANG, AND K. KOMPELLA, Efficient checkers for number-theoretic
computations, Inform. and Comput., to appear.

S. ARORA, C. LUND, R. MOTWANI, M. SUDAN, AND M. SZEGEDY, Proof verification
and the intractability of approximation problems, in Proc. 33rd IEEE Symposium
on Foundations of Computer Science, IEEE Press, Piscataway, NJ, 1992, pp.
14-23.

S. ARORA AND S. SAFRA, Probabilistic checking of proofs: A new characterization of
NP, in Proc. 33rd Annual IEEE Symposium on Foundations of Computer Science,
IEEE Press, Piscataway, NJ, 1992, pp. 2-13.

L. BABAI, Transparent (holographic) proofs, in Proc. 10th Annual Symposium on
Theoretical Aspects of Computer Science, Lecture Notes in Comput. Sci., 665
(1993), pp. 525-533.

D. BEAVER AND J. FEIGENBAUM, Hiding instances in multioracle queries, in Proc.
7th Annual Symposium on Theoretical Aspects of Computer Science, Lecture
Notes in Comput. Sci., 415 (1990), pp. 37-48.

ROBUST CHARACTERIZATION OF POLYNOMIALS 271

[BF91]

[BFL91]

[BFLS91]

[BGLR93]

[BK89]

[BLR90]

[Blu88]

[dW70]
[FGLSS91]

[FHS94]

[FL92a]

[FS941

[GLRSW91]

[Kan90]

[Lip91]

[LS91]

[Lun92]

[Nao92]
[PS94]

[Rub90]

[She91]
[Sud921

L. BABAI AND L. FORTNOW, Arithmetization: A new method in structural complexity
theory, Comput. Complexity, 1 (1991), pp. 41-66.

L. BABAI, L. FORTNOW, AND C. LUND, Non-deterministic exponential time has two-
prover interactive protocols, Comput. Complexity, 1 (1991), pp. 3-40.

L. BABAI, L. FORTNOW, L. LEVIN, AND M. SZEGEDY, Checking computations in
polylogarithmic time, in Proc. 23rd Annual ACM Symposium on Theory of Com-
puting, Association for Computing Machinery, New York, 1991, pp. 21-31.

M. BELLARE, S. GOLDWASSER, C. LUND, AND A. RUSSELL, Efficient probabilistically
checkable proofs, in Proc. 25th Annual ACM Symposium on Theory of Computing,
Association for Computing Machinery, New York, 1993, pp. 294-304.

M. BLUM AND S. KANNAN, Program correctness checking.., and the design of pro-
grams that check their work, in Proc. 21st Annual ACM Symposium on Theory of
Computing, Association for Computing Machinery, New York, 1989, pp. 86-97.

M. BLUM, M. LUBY, AND R. RUBINFELD, Self-testing/correcting with applications
to numerical problems, in Proc. 22nd Annual ACM Symposium on Theory of
Computing, Association for Computing Machinery, New York, 1990, pp. 73-83;
J. Comput. System Sci., 47 (1993), pp. 549-595.

M. BLUM, Designing programs to check their work, Tech. report TR-88-009, Interna-
tional Computer Science Institute, Berkeley, CA, 1988.

B. VAN DER. WAERDEN, Algebra, vol. 1, Frederick Ungar, New York, 1970.
U. FEIGE, S. GOLDWASSER, L. LOVASZ, S. SAFRA, AND M. SZEGEDY, Approximating

clique is almost NP-complete, in Proc. 32nd IEEE Symposium on Foundations of
Computer Science, IEEE Press, Piscataway, NJ, 1991, pp. 2-12.

K. FRIEDL, Z. HATSAGI, AND A. SHEN, Low-degree tests, in Proc. 5th Annual ACM-
SIAM Symposium on Discrete Algorithms-Society for Industrial and Applied
Mathematics, Philadelphia, 1994, pp. 57-64.

U. FEIGE AND L. LOVASZ, Two-prover one-round proof systems: Their power and
their problems, in Proc. 24th ACM Symposium on Theory of Computing, Asso-
ciation for Computing Machinery, New York, 1992, pp. 733-744.

g. FRIEDL AND M. SUDAN, Improvements to total degree tests, in Proc. 3rd Israel
Symposium on Theory of Computing and Systems, IEEE Press, Piscataway, NJ,
1995, pp. 190-198.

P. GEMMELL, R. LIPTON, R. RUBINFELD, M. SUDAN, AND A. WIGDER.SON, Selfo
testing/correcting for polynomials and for approximate functions, in Proc. 23rd
Annual ACM Symposium on Theory of Computing, Association for Computing
Machinery, New York, 1991, pp. 32-42.

S. KANNAN, Program result checking with applications, Ph.D. thesis, University of
California at Berkeley, Berkeley, CA, 1990.

R. LIPTON, New directions in testing, Distributed Computing and Cryptography,
DIMACS Series in Discrete Math and Theoretical Computer Science, American
Mathematical Society, Providence, RI, 1991, pp. 191-202.

D. LAPIDOT AND A. SHAMIR, Fully parallelized multi prover protocols for NEXP-
TIME, in Proc. 32nd IEEE Symposium on Foundations of Computer Science,
IEEE Press, Piscataway, NJ, 1991, pp. 13-18.

C. LUND, The Power of Interaction, ACM Distinguished Dissertations series, MIT
Press, Cambridge, MA, 1992.

M. NAOR, personal communication, April 1992.
A. POLISHCHUK AND D. SPIELMAN, Nearly-linear size holographic proofs, in Proc.

26th Annual ACM Symposium on Theory of Computing, Association for Com-
puting Machinery, New York, 1994, pp. 194-203.

R. RUBINFELD AND M. SUDAN, Testing polynomial functions eciently and over
rational domains, in Proc. 3rd Annual ACM-SIAM Symposium on Discrete Al-
gorithms, Society for Industrial and Applied Mathematics, Philadelphia, 1992,
pp. 23-43.

R. RUBINFELD, A mathematical theory of self-checking, self-testing and self-correcting
programs, Ph.D. thesis, University of California at Berkeley, Berkeley, CA, 1990.

A. SHEN, personal communication, May 1991.
M. SUDAN, Efficient checking of polynomials and proofs and the hardness of approxi-

mation problems, Ph.D. thesis, University of California at Berkeley, Berkeley, CA,
1992.

SIAM J. COMPUT0
Vol. 25, No. 2, pp. 272-289, April 1996

() 1996 Society for Industrial and Applied Mathematics
OO3

GENOME REARRANGEMENTS AND SORTING BY REVERSALS*

VINEET BAFNAt AND PAVEL A. PEVZNER$

Abstract. Sequence comparison in molecular biology is in the beginning of a major paradigm
shift--a shift from gene comparison based on local mutations (i.e., insertions, deletions, and substitu-
tions of nucleotides) to chromosome comparison based on global rearrangements (i.e., inversions and
transpositions of fragments). The classical methods of sequence comparison do not work for global
rearrangements, and little is known in computer science about the edit distance between sequences
if global rearrangements are allowed. In the simplest form, the problem of gene rearrangements
corresponds to sorting by reversals, i.e., sorting of an array using reversals of arbitrary fragments.
Recently, Kececioglu and Sankoff gave the first approximation algorithm for sorting by reversals with
guaranteed error bound 2 and identified open problems related to chromosome rearrangements. One
of these problems is Gollan’s conjecture on the reversal diameter of the symmetric group. This pa-
per proves the conjecture. Further, the problem of expected reversal distance between two random
permutations is investigated. The reversal distance between two random permutations is shown to
be very close to the reversal diameter, thereby indicating that reversal distance provides a good
separation between related and nonrelated sequences in molecular evolution studies. The gene rear-

rangement problem forces us to consider reversals of signed permutations, as the genes in DNA could
be positively or negatively oriented. An approximation algorithm for signed permutation is presented,
which provides a performance guarantee of . Finally, using the signed permutations approach, an

approximation algorithm for sorting by reversals is described which achieves a performance guarantee
of 1/4o

Key words, computational molecular biology, sorting by reversals, genome rearrangements

AMS subject classifications. 68Q25, 68Q05

1. Introduction. Genus Lobelia comprises over 350 species that range from
small, slender herbs to woody, giant-rosette plants. Figure 1 presents the order of
genes in Tobacco and Lobelia fervens chloroplast genomes with a hypothetical se-
quence of rearrangement events (Knox et al. [KDP93]) during evolution of Lobelia
fervens from a tobacco-like ancestral genome.

It is not so easy to verify that the evolutionary events shown in Fig. 1 represent
the shortest series of reversals transforming the Tobacco permutation into the Lobelia

fervens permutation. In fact, Theorem 2 of this paper indicates that the shortest
sequence of rearrangement events contains just 4 reversals, shown in Fig. 2 (however,
for the case of signed permutations (see below) the evolutionary events presented in
Fig. 1 do represent the shortest series of reversals).

With the advent of large-scale DNA mapping and sequencing, the number of
genome comparison problems similar to the one presented in Fig. 1 is rapidly growing
in different areas, including evolution of plant cpDNA (Raubeson and Jansen [RJ92],
Hoot and Palmer [HP94]) and mtDNA (Palmer and nerbon [PH88], Fauron and
Savlik [FH89]), animal mtDNA (Soffman et al. [HBB92], Sankoff et al. [SLA92]), vi-
rology (Soonin and Dolya [K93], Hannenhalli et al. [HCKP95]), Drosophila genetics
(Whiting et al. [WPFJ89]), and comparative physical mapping (Lyon [L88]). Genome
comparison has certain merits and demerits as compared to classical gene comparison.

Received by the editors June 17, 1993; accepted for publication (in revised form) August 22,
1994. A preliminary version of this paper appeared in Proc. 34th IEEE Symposium on the Founda-
tions of Computer Science, 1993, pp. 148-157.

Computer Science Department, The Pennsylvania State University, University Park, PA 16802.
Computer Science Department, The Pennsylvania State University, University Park, PA 16802

(pevznercs.psu.edu).

272

GENOME REARRANGEMENTS AND SORTING BY REVERSALS 273

Tobacco

(deletion of block I)

(InversiOn 1)

Inversion 2

Inversion 3

71 2i:- 1(Inversin 4

Inversin 5

Lobelia fervens

FIG. 1. Evolution of Lobelia fervens.

711

11,

FIG. 2. An optimal reversal sequence for 7r 71245368.

Genome comparison ignores actual DNA sequences of genes, while gene comparison
ignores gene order. The ultimate goal would be to combine merits of both genome
and gene comparison in a single algorithm. However, until recently, studies of genome
rearrangements were based on heuristic methods, and there were no algorithms to an-
alyze gene orders in molecular evolution. Kececioglu and Sankoff found an algorithm
for reversal distance with guaranteed error bound 2 and raised a spectrum of open
problems motivated by genome rearrangements [KS93]. The present paper solves
some of them.

In the problem we consider, the order of genes in two organisms is represented
by permutations 7r (7rlTr2...Trn) and cr (ffla2...ffn). A reversal p(i,j) of an
interval[i, j] is the permutation

1 2 i-1 i+1 j-1 j j+l n .
1 2 i-1 j j-1 i+l j+l n

Clearly 7r. p has the effect of reversing genes 7ri, 7ri+l,..., 7rj.

274 VINEET BAFNA AND PAVEL PEVZNER

Given permutations r and a, the reversal distance problem is to find a series of
reversals pl,p2,...,pt such that ’Pl"p2""Pt a and t is minimum. We call t
the reversal distance between r and a. Note that reversal distance between r and a
equals the reversal distance between a-lr and the identity permutation . Sorting
by reversals is the problem of finding reversal distance d(r), between r and .

Reversals generate the symmetric group Sn. Given an arbitrary permutation
from Sn, we seek a shortest product of generators pl "p2""pt that equals . Even
and Goldreich [EG81] show that given a set of generators of a permutation group and
a permutation r, determining the shortest product of generators that equals r is NP-
hard. Jerrum [J85] proves that the problem is PSPACE-complete, and remains so,
when restricted to two generators. In our problem, the generator set is fixed. However,
Kececioglu and Sankoff [KS93] conjecture that sorting by reversals is NP-complete.

Gates and Papadimitriou [GP79] studied a similar sorting by prefix reversals prob-
lem (also known as pancake-flipping problem)" given an arbitrary permutation , find
dpre,(r), which is the minimum number of reversals of the form p(1, i) that sort
Their concern is with bounds on the prefix reversal diameter of the symmetric group,
dpre$(n) maxrs dpre$(Tr). They show that dpre.f(n) <_ n + (see also [GT78])
and that for infinitely many n, dpref(n) >_ n17 [GP79]. Aigner and West [AW87]
consider the diameter of sorting when the operation is reinsertion of the first element,
and Amato et al. [ABSR89] consider a variation inspired by reversing trains. Kece-
cioglu and Sankoff [KS93] found an approximation algorithm for sorting by reversals
with performance guarantee 2. They also devised efficient bounds, allowing them to
solve the reversal distance problem optimally or almost optimally for n ranging from
30 to 50. This range covers the biologically important case of mitochondrial genomes.

Define d(n) maxes d(r) to be the reversal diameter of the symmetric group
of order n. Gollan conjectured that d(n) n- 1 and that only one permutation
Vn, and its inverse, VI, require n- 1 reversals to be sorted (see Kececioglu and
Sankoff [KS93] for details). The Gollan permutation, in one-line notation, is defined
as follows:

(3, 1,5,2,7,4,...,n- 3, n- 5, n- 1, n- 4, n,n- 2), n even,
7n

(3, 1, 5, 2, 7, 4, n 6, n 2, n 5, n, n 3, n 1), n odd.

For n < 11, Gollan verified this conjecture using extensive computations. Kece-
cioglu and Sankoff [KS93] developed lower bounds for reversal distance, allowing them
to verify Gollan’s conjecture for n < 200 for n _= 1 (mod 3). In the present paper,
we introduce the notion of the breakpoint graph of a permutation and establish the
links between reversal distance and maximum cycle decomposition of this graph. This
construction allows us to prove Gollan’s conjecture. Further, we sttdy the problem
of expected reversal distance between two random permutations. We demonstrate
that reversal distance between two random permutations is very close to the reversal
diameter of the symmetric group, thereby indicating that reversal distance provides
a good separation between related and nonrelated sequences in molecular evolution
studies.

Afterwards, we study reversals of signed permutations. The Lobelia fervens per-
mutation (Fig. 1) corresponds to the signed permutation (-7, +1, +2, +4, +5, +3,-6,
+8). In the biologically more relevant signed case, every reversal of fragment [i,j]
changes the signs of the elements within that fragment. We are interested in the min-
imum number of reversals required to transform the signed permutation r into the
identity signed permutation (+1, +2,..., +n). We devise an approximation algorithm

GENOME REARRANGEMENTS AND SORTING BY REVERSALS 275

0

7 0 0

4

2315264
2

FIG. 3. Breakpoint graph .for ’6 315264 and its maximum cycle decomposition.

8

FIG. 4. Breakpoint graph for the Lobelia fervens permutation.

for sorting signed permutations by reversals with guaranteed error bound . Finally,
we use signed permutations to get a performance guarantee of 1/4 for sorting unsigned
permutations by reversals, thereby improving on the factor of 2 due to Kececioglu
and Sankoff [KS93].

2. Breakpoint graph and reversal distance. Let j if li- Jl 1. Extend
a permutation 7r 7r1r2... rn by adding 7r0 0 and rn+l n + 1. We call a pair
of consecutive elements 7r and r+l, 0 < < n, of r an adjacency if r r+, and
a breakpoint if zr # r+l. Define an edge-colored graph G(zr) with n + 2 vertices
0, 1,..., n, n + 1. We join vertices and j by a black edge if (i, j) is a breakpoint of r.
We join vertices and j by a gray edge if j and and j are not consecutive in
The graph G(/6), corresponding to the Gollan permutation ’6 315264, is shown in
Fig. 3.

A sequence of vertices xx2...Xm xi is called a cycle in a graph G(V, E)
if (x,x+i)eE for 1 < < m- 1. A cycle in an edge-colored graph G is called
alternating if the colors of every two consecutive edges of this cycle are distinct. In
the following, we consider cycle decompositions of G(r) into the maximum number
c(r) of edge-disjoint alternating cycles. A maximum cycle decomposition of G(76)
into 2 cycles is shown in Fig. 3. Figure 4 displays the breakpoint graph for the Lobelia
fervens permutation, r 7124536, with c(Tr) 2. (Black edges are shown by thick
lines, while gray edges are shown by thin ones.) Note that cycles can be vertex
self-intersecting.

A vertex v in the graph G is called balanced if the number of black edges incident

276 VINEET BAFNA AND PAVEL PEVZNER

to v equals the number of gray edges incident to v. A balanced graph is a graph in
which every vertex is balanced. It is easy to see that G(r) is a balanced graph for every
r; therefore, it contains an alternating Eulerian cycle in every connected component.
For characterization of alternating Eulerian cycles in edge-colored graphs, see Kotzig
[K68] and Pevzner [P94].

Cycle decompositions play an important role in estimating the reversal distance.
When we apply a reversal to a permutation, there might be a change in the number
of breakpoints, as well as in the number of cycles in a maximum decomposition. In
Theorem 1, we show that there is a strong correlation between these two changes. This
idea allows us to bound the reversal distance in terms of the size of the maximum
cycle decomposition.

Denote the number of black edges in G(zr) (breakpoints in r) as b b(zr) and the
number of adjacencies in r as a(r). Let c(r) be the number of cycles in a maximum
cycle decomposition of G(r). Given an arbitrary reversal p, denote Ab Ab(r, p)
b(rp)- b(r) (increase in breakpoints), Aa Aa(r,p) a(rp)- a(zr) (increase in
adjacencies), and Ac Ac(zr, p) c(rp)- c(r) (increase in the number of cycles in
a maximum decomposition).

THEOREM 1. For every permutation r and reversal p, Ac(r, p) Ab(r, p) _< 1.

Proof. We augment G(r) to get G’(r) as follows: For every adjacency
in r, add a cycle of length 2 with one black and one gray edge connecting ri and
r+l. Every decomposition of G(r) into c(r) cycles corresponds to a decomposition
of G’(r) into c(r)+ a(r) cycles and, conversely, any decomposition of G’(r) into c’(r)
cycles corresponds to a decomposition of G(r) into at least c’(r) a(r) cycles.

We will prove that the number of cycles in G(r) changes by no more than one
in a single reversal. An arbitrary reversal p(i,j) involves 4 vertices of G’(zr) and
leads to replacing two black edges DEL--- {(r_l,Tr), (ry,rj+l)} by the black edges
ADD {(r_l, rj), (ri, rj+)}.

If these two black edges in ADD belong to the same cycle in a maximum cycle
decomposition of G(rp), then a deletion of that cycle gives a cycle decomposition
of G’(r) with at least c’(rp) 1 cycles. Therefore, c’(r) >_ c’(rp) 1 and Ac’
Ac + Aa _< 1.

On the other hand, if the black edges in ADD belong to different cycles C and
C in a maximum cycle decomposition of G’(p), then deleting C1 C gives a set of
edge-disjoint cycles of size c’(rp) 2 in the graph G(p) \ (CI C). Clearly, the set
of edges (C1 C DEL) \ ADD forms a balanced graph and must contain at least
one cycle. Combining this cycle with the previously obtained c’(rp) 2 cycles, we
obtain a cycle decomposition of G(r) (G(rp) \ (C1 [-J C2)) I..J (C1 U C2 I.J DEL \ ADD)
into at least d(rp) 1 cycles. Therefore, Ad Ac + Aa _< 1.

Finally, observing that a(r) + b(r) n + 1 implies Ab + Aa 0, we prove the
theorem.

Theorem 1 immediately gives us a new lower bound for the reversal distance in
terms of the number of breakpoints and the size of a maximum cycle decomposition
of the breakpoint graph.

THEOREM 2. For every permutation r, d(r) >_ b(zr) c(r).
Proof. Let Pt,..., Pl be a shortest series of reversals transforming 7r rt into the

identity permutation r0. Denote ri_ zipi for i 1,..., t, and apply Theorem 1
for a permutation ri and reversal pi.

d(ri) d(ri_) + 1 _> d(ri_l) Ab(i, pi) + Ac(ri, pi)

GENOME REARRANGEMENTS AND SORTING BY REVERSALS 277

1’%... 5 7 9 11

12 0 2 4 6 8 10 12 14

13 13

FIG. 5. G(’Y12) and G(’y13).

d(Tr_) + (b(Tr) b(Tr_l)) + (c(Tr_) c(Tr)).

Recalling that d(Tr0) b(Tr0) c(Tr0) O, we get

d(Tc)-(b(r)-c(Tr)) >_ d(Tri_l)-(b(Tr_)-c(r_l)) >_... >_ d(ro)-(b(Tro)-c(Tro)) O.

Substituting i- t, we prove the theorem.

3. Reversal diameter of the symmetric group. Now we have a character-
ization of the reversal distance of a permutation in terms of the maximum cycle
decomposition of the breakpoint graph. Next we show that the graph corresponding
to the Gollan permutation, n, has at most two disjoint alternating cycles.

LEMMA 1. Every alternating cycle in G(’n) contains the vertex 1 or 3.
Proof. Let us recall the Gollan permutation:

(3,1,5,2,7,4,...,n-3, n-5, n-l,n-4, n,n-2),
/n

(3, 1, 5, 2, 7, 4, n 6, n 2, n 5, n, n 3, n 1),

n even,

n odd.

Let be the minimal odd vertex of an alternating cycle X in G(y). Consider the
sequence i, j, k of consecutive vertices in X, where (i, j) is black, and (j, k) is gray.

Ifi>5, thenj-i-3orj-i-5andk-j+lork-j-1 (see the structure of
the Gollan permutation and Fig. 5), implying that k is odd and k < i, a contradiction.
If 5, then j 2 and k is either 1 or 3, a contradiction. Therefore, is either 1 or
3.

THEOREM 3 (Gollan conjecture). For every n, d(/n) d(/1) n 1.

Proof. For n _< 2, the claim is trivial. For n > 2, partition the vertex set of
G(3’) into V {0, 1, 3} and Vr. From Lemma 1 and the fact that there is no cycle
contained in V, we see that every alternating cycle must contain at least 2 edges from
the cut (V, Vr). Because the cut (V, V) consists of 4 edges ((1,2), (1, 5), (3,2), (3, 4)),
the maximum number of edge-disjoint alternating cycles in a cycle decomposition of

4- 2G(’y) is at most
From Theorem 2, d(f) > b(-y)- c(7) _> n + 1 2 n- 1. On the other hand,

d(-y) _< n- 1 [WEHM82]. Finally, note that d(’y 1) d(3’n). [3

Before we prove that , and 71 are the only permutations in S with a rever-
sal distance of n- 1 (strong Gollan conjecture), we need to extend the concept of
sorting permutations by reversals as follows: For any permutation of {1,... ,n}, 7r-

7rlTr2... 7rn, let # 7zi-12 7Zrn, with #i 7ri+l, be a permutation of {2, 3,..., n}. De-
fine d() as the minimum number of reversals required to transform r to 234... n + 1.
Clearly, d(-) d(-).

278 VINEET BAFNA AND PAVEL PEVZNER

THEOREM 4 (strong Gollan conjecture). For every n, / and 7 are the only
permutations that require n- 1 reversals to be sorted.

Proof. Define Pn {Trier E Sn and d(Tr) n- 1}. We have seen that
{Tn, 7}. In what follows, we inductively prove that P {7, 71}.

For n 2, the claim is trivial. Assume that the claim is true up to n- 1.
Consider P. Let p be the unique reversal that brings n to the right end, that
is, . p n, where is a permutation of {1,...,n 1}.

It follows that d() 1 + d(’). Then, d(’) d() 1 n- 2. By induction,
is either

_
or ,. Define A { .p n-ln} and B { .p

where 7n denotes the concatenation of a permutation 7 with element n. Obviously,
Pn AUB.

Likewise, define p as the unique reversal that brings 1 to the left end, that is,
p 1’, where ’ is a permutation of {2, 3,..., n}. As before, d(’) n-2, which

-1 Dn C- {1" -1} d-{implies that is @-1 or -1.
-117_ }. Then, P C U .

Therefore, P {A U B} {C U }. We state the following without proof:. AC- ,
2. A- {},
3. c- {;1},
4. -.

It follows that P {y, yl}.
4. Expected reversal distance. For any permutation S, consider a set

of cycles that form a maximum decomposition and partition them by size. Let c()
denote the number of alternating cycles of length in a maximum decomposition,
which do not include either vertex 0 or n + 1. There are at most two edge disjoint
cycles, which contain the vertex 0 or n + 1. Then

2(n+l)

(1) () ()+ .
For k 2(n + 1), let us consider cycles in the decomposition whose size is at least k.
The number of such cycles is c() -1=4 c()- 2. Now, the breakpoint graph of
has exactly 2b() edges. From this and the fact that the cycles are edge disjoint, we
hve

(2) Vk2(n+l), c()-c()-2 2b()-ic()
i=4 i=4

From (1)and (2), we get

() w _< e(+), () _< e()+(-)() + .
i=4

Theorem 2 and inequality (3) imply that for all k _< 2(n + 1), we can bound d(Tr) as

(4) d(r) > 1

(5) _> 1- b(r)- ci(r) -2.
i=4

GENOME REARRANGEMENTS AND SORTING BY REVERSALS 279

Consider a permutation 7c chosen uniformly at random. As a cycle imposes a restric-
tion on the permutation, it is intuitively clear that 7r does not have too many cycles.
Denote the expected number of cycles of length in a maximum cycle decomposition
of G(Tr) by E(c(r)) . Eesn c(r). If we can bound E(c(r)), we can use (5)
above to get a lower bound on the expected reversal distance. Lemma 2 provides such
a bound which is, somewhat surprisingly, independent of n. Note that there is a slight
ambiguity in the definition of E(ci(x)), which depends on the choice of a maximum
cycle decomposition for each r E Sn. This does not affect Lemma 2, however, which
holds for an arbitrary cycle decomposition.

2LEMMA 2. E(ci(Tr)) _< -.
Proof. A cycle of length 2t is a set of t breakpoints (unordered pairs of

vertices) of the form

{(Xtt,Xl), (Xl, X2), (X;,X3),..., (Xtt_l,Xt)}, with xj xj.

Consider the set xl, x2,..., Xt. First, we claim that in every maximum cycle decom-
position, Xl,X2,... ,zt are all distinct. To see this, consider the case xk x, for some
1 <_ k < <_ t. Then (x,Xk+l), (X+l,Xk+2),..., (xt_l, xt- x) form an alternating
cycle, which can be detached to give a larger decomposition.

n!We have ways of selecting the ordered set, xl, x2,..., xt. Once this is fixed

giving a bound of 2we have a choice of at most 2 elements for each of the xj,
on the number of cycles of length 2t. Note, however, that we count each (2t)-cycle 2t

times, so a tighter bound for the number of cycles of length 2t is n!
2t (n--t)!"

Choose an arbitrary (2t)-cycle. The number of permutations in which this cycle
can occur is no more than the number of ways of permuting the remaining n- 2t
elements plus the t pairs that form the cycle. Additionally, each pair can be flipped
to give a different order, which gives at most 2t(n- t)! permutations. Let p be the
probability that an arbitrary (2t)-cycle is present in a random permutation. Then

(n-t)! andp <_

_<
22t 2Z iv < 2t

There are a total of 2n ordered adjacencies. Any such pair occurs in exactly
(n- 1)! permutations, so the probability that it occurs in a random permutation is 1.
Then the expected number of adjacencies E(a) en 2 and the expected number
of breakpoints E(b) n + 1 E(a) n 1.

We use Lemma 2 and E(b) -n- 1 to get a bound on the expected diameter.
4.5)7%.THEOREM 5. E(d) >_ (1-lo-

Proof. From inequality (5), for all k < 2(n + 1),

k-1

S(d) 1-
i=4

k-1

(2)(n-l)-Z 2i ->n>_ 1

2n 2k
k

2)
k-1

1- 1)-
i=4

k 1-- +1

280 VINEET BAFNA AND PAVEL PEVZNER

TABLE 1
Comparison of theoretical and experimental lower bounds on expected diameter.

n 20 30

Theoretical 8.00 15.08

Experimental

(matching)
Experimental

(linear program)

12.60 19.92

12.6 20.8

40

22.58

27.34

28.5

50 60 70 80 90 100

o.os 7.s 4.os .s o.os 7.s

34.05 41.09 48.73 55.80 63.33 70.49

35.9 43.6 51.7 58.9 67.6 74.2

Choose k- log o-’n Then 2k _< and

E(d) >_ 1-
log

n >_ 1
log n

n for n >_ 216

Lemma 2 and inequality (4) for k 10 imply that E(d) >_ (1- _0)n4.5 for 19 < n < 216.
4.5)nFor 1 <_ n <_ 19, (1 1-j

Although the bound provided by Theorem 5 is good asymptotically, it is weak for
small values of n. However, the bound given by inequality (3) is tight if we select a k
that gives the minimum value. We first give an example for n 100 and then compare
theoretical and experimental values for lower bounds on the expected diameter.

From Lemma 2 we have E(c4) _< , E(c6) _< , and E(cs) -< --8-’128 Consider a
random permutation with n 100 and E(b) n- 1 99. Applying inequality (3)
for k- 8, we deriveE(c) < (198+(8-4)4+(8-6)) +2 31.42. This gives
a lower bound for expected diameter with n 100 as 67.58, which is close to ex-
perimental bounds based on maximum matching and linear programming [KS93].
Table 1 compares theoretical and experimental bounds over a range of n.

Kececioglu and Sankoff [KS93] use the lower bounds to prune the branch and
bound tree, in order to solve the reversal distance problem. In the case of signed
reversals (see below), the cycle decomposition is unique, and we can use Theorem 2
to get comparable bounds, at a significant reduction in running time.

5. Short cycles and approximation of reversal distance. Starting from
this section we discuss approximation algorithms for sorting by reversals. Define a
strip of r as an interval [i, j] such that (i- 1, i) and (j, j + 1) are breakpoints and
no breakpoint lies between them. A strip is increasing if ri < 7cj; otherwise it is
decreasing. A strip of one element is both increasing and decreasing, except for 7r0
and rn+l, which are always increasing.

A reversal can add or remove no more than two breakpoints. Define an/-reversal,
E {0, 1, 2}, as one that removes breakpoints. Our task is to remove breakpoints by

reversals and merge strips into one increasing strip. Clearly, we need at least re-
versals. For an upper bound on the number of reversals, Kececioglu and Sankoff [KS93]
give a greedy algorithm (Fig. 6) and prove the following assertions.

LEMMA 3. ([KS93]) Let 7r be a permutation with a decreasing strip. Then (i) 7r

has a 1- or 2-reversal, and (ii) if every reversal that removes a breakpoint of r leaves
a permutation with no decreasing strips, then 7c has a 2-reversal.

Partition a sequence of reversals into rounds, so that each round (except, perhaps,
the first one) begins with a 0-reversal and has no other 0-reversals. Lemma 3 implies
that in procedure KS, each round ends in a 2-reversal, thereby proving that every
0-reversal can be amortized against a 2-reversal and, on the average, we need at

GENOME REARRANGEMENTS AND SORTING BY REVERSALS 281

Procedure KS()
while contains a breakpoint do

p Greedy(r)
,- ,- p

endwhile

Procedure Greedy(7)
begin

Return a reversal that removes the most breakpoints of ,
resolving ties in favor of reversals that leave a decreasing strip.

end

FIG. 6. The greedy algorithm.

most one reversal to remove a breakpoint. Comparison of the upper bound of b(Tr)
reversals against the lower bound provides a performance guarantee of 2. Can
we do better?

Theorem 2 gives a stronger lower bound of d(Tr) _> b(r) -c(Tr), where c(Tr) is the
number of cycles in a maximum cycle decomposition of the breakpoint graph. Note
that breakpoints correspond to black edges in this graph and every alternating cycle
has at least 2 black edges. Therefore, the lower bound of d(r) _> is a simple
corollary of Theorem 2.

Also, using inequality (2), we derive

d() _> b()- c4()- (C()- C4()) >_ b()- c4()- b() -32c4() 52 b()- c4().1
In the following sections we devise algorithms that sort in at most b()- c4()
steps, for some e > 0. Then, the performance ratio of our algorithms is

b(w) ec4() 2 e, e g,(6) A- max 2 ()_1
< 3 otherwise.0() 5b 5c4() 5

6. Approximation algorithm for signed permutations. It is interesting to
note that while the problem of sorting signed permutations is easier to handle, it
is more relevant from a biological point of view. This is because genes are directed
fragments of DNA sequences (Fig. 1).

We note that the concept of breakpoint graph as well as strips extends naturally
to signed permutations. Define a transformation from a signed permutation of
order n to an unsigned permutation $2 as follows: replace +i by 2i- 1,2i
and -i by 2i, 2i- 1. We observe that the identity signed permutation maps to the
identity (unsigned) permutation, and the effect of a reversal on w can be mimicked
by a reversal on . Therefore, any lower bound on w is a lower bound on w. In
particular, Theorem 2 holds.

For the upper bound, we shall perform reversals only across breakpoints so that
any reversal on the unsigned permutation can be mimicked by a reversal on the signed
permutation. It follows that, for our purpose, the two permutations are equivalent
and in the following discussion, whenever we refer to the breakpoint graph or strips
of a signed permutation, it is implied that we refer to the breakpoint graph or strips,
respectively, of the transformed unsigned permutation.

Observe that in a breakpoint graph of signed permutations, every vertex has
degree at most 2. Therefore the cycle decomposition is unique, thus making the case

282 VINEET BAFNA AND PAVEL PEVZNER

Procedure SignedSort(7)
1. while contains a breakpoint do
2. if has no decreasing strips
3. if any 4-cycle C remains in G()
4. Find a cycle C which crosses C.
5. Do a 0-reversal on C so that the 4-cycle C is oriented.
6. Do a 2-reversal on the 4-cycle C.
7. else
8. Do a 0-reversal on an arbitrary cycle.
9. else

10. p Greedy(7)
11. =.p
12. endwhile

FIG. 7. Algorithm for sorting signed permutations.

of signed permutations easier to handle. Below, we devise an algorithm that sorts
signed permutations in b(r) c4(7) steps, thereby achieving a performance ratio of
3 Later we will use signed permutations to improve the performance guarantee for2"
(unsigned) sorting by reversals.

In order to be able to sort a signed permutation r in less than b() steps, we need
2-reversals that do not have to b.e amortized against 0-revers.als. In the breakpoint
graph of a signed permutation, 2-reversals correspond to elimination of 4-cycles, while
l-reversals correspond to shortening of longer cycles. However, the breakpoints might
be oriented in such a way that 1- and 2-reversals are infeasible.

We call p(i,j) a reversal on a cycle if the breakpoints (7i_1,7i) and (7j,7j+l)
belong to the same cycle. A cycle is oriented if there exists a 1- or 2-reversal on it.
Two cycles are crossing if some of the breakpoints corresponding to their black edges
are interleaved in the permutation. For example, for 76, P" 315264 - 315624 is a
reversal on the cycle C 134652 (Fig. 3), since the breakpoints (5, 2) and (6, 4) belong
to C. C is oriented since p is a 1-reversal. Cycles C1 and C2 in Fig. 3 are crossing
as their breakpoints ((3, 1) and (6, 4) in C, (1, 5) and (4, 7) in C2) are interleaved in
the permutation 315264.

Note that a reversal on a cycle can orient an unoriented crossing cycle. The
following lemma shows that we can use reversals on a cycle to orient 4-cycles, for
signed permutations.

LEMMA 4. Any 4-cycle C that is not oriented has a crossing cycle C. Also, there
exists a reversal on C which will orient C.

Proof. A 4-cycle that is not oriented is of the form i, j... j, i..., with
and j j. Since (j, j) is a gray edge in the breakpoint graph, the set of elements
strictly between j and j in the permutation, S, is nonempty. Consider the largest
and the smallest (not necessarily distinct) elements in S. For at least one of these two
elements, say k, there exists k k such that k S, and k : j, j. Consequently,
there exist breakpoints (k, l) and (k’, rn) which are interleaved with (i, j) and (j’, i’).
Also, since all cycles in signed permutations are vertex-disjoint, k : i, I. Then, the
cycle which contains the black edges (k, l) and (k’, m) and the gray edge (k, k’) is a
crossing cycle for the 4-cycle C, and a reversal along the edges (k, l) and (k’, m) will
orient C.

Lemma 4 motivates the algorithm SignedSort for sorting signed permutations
(Fig. 7). It uses the procedure Greedy, which was described earlier (Fig. 6).

LEMMA 5. After step (6) in SignedSort, some decreasing strips remain.

GENOME REARRANGEMENTS AND SORTING BY REVERSALS 283

j’ i’ j"

j,j’

jj"

FIG. 8. A 2-overlapping pair of cycles (i, j, j’, i’) and (j, i, i’, j").

Proof. Step (4) is executed when all strips in 7r are increasing. The 0-reversal of
Step (5), which is on an increasing strip, creates a decreasing strip. To remove the
decreasing strip, the reversal of Step 6 would need to be on the same interval, which
it is not.

LEMMA 6. If there is a 4-cycle in G(r) at the beginning of any round of SignedSort
(except, perhaps, the first one), then there are at least two 2-reversals in that round.

Proof. If there is a 4-cycle in G(Tr) at the beginning of any round (except, perhaps,
the first one), that round begins with a 0-reversal followed by a 2-reversal. (Note that
this cycle is nonoriented since all cycles in a permutation with no decreasing strips
are nonoriented.) Also, from Lemma 5, some decreasing strips remain after this 2-
reversal. At the point, as the permutation has decreasing strips we call Greedy. Then
Lemma 3 implies that every round of Greedy ends in a 2-reversal, thus proving that
as long as there are 4-cycles at the beginning of a round in SignedSort, there are at
least two 2-reversals in that round.

THEOREM 6. SignedSort sorts a signed permutation r in at most b(Tc) c4(7r)
3reversals and provides an approximation ratio of

Proof. Let di be the number of/-reversals in SignedSort. Observing that b(Tc)
dl -- 2d2, SignedSort sorts 7r in do + dl + d2 b(Tc) + do d steps.

Each round of SignedSort has exactly one 0-reversal (except, perhaps, the first
one) and at least one 2-reversal, implying d > do. In addition, by Lemma 6, if there
is a 4-cycle in r at the beginning of a round, then there are at least two 2-reversals
in that round. Therefore, if there are r such rounds, then d > do + r. On the other
hand, each of the 4-cycles in c4(7r) must be removed in a 2-reversal in one of these r
rounds (4-cycles in signed permutations are unaffected by the other reversals). These
c4(7c) 2-reversals in r rounds together with 2-reversals in each of the remaining do r
rounds imply that d > do + c4 (Tr) r.

From these two inequalities, we have d2 > do + gc4(Tr), which implies that Signed-
Sort sorts r in b(Tr)+ do- d2 < b(Tr)- c4(71-) steps. The bound on performance
follows from equation (6). I-1

7. Approximation algorithm for sorting by reversals. In general, finding a
maximum cycle decomposition is not straightforward. In this section, we concentrate
only on finding a cycle decomposition (not necessarily maximum) with a large number
of 4-cycles, since such a decomposition will provide an improved performance ratio
for sorting by reversals.

Any two 4-cycles can share at most two edges. Two 4-cycles are 2-overlapping if
they share two edges.

LEMMA 7. If two 4-cycles of G(r) are 2-overlapping, then one of them is oriented
(i.e., a 2-reversal is possible on it).

Proof. The only way a pair of alternating 4-cycles can 2-overlap is shown in
Fig. 8. It can be verified that in any permutation of i, j, j, , j" that preserves such
a structure, one of the 4-cycles is oriented, rl

The 4-cycle graph H(r) of a permutation 7r is defined as a graph in which each

284 VINEET BAFNA AND PAVEL PEVZNER

node corresponds to a 4-cycle of G(r), and two nodes are connected by an edge
if the corresponding 4-cycles share an edge in G(r). An independent set in H(r)
corresponds to a set of edge disjoint 4-cycles. Furthermore, this graph has bounded
degree, and there are efficient algorithms to find good approximations to a maximum
independent set in bounded degree graphs.

We call a graph strongly d-bounded if the degree of every vertex in the graph is
bounded by d and the degree of at least one vertex in every connected component of
the graph is less than d.

LEMMA 8. If G(rc) has no 2-overlapping cycles, then the 4-cycle graph H(rc) is
strongly 4-bounded.

Proof. It is easy to see that in a graph G(rr) without 2-overlapping cycles, a 4-cycle
can have at most four other alternating cycles sharing edges with it. Consider a 4-
cycle C containing the maximal element of r among all 4-cycles in a given connected
component of H(r). Since / 1 does not belong to any 4-cycle in this component, at
most one of the neighboring cycles of C contains the vertex of G(rr) corresponding to
that maximal element. It follows that C has at most three neighbors in H(r).

LEMMA 9. In a strongly d-bounded graph G(V, E), an independent set of size at
least I@ can be computed in O(E) time.

Proof. Pick a vertex of degree less than d, add it to the independent set, and
remove the neighbors. Clearly, the remaining graph is strongly &bounded. Repeat
this step until no vertices are left. As no more than d vertices are removed in each
step, the size of the independent set is at least I1 1-1

d
LEMMA 10. In a strongly d-bounded graph G(V, E), a (a-l) approzimation to a

mazimum independent set can be computed in O(E) time.

Proof. Let the size of the maximum independent set be a.n, for some a, where

IVI n. Consequently, the minimum vertex cover for (7 has a size (1 a). n. We
can find a vertex cover V’ of size at most min{2(1- a).n, n} in O(E) time [CLR90].
Then I1 V\V’ is an independent set for G, of size at least max{(2a- 1)-n, 0}.
Another independent set I2 is given by Lemma 9 and is of size . Obviously, we select
the larger of the two sets.

There are two cases in analyzing the performance of our approximation:
max{(2a 1)n, 0} 0:

In this case we select I2. Performance isThis implies that a < .
max{(2a- 1)n, 0} (2a- 1)n:

In this case we select the larger of the two sets, I1 and I2. The performance

a In the worst case (2-) whichis max{ (2a 1)}, with a > .
(a+) and performance is (a1)"implies that a- 2

Lemmas 7, 8, and 10 motivate the algorithm ReversalSort (Fig. 9). Theorem 7
provides a performance guarantee for this algorithm.

THEOREM 7. The algorithm ReversalSort achieves an approzimation ratio of-g.
Proof. Note that every reversal on the signed permutation a in step (4) of

ReversaISort can be simulated on the unsigned permutation or. Therefore, an upper
bound on the number of reversals in SignedSort(cr) is an upper bound on the number
of reversals in step (4) of ReversalSort. If the number of 4-cycles found in the cycle
decomposition in step (2) is c(cr), then from Theorem 6, we have the bound d(a) <_
b(cr)- c4(a for the number of reversals in step (4) of ReversalSort. Let PlP... P
be 2-reversals chosen in step (1) of the algorithm, so that rcplp.., p c,. Clearly,
b(r)- b(cr) 2z. Therefore, ReversalSort requires no more than x + b(cr)- c, (or)
b(rr) z c,(r) reversals to sort

GENOME REARRANGEMENTS AND SORTING BY REVERSALS 285

Algorithm ReversalSort(r)
1. Starting with the permutation r, perform 2-reversals on G(r) until no 2-overlapping

cycles remain (Lemma 7). Let cr denote the resulting permutation.
2. Use the Independent Set approximation in H(a) to find a set of nonoverlapping

24-cycles of size at least gc4(cr) in the breakpoint graph G(a) (Lemmas 8 and 10).
Find an arbitrary cycle decomposition of the remaining edges.

3. Split vertices of degree 4 in G(a) according to the cycle decomposition found in step
(2), so that the cycles are vertex disjoint. In terms of strips, replace single elements
by strips, oriented appropriately, resulting in a signed permutation a.

4. Call SignedSort(a) to sort r’. Sorting of a mimics sorting of a.

Fie. 9. Algorithm for sorting by reversals.

Let i(i) be the size of the maximum independent set in a 4-cycle graph H(5).
2i(0). On the other hand i(r)- i(o) < 4x,Lemmas 8 and 10 guarantee that c(o) > g

since every reversal in step (1) "destroys" at most four of the i(r) vertices of the
maximum independent set in H(r) (there are at most 4 nonoverlapping cycles sharing
edges with a 4-cycle). Therefore,

i(a) < b() x g(i() 4x)_<

< b(r)- gX- gC4(7t-) __< 5(7l")- gC4 (7i").

The bound on performance follows from equation (6).
8. Improved approximation for sorting by reversals. In this section, we

modify ReversalSort to improve the performance ratio. Recall that in step (1) of
ReversalSort(Tc), we perform 2-reversals to transform r into a permutation 0., which
has the property that H(o) is strongly 4-bounded. This allows us to find a set of

2 ca(o-). In this section, we transform 7c using 2-reversals into4-cycles of size at least g
a permutation 0., so that H(o.) is bipartite. Consequently, we can find a maximum set
of nonoverlapping 4-cycles in 0., which leads to improved performance.

The problem of transforming r into is equivalent to sorting -lr, and, for
convenience, we shall switch between the two notations. Denote G(r,) G(-lr),
b(Tc,) b(-lTr), i(Tr,) i(-lTr). Observe that G(Tr,) and G(, r) coincide, but
have reversed colors, i.e., black (gray) edges in G(Tr,) are gray (black)in G(, 7r). It
follows that b(r,) b(, r) and i(Tr,) i(, 7c).

Figure 10 describes the procedure Transform that transforms 7r into a permutation
o. with the following properties.

LEMMA 11. H(o.) is bipartite.
Proof. Consider a 4-cycle in G(o.) formed by the vertices oi,o.i+l,o.j,oj+l, with

+ 1 < j. Because no 2-reversals are possible on o. Transform(To), every 4-cycle in
G(o.) must be nonoriented. Therefore, we must have o.i o-j+1 and o.j 0.i+1. Now,
observe that these vertices form a 4-cycle in G(o.-1) also, with the color on the edges
reversed. If o.j -o-i+l o-j+l -o.i, then the 4-cycle in (_(0. -1) is oriented. Therefore,
O’j 0i+1 --(o’j+l

To interpret this graphically, direct black edges of G(o.) from k to k+l and gray
edges from k to k + 1. We call edges of a cycle coordinated if they are directed the
same way along this cycle. Note that if black edges of a 4-cycle are not coordinated,
then this cycle is oriented. Since there is no oriented cycles in G(o.), black edges
in every 4-cycle of G(o.) are coordinated. Also, since there is no oriented cycles in

G(o.-1), black edges in every 4-cycle of G(o.-1) are coordinated. An observation that

286 VINEET BAFNA AND PAVEL PEVZNER

Procedure Transforrn(Tr)
begin

/* is the identity permutation*/
while P-1. or #-1 p has a 2-reversal, p

if p is a 2-reversal on P-1.
-=.p

else P P.p
endwhile
return P-1.

end

FIG. 10. Algorithm for preprocessing permutation r using 2-reversals.

(a)

(-)

(+)

(b)

[PIG. 11. (+) and (-) cycles in G(r).

the edges of G(cr) and G(G-1) have the same directions but reverse colors implies that
gray edges in every 4-cycle of G(a) are coordinated. Only two such 4-cycles (denoted
(+) and (-)) are possible (Fig. lla). Further, observe that all cycles that share an
edge with a cycle of type (+), must be of type (-), and vice-versa (Fig. llb). This
implies that H(G) is bipartite.

i(G) reversals.LEMMA 12. a can be sorted in b(G)
Proof. Because H(a) is a bipartite graph (Lemma 11), we can reduce maximum

independent set problem in H(a) to the maximum matching problem [CLR90]. More-
over, since H(a) is a graph of bounded degree, we can find a maximum independent
set in H(cr) in O(n) time by the maximum matching algorithm [HK73]. This implies
that we can find a cycle decomposition of G(cr) in which the number of 4-cycles is
i(r). The lemma then follows from Theorem 6. M

Let PiP2 Px be the sequence of reversals in Transform that transforms
(rplp2... px if) and 01co2... c0v be the sequence of reversals that transforms into

(ZO102... Oy).
LEMMA 13. Let a- Transform(To). Then, b(Tc)-b(G) 2(x+y), and i(Tr)-i(G) <_

4(x + y).
Proof. In each iteration of the while loop in Transform, (, O) is transformed

into (’, ’), in one of two ways. Either (i) ’ .p, O’ O, or (ii) ’ #, O’ #.p.
In case (ii), p is a 2-reversal on #-P, which implies that 2 b(-O)- b((#’)-o’)
b(o,) b(o’, ’) b(#, p) b(’, #). A similar argument holds for case (i), implying
that b(,P)- b(’,P’) 2. i(,P)- i(’,p’) _< 4 follows from the fact that every
2-reversal can destroy at most four nonoverlapping 4-cycles in the breakpoint graph.

The lemma follows from the fact that each reversal in Transform belongs to either
the sequence pp.., p. or the sequence D102... Oy, implying a total of x + y rever-
sals.

IrnprovedSort (Fig. 12) exploits the structure of the permutation cr Trans-

GENOME REARRANGEMENTS AND SORTING BY REVERSALS 287

Algorithm IrnprovedSort(Tr)
1. Call Transforrn(r) to find a sequence of reversals plp..., px and aolao2... 0y such

that rplp2... px and z010... 0y P. Let a P-.
2. Find a maximum set of nonoverlapping 4-cycles in G(a) by solving the maximum

independent set problem in the bipartite graph H(r) (Lemma 11). Find an arbitrary
cycle decomposition of the remaining edges.

3. Split vertices of degree 4 in G(a) according to the cycle decomposition found in step
(2), so that the cycles are vertex disjoint. In terms of strips, replace single elements
by strips, oriented appropriately, resulting in a signed permutation

4. Call SignedSort(a!) to find a sequence of reversals that sort rI. Note that this
sequence is mimicked by a sequence of reversals lae az that sorts

5. Apply the sequence of reversals pip2 pxlCfl2 flzOy 2)1 to sort

FIG. 12. Improved algorithm for sorting by reversals.

form(7) to sort r more efficiently. Theorem 8 analyzes the performance of this im-
proved algorithm.

(7) steps.THEOREM 8. ImprovedSort sorts r in b(r) c4
Proof. From step (5) of ImprovedSort, d(7) <_ x + y + z. Lemmas 12 and 1 3 and

the inequality i(Tr) _> c4(7r) provide an upper bound

7

x+y+z

Theorem 8 and equation (6) imply Corollary 1.
COROLLARY 1. The algorithm ImprovedSort achieves an approximation ratio of

9. Running time. We show that all our algorithms have complexity of O(n2).
Consider lines 4-6 of SignedSort. If we maintain both 7r and 7r-1, it takes O(n)
time to find a 4-cycle, as well as a crossing cycle. Kececioglu and Sankoff [KS93]
give an O(n) implementation of Greedy. Finally, no more than n- 1 reversals are
required to sort a permutation r, which gives an upper bound of O(n) for SignedSort.
For ReversalSort and ImprovedSort, the most expensive preprocessing step is that of
finding the maximum independent set in a bipartite graph, which takes O(n) time.
Therefore, the time bounds do not change for the improved sorting algorithms.

10. Genome rearrangements. Sequence alignment is often the first step in
molecular evolution studies. However, in many cases sequence alignment is very un-

reliable, thus making further evolutionary tree reconstruction almost impossible. For
example, the similarity between many genes in herpes viruses is so low that it is
frequently indistinguishable from the background noise. As a result, the classical
methods of sequence comparison frequently lead to ambiguous conclusions for such
highly diverged genomes, and alternative methods are sought (Karlin et al. [KMS94]).
Since it is often found that the order of genes is much more conserved than the DNA
sequence, an approach based on comparison of gene orders (Sankoff [$93]) versus
traditional comparison of DNA sequences seems to be a method of choice for many
"hard-to-analyze" genomes.

288 VINEET BAFNA AND PAVEL PEVZNER

Surprisingly enough, genome comparison might also outperform gene comparison
for such highly conserved genomes as plant mitochondrial DNA(mtDNA). The point
mutation rate in plant mtDNA is estimated to be 100 times slower than in animal
mtDNA, and many genes are 99%-99.9% identical in related species (Palmer and
Herbon [PH88]). However, although there is little change in the DNA sequence of the
plant mitochondrial genes from one species to another, there is rapid and extensive
change in gene arrangements. This implies that the traditional methods for comparing
sequences are not very conclusive in this case either.

The described algorithms for sorting by reversals were implemented and applied
for analysis of genome rearrangements in herpes viruses, plant organelles, and mam-
malian X chromosomes. For plant organelles, Bafna and Pevzner [BP95] corrected
previously postulated scenarios for genome rearrangements in the Brassica family.
For herpes viruses, Hannenhalli et al. [HCKP95] were able to come out with three
alternative gene orders in common herpesvirus ancestor. Surprisingly enough, in all
biological examples we analyzed, d(r) b(Tr) c(r), thus indicating that the bound
provided by Theorem 2 might be rather tight. A similar observation has been made
by Kececiouglu and Sankoff [KS94]: b(Tr)- c(7c) approximated d(Tr) with accuracy 1
for each of 100 randomly chosen permutations on 10,000 elements. It indicates that
the bound provided by the Theorem 2 is extremely tight and raises the problem of
finding an exact estimate for reversal distance in terms of cycle decompositions.

Acknowledgments. We would like to thank John Kececioglu and David Sankoff
for sending us the manuscript of their paper and for useful discussions. We are grateful
to Piotr Berman for useful comments on approximating maximum independent sets
of bounded degree graphs, and to Sing-Hoi Sze for carefully reading the manuscript
and pointing out errors. We also thank both referees for many valuable comments.

REFERENCES

[AW87] M. AIGNER AND D. B. WEST, Sorting by insertion of leading element, J. Combin. Theory
Ser. A, 45 (1987), pp. 306-309.

[ABSR89] N. AMATO, M. BLUM, S. IRANI, AND R. RUBINFELD, Reversing trains: A turn of the
century sorting problem, J. Algorithms, 10 (1989), pp. 413-428.

[BP95] V. BAFNA AND P. PEVZNER, Sorting by reversals: Genome rearrangements in plant
organelles and evolutionary history of X chromosome, Molec. Biol. Evolution, 12
(), pp. -.4.

[CLR90] T.H. COPMEN, C. E. LEISERSON, AND R. L. RIVEST, Introduction to Algorithms, MIT
Press, Cambridge, MA, 1990.

[EG81] S. EVEN AND O. GOLDREICH, The minimum-length generator sequence problem is NP-
hard, J. Algorithms, 2 (1981), pp. 311-313.

[FH89] C. FAURON AND M. HAVLIK, The maize mitochondrial genome of the normal type and the
cytoplasmic male sterile type T have very different organization, Current Genetics,
15 (1989), pp. 149-154.

[GP79] W.H. GATES AND C. H. PAPADIMITRIOU, Bounds for sorting by prefix reversals, Discrete
Math., 27 (1979), pp. 47-57.

[GT78] E. GYORI AND E. TURAN, Stack of pancakes, Studia Sci. Math. Hungar., 13 (1978),
pp. 133-137.

[HCKP95] S. HANNENIALLI, C. CHAPPEY, E. KOONIN, AND P. PEVZNER, Genome sequence com-
parison and scenarios for genorne rearrangement: A test case, Genomics, (1995).

[HBB92] R.J. HOFFMANN, J. L. BOOIE, AND W. M. BROWN, A novel rnitochondrial genorne
organization for the blue mussel, Mytilus edulis, Genetics, 131 (1992), pp. 397-412.

[HK73] J.E. HOPCROFT AND R. KARP, An n5/ algorithm for maximum matching in bipartite
graphs, SIAM J. Comput., 2 (1973), pp. 225-231.

[HP94] S.B. HOOT AND J. D. PALMER, Structural rearrangements including parallel inversions
within the chloroplast genorne of anemone and related genera, J. Molec. Evolution,

GENOME REARRANGEMENTS AND SORTING BY REVERSALS 289

[JS]

[KMS94]

[KS93]

[KS94]

[KDP93]

[K93]

38 (1994), pp. 274-281.
M. R. JERRUM, The complexity of finding minimum-length generator sequences, Theoret.

Comput. Sci., 36 (1985), pp. 265-289.
S. KAI:tLIN, E. S. MOCARSKI, AND G. A. SCHACHTEL, Molecular evolution of her-

pesviruses: Genomic and protein sequence comparisons, J. Virology, 68 (1994),
pp. 1886-1902.

J. KECECIOGLU AND D. SANKOFF, Exact and approximation algorithms for the reversal
distance between two permutations, Proc. 4th Annual Symposium on Combinatorial
Pattern Matching, A. Apostolico, M. Crochemore, Z. Galil, and U. Manber, eds.,
Padova, Italy, 1993; Lecture Notes in Comput. Sci., 684 (1993), pp. 87-105; Algorith-
mica, 13 (1995), pp. 180-210.

------, ElCficient bounds for oriented chromosome inversion distance, Proc. 5th Annual
Symposium on Combinatorial Pattern Matching, M. Crochemore and D. Gusfield,
eds., Asilomar, CA, 1994; Lecture Notes in Comput. Sci., 807 (1994), pp. 307-325.

E. B. KNOX, S. R. DOWNIE, AND J. D. PALMER, Chloroplast genome rearrangements
and evolution of giant lobelias from herbaceous ancestors, Molec. Biol. Evolution, 10
(1993), pp. 414-430.

E. V. KOONIN AND V. V. DOLJA, Evolution and taxonomy of positive-strand RNA
iruses: Implications of comparative analysis of amino acid sequences, Crit. Rev.
Biochem. Molec. Biol., 28 (1993), pp. 375-430.

[K68] A. KOTZIG, Moes without forbidden transitions in a graph, Mat. Casopis, 18 (1968),
pp. 76-80.

[L88] M.F. LYON, X-chromosome inactivation and the location and expression of X-linked
genes, Amer. J. Human Genetics, 42 (1988), pp. 8-16.

[PH87] J.D. PALMER AND L. HEI:tBON, Unicircular structure of the Brassica hirta mitochondrial
genome, Current Genetics, 11 (1987), pp. 565-570.

[PH88] Plant mitochondrial DNA evolves rapidly in structure, but slowly in sequence, J.
Molec. Evolution, 27 (1988), pp. 65-74.

[P94] P. PEVZNER, DNA physical mapping and alternating Eulerian cycles in colored graphs,
Algorithmica, 13 (1995), pp. 77-105.

[RJ92] L.A. RAUBESON AND R. g. JANSEN, Chloroplast DNA evidence on the ancient evolu-
tionary split in vascular land plants, Science, 255 (1992), pp. 1697-1699.

[SLA92] D. SANKOFF, G. LEDUC, N. ANTOINE, B. PAQUIN, B. F. LANG, AND R. CEDEIGIEN,
Gene order comparisons for phylogenetic inference: Evolution of the mitochondrial
genome, Proc. Natl. Acad. Sci. U.S.A., 89 (1992), pp. 6575-6579.

[$93] D. SANKOFF, Analytical approaches to genomic evolution, Biochimie, 75 (1993), pp. 409-
413.

[WPFJ89] J. WHITING, M. PLILEY, J. FARMER, AND D. JEFFERY, Irt 8itu hybridization analysis of
chromosomal homologies in Drosophila melanogaster and Drosophila virilis, Genetics,
122 (1989), pp. 99-109.

[WEHM82] G. A. WATTEI:tSON, W. J. EWENS, T. E. HALL, AND A. MORGAN, The chromosome
inversion problem, J. Theoret. Biol., 99 (1982), pp. 1-7.

SIAM J. COMPUT.
Vol. 25, No. 2, p. 290, April 1996

() 1996 Society for Industrial and Applied Mathematics
OO4

NOTE ON "A LINEAR-TIME ALGORITHM FOR COMPUTING
K-TERMINAL RELIABILITY IN A SERIES-PARALLEL NETWORK"*

A. SATYANARAYANAt, R. K. WOODS, L. CAMARINOPOULOS, AND G. PAMPOUKIS
In an original and very interesting paper (Satyanarayana and Wood [1]) concerning polygon-

to-chain reductions in a stochastic network, a small inconsistency occurs in the proof of Theorem 1.
in particular, this happens in cases where the whole set of K-vertices lies in the remaining polygon.
Such an example is the case of polygon type 5, where the appropriate note has been made by the
authors for]K 2. Analogous notes must also be made for polygon types 4, 6, and 7, when K-- 2,
3, and 4, respectively. The correct transformations are given in Table 1 (note that dark vertices are
K-vertices).

Key words, algorithms, complexity, network reliability, series-parallel graphs, reliability-
preserving reductions

AMS subject classifications. 62N05, 90B12, 60C05, 05A10

TABLE 1

polygon type chain te reduction formulas

(4)

rl PaqbqcPd + qaPbPcqd

r2 qaPbqcPd + PaPbqcqd

+ PaPbPcPd(1+ Paq--q-a+ Pbq-b + Pcq--c + q_)

new edge probability,

q+r2

=rl+2

(C)b

(6)

(7)

rl PaqbPc(Pdqe +qdPe)

+ Pb(qaPcPdq e+ PaqcqdPe)
q+r2

r2= qaPbPcqdPe + PaPbqcPdqe

+ paPbPcPdPe[" + q__a +
qb

+ q_.c +
qd

+ q__
Pa Pb Pc Pd

rl PaqbPc(qdPePf+ PdqePf+ PdPeq f)
+PaPbqcPf(Pdqe +qdPe)

+qaPbPcPd(qePf + Peqf

r2= qaPlcqdPePf +PaPbqcPdPeqf

1 qa +qb +q_.c_c +qd +qe +qf+PaPbPcPdPePfx, +’-a - Pc Pd Pe Pf/

q +r2

REFERENCE

[1] A. SATYANAIAYANA AND R. K. WOOD, A linear-time algorithm for computing K-terminal
reliability in a series-parallel network, SIAM J. Comput., 14 (1985), pp. 818-832.

Received by the editors October 29, 1993; accepted for publication (in revised form) August 25,
1994.

Department of Pure and Applied Mathematics, Stevens Institute of Technology, Hoboken, NJ
07030.

Department of Operations Research, Naval Postgraduate School, Monterey, CA 93943.
School of Engineering, Aristotle University of Thessaloniki, 540 06 Thessaloniki, Greece.

290

SIAM J. COMPUT.
Vol. 25, No. 2, pp. 291-311, April 1996

() 1996 Society for Industrial and Applied Mathematics
O05

UPWARD PLANAR DRAWING OF SINGLE-SOURCE ACYCLIC
DIGRAPHS*

MICHAEL D. HUTTON AND ANNA LUBIW$

Abstract. An upward plane drawing of a directed acyclic graph is a plane drawing of the
digraph in which each directed edge is represented as a curve monotone increasing in the vertical
direction. Thomassen has given a nonalgorithmic, graph-theoretic characterization of those directed
graphs with a single source that admit an upward plane drawing. This paper presents an efficient
algorithm to test whether a given single-source acyclic digraph has an upward plane drawing and, if
so, to find a representation of one such drawing. This result is made more significant in light of the
recent proof by Garg and Tamassia that the problem is NP-complete for general digraphs.

The algorithm decomposes the digraph into biconnected and triconnected components and defines
conditions for merging the components into an upward plane drawing of the original digraph. To
handle the triconnected components, we provide a linear algorithm to test whether a given plane
drawing of a single-source digraph admits an upward plane drawing with the same faces and outer
face, which also gives a simpler, algorithmic proof of Thomassen’s result. The entire testing algorithm
(for general single-source directed acyclic graphs) operates in O(n2) time and O(n) space (n being
the number of vertices in the input digraph) and represents the first polynomial-time solution to the
problem.

Key words, algorithms, upward planar, graph drawing, graph embedding, graph decomposition,
graph recognition, planar graph, directed graph

AMS subject classifications. 68Q20, 68Q25, 68R05, 68R10

1. Introduction. There is a wide range of results dealing with drawing, repre-
senting, or testing planarity of graphs [5]. Steinitz and Rademacher [22], Fry [10],
Stein [21], and Wagner [26] independently showed that every planar graph can be
drawn in the plane using only straight line segments for the edges. Tutte [25] showed
that every 3-connected planar graph admits a convex straight-line drawing, where the
facial cycles other than the unbounded face are all convex polygons. The first linear-
time algorithm for testing planarity of a graph was given by Hopcroft and Tarjan

Planar graph layout has many interesting applications and has been widely stud-
ied as a method to visualize structures commonly modeled as graphs [5]. Combina-
tional boolean circuits, subroutine call-charts, PERT graphs, isa-hierarchies in artifi-
cial intelligence, and many other objects are naturally described with directed acyclic
graphs and are best understood visually when all edges are drawn in the same direc-
tion. Planarity is of obvious benefit in graph drawing, so it is a natural problem to
consider upward drawings in combination with planarity.

An upward plane drawing of a digraph is a plane drawing such that each directed
arc is represented as a curve monotone increasing in the y-direction. In particular, the
digraph must be acyclic (a DAG). A digraph is upward planar if it has an upward plane
drawing. Consider the digraphs in Fig. 1. By convention, the edges in the diagrams
in this paper are directed upward unless specifically stated otherwise, and direction

Received by the editors August 17, 1992; accepted for publication (in revised form) August 29,
1994. This research was supported in part by NSERC and performed while the first author was at the
University of Waterloo [15]. A preliminary version of the work was presented at the 2nd ACM-SIAM
Symposium on Discrete Algorithms (SODA) [16], and an extended abstract later appeared in [27].

Department of Computer Science, University of Toronto, Toronto, ON MbS 1A4, Canada (md-
hutton@cs.utoronto.ca).

Department of Computer Science, University of Waterloo, Waterloo, ON N2L 3G1, Canada
(alubiw@uwaterloo.ca).

291

292 MICHAEL D. HUTTON AND ANNA LUBIW

Upward planar Non-upward-planar

FIG. 1. Upward planar and non-upward-planar digraphs.

arrows are omitted unless necessary. The digraph on the left is upward planar: an
upward plane drawing is given. The digraph on the right is not upward planar--
although it is planar, since placing v inside the face f would eliminate crossings,
at the cost of producing a downward edge. Kelly [17], Kelly and Rival [18], and
Di Battista and Tamassia [7] have shown that for every upward plane drawing, there
exists a straight-line upward plane drawing with the same faces and outer face, in
which every edge is represented as a straight line segment. This is an analogue of
the previously mentioned straight-line drawing result for undirected planar graphs.
The general problem of recognizing upward planar digraphs has recently been shown
to be NP-complete [12]. For the case of single-source single-sink digraphs there is
a polynomial-time recognition algorithm provided by Platt’s result [19] that such a
digraph is upward planar iff the digraph with a source-to-sink edge added is planar. An
algorithm to find an upward plane drawing of such a digraph was given by Di Battista
and Tamassia [7]. For the special case of bipartite digraphs, upward planarity is
equivalent to planarity [6].

In this paper, we will give an efficient algorithm to test upward planarity for
single-source digraphs, eliminating the single-sink restriction. For the most part, we
will be concerned only with constructing an upward planar representation--enough
combinatorial information to specify an upward plane drawing without giving actual
numerical coordinates for the vertices. This notion will be made precise in 3. We
will remark on the extension to a drawing algorithm in 7. Our main result is an

O(n2) algorithm to test whether a given single-source, n-vertex digraph is upward
planar, and if so, to give a representation for it which leads to a drawing with known
methods. This result is partly based on a graph-theoretic result of Thomassen [24,
Them. 5.1].

THEOREM 1.1 (Thomassen). Let F be a plane drawing of a single-source digraph
G. Then there exists an upward plane drawing F strongly equivalent to (i.e., having
the same faces and outer face as) F iff the source c of G is on the outer face of F,
and for every cycle E in F, E has a vertex which is not the tail of any directed edge
inside or on E.

The necessity of Thomassen’s condition is clear: for a digraph G with upward
plane drawing Ft, and for any cycle E of F, the vertex of E with highest y-coordinate
cannot be the tail of an edge of E nor the tail of an edge whose head is inside E.

Since a 3-connected graph has a unique planar embedding (up to the choice of
the outer face) by Whitney’s theorem (cf. [2]), Thomassen concludes that his theo-

UPWARD PLANAR DRAWING OF SINGLE-SOURCE ACYCLIC DIGRAPHS 293

rem provides a "good characterization" of 3-connected upward planar digraphsmi.e.,
puts the class of 3-connected upward planar digraphs in NP intersect co-NP. An effi-
cient algorithm is not given, however (there are potentially an exponential number of
possible cycles to check), nor does Thomassen address the issue of non-3-connected
digraphs (which could have an exponential number of different planar embeddings).

The problem thus decomposes into two main issues. The first is to describe
Thomassen’s result algorithmically; we do this in 4 with a linear-time algorithm,
which provides an alternative proof of his theorem. The second issue is to isolate the
triconnected components of the input digraph and determine how to put the "pieces"
back together after the embedding of each is complete. This more complex issue is
treated in 6, after a discussion of decomposition properties in 5.

The algorithm for splitting the input into triconnected components and merging
the embeddings of each operates in O(n2) time. Since a triconnected graph is uniquely
embeddable in the plane up to the choice of the outer face, and the number of possible
external faces of a planar graph is linear by Euler’s formula, the overall time to test
a given triconnected component is also O(n2), so the entire algorithm is quadratic.

2. Preliminaries. In addition to the definitions below, we will use standard
terminology and notation of Bondy and Murty [2].

All digraphs in this paper are acyclic unless otherwise stated, and n always denotes
the number of vertices in the current digraph. We will use the term cycle and the
various notions of connectivity with respect to the underlying undirected graph, so a
digraph G is connected if there exists an undirected path between any two vertices in
G. For S a set of vertices, G\S denotes G with the vertices in S and all edges incident
to vertices in S removed. If S contains a single vertex v, we will use the notation G\v
rather than G\v}. G is k-connected if it has at least k + 1 vertices and the removal of
at least k vertices is required to disconnect the graph. By Menger’s theorem [2], G is
k-connected iff there exist k vertex-disjoint undirected paths between any two vertices.
A set of vertices whose removal disconnects the graph is a cut-set. The terms cut vertex
and separation pair apply to cut-sets of size one and two, respectively. A graph which
has no cut vertex is biconnected (2-connected). A graph with no separation pair is
triconnected (3-connected). For G with cut vertex v, a component of G with respect
to v is formed from a connected component H of G\v by adding to H the vertex v
and all edges between v and H. For G with separation pair (u, v}, a component of
G with respect to {u, v} is formed from a connected component H of G\{u, v} by
adding to H the vertices u and v and all edges between u and v and vertices of H.
The edge (u, v), if it exists, forms a component by itself. An algorithm for finding
triconnected components in linear time is given in Hopcroft and Tarjan [13] (and
also [3]). A related concept is that of graph/digraph union: we define G1 G2 for
components with "shared" vertices to be the inclusive union of all vertices and edges.
That is, for v in both G and G2, the vertex v in G G2 is adjacent to edges in each
of the subgraphs G and G2.

Contracting an edge e (u, v) in a graph G results in a graph, denoted G/e,
with the edge e removed and vertices u and v identified. Inserting new vertices within
edges of G generates a subdivision of G. A directed subdivision of a digraph G results
from repeatedly adding a new vertex w to divide an edge (u, v) into (u, w) and (w, v).
(Directed) graphs G and G2 are homeomorphic if both are (directed) subdivisions of
some other (directed) graph. G is planar iff every subdivision of G is planar [2].

Note that Hopcroft and Tarjan’s "components" include an extra (u, v) edge.

294 MICHAEL D. HUTTON AND ANNA LUBIW

In a directed graph, the in-degree of a vertex v is the number of edges directed
toward v, denoted deg-v. Analogously, the out-degree (dad+v) of v is the number of
edges directed away from v. A vertex of in-degree 0 is a source in G, and a vertex of
out-degree 0 is a sink.

Adopting some poset notation, we will write u _< v if there is a directed path
uAv of length 0 or more, and u < v (u v) to emphasize that u and v are distinct.
Vertices u and v are comparable if u _< v or v _< u, and incomparable otherwise. If
(u, v) is an edge of a digraph, then u dominates v, u is incident to v, and v is incident
from u.

3. A combinatorial view of upward planarity. As discussed by Edmonds
and others (see [11]), a connected graph G is planar iff it has a planar representation:
a cyclic ordering of edges around each vertex such that the resulting set of faces
F satisfies 2 IFI- IEI + IYl (Euler’s formula). A face is a cyclically ordered
sequence of edges and vertices v0, e0, Vl, el,..., vk-1, ek-1, where k _> 3, such that for
any 0,..., k- 1, the edges ei-1 (subscript addition modulo k) and ei are incident
with the vertex vi and consecutive in the cyclic edge ordering for vi.

We will say that two plane drawings are equivalent if they have the same
representation--i.e., the same set of faces. Two plane drawings are strongly equiv-
alent if they have the same representation and the same outer face.

One method of combinatorially specifying an upward planar drawing is provided
by the following result of (independently) Di Battista and Tamassia [7] and Kelly [17].
They use the concept of a planar s-t digraph, defined to be a planar DAG which has
a single source s and a single sink t and contains the edge (s, t)mexactly the upward
planarity condition of Platt [19] for single-source single-sink digraphs.

THEOREM 3.1 (Di Battista and Tamassia, Kelly). Let G be a directed acyclic
graph. If G is upward planar then edges can be added to it to obtain a planar s-t
digraph (i.e., G is a (spanning) subgraph of a planar s-t digraph). Conversely, if
edges can be added to G to obtain a planar s-t digraph GI, then G is upward planar.
Furthermore, for any planar embedding F of G with (s, t) on the outer face, there is
an upward plane drawing of G strongly equivalent to F with the extra edges removed.

The final statement was not explicitly given. However, to prove their result,
Di Battista and Tamassia give an algorithm which takes a planar s-t digraph, finds
an arbitrary planar representation of it, and outputs an upward plane drawing which
respects this embedding, so the statement follows. Their algorithm, which we will
require later in the paper, runs in O(n) arithmetic2 steps (O(n log n) arithmetic steps
for a straight-line drawing).

The disadvantage of this NP characterization in terms of planar s-t digraphs is
the difficulty of testing it. Thomassen’s co-NP condition on single-source digraphs
suffers from the same problem. For the case of single-source digraphs, we will give a
testable (algorithmic) characterization in the next section.

To provide some motivation for this algorithm, we give another characterization
of single-source upward planar digraphs, equivalent to Thomassen’s.

First, we define P(v), the predecessor set of v, to be the set {u" u _< v in G}.
Notice the set P(v) includes v. Define Gv to be the induced subgraph of G on P(v).
For a planar representation F of G, define Fv to be the planar representation induced
by F on G,.

2 It is important to specify the time in arithmetic steps, because the algorithm is necessarily
output sensitive: coordinates can require Q(n) bits each [8].

UPWARD PLANAR DRAWING OF SINGLE-SOURCE ACYCLIC DIGRAPHS 295

PROPOSITION 3.2. Given a single source DAG G and a planar representation F
ofG with a specified outer face and source s on the outer face, G has an upward plane
drawing strongly equivalent to F i the following condition holds.

CONDITION 3.3. For each vertex v E V, v is a sink on the outer face of the
planar embedding Fv induced by P(v).

We will often refer to a planar representation F satisfying Condition 3.3 as an
upward planar representation of G.

Since a strongly equivalent upward plane drawing provides the same planar rep-
resentation F and predecessors of v have smaller y-coordinates in the drawing, v must
be on the outer face of F. Thus the necessity holds. We will complete the proof of
this in 5; it is not necessary for the algorithm in the next section.

4. Strongly equivalent upward planarity. Consider the following question:
given a single-source acyclic digraph G and a planar representation F for G, with s
on the outer face of F, does G admit an upward planar drawing strongly equivalent
to F?

Define a violating cycle of G with respect to F to be a cycle F such that every
vertex of 5] is the tail of an edge inside or on F. This is the condition arising from
Thomassen’s theorem (1.1). As observed in the introduction, a violating cycle in F
precludes the existence of an strongly equivalent upward drawing.

We present a linear-time algorithm to test whether G has an upward planar
embedding strongly equivalent to F with a designated outer face. The algorithm
will return the edges necessary to augment G so that sinks occur only on the outer
face in the positive case or a violating cycle in the negative case. Since any planar
representation of a single-source DAG with the source and all sinks on the outer face
is a subgraph of a planar s-t digraph--simply designate one sink as t and add an
edge from the source and all other sinks to it--the algorithm provides a new proof of
Thomassen’s theorem.

The algorithm is recursive, and the proof that it works is by induction. If there is
a sink v on the outer face of F, then recursively (trivial if G has one node) determine
a violating cycle for G\v (in which case we are done) or a set of edges X required to
augment F\v (G\v) to a planar representation F’ with all sinks on the outer face. Now
add v and edges incident to v to the outer face of Ft. To determine the additional
required edges to resolve the internal sinks in the new faces, consider all vertices
w which are sinks on the outer face of F but are not sinks on the outer face of F.
Adding the edges (w, v) (where they do not already exist in G) to X retains planarity,
single-sourcedness, and acyclicity in G U X and does not change the outer face.

It remains to deal with the case when the outer face of F has no sink. We claim
that in this case G has a violating cycle: If the outer face of F is a cycle, then it is a
violating cycle. If the outer face is a walk, then follow it starting at s, and let v be
the first vertex which repeats. Vertex v must be a cut vertex. Consider the segment
of the walk from v to v. If this segment contains only one other vertex, say u, then u
is a sink, which is a contradiction. Otherwise, we obtain a cycle C from v to v. The
two edges incident with v must be directed away from v, and no other vertex is a sink
on C, so C must be a violating cycle.

The above algorithm can be implemented in linear time (so that each vertex is
involved in no more than a constant number of operations) using data structures no
more complicated than a linked list. We then have Theorem 4.1.

THEOREM 4.1. Given an n-vertex single-source acyclic digraph G and a plane
representation F, the above algorithm tests, in linear time, whether G admits an

296 MICHAEL D. HUTTON AND ANNA LUBIW

x

FIG. 2. Violating cycle precludes Condition 3.1.

upward planar drawing strongly equivalent to F.

5. Decomposition properties of upward planar graphs. This section com-
pletes the discussion of upward planar representations and introduces various decom-
position properties of upward planar digraphs. The purpose is twofold: first, the
properties are necessary for the proofs in the next section; second, they provide an
intuitive look at the structure of upward planar digraphs and hence motivate the
decomposition approach we take in the recognition algorithm.

We begin by completing the proof of Proposition 3.2 from 3.
Proof of Proposition 3.2: Sujficiency. We need that for any planar representation

F of G satisfying Condition 3.3, G admits an upward plane drawing strongly equivalent
to Fmequivalently, that the existence of a violating cycle precludes Condition 3.3 from
holding for some vertex v.

Suppose a violating cycle E exists in G with respect to F. Let Gr be the subgraph
of G formed by edges and vertices inside or on E.

Without loss of generality, G has one source s, which must lie on E. If G
had two sources sl and s2, then both would be on E. Since G has a single source s,
there exist directed paths P1 from s to s and P2 from s to s2. The last edge of each
path is not in G. If either path has a vertex other than its terminal vertex on E,
then adding to E the portion of the path from the last such vertex to the terminal
produces another violating cycle enclosing a larger subgraph with one fewer sources.
Otherwise, P and P2 contain a last common vertex, and adding the portions of the
paths from that vertex to the terminals S and s2 produces another violating cycle
enclosing a larger subgraph with one fewer sources. Thus we can assume that G has
a single source s. The remainder of the proof references Fig. 2.

Starting from s, walk counterclockwise around E. Let x be the first encountered
vertex with both edges of E directed toward x. Let y be the first encountered vertex
after x with both edges of E directed away from y. Note that both exist, although y
may be s. Let P1 be the directed path from s to x, counterclockwise on E, and let
P2 be the directed path from y to x clockwise on E.

Since s is the single source of G, there is a directed path P3 .in G from s to
y. (If y s, then P3 is this single vertex.) P3 cannot contain a vertex of P2 other
than y; otherwise we would get a directed cycle using portions of P2 and P. Let u
be the last vertex of P on P3. Let H be the simple undirected cycle consisting of the
portion of P3 from u to y, the portion of P2 from y to x, and the portion of P1 from

UPWARD PLANAR DRAWING OF SINGLE-SOURCE ACYCLIC DIGRAPHS 297

u to x. Let GII be the subgraph of G formed by edges and vertices inside or on H.
Since E is a violating cycle, x is not a sink in G, so there is an edge (x, z) inside

E and thus inside H. We will show that vertex z violates condition 3.1. Vertex z
cannot be on H; otherwise, a directed cycle is formed. Thus z is strictly inside H.
But all the vertices of H are predecessors of z. Thus z violates condition 3.1.

Note that the results of the preceding two sections, combined with the char-
acterization of Di Battista and Tamassia and the single-source characterization of
Thomassen, give the following theorem.

THEOREM 5.1. The following conditions are equivalent for a single-source DAG
G with planar representation F having a designated outer face and single source s
which is on the outer face:

(i) G has an upward plane drawing strongly equivalent to F.
(ii) G is a (spanning) subgraph of some planar s-t digraph which has an upward

plane drawing strongly equivalent to F (after removal of the extra edges).
(iii) For all v E G, v is a sink on the outer face of
(iv) F does not contain a violating cycle.
We note that condition (iii) is the only one which can obviously be tested in

polynomial time.
In the remainder of this section, we give some operations which preserve upward

planarity. The first operation contracts an edge connected to a vertex of in- (out-)
degree 1. The second attaches one upward planar digraph to another at a single
vertex. The third attaches an upward planar digraph in place of an edge of another
upward planar digraph. The last splits a vertex into two vertices.

First, we will prove a useful preliminary result.
PROPOSITION 5.2. Let G be a connected upward planar digraph. Then G is a

subgraph of some single-source upward planar G* such that all nonsource v V(G)
have the same in-degree in G as in G*.

Proof. We illustrate how to add the edges required to "resolve the extra sources"
without affecting the in-degree of nonsource vertices.

Let F be a drawing of G in the plane bounded by Xmin, Xmax, Ymin and Ymax, with
height h and width w and centred at (0, 0). Without loss of generality, we assume F is
a straight-line drawing. Add new vertices s, t, l, and r at (0,-2h), (0, 2h), (-2w, 0),
and (2w, 0), respectively. Add lines (edges) (s,/), (s, r), (r, t), and (/, t). Add further
edges (s, w) for all vertices w drawn with y-coordinate of Ymin and (w, t) for all vertices
w drawn with y-coordinate of Ymax.

The construction so far. has merely added a specified outer face on the drawing,
with a unique maximum sink and minimum source, so clearly the resulting drawing
F** (digraph G**) is an upward plane drawing (upward planar digraph). We now
wish, for each source x, to "resolve" the source by adding a new edge incident to it;
the resulting digraph will prove our. proposition. Let F be an upward plane drawing
of G, and perform the following operation for each source x, except the one just
added in the outer face. Extend a line L vertically down from x to the first line or
vertex in the drawing. If L first intersects a vertex w, add the (w, x) edge to both G
and the drawing Futhe result is clearly upward planar. If L first intersects an edge,
rotate it along the edge until L hits some vertex w of F and add the edge (w, x) as
before; for one of the two directions, a vertex will be found before the line becomes
horizontal. Neither operation added in-degree to a nonsource vertex, so the claim is
satisfied.

Note that the above is of no particular algorithmic significance, since the drawing

298 MICHAEL D. HUTTON AND ANNA LUBIW

(a) (b)

V V’

(c)
0 e5 (d)eo e5 b4

FIG. 3. Properties of upward planar representation.

of G (or existence thereof) is the goal rather than the input. However, it allows us to
prove the following lemmas in the more general context of upward planar digraphs,
i.e., without the single-source assumption.

LEMMA 5.3. Let G be a DAG and v, dominated by u, be a vertex of G with
in-degree 1. Then G/(u, v) is upward planar if G is upward planar. (See Fig. 3(a).)

Note that the same result holds for G and edge (u, v) with deg+u 1 by sym-
metry. Lemma 5.3 is a generalization of a previously known factnthat G is upward
planar iff any directed subdivision of G is (cf. [24]).

Proof. Let F be an upward plane drawing of G. Applying Proposition 5.2, there
is a single-source digraph G* containing G as a subgraph in which the in-degree
of v is still 1. Clearly if the result holds for G*/(u, v), it holds for any subgraph,
namely G/(u, v), so it will be sufficient to assume G is a single-source digraph for the
remainder of the proof and show Condition 3.3 holds.

Let F be a planar representation for G, with a designated outer face, satisfying
Condition 3.3. Let Fw for w E V be as defined for Condition 3.3. Then F’, formed by
contracting (u, v) in F, is a planar representation for G’ G/(u, v) with a designated
outer face. Clearly if some w v is on the outer face of Fw, it is on the other face
of Fw/(u, v). This, with the fact that G is acyclic, implying Go/(u, v) G for all
w e Y {v} (i.e., P(w) doesn’t change as a result of contracting (u, v)), gives that w
is a sink on the outer face of F--Condition 3.3.

Topologically, this construction can be viewed as "pulling" v and all edges incident
from v down a corridor of width e around (u, v) until u and v meet.

LEMMA 5.4. Let G be an upward planar digraph with a vertex u, and let H be
an upward planar digraph with a single source up. Let G be the digraph formed by
identifying u and u’ in G t3 H. Then G’ is upward planar. (See Fig. 3(5).)

Proof. As above, there is an upward planar single-source digraph G* containing
G by Proposition 5.2, and G is a subgraph of G* t2 H with u and u identified, so it
is sufficient to prove the result for a single-source upward planar G.

Suppose F and FH are the given planar representations, with designated outer
faces, both satisfying Condition 3.3. Let Fv and FH be as defined for Condition 3.3
for G and H, respectively. We show how to construct a planar representation F for
G t_J H (identifying u and uP), with a given outer face, which satisfies Condition 3.3.

UPWARD PLANAR DRAWING OF SINGLE-SOURCE ACYCLIC DIGRAPHS 299

If u is on the outer face of Fv, then place FH in the outer face, identifying u and
u. Otherwise, there are (possibly) k + 1 faces of Fv corresponding to the outer face
of FuG (for k the out-degree of u); insert FH in any one of these faces. It is easy to
show that, under this construction, w is a sink on the outer face of F if it was a sink
on the outer face of FG (respectively, FH) previously. 0

This construction can be viewed as "inserting" the drawing for H into some face
"above" u in the drawing of G.

LEMMA 5.5. Let G be an upward planar digraph with an edge (u, v), and let H
be an upward planar digraph with a single source u and a sink v both on the outer
face. Let G’ be the digraph formed by removing the (u, v) edge of G and adding H,
identifying vertex u with u and vertex v with v. Then G is upward planar.

Proof. This has the same flavour as the previous proof, so we can be more brief.
Again, by Proposition 5.2 it is sufficient to assume that G has a single source. Let Fv
and FH be planar representations, with designated outer faces, satisfying Condition
3.3.

Form a planar representation F of G by replacing (u, v) by FH in F. The result
is planar and has a well-defined outer face. We need that F satisfies Condition 3.3.
As in the previous proof, it is easy to show that w is a sink on the outer face of F
whenever it is a sink on the outer face of F (respectively, Hr). 0

This construction can be viewed as replacing a directed edge in an upward plane
drawing of G with another upward plane drawing of H which is, in some sense,
"topologically equivalent" to an edge within the drawing of G.

LEMMA 5.6. Let G be a DAG which has an upward planar representation where
the cyclic edge order about vertex v is Co,..., ek- (vertices vo,...Vk_l). Let G be
the DAG formed by splitting v into two vertices: v incident with edges e, ej, and
v incident with edges ej+l,..., e_l (i j, arithmetic mod k). Then G is upward
planar. If G has a single source, and i and j are such that each of v and v retains
at least one incoming edge, then the resulting G is also a single-source digraph. (See
F. (d).)

Proof. The last statement is clearly true; no new sources can be added by the
construction, if each new vertex has an incoming edge. Again, it is sufficient to show
the first part for single-source G, since the resulting digraph is otherwise a subgraph of
the construction applied to G* (of Proposition 5.2). Let F be a planar representation
for G satisfying Condition 3.3.

Without loss of generality, assume that the construction does not make v a source
unless v was itself a source. We prove the result for G G + (v, v)--it is easy to
augment F (the planar representation formed by separating v into v and v in F) to
F" with the edge (v, v") because v and v" share a face. The construction of F" from
F preserves planarity and cannot introduce a dicycle; it remains to show Condition
3.3 holds for G and F. The set of faces in F is identical to that of F, save for the
two new faces sharing (v, v"), so Condition 3.3 is satisfied for all w not incident from
either v or v". Any v incident from v or v (via edge e) is clearly on the outer
face ofF whenever it is on the outer face of Fv, since the construction can only add
vertices to an outer face, never remove them. 0

6. Separation into triconnected components. The algorithm of 4 tests for
upward planarity of a single-source DAG G starting from a given planar represen-
tation and an outer face of G. In principle, we could apply this test to all planar
representations of G, but this would take exponential time. In order to avoid this, we
will decompose the digraph into biconnected and then into triconnected components.

300 MICHAEL D. HUTTON AND ANNA LUBIW

u u u u
(a) (b)

FIG. 4. Added complication of two-vertex cut-sets.

Each triconnected component has a unique planar representation (see [2]) and only
a linear number of possible outer faces. We can thus test upward planarity of the
triconnected components in quadratic time using the algorithm of 4. Since we will
perform the splitting and merging of triconnected components in quadratic time, the
total time will then be quadratic.

To decompose G into biconnected components we use the following lemma.
LEMMA 6.1. A DAG G with a single source s and a cut vertex v is upward planar

iff each of the k components Hi of G (with respect to v) is upward planar.
Proof. If G is upward planar, then so are its subgraphs, the Hi’s. For the converse,

note that if v = s, then v is the unique source in all but one of the Hi’s; and if v s,
then v is the unique source in each Hi. Apply Lemma 5.4.

Dividing G into triconnected components is more complicated, because the cut-set
vertices impose restrictive structure on the merged digraph. In the biconnected case,
it is sufficient to simply test each component separately, since biconnected components
do not interact in the combined drawing. The analogous approach for triconnected
components would be to add a new edge between the vertices of the cut-set in each
component, then perform the test recursively. This, however, does not suffice for
upward planarity, as illustrated by the two examples in Fig. 4. (Recall our convention
that direction arrowheads are assumed to be "upward" unless otherwise specified.) In
(a), the union of the digraphs is upward planar, but adding the edge (u, v) to each
makes the second component non-upward-planar. In (b), the digraph is non-upward-
planar, but each of the components is upward planar with (u, v) added.

We will find it convenient to split the digraph G into exactly two pieces at a
separation pair (u, v), where one of these pieces, E, is a component with respect to
the separation pair, and the other piece, F, is the union of the remaining components.
This forces each piece to fit into one face of the embedding of the other piece.

LEMMA 6.2. For G, E, and F as above, let F be a plane embedding of G, and let
rE and FF be the embeddings induced on E and F, respectively. Then in F, all of E
lies in a single face of FF and all of F lies in a single face of FE. Furthermore, at
least one of E, F must lie in the outer face of FF, FE, respectively.

Proof. Any distinct vertices x and y in E, neither being u or v, must share a
path in E which avoids both u and v (lies entirely within E). Hence, for F, a plane
embedding of G, and FE and FF, the respective subembeddings of E and F, if vertices
x and y of E are in different faces of IF, they could not share a path which avoids
both u and v without violating planarity. Clearly, also, one of E, F must have two
vertices on the outer face of the total drawing F (which has at least three vertices)
and hence must lie entirely in the outer face of the other subdrawing.

We will test the upward planarity of a biconnected digraph G by breaking it at a
cut-set into pieces E and F, as above, and looking for upward planar embeddings FE
and FF that fit together as in Lemma 6.2.

UPWARD PLANAR DRAWING OF SINGLE-SOURCE ACYCLIC DIGRAPHS 301

Ms Mt Muv Muvt
FIG. 5. Marker graphs.

We need a face in FE that contains u and v and is the right "shape" to accom-
modate the "shape" of FF; and we need a face in FF that contains u and v and is the
right "shape" to accommodate the "shape" of IE (Figure 4(b) showed an example
where these conditions fail.) These conditions will be enforced by adding a "marker"
connecting u and v to E (F, respectively) that captures the "shape" of lF (IE, re-
spectively) and forces u and v to lie in a common face. For example, the simplest case
is when u is the source and v is the sink of F; then the marker representing FF in E
is a single (u, v) edge.

Besides playing the primary role described above, the markers will also be used to
make the two components 3-connected and single source, thus allowing us to recurse
on smaller subproblems. The markers we are interested in are shown in Fig. 5.

We need one other main idea. The last statement of Lemma 6.2 is that one of E,
F, must lie in the outer face of IF, IE, respectively. For undirected digraphs, this
causes no problem, since any face can be made the outer one. However, for upward
planarity, this condition complicates things. The situation is simplified when s u, v.
In this case, we will take E to be the {u, v} component containing s, and so FE must
lie in the outer face of IF When s E {u, v}, we must do extra work to decide the
"outer" component.

Having determined or decided that FE must lie in the outer face of FF, we know
that u and v must be on the outer face of FF. Thus our algorithm will solve the more
general problem of testing upward planarity under the condition that some specified
set X of vertices, called the "outer" set, must lie on the outer face.

To summarize, given a biconnected digraph G and an "outer" set of vertices X,
we break G at a cut-set {u, v} into one component E, containing s, and the union of
the remaining components F. We add appropriate markers to E and F, specify their
"outer" sets, and recurse. We must prove that G has an upward planar embedding
with its "outer" set on the outer face iff the smaller digraphs do.

The details and proofs of this plan make up the remainder of this section. We
will consider three cases separately: when u and v are incomparable, when u and v
are comparable with s < u < v, and when u and v are comparable with u s.

An important note to make at this time is that the markers, except for Muv, are
subgraphs attached at only two vertices, which means that {u, v} will still constitute
a cut-set. For the purposes of determining cut-sets and making recursive calls, the
markers should be treated as distinguished edges--a single edge labelled to indicate
its role. As long as the type of marker is identified, the algorithm can continue to
treat the vertices of attachment as source, sink, or neither, as appropriate for the
particular operation.

6.1. Cut-set u, v; u and v are incomparable. Here we consider vertex cut-
sets {u, v} which are incomparable (then neither is s). We divide the digraph G
at {u, v} into two subgraphsmthe source component E (the one component which

302 MICHAEL D. HUTTON AND ANNA LUBIW

contains the source s) and the union of the remaining components F.
First, we need some preliminary results.
PROPOSITION 6.3. If G is a connected DAG with exactly two sources u and v,

then there exists some wt such that two vertex-disjoint (except at we) directed paths
+ +u wt and v-o wt exist in G.

Proof. Let G be such a DAG and let P be an undirected path from u to v. Note
that every x in P is comparable with either u or v, otherwise G has more than two
sources. Follow P from u to the first node x (following y on P) incomparable with u
(in G). Then x is comparable with v and (x, y) is an edge in G (otherwise u < x), so

y is also comparable with v. Taking the first common vertex in the paths u y and
+v -- y gives
The following result shows the existence of lower bounds and upper bounds (in

the partial order corresponding to G) under certain conditions. This allows us to
prove the necessity conditions in Theorem 6.5 (to come).

LEMMA 6.4. If G is a biconnected DAG with a single source s, and if u and v are
incomparable vertices in G, then there exists some ws such that two vertex-disjoint

+ +(except at ws) directed paths w8 -- u and ws -- v exist in G. If {u, v} is a cut-set in
G, then there also exists some we such that two vertex-disjoint (except at wt) directed

+ +paths u wt and v we exist in G.
Proof. Since G is a single-source digraph, there exist directed paths from s to u

and s to v in G. Taking the last common vertex in these paths gives w.
For the existence of we, let u and v be an incomparable separation pair of G. Since

{u, v} cuts G into at least two connected components, any nonsource component H
has u and v as its (exactly) two sources, and the result follows from Proposition
6.3.

We are now ready to proceed with the statement of the first main result of the
decomposition.

THEOREM 6.5. Let G be a biconnected directed acyclic digraph with a single
source s, and let X {x} C_ V(G) be a set of vertices. Let {u, v} be a separation
pair of G, with u and v incomparable. Let E be the connected component of G with
respect to {u, v} containing s, and let F be the union of all other components. Then
G admits an upward plane drawing with all vertices of X on the outer face iff

(i) E E to Me admits an upward plane drawing with all vertices of X in E on
the outer face and with we on the outer face if some x E X is contained in F,
and

(ii) F F U Ms admits an upward plane drawing with all vertices of X in F on
the outer face.

Here, as in the remaining cases, the proof will have the same basic flavour. The
necessity of the marker conditions will follow from the existence of the corresponding
marker "within" (i.e., homeomorphic to a subgraph of) the companion component.
The sufficiency will be shown by applying the properties of an upward planar repre-
sentation from 4 to combine upward planar representations for the two subproblems
into a single upward planar representation.

Proof. Necessity. Suppose G admits an upward planar drawing (representation)
F with all x E X on the outer face. Follow Fig. 6.

Since u and v are incomparable, there exists a w and vertex-disjoint directed

paths w--.+ u and ws v in G by Lemma 6.4; specifically, these must be in E if G
has a single source. Then F’ F tO { (ws, u), (ws, v)} is homeomorphic to a subgraph

UPWARD PLANAR DRAWING OF SINGLE-SOURCE ACYCLIC DIGRAPHS 303

ws x3".-

(a) No x’s in F (b) x’s in F

FtG. 6. Merging E and F; cut-set (u, v} is incomparable.

v.Y YY VV
Lemma/ Lemma > 5.1

Ws’" Lemma >
Wt" 5.2 ,,,w 5.4

FtG. 7. Merge construction; {u, v} is incomparable.

of G and hence upward planar itself. F’ can be obtained from G by deleting and
contracting E to its marker--this will not decrease the set of vertices on the outer
face. Thus, since F has all the xi’s of F on its outer face, F’ has an upward planar
drawing with all vertices of X in F on the outer face. We have (ii).

Similarly, there exists some wt in F such that E U { (u, wt), (v, wt)} is homeomor-
phic to a subgraph of G, so E is upward planar. As above, any xi in E and also on
the outer face of F will be on the outer face of the subdrawing formed by FE and the
+ +u wt, v wt paths. By Lemma 6.2, FF must lie entirely within one face of FE, so

if some xi in F is on the outer face of the drawing F, then the portion of the drawing
+ +formed by the u wt and v wt paths (hence wt itself) must be in the outer face of

the subdrawing FE, giving (i).
Sufficiency. Suppose E’ and F’ admit upward planar representations satisfying

(i) and (ii). Identifying the single source ws of F’ and wt in E’ (call the new vertex w)
per Lemma 5.4, the result G’ is upward planar. Splitting w into wt with the leftmost
two vertices and wr with the rightmost two vertices (Lemma 5.6) and contracting the
(w, u) and (w, v) edges (Lemma 5.3) gives exactly G, which is hence upward planar.
The construction is illustrated in Fig. 7.

For the sufficiency of the xi conditions, we notice that all nonmarker vertices of
X on the outer face of the E’ drawing are also on the outer face of the constructed
drawing. If F contains no x, this is sufficient; otherwise, wt being on the outer face
of E’ guarantees that the nonmarker vertices of X in F’ are also on the outer face of
the result.

6.2. Cut-set u, v, where u < v, u s. Here we consider any other vertex
cut-sets not involving the source s. We again divide G into the source component E
and the union of the remaining components F. Note that v can be a source in E as
long as there is a u to v path in F.

304 .MICHAEL D. HUTTON AND ANNA LUBIW

An additional preliminary result will be useful.
LEMMA 6.6. If G is a biconnected DAG with a single source s and cut-set {u, v},

where u < v in G and u s, then in any nonsource component H of G with respect
to {u, v}, where deg+v > O, there exists some wt such that u +-, wt and v +- wt are
vertex-disjoint directed paths in H.

Proof. No vertex other than u and v can be a source in H, otherwise G has more
than one source; and u is always a source in H. If v is .also a source, then we are done
by Proposition 6.3.

If v is not a source, let w E H be a vertex dominated by v. G is biconnected,
so there are two vertex-disjoint u + w undirected paths in G. But u and v are cut
vertices in G, so at least one of the paths P lies completely within H and does not
contain v (since w is in H and the only exit points from H are u and v). Every x
on P is comparable with either u or v, or else G has more than one source. Find

the last vertex y on P which has a u y path (in G) without v. If y w, then we

are done. Otherwise, the vertex x following y on P has any u x path necessarily
going through v. Then there exist directed paths v x and u +-% x with the latter not
containing v, so the first common vertex on these paths provides a wt.]

We can now continue with the second main result of the decomposition.
THEOREM 6.7. Let G be a biconnected directed acyclic digraph with a single

source s, and let X {xi} C_ V(G) be a set of vertices. Let {u, v} be a separation
pair ofG with u < v in G and u s. Let E be the source component ofG with respect
to {u, v} and F be the union of all other components. Then G admits an upward plane
drawing with all vertices of X on the outer face iff

(i) E’ (E U F-marker) admits an upward plane drawing with all vertices of Z
in E on the outer face and wt (if it exists; otherwise the edge (u, v)) on the
outer face if some x X is contained in F, and

(ii) F’ (F E-marker) admits an upward plane drawing with wt (if it exists;
otherwise the edge (u, v)) and all vertices of X in F on the outer face,

where

F-marker Muv
Muvt

if v is a source in F,
if v is a sink in F,
otherwise,

and

E-marker if v is a source in E,
otherwise.

Proof. Necessity. Suppose G admits an upward plane drawing with all xi X on
the outer face. Follow Fig. 8.

Necessity of condition (i). If v is a source in F, then there exists some wt in F
and vertex-disjoint paths u wt and v wt by Proposition 6.3; so E E Mt is
homeomorphic to a subgraph of G and is upward planar. If v is a sink in F, then u
is the single source of F, since only u and v are possible sources. Thus, in F, there is

a path u v, so E E (2 Mv is homeomorphic to a subgraph of G and is upward
planar. If v is neither a source nor a sink in F, then, by Lemma 6.6, there is also some

+ in G. Since v is a nonsource inwt > v and disjoint directed paths u wt and v wt
F, there is also a u v path in F. This path crosses the u wt path at some latest

UPWARD PLANAR DRAWING OF SINGLE-SOURCE ACYCLIC DIGRAPHS 305

U

source in F (b) v a sink in F, nonsource in E

(c) v a sink in F, source in E (d) v a nonsource/sink in F, source in E

F’ E’

(e) v a nonsource/sink in F, nonsource in E

FIG. 8. Merging E and F; cut-set {u, v} and u < v.

vertex z on that path, so E U (u z) (z v) t2 (z wt) (v wt) is a subgraph
of G and hence upward planar. Note that these four paths are disjoint. Since z has
in-degree 1, we can contract the u z path to u without destroying upward planarity,
by Lemma 5.3, so E t3 {(u, v), (u, wt), (v, wt)} has an upward planar subdivision and
is upward planar itself. By Lemma 6.2, F lies in a single face of FE, so no other
vertices lie inside the u, v, wt triangle, and the extra edges and vertex for Muvt can be
added without destroying planarity.3 If some x is in F, then by the same argument
as Theorem 6.5, all of F must be in the outer face of FE. The marker, hence wt or
the (u, v) edge as appropriate, is therefore in the outer face of the drawing induced
by E on F.

Necessity of condition (ii). If v is a source in E, then by Proposition 6.3, there

are vertex-disjoint paths s wt and v + wt in E. There must be an s u path
in E, otherwise there is either a second source (u is a source in F, so it cannot

3 The point of adding these edges is to fix the face in E for the sufficiency conditions.

306 MICHAEL D. HUTTON AND ANNA LUBIW

also be a source in E) or a cycle in G (u < v in G, so there can be no v u
+ +directed path in E). Let z be the last vertex common to paths s u and s wt.

Then F U {(z, u), (z, wt), (v, wt)} is homeomorphic to a subgraph of G and is upward
planar. Since deg-u 1 (in this digraph), the edge (z, u) can be contracted without
destroying upward planarity, by Lemma 5.3, and F F Mt is upward planar.

Otherwise (v a nonsource), if u < v in E, then F F 2 Muv is homeomorphic
to a subgraph of G and hence is upward planar. If u and v are incomparable in E,
then they share a greatest lower bound w, by Lemma 6.4, and F t2 { (Ws, u), (w, v)}
is upward planar. Again, deg-u 1 in F, so the (w, u) edge can be contracted to
give F F Muv.

The requirement for the E-marker to be on the outer face of F induced by F
follows as before. FE lies entirely within one face of FF, and this is necessarily the
outer face since E contains the source s.

Sufficiency. Suppose E and F admit upward plane drawings meeting the re-
quirements (i) and (ii).

Case 1" v is a source in F. (See Fig. 8(a).) If v is a source in F, it cannot
at the same time be a source in E, since u < v in either E or F. Thus F
F (u, v) is upward planar with single source u. Using Lemma 5.4, add F (with
u and v renamed as u and v) to E, identifying u with wt. We can do this so
that edges (v, wt) and (wt, v’) are consecutive in the cyclic order about wt. Using
Lemma 5.6, split wt by making these two edges incident with a new vertex ul and
the remaining edges incident with a new vertex u2. Now v and ul have in-degree 1,
so use Lemma 5.3 to contract their in-edges, thus identifying v and v. Vertex u2 has
in-degree 1, so contract (u, u2). The result is the digraph G, and thus G is upward
planar.

Case 2: v is a sink in F. (The two possibilities are illustrated in Fig. 8(b) and
(c).) If v is a nonsource in E, then F F t2 (u, v) is upward planar with u and v
on the outer face by assumption. If v is a source in E, then F F t2 Mt is upward
planar with wt on the outer face. In either case, F is upward planar with single source
u and sink v on the outer face. By Lemma 5.5, we can add F to E in place of the
(u, v) edge in E, and the result, G, is upward planar.

Case 3" v is a nonsource/sink in F. (See Fig. 8(d).) Suppose v is a source in
E. Then F F Mt is upward planar with the sink wt on the outer face. Using
Lemma 5.5, add F (renaming u and v to u and v respectively) to E in place of the
edge (u, v), identifying u’ with u and wt with v. Throw away the edge (u, wt) and the
remaining marker edges of E’. Vertex v now has in-degree 1, so the edge (v, v) can
be contracted by Lemma 5.3, and the result, G, is upward planar. Note that the Mt
marker attached to E is stronger than we actually require here (M. would do), but
it necessarily does exist (as previously proven) and is needed for the next part of this
case.

Suppose then that v is a nonsource in E. Consider the upward planar represen-
tation of E and throw away the marker edges, save for (u, wt), (v, wt), and (u, v),
which then form a face. F F (u, v) is upward planar with u and v on the outer
face. Let z be some sink on the outer face, and add the edge (v, z) to obtain F,
upward planar with u, v, and z on the outer face. Using Lemma 5.5, add F (with u
and v renamed to u and v’) toE’ in place of the edge (u, wt), identifying u with u
and z with wt. Do this so that v’ and v share the face of edges (u, v’), (v’, z), (u, v),
and (v, z). Clearly, we can now identify the vertices v and v. We obtain an upward
planar digraph containing G as a subgraph. See Fig. 8(e).

UPWARD PLANAR DRAWING OF SINGLE-SOURCE ACYCLIC DIGRAPHS 307

As in the proof of Theorem 6.5, we notice that all vertices on the outer face of
E are necessarily on the outer face of the combined drawing, and if some x exists in
F, then it is on the outer face of F and is forced to the outer face of the combined
drawing by the second part of condition (i).

6.3. Cut-set s, v. As mentioned in the introduction to 6 (see also Lemma 6.2),
it is important to be able to distinguish the "inner" and "outer" components. The
inner component will be embedded in a face of the outer one, and thus the inner
component will have to have the marker on its outer face since this marker is a proxy
for the outer component. If we have to check each component as a potential inner
component, we must recursively solve two subproblems for each component, and an
exponential-time blowup results.

Until now, the outer component has been uniquely identified as the source compo-
nent, since that component cannot lie within an internal face of any other component.
If we have a cut-set of the form {s, v}, where s is the source, then we lose this restric-
tion, so we handle it instead by requiring one of the components, E, to be 3-connected,
so that deciding if it can be the inner face does not require recursive calls. To decide
if E can be the inner face, we need to test if it satisfies the role of E in the previous
theorem--i.e., has an upward planar representation with the marker on its outer face.
This can be done in linear time using the algorithm of 4. If G has only cut-sets of the
form {s, v}, then for at least one such cut-set, one of the components will be tricon-
nected. Given the list of cut-sets, we can find such a cut-set and such a component
in linear time using a depth-first search.

We capture these ideas in terms of two theorems. One is applicable if the tri-
connected component, E, can be the inner component, and one if it cannot. E "can
be" the inner component iff it satisfies the same conditions that the inner component
F satisfied in the previous Theorem 6.7. The similarity of both of these theorems
to Theorem 6.7 should be clear. Note that in the statement of these theorems, we
continue to use u (redundant since u s) for consistency with previous usage.

THEOREM 6.8. Let G be a biconnected DAG with a single source s, and let
X {x} C_ V(G) be a set of vertices. Let {u, v} be a separation pair of G where
u s, E be a 3-connected component of G with respect to {u, v}, and F be the union

of all other components of G with respect to {u, v}. If
E’ (E U F-marker) admits an upward plane drawing with wt (if it exists;
otherwise the edge (u, v)) and all vertices of X in E on the outer face,

then G admits an upward plane drawing with all vertices of X on the outer face iff
(i) F’ (F E-marker) admits an upward plane drawing with all vertices of

Z in F on the outer face, and wt (if it exists; otherwise the edge (u, v)) also on the
outer face if some x E X contained in E,
where

M if v is a source in E,
E-marker Muv if v is a sink in E,

Mvt otherwise,

and

F-marker Mv
if v is a source in F,
otherwise.

Proof. The proof is similar to the necessity of Theorem 6.7 with some (simplifying)
modifications. We will be more brief except where differences exist.

308 MICHAEL D. HUTTON AND ANNA LUBIW

Necessity. Suppose G has an upward planar representation F with all xi’s on the
outer face, and that some upward planar representation FE, satisfies the precondition
for E. We need to show that the condition (i) holds.

+If v is a source in E, then there exist vertex disjoint paths u wt and v wt
in E by Proposition 6.3, so F F U Mt is homeomorphic to a subgraph of G and

+hence upward planar. If v is a sink in E, then u is the only source, so u v exists
in E and F F U Muv is upward planar. Otherwise, v is neither and there exist

+ and u +-. wt paths in E by Lemma 6.6 and the factvertex-disjoint u v, v wt,
that u s is the single source in E, so F’ F U {(u, v), (u, wt), (v, wt)} is upward
planar. Since these three edges are a face in the representation of this digraph, the
required extra edges and vertices can be added and the result is upward planar. The
necessity of the x conditions follows as before, since if some vertex of E is required
on the outer face, then all of E is.

Sufficiency. The sufficiency proof is exactly that of Theorem 6.7. This is because
the various constructions are not dependent on u differing from s. [:l

THEOREM 6.9. Let G be a biconnected DAG with a single source s and let X
{xi} C_ V(G) be a set of vertices. Let {u, v} be a separation pair of G where u s,
E be a 3-connected component of G with respect to (u, v}, and F be the union of all
other components of G with respect to (u, v}. If it is not true that

E* (E F*-marker) admits an upward plane drawing with ws (if it exists;
otherwise the edge (u, v)) and all vertices of X in E on the outer face,

where

if v is a source in F,
F* -marker Mv otherwise,

then G admits an upward plane drawing with all vertices of X on the outer face iff
(i) there is no x E X contained in F,
(ii) F’ (F E-marker) admits an upward plane drawing with ws (if it exists;

otherwise the edge (u, v)) on the outer face, and
(iii) E’ (E 2 F-marker) admits an upward plane drawing with all x X on the

outer face,
where

Mr if v is a source in E,
E-marker Muv otherwise,

and
Ms if v is a source in F,

F-marker Muv if v is a sink in F,
Muvs otherwise.

Proof (outline). Since E has no upward plane drawing with u and v both appro-
priately on the outer face, by Lemma 6.2, the only way G could be upward planar is if
F can be embedded within an internal (hence the new condition (i)) face of E. Thus
the outer face of G is fixed as being some face of the drawing of E not containing v.
It remains to ensure that there is some embedding of F which will fit the structural
constraints of the shape of a face shared by s and v in the drawing of E. These are
exactly the conditions previously required by E for embedding within the drawing
of F. The remainder of the proof does not rely on the triconnectedness of either
component, and it is similar to the proof of Theorem 6.8 with the roles of E and F
reversed. [:]

UPWARD PLANAR DRAWING OF SINGLE-SOURCE ACYCLIC DIGRAPHS 309

6.4. The algorithm, Here we briefly summarize our algorithm and discuss its
complexity.

Given DAG G, we first isolate biconnected components using the algorithm dis-
cussed in [23]. By Lemma 6.1, these can be tested independently. This step requires
(n) time, plus the time to test each piece independently.

For a biconnected DAG G, we use the triconnected components algorithm of [13]
to find a list of separation pairs which breaks G into triconnected components ((n)
time). This list can be rearranged in linear time so that separation pairs involving
the source appear last.

For each cut-set (u, v} where u = s, isolate the source component using depth-
first search ((n) time), apply the appropriate theorem (6.5 or 6.7) to add markers
and partition X, then recurse. The required time is given by

T(n) T(k) - T(n k) -}- O(n) (k >_ 1),

which is O(n2), assuming we can do the base case on the smaller tri.connected digraphs
in O(n2) time.

Given a biconnected G with cut-set (s,v}, isolate a triconnected component
(again with DFS) as E, and test, using the algorithm of 4, to see if has an up-
ward plane embedding as specified in Theorem 6.8; this requires only O(n) time,
since a triconnected digraph has at most two embeddings with two specified vertices
on the outer face. If E passes, continue with testing F as per Theorem 6.8. Otherwise,
the operation is absorbed into the O(n) term in the recurrence above, and we apply
Theorem 6.9, forcing F to have u and v on the outer face. The previous recurrence
and bound apply to this step.

Given a triconnected G, simply apply the algorithm of 4 to all possible outer
faces and test for upward planarity in O(n2) time.

If we wish to output our G embedded into a planar s-t digraph (for drawing), we
must find the necessary set of augmenting edges. This can be done by simply running
the final upward planar representation through the algorithm of 4.

The entire algorithm operates in. O(n2) time, and correctness follows from the
cited results. We have the following theorem.

THEOREM 6.10. Testing a single-source acyclic digraph for upward planarity,
and outputting an upward planar representation when it exists, can be done in O(n2)
time.

7. Conclusions and further Work. We have given a linear-time algorithm to
test whether a given single-source digraph has an upward plane drawing strongly
equivalent to a given plane drawing and to give a representation for this drawing if
it exists. This provides, in combination with .the decomposition results of 5 and
6, an efficient O(n2) algorithm to test upward planarity of an arbitrary single-source
digraph. We have also given a combinatorial characterization of single-source upward
planar digraphs which provides new insights into their structure.

A lower bound for the single-source upward planarity problem is not known,
although we believe that it may be possible to perform the entire test in subquadratic
(perhaps linear) time. An obvious extension of this work would be to find such an
algorithm or prove a lower bound.

This paper has concentrated on the issues of efficiently testing for an upward plane
drawing. However, with the planar representation which results, we can augment the
digraph to a planar s-t digraph with our algorithm of 4, then apply the algorithm
of Di Battista and Tamassia to generate an actual drawing in O(n) arithmetic steps,

310 MICHAEL D. HUTTON AND ANNA LUBIW

or O(n log n) arithmetic steps for a straight-line drawing [7]. Since an actual drawing
must specify physical coordinates for the vertices, it becomes relevant to ask how big
the integer grid must be or, equivalently, how much real precision is required. If bends
are allowed, an O(n)-by-O(n) grid suffices [7], similar to the case of undirected planar
graphs [4], [20]. There is no upper bound known on the worst-case size requirement for
straight-line upward plane drawings, but Di Battista, Tamassia, and Tollis [8] have
exhibited a class of upward planar digraphs requiring an gt(2n)-sized integer grid.
Thus, any straight-line drawing algorithm is output sensitive--individual coordinates
could require t(n) bits, causing the output size to dominate the arithmetic time.
Without an upper bound on the required area, it is not known if the drawing algorithm
remains polynomial time--any digraph requiring doubly exponential coordinate size
would then need exponential time. It would be interesting to characterize some classes
of digraphs which permit straight-line upward plane drawings on a polynomially sized
grid. Guaranteeing minimum area in all cases is, however, NP-hard [9].

The more general problem, testing upward planarity of an arbitrary acyclic di-
graph, has recently been shown to be NP-complete [12]. Another recent development
by Bertolazzi and Di Battista [1] shows how to efficiently test a triconnected (multi-
source, multisink) DAG for upward planarity, a more general analogue of the result
in 4.

REFERENCES

[1] P. BEITOLAZZI AND G. Di BATTISTA, On upward drawing testing of triconnected digraphs, in
Proc. 7th ACM Symposium on Computational Geometry, 1991, pp. 272-280, Tech. report
RAP.18.90, Dipartimento di Informatica e Sistemistica, Universit degli Studi di Roma
"La Sapienza," 1991.

[2] J. A. BONDY AND U. S. R. MUITY, Graph Theory with Applications, MacMillian, New York,
1976.

[3] K. S. BOOTH AND G. S. LUEKER, Testing the consecutive ones property, interval graphs, and
graph planarity using PQ-tree algorithms, J. Comput. System Sci., 13 (1976), pp. 335-379.

[4] H. DE FIAYSSEIX, J. PACH, AND R. POLLACK, Small sets supporting Fdry embeddings of
planar graphs, in Proc. 20th ACM Symposium on the Theory of Computing (STOC),
1988, pp. 426-433.

[5] G. DI BATTISTA, P. EADES, R. TAMASSIA, AND I. G. TOLLIS, Algorithms for drawing
graphs: An annotated bibliography, preprint, Department of Computer Science, Brown
University, Providence, RI, 1993; ongoing version available via anonymous ftp from
ftp. cs. brown, edu: pub/papers/compgeo/, gdbiblio, rex. Z, and gdbiblio,ps. Z.

[6] G. DI BATTISTA, W. LIU, AND I. RIVAL, Bipartite graphs, upward drawings, and planarity,
Inform. Process. Lett., 36 (1990), pp. 317-322.

[7] G. DI BATTISTA AND R. TAMASSIA, Algorithms for plane representations of acyclic digraphs,
Theoret. Comput. Sci., 61 (1988), pp. 175-178.

[8] G. DI BATTISTA, R,. TAMASSIA, AND I. G. TOLLIS, Area requirement and symmetry display of
planar upward drawings, Discrete Comput. Geom., 7 (1992), pp. 381-401.

[9] D. DOLEV, F. T. LEIGHTON, AND H. TRICKEY, Planar embedding of planar graphs, in Ad-
vances in Computing Research, Vol. 2, F. P. Preparata, ed., JAI Press Inc., Greenwich,
CT, 1984, pp. 147-161.

[10] I. FAirY, On straight line representations ofplanar graphs, Acta. Sci. Math. (Szeged), 11 (1948),
pp. 229-233.

[11] I. S. FILOTTI, G. L. MILLER, AND J. REIF, On determining the genus of a graph in O(vO(g))
steps, in Proc. llth ACM Symposium on the Theory of Computing (STOC), 1979, pp. 27-
37.

[12] A. GARG AND R. TAMASSIA, On the computational complexity of upward and rectilinear pla-
narity testing, Tech. report CSo94-10, Department of Computer Science, Brown University,
Providence, RI, 1994.

[13] J. HOPCI:tOFT AND R. E. TAIJAN, Dividing a graph into triconnected components, SIAM J.
Comput., 2 (1972), pp. 135-158.

UPWARD PLANAR DRAWING OF SINGLE-SOURCE ACYCLIC DIGRAPHS 311

[14] J. HOPCROFT AND R. E. TARJAN, Ej:ficient planarity testing, J. Assoc. Comput. Mach., 21
(1974), pp. 549-568.

[15] M. D. HUTTON, Upward planar drawing of single source acyclic digraphs, Master’s thesis,
University of Waterloo, Waterloo, ON, Canada, 1990.

[16] M. D. HUTTON AND A. LUBIW, Upward planar drawing of single-source acyclic digraphs, in
Proc. 2nd ACM-SIAM Symposium on Discrete Algorithms (SODA), 1991, pp. 203-211.

[17] D. KELLY, Fundamentals of planar ordered sets, Discrete Math., 63 (1987), pp. 197-216.
[18] D. KELLY AND I. RIVAL, Planar lattices, Canad. J. Math., 27 (1975), pp. 636-665.
[19] C. R. PLAIT, Planar lattices and planar graphs, J. Combin. Theory Ser. B, 21 (1976), pp. 30-

39.
[20] W. SCHNYDER, Embedding planar graphs on the grid, in Proc. 1st ACM-SIAM Symposium on

Discrete Algorithms (SODA), 1990, pp. 138-148.
[21] S. K. STEIN, Convex maps, Proc. Amer. Math. Soc., 2 (1951), pp. 464-466.
[22] E. STEINITZ AND n. RADEMACHER, Vorlesungen iiber die Theorie de Polyeder, Julius Springer,

Berlin, 1934.
[23] R. E. TARJAN, Depth-first search and linear graph algorithms, SIAM J. Comput., 1 (1972),

pp. 145-159.
[24] C. THOMASSEN, Planar acyclic oriented graphs, Order, 5 (1989), pp. 349-361.
[25] W.T. TUTTE, Convex representations of graphs, Proc. London Math. Soc., 10 (1960), pp. 304-

320.
[26] K. WAGNER, Bemerkungen zum vierfarbenproblem, Jahresber. Deutsch. Math.-Verein., 46

(1936), pp. 26-32.
[27] W. T. TROTTER, Ed., Planar Graphs, DIMACS Series in Discrete Mathematics and Computer

Science, Vol. 9, American Mathematical Society, Providence, RI, 1993, pp. 41-57.

SIAM J. COMPUT.
Vol. 25, No. 2, pp. 312-339, April 1996

() 1996 Society for Industrial and Applied Mathematics
OO6

AN EFFICIENT PARALLEL ALGORITHM FOR THE GENERAL
PLANAR MONOTONE CIRCUIT VALUE PROBLEM*

VIJAYA RAMACHANDRAN* AND HONGHUA YANG*

Abstract. A planar monotone circuit (PMC) is a Boolean circuit that can be embedded in the
plane and that contains only AND and OR gates. Goldschlager, Dymond, Cook, and others have
developed NC2 algorithms to evaluate a special layered form of a PMC. These algorithms require
a large number of processors ((n6), where n is the size of the input circuit). Yang and, more
recently, belcher and Kosaraju have given NC algorithms for the general planar monotone circuit
value problem. These algorithms use at least as many processors as the algorithms for the layered
case.

This paper gives an efficient parallel algorithm that evaluates a general PMC of size n in polylog
time using only a linear number of processors on an exclusive read exclusive write parameter random-
access machine (EREV PRAM). This parallel algorithm is the best possible to within a polylog
factor and is a substantial improvement over the earlier algorithms for the problem. The algorithm
uses several novel techniques to perform the evaluation, including the use of the dual of the plane
embedding of the circuit to determine the propagation of values within the circuit.

Key words, circuit value problem, planar monotone circuit, plane graph, dual graph, parallel
algorithm, CREW PRAM

AMS subject classifications. 68Q10, 68Q15, 68Q20, 68Q22, 68Q25, 68R10, 05C10

1. Introduction. A Boolean circuit is a directed network of AND, OR, and
NOT gates whose wires do not form directed cycles. The problem of evaluating a
Boolean circuit, given the values of its inputs, is called the circuit value problem
(CVP). This is a central problem in the area of algorithms and complexity. Ladner
[16] has shown that CVP is P-complete under log space reductions. Some special
cases of CVP have been studied, among which the monotone circuit value problem,
where the Boolean circuit has only AND and OR gates, and the planar circuit value
problem, where the Boolean circuit has a plane embedding, have been shown to be
P-complete by Goldschlager [9].

A planar monotone circuit (PMC) is a Boolean circuit that is both planar and
monotone. One interesting special case of CVP is the planar monotone circuit value
problem (PMCVP), which is the problem of evaluating a PMC. In this paper, we give
an efficient parallel algorithm for the PMCVP that runs in polylog time using a linear
number of processors. The parallel computation model we use here is the exclusive
read exclusive write parameter random-access machine (EREW PRAM) model [14].

Here is a summary of earlier results for the PMCVP. Goldschlager [7], [8], Dymond
and Cook [4], and Mayr [17] have shown that the problem of evaluating a special
layered form of PMC is in NC2. The first NC algorithm for the general PMCVP was
given by Yang [24]; this algorithm runs in O(log3 n) time on an EREW PRAM and
uses the straight-line code parallel evaluation technique of Miller, Ramachandran, and
Kaltofen [18]. Recently, belcher and Kosaraju [3] have given another NC algorithm
for the general PMCVP that runs in O(log4 n) time using a polynomial number of
processors on a concurrent read exclusive write (CREW) PRAM. All of the algorithms

Received by the editors November 22, 1993; accepted for publication (in revised form) August
29, 1994. This work was supported in part by Texas Advanced Research Projects grant 003658480
and NSF grant CCR 90-23059. An extended abstract of this work appears in [21].

Department of Computer Sciences, University of Texas at Austin, Austin, TX 78712-1188
(vlr@cs.utexas.edu, yanghh@cs.utexas.edu).

312

EFFICIENT PARALLEL PLANAR MONOTONE CIRCUIT VALUE 313

listed above use a large number of processors (at least gt(n6), where n is the size of
the input circuit).

In earlier work (Ramachandran and Yang [20]), we gave an O(log2 n)-time EREW
PRAM algorithm using a linear number of processors to evaluate a layered PMC. The
algorithm we present in this paper, when restricted to evaluate a layered PMC, works
with the same processor-time bounds as the one in [20]. However, it is substantially
different in that it works on a plane embedding of the PMC and its dual graph instead
of exploiting a nice layered structure as in [20]. In one sense, our algorithm can be
considered to be simpler than the one in [20], since our new approach allows us to
eliminate some tedious case analysis used in [20]. Our algorithm uses some ideas
from [20] as well as from [24] and [3]. In the highest level of our algorithm, we use
an approach similar to that used in [3] to transform a general PMC into "face f
induced subcircuits" (using the terminology of [24]mthese circuits are called "focused
circuits" in [3]). These subcircuits are then evaluated using an algorithm to evaluate
a "one-input-face PMC." The major contribution of our paper is our efficient parallel
algorithm to evaluate a one-input-face PMC, which is a PMC, not necessarily layered,
all of whose input nodes are on the boundary of one face.

The rest of this paper is organized as follows. In 3, we present our algorithm to
evaluate a one-input-face PMC. The treatment in 3 is self-contained and does not
depend on any result in [20]. In 4, we give an algorithm that runs in polylog time
using n processors on an EREW PRAM for evaluating a face f induced subcircuit
given a special type of an input assignment. This algorithm works by recursively
applying the algorithm for evaluating a one-input-face PMC. Finally, in 5, we give
an algorithm that runs in polylog time using n processors on an EREW PRAM for
solving the general PMCVP by recursively applying the algorithm for evaluating a
face induced subcircuit.

Our results are of interest for several reasons. In designing our efficient parallel
algorithm for the PMCVP, we have developed a variety of efficient parallel algorithms
for processing planar directed acyclic graphs (DAGs), especially the technique of
working on the dual of a planar DAd. (Other examples of algorithmic techniques based
on the dual of a plane embedding can be found in [22], [13].) These tools are likely to
be of use in algorithms for other problems on planar directed graphs. Our results are
of interest in the context of parallel complexity, since all of the earlier algorithms for
the PMCVP used indirect methods, such as the relationship between sequential space
and parallel time [1] or the parallel evaluation of straight-line code [18], to place the
problem in NC. By using direct techniques, we are not only able to place the problem
in NC but are also able to obtain a very efficient algorithm for its solution. Finally, the
evaluation of circuits is a basic and important problem in computer science. Planar
circuits occur very naturally in the design of integrated circuits, and the requirement
that the circuit be monotone is not a restriction if the inputs are available together
with their complements. Thus our efficient parallel algorithm for the evaluation of
planar monotone circuits could be of practical importance.

2. Preliminaries.
DEFINITION 2.1. A face of a plane graph C (V, E) is a maximal portion of the

plane for which any two points may be joined by a curve such that each point of the
curve neither corresponds to a vertex of C nor lies on any curve corresponding to an
edge of C. The boundary of a face f in C consists of all those points x corresponding
to vertices and edges of C having the property that x can be joined to a point of f by

314 VIJAYA RAMACHANDRAN AND HONGHUA YANG

a curve, all of whose points different from x belong to f. (By this definition, a single
edge in f belongs to the boundary of f.)

DEFINITION 2.2. An embedded planar monotone circuit (PMC) is a plane DAG
C (V, E), where

(i) V is the set of gates (or vertices) in the PMC consisting of input nodes,
AND gates, and OR gates,

(ii) E is the set of directed wires (or edges) in the PMC,
(iii) the fan-in (or in-degree) of an input node is 0 and of an AND or OR gate

is either 1 or 2, and C may have input nodes that are in different faces,
(iv) the fan-out (or out-degree) of an output gate is O, and of other gates is

nonzero, and C may have more than one output gate, but all output gates of C are in
the same face.

In the rest of the paper, whenever we use the term PMC, we should assume that
the PMC is given with an embedding. In case an embedding is not given, we can
use the algorithm in Ramachandran and Reif [19] to obtain one. We assume that the
plane embedding of a PMC C is given by its combinatorial definition: a clockwise
cyclic ordering of edges incident on each vertex in C, and a counterclockwise cyclic
ordered sequence of vertices and edges go, e0, gl, el,..., gk-1, ek-1 on the boundary
of a face in C such that for any i, 0 _< i _< k- 1, the edges ei_l and ei are incident on
vertex gi and ei-1 appears immediately before ei in the cyclic ordering of the edges
incident on gi.

DEFINITION 2.3. A complete input assignment to a PMC is an assignment of
values 0 or 1 to all input nodes in the PMC. A partial input assignment to a PMC is
an assignment of values 0 or 1 to a subset of the input nodes in the PMC. An input
node that is not assigned a value in a partial input assignment has an unknown value.
(A complete input assignment is a special case of a partial input assignment.)

DEFINITION 2.4. The partial evaluation problem of a PMC is the problem of
evaluating the value of every gate in the PMC that can be evaluated, given a partial
input assignment to the PMC. The gates in a PMC that cannot be evaluated under
a partial input assignment have unknown values. A PMC is completely evaluated if
the value of every gate in it is either 0 or 1, and it is partially evaluated otherwise.
The PMCVP is the problem of completely evaluating a PMC, given a complete input
assignment to the PMC.

A one-input-face PMC we define below is a PMC with the following differences:
(i) It is a restriction of a PMC in that all of its input nodes are on the boundary of
a single face. (ii) It is a generalization of a PMC in that it may contain pseudowires,
which are wires that carry no value. Our algorithm may need to add pseudowires in
a PMC during the computation in 3.2.

DEFINITION 2.5. A one-input-face PMC C is a variant of a PMC with the
following properties.

1. C is a plane DAG consisting of input nodes, AND gates, and OR gates.
2. All input nodes of C are on the boundary of a single face fI. The in-degree

of an input node is 0 and of an AND or OR gate is either 1 or 2.
3. A gate in C with out-degree 0 is called an output gate. The out-degree of

other gates or input nodes is nonzero. C may have more than one output gate, but
all output gates of C are on the boundary of a single face fo.

4. If fx and fo are identical, then the input nodes and the output gates of C
may not interlace, i.e. there exists a part of the boundary of fx which contains all

EFFICIENT PARALLEL PLANAR MONOTONE CIRCUIT VALUE 315

input nodes but no output gates.
5. Some of the gates in C may contain a single output wire that does not carry

any value and that goes into a two-input gate (note that such a gate with a single
output wire that does not carry any value is not an output gate). We call a wire that
does not carry any value a pseudowire. Further, a two-input gate g may receive at
most one input from a pseudowire, and the value of g only depends on its nonpseudo
input wire(s).

We will give a recursive algorithm in 3 that evaluates a one-input-face PMC of
size n in O(log2 n) time using n processors on an EREW PRAM, where properties
(4) and (5) in Definition 2.5 are needed after the first level of recursion.

DEFINITION 2.6. Reach(il,... ,ik) for some input nodes il,... ,ik in a PMC is
the part of the PMC that is reachable from i,..., ik. Given a subcircuit P of a PMC,
Reach(P) is defined to be the part of the circuit reachable from the input nodes in
P. Induced(i,...,ik) for some input nodes il,...,i that are on the boundary of
a single face f (where il,...,ik need not be all the input nodes of f) in a PMC C
is Reach(i,... ,ik) augmented with a new input node set VIN and a wire set FIN,
which are formed as follows: if a gate x E C\ Reach(i,..., i) has some output wires
(x,y), (x, y2),..., (z, yt), (1 >_ 1), pointing to gates y,y2,... ,Yt in Reach(il,... ,i),
then we add a new input node ix to VIN and wires (ix, y), (ix, Y2),..., (ix, yt) to FIN.
We call such Induced(i,..., i) a face f induced (sub)circuit.

It is easy to see that a face f induced circuit is still a PMC. A face f induced
circuit Cf is not necessarily a one-input-face PMC, since the newly added input nodes
can appear in faces other than f in Cf. But CI is still simpler than a general PMC in
the sense that all gates in C, except the newly added input nodes are reachable from
some input nodes on the boundary of face f, and once the values of the new input
nodes are known, CI can be transformed into a logically equivalent one-input-face
PMC. We give an algorithm in 4 that partially evaluates a face induced circuit of
size n given a special input assignment, in polylog(n) time using n processors on an
EREW PRAM, by recursively calling the algorithm for evaluating a one-input-face
PMC. In 5, we give an algorithm that completely evaluates a general PMC of size
n in polylog(n) time using n processors on an EREW PRAM, by recursively calling
the algorithm for partially evaluating a face induced circuit, given a special input
assignment.

3. The one-input-face PMC. We first consider the problem of completely
evaluating a one-input-face PMC C given a complete input assignment. This treat-
ment appears in 3.1-3.3. We then solve the problem of partially evaluating a one-
input-face PMC in 3.4. Our approach is to first find a set of gates in C that are
guaranteed to have value 1 and then recursively evaluate the remaining smaller un-
evaluated subcircuits of C. In an earlier paper [20], we had considered a special case
of a one-input-face PMC, namely, a layered PMC (as mentioned in the introduction).
In a layered PMC, a sequence of gates with value 1 at one layer guarantees that a
sequence of gates at the next layer will have value 1. The left and the right boundaries
of the gates with value 1 are defined by the starting gate and the ending gate of the
sequence at each layer, respectively. In a one-input-face PMC C that does not have
the layered property, we do not have such a simple correspondence. In the treatment
below, we work with the dual of a plane embedding of C and define the left and right
boundaries of the gates with value 1 in a manner that allows us to determine the
propagation of the 1 values through the circuit.

316 VIJAYA RAMACHANDRAN AND HONGHUA YANG

wire auxiliary edge pseudowire

supersource or supersink input node OR gate AND gate output gate

FIG. 1. Caug: a one.input-face PMC C augmented with a supersource s and a supersink t.
Here fI fo.

In 3.1, we will give some definitions and lemmas. In 3.2, we will present our
techniques for finding the left and right boundaries of the gates with value 1 and for
simplifying the remaining circuit of C. In 3.3, we will give the complete algorithm
for evaluating a one-input-face PMC given a complete input assignment and its com-
plexity analysis. In 3.4, we will extend the algorithm to evaluate a one-input-face
PMC given a partial input assignment.

Throughout 3, we use C to refer to a one-input-face PMC unless otherwise stated.

3.1. Definitions.
DEFINITION 3.1. A gate is a source of a face f in C if it has two output wires

that are on the boundary of f A gate is a sink of a face f in C if it has exactly two
input wires and both are on the boundary of f Let fI be the face ofC whose boundary
contains all the input nodes and let fo be the face of C whose boundary contains all
the output gates. Caug is a DAG obtained from C by adding a super source s in fI
and auxiliary wires connecting s to every input node in C and a super sink t in fo
and auxiliary wires connecting every output gate to t (see Fig. 1).

By Definition 2.5, if fx and fo are identical, then the input nodes and the output
gates may not interlace in C. Hence Cag is still a plane graph. In the rest of the
paper, we assume that C has at least two input nodes. If C has only one input node,
then by Definition 2.2, all gates in C have the same value as the only input node,
which is a trivial case. The reason that we augment C to Cag is that there is a single
source and a single sink in every face of Ca as shown in the following lemma. This
property is crucial to many definitions given in this subsection.

Note that not every one-input-face PMC has a downward plane drawing [11] as
in Fig. 1 if fI and fo are different faces.

LEMMA 3.1. Every face in Cag has exactly one source and one sink.

EFFICIENT PARALLEL PLANAR MONOTONE CIRCUIT VALUE 317

Proof. Every gate in Cag is reachable from s and reachable to t. Since Ca,g is
a DAG, there is at least one source and one sink on the boundary of a face in C.
Suppose a face f has two sources sl and s2 and therefore two sinks tl and t2. Then
we consider the following four directed paths in C: the path P1 from s to sl, the
path P2 from s to s2, the path P3 from t to t, and the path P4 from t2 to t. The
path P consisting of P1 and P2 joins the face f at s and s2. The path Q consisting
of P3 and P4 joins the face f at t and t2. But S and s2 interlace with t and t2 on
the boundary of f. But the two paths P and Q have to be embedded in one side of
the boundary of f. This is a contradiction. Hence every face in Ca, has exactly one
source and exactly one sink. []

The following lemma is needed for Definition 3.3.
LEMMA 3.2. The output wires of a gate g in C,g are placed consecutively in the

cyclic ordering of the wires around g.

Proof. Let g be a gate in Cg with two input wires and i2 and two output
wires 01 and o2, such that 01 and o2 interlace with and i2 in the cyclic ordering of
the wires around g. Since every gate in Cag is reachable to t, there are two directed
paths P1 and P2 in Ce from g to t, where P1 goes through Ol and P2 goes through
o2. Let x be the first gate (except g) on P1 that is also on P2. Since C is acyclic,
x must be the first gate (except g) on P2 that is also on P1. The subpath of P1 from
g to x and the subpath of P2 from g to x form an undirected cycle which divides
the plane into two parts Cnsd and Coutside, where Cinside is the part of the plane
that is inside the cycle and Coutside is the part of the plane that is outside the cycle.
Without loss of generality, assume that the supersource s and the input wire i2 are
in Cotsd. Let (gl, g). Then gl and are in Cinside and gl is not reachable
from s since otherwise there would be a directed cycle in Caug. Hence gl is reachable
from some input nodes in Cinside that cannot be reached from s in Cotd. This is
a contradiction.

DEFINITION 3.2. The left (right) input wire of a two-input gate g is the input
wire of g that appears immediately after (before) an output wire of g in the clockwise
cyclic ordering of the wires around g.

Note that the source and the sink of a face f in C partition the boundary of
f into two disjoint (except at the source and the sink) directed paths.

DEFINITION 3.3. The path from the source to the sink going through the left
input wire of the sink is the counterclockwise boundary of the face, and the path from
the source to the sink going through the right input wire of the sink is the clockwise
boundary of the face.

DEFINITION 3.4. The dual digraph C,g < V*,E*> of the plane directed
primal graph Ca, <V, E> is defined as follows.

(i) For each primal face f in C, define a dual vertex f* in V*.
(ii) For each primal edge e in Ca such that e is on the clockwise boundary

of a primal face fl and the counterclockwise boundary of another primal face f2,
define a counterclockwise dual edge e*+ (f{, f) in E* and a clockwise dual edge
e*- (f,f) in E*.

Note that in the dual graph C, we introduce dual edges of both directions,
clockwise and counterclockwise, for each edge in the primal graph. The dual graph
Cug can also be viewed as the result of forming the undirected dual graph of Caug
and replacing the dual edges by dual arcs of both directions.

For convenience, for a primal face f, and a primal edge e, we will use f*, e*+,

318 VIJAYA RAMACHANDRAN AND HONGHUA YANG

wnre auxiliary edge pseudowire left leg right leg dual vertex

supersource or supersink input node OR gate AND gate output gate

FzG. 2. Caug and Aaug, the auxiliary dual graph. Caug consists of the solid edges. Aaug
consists of the dashed edges. The two graphs overlap at s and t.

and e*- to indicate the dual vertex of f, the counterclockwise dual edge of e, and the
clockwise dual edge of e, respectively.

In the following definition, we define an auxiliary graph (which can be viewed as
a subgraph of Cg augmented with s and t) that contains some edges called left legs
and right legs. These edges aid us in defining regions of Caug where value 1 propagates
from input nodes. Thus, their definitions are dependent on whether a gate is an AND
gate or an OR gate and whether a wire is a pseudowire, since an AND gate has value
1 if both of its inputs have value 1, an OR gate has value 1 if one of its inputs has
value 1, and a pseudowire does not pass any value.

DEFINITION 3.5. The auxiliary dual graph Aaug < V{,E > is defined as

follows (see Fig. 2).
(i) V{ contains the dual vertices of all the primal faces in Caug, together with

the supersource s and the supersink t.
(ii) E contains all the dual edges called the left legs and the right legs defined

as follows.
Let f be a primal face in Caug whose boundary does not contain t, and let g be

the sink of f with left input wire w and right input wire wr.
(i) If g is an OR gate with no pseudo input wire, then the left leg and the right

leg of f* are w- (i. e., the clockwise dual edge of wt) and w+ (i. e., the counterclock-
wise dual edge of wr), respectively.

(ii) If g is an AND gate with no pseudo input wire, then the left leg and the
right leg of f* are w+ and w-, respectively.

(iii) If wt is a pseudowire, then both the left leg and the right leg of f* are w-.
(iv) If wr is a pseudowire, then both the left leg and the right leg of f* are w+.

EFFICIENT PARALLEL PLANAR MONOTONE CIRCUIT VALUE 319

Let f be a primal face whose boundary contains t or s in Cag. Then we add an
auxiliary edge (f*, t) or (s, f*) to E, respectively.

Aaa \ {s, t} is a subgraph of Cg that contains some dual edges of the input
wires to the sinks of the faces in Cug. It is easy to see that after being augmented
with s and t, Aaug is still a plane graph, since the input nodes and the output gates
of C do not interlace.

LEMMA 3.3. If there is an edge e* (f, f) inA which is either a left leg or
a right leg, then there is a directed path of length at least 1 from the sink s l of fl to
the sink s2 of f2 in Caug.

Proof. By Definition 3.5, Sl must be on either the clockwise boundary or the
counterclockwise boundary of f2 in Cg. Since a gate (except t) has at most two
input wires and therefore can be the sink of at most one face, S cannot be the sink
of f2. Hence there is a directed path of length at least 1 from S to s2.

COROLLARY 3.3.1. Aaug i8 a plane DAG whose only vertex with out-degree 0 is t.

Proof. By Lemma 3.3, Aag is acyclic and hence a DAG. It is obvious that the
only vertex in Ag with out-degree 0 is t.

DEFINITION 3.6. Two input nodes i and i2 in Cg are adjacent if the wire
(s, i) and the wire (s, i2) are adjacent in the cyclic ordering of the wires around s in
Cag. Given a complete input assignment to the input nodes of Caua, a valid base B
is a maximal sequence of adjacent input nodes with value 1. The left (right) bounding
face of a valid base B is the face in Caug whose clockwise (counterclockwise) boundary
contains an input node in B, but whose counterclockwise (clockwise) boundary does
not (see Fig. 5).

If all input nodes in Caua have value 1, then the left bounding face and the right
bounding face are not defined. But this is a trivial case, since we know that all gates
of Caug must have value 1,

DEFINITION 3.7. For a valid base B in Cag, let ft and f be the left and right
bounding faces of B, respectively. The left boundary and the right boundary of B are
the two directed paths P and P, respectively, in Aag, such that (1) P and P start
from s, (2) P consists of left legs and auxiliary edges and goes through (s, f), (3)
P consists of right legs and auxiliary edges and goes through (s, f), and (4) / and
Pr end at their first common vertex g* (g* could be t) after s (see Figs. 5 and 6).

DEFINITION 3.8. Given a valid base B, the left boundary P of B and the right
boundaryP ofB divide the plane into two regions. The region whose counterclockwise
boundary is P and whose clockwise boundary is P is called the internal region of B,
and the other region is called the external region of B (see Figs. 5 and 6).

LEMMA 3.4. Given a complete input assignment to Caug where there is only one
valid base B (all other input nodes have value 0), a gate g in Caug evaluates to 1
g is in the internal region of B.

Proof. Let us embed Aag and Cag in the plane simultaneously with the same
supersource s and the same supersink t (as in Fig. 2) such that the only primal edges
in Cag that cross the left and right boundaries P* and P, of B are the input wires
to the sinks of some of the primal faces in Cug. (This is provable by Definitions 3.5
and 3.7.) A sink in Cag with a pseudo input wire can have only its pseudo input wire
(but not the other input wire) crossing P* or P,. Further, a sink of a primal face f
in Cg cannot have its two input wires crossing an edge w in P* and an edge w in
P,, respectively, since otherwise f* would be the common starting vertex of both w
and w and therefore would be a common vertex of P* and P. However, P* and

320 VIJAYA RAMACHANDRAN AND HONGHUA YANG

do not end at f* since w is in P* and w is in P. This is a contradiction.

Therefore, if we remove all wires that cross P* and P from Cag and call the
resulting graph Cug then every gate (except the input nodes) in Cug still has at
least one nonpseudo input wire (by the previous paragraph) and hence can still be
reached from some input nodes without going through pseudowires. Further, the gates
in the internal (external) region of B in Cg can be reached only by the input nodes
in the internal (external) region. Therefore, if we remove all wires crossing P* and P
from Ca, the gates in the internal region of B will have value 1 and the gates in the
external region of B will have value 0. We now show that this is still the case even if
we do not remove the wires crossing P* and P? from Chug. By Definition 3.5, a wire
in Ca,g outgoing from a gate in the external region of B and incoming to a gate in
the internal region of B is either an input wire to a two-input OR gate or a pseudo
input wire to a two-input gate. Hence the gates in the internal region of B in Cug
will still have value 1. A primal edge in C outgoing from the internal region of B
to the external region of B is either an input wire to a two-input AND gate that is in
the external region of B or a pseudowire to a two-input gate that is in the external
region of B. Hence the gates in the external region of B in Cau will still have value
0. Hence the lemma holds.

COROLLARY 3.4.1. Given a complete input assignment to ChUg, if a gate g is in
the internal region of a valid base in Chug, then g evaluates to 1.

Proof. The corollary is proved by Lemma 3.4 and the monotonicity of Chug.
Note that the reverse of Corollary 3.4.1 need not be true if there is more than one

valid base in Ca, i.e., some gates outside the internal regions of the valid bases of
Chug might also be evaluated to 1. Hence our approach to evaluate a one-input-face
PMC Cg is to first find some of the gates that evaluate to 1 based on the internal
regions of the valid bases of Cau9, remove them from Cg, and repeatedly evaluate
the resulting Chug.

3.2. Complete evaluation of a one-input-face PMC. In this subsection,
we give an efficient method for computing the left and the right boundaries for all
valid bases in Ca simultaneously, given a complete input assignment to Cg. The
main idea is to identify for each dual vertex f* in Aaug whether it is on the left
(right) boundary of some valid base in Ca (i.e., whether BOUNd(f*) or BOUNr(f*)
defined in Definition 3.10 below is nonempty). Based on this approach, we present a
technique to transform the part of Cag that has not been evaluated to 1 into several
subcircuits that are one-input-face PMCs with smaller sizes and, more importantly,
with geometrically decreasing number of valid bases.

We first define two tree structures that consist of left legs and right legs.
DEFINITION 3.9. Let V (Vr) be the set of vertices of Aaug (except s) that are

reachable through left (right) legs and auxiliary edges incoming to t from the dual
vertex of the left (right) bounding face of some valid base in C. We define T (T) to
be the subgraph of Aag induced by V (V).

For example, Fig. 3 gives T* and T for the circuit in Fig. 1 with an input
assignment (0, 1, 0, 1) to the input nodes il, i2, i3, i4.

LEMMA 3.5. Both T and T are convergent trees.

Proof. By Corollary 3.1.1, Aaug is a DAG. By Definition 3.5, there is exactly one
left leg and one right leg or one auxiliary edge outgoing from each vertex (except s)
in Aa. Hence the lemma holds.

EFFICIENT PARALLEL PLANAR MONOTONE CIRCUIT VALUE 321

f2* f3*fl* % 2
\ \ /

\ \ /

\ \ /

\ f6*_

flO* \

1
1 \

auxiliary edge left leg right leg dual vertex

FIG. 3. T and T for the circuit in Fig. 1, given an input assignment (0, 1, 0, 1) to the input
nodes il, i2, i3, i4. T consists of the light dashed edges. T consists of the dark dashed edges.

In the following definitions and lemmas, we define BOUNd(f*) (BOUN,(f*)) and
related concepts and describe our approach to compute BOUN(I*) (BOUN,(f*)).
Among the sets defined below are two related and similar concepts, BOUNd(f*)
(BOUN,(f*)) and BASE,(f*) (BASE,(f*)). These sets are different in that the
latter is a superset of the former and is defined to aid the computation of the former.

DEFINITION 3.10. PRED,(f*) (PRED,(f*)) is the set of the proper predeces-
sors of f* in T (T), i.e., the set of dual vertices that can reach f* through directed
paths of length at least 1 in T* (T).

We associate with each dual vertex f* in T* (T,) the following sets of valid bases
of Ca:

(i) BASEt(f*) (BASE,(f*)) is the set of valid bases B such that the dual ver-
tex of the left (right) bounding face of B is either f* or in PRED,(f*) (PRED,(f*)).
(Informally, BASEt(f*) (BASE.(f*)) is the set of the valid bases inC whose left
(right) boundaries either contain f* or a predecessor of f* in T*

(ii) BOUNt(f*) (BOUN,(f*)) is the set of valid bases B whose left (right)
boundary contains f*.

(iii) JOIN(f*) BASE(f*) BASEr(f*). (Informally, JOIN(f*) is the set
of valid bases whose left and right boundaries either terminate at f*, or terminate at
a predecessor of f* and the extension of the left and right boundaries rejoin at f*.)

(iv) TERM(f*) is the set of valid bases whose left and right boundaries termi-
nate exactly at f*.

For convenience, if a set for a dual vertex in Aaug cannot be defined through
Definition 3.10 (e.g., if a dual vertex is not in T*), we assume that it is empty.

Figure 4 illustrates the above definitions. For valid base B2 {i4} with left
bounding face f3 and right bounding face f4 in Fig. 1, the left boundary of B2 is a
subpath of the path from f to t in T* and the right boundary of B2 is a subpath of
the path from f to t in T? (in this case, the subpath is the single vertex f). Notice
the difference between BASE(f) {B1,B2} and BOUN(f) {B2}, between
BASEr(t) {B,B2} and BOUN.(t) , and between JOIN(t) {B,B2} and

322 VIJAYA RAMACHANDRAN AND HONGHUA YANG

(B1)

)j (B2)l(B1)I)t)J
)J f2*[B1]r f3* /,()t
)t fl*,,

[B1] \ \ / [B2]I

(B1) \ (B2)lkk_ (i)r
)j \)J []r f7 (B2)I
)t fh* ()tfl ---)J

[Bll
(B1)

)J fl
(al)1 _(B1)t (B1)r[al]l)J %--[a-i]i-1]r

)t /
/

[B
/ (B1, B2) (B2)

(B1) / (B2)j [B2]r
)j* // / (B2)

11 / [B2])t
]r
(B1, B2)l (B1, B2)r
(’ lj]r

11

auxiliary edge left leg right leg dual vertex

FIG. 4. Illustrations for the sets BASEr, BASEr, BOUNt, BOUNr, JOIN, and TERM
on T and T. For each node f* in T, the contents of ()l denote BASEl(f*), the contents
of []l denote BOUNI(f*), the contents of ()j denote JOIN(f*), and the contents of ()t denote
TERM(f*). For each node f* in Tr*, the contents of ()r denote BASEr(f*) and the contents of
[]r denote BOUNr(f*).

TERM(t) .
The relations among these sets are summarized in the following lemma. For

convenience, we will focus on the sets with index 1. The relations among the sets with
index r are symmetric.

LEMMA 3.6. Let f* be a dual vertex in Aug. Then the following hold:
1. BASE(f) C_ BASE(f*) for any f e PRED,(f*).
2. BOUNt(f*)fq BOUNt(f) and BASEt(f*)f BASE(f) for any

f that does not have predecessor-successor relation with f* in T*.
3. TERM(f*) TERM(f) for any f t f*.
4. TERM(f*) JOIN(f*) \ (-Jf$PREDt(I.)JOIN(f).
5. BOUNt(f*)= BASEt(f*)\Jf$ePnEDt(f.)TERM(f), and IBOUNt(f*)I

IBASEt(f*)I y$ePRED(f*) ITERM(f)I
Proof. The correctness of (1)-(3) follows directly from Definition 3.10. The

correctness of (4) follows from Definition 3.7, Definition 3.10, (1), and (2). The
correctness of (5) follows from Definition 3.10 and (1)-(3). El

Our goal is to identify the gates that are on the left and right boundaries of
some valid base. Since a left leg (fi’, f) is on the left boundary of some valid base
iff IBOUN(f) > 0 and IBOUN(f)I > 0, it suffices to compute]SOVN(f*)]
for every f* in T*. BASEr(f*) (and hence IBASEt(f*)[) can be easily computed
using the Euler-tour technique [23] on Tt* (see Procedure 2 in 3.3 for details). Since

EFFICIENT PARALLEL PLANAR MONOTONE CIRCUIT VALUE 323

BASEt(f*) (BASEr(f*)) contains valid bases with consecutive labels (modulo the
total number of bases) in the total order of the valid bases, it can be described
succinctly by a range Ix, y], where x and y are the numbers of the first and the last valid
bases in BASEt(f*) (BASEr(f*)), respectively. If we can compute ITERM(f*)I for
every f* that is in both T* and T?, then we can compute IBOUN(f*)I using (5) in
Lemma 3.6 and the Euler-tour technique. It remains to compute ITERM(f*)I for
every f* that is in both T* and

We can try to compute ITERM(f*)I directly from (4) in Lemma 3.6. However,
note that the sets JOIN(f*) BASEt(f*)BASEr(f*) are not necessarily disjoint
for different f* in T* if they have predecessor-successor relation. Instead, we show
in the following lemma that they satisfy some important properties, and then in
Lemma 3.8, we give a formula to compute TERM(f*) with disjoint JOIN(f*) sets.

LEMMA 3.7. (1) Iff is a predecessor off* in both T andT, then JOIN(f)
JOIN(f*).

(2) Otherwise, JOIN(f*) JOIN(f) .
Proof. (1) By (1) in Lemma 3.6, we have both BASEt(f) C_ BASEt(f*) and

BASEr(f) C_ BASEr(f*). Therefore, JOIN(f) c_ JOIN(f*).
(2) Without lose of generality, assume f* and f do not have predecessor-

successor relation in T*. Then by (2) in Lemma 3.6, BASEt(f*) BASEt(f) .
Therefore, JOIg(f) JOIN(f*) .

Based on Lemma 3.7, we give the following definition.
DEFINITION 3.11. For a dual vertex f* and one of its predecessors f in T

with JOIN(f*) and JOXN(f) , JOIg(f$) is immediately enclosed by
JOIN(f*), denoted by JOIN(f) c_i JOIN(f*), iff JOIg(f$) c_ JOIN(f*) and
there is no dual vertex f on the directed path from f to f* in T such that JOIN(f
JOIN(f*).

LEMMA 3.8. For a dual vertex f* that is in both T and T,
1. TERM(f*) JOIN(f*) \ Jf;ePRED(f*)^JOIg(f)_xJOIN($.)JOIN(f),
2. ITERM(f*)I IJOXY(f*)l--’:f;epRED(f.)^jog(f;)c_xJOig(f. IJOXg(f)

Proof. By (4) in Lemma 3.6 and Lemma 3.7, (1) holds immediately. By Defini-
tion 3.11, none of the f in the summation in (2) has predecessor-successor relation.
By Lemma 3.7, the sets JOIN(f)in (2) are disjoint. Hence (2) holds.

The above lemmas give us the necessary tools to compute IBOUNt(f*)I efficiently
in parallel. The algorithms that implement the computations in Lemmas 3.6 and 3.8
are given in Procedures 2 and 3 and in the proof of Lemma 3.16 in 3.3. Having
computed the left and right boundaries of the valid bases of Cag, our next step is
to identify the regions of Chug that consist of gates with value 1. In the following
definition, we define a separating graph Asep, which is a subgraph of Aag that consists
of the left and right boundaries of all the valid bases of Cag and which is used to
find the regions of Cau that consists of gates with value 1.

DEFINITION 3.12. (1) A separating graph Asep contains s and the vertices f*
in Aug for which either BOUNd(f*) or BOUNr(f*) . Asep contains t if
BOUNt(t) or BOUYr(t) .

(2) An edge (f, f) of Aaug is an edge in Asep if one of the following three
conditions holds: (a) f s and f2 is the left or right bounding face of a valid
base, (b) BOUNt(f) , BOUNt(f) and BOUNt(f) TERM(f), or
(c) BOUNr(f) , BOUNr(f) and BOUNr(f) TERM(f).

324 VIJAYA RAMACHANDRAN AND HONGHUA YANG

wire auxiliary edge pseudowire left leg right leg dual vertex

o e .e O
supersource supersink input node OR gate AND gate output gate

FI(. 5. Chug and Asep to show the left and right boundaries of B1 and B2. Chug consists of the
solid edges. The complete input assignment to the input nodes il,i2,i3,i4 is (0, 1,0, 1). B1 {i2}
and B2 {i4} are two valid bases. The left bounding face and the right bounding face of BI are f
and fg, respectively. The left boundary of B1 is the directed path (s, f’, f fl*o, f f*9 and the right
boundary of B1 is the directed path (s, f, f, f). The part of the plane inside the two boundaries is
the internal region of B1 and the part of the plane outside the two boundaries is the external region
of B1. The left bounding face and the right bounding face of B2 are f3 and f4, respectively. The left
boundary of B2 is the directed path (s, f, f, f, f) and the right boundary of B2 is the directed
path (s, f). Asep consists of all dashed edges.

Asep is a subgraph of Aaug, which is a subgraph of Cg (the dual graph of Cag)
augmented with s and t (see Figs. 5 and 6). Hence Asep is a plane graph. Each face
in Ap is called a separating region of the primal graph Caa. Note that a separating
region of Ca either is in the internal region of a valid base or in the external region
of every valid base. In the latter case, we call it an external separating region.

In the example in Fig. 5, Ap consists of the left and right boundaries of B1
and B2. The separating regions of Ca in Fig. 5 are the face in Asp with boundary
(s, f’, f, fi0, f, fff, f, f, s) (i.e., the internal region of B1), the face in Asep with
boundary (s, f, f, f, f2,s) (i.e., the internal region of B2), the face in Aep with
boundary (s, f, f, f, s), and the face in Ap with boundary (s, f{, f, f{o, f, f, f,

DEFINITION 3.13. A wire w is incoming to (outgoing from) a subcircuit C’ if the
head (tail) of w is a gate in C’ but the tail (head) of w is not.

LEMMA 3.9. All incoming wires to an external separating region R in Cag are
either wires with value 1 or pseudowires. (Any input node in R will have value 0.)

Proof. The wires incoming to R must come from the internal regions of some
valid bases, since a wire crosses a boundary of a valid base B either from the internal
region to the external region of B, or from the external region to the internal region
of B. Since R is not in the internal region of any valid base of Chug, all the wires
incoming to R are wires outgoing from the internal regions of some valid bases. By

EFFICIENT PARALLEL PLANAR MONOTONE CIRCUIT VALUE 325

auxiliary edge pseudowire left leg right leg dual vertex

o) 0
supersource supersink input node OR gate AND gate output gate

FIG. 6. Caug and Asep to show the left and right boundaries of B1 and B2. Caug consists of
the solid edges. Asep consists of the dashed edges. The complete input assignment to the input nodes

il, i2, i3, i4, i5 is (1, 0, 1, 0, 1). B1 {i3} and B2 {i5, il} are two valid bases. The left boundary of
BI is the directed path (s, f, f, f and the right boundary of B1 i8 the directed path (s, f, f, f).
The left boundary of B2 is the directed path (s, f, f, f, fo) and the right boundary of B2 is the

directed path (s, f, fl*o)"

Corollary 3.4.1, the gates in the internal region of any valid base of Ca have value
1. Hence all incoming wires to R are either wires with value 1 or pseudowires.

Recall that Corollary 3.4.1 states that the gates in the internal region of every
valid base of Ca have value 1. Hence the gates in the separating regions that are

in the internal region of a valid base have value 1. In the following corollary, we

will extend Corollary 3.4.1 to show that in fact the gates in any separating region

(including the external separating region) that does not contain an input node with

value 0 will have value 1.

COROLLARY 3.9.1. If a separating region R of Ca, does not contain an input

node with value 0, then all the gates of Ca in R have value 1.

Proof. If R is in the internal region of a valid base, then by Corollary 3.4.1, the

lemma holds. Now we consider an external separating region R that is not in the

internal region of any valid base of C. By Lemma 3.9, all incoming wires to R are

either wires with value 1 or pseudowires. Since R does not contain an input node

with value 0, all the gates in R will have value 1. []

By Corollary 3.9.1, the problem of evaluating the one-input-face PMC C is now

reduced to the problem of evaluating each subcircuit of Ca in an external separating

region that contains input nodes with value 0, since the gates in other separating

regions are known to have value 1. Our next step is to transform these subcircuits

into one-input-face PMCs so that we can evaluate these subcircuits recursively. One
nontrivial problem with a subcircuit of Ca in a separating region is that the output

326 VIJAYA RAMACHANDRAN AND HONGHUA YANG

PROCEDURE 1. Subcircuit transformation
Input: CR, the subcircuit of Caug in an external separating region R containing at least

one input node with value 0.
Output: C, a one-input-face PMC logically equivalent toCR.
0. Initialize C to CR;
1. for each wire w in Caug incoming to CR in parallel do

let g be the gate in CR receiving w as an input;
((note that g must be a two-input AND gate and the sink of a face))
(a) if the other input wire of g is in R then remove w from C;
(b) else (i.e., the other input wire of g is a wire incoming to

make g a new input node with value 1 in C;
end (if};

end (for);
2. for each wire Wo in Caug outgoing from CR in parallel do

insert a one-input AND gate gwo in wo with gwo lying inside R,
and remove the part of Wo outgoing from gwo
let w (f, f*) be the dual edge on the boundary of R that crosses Wo;
assume Wo is on the counterclockwise (clockwise) boundary of the face f in
let sf be the sink of f in Caug;
let w* be the other edge connected to f* on the boundary of R in Asep;
(a) if w* is an outgoing edge of f*

then {{w* crosses either the left input wire wl or the right input wire wr of
attach an output wire to gwo in C by adding a pseudowire as follows:
{{so that gwo would not be an output gate in C, and C’ is a plane graph}}
(i) if w* crosses wl (wr)

then {{sf must be a two-input AND gate}}
connect gwo and sl through a pseudowire to replace wl (wr) in C;

end {if};
(ii) if w* crosses wr (wl)

then make gw. (i.e., the one-input AND gate inserted in wr at
at the beginning of step 2) a two-input AND gate
and connect gwo to gw. through a pseudowire in C;

end {if};
end (if};

(b) if w* is an incoming edge of f* {{f* is called a botto.m of R in this case}}
then make gwo a new output gate in C;
end (if};

end {for};
end.

gates of the subcircuit may interlace with the input nodes of the subcircuit, which
makes it impossible to add a supersink to the subcircuit without violating the planarity
property. For example, in Fig. 5, after removing the gates in the internal region of B1
and the internal region of B2, gl will be a new output gate and g2 will be a new input
gate, and the input nodes and the output gates i, g, g2, g3, and g4 are interlaced
with each other in the resulting subcircuit. The following definition and procedure
give a method we will apply to solve this problem. This construction uses pseudo
wires (defined in part (5) of Definition 2.5).

DEFINITION 3.14. A circuit C is logically equivalent to a circuit C, if from a
partially evaluated C we construct C (possibly with additional gates) such that for
each unevaluated gate g in C, there is a gate in C with the same value as g.

The algorithm given in Procedure 1 transforms a subcircuit of Cug in an external
separating region that contains at least one input node with value 0 into a logically
equivalent one-input-face PMC. Some examples of this transformation are given in
Fig. 7. We now show that C constructed by Procedure 1 is a one-input-face PMC
that is logically equivalent to CR.

EFFICIENT PARALLEL PLANAR MONOTONE CIRCUIT VALUE 327

CR

wire auxiliary edge pseudowire left leg right leg dual vertex

supersource supersink input node OR gate AND gate output gate

FIG. 7. The circuit transformation of CR to C.

LEMMA 3.10. CR is logically equivalent to CR.
Proof. We first show that step 1 in Procedure 1 does not change the value of

the gates in C that were originally in CR. Since CR is in the external region of
every valid base, by Definition 3.5, a wire outgoing from the internal region of some
valid base and incoming to R must be either a pseudowire or an input wire to a two-
input AND gate whose other input wire is not a pseudowire. By Lemma 3.9, all the
incoming wires to R are either wires with value 1 or pseudowires. Hence removing a
pseudo input wire or an input wire with value 1 to a two-input AND gate g (whose
other input wire is not a pseudowire) in step l(a) will not change the value of g in
C, and the two-input AND gate g in step l(b) indeed has value 1.

Step 2 in Procedure 1 reduces the number of new output gates in C by adding
pseudowires. Steps 2(a)(ii) and 2(5) do not change any input to the gates of C that
were originally in CR. Step 2(a)(i) changes an input to sy by replacing wt (wr) with
a pseudowire. However, since w (w) is an incoming wire to the external separating
region R, by the arguments given in the previous paragraph, wt (wr) is either a pseudo
input wire or an input wire with value 1, sf is a two-input AND gate, and wr (wt) is
not a pseudowire. Hence the value of sf depends only on the value of wr (wt) and is
the same in both CR and C. 0

LEMMA 3.11. CR is a plane DAG.
Proof. It is easy to see that C is still a plane graph since the pseudowires

introduced in Procedure 1 will not cross any existing wires in CR.
Suppose there is a directed cycle in C. Then we map a gate g on the cycle to a

gate in Caug by the following function f: f(g) g if g is a gate in Caug; f(g) g2

if g is not a gate in Caug but is a new gate inserted in wire (gl, g2) of Caug in step 2

328 VIJAYA RAMACHANDRAN AND HONGHUA YANG

input node OR gate AND gate output gate

FIG. 8. An example of a PMC with all input nodes in a single face but output gates in different
faces. This PMC cannot be converted into a one-input-face PMC by adding pseudowires to the output
gates, since any pseudowire added to an output gate will create a directed cycle in this example.

of Procedure 1. For each edge (gl, g2) on the cycle in C, if (gl, g2) is not an edge in
Chug, then we add a new edge (f(g), f(g2)) to Cag and call the augmented graph
C’aug. Hence there is a cycle in Caug containing new edges. We now prove that for
each new edge (f(g), f(g2)) in Cag, there is a directed path in Chug from f(g) to
f(g2). We consider the following three cases:

(i) Case 1. Both g and g2 are gates in Chug. Then (f(gl), f(g2)) (gl,g2),
which is a wire in Cau.

(ii) Case 2. gl is a newly added gate in C, but g2 is a gate in Cau. Suppose
g is inserted in the wire (g3, g4) of Cv. Then (g, g2) is a pseudowire added in
step 2(a)(i) of Procedure 1 and g2 is the sink of the face whose boundary contains
Hence there is a directed path from f(g) g4 to f(g2) g2 in Chug.

(iii) Case 3. g2 is a newly added gate in C, but gl is a gate in Chug. Then g2

is inserted in the wire (g, f(g2)) of Cag in step 2 of Procedure 1. Hence there is a
directed path from f(g)= g to f(g2)in Chug.

(iv) Case 4. Both g and g2 are newly added gates in C. Then (gl, g2) is a
pseudo wire added in step 2(a)(ii) of Procedure 1. Suppose g is inserted in the wire
(ga, g4) of Cug and g2 is inserted in the wire (gh, g6) of Cug. Then (gh, g6) is an
outgoing edge from CR, and g6 is the sink of the face whose boundary contains g4.

Hence there is a directed path from f(g) g4 to f(g2) g6 in Cg.
Hence there is a directed cycle in Chug, which contradicts the fact that Ca is

DAG. Hence C is acyclic. [:l

At this point, one might wonder if it is the case that any PMC whose input nodes
are on the boundary of a single face can be converted to a one-input-face PMC by
adding pseudowires to the output gates. The example in Fig. 8 shows that this is not
always possible when the output gates are on the boundaries of multiple faces. The
construction of C exploited some special properties of a one-input-face PMC and its
separating regions to guarantee that the result is a DAG, and this is not always the
case when the input circuit is not a one-input-face PMC.

We now show that a subcircuit C output by Procedure 1 must have all inputs
in one face, all outputs in one face, and no interlacing of inputs and outputs. This
will establish that C is a one-input-face PMC.

A dual vertex f* is a bottom of a separating region R if it is the head of two edges
(which are dual edges of Chug) on the boundary of R. (See step 2(b) of Procedure 1

EFFICIENT PARALLEL PLANAR MONOTONE CIRCUIT VALUE 329

(1)

wre auxiliary edge pseudowim left leg right leg dual vertex

supersource or supersink input node OR gate AND gate output gate

FIG. 9. Figures for the proof of Lemma 3.12.

and case 2(b) in Fig. 7.)
LEMMA 3.12. A separating region R has at most one bottom, and if R has a

bottom, then R does not contain the supersink t.

Proof. Let f* be a bottom of R and let w and w be the two edges incoming
to f*. We find two paths P* and P in Asep such that (a) Pf goes to f* through
w and P goes to f* through w and (b) Pf and P intersect with each other
only at their starting vertices and their ending vertices. Let R’ be the region whose
counterclockwise boundary is Pf and whose clockwise boundary is P. Then R is
inside R’, since R is a face in Asep.

We first prove that t is not in R’, which implies that t is not in R (see (1) in
Fig. 9). Let sI be the sink of the primal face f. If si is t, then we have proved that
t is not in R’. Otherwise, since the primal edges of w and w are outgoing from

s and its two input wires must be outside of R’ (note that the two input wires of sl
cannot be the primal edges of w and w, since only the dual edges outgoing from f*
can cross the input wires of sl). Hence any outgoing edges from f* in Aa,g must be
outside of R’, since they cross the two input wires of sl. Hence if t were in R’, then
Aaug would have contained a directed cycle, since there is a directed path from f* to
t in Aa. This is a contradiction.

We now prove that R has at most one bottom (see (2) in Fig. 9). Suppose R has
another bottom f’ Let w and w2 be the two edges incoming to *. We find two
paths PI* and P* in Asep such that (a) P* goes to f’* through w and P* goes to

f’* through w2 and (b) P* and P* intersect with each other only at their starting
vertices and their ending vertices. Let R" be the region whose counterclockwise
boundary is P* and whose clockwise boundary is P*. Then by the proof in the
previous paragraph, t is neither in R’ nor in R’. But at least one path from f* or f’*
to t will create a directed cycle in A. This is a contradiction.

COROLLARY 3.12.1. If CR contains a bottom, then C does not contain an orig-
inal output gate of Caa, and C contains at most two newly created output gates,
and the two output gates are adjacent to each other on the boundary of a face; if C1
does not contain a bottom, then C does not contain any newly created output gates
(CR may contain some original output gates of Caug).

330 VIJAYA RAMACHANDRAN AND HONGHUA YANG

Proof. If CR contains a bottom, then t is not in C and hence C does not contain
an original output gate of Chug (since the auxiliary wires connecting output gates to
do not cross the boundary of R). Further, since C has at most one bottom, at most
two new output gates are created in C and they are adjacent to each other on the
boundary of a face (see case 2(b) in Fig. 7). If CR does not contain a bottom, then
no new output gates are created in C by the construction in Procedure 1.

LEMMA 3.13. All newly created input nodes in CR are on the boundary of a single
face.

Proof. After removing all the gates not in R and the wires crossing the boundary
of R, all the input nodes in C are on the boundary of a single face, which is the
external face of C. Further, the new faces created by the new pseudowires added in
step 2 of Procedure 1 do not contain input nodes on their boundaries.

LEMMA 3.14. Procedure 1 constructs a one-input-face PMCC that is logically
equivalent to CR and runs in O(1) time using a linear number of processors on an
EREW PRAM.

Proof. Lemma 3.13 and Corollary 3.12.1 ensure that the output gates and the
input nodes in C do not interlace. By Lemmas 3.10, 3.11, and 3.13 and Corol-
lary 3.12.1, C is a one-input-face PMC that is logically equivalent to Cn.

It is straightforward to see that all steps in Procedure 1 can be implemented in
constant time using a linear number of processors.

We conclude this subsection by showing that a subcircuit C output by Procedure
1 contains at most half the number of valid bases in Chug.

DEFINITION 3.15. We say two valid bases B and B meet if the right boundary
of B and the left boundary of B have a common vertex. The transitive closure of the
meet relation partitions the set of the valid bases in Chug into equivalence classes.

LEMMA 3.15. The number of the valid bases in CR is at most half of the number
of valid bases in Chug.

Proof. Let g be a newly created input node in C. We say g is a descendant of
a valid base B of Chug if an original input of g is in the internal region of B. This
lemma follows from the following two claims.

CLAIM 1. Every newly created input node in C is a descendant of at least two
distinct valid bases of Chug, and the two valid bases are in the same equivalence class
o Co.

CLAIM 2. The newly created input nodes in C that are descendants of the valid
bases in the same equivalence class of Chug are in the same valid base in C.

By Claim 1, a singleton equivalence class of Ca does not generate a new input
node with value 1 in C. By Claim 2, an equivalence class of Ca containing at least
two valid bases generates at most one valid base in C. Hence the lemma holds.

We first prove Claim 1. Since only the sink of a face can have its input wires
crossed by the dual edges in Asep, a newly created input node g must be the sink of
a face f in Caug. The two original input wires wl and w2 of g must cross a dual edge
w (which is a left leg) on the left boundary of a valid base and a dual edge w (which
is a right leg) on the right boundary of a valid base, respectively. Since w and w are
outgoing from the same vertex f*, they cannot be on the left and right boundaries
of the same valid base (since the left and right boundaries end at their first common
vertex after s). Therefore, the input wires of g are outgoing from the internal regions
of at least two different valid bases (the internal regions of several valid bases may
overlap). Further, the two valid bases are in the same equivalence class, since f* is a

EFFICIENT PARALLEL PLANAR MONOTONE CIRCUIT VALUE 331

ALGORITHM 1. Complete evaluation of a one-input-face PMC
Input: An embedded one-input-face PMC C and a complete input assignment to C.
Output: Each gate in C is assigned a value 0 or 1.
1. if all input nodes in C have value 1
2. then assign value 1 to all gates in C; return;

else if all input nodes in C have value 0
3. then assign value 0 to all gates in C; return;

end {if};
end (if};

4. Augment C to Caug, and construct the auxiliary dual graph Aaug;
5. Find the edges in Aaug that are on the boundaries of valid bases of Caug (see Procedure 2);
6. Construct the separating graph Asep;
7. Remove the wires in Caug that cross the boundary edges of Asep;
8. Find the (undirected) connected components in the remaining Caug;
9. for each connected component CR found in step 8 in parallel do
10. if CR does not contain input nodes with value 0
11. then assign value 1 to all gates in CR;
12. else transform CR to C using Procedure 1;
13. Recursively evaluate C;

end {if};
end {for};

end.

common vertex of the left boundary of one valid base and the right boundary of the
other valid base.

We now prove Claim 2. Since the external separating region R contains at least
one input node with value 0, the boundary of R must contain the supersource s.
Further, s may appear on the boundary of R more than once (see Fig. 6; s appears
twice on the boundary of the external separating region R which consists of the part
of the plane between the internal region of B1 and the internal region of B2). Since
multiple appearances of s are possible, if we remove s from the boundary of R, the
boundary will be divided into several connected portions, each enclosing a disjoint
part of Caug (in Fig. 6, the two disjoint parts are the internal region of B1 and the
internal region of B2). The valid bases in one part cannot be in the same equivalence
class as a valid base in a different part. Let P be a connected portion of the boundary
of R after removing S. Let I be the set of all newly created input nodes that are
descendants of the valid bases in the equivalence classes enclosed in P. Then the
original input wires of the input nodes in I must cross the dual edges in P. Hence
the input nodes in I are adjacent on the boundary of a face in C and therefore are
in the same valid base in C. [:]

3.3. An efficient algorithm for the one-input-face PMCVP. Based on the
approach we presented in the previous subsection, we give an efficient EREW PRAM
algorithm, called Algorithm 1, for evaluating a one-input-face PMC.

The correctness and complexity analysis of Algorithm 1 will be given in Theo-
rem 3.1. All steps in Algorithm 1 are quite straightforward to implement except step
5, which is implemented by Procedure 2. Step 2.5 in Procedure 2 is implemented by
Procedure 3, which is similar to a procedure used for the layered PMC in [20].

LEMMA 3.16. Procedure 2 (i.e., step 5 in Algorithm 1) correctly finds the edges
in Aaua that are on the boundaries of valid bases of Caua and runs in O(logn) time
using a linear number of processors on an EREW PRAM.

Proof. The correctness of all steps (except step 2.5) of Procedure 2, which imple-

332 VIJAYA RAMACHANDRAN AND HONGHUA YANG

PROCEDURE 2. Finding the edges in Aaug that are on the boundaries of valid bases
Input: Chug, Aaug, and a complete input assignment to Chug.
Output: The edges of Aaug that are on the boundaries of valid bases of Chug are marked.
2.1. Find all the valid bases in Chug and label them in the order of the sequence in which

they appear on the boundary of the input face of Cag;
2.2. Construct Tt* and Tr* from Aaug;
2.3. Compute BASEt(f*) and BASEr(f*) for each dual vertex f* in Aaug;
2.4. Compute JOIN(f*) BASEl(f*)N BASEr(f*) for each dual vertex f* in Aaug;
2.5. Find the enclosure relation C_ x among the JOIN(f*) (see Procedure 3);
2.6. Compute ITERMI(f*)I and ITERMr(f*)I for each dual vertex f* in Aaug using Lemma 3.8;
2.7. Compute IBOUNI(f*)I and IBOUNr(f*)] for each dual vertex f* in Aaug using Lemma 3.6;
2.8. Mark all dual edges (f*, g*) in Aaug

with [BOUNI(f*)I > 0 and [BOUNI(f*)I
or with IBOUNr(f*)I > 0 and IBOUNr(f*)I

end.

PROCEDURE 3. Finding the enclosure relation Cx for the JOIN(f*)
Input: T* and JOIN(f*) for each dual vertex f* on T*.
Output: The enclosure forest EF* such that a dual vertex f is the immediate predecessor of

a vertex f* in EF* iff JOIN(f) C_I JOIN(f*).
3.1. for each vertex f* with nonempty JOIN(f*) and with the length of the longest path from

a leaf to f* in Tt* being k in parallel do
3.2. Assign two triples (x, -k, f*), (y, k, f*) for each range Ix, y] in JOIN(f*);

end {for};
3.3. Sort all triples into nondecreasing order according to the first two elements in a triple;
3.4. for each triple (x, -k, f*), where k >_ 0 in parallel do
3.5. Find its previous triple (n, M, if*) in the sorted list;
3.6. if (k’ < 0) and (f* f’*) then f’* is the parent of f* in EF*;
3.7. else if (k’ > 0) and (f* f’*) then f’* is the left sibling of f* in EF*; end {if};

end {if};
end {for};

3.8. Construct the EF* from the parent and sibling relations;
end.

ments step 5 of Algorithm 1, has been proved in Lemmas 3.6 and 3.8. We now show
the correctness of Procedure 3, which implements step 2.5 of Procedure 2. Let f and

f be two vertices in T* such that the longest paths from a leaf to f{ and from a leaf
to f are of length kl and k2, respectively. By Lemma 3.7, f{ is a successor of f in

T* and JOIN(I)

_
JOIN(f) iff kl > k2, and for each range [x2,y2] of JOXN(f),

there exists a range [xl,y] of JOIN(f{), such that x _< x2 _< y2 _< yl in the cyclic
order. JOIN(I{) A JOIN(f) iff for each range Ix2, y] of JOIN(f) and each
range [x,y] of JOIN(f{), Xl _< yl < x2 _< Y2 in the cyclic order. Therefore, if
(n’, k’, f’*) and (x,-k, f*) are two consecutive triples in the sorted list, we have the
following: (1) if k’ < 0 and f* f’*, then JOiN(f*) Cx JOIN(f’*) and f’* must
be the immediate successor of f* in the EF*; (2) if k’ > 0 and f* f’*, then f* and
fP* share the common immediate successor in EF*.

Next, we analyze the time complexity of Procedure 2.
In step 2.2, T* (T) can be computed using Euler-tour technique as follows. We

first remove s and all right (left) legs from Aau. Then the resulting graphA is a
tree rooted at t by the uniqueness of left (right) legs. We then mark the leaf nodes
of Aaug that are the dual vertices of the left (right) bounding faces of valid bases of
C. Finally, we apply the Euler-tour technique to find all the successors of the marked
leaf nodes, and the resulting subtree of A’u is T* (T).

In step 2.3, since BASEt(I*) (BASEr(f*)) contains valid bases with consecutive
labels (modulo the total number of bases) in the total order of the valid bases, it

EFFICIENT PARALLEL PLANAR MONOTONE CIRCUIT VALUE 333

ALGORITHM 2. Partial evaluation of a one-input-face PMC
Input: A one-input-face PMC C and a partial input assignment to C.
Output: Each gate in C that can be evaluated is assigned a value 0 or 1.
1. Assign value 1 to all input nodes with unknown value in C and apply Algorithm 1;
2. Let A be the set of the gates assigned value 0 in this solution of step 1;
3. Assign value 0 to all input nodes with unknown value in C and apply Algorithm 1;
4. Let B be the set of the gates assigned value 1 in this solution of step 3;
5. Assign value 0 to all gates in A, assign value 1 to all gates in B, and assign unknown value

to the gates of C that are neither in A nor in B;
end.

can be described succinctly by a range [/, hi where and h are the numbers of the
first and the last valid bases in BASEt(f*) (BASEr(f*)), respectively. BASEt(f*)
(BASEr(f*)) can be computed using Euler-tour technique on T* (T,) as follows. We
first label each leaf node of Tt* (T) with the label of its corresponding valid base.
Then for each vertex f* in T* (T), we apply the Euler-tour technique to find the
smallest label and the largest label among the leaf predecessors of f* in T* (T) and
assign them to and h, respectively.

In step 2.4, JOIN(f*) can be computed from BASE,(f*) and BASEr(f*) in
constant time and be represented by at most two ranges.

Based on the above analysis, we conclude that steps 2.2-2.4 can be implemented
in O(log n) time using a linear number of processors.

Procedure 3 (which implements step 2.5 in Procedure 2) can be implemented in
O(log n) time with a linear number of processors using the parallel merge sort of [2]
and the Euler-tour technique.

It is easy to see that all other steps of Procedure 2 can be implemented in O(log n)
time using a linear number of processors by computing prefix sums and applying
Euler-tour and tree-evaluation techniques in [6] and [15].

THEOREM 3.1. Algorithm 1 correctly solves the complete evaluation problem of a
one-input-face PMC, given a complete input assignment, and runs in O(log2 n) time
using n processors on an EREW PRAM, where n is the size of the circuit.

Proof. Steps 1-4 are quite straightforward. The correctness of step 5 is proved
by Lemma 3.16. The correctness of steps 6-13 is proved by Corollary 3.9.1 and
Lemma 3.14.

It is straightforward to see that all steps except steps 5, 8, and 13 in Algorithm 1
can be implemented in O(log n) time using a linear number of processors. Lemma 3.16
shows that step 5 can be implemented in the same time complexity. Step 8 can be
implemented in O(log n) time optimally by applying the algorithm in [5] for finding
connected components in a planar undirected graph.

By Lemma 3.15, the number of the recursive levels needed to complete the eval-
uation is O(log n). Therefore, the overall time needed by Algorithm 1 is bounded by
O(log2 n). Further, the total number of gates in all remaining subcircuits CR in step
12 in Algorithm 1 is less than the number of gates in the original CasH, since for each
newly inserted gate in CR, there is a unique gate in the internal region of a valid base
being removed. Therefore, the processor bound holds.

3.4. Partial evaluation of a one-input-face PMC. We extend Algorithm 1
to solve the partial evaluation problem of a one-input-face PMC in Algorithm 2.

THEOREM 3.2. Algorithm 2 correctly solves the partial evaluation problem of a
one-input-face PMC, given a partial input assignment, and runs in O(log2 n) time

334 VIJAYA RAMACHANDRAN AND HONGHUA YANG

using n processors on an EREW PRAM, where n is the size of the circuit.

Proof. By the monotonicity of the circuit, A is a subset of the gates that should
be evaluated to 0 in the partial evaluation of C, and B is a subset of the gates that
should be evaluated to 1 in the partial evaluation of C. Further, we now show that a
gate g of C that is neither in A nor in B should have unknown values in the partial
evaluation of C. Suppose that this is not the case. Let g be a gate that should be
evaluated to 0 (1) in the partial evaluation of C, and let g be in neither A nor B.
Then g evaluates to 0 (1) under every possible input assignment to the input nodes
with unknown values in C. In particular, g has value 0 (1) when all input nodes
with unknown values are assigned value 1 (0), which means g is in A (B). This is a
contradiction. Therefore, Algorithm 2 is correct.

It is easy to see that the time complexity of Algorithm 2 is the same as that of
Algorithm 1, since it is dominated by the two calls on Algorithm 1.

4. The face induced PMC. In this section, we consider a face f induced circuit

Cf, which is defined in 2. For convenience, we assume that Cf is embedded with
f being the external face. An f-partial input assignment to CI is a partial input
assignment where only input nodes in f can have unknown values and the input nodes
in faces other than f must have values 0 or 1. The problem of partially evaluating
given an f-partial input assignment is called the f-partial evaluation of CI. Algorithm
3 gives our method to perform an f-partial evaluation of CI. Algorithm 3 is similar
to an algorithm in [3] which first layers a face induced circuit (which squares the size
of the circuit) and then recursively’partitions the circuit at an appropriate layer. Our
algorithm performs a more efficient evaluation by working on a face induced circuit
directly and partitioning the circuit according to its topological ordering. It then
partially evaluates each subcircuit either recursively or using Algorithm 2.

Recall that a topological ordering of a digraph is a linear ordering of its vertices
such that every edge in the graph points from a lower-numbered vertex to a higher-
numbered vertex. It is well known that a digraph has a topological ordering iff it is a
DAG. We now prove the correctness of Algorithm 3 and analyze its complexity.

LEMMA 4.1. Immediately before step 8, every connected subcircuit in Pl and Ph
is a face f’ induced circuit for some face f with an f-partial input assignment.

Proof. Let us add to Cf a supersource s in face f and a supersink t in the output
face of C, for the purpose of the proof. We connect s to each input node in f with
an edge and connect each output gate to t with an edge. The resulting CI is still a
plane graph.

Only input nodes in f can have unknown values in each connected subcircuit in
Pl, since no new input nodes are created in Pt. We now show that the output gates in
Pt are in the same face. By step 5, every directed path from a gate in Ph to t consists
only of gates in Ph. Hence the gates in Ph can be coalesced to t and the resulting
CI is still a plane graph. The wires outgoing from gates in Pl to gates in Ph are now
incoming to t. Hence after we cut the wires outgoing from gates in Pt to t and remove
t, the output gates of the connected subcircuits in Pt are in a single face, which we
call fl. Hence every connected subcircuit in Pl is still a face f induced circuit with
an f-partial input assignment.

Ph is C \ Pl plus some new input nodes with unknown values generated in step
6. The output gates in Ph are not changed and hence are still in the same face. The
new input nodes with unknown values are in the same face fl, since all gates in Pt
can be coalesced to s. If there are original input nodes in f remaining in Ph (which

EFFICIENT PARALLEL PLANAR MONOTONE CIRCUIT VALUE 335

ALGORITHM 3. f-partial evaluation of a face f induced circuit Cf
Input: A face f induced circuit Cf with an f-partial input assignment.
Output: The solution of the f-partial evaluation problem of CI.
1. if CI contains only one gate then return the value of the gate end (if};
2. Obtain a topological ordering of the gates in CI;
3. Let m be the total number of the noninput gates in CI;
4. Find gl such that there are [m/2J noninput gates before gl in the topological ordering;
5. Partition the gates in Cf into two parts P and Ph, such that Pl contains g and the gates

before g in the ordering and Ph contains the gates after g in the ordering, and remove
the wires of CI pointing from gates in P to gates in Ph;

6. for each gate g in Ph in parallel do
if all input wire(s) of g are removed
then replace g by an input node with unknown value in Ph;
else if g is a two-input gate and only one input wire of g is removed

then add an input node with unknown value and a wire from to g in Ph;
end (if};

end (if};
end (for};

7. Find the (undirected) connected subcircuits in P and Pu;
8. f-partially evaluate every connected subcircuit in P and Ph recursively in parallel, where

is the external input face of the subcircuit;
({it will be shown below that each such subcircuit is a face f induced circuit with an
f-partial assignment}}

9. Remove all gates that are assigned 0 or 1 in step 8 in Ph;
10. Assign the output values of P to the input nodes of Ph;
11. Partially evaluate every connected subcircuit in Ph using Algorithm 2 in parallel;

((it will be shown below that each such subcircuit is a one-input-face PMCs}}
end.

are the only input nodes in Cf that possibly carry unknown value), then fl must be
identical to f. Hence every connected subcircuit in Ph is still a face fl induced circuit
with an f-partial input assignment. [:]

LEMMA 4.2. Immediately before step 11, every connected subcircuit in Ph is a
one-input-face PMC.

Proof. We show that after removing all gates assigned 0 or 1 in Ph in step 9,
no new input nodes are generated, i.e., no gate with in-degree 1 or 2 in Ph becomes
a gate with in-degree 0. Let g be a gate with in-degree at least 1 in Ph just before
step 9. If all gate(s) that provide inputs to g have known values, then the value of g
should be evaluated in step 8 and g should be removed in step 9. If all gate(s) that
provide inputs to g have unknown values, then the in-degree of g is not changed. If
one input of a two-input gate g has unknown value and the other has known value,
then the in-degree of g is 1 after step 9. Hence no new input nodes are generated in
Ph in step 9. By Lemma 4.1, every connected subcircuit in Ph and Pt in step 8 is
a face f induced circuit for some input face f with an f partial input assignment.
Therefore, immediately before step 11, the only input nodes left in each connected
subcircuit in Ph are the input nodes in f that carry unknown value. Hence every
connected subcircuit in Ph is a one-input-face PMC. 1

THEOREM 4.1. Algorithm 3 correctly solves the f-partial evaluation problem of a
face f induced circuit Cf and runs in O(log4 n) time using n processors on an EREW
PRAM, where n is the size of CI.

Proof. The correctness of steps 8 and 11 are shown by Lemmas 4.1 and 4.2. It is
straightforward to see that other steps in Algorithm 3 are correct.

Step 1 takes constant time. Step 2 can be implemented in O(log3 n) time using n
processors on an EREW by Theorem 4.1 in Kao and Klein [12]. The connectivity of a

336 VIJAYA RAMACHANDRAN AND HONGHUA YANG

ALGORITHM 4. Complete evaluation of a general PMC
Input: A general PMC C with input nodes il,..., im and a complete input assignment.
Output: Each gate in C is assigned a value 0 or 1.
0. if C contains only one gate then return the value of the gate end (if};
1. Find the smallest k, 0 _< k _< m, such that every connected subcircuit in
C \ Reach(il, i2,..., i(k+)) is of size _< n/2 (see Fig. 10);
Let P be a connected subcircuit of size > n/2 in C \ Reach(i, i2,..., ik) when k _> 1;

2. ifk> 1
3. then Recursively solve the complete evaluation problem for the connected subcircuits in

C \ Reach(P) and in P \ Reach(i(k+)) (whose sizes are all _< n/2) in parallel
(see Fig. 10 and Lemmas 5.1 and 5.2 for steps 3-8);
((it will be shown that each such subcircuit is a general PMC with a complete input
assignment} }

4. Completely evaluate Induced(i(k+))n P using Algorithm 3;
((it will be shown that each such subcircuit is a face induced circuit with a complete
input assignment} }
((now all gates in P and C \ Reach(P) are completely evaluated}}

5. Remove P from C, let ol,..., om be the gates of P with wires outgoing to reach(P);
((o,...,Om, are on the boundary of a single face in reach(P)))

6. Completely evaluate Induced(o,..., ore, (i.e., Reach(P) \ P) using Algorithm 3;
((it will be shown that each such subcircuit is a face induced circuit with a complete
input assignment} }

7. else Recursively solve the complete evaluation problem for the connected subcircuits in
C \ Reach(il) (whose sizes are all <_ n/2) in parallel;

8. Evaluate Induced(i) using Algorithm 3;
end (if};

end.

plane undirected graph in steps 8 and 11 can be solved in O(log n) time using n/log n
processors on an EREW by the algorithm in Gazit [5]. Steps 3-6 and 9-10 can be
implemented in O(log n) time using n/log n processors. Step 11 takes O(log2 n) time
using n processors by Theorem 3.2. Let n be the number of noninput gates in the
original Cf. Since the in-degree of each gate in Cf is <_ 2, we have n < n _< 3n.
Each of Ph and Pz contains at most [n/2 noninput gates and therefore at most
3 [n’/2 total gates (including the new input nodes). Let T(n) be the time needed for
Algorithm 3 to partially evaluate a circuit with n gates. We have

T(3n’) <_ T(3 In’/2]) + O(log3 n).

Solving the above recurrence equation, we have T(3n’) O(log4 n). Hence T(n) <_
T(3n’) O(log4 n).

5. The general PMCVP. In this section, we give in Algorithm 4 our overall
algorithm for evaluating a general PMC. This algorithm evaluates a general PMC
recursively by decomposing it into smaller PMCs and disjoint face induced subcircuits.
The smaller PMCs are evaluated recursively, while each face induced subcircuit is
evaluated by Algorithm 3. We then show the correctness and complexity of Algorithm
4 in Lemma 5.1 and Theorem 5.1. A sketch of an algorithm similar to Algorithm 4 is
given in [3].

LEMMA 5.1. Each connected subcircuit in steps 3 and 7 is a general PMC with a
complete input assignment.

Proof. Since the gates in Reach(P) can be coalesced into a single gate, the
output gates in C \ Reach(P) are in the same face. Similarly, the output gates in P
and P \ Reach(i(k+l)) are in the same face. The input nodes in C \ Reach(P) are

EFFICIENT PARALLEL PLANAR MONOTONE CIRCUIT VALUE 337

FIG. 10. A general PMC C of size n, where P is a connected subcircuit of size > n/2 in

C\ reach(il, i2,..., ik) but C\ reach(il, i2,..., i(k+)) does not contain any connected subcircuit of
size > n/2

original input nodes in C. Since there is no wire in C outgoing from a gate in C \ P
to P, the input nodes in P \ Reach(i(k+l)) are also original input nodes in C. Hence
each connected subcircuit in C \ Reach(P) and P \ Reach(i(k+l)) is a general PMC
with a complete input assignment, and can be completely evaluated recursively in
step 3. A similar proof holds for step 7.

LEMMA 5.2. Each connected subcircuit in steps 4, 6, and 8 is a face induced
circuit with a complete input assignment.

Proof. The output gates in Induced(i(k+l))NP are in the same face since they are
a subset of the output gates in P. Induced(i(k+l))NP are reachable from the original
input i(k+l)- The other new input nodes in Induced(i(k+l)) P get their value from
P \ Reach(i(k+1)), which is completely evaluated in step 3. Hence Induced(i(+1) P
is a face f (that contains i(+1)) induced circuit with a complete input assignment
and can be completely evaluated using Algorithm 3 in step 4.

The output gates in Induced(ol,..., ore’) (i.e., Reach(P)\P) are the output gates
in Reach(P), and the output gates in Reach(P) are a subset of the output gates in
C and are in the same face. The input nodes ol,..., Om, in Reach(P) \ P are the
output gates in P and are in the same face, which we call fl, and are completely
evaluated in steps 3 and 4. All gates in Reach(P) \ P are reachable from the input
nodes ol,..., ore, in fl. The other input gates in Reach(P) \ P get values from gates
in C\ Reach(P), which is completely evaluated in step 3. Hence Induced(ol,..., Om,

(i.e., Reach(P) \ P) is a face fl induced circuit with a complete input assignment and
can be completely evaluated using Algorithm 3 in step 6.

A similar proof holds for step 8.
THEOREM 5.1. Algorithm 4 correctly solves the PMCVP for a general PMC C

and runs in O(log6 n) time using n processors on an EREW PRAM, where n is the
size of the circuit.

Proof. The correctness of Algorithm 4 has been shown in Lemmas 5.1 and 5.2.
The reachability in steps 1, 3, and 7 can be implemented in O(log4 n) time using

338 VIJAYA RAMACHANDRAN AND HONGHUA YANG

n processors on an EREW by the multiple-source reachability algorithm for planar
digraphs in Guattery and Miller [10]. The k in step 1 can be found by a binary
search. Hence the total time needed in step 1 is O(log5 n). The connectivity of a
plane undirected graph in steps 1, 3, and 7 can be solved in O(logn) time using n
processors on an EREW by the algorithm in Gazit [5]. By Theorem 4.1, steps 4-6
and 8 can be implemented in O(log4 n) time using n processors on an EREW. It is
easy to see that the connected subcircuits in steps 3 and 7 are of size <_ n/2 and
the subcircuits obtained in each step are disjoint. Let T(n) be the time needed for
Algorithm 4 to evaluate a PMC with n gates. We have

T(n) T(n/2) / O(log5n).

Solving the above recurrence equation, we have T(n) O(log6 n).
Note that the high power in the logarithm for the running time is mainly due

to the running time of the reachability algorithms in [10] and [12]. An improvement
in the running time of the parallel algorithms for reachability in a plane DAG would
imply an improvement in the running time of our algorithm.

REFERENCES

[1] A. BORODIN, On relating time and space to size and depth, SIAM J. Comput., 6 (1977),
pp. 733-744.

[2] R. COLE, Parallel merge sort, SIAM J. Comput., 17 (1988), pp. 770-785.
[3] A. L. DELCHER AND S. R. KOSARAJU, An NC algorithm for evaluating monotone planar

circuits, SIAM J. Comput., 24 (1995), pp. 369-375.
[4] P. W. DYMOND AND S. A. COOK, Hardware complexity and parallel computation, in Proc. 21st

IEEE Symposium on Foundations of Computer Science, IEEE Press, Piscataway, NJ, 1980,
pp. 360-372.

[5] H. GAZIT, An optimal deterministic EREW parallel algorithm for finding connected compo-
nents in a low genus graph, in Proc. 5th International Parallel Processing Symposium,
IEEE Computer Society Press, Los Alamitos, CA, 1991, pp. 84-90.

[6] A. M. GIBBONS AND W. RYTTER, An optimal parallel algorithm for dynamic expression eval-
uation and its applications, in Proc. Symposium on Foundations of Software Technology
and Theoretical Computer Science, Springer-Verlag, Berlin, New York, 1986, pp. 453-469.

[7] L. M. GOLDSCHLAGER, A space ejficient algorithm for the monotone planar circuit value
problem, Inform. Process. Lett., 10 (1980), pp. 25-27.

[8] , A unified approach to models o] synchronous parallel machines, in Proc. 10th ACM
Symposium on Theory of Computing, Association for Computing Machinery, New York,
1978, pp. 89-94.

[9] , The monotone and planar circuit value problems are log space complete for P,
SIGACT News, 9 (1977), pp. 25-29.

[10] S. GUATTERY AND G. L. MILLER, A contraction procedure for planar directed graphs, in
Proc. 4th ACM Symposium on Parallel Algorithms and Architectures, Association for
Computing Machinery, New York, 1992, pp. 431-441.

[11] M. D. HUTTON AND A. LUBIW, Upward planar drawing of single source acyclic digraphs,
in Proc. 2nd ACM-SIAM Symposium on Discrete Algorithms, Society for Industrial and
Applied Mathematics, Philadelphia, 1991, pp. 203-211.

[12] M. Y. KAO AND P. KLEIN, Toward overcoming the transitive-closure bottleneck: Ejficient
parallel algorithms for planar digraphs, in Proc. 22nd ACM Symposium on Theory of
Computing, Association for Computing Machinery, New York, 1990, pp. 181-192.

[13] M. Y. KAo AND G. SHANNON, Local reorientation, global order, and planar topology, in
Proc. 18th ACM Symposium on Theory of Computing, Association for Computing Ma-
chinery, New York, 1986, pp. 160-168.

[14] R. M. KARP AND V. RAMACHANDRAN, Parallel algorithms for shared memory machines, in
Handbook of Theoretical Computer Science, J. Van Leeuwen, ed., North-Holland, Ams-
terdam, 1990, pp. 869-941.

EFFICIENT PARALLEL PLANAR MONOTONE CIRCUIT VALUE 339

[15] S. R. KOSARAJU AND A. L. DELCHEI% Optimal parallel evaluation of tree-structured compu-
tations by raking, in Proc. 3rd Aegean Workshop on Computing, Lecture Notes in Com-
put. Sci., 319 (1988), pp. 101-110.

[16] R. E. LADNER, The circuit value problem is log space complete for P, SIGACT News, 7 (1975),
pp. 18-20.

[17] E. M. MAyl, The dynamic tree expression problem, in Proc. Princeton Workshop on Algo-
rithms, Architecture and Technology Issues for Models of Concurrent Computation, Prince-
ton University Press, Princeton, NJ, 1987, pp. 157-179.

[18] G. L. MILLER, V. RAMACHANDRAN, AND E. KALTOFEN, Efficient parallel evaluation of
straight-line code and arithmetic circuits, SIAM J. Comput., 17 (1988), pp. 687-695.

[19] V. RAMACHANDIAN AND J. H. REIF, Planarity testing in parallel, J. Comput. System Sci., 49
(199), . -1.

[20] V. RAMACHANDIAN AND H. YANG, An ejcient parallel algorithm for the layered planar
monotone circuit value problem, in Proc. 1st European Symposium on Algorithms, Lecture
Notes in Comput. Sci., 726 (1993), pp. 321-332.

[21] An ejficient parallel algorithm for the general planar monotone circuit value problem,
in Proc. 5th ACM-SIAM Symposium on Discrete Algorithms, Society for Industrial and
Applied Mathematics, Philadelphia, 1994, pp. 622-631.

[22] , Finding the closed partition of a planar graph, Algorithmica, 11 (1994), pp. 443-468.
[23] R. E. TARJAN AND V. VISHKIN, An eJficient parallel biconnectivity algorithm, SIAM J. Com-

put., 14 (1985), pp. 862-874.
[24] H. YANG, An NC algorithm for the general planar monotone circuit value problem, in Proc. 3rd

IEEE Symposium on Parallel and Distributed Processing, IEEE Press, Piscataway, NJ,
1991, pp. 196-203.

SIAM J. COMPUT.
Vol. 25, No. 2, pp. 340-354, April 1996

() 1996 Society for Industrial and Applied Mathematics
007

THE BOOLEAN HIERARCHY AND THE POLYNOMIAL
HIERARCHY: A CLOSER CONNECTION*

RICHARD CHANGt AND JIM KADINt

Abstract. We show that if the Boolean hierarchy collapses to level k, then the polynomial
hierarchy collapses to BH3(k), where BH3(k) is the kth level of the Boolean hierarchy over E2P. This
is an improvement over the known results, which show that the polynomial hierarchy would collapse
to PNPNP[O(Ign)]. This result is significant in two ways. First, the theorem says that a deeper
collapse of the Boolean hierarchy implies a deeper collapse of the polynomial hierarchy. Also, this
result points to some previously unexplored connections between the Boolean and query hierarchies
of A and A3P. Namely,

BH(k) co-BH(k) BH3(k) co-BH3(k),

pNP[[[k] pNP[[[k+l] :=::=k PNPNP[[[k+I] PNPNP[I[k+2]

Key words, polynomial-time hierarchy, Boolean hierarchy, polynomial-time Turing reductions,
oracle access, nonuniform algorithms, sparse sets

AMS subject classifications. 68Q15, 03D15, 03D20

1. Introduction. The Boolean hierarchy (BH) was defined as the closure of
NP under Boolean operations and is identical to the difference hierarchy of NP sets
[1, 2, 7]. Kadin [3] showed that if the BH collapses at any level, the polynomial-
time hierarchy (PH) collapses to PNPP[(lgn)], the class of languages in PNPP that
are recognized by deterministic polynomial-time machines that make O(log n) queries
to an NPNP oracle. Since the BH is contained in pNP, this result showed that the
structure of classes above NP but within pNP is related to the structure of the PH as
a whole.

In this paper we extend Kadin’s result by showing that if the BH collapses to its
kth level (if BH(k) co-BH(k)), then the PH collapses to the kth level of the BH
within A3P (the difference hierarchy of NPNP languages). That is,

if BH(k)= co-BH(k), then PH c_ BH3(k)

(see 2 for precise definitions). The kth level of the A3P Boolean hierarchy (BH3(k))
is contained within PNPNp[lgk+l], the class of languages in PNPNP recognized by
machines that make at most [log k + 1 queries for all inputs. Therefore, the collapse
of the BH implies that the languages within the PH can be recognized by deterministic
polynomial-time machines that make a constant number of queries to an NPNP oracle,
and the deeper the collapse of the BH, the smaller this constant is.

This result also yields two unexpected corollaries:
1. If Bn(k) co-BH(k), then Bn3(k) co-Bn3(k).
2. If pNP]][k] pNP][[k+l], then PNPNP[[[k+I] PNPNP[[[k+2].

Received by the editors February 20, 1990; accepted for publication (in revised form) August
21, 1994.

Computer Science Department, Cornell University, Ithaca, NY 14853. Current address: De-
partment of Computer Science, University of Maryland Baltimore County, Baltimore, MD 21228.
The research of this author was supported in part by National Science Foundation research grants
DCR-8520597 and CCR-88-23053.

Computer Science Department, University of Maine, Orono, ME 04469. This work was carried
out while this author was a visiting scientist at Cornell University.

340

THE BOOLEAN HIERARCHY AND THE POLYNOMIAL HIERARCHY 341

The first corollary says that the collapse of the BH in A2P implies an identical collapse
of the BH in A. The second corollary says that the bounded query hierarchies within

A2P and A3P are linked, pNPIl[k] is the class of languages recognizable by deterministic
polynomial-time machines that are allowed to ask k questions in parallel to an oracle
from NP (all k queries must be asked at once, so no query can depend on the answers

to other queries). PNPNPII[k] is the class of languages recognizable by deterministic
polynomial-time machines that are allowed to ask k questions in parallel to an oracle
from NPNP. If the query hierarchy in A2P collapses, then the query hierarchy in

A3P collapses to almost the same level. At first glance, one would think that these
corollaries could be proven directly by a straightforward oracle replacement proof.
However, the only proof that we know uses a refined version of Kadin’s "hard/easy"
formulas argument.

The "hard/easy" formulas argument [3, 5], which showed that the collapse of the
BH implies the collapse of the PH, went as follows:

If the BH collapses to its kth level, then the unsatisfiable Boolean formulas of
each length n can be partitioned into "easy" and "hard" formulas. The easy
formulas can be recognized as unsatisfiable by a particular NP algorithm, and
the hard formulas cannot be recognized by this algorithm.
The hard formulas are key strings, because sequences of at most k- 1 hard
formulas of length n contain enough information to allow an NP machine to
recognize all the unsatisfiable formulas of length n.
A sparse set S was constructed by taking one sequence of hard formulas for
each length.
Since co-NP c_ NPS, the results of Yap [8] imply that PH C_ E3P.
By arguing further that S E NPNP, it was shown that PH c_ pNpNP[O(logn)] .1

In this paper we present a deeper analysis of the hard sequences. We show that it
is not necessary to choose a particular hard sequence to put into S. In fact, a smaller
amount of information, contained in a sparse set T, is enough to allow a E2P machine
to recognize E languages, i.e.,

NpNPNP C NpTsAT.
Since T E NPNP and is almost a tally set (T is a subset of a P-printable set), we are

able to show that NPNPP is contained in the BH3(k).
2. Definitions and notation. We assume that the reader is familiar with the

classes NPand co-NP, PH, and the NP-complete set SAT.
Notation. For any language L, L-< is the set of strings in L of length less than

or equal to n. L is the set of strings in L of length n.
Notation. We will write rj for the jth projection function, and r(i,j) for the

function that selects the ith through jth elements of a k-tuple. For example,

7rj((Xl,...,Xk)) Xj,

7r(1,j)((Xl,...,Xk}) (Xx,...,Xj}.

Notation. We will assume a canonical encoding of the polynomial-time nonde-
terministic oracle Turing machines, N1,N2, N3,..., with effective composition, etc.

Mahaney [6] has found an error in the proof presented in [3] and [5] that the set S is in NPNP.
See [4]. The argument presented in this paper does not use the erroneous reasoning and actually
proves a stronger result.

342 RICHARD CHANG AND JIM KADIN

Also, we will assume that all polynomials and running times used in this paper are
at least O(n) and are monotone increasing.

DEFINITION. We write BH(k) and co-BH(k) for the kth levels of the BH, defined
as follows:

sn(1)d=efNp,

BH(k + 1)d-----el{L1 L2 L1 e NP and L2 e BH(k)},

co-SH(k)d--ef{L [e SH(k)}.
DEFINITION. We write BH3(k) and co-BH3(k) for the kth levels of the BH in

A, defined as follows:

BH3(1)d_--efNpNP

BH3(k + 1)de----f{L1 L2 L1 e NPNP and L2 E BH3(k)},

co-Bn3(k)d--ef{L e sn3(k)}.
An equivalent way to define the BH is as follows [1]:

Bn(1)d=efNp,

SH(2k)de=f{L n L’ A L--, where L’ e sn(2k- 1)and L2 e NP},

SH(2k + 1)de----f{L L L’ U L2, where L’ e BH(2k)and L2 e NP},

co-Bn(k)d--ef{L e Bn(k)}.
From this definition, it is not hard to prove that the following languages are com-

plete for the respective levels of the BH under polynomial-time many-one reductions

DEFINITION. We write LBH(k) for the canonical complete language for BH(k) and
Lco-BH(k) for the complete language for co-BH(k):

LBH()d=efSAT,
Lsn(2k)d----ef{<Xl,.-. ,X2k> <X,... ,X2-1> LBH(2}-I) and x2} SAT},

LBH(2+)f{<x,... ,X2}+> (X,... ,X2kl e Lsn(2k) or X2k+l e SAT},

Lco-SH(1) de---fsAw,
deff

co-SH(2) "t<X, ,X2}/ <Xl,... ,X2}-/ E Lco-Sn(2k-1) or X2k e SAT},

L deff
co-Bn(2k+l) <Xl,..., X2k+> <Xl,..., X2k> Lco-Bn(2k) and x2k+ SAT}.
DEFINITION. Lu2 and Lu3 are the canonical <-Pro-complete languages for FP2 and

FP3 respectively:

Lu2de=f{(Nj,x, I) NAT(x)accepts in <_ Ix[+ i steps},

def. li gLuu3 =t(gj x,)l (x)accepts in < Ixl + steps}.

THE BOOLEAN HIERARCHY AND THE POLYNOMIAL HIERARCHY 343

3. An example for BH(2) co-BH(2). In this section we outline the proof
of the main theorem for the case k 2. We want to show that if BH(2) co-BH(2),
then E3P c_ BH3(2). This case contains the spirit of the proof of the main theorem
and allows us to illustrate the proof without worrying about even and odd cases or
messy indices.

If BH(2) co-BH(2), then there is a reduction from LBH(2 to Lco-BH(2) via some
polynomial-time function h. So, if h(F1, F2) (G1, G2), then

F1 E SAT and F2 E SAT == G SAT or G2 SAT.

The key is that h maps a conjunction to a disjunction. Both conditions of the con-
junction are met if just one of the disjuncts is met. In the easy case, if G2 is satisfiable,
then F is satisfiable and F2 is not satisfiable. This gives rise to an NP algorithm for
recognizing some of SAT: Given any formula F2, guess a formula F with IFll _< IF21
and accept if 2h(F1, F2) SAT.

Formulas that can be recognized as unsatisfiable by this NP algorithm are said
to be easy. Formally, a Boolean formula F is easy if F1 with IFI <_ IFI and
2h(F,F) SAT. If all unsatisfiable formulas are easy, then co-NP NP. So
it is likely that there are hard unsatisfiable formulas. We say a formula F is hard if

1. F E SAT,
2. VF with IF] _< IFI, 2h(F1, F) SAT.

While the set of hard strings is probably not in NP (note that it is in co-NP),
an individual hard formula of length m encodes enough information to allow an NP
machine to recognize all of SAT<m. Let F be a hard formula of length m. Suppose
F1 is any formula of length _< m and h(F1, F) (G1, G). Since F is hard, we know
that F SAT and G SAT. Recall that

F SAT and F E SAT == G1 SAT or G SAT.

Replacing F SAT with "true" and G SAT with "false," we get

F1 E SAT == G SAT,

or (by negating both sides of the iff)

F1 SAT == G1 SAT.

So, given the hard string F, an NP machine can recognize if F1 SAT<m by comput-
ing G1 h(F1, F) and verifying that G1 E SAT. In other words, a hard formula of

length m and the reduction from BH(2) to co-BH(2) induce a reduction from SAT<m

to SAT.
The approach taken by Kadin [3] was to encode enough information into a sparse

set S so that an NPS machine could get hold of a hard string of a given length or
determine that there was none. Then the NPS machine could recognize SAT, implying
that co-NP C_ NPS and that the PH collapses [8].

In this paper we take a slightly different approach to show that the collapse of
the BH implies a deeper collapse of the PH. Rather than constructing a sparse oracle
that allows an NP machine to recognize SAT, we show that there is a smaller amount
of information, essentially a tally set, that allows an NPNP machine to recognize the
complete language for 3P. For the case where BH(2) co-BS(2), this information is
the tally set

T de {lm a hard formula of length m}.

344 RICHARD CHANG AND JIM KADIN

First we show that 3e C_ NPTNP. Since the set of hard formulas is in co-NP, if
we tell an NPNP machine that there is a hard formula of length m, it can guess a
hard formula and verify with one query that it is hard. With that formula, the NPNP

machine can produce an NP algorithm that recognizes SAT=m. If we tell an NPNP

machine that there are no hard formulas of length m, then it knows that the "easy"
NP algorithm recognizes all of=m. In either case, the NPNP machine can use an
NP algorithm for SAT=m to remove one level of oracle querying from a 3P machine
and therefore recognize any 3P language.

Now we show that 3e c_ pNpNP[2]. Since an NPNP machine can guess and verify
hard formulas, T E NPNP. This implies that a PNPNP machine can tell with one
query if there are any hard formulas of a given length. Since this is exactly what an
NPNP machine needs to recognize a language, the PNPNP machine can pass the
information in one more NPNP query and therefore recognize a 3p language with only
two queries. Hence BH(2) co-BH(2) implies 3e C_ PNPNP[2], the class of languages
recognizable in deterministic polynomial-time with two queries to NPNP.

With more work, we can show that 3e is actually contained in the second level
of the A3P BH.

4. Main result. We can generalize the analysis of the previous section to higher
levels of the BH by replacing the concept of hard formulas with the concept of hard
sequences of formulas. Just as an individual hard formula could be used with the
reduction from BH(2) to co-BH(2) to induce a reduction from SAT tc SAT, a hard
sequence is a j-tuple that can be used with a -<em-reduction from BH(k) to co-BH(k)
to define a _<em -reduction from BH(k- j) to co-BH(k- j).

DEFINITION. Suppose LBH(k) --Pm Lco-BH(k) via some polynomial-time function h.
Then we call <1re,x1,... ,xj> a hard sequence with respect to h if j 0 or if all of
the following hold:

1. l <_j <_k-1.
2. Ixjl <_ m.
3. xj E SAT.
4. (lm,xl,... ,xj_) is a hard sequence with respect to h.
5. For all y,..., yt <m (where k- j),

r+h((y, y,xj, ,xl)) SAT.

If (l’,x,...,xj) is a hard sequence, then we refer to j as the order of the
sequence and say that it is a hard sequence for length m. Also, we will call a hard
sequence maximal if it cannot be extended to a hard sequence of higher order. We
say that j is the maximum order for length m if there is a hard sequence of order j
for length m and there is no hard sequence of order j + 1 for length m. Finally, when
the individual strings x1,..., xy are of no importance, we use the shortened notation
(lm, instead of 1m, x,..., xj).

Our proof that BH C_ BH(k) implies PH C_ BH3(k) is rather involved. All of our
lemmas and theorems start with the assumption that BH(k) co-BH(k) or, in other
words that there exists a function h that is a <P -reduction from LBH(k) to Lco_BH(k
First we show that a hard sequence of order j for length m does indeed induce a
reduction from LBH(k-j) to Lco-BU(k-j) (Lemma 4.1). Then we show that a maximal

hard sequence for length m induces a polynomial-time reduction from ST<m
to SAT

(Lemma 4.2). In Lemma 4.3 we argue that given a maximal hard sequence, an NP
machine can recognize an initial segment of Lu2, the canonical complete language for

THE BOOLEAN HIERARCHY AND THE POLYNOMIAL HIERARCHY 345

E2P. Lemma 4.4 takes this a step further by showing that given the maximum order of
hard sequences for a length, an NPNP machine can recognize an initial segment of Lu3,
the canonical complete language for E3P. We then define the set T which encodes the
orders of hard sequences for each length, and we show that T E NPNP (Lemma 4.5).
We put all this analysis together in Theorem 4.6 and show that BH(k) co-BH(k)
implies PH c_ PNPNP[k].

Moving toward the A3P BH, we prove that an NP machine can recognize if there is
a hard sequence of order j for length m if it is given a hard sequence for a polynomially
longer length (Lemma 4.7). In Lemma 4.8 we show that the maximum order of hard
sequences for a length is enough information to permit an NPNP machine to recognize
when a string is not in Lug; that is, the NPNP machine can recognize an initial segment
of a complete language for H3P. Finally, this gives us the machinery to prove our main
theorem.

We start by showing that a hard sequence of order j for length m induces a
reduction from LBH(k_j) to Lco_BH_j) for tuples of strings up to length m.

LEMMA 4.1. Suppose LBH(k --m Lco-BH(k) via some function h and (lm, Xl, ,xj)
is a hard sequence with respect to h. Then for all y y E<m (where k j),

(Yl,...,Y} LBH(t) 7r(1,)h((yl,. ,Yi, Xj,... ,Xl}) Lco-BH(i).

Proof (by induction on j).
Induction hypothesis P(j). For all y,...,

(Y,. ,Yk-j) LBH(k-j) 7r(,k-j)h((Y,. ,yk-j,xj,. ,Xl)) E Lco-BH(k-j).

so
Base case P(O). By the hypothesis of the lemma, h reduces LBH(k to Lco-BH(k),

(y,...,Y) Leu(k) h((y,... ,yk)) Lco-BU(k).

However, 7r(1,k)h((yl, Yk}) h((yl, Yk)), So

(y,...,yk) LBH(k) === 7r(,k)h((y,...,yk)) Lco-BH(k).

Induction case P(j+I). Suppose P(j) holds. Let k-j. Let (lm,x,... ,xj+)
be a hard sequence. By the induction hypothesis, for all y,..., Yt-1 E E<’,

(yl,. ,yt-,xj+) LBH(t) 7r(,)h((y,. ,y.-,Xj+l,. ,x)) Lco-BH(t).

If / is even, then by the definitions of LBH(t) and Lco-BH(t),

(1)
(Yl,...,Yi-1) E LBH(i-1)
and x+i E SAT

7r(,t_)h((y,... ,yt_,xj+,... ,x)) e Lco-SH(t-1)
or rh((yl,...,yt_,xj+,...,x)) SAT.

If g is odd, then by the definitions of LBH(t and Lco_BH(t),

(Yl,..., Yt-1) (LBH(t-1)
or xj+ SAT

r(,t_)h((y,. ,y_,xj+,. ,x)) Lco_BH(_I)
and rth((y,... ,yt-l,xi+,... ,xl)) SAT

346 RICHARD CHANG AND JIM KADIN

or (by negating both sides of the iff)

(3)
(Yl,...,Y-I} LBH(-I)
and Xj+l E SAT

71"(1,t-1) h((yl,..., yi-l,Xj+l,... ,Xl}) Lco-BH(-I)
or h((yl,...,ye-l,xj+l,... ,xl}) E SAT.

Since (lm,Xl,...,Xj+ll is a hard sequence, we know from parts 3 and 5 of the
definition of a hard sequence that xj+ SAT and

rh((y,...,Y-I,Xj+I,...,Xl}) SAT.

Therefore, in equations (1) and (3), the second conjunct on the left side is true and
the second disjunct on the right side is false. Hence

(Yl,...,Y-I} eLBH(/_I 7r(1,i_l)h((yl,...,y-l,Xj+l,...,Xl}) Lco-BH(_I).

Then, replacing k- j for g, we have

/Y,..., Yk-(j+l)} LBH(k-(j+I))

7(1,k-(j+l))h(lyl, Yk-(j+l),Xj+l, ,Xl/) Lco-BH(k-(j+I)).

So, we have established the induction hypothesis P(j +
Lemma 4.2 shows that a maximal hard sequence for length m induces a polynomial-

time reduction from SAT<m to SAT or, in other words, given a maximal hard sequence
for length m, an NP machine can recognize SAT<m.

LEMMA 4.2. Suppose LBH(k) --m<P Lco-BH(k) via some function h and (1m, Xl,..., xy/
is a maximal hard sequence with respect to h. Then for all y E<m

SAT

yl,...,y-IE<m rh((y,...,y-l,y, xj,...,Xl}) E SAT

(where k j).
Proof. If j k- 1 ((yl,... ,y-l} is the empty sequence), then by Lemma 4.1,

for all y E<m,
y e BH(1) == rlh((y, xj,... ,Xl/) e co-BH(1).

However, BH(1) SAT and co-BH(1) SAT. So, we have

y SAT h({y, xj,..., Xl}) E SAT

or (by negating both sides of the iff)

y e SAT = 70h((y, xj,... ,Xl}) e SAT.

Thus, the lemma holds when j k- 1 (i.e., when yl,..., y_l is the empty sequence).
Consider the case when j < k- 1.
(=) Suppose y SAT. Since (lm,x,...,xyl is maximal, (lm,Xl,...,xj,yl is

not a hard sequence. However, j + 1 _< k- 1, lYl-< m, y SAT, and {lm,x,... ,xjl

THE BOOLEAN HIERARCHY AND THE POLYNOMIAL HIERARCHY 347

is a hard sequence. So, Ilm, xl,...,xj,yl must fail to be a hard sequence by failing
to satisfy condition 5 of the definition of hard sequences. Thus

yl,...,Y-I E E<-m rh({y,...,y_,y, xj,...,xl) SAT.

(=) Suppose that for some y,..., y_ E<m,
h((y,...,y_,y, xj,...,xl) e SAT.

Since (xl,... ,xjl is a hard sequence for length m, by Lemma 4.1

{y,...,y_i,y} e LBH() r(,)h((Y,...,Y-,Y, Xj,...,x}) e Lco-Bn().
If g is even, then by the definitions of LBH() and Lco_BH(),
(4)
{Y,...,Y-} LBH(-) r(,_)h((y,...,y-,y, xj,...,x}) e Lco-Bn(-)
and y e SAT or rh((yl,...,y_,y, xj,...,x}) SAT.

If is odd, then by the definitions of LBH() and Lco_BH(),

(Y,...,Y-I e LBH(_I) r(,_l)h((y,...,y-,y, xj,...,xl) e Lco-Bn(-l)
or y e SAT and rh((yl,... ,y_,y, xj,... ,x)) SAT

or (by negating both sides of the iff)

(y,..., y_} LBH(_I) r(,_)h({yl,... ,y_,y, xj,...,x))

_
Lco_BH(_I)

and y SAT or rh((yl,..., y_, y, xj,..., x}) SAT.

In either case, we already know by hypothesis that

rh((y,...,y_,y, xj,... ,x}) SAT,

so the right sides of the iff in equations (4) and (6) are satisfied. Therefore, the left
sides of equations (4) and (6) must also be satisfied, and we have y SAT.

Lemma 4.2 essentially states that a maximal hard sequence produces a way to
witness that a formula is unsatisfiable. Hence, given a maximal hard sequence, an
NP machine can guess these witnesses and verify that formulas up to a certain length
are unsatisfiable. But if an NP machine can verify that formulas are unsatisfiable,
it can simulate an NPNP computation by guessing the answer to each NP query and
verifying that its answer is correct. We use this idea to prove Lemma 4.3, which states
that given a maximal hard sequence, an NP machine can recognize an initial segment
of Lu2, the canonical complete language for E2P.

LEMMA 4.3. Suppose h is a <_-reduction from LBH(k to Lco_BH(k). Then
there exist an NP machine Na2 and a polynomial pa such that if m >_
and (1m,xl, xj} is a maximal hard sequence w.r.t, h, then

w e L N(w, (l’,x,...,xj}) accepts.

Proof. Let Lu2 L(NSAT) Define pa.(n) to be the upper bound on the runningt

time of Nu on inputs of length n. Obviously, Nu. (w) queries only strings of length
<_ m, since m >_ pa(Iwl). On input (w, (lm,x,... ,xj}), N2 does the following:

348 RICHARD CHANG AND JIM KADIN

I. Simulate N step by step until N. makes an oracle query to SAT.
2. When Nu. queries "y SAT?", branch into two computations. One guesses

that y SAT; the other guesses that y SAT.
3. The branch that guesses y SAT will guess a satisfying assignment for y. If

none are found, all computations along this branch terminate. If a satisfying
assignment is found, then the guess that y SAT is correct and the simulation
continues.

4. The branch that guesses y SAT will use the maximal hard sequence to
find a witness for y SAT, i.e., it guesses g- 1 strings y,... ,y_ E-<m,
computes

F rh((y,... ,y_,y, xj,..., Xl/),

and guesses a satisfying assignment for F. If none are found, all computations
along this branch terminate. Otherwise, the guess that y SAT is correct
and the simulation continues.

By Lemma 4.2, if (ira,x1,... ,xj} is a maximal hard sequence, then for each query y,
y E SAT iff some computation in step 4 finds a satisfiable F. So, in the simulation
of the oracle query, all the computations along one branch will terminate and some
computations in the other branch will continue. Thus the simulation continues iff the
guesses for the oracle answers (either y E SAT or y SAT) are verified, and hence

w L(NSAT,_.. N(w, (l’,Xl,...,xj}) accepts. [:]

Taking the spirit of Lemma 4.3 one step further, we show that with the help of a
maximal hard sequence, an NPNP machine can simulate a E3P machine. In addition,
an NPNP machine can guess and verify hard sequences, so it does not need to be
given a maximal hard sequence; all it really needs is the maximum order. Therefore,
there exists an NPNP machine which, given the maximum order of hard sequences for
a length, can recognize initial segments of L, the complete language for E3P.

LEMMA 4.4. Suppose h is a <--Pm -reduction from LBH(k to Lco_BH(k). There exist

an NPSAT machine N and a polynomialp such that for any rn >_ p (Iwl), if j is
the maximum order for length m w.r.t, h, then

w e L == NSAT(w, j, 1m) accepts.

Furthermore, if j is greater than the maximum order for length m w.r.t, h,

Vw NSAT(w, j, 1m) rejects.

{" LuProof. Let L LI] where L. L(NSAT) is the canonical complete
2

language for Z2P. Let r(n) be a polynomiM upper bound on the running time of

N on inputs of length n. Clearly, N(w) will query only strings of length <_ r(n),
where n lwl. Apply Lemma 4.3 to obtain N. and the polynomial p. Let

\def
p[n) =p(r(n)).

The critical observation to make here is that the set of hard sequences is in co-NP.
(This is obvious from the definition of hard sequences.) So, given j, the maximum
order for length rn _> p (n), an NPNP machine can guess j strings Xl,..., xj E<m

and ask the NP oracle if {lm,xl,... ,Xj> forms a hard sequence. If <1m,xl,... ,Xj>
does form a hard sequence, then it must also be a maximal sequence since it is of
maximum order. Now, NaSAT (w, j, 1m) can simulate NL (w) step by step, and when

THE BOOLEAN HIERARCHY AND THE POLYNOMIAL HIERARCHY 349

N queries "y e Lu2?", N3 will ask "(y, (lm,Xl,...,xj}) e L(N.)." By Lemma
4.3 the two queries will return with the same answers, so

w E L(N(La NSaAT(w,j, 1n) accepts.

Note that when Na guesses the hard sequence (lrn,xl,... ,xj}, several computa-
tion paths of the NP machine may survive because there may be many hard sequences
of maximum order. However, uniqueness is not important here because any maximal
hard sequence will work for N.. So, all the computation branches that manage to
guess a hard sequence of maximum order will have the same acceptance behavior.
Furthermore, if j is greater than the maximum order, then none of the computation
paths survive because there are no hard sequences of order j for length rn. Thus, in
this case, N (w, j, 1n) will reject.

We have shown that maximal hard sequences and maximum orders expand the
computational power of nondeterministic machines. We define the set T to be the set
of strings encoding the orders of hard sequences for each length.

DEFINITION. Suppose h is a <--Pm-reduction from LBH(k) to Lco_BH(k). We define
an associated set T by

T de___f {(lrn,j) lxl,.. ,xj E-<n,s.t. (l’,xl,... ,zj) is a hard sequence.}

Note that since the set of hard sequences is in co-NP, T itself is in NPNP. This
gives us the following lemma.

LEMMA 4.5. Suppose h is a <-Pm-reduction from LBH(k) to Lco-BH(k). Then the
set T defined above is in NPNP.

Since T NPNP, a PNPNP machine can compute the order of the maximum hard
sequence for length rn with k- 1 queries. The PNPNP machine can then pass this
number to the NPNP machine NSAT of Lemma 4.4 to recognize La, the complete
language for E3p. Therefore, if the BH collapses to its kth level, Lemmas 4.4 and
4.5 imply that the PH collapses to PNP[k]. This collapse of the PH implied by the
collapse of the BH is lower than previously known.

THEOREM 4.6. Suppose h is a -m
<p -reduction from LBH(k) to Lco-BH(k). Then

there exists a PNP machine which accepts La with only k queries to the NPNP oracle.
That is, the PH collapses to P(NPp)[k].

Proof. By Lemma 4.4, there exists N3 and pa such that if j is the maximum
order for length rn and rn >_ pa ([wl) then

w La NSAT(w,j, 1") accepts.

Using the fact that T is in NPNP (Lemma 4.5), a PNP machine can determine if
(1", g) is in T by asking the oracle. Doing this for all values of g between 1 and k- 1,
it can determine the maximum t such that (1", t) is in T. This maximum t!--call it
j--is, of course, the maximum order for length rn. Then with one final query, the
PNPP machine asks if

NSaAT (W, j, 1") accepts.

If the oracle answers "yes," the machine accepts. Otherwise, it rejects.
Note that we could make Theorem 4.6 stronger by using binary search instead

of linear search to find the maximum order. However, we will push the collapse even
further in Theorem 4.9, so our inquiry will follow a new direction.

350 RICHARD CHANG AND JIM KADIN

The following lemma states that an NP machine can recognize if there is a hard
sequence of order j for length m if it is given a maximal hard sequence for a longer
length.

LEMMA 4.7. Suppose h is a <-Pro-reduction from LBH(k to Lco_BH(k). There
exist an NP machine Nt and a polynomial Pt such that if (1m- is a maximal hard
sequence w.r.t, h and m2 >_ pt(ml + k), then

(lml,jl) e T 4==> Nt((lml,jl), {lm2,Z,}) accepts.

Proof. Use Lemmas 4.3 and 4.5.
in Lemma 4.4 we showed that, with the help of the maximum order, an NPNP

machine can recognize a complete language for E3P. In the next lemma we show that
with the help of the maximum order, an NPNP machine can also recognize a complete
language for H3P (i.e., recognize when a string is not in L,3).

LEMMA 4.8. Suppose h is a <-Pm-reduction from LBH(k) to Lco-Bn(k). Let L3 be
the canonical complete language for EP3 There exist an NPsAT machine N,r and a
polynomialp such that for any m >_ p (Iwl), if j is the maximum order for length
m w.r.t, h, then

]vSAT(w j, 1m) accepts.w E Lu3 4= "’7I"3

Furthermore, if j is greater than the maximum order for length m w.r.t, h,

w rSAT/ 1mlv w, j, rejects.

LuProof. Let Lu3 L[/V where L2 is the canonical complete language for E2P.
By Lemma 4.4, there exist Na and pa such that if jl is the maximum order for
length ml and ml :> Pa (Iwl), then

NSAT(w, jl 1mw E Lu3 = -. accepts.

The language accepted by NSAT is in E2P so we can reduce it to Lug. via somer3
polynomial-time function g. Let r(n) be an upper bound on the running time of
g. Using Lemma 4.3, we see that there exist N. and pa. such that if <1m-, > is a
maximal hard sequence and m2 >_ pa2(r(Iwl + k + ml)), then

NaSAT(w jl 1m) accepts = Na(g(w, jl 1TM) (1m2 g})accepts.

Let N8 be the NP machine that runs the reduction g and then simulates Na., i.e.,

Ns(w,j,lTM, (lm,7}) accepts ==> Na(g(w, jl,lml), (lm,}) accepts.

Let psdefpa r. Now, if ml > pa(lwl), m2 > ps(lwl + k -+-ml) j is the maximum
order for length m and <Im- > is a maximal hard sequence, then

rSAT/(7) w Lu == l[, w, jl,1TM) accepts == N(w,j,lTM, <lm,>) accepts.

We are trying to prove that there exists a machine NSAT that accepts (w,j, 1m)
if w L3 when m is big enough in relation to Iwl and j is the maximum order of
the hard sequences for length m The N.SAT that we have in mind will map71-

(w,j, 1m) (w, jl,1TM, (lm, g))

THE BOOLEAN HIERARCHY AND THE POLYNOMIAL HIERARCHY 351

and accept iff Ns(w, jl, 1TM, (lm",}) rejects (iff w Lu3). NSATr3 can tell if Ns(w, jl,
1TM (1m-,)) rejects with one query to SAT.

The difficulty in mapping (w, j, 1m) (w, jl, 1m (1m)) lies in the fact that
NsAT is given j the maximum order of hard sequences for one length m, and it must
compute the maximum orders of two other lengths, m and m2. We will define p
so that if m p(Iw]), then m will be bigger enough than both m and m2 so that
we can apply Lemma 4.7 to compute jl and j2.

Let p(n)t(p(n + k + p(n)) + k), i.e., p(n) pt(m2 + k) where m2
ps(n + k +ml) and ml pa(n) (recall pt is the polynomial bound from Lemma 4.7).

NrSAT(w,j, 1m) will do the following. (We will annotate the program with a
3

description of what NSAT(w,j, 1m) accomplishes when j is the maximum order.)
1. Reject if m < p(Iw]).
2. Guess j strings xl,... ,xj E and confirm that (lm,xl,...

is a hard sequence by asking the SAT oracle. (Recall that checking if a given
tuple forms a hard sequence is a co-NP question.) If j is the maximum order
and (lm,} is a hard sequence, then {lm,2} is a maximal hard sequence,
too.

3. Let n w. Compute ml pa (n) and m2 ps(n + k + ml).
4. For g 0 to k- 1, ask SAT if Nt((lm’,g),(lm,2}) accepts. Let j be

the maximum g where Nt((lm’,l), (lm,}) does accept. Note that m
pt(m2 + k) pt(mi + k), so jl is the maximum order for length ml (by
Lemma 4.7) if j is the maximum order for length m.

5. For g 0 to k- 1, ask SAT if Nt((lm,g), (lm,2}) accepts. Let j2 be the
maximum g where Nt((1m, g), {1m,)) does accept. As in step 4, j2 is the
maximum order for length m2 if j is the maximum order for length m.

6. Guess j2 strings yl,...,y Em and confirm that (lm,yl,...,yj}
{1m) is a hard sequence (with one query to SAT). Note that if (1m) is
a hard sequence and j2 is the maximum order, then (1m } is also a maximal
hard sequence.

7. Ask SAT if N(w,j 1TM {1m)) accepts. If SAT returns "no," then SAT
3

accepts. Note that by the preceding discussion, if j is the maximum order
for length m, then jl is the maximum order for length ml and (1,} is a
maximal hard sequence. Also, ml pa ([w]) and m2 ps(w + k + ml), so
by equation (7)

w Lu Ns(w, ji, 1TM, (1m, }) accepts.

Now, we argue that if j is the maximum order for length m and m p(w),
then

NSAT(w,j, lmW Lu -. accepts.

First of all, NSAT accepts in step 7 only. So, if w L all computation paths of3
SAT rejecteven those that reach step 7, because SAT would answer "yes" in step
7. On the other hand, if w Lug, then some computation path will reach step 7, get
"no" from the SAT oracle, and accept.

Finally, we note that if j is greater than the maximum order for length m,
rSAT/then no computation path will survive step 2. Thus, in this case [w,j, 1m)

rejects.
Now we are ready to prove our main theorem. This theorem demonstrates a close

linage between the collapse of the BH and the PH.

352 RICHARD CHANG AND JIM KADIN

THEOREM 4.9. Suppose h is a <-Pro-reduction from LBH(k) to Lco-BH(k). Let Lu3
be the canonical complete language for EP3 Then there exist languages B1,..., Bk E
NPNP such that

Lu3 B1 -(B2 (B3 -(Bk))).

That is, E3P C_ SH3(k), and therefore PH c_ BH3(k).
Proof. First recall that in Lemmas 4.4 and 4.8 it was shown that NSAT and(T3

NSAT accepted Lu3 and Lu--: (respectively) with the help of the maximum order for
a large enough length (and they reject if the number given for the maximum order
is too large). Let w be any string. Let m max(p3(Iwl),pa(Iwl)); then m is large
enough so that if j is the maximum order for length m,

1m(w,j, accepts wELua,

sAT (w, j, 1m accepts =:> w L3.

We will define the NPNP languages B1,..., B} to be the strings accepted by NPNP

machines that try to guess j, the maximum order for length m, and then run Na3 and
N.3. These NPNP machines cannot verify when they have guessed the true maximum
order; instead, they will base their acceptance behavior on whether they can determine
that an earlier machine in the sequence may have been fooled by an incorrect guess
for j. This successive approximation scheme converges to the language L3 within k
steps.

DEFINITION. For 1 <_ <_ k, the language B is the set of strings w with the
propey that there exist jl,...,jt such that

1. Oj <j2<...<jk-1,
SAT m2. for all odd d, l < d < g, Na_ (w,jd, 1 accepts,
AT3. for all even d, < < , Na (w, jd, 1 accepts.

Clearly, Bt is in NPNP since an NPNP machine can guess j,... ,je, veri the
first property, and then simulate NSAT and NSAT for the different values of jd. Also

3 3
observe that the B’s form a nested sequence

Bk B-I B2 B.
Finally, note that if r max{g w Be}, then

weB-(S2-(B3-(Bk))) risodd.

Example. Here we give an example which demonstrates that

wLa r=m{lwBe}isodd.

Let k 8 the maximum order for length m be 5, and NSAT and NSAT behave as
3 3

mimum

U3 3

3 3

W Lu3, so we want show that r is odd.
To determine if w B, look for an alternating (between the top and bottom

row) sequence of accepts starting from the top row moving left to right. If there is
such a sequence of g acceptances, then w B. In this example, r 3.

THE BOOLEAN HIERARCHY AND THE POLYNOMIAL HIERARCHY 353

TABLE 1

s-- 0 1 2 3 4 5 6 7

NSAT(w S 1m) rej acc acc rej rej acc rej rej,q3

NSAT (w 8, 1m) acc rej acc rej acc rej rej rej’3

w (/B1, because jl can be 1, 2, or 5.
]vSAT(w 4 1m) accept.w E B2 because both gSAT(w, 1 1m) and
--3

w E B3 with jl 1, j2 2, j3 5.
w Ba, B5,..., Bs, because there is no alternating sequence longer than 3.
The sequence jl 0,j2 l, j3 2,j4 5 does not count because the
sequence must start from the top row.

CLAIM 4.10. If W Lu3, then r max{/ w B} is odd.
Proof. Let j be the maximum order for length m. Now suppose r is even and

w Br. Then, there exist jl,... ,jr so that properties 1-3 in the definition above
hold. Therefore,

jr, 1m accepts

(since r is even and w 6 Br). Since w E Lug, for the true maximum order j,

N.ST 1.(w,j,)rejects.

Therefore jr = j. Observe that jr cannot be greater than j either since for all s > j,

SAT (W, S, 1m) rejects.

Hence jr < j.
Since we are given that w 6 L we know that NSAT(w,j, 1m) must accept0"3

(Lemma 4.4) Now consider the sequence jl jr+ where jr+ j NSAw(w,jr+l0.3

1m) accepts and r + 1 is odd, which implies that j,... ,jr+ satisfies conditions 1-3,
and therefore w 6 Br+l. Thus if r is even, r max(g w 6 Bt}. Therefore, r must
be odd.

CLAIM 4.11. If w L then r max{ w B} is even.

Proof. This is similar to the proof of Claim 4.10.

Combining Claims 4.10 and 4.11 with the observation that if r max(/ w E B},
then

w e B1 -(B2 -(B3 -(Bk))) == r is odd,

we have

w e Lu3 w e BI (B2 (B3 Bk))). rl

Theorem 4.9 also shows some unexpected connections between the Boolean and
query hierarchies within A2P and A3P.

COROLLARY 4.12. BH(k) co-BH(k) == BH3(k) co-BH3(k).
COROLLARY 4.13. PNPII[k] pNP[[[k+l] pNpNPII[k+I pNpNPII[k+2].
Proof. We use the fact that the Boolean and query hierarchies are intertwined:

pNP]][k] C_ BH(k + 1) C_ pNPIl[k+l] and BH3(k - 1)

_
PNPNPII[k+I].

354 RICHARD CHANG AND JIM KADIN

If pNP[[[k] pNP[[[k-bl], then BH(k + 1) is closed under complementation. More-
over, Corollary 4.12 implies that BH3(k + 1) is closed under complementation as well.
Thus, the Boolean and query hierarchies in A3P collapse to BH3(k / 1). These simple
containments give a result that is off by one. However. we believe that with more
effort we should be able to show that PNPNP[I[kl PNPNII[k+I]. 0

5. Conclusion. We have demonstrated a closer connection between the BH and
the PH--a deeper collapse of the BH implies a deeper collapse of the PH. We would
like to think that this relationship is a consequence of some underlying structure
connecting BH(k) and BH3(k). However, attempts to simplify the proof along these
lines have failed. Is there some straightforward argument which would show that
BH(k) co-Bn(k) implies Bn3(k) is closed under complementation? Could such an
argument be extended to show that Z3P C_ BH3(k)? Finally, we ask, is this collapse
optimal (for k _> 2) or can it be shown that Bn(k) co-Bn(k) implies PH C_ Sn(k)?

Acknowledgments. We are grateful to Juris Hartmanis for his support and
guidance. We would also like to thank Stephen Mahaney for starting us on this
endeavor and Georges Lauri for reading a draft of this paper.

REFERENCES

[1] T. GUNDERMANN, J. HARTMANIS, L. HEMACHANDRA, V. SEWELSON, K. WAGNER, AND G. WECH-
SUNG, Boolean hierarchy I: Structural properties, SIAM J. Comput., 17 (1988), pp. 1232-
1252.

[2] J. CAI AND L. A. HEMACHANDRA, The Boolean hierarchy: Hardware over NP, in Structure in
Complexity Theory, Lecture Notes in Comput. Sci., 223 (1986), pp. 105-124.

[3] J. KADIN, The polynomial time hierarchy collapses if the Boolean hierarchy collapses, SIAM J.
Comput., 17 (1988), pp. 1263-1282.

[4] , ERRATUM: The polynomial time hierarchy collapses if the Boolean hierarchy collapses,
SIAM J. Comput., 20 (1991), p. 404.

[5] , Restricted Turing reducibilities and the structure of the polynomial time hierarchy, Ph.D.
thesis, Cornell University, 1988.

[6] S. MAHANEY, 1989, private communication.

[7] K. WAGNER AND (]. WECHSUNG, On the Boolean closure of NP, in Proc. 1985 International
Conference on Fundamentals of Computation Theory, Lecture Notes in Comput. Sci., 199
(1985), pp. 485-493.

[8] C. YAP, Some consequences of non-uniform conditions on uniform classes, Theoret. Comput.
Sci., 26 (1983), pp. 287-300.

SIAM J. COMPUT.
Vol. 25, No. 2, pp. 355-368, April 1996

() 1996 Society for Industrial and Applied Mathematics
OO8

LOW-DEGREE SPANNING TREES OF SMALL WEIGHT*

SAMIR KHULLERt, BALAJI RAGHAVACHARI:, AND NEAL YOUNG

Abstract. Given n points in the plane, the degree-K spanning-tree problem asks for a spanning
tree of minimum weight in which the degree of each vertex is at most K. This paper addresses
the problem of computing low-weight degree-K spanning trees for K > 2. It is shown that for an
arbitrary collection of n points in the plane, there exists a spanning tree of degree 3 whose weight is
at most 1.5 times the weight of a minimum spanning tree. It is shown that there exists a spanning
tree of degree 4 whose weight is at most 1.25 times the weight of a minimum spanning tree. These
results solve open problems posed by Papadimitriou and Vazirani. Moreover, if a minimum spanning
tree is given as part of the input, the trees can be computed in O(n) time.

The results are generalized to points in higher dimensions. It is shown that for any d >_ 3, an
arbitrary collection of points in d contains a spanning tree of degree 3 whose weight is at most 5/3
times the weight of a minimum spanning tree. This is the first paper that achieves factors better
than 2 for these problems.

Key words, algorithms, graphs, spanning trees, approximation algorithms, geometry

AMS subject classifications. 05C05, 05C10, 05C85, 65Y25, 68Q20, 68R10, 68U05, 90C27,
90C35

1. Introduction. Given n points in the plane, how do we find a spanning tree
of minimum weight among those in which each vertex has degree at most K? Here
the weight of an edge between two points is defined to be the Euclidean distance
between them. This problem is referred to as the Euclidean degree-K spanning tree
problem and is a generalization of the Hamilton path problem, which is known to be
NP-hard [10, 12]. When K 3, it was shown to be NP-hard by Papadimitriou and
Vazirani [15], who conjectured that it is NP-hard for K 4 as well. When K 5,
the problem can be solved in polynomial time [14].

This paper addresses the problem of computing low-weight degree-K spanning
trees for K > 2. In any metric space, it is known that there always exists a spanning
tree of degree 2 whose cost is at most twice the cost of a minimum spanning tree
(MST). This is shown by taking a Euler tour of an MST (in which each edge is
taken twice) and producing a Hamilton tour by short-cutting the Euler tour. In the
case of general metric spaces, it is easy to generate examples in which the ratio of
a shortest Hamilton path to the weight of an MST is arbitrarily close to 2. But
such examples do not translate to points in d. In view of this, Papadimitriou and
Vazirani [15] posed the problem of obtaining factors better than 2 for the Euclidean
degree-K spanning-tree problem. It should be noted that in the special case of K 2,
Christofides [3] gave a simple and elegant polynomial-time approximation algorithm
with an approximation ratio of 1.5 for computing a traveling salesperson tour for
points satisfying the triangle inequality (points in a metric space).

Received by the editors February 3, 1994; accepted for publication (in revised form) August 31,
1994.

Department of Computer Science and Institute for Advanced Computer Studies, University of
Maryland, College Park, MD 20742 (samir@cs.umd.edu). The research of this author was supported
by NSF Research Initiation Award CCR-9307462.

Department of Computer Science, University of Texas at Dallas, Richardson, TX 75083
(rbk@utdallas.edu). The research of this author was supported by NSF Research Initiation Award
CCR-9409625.

Department of Computer Science, Dartmouth College, Hanover, NH 03755-3510 (neal.young@
dartmouth.edu). This research was done while the author was at Cornell University and at UMIACS
and was supported in part by NSF grants CCR-8906949 and CCR-9111348.

355

356 SAMIR KHULLER, BALAJI RAGHAVACHARI, AND NEAL YOUNG

1.1. Our contributions. In this paper, we show that for an arbitrary collection
of n points in the plane, there exists a degree-3 spanning tree whose weight is at most
1.5 times the weight of an MST. We also show that there exists a degree-4 spanning
tree whose weight is at most 1.25 times the weight of an MST. This solves an open
problem posed by Papadimitriou and Vazirani [15].

Moreover, if an MST is given as part of the input, the trees can be computed
in O(n) time. Note that our bound of 1.5 for the degree-3 spanning-tree problem is
an "absolute" guarantee (based on the weight of an MST) as opposed to a "relative"
guarantee for the degree-2 spanning tree obtained by Christofides [3] (based on the
weight of an optimal solution).

We also generalize our results to points in higher dimensions. We show that for
any d >_ 2, an arbitrary collection of points in }d contains a degree-3 spanning tree
whose weight is at most 5/3 times the weight of an MST. This is the first paper that
achieves factors better than 2 for these problems.

1.2. Significance of our results. Many approximation algorithms make use of
the triangle inequality to obtain approximate solutions to NP-hard problems. These
algorithms typically involve a "short-cutting" step where the triangle inequality is
used to bound the cost of the obtained solution. Examples include Christofides’s
heuristic for the traveling salesperson problem [3], biconnectivity augmentation [8],
approximate weighted matching [11], prize-collecting traveling salesperson [2], and
bounded-degree subgraphs which have low weight and small bottleneck cost [16].

A question of general interest is how to obtain improved approximation algorithms
for such problems when the points come from a Euclidean, as opposed to arbitrary,
metric space. This requires making use of more than just the triangle inequality.
Surprisingly, for most problems, improved algorithms are not known. (A notable
exception is the famous Euclidean Steiner tree problem [5, 6].) We use rudimentary
geometric techniques to obtain an improved algorithm for the Euclidean degree-K
spanning-tree problem.

The key to our method is to give short-cutting steps that are provably better than
implied by the triangle inequality alone. Lemma 3.3, which bounds the perimeter of
an arbitrary triangle in terms of distances to its vertices from any point, is typical of
the techniques that we use to get better bounds.

1.3. Related work. Papadimitriou and Vazirani showed that any MST whose
vertices have integer coordinates has maximum degree at most 5 [15]. Monma and
Suri [14] showed that for every set of points in the plane, there exists a degree-5 MST.

Many recent works have given algorithms to find subgraphs of bounded degree
that simultaneously satisfy other given constraints. A polynomial-time algorithm to
find a spanning tree or a Steiner tree of a given subset of vertices in a graph with
degree at most one more than minimum was given by Fiirer and Raghavachari [9].
This was extended to weighted graphs by Fischer [7]. He showed how to find MSTs
whose degree is within a constant multiplicative factor plus an additive O(log n) of the
optimal degree. The degree bound is improved further in the case when the number of
different edge weights is bounded by a constant. Ravi et al. [16] consider the problem
of computing bounded-degree subgraphs satisfying given connectivity properties in a
graph whose edge weights satisfy the triangle inequality. They give efficient algorithms
for computing subgraphs which have low weight and small bottleneck cost. Salowe
[18] and Das and Heffernan [4] consider the problem of computing bounded-degree
graph spanners and provide algorithms for computing them. Robins and Salowe [17]
study the maximum degrees of MSTs under various metrics.

JLOW-DEGREE SPANNING TREES OF SMALL WEIGHT 357

2. Preliminaries. Let V (vl,..., vn} be a set of n points in the plane. Let
G be the complete graph induced by V, where the weight of an edge is the Euclidean
distance between its endpoints. We use the terms points and vertices interchangeably.
Let be the Euclidean distance between vertices u and v. Let Train be an MST of
the points in V. Let w(T) denote the total weight of a spanning tree T. Let Tk denote
a spanning tree in which every vertex has degree at most k. Let degT(v) be the degree
of a vertex v in the tree T. Let AABC denote the triangle formed by points A, B,
and C. Let LABC denote the angle formed at B between line segments AB and PC.
Let ABC denote the perimeter of AABC; and more generally, let vlv2. :vk denote
the perimeter of the polygon formed by the line segments vv+l for 1 _< i <_ k, where
Vk+ Vl

In this paper, we prove the following: for an arbitrary set of points in 2,

<
(2) 2Ta" w(T4) <_ 1.25 w(Tmin).

For an arbitrary set of points in }d (d > 2),

5
(3) ST3" w(T3)

_
w(Tmin).

3. Points in the plane. We first consider the case of 2--points in the plane.
We first note some useful properties of MSTs in d.

PROPOSITION 3.1 ([15]). Let AB and BC be two edges incident to a point B in
an MST of a set of points in d. Then AABC is a largest angle in AABC.

COROLLARY 3.2. Let AB and BC be two edges incident to a point B in an
MST of a set of points in d. Then

ZABC 60,
ZBAC, ZBCA 90.

3.1. An upper bound on the perimeter of a triangle. We now prove an
upper bound on the perimeter of an arbitrary triangle in terms of distances to its
vertices from an arbitrary point. This lemma is useful in proving the performances of
our algorithms. The lemma is also interesting in its own right, and we believe that it
and the sociated techniques will be useful in other geometrical problems.

LEMMA 3.3. Let X, A, B, and C be points in d with XA XB, XC. Then

(4) ABC (3 4)+ 2(XB + XC).

Note that 3- 4 1.2. Recall that ABC is the perimeter of the triangle and
is the distance from X to Y.

Proof. Let B and C be points on XB and XC, respectively, such that
XB XC (see Fig. 1). First we observe that the lemma is true if it is true for the
points X, A, B, and C. This follows because by the triangle inequality,

ABC <_ ABtC + 2BB + 2CC.
By our assumption,

AB’C’ <_ (3x/- 4)- + 2(XB’ + XC’).

Combining the two inequalities yields the desired result. Therefore, in the rest of
the proof, we show that the lemma is true when the "arms" XA, XB, and XC are
equal.

358 SAMIR KHULLER, BALAJI RAGHAVACHARI, AND NEAL YOUNG

A

FIG. 1. Shrinking to obtain canonical form.

It is not very difficult to see that to maximize the perimeter of the triangle, X
will be in the plane defined by A, B, and C, and thus X is at the center of a circle
passing through A, B, and C.

By scaling, it suffices to consider the case when the circle has unit radius. In this
case, the right-hand side (r.h.s.) of (4) is exactly 3vf. Thus, it suffices to show that
the maximum perimeter achieved by any triangle whose vertices lie on a unit circle is
3/. This is easily proved [13].

Note that in an arbitrary metric space it is possible to have an (equilateral)
triangle of perimeter six and a point X at distance one from each vertex.

3.2. Spanning trees of degree 3. We now assume that we are given a Eu-
clidean MST T of degree at most 5. We show how to convert T into a tree of degree
at most 3. The weight of the resulting tree is at most 1.5 times the weight of T.

High level description. The tree T is rooted at an arbitrary leaf vertex. Since T
is a degree-5 tree, once it is rooted at a leaf, each vertex has at most four children.
For each vertex v, the shortest path Pv starting at v and visiting every child of v is
computed. The final tree T3 consists of the union of the paths (Pv. Figure 2 gives the
above algorithm. In analyzing the algorithm, we think of each vertex v as replacing its
edges from its children with the path Pv. The above technique of "short-cutting" the
children of a vertex by "stringing" them together has been known before, especially
in the context of computing degree-3 trees in metric spaces (see [16, 18]).

TREE-3(V, T) Find a degree-3 tree of V.
1 Root the MST T at a leaf vertex r.
2 For each vertex v E V do
3 Compute Pv, the shortest path starting at v and visiting all the children of v.
4 Return T3, the tree formed by the union of the paths (P}.

FIG. 2. Algorithm to find a degree-3 tree.

Note. Typically, the initial MST has very few nodes with degree greater than
3 [1]. In practice, it is worth modifying the algorithm to scan the vertices in preorder,
maintaining the partial tree T3 of edges added so far, and to add paths to T3 as follows.
When considering a vertex v, if the degree of v in the partial T3 is 2, add the path
Pv as described in the algorithm. Otherwise, its degree is 1, so, in this case, relax the
requirement that the added path must start at v. That is, add the shortest path that

LOW-DEGREE SPANNING TREES OF SMALL WEIGHT 359

visits v and all of v’s children to T3 (see 3.3). This modification will never increase
the cost of the resulting tree but may offer substantially lighter trees in practice.

LEMMA 3.4. The algorithm in Fig. 2 outputs a spanning tree of degree 3.

Proof. An easy proof by induction shows that the union of the paths forms a
tree. Each vertex v is on at most two paths and is an interior vertex of at most one
path.

LEMMA 3.5. Let v be a vertex in an MST T of a set of points in 2. Let Pv be
a shortest path visiting {v} U childT(v) with v as one of its endpoints.

ve childr)

By the above lemma, each path P has weight at most 1.5 times the weight of
the edges it replaces. Thus we have the following theorem.

THEOREM 3.6. Let T be an MST of a set of points in 2. Let T3 be the spanning
tree output by the algorithm in Fig. 2.

w(T3) _< 1.5 w(T).

Proof of Lemma 3.5. We consider the various cases that arise depending on the
number of children of v. The cases when v has no children or exactly one child are
trivial.

Case 1. v has 2 children, vl, v2. There are two possible paths for Pv, namely
P1 [v, v, v2] and P2 Iv, v2, Vl]. Clearly,

w(P,) min(w(P) w(P2)) < w(P1)+ w(P2) VVl VV2
2 + - +v-y _< 1.5 (--V- + -V-5).

Case 2. v has 3 children, v, v2, V3. Let vl be the child that is nearest to v. Con-
sider the following four paths (see Fig. 3): P1 Iv, v, v2, v3], P2 Iv, v, v3, v2], P3
Iv, v2, v, v3], and P4 Iv, v3, v, v2].

V3 V3 V3 V3

Vl V2 Vl V2 Vl V2 Vl
P1 P Pa P4

FIG. 3. T3, three children.

The path Pv is at most as heavy as the lightest of {P1, P2, P3, Pa}. The weight
of the lightest of these paths is at most any convex combination of the weights of the
paths. Specifically,

w(P,) < min(w(P),w(P2) w(P3) w(P4)) < w(P)
3 3 6 6

360 SAMIR KHULLER, BALAJI RAGHAVACHARI, AND NEAL YOUNG

We will now prove that

w(P1) < 1.5 (VV-+-O+VV"5).
3 3 6 6

This simplifies to

which follows from Lemma 3.3.
Case 3. v has 4 children, vl, v2, v3, v4, ordered clockwise around v. Let v’ be

the point of intersection of the diagonals vlv3 and. Note that the diagonals do
intersect because the polygon VlV2V3V4 is convex (follows from Corollary 3.2).

Let v3 be the point that is furthest from v’, among {v, v2, v3, va}. Consider the
following two paths (see Fig. 4): P Iv, va, v, v2, v3], P2 Iv, v2, Vl, v4, v3].

Vl Vl

V4 V4

V2

V3 V3

V2

FIG. 4. T3, four children.

Clearly,

w(Pv) <_ min(w(P),w(P2)) <_ /
2 2

We will show that

(w(P1) + w(P2)) < 1.5(-9- / + VV5 / VV-)
2

This simplifies to

vv2v3va + (v--i + v--i-) <_ 3(VV- + VVS) + 2(VV + VV-).

We will first prove that

(6) vtv2v3v4 + (v--i- + v--i) <_ 3(v-v + v’v3) + 2(v’v2 +

Once we prove (6), by the triangle inequality, we can conclude that (5) is true,
since vv--y + VV5 >_ vv3 V’Vl + v’v3 and + _> v2va v’v2 + vva.

LOW-DEGREE SPANNING TREES OF SMALL WEIGHT 361

We prove (6) by contradiction. Suppose there exists a set of points which does
not satisfy (6). Suppose we shrink v’v3 by i. The left side of the above inequality
decreases by at most 2, whereas the right side of the inequality decreases by exactly
3i. Therefore, as we shrink v’v3, the inequality stays violated. Suppose vv3 shrinks
and becomes equal to another edge vv for some i E (1, 2, 4}. We now shrink both vv3
and v v simultaneously at the same rate. Again, it is easy to show that the inequality
continues to be violated as vv3 and v’v shrink. Hence we reach a configuration where
three of the edges are equal.

Without loss of generality, the length of the three edges is 1 and the length of the
fourth edge is some e <_ 1.

There are two subcases to consider. The first is when VVl e and the second is
when v’v2 e. (The case when vv4 e is the same as the second case.)

Case 3a. vvl -e. We wish to prove that

vlv2v3va + (v-- + v-) <_ 7 + 3e.

We want to show that the function F(e) vlv2v3v4 + (v-i / v-i-v-) 7 3e is
nonpositive in the domain 0 _< e _< 1. Simplifying, we get

F(e) 2v- + + + 2v-- 7 3e.

Each of in the definition of F is a convex function of e due to the following
reason. Let p be the point closest to vj on the line connecting vi and v’. Observe
that as vi moves towards v, decreases if vi is moving towards p and increases
otherwise. Since F is a sum of convex functions minus a linear function, it is a convex
function of e. Therefore, it is maximized at either e --- 0 or e 1.

When e 1, all four points are at the same distance from v. If angle /v4vvl a
then F can be written as a function of a single variable a and it can be verified that
F reaches a maximum value of 100vf0--.8- 10, which is nonpositive.

When e O, vv2 vva 1. Simplifying we get F v2v3 +- 3, and it
reaches a maximum value of 2v/- 3, which is nonpositive (when e 0, note that v
is the midpoint of the line segment v2v4).

Case 3b. vv2 --e. We wish to prove that

vv2v3va + (v-V + v-V) <_ 8 + 2.

We want to show that the function F’(e) VlV2V3V4 -(v---v--)- 8- 2e is
nonpositive in the domain 0 <_ e <_ 1.

As a function of e, function F is a sum of convex functions minus a linear function
and thus is convex. Therefore, it is maximized at either e 0 or e 1.

The case e 1 leads to the same configuration as in Case 3a.
When e O, VlV2 1. Here F’ 2v--i- +- 5. If angle /vav’vl a,

then F’ can be written as a function of a single variable a and it can be verified that
F’ reaches a maximum value of 5Vf0.8- 5, which is nonpositive.

This concludes the proof of Lemma 3.5. [:l

The example in Fig. 5 shows that the 1.5 factor is tight for the algorithm in Fig. 2,
modified according to the note following its description. The same example also shows
that the 1.5 factor is tight for the unmodified algorithm since the unmodified algorithm
never outputs a lighter tree than the modified algorithm. Each curved arc shown in
Fig. 5 is actually a straight line and has been drawn curved for convenience. The
vertex that is the child of the root has three children and is forced to drop one child.
In doing so, the degree of its child goes to 4, and it in turn drops one of its children.
The algorithm could make choices in such a way that the changes propagate through

362 SAMIR KHULLER, BALAJI RAGHAVACHARI, AND NEAL YOUNG

the tree and the tree T3 output by the algorithm may be as shown in the figure. The
ratio of the cost of the final solution to the cost of the MST can be made arbitrarily
close to 1.5. See 5 for a discussion on the worst-case ratio between degree-3 trees
and MSTs.

MST

FIG. 5. Bad example .for algorithm in Fig. 2.

3.3. Spanning trees of degree 4. We now assume that we are given a Eu-
clidean minimum-spanning tree in which every vertex has degree at most 5. We show
how to convert this tree to a tree in which every vertex has degree at most 4.

High level description. The basic idea is the same as in the previous algorithm.
The difference is that we don’t insist that each path Pv start at v. The tree is rooted
at an arbitrary leaf. For each vertex v, the minimum-weight path Pv visiting v and all
of v’s children (not necessarily starting at v) is computed. The final tree Ta consists
of the union of the paths (Pv}. Again, for the analysis we think of each path Pv
replacing the edges between v and its children in T.

TREE-4(V T) Find a degree-4 tree of V.
1 Root the MST T at a leaf vertex r.
2 For each vertex v V do
3 Compute the shortest path Pv visiting v and all its children.
4 Return Ta, the tree formed by the union of the paths {Pv}.

FIG. 6. Algorithm to find a degree-4 tree.

LEMMA 3.7. The algorithm in Fig. 6 returns a degree-4 spanning tree of the given
set of points V.

Proof. A proof by induction shows that Ta is a tree. Each vertex v occurs in at
most two paths and thus has degree at most 4.

LEMMA 3.8. Let v be a vertex in an MST T for a set of points in 2. Let Pv be
the shortest path visiting (v} t2 childT (v).

<_
ve childr

LOW-DEGREE SPANNING TREES OF SMALL WEIGHT 363

From the above lemma, each path Pv weighs at most 1.25 times the net weight
of the edges it replaces. Thus we have the following theorem.

THEOREM 3.9. Let T be an MST of a set of points in 2. Let T4 be the spanning
tree output by the algorithm in Fig. 6.

w(T4) <_ 1.25 w(T).

Proof of Lemma 3.8. The proof is similar to the proof of Lemma 3.5. As before,
we consider cases depending on the number of children of v. The cases when v has
no children, one child, or two children are trivial.

Case 1. v has 3 children, vl, v2, v3. Let Vl be the point that is closest to v, among
its children. Consider the following four paths (see Fig. 7): P1 Iv2, vl, v, v3], P2
Iv2, V, Vl, V3], P3 [Vl, v, V2, V3], and P4 Iv1, v, V3, V2].

V3 V3 V3 V3

V

Vl V2 Vl V2 Vl V2 Vl
P1 P: P4

V2

FIG. 7. T4, three children.

Clearly,

 (p4)
w(Pv) < w(P1)

3 3 6 6

We will show that

 (P4)w(P1) lw(P2)w(P3)l < (VV- + VV- + VV-5).
3 3 6 6 3

This proves the three-child case because 2+v approximately equals 1.244 and is less3
than 1.25. This simplifies to

vlv2 + v- + v2v3 vv-" + VV5 < 2 ++ + (v-v-; +-+ v-),
3 2 3

which further simplifies to

1) (V- + VV-).Vl V2V3

__
(1)-y + - +

Since vl is the closest point to v, applying Lemma 3.3, we get

vlv2v3 <_ (3vf- 4)VV- + 2(-9- + VV-),

364 SAMIR KHULLER, BALAJI RAGHAVACHARI, AND NEAL YOUNG

and hence

VlV2V3 <_ (v/- 1)- + (2/- 3)V / 2(-9-{ / -V-)
1_< (V- llKg- + (x/ + 5)(--V-5 + V’).

This proves (7).
Case 2. v has 4 children, vl, v2, v3, v4. Assume that Vl is the point that is closest

to v among v’s children. Let the order of the points be Vl, v2, v3, v4 when we scan the
plane clockwise from v starting from an arbitrary direction.

There are two cases, depending on whether v4 or v3 is the point that is furthest
from v among its children. We first address the case when v4 is the furthest point.
(The proof for the case when v2 is the point furthest from v is symmetric to the case
when v4 is the furthest point.)

Consider the following paths: P1 Iv4, v, v, v2, v3] and P2 Iv4, v3, v, Vl, v2] (see
Fig. 8).

v4

v3

Vl

v2

Vl

v4

v3

FIG. 8. T4, four children.

The path Pv added by the algorithm is at most as heavy as the lighter of the
paths P and P2. Hence

w(Pv < min(P1 P2) < w(P1 + w(P2)

We will show that

w(P) / w(P2) < 1 25(- + / / V).
2

Simpliing, we need to show that

5
(+ + +).(+++++++)

rther simpliing, we get

vvvav +=+

LOW-DEGREE SPANNING TREES OF SMALL WEIGHT 365

Note that if it happens that v3 was the farthest point from v among v’s children,
we get a similar equation with v3 and va being exchanged in the r.h.s of the equation.
By symmetry, the case when v2 is furthest is similar to v4 being farthest.

Without loss of generality, - >_ VV-5. The proof now proceeds in a manner similar
to the proof of Lemma 3.3. If there is a configuration of points for which this equation
is not true (the 1.h.s exceeds the r.h.s) then we can move v4, v3 closer to v until vv2
vv-’- vv’--. In doing this, we decrease the 1.h.s by at most 2(VV-v) + 2(v-- -9).
Clearly, the r.h.s decreases by exactly 4(V- VV) + 4(V-5- V). This ensures that
the 1.h.s is still greater than the r.h.s. Hence without loss of generality, if there is a
configuration for which our equation is not true, then there is a configuration with
the property that vv’-5 -9-. We now show that when this property is true
there is no counterexample.

By scaling, we may assume that vv--- 1 and vvl e, where e _< 1.
Note that (by Corollary 3.2) v was originally within the convex hull of its four

children. Also (by Corollary 3.2), every child is on the convex hull. These properties
are both maintained by the above shrinking steps.

We now wish to prove that

11 1
VlVVV < - + .

It is easily shown using elementary calculus that for any e such that Vl is on the convex
hull of the points (vl,... ,va}, rotating v and v3 around v until /vvv2 /vvva
(see Fig. 9) and/v2vv3 -/vavv3 does not decrease the perimeter. Also, it maintains
that v is on the convex hull. Assume the two pairs of angles are equal, and define
F(e) vlv2v3v4- e/2- 11/2. We will show that F is nonpositive over the domain of
possible e’s.

FIG. 9. Figure to illustrate degree-4 case.

As a function of e, function F is a sum of convex functions minus a linear function
and thus is convex. Therefore, F is maximized either when 1 or when Vl is the
midpoint of edge (since v is on the convex hull, v cannot cross the edge; hence
this interval contains all possible values for e).

In the first case, all four points lie on a unit circle with center at v. For any four
such points, it is easily proven using calculus that vv2v3v4 is maximized when the
four points are the vertices of a square at 4x/ -- 5.66. Thus, F(1) < 0.

366 SAMIR KHULLER, BALAJI RAGHAVACHARI, AND NEAL YOUNG

In the second case, VlV2V3V4 V2V3V4. As noted previously, this is at most
3x/- 5.2. Thus, F(e) < O.

We now deal with the case when v3 is the furthest point. In this case, we take
the paths P1 Iv4, vl, v, v2, v3] and P2 Iv3, v4, v, Vl, v2]. The path P added by the
algorithm is at most as heavy as the lighter of the paths P1 and P2. Hence,

Simplifying, we get

w(P) <_ min(P, P2)_< +

1 5 3
(V +v v v v < -vv- + -v- + -The proof of this is identical to the proof of the previous case.

4. Points in higher dimensions. We show how to compute a degree-3 tree
(T3) when the points are in arbitrary dimension d >_ 3. The algorithm for computing
the tree is similar to the algorithm for computing degree-3 trees in the plane--the
tree T3 is formed by rooting the MST and taking the union of the paths (Pv }, where
each Pv is the shortest path starting at v and visiting all of the children of v in the
rooted MST. It is known that any Euclidean MST has constant degree [17] (for any
fixed dimension), so that the algorithm still requires only linear time. The bound on
the weight of T3 is similar, except that v may have more children. We prove that
regardless of the number of children that v has, the weight of Pv is at most 5/3 the
weight of the edges that it replaces:

LEMMA 4.1. Let {v, v, v2,..., vk} be a set of arbitrary points in d. There is a
path P, starting at v, that visits all the points vl, v2,..., v such that

5 k

<_
i--1

Proof. We prove this by induction on the degree of v. Sort the points in increasing
distance from v as v,..., vk. Let v v0. The lemma is trivially true when k 0, 1, 2.
Let us assume that the lemma is true for all values of k up to some g >_ 2. Consider
k g + 1. By the induction hypothesis, the claim is true when v has k 3 children;
hence we can find a path P that starts at v and visits all vertices vi (i 1,..., k 3)
(not necessarily in that order) such that w(P’) <_ (5/3)= vvi. Let vj be the last
vertex on the path P. We add the cheapest path P" that starts at vj and visits
v-2, v_, and v (again, not necessarily in that order). This path together with P
will form a path that starts at v and visits all vertices adjacent to v. We now show
that

5
(8) w(P") <_ -(i)v:2 4- Vvk_ 4-

This suffices to prove the lemma. Let P1,..., P6 be the six possibilities for P". Clearly,

w(P") <_ - Ew(P).
i--1

We will prove that

1 5
(VV_ + Vv_ +Ew(P) <_ -i--1

LOW-DEGREE SPANNING TREES OF SMALL WEIGHT 367

This simplifies to

k

+ < + +
i--k-2

Notice that if the above equation is not true, we can "shrink" all the
k- 2, k- 1, k) until VVk-2 VVk-1 VVk. Assume that 5 (vvk- --V) +
(VVk- --VV) / (VO-- V). This can be done because the r.h.s decreases by 55 and
the 1.h.s decreases by at most 55. If the above equation is not true, then it is also not
true when the distance from v to all the points is the same. By scaling, we can assume
that the distance of the points from v is 1. We call this a canonical configuration.
The following proposition is implied by Lillington’s work [13] and helps in completing
the proof.

PROPOSITION 4.2. Let A, B, C, and D be points on a unit sphere in d dimensions,
d >_ 3. The function F AB / AC + AD + BC + CD + BD reaches a maximum
value of 4v/- when the points A, B, C, and D form a regular tetrahedron.

We will now show that (9) is satisfied by the canonical configuration. The left
side of (9) can be written as the sum of the sides of the tetrahedron formed by the
points {Vk, Vk-1, Vk-2, Vy } and the sum of the sides of the triangle formed by the points
{vk, Vk-, Vk-2}. These points lie on a sphere whose center is v. By Lemma 4.2, the
first sum is bounded by 4v/. The second sum is bounded by 3x/-. Hence the left side
of (9) is bounded by 4v/ + 3v/, which is about 14.994. The right side of (9) is 15.
Hence (9) is satisfied by the canonical configuration and therefore all configurations.
This concludes the proof of Lemma 4.1.

Remark. The algorithm outlined earlier runs in linear time only when d, the
number of dimensions, is a constant. The algorithm can be modified to run in linear
time for all d as follows. Observe that in the proof of Lemma 4.1, we considered
the neighbors of v only three at a time. Therefore, the algorithm could also group
vertices into sets of three each, based on the distance from v, and inductively con-
struct the path as in the proof of the lemma. This algorithm would have the same
performance guarantee (5/3) as the earlier algorithm for constructing a degree-3 tree
and in addition have the added advantage of running in linear time for all dimensions.

5. Conclusions. We have given a simple algorithm for computing a degree-3
(degree-4) tree for points in the plane that is within 1.5 (1.25) of an MST of the
points. An extension of the algorithm finds a degree-3 tree of an arbitrary set of
points in d dimensions within 5/3 of an MST. If an MST of the points is given as part
of the input, our algorithms run in linear time. All our proofs are based on elementary
geometric techniques.

Though our algorithms improve greatly the best-known ratios for each of the
respective problems, there are still large gaps between the ratios that we obtain and
the best bounds that we think are achievable. For example, in the case of points in the
plane, consider the ratio of the weight of a minimum weight degree-3 tree to the weight
of an MST. The worst example that we can obtain for this ratio is 4+3 1.104 (with
five points, where four of the points are at the corners of a square and the fifth point
is in the middle). There is a large gap between this and the ratio of 1.5 obtained by
our algorithm. Is 1.104 the worst-case ratio? Are there polynomial time algorithms
which obtain factors better than 1.57 Notice that the performance ratio obtained by
our algorithm on the example in Fig. 5 is highly sensitive to the vertex chosen as the
root. One potential algorithm is to simply try all possible vertices as the root, and to
pick the tree of minimum weight. Does such an algorithm have a better performance
guarantee?

368 SAMIR KHULLER, BALAJI RAGHAVACHARI, AND NEAL YOUNG

For the problem of finding degree-4 trees, our algorithm obtains a ratio of 1.25.
Unlike degree-3 trees, we are unable to show that this ratio is tight for the algorithm.
Can the factor of 1.25 for the algorithm be improved? The worst example for the
ratio between a minimum-weight degree-4 tree and an MST that we can obtain is
about 1.035 (five points on the vertices of a regular pentagon with a sixth point in
their centroid). Are there examples with worse ratios?

Problems of approximating degree-k trees in higher dimensions and in general
metric spaces within factors better than 2 are still open.

Acknowledgments. We thank Andras Bezdek for telling us about [13]. We
thank Karoly Bezdek and Bob Connelly for useful discussions and the committee
members of the 1994 Syposium on the Theory of Computing for simplifying the proof
of Lemma 3.3 and for pointing out [14].

REFERENCES

[1] J. L. BENTLEY, Communicated by David Johnson.
[2] D. BIENSTOCK, M. X. GOEMANS, D. SIMCHI-LEVI, AND D. P. WILLIAMSON, A note on the prize

collecting traveling salesman problem, Math. Programming, 59 (1993), pp. 413-420.
[3] N. CHRISTOFIDES, Worst-case analysis of a new heuristic for the traveling salesman problem,

Tech. report 388, Graduate School of Industrial Administration, Carnegie Mellon Univer-
sity, Pittsburgh, PA, 1975.

[4] G. DAN AND P. J. HEFFERNAN, Constructing degree-3 spanners with other sparseness properties,
in Proc. 4th Annual International Symposium on Algorithms and Computation, Lecture
Notes in Comput. Sci. 762, Springer-Verlag, Berlin, New York, 1993, pp. 11-20.

[5] D.-Z. Du AND F. K. HWANG, A proof of the Gilbert-Pollak conjecture on the Steiner ratio,
Algorithmica, 7 (1992), pp. 121-136.

[6] D.-Z. Du, Y. ZHANG, AND Q. FENG, On better heuristic for Euclidean Steiner minimum trees,
in Proc. 32rid Annual Symposium on Foundations of Computer Science, IEEE Press, Pis-
cataway, NJ, 1991, pp. 431-439.

[7] T. FISCHER, Optimizing the degree of minimum weight spanning trees, Tech. report 93-1338,
Department of Computer Science, Cornell University, April 1993.

[8] G. N. FREDERICKSON AND J. JkJ, On the relationship between the biconnectivity augmentation
and traveling salesman problems, Theoret. Comput. Sci., 19 (1982), pp. 189-201.

[9] M. FORER AND B. RAGHAVACHARI, Approximating the minimum-degree Steiner tree to within
one of optimal, J. Algorithms, 17 (1994), pp. 409-423.

[10] M. R. GAREY AND D. S. JOHNSON, Computers and intractability: A guide to the theory of
NP-completeness, W. H. Freeman, San Francisco, 1979.

[11] M. X. GOEMANS AND D. P. WILLIAMSON, A general approximation technique for constrained
forest problems, in Proc. 3rd Annual ACM-SIAM Symposium on Discrete Algorithms,
Society for Industrial and Applied Mathematics, Philadelphia, 1992, pp. 307-316; SIAM
J. Comput., 24 (1995), pp. 296-317.

[12] A. ITAI, C. H. PAPADIMITRIOU, AND J. L. SZWARCFITER, Hamilton paths in grid graphs, SIAM
J. Comput., 11 (1982), pp. 676-686.

[13] J. N. LILLINGTON, Some extremal properties of convex sets, Math. Proc. Cambridge Philos.
Sou., 77 (1975), pp. 515-524.

[14] C. MONMA AND S. SURI, Transitions in geometric minimum spanning trees, Discrete Comput.
Geom., 8 (1992), pp. 265-293.

[15] C. n. PAPADIMITRIOU AND U. V. VAZIRANI, On two geometric problems related to the traveling
salesman problem, J. Algorithms, 5 (1984), pp. 231-246.

[16] R. RAVI, M. V. MARATHE, S. S. RAVI, D. J. R,OSENKRANTZ, AND H. B. HUNT III, Many birds
with one stone: Multi-objective approximation algorithms, in Proc. 25th Annual ACM
Symposium on the Theory of Computing, Association for Computing Machinery, New
York, 1993, pp. 438-447.

[17] G. ROBINS AND J. S. SALOWE, On the maximum degree of minimum spanning trees, in Proc.
10th Annual ACM Symposium on Computational Geometry, Association for Computing
Machinery, New York, 1994, pp. 250-258; Discrete Comput. Geom., 14 (1995), pp. 151-166.

[18] J. S. SALOWE, Euclidean spanner graphs with degree four, in Proc. 8th Annual ACM Sympo-
sium on Computational Geometry, Association for Computing Machinery, New York, 1992,
pp. 186-191; Discrete Appl. Math., 54 (1994), pp. 55-66.

SIAM J. COMPUT.
Vol. 25, No. 2, pp. 369-389, April 1996

() 1996 Society for Industrial and Applied Mathematics
OO9

OPTIMAL CLOCK SYNCHRONIZATION UNDER DIFFERENT
DELAY ASSUMPTIONS*

HAGIT ATTIYAt, AMIR HERZBERG$, AND SERGIO RAJSBAUM

Abstract. The problem of achieving optimal clock synchronization in a communication network
with arbitrary topology and perfect clocks (that do not drift) is studied. Clock synchronization
algorithms are presented for a large family of delay assumptions. Our algorithms are modular and
consist of three major components. The first component holds for any type of delay assumptions; the
second component holds for a large, natural family of local delay assumptions; the third component
must be tailored for each specific delay assumption.

Optimal clock synchronization algorithms are derived for several types of delay assumptions by
appropriately tuning the third component. The delay assumptions include lower and upper delay
bounds, no bounds at all, and bounds on the difference of the delay in opposite directions. In
addition, our model handles systems where some processors are connected by broadcast networks in
which every message arrives at all the processors at approximately the same time. A composition
theorem allows combinations of different assumptions for different links or even for the same link;
such mixtures are common in practice.

Our results achieve the best possible precision in each execution. This notion of optimality is
stronger than the more common notion of worst-case optimality. The new notion of optimality applies
to systems where the worst-case behavior of any clock synchronization algorithm is inherently un-
bounded.

Key words, distributed systems, real-time systems, clock synchronization, message passing
systems, networks, optimization, message delay assumptions, precision

AMS subject classifications. 68Q10, 68Q22, 68Q25, 68R10

1. Introduction. In most large-scale distributed systems, processors communi-
cate by message transmission and do not have access to a central clock. Nonetheless
it is useful, and sometimes even necessary, for the processors to obtain some common
notion of time. The technique used to attain this notion of time is known as clock syn-
chronization. Synchronized clocks are useful for various applications such as control of
real-time processes, transaction processing in database systems, and communication
protocols. Recently, several software protocols that support clock synchronization in
communication networks have been proposed [1, 7, 13, 15, 16]; system designers have
been advocating the use of synchronized clocks [10].

Received by the editors April 20, 1994; accepted for publication (in revised form) September 7,
1994.

Department of Computer Science, Technion, Haifa 32000, Israel (hagit@cs.technion.ac.il). The
research of this author was supported by grant 92-0233 from the United States-Israel Binational
Science Foundation (BSF), Jerusalem, Israel, the Technion V.P.R.--Argentinian Research Fund,
and the fund for the promotion of research in the Technion.

IBM T. J. Watson Research Center, P.O. Box 704, Yorktown Heights, NY 10598
(amir@watson.ibm.com). The research of this author was partially supported by Direccion Gen-
eral de Asuntos del Personal Acadmico (DGAPA) Projects, National Autonomous University of
Mexico (UNAM).

Laboratory for Computer Science, Massachusetts Institute of Technology, 545 Technol-
ogy Square, Cambridge, MA 02139 (rajsbaum@theory.lcs.mit.edu); on leave from Instituto de
Matemticas, UNAM, Mexico. The research of this author was partially supported by Direccion
General de Asuntos del Personal Acadmico (DGAPA) Projects, UNAM.

369

370 HAGIT ATTIYA, AMIR HERZBERG, AND SERGIO RAJSBAUM

The quality of synchronization is measured by its precision, i.e., how close together
it brings the clocks at different processors. The precision influences the correctness
and the efficiency of applications using the synchronized clocks.

The best precision that can be achieved is determined by the timing uncertainty
that is inherent in the system. There are two main sources of timing uncertainty in
a distributed system. First, local clocks at different processors are independent: they
do not start together and may run at different speeds. Second, messages sent between
processors incur uncertain delays.

A relatively simple case is when local clocks are accurate, i.e., run at the same
speed, and there are upper and lower bounds for the delay on each link. Clock
synchronization algorithms under this assumption, whose precision is optimal in the
worst case, are described in [4, 11]. Subsequent work concentrated on clocks that may
drift and on fault tolerance (e.g., [2, 7, 20, 21]; see the survey in [19]). To achieve high
precision, these algorithms require the existence of tight lower and upper bounds on
message delay.

However, in real systems it is often the uncertainty of message delay, rather than
clock drift, that causes most of the difficulty in synchronizing clocks [13, 7]. Almost
every processor in a distributed system has access to a high-quality, very accurate
hardware clock; it is not unrealistic to assume that local clocks are accurate and
have no drift.2 On the other hand, often there do not exist tight upper and lower
bounds on message delay, while there is other relevant information about the delays.
For example, in some systems, a bound on the difference between delays in opposite
directions is known. This motivated us to revisit the case in which local clocks run
at the same speed and have no drift, thus focusing on the impact of message delay
uncertainty on clock synchronization.

Our main contribution is a methodology for designing optimal clock synchroniza-
tion algorithms under a variety of assumptions on message delay uncertainty. The
strongest results are obtained for a natural family of local delay assumptions; this
family includes all the assumptions studied in previous theoretical work. A delay as-
sumption is local if it is specified for a pair of processors, e.g., processors connected by
a link. We show that in this case, a clock synchronization algorithm can be obtained
by considering each pair separately. This simplifies the analysis substantially and
allows different pairs of processors to satisfy different assumptions. Furthermore, we
prove a composition theorem that allows us to combine several local delay assump-
tions. For example, it is possible that for some pair of processors there will be upper
and lower bounds on the message delay in each direction as well as a bound on the
difference between message delays in opposite directions.

The basic difficulty of clock synchronization stems from the existence of two dif-
ferent system executions in which all processors have the same views. The tightness
of the achievable synchronization depends on how "far away" in real time such exe-
cutions can be. We capture this notion quantitatively as the maximal shift between
processors in a given execution. Using this notion, we partition the design of a clock
synchronization algorithm into three stages.

This does not ensure that clocks are close to real time. It is easy to adapt our results to reach
this goal if a perfect real-time clock is available. Synchronization to real time is often useful and is
achieved by practical protocols that usually also deal with multiple, imperfect real-time clocks, e.g.,
the Internet NTP [13].

2 To deal with the small drift that does exist, the clock synchronization mechanism is invoked
periodically; see, e.g., Kopetz and Ochsenreiter [7].

OPTIMAL CLOCK SYNCHRONIZATION 371

1. Computing corrections to the local clocks from the maximal shifts. This stage
is valid for any kind of message delay assumptions.

2. Computation of maximal shifts from maximal local shifts, which depend only
on the views of pairs of processors. This stage is valid for message delay
assumptions that are local.

3. Computation of the maximal local shifts from the local views. This depends
on the specific message delay assumptions.

The computations in stages 1 and 2 are performed by a centralized, off-line algorithm.
Our methodology yields optimal clock synchronization algorithms for a variety

of delay assumptions by adapting the third stage. In particular, we show how to
compute maximal local shifts for the following message delay assumptions:

1. upper and lower bounds on delays are known (including the degenerated cases
of zero lower bound and/or infinite upper bound);

2. there is a bound on the difference on the delay in opposite directions; and
3. there is a bound on the difference in the times when different processors

receive a multicast message.
Most previous formal work on deterministic clock synchronization addressed only

a restricted version of the first assumption where the delay upper bounds are finite.
However, an observation of [1] shows that in many actual links, there is some minimal
delay (e.g., due to the actual transmission rate and processing time), while there is no
known upper bound. The second assumption follows experimental results (cf. [13]),
showing that message delays in opposite directions of a bidirectional link are usually
very close. The last assumption is useful for broadcast networks that are used in
many local area networks; this is the assumption used in [5, 18].

Our composition theorem implies that our algorithms apply to systems where the
same pair of processors satisfies several different delay assumptions. Such mixtures
are quite common in practical, heterogeneous systems. For example, there are systems
in which several local area (broadcast) networks are connected by bridges or (long-
distance) links.

Our work extends the results of Halpern, Megiddo, and Munshi [4], who use linear
programming techniques that do not illuminate the inherent difficulties of synchro-
nizing clocks. We believe that our work gives a more precise understanding of the
problem, explicitly showing the requirements of each step and thereby facilitating
adaptation to other delay assumptions. Their results are a special case of the general
methodology developed here, in which exactly one message is sent on each link, and
upper and lower bounds on delays are known. In fact, the algorithm we obtain for
this specific setting is essentially the one in [4].

Previous definitions of optimal clock synchronization were based on the worst
(largest) difference between clocks of two processors in any execution. For some of
the assumptions that we study in this paper, e.g., when no upper bounds on the delays
are known, this worst case is inherently unbounded. Moreover, as already stated in
[4], we would like to award algorithms that exploit favorable conditions and achieve
the best possible precision in each specific instance. We give a precise definition of
optimality for each specific execution and show that it is achieved by our algorithms
(and hence also by the algorithm of [4]).

When trying to crystallize these ideas, it turned out that the decision of which
messages to send should be separated from the method for adjusting the clocks based
on the local message histories. Our framework shows how to adjust the clocks op-
timally, given any set of local message histories. The decision of which messages to

372 HAGIT ATTIYA, AMIR HERZBERG, AND SERGIO RAJSBAUM

send, to whom, when, etc., can therefore take other considerations into account, e.g.,
message traffic optimization, and is left outside of the scope of this paper.

The rest of this paper is organized as follows. In 2 the model and the clock syn-
chronization problem are defined. Section 3 presents the general clock synchronization
algorithm and proves that it achieves optimal precision; the algorithm is independent
of the message delay assumptions. In 4 we show how to compute the inputs needed
for the general clock synchronization algorithm, when some local information about
the views of the processors is given; the computation is valid for local systems. In 5
we show how to compute the required information on the views for several specific
delay assumptions. Conclusions and open questions appear in 6.

2. Definitions.

2.1. Defining optimal precision. We would like a clock synchronization algo-
rithm to obtain the best possible precision, that is, to bring the logical clocks as close
to each other as possible. However, it is not obvious how to compare the precision
achieved by different algorithms and how to define optimality.

An elegant solution is to evaluate a clock synchronization algorithm by the worst
(largest) precision achieved in any of its executions. This worst-case interpretation
follows the tradition of worst-case complexity analysis of algorithms.

This definition has two drawbacks. First, like any definition that concentrates
on the worst case, it does not award algorithms that behave well in other cases. An
algorithm that is optimal under this definition can be very inefficient in executions
where the delays are favorable. Second, worst-case analysis is meaningful only if the
worst-case precision is bounded. However, in many important cases, the worst-case
precision can easily be shown to be unbounded, e.g., when there are no upper bounds
on message delay.

We believe a more refined notion of optimality is warranted. Intuitively, an op-
timal algorithm is one whose precision, in every execution, is not larger than the
precision of any other algorithm in an execution where the message delivery system
"acts the same."

Formalizing this idea is not so simple. The major difficulty is finding a satisfying
definition for executions where the message delivery system acts the same. The prob-
lem is that the properties of the execution are determined by the interaction between
the message delivery system and the algorithm. The algorithm controls the execu-
tion by deciding when to send messages, while the message delivery system controls
the execution by determining their delay.3 It is difficult to isolate the effect on the
execution determined by the message delivery system. Such isolation is necessary in
order to compare executions of a given algorithm to executions of other algorithms
where the message delivery system is equally adversarial. A definition is too strong
if it compares an execution of one algorithm with an execution of another algorithm
in which message delays are unfairly favorable. Conversely, a definition is too weak
if executions with the same message delivery policy are not compared. We sidestep
this problem by noticing that the construction of a clock synchronization algorithm
has two aspects: first, the design of the interactive part where the processors send
messages; and second, calculating corrections using the views of the processors that
were obtained during the interactive part. In this paper, we do not address the first

3 This is not merely a formal issue: from a practical point of view, if an algorithm sends too many
messages in a short period of time, the network becomes congested and delays are long and highly
variant.

OPTIMAL CLOCK SYNCHRONIZATION 373

aspect. We assume that we have a set of views, one for each processor, and we ask
how to compare optimal corrections for this set of views.

2.2. Model of computation. Here we formalize the behavior of the interactive
part of a clock synchronization algorithm, which is a distributed algorithm running
on a network. The distributed algorithm decides when to send messages, while the
network decides when to deliver the messages. The interplay between the distributed
algorithm and the network generates a set of executions. The result of this execution
is the input to the clock synchronization function.

We consider a set P {PI,...,Pn} of processors. With each processor p E P we
associate a (local) clock. The clock cannot be modified by the processor. Processors
do not have access to real time; each processor obtains its only information about time
from its clock and from messages sent by other processors. The clock is represented
by a local time component, which is a real number. In the sequel, the term clock time
refers to the local time component of the processor, while the term real time refers to
the absolute time as measured by an outside observer. In this work we assume that
clocks do not drift, i.e., that they run at the same rate as real time, but they are not
necessarily synchronized with each other.

We list the events that can occur at processor p, together with an informal ex-
planation.

Message-receive eventsmreceive(p, m, q) for all messages m and processors q: pro-
cessor p receives message m from processor q.

Message-send eventswsend(p, m, q) for all messages m and processors q: proces-
sor p sends message m to processor q.

Timer-set events--timer-set(p, T) for all clock times T: processor p sets a timer
to go off when its clock reads T.

Timer events--timer(p, T) for all clock times T: a timer that was set for time T
on p’s clock goes off.

Start events--start(p, 0): p starts executing the algorithm, with the initial value
of its clock being 0.
The message-receive, timer, and start events are interrupt events.

Each processor is modeled as an automation with a (possibly infinite) set of
states, including an initial state, and a transition function. Each interrupt event
causes an application of the transition function, which runs from states, clock times,
and interrupt events to states, sets of message-send events, and sets of timer-set events
(for subsequent clock times). That is, the transition function takes as input the current
state, clock time, and interrupt event (which is the receipt of a message from another
processor or a timer going off) and produces a new state, a set of messages to be sent,
and a set of timers to be set for the future.

A step of p is a tuple (s, T, i, s’, M, TS), where s and s are states; T is a clock
time; is an interrupt event; M is a set of message-send events; TS is a set of timer-set
events; and sI, M, and TS are the results of p’s transition function acting on s, T,
and i. A history r of a processor p is a mapping associating to each number from
(real time) a finite sequence (possibly empty) of steps such that the following hold.

1. For each real time t, there is only a finite number of times t < t such that
the corresponding sequence of steps is nonempty (thus the concatenation of
all the sequences in real-time order is a sequence).

2. The interrupt event in the first step of the history is a start event, and the
old state in the first step is p’s initial state; furthermore, there are no other

374 HAGIT ATTIYA, AMIR HERZBERG, AND SERGIO RAJSBAUM

start events; let S be the real time of the start event.
3. The old state of each subsequent step is the new state of the previous step.
4. For each real time t, the clock-time component T of each step in the corre-

sponding sequence is equal to t- S (thus, the clock time of the start event
ofp is 0).

5. For each real time t, in the corresponding sequence there is at most one timer
event and it is ordered after all other events.

6. A timer is received by p at clock time T if and only if p has previously set a
timer for T.

An execution is a set of histories, one for each processor p in P, such that there
is a one-to-one correspondence between the messages received by q from p and the
messages sent by p to q for any processors p and q. (To simplify our discussion, we
assume that messages are unique, so this correspondence is uniquely defined.) Note
that this definition allows messages to be lost and delivered in non-FIFO (first in-first
out) order; however, it assumes messages are not corrupted or duplicated. We use the
message correspondence to define the delay of a message m received in execution c,
denoted d(m), to be the real time of receipt minus the real time of sending. When
a is clear from the context, we simply write d(m).

Let Sc,p Sr where r is p’s history in a; that is, Sc,p is the real time of the start
event of the processor p in a.

Note that the message delivery system is not explicitly modeled. The requirements
from an execution state are that messages are delivered without duplication and that
the system does not generate messages; the system can reorder or lose messages.

A system (P, A) is a set of processors P and a set of executions A, called admissible
executions. For example, 4 may allow communication only between specific pairs of
processors connected by a link.

The cornerstone of our definitions and proofs is the notion of equivalent execu-
tions. Informally, two executions are equivalent if they are indistinguishable to the
processors; only an outside observer who has access to the real time can tell them
apart.

To formalize this notion, define the view of processor p in history r to be the
concatenation of the sequences of steps in r in real-time order. (Note that the view
includes the clock times.) The real times of occurrence are not represented in the
view. Let a be an execution, and let r be p’s history in c. The view of p in a is the
view of p in r and is denoted clp. Two executions c and c are equivalent, denoted
a _= a, if for every processor p E P, alp

2.3. The clock synchronization problem. The goal of a clock synchroniza-
tion algorithm is to bring the clocks of the processors as close to each other as possible,
while keeping the clocks’ values with the progress of real time. Intuitively, each pro-
cessor maintains a logical clock, which "corrects" the value of the local clock. Since
the logical clock is required not to drift from the progress of real time, it is straightfor-
ward to see that the logical clock must be the local clock plus some correction factor.
Thus, the goal of a clock synchronization algorithm is to compute a correction for
each processor such that, for any two processors, the values of the local clocks (at the
same real time) plus the respective corrections are close.

Specifically, a clock synchronization algorithm is a function from a set of n views
to a vector of n real numbers, called corrections. Given a clock synchronization
algorithm f and an execution a, we abuse notation and denote by f(c) the vector
obtained by applying f to the n views in ; we denote by f(c,p) the component of

OPTIMAL CLOCK SYNCHRONIZATION 375

f(a) that corresponds to p. Since a clock synchronization algorithm depends only on
the views, we have the following claim.

CLAIM 2.1. If a =-- a’, then f(a) f(a’).
Recall that at any real time t, the clock value of p is t- S,p. Given a clock

synchronization function f, the corrected local time of p in a is t- S,p + f(a,p).
Therefore, [(S,v- f(a,p))- (S, f(a, q))[is the difference between the corrected
local times of p and q in a.

To capture the precision achieved by some vector of corrections
denote p(a,) maXp,qeP [(Sa,p Xp) (Sc,q Xq)[. That is, p(a,2) is the largest
discrepancy between two clocks of different processors after they are corrected.

Because the computation of the corrections does not distinguish between equiva-
lent executions, we measure the precision for a specific execution a by considering the
worst discrepancy achieved for all the executions equivalent to a. Let Jt be the set
of admissible executions. Formally, for any execution a E Jr, the inherent precision
achieved by a vector of corrections 2 is

tb(a,) sup{p(a’, 2): a’ _-- a and a’

DEFINITION 2.1. A clock synchronization algorithm f computes optimal correc-
tions iffor every admissible execution a and every vector of corrections , fi(a, f(a)) <_

We call (a, f(a)) the precision of f on a and use the shorthand (a, f).
3. A general clock synchronization algorithm. As mentioned before, the

basic difficulty of computing corrections is the fact that there may be two admissible
executions a and a in which all processors have the same views. Clearly, the tightness
of the achievable synchronization depends on how "far away" in real time a can
be from a. We formally quantify this idea by defining the maximal shift between
processors in a given execution. We show that if estimates of the maximal shifts are
available, then there exists a function that computes optimal corrections. This is
done by showing a lower bound for the precision that depends only on the maximal
shifts. Then we show that this bound is tight by presenting a method for computing
corrections that achieves this value as its precision. In subsequent sections we show
how to estimate the maximal shifts for specific systems.

3.1. Maximal shifts. Consider two equivalent executions a and a. It follows
that for any p P, the sequence of steps in a is equal to the sequence of steps in a,
except that p executes its steps at different real times. Since the clocks have no drift,
it follows that the difference between the real times of occurrence of a step in a and
the corresponding step in a is fixed, independently of the step. This implies that a
can be obtained by "shifting" the steps of the processors in a.

In the rest of this section, we formalize this notion of shifting and study its
properties. This technique was originally introduced by Lundelius and Lynch [11] to
prove lower bounds on the precision achieved by clock synchronization algorithms in
complete graphs.

Formally, given a history 7r of processor p and a real number s, a new history
r’ shift(, s) is defined by ’(t) (t + s) for all t. That is, all tuples are shifted
earlier in r by s if s is positive and later by -s if s is negative. Clearly, the views do
not change with shifting. Furthermore, we have the following result.

LEMMA 3.1 (Lundelius and Lynch [11]). Let be a history of processor p, and
let s be a real number. Then r’ shift(r, s) is a history of p and S, S s.

376 HAGIT ATTIYA, AMIR HERZBERG, AND SERGIO RAJSBAUM

Let a and a be two equivalent executions such that each processor p E P is
shifted in a with respect to (w.r.t.) a by Sp; the vector of shifts of a w.r.t, a is the
vector g’- (Sl,..., sn/. That is, execution a was obtained by replacing p’s history
in a, 7r, with shift(r, Sp), for each p E P, and by retaining the same correspondence
between message-send and message-receive events. (Technically, the correspondence
is redefined so that a pairing in a that involves the event for p at time t, in a involves
the event for p at time t- Sp.) We denote a by shift(a, ’). Clearly, we have the
following claim.

CLAIM 3.2. Let a’ shift(a, (Sl,..., snl). For every message m received by
processor p from q in a, da,(m) d(m) + (Sq Sp).

The following claim follows from the definitions.
CLAIM 3.3. For any pair of executions a and a, a =_ a if and only if there

exists a vector of shifts such that a’ shift(a, g’).
We now formalize the notion of how "far away" a processor can be shifted w.r.t.

another processor. Fix a system (P, ,4), and let a 4. We say that s is an admissible
shift of q w.r.t, p in a if there exists a vector of shifts g’ (sl,..., sn} with Sq Sp s
such that a shift(a, g’) is in Jr. Define

msa(p, q) sup{s s is an admissible shift of q w.r.t, p in

This is the maximal shift of q w.r.t, p in a; that is, how far away can q be shifted from
p while retaining the admissibility of the execution. Since 0 is obviously an admissible
shift of q w.r.t, p in a, it follows that msa(p, q) >_ 0. Note that in certain cases, e.g.,
when no message was sent, the maximal shift can be infinite.

CLAIM 3.4. Let a ,4 and let a’ a. If a’ A, then Sa,,p Sa’,q Sa,p
Sa,q + ms(p, q) for any two processors p and q.

Proof. By Claim 3.3, a’ shift(a, g’) for some vector of shifts
Fix a pair of processors p and q. Since a jr, it follows that sq Sp < msa(p, q).
The claim follows since Sa,,p Sa,p- 8p and S,,q S,q Sq.

3.2. The lower bound. Fix a system (P, Jr), an admissible execution a, and
a clock synchronization algorithm f. The following lemma relates the maximal shift
and the attainable precision.

LEMMA 3.5. For any pair of processors p and q, fi(a, f) >_ Sa,p-
f(a, q) + msa(p, q).

Proof. Let s be an arbitrary admissible shift of q w.r.t, p in a. Let a’ E ,4 be an
execution such that a -_- a and q is shifted w.r.t, p by s. Then

/7(a, f) >_ p(a’, f(a’)) >_ Sa,,p- f(a’,p)- Sa,,q -F f(a’,q)

+ y(a’, q)+ s

Sa,p f(a,p) Sa,q / f(a,q)-F s (by Claim 2.1).

Since s was chosen arbitrarily,

Z(a, f) >_ S,p f(a,p) S,q + f(a,q) + ms(p, q). n

The previous lemma implies that if msa (p, q) is infinite for a pair of processors p, q
then no clock synchronization algorithm can achieve a finite precision f3(a, f). The
expression defined next will turn out to be a lower bound on the precision that can be
achieved in a. Let O be a cyclic sequence of processors, that is, 0 Po, P,..., Pk-, Pk,
where pk P0; processors p and p+ are not necessarily adjacent in the graph.

OPTIMAL CLOCK SYNCHRONIZATION 377

Denote lel k and mss(0) k-1’,=0 mss(p,,p,+l). Let As(0) ns(O)/lOl, and
define

max max{As (t?)" t9 is a cyclic sequence of processors}.

THEOREM 3 6 For any clock synchronization algorithm f,/(, f) > Amax
Proof. Let 0 P0,...,Pk be an arbitrary cyclic sequence of processors (where

Pk PO). By Lemma 3.5,

(o, y) > Ss,, f(o,pi) Ss,p,+ + f(o,p+) + mss(pi,p+)

for every i, 0 _< i _< k- 1. Summing over all the consecutive processors in 0, we have

k-1

k. tb(a, f) > [Ss,p, f(a,p) Ss,,+ + f(a,p+) + mss(p,p+)].
i=0

Clearly,

k--1

i=0

and hence,

k-1

(a, f) > mss(p,, p,+) As(O),
i=0

as needed.

3.3. The upper bound. Now we show the converse direction, i.e., that there
exists a clock synchronization algorithm f with 5(, f) Amx, for every c, provided
certain estimates can be computed from the views. By Theorem 3.6, no other clock
synchronization algorithm can achieve better precision. Hence our clock synchroniza-
tion algorithm computes optimal corrections in the sense of Definition 2.1.

Clearly, if the values of mss(p, q) are known, then it is possible to calculate
Amax is the crux of computing optimal corrections--slmax" As we shall see, computing --s

However, since the views do not include the actual message delays, it is not clear
what the set of equivalent executions is; hence, in general, it is impossible to compute
the values of mss(p, q) from the views. Below we show that it suffices to have only
estimates on mss(p, q). In the next sections, we show how to obtain these estimates
for specific systems.

Define the estimated maximal global shift to be rfiss (p, q) mss (p, q)+Ss,p-Ss,q.
The next lemma is the key to replacing mss with the estimates rfiss in the calculation
of Aamax. The lemma shows that the maximum average cycle weight with respect to
the actual maximal shifts is equal to the maximum average cycle weight with respect
to the estimates. Specifically, for any cyclic sequence of processors 0 PO,...,Pk

(where Pk PO), let mss(O) E,=o mss(p,pi+). Also, let As(O) ms(O)/lOI, and
define

.ax max{s(0)" 0 is a cyclic sequence of processors}.

LEMMA 3.7. Amax Amax

378 HAGIT ATTIYA, AMIR HERZBERG, AND SERGIO RAJSBAUM

Proof. Consider any cyclic sequence of processors 0 p0,..., pk (where Pk P0),
and sum the estimates around the cycle as follows:

k-1 k-1

Z llSa (Pi, Pi-i [ms, (Pi, Pie-l) -- S,,pi S(,pi+].
i--O i--O

k--1However, the values for S,,p, cancel each other and we get i=0 ms(pi,pi+), which
is msa(O). Since this holds for every cyclic sequence of processors, it also holds for
any sequence where A is maximized, i.e. where A(0) Amax

Thus, we have the following function for computing corrections.

FUNCTION SHIFTS
Given inputs ns,(p, q) ms(p, q) + S,p S,q for every pair of processors p

and q.
nx1 Compute Amax (by computing __a

2. Select an arbitrary root processor r. The correction for each processor p P
is distw(r,p)--the distance in the (complete) directed graph relative to the
weights w(p, q) Aamax rfis, (p, q).

The value of .amax can be computed in step 1 by using an algorithm of Karp [6]
that runs in O(n3) time. By Lemma 3.7, this is equivalent to computing Aamax. By
definition, Aamax >_ A.(e) ms.(0)/101 for any cycle 0. Therefore,

,--c(Amax nsc(p, q)) --IOIA.mx ns.(0) _> 0.
(p,q)dO

This implies that there are no negative weight cycles in the complete graph with
the weights w(p, q) Aax nhsa(p, q). Thus, the distances can be computed as in
step 2.

THEOREM 3.8. The function SHIFTS computes optimal corrections with precision
Amax in each execution cOl

Proof. Denote by f(a) the vector of corrections computed by SHIFTS given
rfisa(p, q). We will show that fi(a, f) <_ Aamax; it follows from Theorem 3.6 that
these are optimal corrections.

To prove that fi(a, f) _< Aama we need to show that p(a’, f(’)) <_ Aamax for any
admissible execution cd _-- c. It suffices to show that for every pair of processors p
and q,

So,p f(o/, p) cd,q -- f(o/t q) < Amax

Fix some pair of processors p and q. By the definition of the function SHIFTS,
f(, q) distw(r, q)and f(o,p) distv(r,p), relative to the weights w(p,q) A
nhsa (p, q). Thus

f(, q) f((, p) dist,(r, q) distw(r, p) <_ w(p, q) Amax rfisa(p, q).

Adding nhs(p, q) ms(p, q) to both sides, we get

rfis, (p, q) ms(p, q) + f(a, q) f(a,p) <_ Amax ms(p, q).

By the definition of estimated maximal shifts, nsa(p, q) ms(p, q) Sa,p S,q.
Hence

S,p S,q + f(a,q) f(a,p) + ms(p, q) _< Ax.

OPTIMAL CLOCK SYNCHRONIZATION 379

Since a a’, Claim 2.1 implies that f(a) f(a’), and thus

S,v S,q + f(a’, q) f(a’,p) + ms(p, q) _< Amax.
By Claim 3.4, S,,p S,,q <_ S,p- S, + ms(p, q), and thus,

S,,,v f(a’, p) S,,q + f(a’, q) < Amx,
as needed.

This theorem implies that given estimates rfis of the maximal shifts, we can
compute optimal corrections.

4. Calculating estimates in local systems. In the previous section, we re-
duced the problem of designing an optimal clock synchronization algorithm to the
problem of finding the estimates rfisa(p, q) of maximal shifts for each pair of proces-
sors p and q. Given such estimates, the clock synchronization problem can be solved
by computing the function SHIFTS. Next we show how to calculate rfis. In this sec-
tion, we show how to compute these estimates in the natural class of local systems.
Intuitively, in local systems the delays of messages sent to a pair of processors, e.g.,
along edges connecting them, do not depend on the delays of messages sent to other
processors.

For local systems, estimates _nhs(p, q) can be computed in two steps. In the first
step, local (pairwise) estimates mls(p, q) are computed. In the second step, the de-
sired global estimates rfis(p, q) are produced by combining the local estimates. In
this section we deal only with the second step; i.e., we show how to compute global
estimates from local estimates. In the next section, we compute the local estimates
based on the views for several specific systems.

To design a clock synchronization algorithm for a specific local system, only the
calculation of local estimates must be modified. As illustrated by the particular sys-
tems discussed in the next section, this calculation handles each pair of processors
separately. This significantly simplifies reasoning and allows us to deal with combi-
nations of several assumptions on the same or on different edges, as we show at the
end of this section.

4.1. Local systems. Informally, a system is local if its admissible executions
can be expressed as the intersection of sets of executions, each set restricting only the
views of a specific pair of processors.

DEFINITION 4.1. A set of executions jtp,q is local to p and q provided that for
every execution a E 4p,q, if there exists an execution a such that a[q a[q and
a’ IP alp, then a’ 4p,q.

Note that this implies that .Ap,q allows arbitrary shifts as long as both p and q
are shifted by the same amount, which is reworded as follows.

CLAIM 4.1. Assume .Ap,q is local to p and q. Let a ,4p,q, and let g’ (sl,..., Sn)
be a vector of shifts such that Sp Sq. Then shift(a, g’) jtp,q.

Let a Jtp,q. We say that s is a locally admissible shift of q w.r.t, p in a if there
exists a vector of shifts g’= (sl,..., sn) such that sq Sp s and shift(a, g’) e Jtp,q.
We have the following claim.

CLAIM 4.2. Assume jtv,q is local to p and q, and consider an execution a Jtp,q.
A value s is a locally admissible shift of q w.r.t, p in a if and only if for every vector
of shifts g’= (Sl,..., Sn} with sq Sp s, shift(a, if) Ap,q.

Define the maximal local shift of q w.r.t, p in a to be

mls(p, q) sup{s s is a locally admissible shift of q w.r.t, p in a}.

380 HAGIT ATTIYA, AMIR HERZBERG, AND SERGIO RAJSBAUM

Intuitively, mls(p, q) is the maximal possible shift of q w.r.t, p in a, when the admis-
sibility of processors other than p and q need not be preserved.

We usually leave the sets Ap,q unspecified when they are clear from the context.
Later, when we want to specify different assumptions on the same pair of processors,
we consider more than one local set of executions for this pair. In this case, to distin-
guish between different local sets for processors p and q we will use 4p,q, 4,q, A,q,
etc.

DEFINITION 4.2. A set of admissible executions ,4 is local if there exist local sets
4p,q such that ,4 Np,qEP 4p,q, and for every p and q, 4p,q is local to p and q.

Claim 4.2 implies the following.
CLAIM 4.3. Assume A is local. Let (s1,..., Sn) be a vector of shifts and let

a E 4. Then shift(a, ’) e 4 if and only if Sq Sp is a locally admissible shift of q
w.r.t, p in (, for every pair of processors p and q.

Notice that mls(p, q) >_ ms(p, q) and mls(p, q) >_ 0. We say that mlsa(p, q) is
a local shift, while ms(p, q) is a global shift.

Note that mlsa(p, q) may differ from mlsa(q,p). However, if shift(a, (sl,... ,Ha})
is in 4p,q, then sq Sp is a locally admissible shift of q w.r.t, p and Sp sq is a locally
admissible shift of p w.r.t.q. Thus, if s is a locally admissible shift of q w.r.t, p in a,
then -s is a locally admissible shift of p w.r.t, q in a.

Throughout the rest of the section, we assume that A is local with respect to some
local sets of executions. Hence, the locally admissible shifts are defined. Furthermore,
we assume that the locally admissible shifts have the following property.

ASSUMPTION 1. Let x and y be two numbers such that x < y. For every two
processors p, q and every a .4, if x and y are locally admissible shifts of q w.r.t, p
in , then every value z [y,x] is a locally admissible shift of q w.r.t, p in (.

Intuitively, this assumption implies that the possible shifts constitute a contin-
uous interval without any singularity points, and therefore, it holds in most natural
applications.

4.2. From local shifts to global shifts. Our goal is to compute global esti-
mates rhs(p, q) from local estimates mlsa(p, q). In this section, as a first step in this
direction, we show how to obtain maximal global shifts ms(p, q) from maximal local
shifts mls (p, q). This also shows how to derive a lower bound on the precision of clock
synchronization from a lower bound on the precision of each edge independently.

Let a be an admissible execution. Denote by dist,(p, q) the distance from p to
q in the graph G relative to the weights w’(p, q) mls(p, q). We assume that all
the distances dist,, are finite; it is not difficult to generalize the result for the case of
infinite distances.

LEMMA 4.4. For any pair of processors p and q, dist,(p, q) <_ msa(p, q).
Proof. Assume, by way of contradiction, that for some pair of processors p and q,

dist,, (p, q) > ms(p, q). Thus there exists some value s, ms(p, q) < s < dist,, (p, q).
We show that s is a (globally) admissible shift of q w.r.t, p in a, which contradicts
the definition of msa (p, q).

Since s > ms (p, q), it follows that s > 0. Thus we can write s c.distw, (p, q), for
some real number c, 0 < c < 1. Fix some pair of processors j and k. By Assumption
1, c. mlsa(k,j) is a locally admissible shift of j w.r.t, k in a. In addition, c. mlsa(j, k)
is a locally admissible shift of k w.r.t, j in c, and thus -c. mls(j,k) is a locally
admissible shift of j w.r.t, k in a.

For every processor define si c. distw, (p, i); note that Sp 0 and Sq s. We
now show that sj sk is a locally admissible shift of j w.r.t, k in a. By the triangle

OPTIMAL CLOCK SYNCHRONIZATION 381

inequality

dist,, (p, j) _< dist,, (p, k) + w’(k, j),

and since w’(k, j) mls (k, j), we have (by changing sides)

dist,, (p, j) dist,, (p, k) <_ mls (k, j).

Since c > 0, by multiplying by c and substituting sj and sk, we get

sj Sk <_ C. mls(k,j).

By similar reasoning.

s sj <_ c. mls(j, k).

This implies

-c. mlsa(j, k) <_ sj sk <_ c. mls(k, j).

Since -c. mlsa(j, k) and c-mls(k,j) are locally admissible shifts of j w.r.t, k in a,
Assumption 1 implies that sy sk is a locally admissible shift of j w.r.t, k in a.

Since this holds for any j and k, Claim 4.3 implies that shift(a, (sl,..., Sn)) is
in .4. Therefore, s sq Sp is a (globally) admissible shift of q w.r.t, p in a. Since
s > msa(p, q), this contradicts the definition of msa(p, q). [-i

We now show that msa(p, q) dist,, (p, q), by proving the converse inequality.
LEMMA 4.5. For any two processors p and q, msa(p, q)

_
distw,(p, q).

Proof. Let s be an arbitrary admissible shift of q w.r.t, p in a. Then there exists a
vector of shifts ’= (sl,..., sn/with s sq- Sp, such that shift (a, ’) E jr. Consider
a shortest path p0,...,Pk from p P0 to q Pk w.r.t, the weights w. Summing over
the path we get

Since shift(a, ’) E A, Claim 4.3 implies that Sp Sp,_ is a locally admissible shift
of p w.r.t, p-i in a. Hence,

Sp Sp_ <_ mlsa (pi_ 1, pi) w’ (pi_ 1, pi)

for each i- 1,... ,k. By combining (1) and (2) we get

k k

s E(Sp Sp_ <_ E w’(Pi-1, Pi) distw, (p, q).
i--1 i--1

Therefore, s _< dist,(p, q). Since this holds for any admissible shift, it follows that
ms (p, q) <_ dist,, (p, q).

THEOREM 4.6. For any admissible execution a and any two processors p and q,
ms (p, q) can be computed from mls (p, q).

Proof. For any admissible execution a and any two processors p and q, Lemma 4.4
implies that ms (p, q) _> dist,, (p, q), where w’ (p, q) mls (p, q). Lemma 4.5 implies
that msa(p, q) dist,(p, q). The claim follows since distw,(p, q) depends only on
mls (p, q).

382 HAGIT ATTIYA, AMIR HERZBERG, AND SERGIO RAJSBAUM

4.3. Using estimates for local shifts. Now the issue is how to compute the
values nSs(p, q) that are needed as inputs to the function SHIFTS. We assume that
the function is provided with estimates of the local shifts. Under this assumption the
computation can be accomplished by the following function.

FUNCTION GLOBAL ESTIMATES
Given inputs nls(p, q) mls(p, q) + S(,p Sc,q for every pair of processors p

and q.
1. Compute nSs(p,q) by a shortest path computation in G with weights
mls (p, q).

THEOREM 4.7. The function GLOBAL ESTIMATES computes nSs(p, q), for every
pair of processors p and q.

Proof. Observe that the weight of any cycle w.r.t, the weights mls is equal to
the weight of the cycle w.r.t, the weights mls because the S components~cancel. It
follows that there are no negative weight cycles in G w.r.t, the weights mls. Also,
the weight of any path from p to q w.r.t, weights mls is equal to the weight of the
path w.r.t, mls plus S,p- S(,q. The claim follows from Theorem 4.6.

By composing functions GLOBAL ESTIMATES and SHIFTS, we can compute the
optimalcorrections and their precision given only the estimates to the maximal local
shifts mls. This follows immediately from Theorem 4.7 together with Theorem 3.8.

4.4. A composition theorem. In many systems, several constraints are im-
posed on the delay of messages. For example, it is possible that there is a bound on
the delay in each direction of the link as well as a bound on the difference in message
delay in opposite directions. In these cases, the system is local w.r.t, several sets of
executions, each of which is local to the same pair of processors p and q. We now show
how to combine several sets of executions local to p and q into a single complex set
of executions local to p and q. This allows us to deal with local systems by regarding
each pair of processors and each assumption separately; this will be useful in the next
section.

We remark that the theory developed so far already allows us to deal with local
systems where different pairs of processors obey different types of constraints.

Note that the notion of an admissible shift (and the derived notion of maximal
shift) is defined in the context of a specific set of admissible executions. To develop
the results in this section it is convenient to state this fact explicitly by saying that
a value is an admissible shift (or maximal shift) under 4, where ,4 is some set of
executions.

For some pair of processors p and q, let A,q be a set of executions local to p and q,
and let Jt,q be another set of executions local to p and q. Denote Ap,q .Ap,q N.A,q.
It is easy to see that Ap,q is local to p and q. For any execution a E .4, let mls’ (p, q)
be the maximal local shift of q w.r.t, p in a under Jt,. Similarly, define mlsa(p, q)
and mls (p, q). We have the following theorem.

mm(mls (p, q) mls, (p, q))THEOREM 4.8. mls,(p,q) "
Proof. The fact that mls,(p, q) _< tulsa(p, q) follows immediately since every

execution in fltp,q is an execution in ,4,q. Thus if s is a locally admissible shift of q
w.r.t, p in c under .dp,q, then it is a locally admissible shift of q w.r.t, p in c under 4,q.
Similarly mls,(p, q) _< tulsa(p, q). Therefore, tulsa(p, q) _< min(mls(p, q), tulsa(p, q)}.

Assume for contradiction that s is a value such that mls(p,q)
IImn{mls(p, q), tulsa(p, q)}. Since tulsa(p, q) < s < mls:(p, q), Assumption I im-

plies that s is a locally admissible shift of q w.r.t, p in c under Jt,q. Similarly, s

OPTIMAL CLOCK SYNCHRONIZATION 383

is also a locally admissible shift of q w.r.t, p in a under 4p,q. By Claim 4.2, for
every vector of shifts - (sl,..., Sn), such that s sq 8p, shift(a, ’) is in both
Jt,q and Ap,. Therefore, shift(a,*) is in Ap,. Thus, s is a locally admissible
shift of q w.r.t, p in a under Jtp,q, a contradiction since mls(p, q) < s. Therefore
mls (p, q) "mls(p,mln{mls (p, q) q) } rl

5. Clock synchronization for specific delay assumptions. We now show
how to compute estimated maximal local shifts for specific sets of executions 4p,q
local to p and q, given the views. By Theorems 4.7 and 4.8, this implies a clock
synchronization algorithm that computes optimal corrections for any system whose
set of admissible executions is the intersection of any collection of sets of these types.
By Theorem 4.7, all we must show is how to compute the estimates of the maximal
local shifts mls(p, q). This calculation is based on estimates for the delays (defined
below), which can easily be computed from the views of the processors.

The estimated delay d(m) of a message m sent from p to q is the actual (real-
time) delay plus the difference in (real-time) start times of the processors; that is,
d(m) d(m) / S,p S,q. This is similar to the definitions of estimated maximal
global shifts and estimated maximal local shifts. The next lemma shows that the
estimated delay can be computed from the views.

LEMMA 5.1. Given the views ofprocessors p and q in an execution a, it is possible
to compute the estimated delay l(m) of any message m sent from p to q.

Proof. Let tp(m) denote the local (p’s) clock time when p sent the message
m according to p’s view; similarly, tq(m) denotes the local (q’s) clock time when q
received the message m according to q’s view. By property 4 of histories as defined
in 2.2, m was sent at real time tp(m) + S,p; similarly, m was received at real time
tq(m) + Sa,q. It follows that the delay of rn is d(m) (tq(m)+ Sa,q) -(tp(m) + S,p).
Hence, (rn) d(m)+ Sa,p- Sa,q tq(m)- tp(m). Since messages are unique, tp(m)
and tq(m) can be computed from the views of p and q. rl

5.1. Bounds on the delay. In the systems considered in [4, 11], there is an
upper and a lower bound on the transmission delay for any edge. We extend this
assumption by allowing edges without upper bounds, in which case we say that the
upper bound is oc. In particular, this gives optimal clock synchronization for com-
pletely asynchronous networks where there are no bounds on the delay.

Consider a set lp,q [1, u] where and u give bounds (real numbers) for each ordered
pair of processors p and q, such that 0 _< l(p, q) <_ u(p, q) <_ oc. Execution a is in
,4p,q[1, u] if the delay of every message sent from p to q is in the range [l(p, q), u(p, q)]
and the delay of every message from q to p is in the range [l(q, p), u(q, p)]. Clearly,
Ap,q[l, u] is local to p and q.

The maximal delay of a message received by q from p in execution a is denoted
dmax(p, q). Similarly, the minimal delay of a message received by q from p in a is
denoted maxas (p, q). If no message was received by q from p in a, then -(]max (p, q) -oo
and dn(p, q) oo. We first observe that in such systems, tulsa(p, q) depends only
on the maximal and minimal delays between p and q.

LEMMA 5.2. Let be an execution of (P, flip,q[1, HI). Then

mlsa(p, q) min{(u(q,p) dmax(q,p)), (di(p, q) l(p, q))}.

Proof. We can partition the constraints on the communication between p and q
in two" the conditions on the delay of messages from p to q, and the conditions on
the delay of messages from q to p. This is done by expressing the set 4p,q[1, u] as the

384 HAGIT ATTIYA, AMIR HERZBERG, AND SERGIO RAJSBAUM

intersection of jt(q,p)[1, u], which constrains the messages from q to p, and Jt(p,q)[1, u],
which constrains the messages from p to q. Let mls (p, q) be the maximal local shift
of q w.r.t, p in a under Jt(q,p)[/, u]; mls (p, q) is defined similarly under Jt(p,q)[1, u].

We first show that mls(p, q) u(q,p)-dmX(q,p). It is obvious that mls(p, q) <_
u(q, p) -damaX(q, p). Assume, by way of contradiction, that s > u(q, p) -dmX(q, p) is a
locally admissible shift of q w.r.t, p in a. This immediately implies that dX(q, p)
-cx); i.e., at least one message was received by p from q.

Denote a’ shift(a, (sl,..., sn)), where sq s and si 0 for all q. By Claim
4.2, a is in 4(q,p). By Claim 3.2, if a message rn from q to p has delay d in a, then m
has delay d + s in a’. Thus, Amax(q, p) dmaX(q, p)- S. Since s aa (q p)
and clmax(q p) > -cx: it follows that the maximal delay of a message from q to p in
cg is strictly greater than u(q,p), which is a contradiction.

In a similar manner, we show that mls’.’(p, q) damin(p, q)- l(p, q). It is obvious
that mls(p, q) <_ damin(p, q) l(p, q). Assume, by way of contradiction, that s >
damin(p, q)- l(p. q) is a locally admissible shift of q w.r.t, p in c. This immediately
implies that dmln(p q) < (:; i.e. at least one message was received by q from p.

Let a be as defined above. By Claim 4.2, c is in ,4(p,q). By Claim 3.2, if
a message m fromp to q has delay d in a, then m has delay d-s in a. Thus,
Amin(p,q) lmina, (p, q) s. Since s > dmin(p, q) l(p, q) and dmin(p, q) ((, it follows
that the minimal delay of a message from p to q in a is less than l(p, q), which is a
contradiction.

The claim now follows from Theorem 4.8.
Lemma 5.2 gives the maximal local shifts as a function of the actual maximal and

minimal delays. However, the views of the processors give only estimates of the delays,
not the delays themselves. Yet, the estimates of the delays give an estimate for the
maximal local shift lsa(p, q). Formally, the estimated maximal delay is defined as

(max. (]max
a (P,q)= (p q)+S

while the estimated minimal delay is defined as

(min din Sa. (p. q) (p. q) +
We have the following result.

COROLLARY 5.3. Let c be an admissible execution of (P, Jtp,q[1, u]). Then

max mAn
mls,(p,q) min{(u(q,p)-da (q,p)),(d, (p,q)-l(p,q))}.

Note that max and jmin can be computed from the views of p and q, since

, (p, q) is the minimum of (rn) for all messages m received by q from p in c and
amaX(p, q) is the maximum of (rn) for all messages m received by q from p in c.

If we make the natural assumption that all delays are nonnegative, we get a
general bound on mls and nls (without any other bounds on the delay).

COROLLARY 5.4. Let c be an admissible execution of a system (P, jtp,q) local to
1mAn mAn

p, q. Then mls, (p, q) < (1, (p, q) and rls (p, q) < d (p, q).

5.2. Links with bounds on the round-trip delay bias. In many communi-
cation links there are no tight bounds on the transmission delays. However, whenever
the traffic load in one direction of a link is high, the load in the opposite direction
of the link is also high. Thus, it is possible to give a bound on the difference, or

OPTIMAL CLOCK SYNCHRONIZATION 385

bias, between the delay in one direction and the delay in the opposite direction. For
the purpose of illustrating our techniques, we simplify the assumption and require
that the difference between the delay of any pair of messages in opposite direction
be bounded. We now show how to calculate maximal local shifts for links in this
case. it is possible to generalize our results to the more realistic scenario in which
this assumption holds only for messages that were sent "around the same time."

Specifically, we associate a nonnegative number b(p, q) with processors p, q. An
execution a is in Ap,q[b] if for any message m received by p from q and any message
m’ received by q from p, Ida(m)- da(m’)l _< b(p,q). We also restrict tp,q[b] to
nonnegative delays; i.e., for every message m, d(m) >_ 0. The next lemma shows that
mlsa(p, q) depends only on the maximal and minimal delays between p and q.

LEMMA 5.5. Let a be an admissible execution of (P, jtp,q[b]). Then

1 dmin max,mls(p,q) min din(p,q),-[b(p,q)+ (p,q) -as (q,p)]

Proof. Consider the following two sets of admissible executions local to p and q.
The first set Jt,q contains every execution a such that the delay of every message in
a is nonnegative; denote the maximal local shifts under jt,q by mls. The second
set jt,q is like jtp,q[b] except that the delays are allowed to be negative; denote the
maximal local shifts under A,q by mls. Clearly Ap,[b] is the intersection of

mln{mls (p, q), mls (p, q) }. By Lemma 5.2,and A,q. By Theorem 4.8, mls(p, q) "
mls(p, q) dmin(p, q). Therefore, it suffices to prove that tulsa(p, q) 1/2[b(p, q)+
damin(p, q) dmax(q, p)].

Fix a value s and denote a’ shift(a, (s,..., sn)), where sq s and s 0 for
all i q. By Claim 4.2, s is a locally admissible shift of q w.r.t, p in a if and only if

By Claim 3.2, for any message m received by p from q, d,,(m) d,(m)+ s.
Similarly, for any message m’ received by q from p, d,,(m’) da(rW) s. Therefore,

d, (m’) d,, (m) da(m’) d,(m) 2s,

d, (m) d, (m’) d(m) d(rW) + 2s.

The round-trip delay bias of an arbitrary pair of messages m and m’ in a’ is at most
b(p, q) if and only if

da (m’) da (m) 2s <_ b(p, q),

da(m)- da(m’)/ 2s <_ b(p, q).

Since a is admissible and s _> 0, the first inequality trivially holds. Hence, s is a
locally admissible shift of q w.r.t, p if and only if

s<l [b(p, q) + da (m’) d. (m)].

Namely,

1 din max<- -i [b(p, q) + (p, q) p)].

386 HAGIT ATTIYA, AMIR HERZBERG, AND SERGIO RAJSBAUM

Thus mls(p, q) 1/2[b(p, q) + damin(p, q) damaX(q,p)]. [:]

COROLLARY 5.6. Let a be an admissible execution of (P, jt[b]). Then

" min 1 min max
mls(p,q) mind (p,q),-[b(p,q)+d (p,q)-d (q,p)]

5.3. Multicast networks. Communication in many networks is performed
through broadcast media where a message is transmitted simultaneously to a sub-
set of the processors. Multicast transmission may often have useful timing properties
for clock synchronization. In this subsection we investigate a simple timing property:
there exists a bound e on the difference between the arrival times of a message at
different processors. We do not assume that there is any bound on the delay of any
individual message.

Optimal clock synchronization algorithms for multicast networks that have
bound on the differences in delay for different processors are presented in [5, 18].
Our solution demonstrates the usefulness of the reductions of the preceding sections.
To provide optimal clock synchronization under the multicast assumption we need
only to find a way of defining local shifts. This, somewhat surprisingly, turns out to
be an easy task. Furthermore, the broadcast model can be limited to specific subsets
corresponding to subnetworks of an internet and combined with the other assumptions
using the composition theorem.

To define this assumption, we allow events of the form send(p, m, Q) for all mes-
sages m and sets of processors Q; this event represents a multicast of m to the pro-
cessors in Q. The definition of an execution is modified so that there is a one-to-one
correspondence between the messages received by p from k to messages sent by k to
p or multicast by k to a set Q that includes p for any processors p and k. Let d(p, m)
denote the difference between the time the message m is multicast by some processor
k and the time processor p receives it; this is the delay of the message m to p. The
estimated delay of the message m to p in a is (p, m) d(p, m) + Sa,k ,-c,p. As
before, the estimated delay of a message from k to p can be computed from the views
of p and k.

The system is the pair (P,4(e)), where t(e) is the intersection of local sets
Jtp,q(e) for every unordered pair of processors p and q. An execution
if for every message m multicast to both p and q, Id(p, m) -d(q, m)l _< . That is, m
reaches p at most time units after it reaches q, and vice versa.

Note that ,dp,q() is local to p and q. This is because any shift applied to both p
and q does not change the difference d(p, m) -d(q, m). The next lemma shows how
to calculate mls(p, q).

LEMMA 5.7. Let a be an admissible execution of (P,,dp,q(e)). Then

mlsa(p, q) + rnn{d(q, rn) d(p, rn)}.

Proof. Fix a value s and denote a’ shift(a, <Sl,..., Sn>), where Sq s and
si 0 for all i q. By Claim 4.2, s is a locally admissible shift of q w.r.t, p in a if
and only if a’ E Ap,q().

For every message m multicast to both p and q, let d’(q, m) and d’(p, m) denote
the delay of m in a’ for processors p and q, respectively. The value s is a locally
admissible shift of q w.r.t, p in a if and only if

Id’(p, m) d’(q, m)l <_

OPTIMAL CLOCK SYNCHRONIZATION 387

for every message m multicast to both p and q. If q is not the sender of m, then
d’ (p, rn) d(p, rn) and d’ (q, rn) d(q, m) s; if q is the sender of m, then d’ (q, m)
d(q, m) and d’(p, rn) d(p, rn) + s. In both cases, s is a locally admissible shift of q
w.r.t, p in a if and only if

Id(p, m)- d(q, m)+ s <_

for every message rn multicast to both p and q.
Hence, s is a locally admissible shift of q w.r.t, p in a if and only if

Isl _< + Id(p, m)- d(q, m)l

for every message m multicast to both p and q. Since mls(p, q) _> 0, this implies that

mlsa(p, q) e + mn{d(p, m) d(q, m)},

as needed.
As before, this result also applies to the estimated delays that can be computed

from the views.
COROLLARY 5.8. Let a be an admissible execution of (P, .Ap,q()). Then

q) +

Proof. Fix a message m and let k be the sender of m. We have

nlsa(p, q) mlsa(p, q)+ Sa,p S.,q (by definition)

e + min{d(q, m) d(p, rn)} + S,p Sa,g (by Lemma 5.7)
m

+ mimn{ (d(q, rn) + S,k Sa,q) (d(p, rn) + S,k Sa,p)}

e + min{a(q, m) a(p, m)} (by definition),

as needed.

6. Discussion. We have presented a framework for designing optimal clock syn-
chronization algorithms under a variety of assumptions on message delay uncertainty.
The general result yields optimal clock synchronization algorithms under the following
assumptions: upper and lower bounds on delays are known (including degenerated
cases); only a bound on the difference of the round-trip delays is known; and a mul-
ticast assumption that bounds the difference in delay in reaching different processors
is known. Moreover, the results apply to cases where different links satisfy different
assumptions or where the same link satisfies several assumptions. This work extends
results of Halpern, Megiddo, and Munshi [4] and introduces a new notion of optimality
on any specific instance.

The specific delay assumptions analyzed here are typical of realistic systems, and
it seems relatively easy to perform similar analysis for additional delay assumptions.
It is our belief that this will lead to the design of optimal clock synchronization
algorithms for other message delay assumptions.

In this paper, we only address the issue of computing optimal corrections, given
the views of the processors. An interesting open question is to compute the opti-
mal corrections in a distributed manner. To understand the difficulty involved in

388 HAGIT ATTIYA, AMIR HERZBERG, AND SERGIO RAJSBAUM

the distributed implementation of this computation, consider the following straight-
forward approach. Each pair of neighboring processors p and q compute mlsa(p, q)
and nlsa(q,p) using the estimated delays (which can be deduced from their views).
All processors send the estimated maximum local shifts to a distinguished processor
(leader). The leader computes the estimated maximum global shifts using function
GLOBAL ESTIMATES and a correction value for each processor according to function
SHIFTS. Finally, the leader sends the corrections to the processors. Note, however,
that the precision obtained by this centralized clock synchronization algorithm is opti-
mal only with respect to the part of the execution that does not include the messages
to and from the leader. That is, any additional communication, required for exchang-
ing the views, is bound to change the views themselves. A solution may require the
definition of optimality to be relaxed.

Extensions of our work to the truly distributed case appear in [17]. This work also
generalizes some of our results to clocks that drift. Other follow-up work includes an
investigation of the problem from the knowledge theoretic point of view [14]. Some
techniques for developing clock synchronization algorithms for broadcast networks
appeared in [3].

Another important open question is to achieve optimal clock synchronization
in systems where the probabilistic properties of the message delay distribution are
known. This assumption is at the heart of most practical algorithms for clock syn-
chronization [i, 13]. We believe the setting developed here allows one to address this
assumption and that this will lead to improvements to these important algorithms.

Finally, an obvious open problem is to make our results to be fault tolerant,
following the many works addressing fault-tolerant clock synchronization.

Acknowledgments. We thank Joe Halpern, Marios Mavronicolas, Boaz Patt-
Shamir, and the anonymous referees for helpful comments.

REFERENCES

[1] F. CRISTIAN, Probabilistic clock synchronization, Distrib. Comput., 3 (1989), pp. 146-158.
[2] D. DOLEV, J. HALPERN, AND H. R. STRONG, On the possibility and impossibility of achieving

clock synchronization, J. Comput. System Sci., 32 (1986), pp. 230-250.
[3] D. DOLEV, R. REISCHUK, AND H. R. STRONG, Observable clock synchronization, in Proc.

13th ACM Symposium on Principles of Distributed Computing, August 1994, Association
for Computing Machinery, New York, 1994, pp. 284-293.

[4] J. HALPERN, N. MEGIDDO, AND A. A. MUNSHI, Optimal precision in the presence of uncer-
tainty, J. Complexity, 1 (1985), pp. 170-196.

[5] J. HALPERN AND I. SUZUKI, Cloak synchronization and the power of broadcasting, in Proc.
28th Annual Allerton Conference on Communication, Control, and Computing, Allerton,
IL, October 1990, pp. 588-597.

[6] R. M. KARP, A characterization of the minimum cycle mean in a digraph, Discrete Math.,
23 (1978), pp. 309-311.

[7] H. KOPETZ AND W. OCHSENREITER, Cloak synchronization in distributed real-time systems,
IEEE Trans. Comput., 36 (1987), pp. 933-939.

[8] L. LAMPORT, Time, clocks and the ordering of events in distributed systems, Comm. Assoc.
Comput. Mach., 21 (1978), pp. 558-565.

[9] L. LAMPORT AND P. MELLIAR-SMITH, Synchronizing clocks in the presence offaults, J. Assoc.
Comput. Mach., 32 (1985), pp. 52-78.

[10] B. LISKOV, Practical uses of synchronized clocks in distributed systems, invited talk at the
9th ACM Symposium on Principles of Distributed Computing, Association for Computing
Machinery, New York, 1990; Distrib. Comput., 6 (1993), pp. 211-219.

[11] J. LUNDELIUS AND N. LYNCH, An upper and lower bound for clock synchronization, Inform.
and Control, 62 (1984), pp. 190-204.

OPTIMAL CLOCK SYNCHRONIZATION 389

[12] K. MARZULLO, Loosely-coupled distributed services: A distributed time service, Ph.D. thesis,
Stanford University, Stanford, CA, 1983.

[13] D. MLLS, Network time protocol (version 2) specification and implementation, IEEE Trans.
Comm., 39 (1991), pp. 1482-1493.

[14] Y. MOSES AND B. BLOOM, Knowledge, timed precedence and clocks, in Proc. 13th ACM Sym-
posium on Principles of Distributed Computing, Los Angeles, August 1994, Association
for Computing Machinery, New York, 1994, pp. 294-303.

[15] Y. OFEK, Generating a fault-tolerant global clock using high-speed control signals for the
MetaNet architecture, IEEE Trans. Comm., 42 (1994), pp. 2179-2188.

[16] OPEN SOFTWARE FOUNDATION, Introduction to OSF DCE, Open Software Foundation
(OSF), Cambridge, MA, December 1991.

[17] B. PATT-SHAMIR AND S. RAJSBAUM, A theory of clock synchronization, in Proc. 26th ACM
Sumposium on Theory of Computing, Association for Computing Machinery, New York,
1994, pp. 810-819.

[18] g. SUGIHAIA AND I. SUZUKI, Nearly optimal clock synchronization under unbounded message
transmission time, in Proc. 1988 International Conference on Parallel Processing III, St.
Charles, IL, 1988, pp. 14-17.

[19] B. SIMONS, J. L. WELCH, AND N. LYNCH, An Overview of Clock Synchronization, IBM
Technical Report RJ 6505, IBM, October 1988.

[20] T. SI:tIKANTH AND S. TOUEG, Optimal clock synchronization, J. Assoc. Comput. Mach., 34
(1987), pp. 626-645.

[21] J.L. WELCH AND N. LYNCH, A new fault tolerant algorithm for clock synchronization, Inform.
and Comput., 77 (1988), pp. 1-36.

SIAM J. COMPUT.
Vol. 25, No. 2, pp. 390-403, April 1996

() 1996 Society for Industrial and Applied Mathematics
010

LINEAR-TIME REPRESENTATION ALGORITHMS FOR PROPER
CIRCULAR-ARC GRAPHS AND PROPER INTERVAL GRAPHS*

XIAOTIE DENGt, PAVOL HELLS, AND JING HUANG

Abstract. Our main result is a linear-time (that is, time O(m - n)) algorithm to recognize
and represent proper circular-arc graphs. The best previous algorithm, due to A. Tucker, has time
complexity O(n2). We take advantage of the fact that (among connected graphs) proper circular-arc
graphs are precisely the graphs orientable as local tournaments, and we use a new characterization of
local tournaments. The algorithm depends on repeated representation of portions of the input graph
as proper interval graphs. Thus we also find it useful to give a new linear-time algorithm to represent
proper interval graphs. This latter algorithm also depends on an orientation characterization of
proper interval graphs. It is conceptually simple and does not use complex data structures. As a
byproduct of the correctness proof of the algorithm, we also obtain a new proof of a characterization
of proper interval graphs by forbidden subgraphs.

Key words, proper circular-arc graphs, proper interval graphs, local tournaments, representa-
tion algorithms

AMS subject classifications. 05C85, 05C75, 68Q25

1. Introduction. An interval graph is the intersection graph of a family of linear
intervals; a proper interval graph is the intersection graph of an inclusion-free family
of linear intervals. A circular-arc graph is the intersection graph of a family of circular
arcs; as above, it is called proper if the family can be chosen to be inclusion free. The
families of intervals or of circular arcs are called representations of the corresponding
graphs.

Algorithmic aspects of interval graphs have been extensively studied; cf. [7]. In
particular, there are linear-time (i.e., time O(m +n), where m and n are, respectively,
the numbers of edges and of vertices of the input graph) algorithms to find a repre-
sentation of a given input graph by a family of intervals if one exists [5, 14]. It is
a long-standing open problem to find a linear-time algorithm for the representation
of circular-arc graphs. Here we give a linear-time algorithm for the representation
of proper circular-arc graphs. Tucker [18] gave a matrix characterization of proper
circular-arc graphs and an associated representation algorithm, which runs in time

(cf.
Our algorithm depends on a linear-time method to represent proper interval

graphs. Such a method can be extracted from existing algorithms for interval graphs
[7, p. 195]. However, we also include in this paper a new linear-time algorithm for
the representation of proper interval graphs. This is a simple incremental algorithm
which does not use special data structures such as PQ-trees [5, 14]. Moreover, it is
formulated in a way that makes it convenient to use as a subroutine for our main
algorithm for proper circular-arc graphs. (It should be remarked that W. L. Hsu has
recently announced a linear-time algorithm for the representation of general interval
graphs, which does not use PQ-trees; cf. [10].)

We have given an earlier algorithm for the representation of proper circular-arc
graphs with time complexity O(Am) in [9]; cf. also [2, 8, 13]. (Here A denotes the

Received by the editors November 25, 1992; accepted for publication (in revised form) September
7, 1994. Parts of this paper have appeared, in a preliminary form, in [6].

Department of Computing Science, York University, North York, ON M3J 1P3, Canada.
School of Computing Science, Simon Fraser University, Burnaby, BC VhA 1S6, Canada.
Department of Mathematics and Statistics, Simon Fraser University, Burnaby, BC VhA 1S6,

Canada.

390

REPRESENTATION OF PROPER CIRCULAR-ARC GRAPHS 391

maximum degree of the input graph.) Thus the present algorithm is more efficient;
nevertheless, for graphs of bounded degree both algorithms are linear, and we believe
the algorithm in [9] (which is conceptually much simpler) remains interesting.

Our algorithm for the representation of proper circular-arc graphs has immediate
applications in situations where existing algorithms for optimization problems on
proper circular-arc graphs assume that a representation by circular-arcs is given. For
instance, there are O(n) algorithms for solving the maximum clique problem, the
maximum independent set problem, and the q-colouring problem in proper circular-
arc graphs, provided a representation by circular arcs is given; cf. [4, 11, 17]. In
view of our O(m + n) representation algorithm, we may now conclude that all these
problems for proper circular-arc graphs are solvable in time O(m/ n) with no further
restriction.

The correctness proof of our algorithms depends on the progress we made on
another problem--the understanding of the structure of local tournaments. A local
tournament (cf. [1, 8, 13]), is an oriented graph in which the inset as well as the outset
of every vertex is a tournament. Local tournaments turn out to be a useful general-
ization of tournaments and many interesting algorithmic problems can be efficiently
solved for this class of oriented graphs (cf. [1, 8, 13]). Local tournaments are relevant
to our purposes because of the fact that (among connected graphs) proper circular-arc
graphs are precisely the graphs orientable as local tournaments and proper interval
graphs are precisely the graphs orientable as nonstrong local tournaments. These
results are essentially due to Skrien [16] (cf. also [9, 12, 13]), and they allow us to
deal with orientations of the input graph instead of having to deal with represen-
tations of it. We have developed new characterizations of local tournaments and of
nonstrong local tournaments, and we shall use them below to prove the correctness
of our algorithms.

To capture the situations where some edges of the input graph have already been
oriented and others are still undirected, we employ the notion of a mixed graph: it is
a graph H with some directed edges (arcs) and some undirected edges such that if H
contains the directed edge xy, then it contains neither the directed edge yx nor the
undirected edge xy. The inset, respectively the outset, of a vertex v in a mixed graph
H is the set of all vertices u in H for which uv, respectively vu, is a directed edge
of H. A directed path in a mixed graph contains only directed edges (all oriented
in the same direction). Note that the class of mixed graphs without directed edges
is precisely the class of undirected graphs and the class of mixed graphs without
undirected edges is precisely the class of oriented graphs.

Let D be a mixed graph. If xy is a directed edge of D, then we say that x
dominates y and write x-y; otherwise, we say that x does not dominate y and write
xy. We say that D is strong if, for any two vertices x and y, D contains a directed
path from x to y (and a directed path from y to x); otherwise, it is called nonstrong.

Let G be an undirected graph. For any vertex v, let N(v) be the neighbourhood
of v, i.e., the set of vertices which are adjacent to v. The closed neighbourhood of v
is the set N[v] N(v)2 {v}. We define an equivalence relation on V(G) in which
a and b are equivalent just if g[a] Y[b]. The classes of this equivalence are called
the blocks of G. It follows from the definition that two blocks are either completely
adjacent (every vertex of one is adjacent to every vertex of the other) or completely
nonadjacent (no vertex of one is adjacent to any vertex of the other). We shall use the
terms adjacent blocks and nonadjacent blocks to describe these respective situations.
If the vertices a and b of an edge ab are equivalent, we call the edge ab balanced;
otherwise, ab is an unbalanced edge. We say that G is reduced if there are no balanced

392 XIAOTIE DENG, PAVOL HELL, AND JING HUANG

edges, i.e., if distinct vertices have distinct closed neighbourhoods.
The underlying graph of a mixed graph D is the undirected graph G(D) with the

vertex set V(D) in which xy is an edge of G(D) only if it is a directed or undirected
edge of D. We say that D is connected if G(D) is connected. We say that D is reduced
if G(D) is reduced. We call an arc ab of D balanced if the edge ab is balanced in
G(D).

2. Local tournaments. First we discuss the structure of local tournaments. A
detailed treatment appears in [12] (cf. also [13]); we summarize here only the main
points relevant to our algorithm. We begin with nonstrong local tournaments.

A straight enumeration of an oriented graph D is a linear ordering v, v2,..., v
of its vertices such that for each there exist nonnegative integers k and such that
the vertex v has inset {v_, v-2,..., v-k} and outset {v+, v+2,..., v+}. Note
that any arc vvj has < j and the subgraph induced by v, v+,..., vj is a transitive
tournament. An oriented graph which admits a straight enumeration is called straight.
An undirected graph is said to have a straight orientation if it admits an orientation
which is a straight oriented graph.

PROPOSITION 2.1. The following properties are equivalent for an oriented graph
D:

1. D is straight;
2. there exists an inclusion-free family of intervals associated with the vertices of

D such that u dominates v in D if and only if the interval associated with u contains
the left endpoint of the interval associated with v (the interval of u intersects the
interval of v "on the left").

Proof. 1 implies 2: Given a straight enumeration v, v2,... Vn of D, we associate
where d denotes the outdegree of vwith v the interval from to + d + 1 ,

2 implies 1: Given an inclusion-free family of intervals, we order the vertices as
vl, v2,..., Vn in such a way that the left endpoints of the corresponding intervals form
an increasing sequence.

COROLLARY 2.2. A graph is a proper interval graph if and only if it has a straight
orientation.

We see from the above that we can construct the intervals of a representation of
G in time O(m + n) provided that we have a straight enumeration of an orientation
D of G. Thus our algorithm for representing a proper interval graph needs only to
find a straight enumeration of an orientation of G.

Note that a straight oriented graph is a nonstrong local tournament. (In fact, it
is an acyclic local tournament.) Moreover, all nonstrong local tournaments arise in a
simple fashion from straight oriented graphs. Let S be an oriented graph and let Tv
be a family of disjoint tournaments indexed by the vertices v of S. The substitution
operation on S with respect to Tv, v E V(S) results in an oriented graph D obtained
from S by replacing each v by the corresponding Tv and with each vertex of Tv
dominating each vertex of T in D just if v---u in S. Note that each edge of each
T is balanced and, if S is reduced, there are no other balanced edges in D. The
full reversal of an oriented graph D is the operation of reversing the directions of all
oriented edges (arcs) of D.

The following theorem describes a method to generate all possible nonstrong
local tournaments (other than tournaments) as well as all possible nonstrong local-
tournament orientations of a fixed undirected graph.

THEOREM 2.3 ([12, 13]). Let D be a connected oriented graph which is not a
tournament. Then D is a nonstrong local tournament if and only if it is obtained from

REPRESENTATION OF PROPER CIRCULAR-ARC GRAPHS 393

a reduced straight oriented graph S (with V(S)I > 1) by the substitution operation
with respect to some family of tournaments Tv, v E V(S).

Moreover, if D is a nonstrong local tournament, then for every nonstrong local-
tournament orientation D of G(D), either D or the full reversal of D is obtained

from the same S by the substitution operation with respect to a family Tv, v V(S),
where]Tv ITvI for each v e V(S). D

COROLLARY 2.4. Let G be a connected proper interval graph and D and D two
arbitrary nonstrong local tournament orientations of G. Then D can be obtained
from D by changing the directions of some balanced arcs and then possibly performing
a full reversal.

In order to concisely describe all possible nonstrong local tournament orientations
of a fixed connected proper interval graph, we introduce a modified substitution oper-
ation in which we replace each vertex v by a complete undirected graph T, again with
each vertex of Tv dominating each vertex of T if and only if vu. A straight mixed
graph H is a mixed graph obtained from a reduced straight oriented graph S by such
a substitution operation with respect to a family T. of complete graphs. Note that
the blocks of the resulting mixed graph are precisely the vertex sets of the complete
graphs T.. (In other words, each undirected edge is balanced and each directed edge is
unbalanced.) Let H be a straight mixed graph. A straight enumeration V1, V2,..., Vp
of the blocks of H is an ordering of the blocks of H in the order of the straight enu-
meration of the corresponding vertices of S. In the following, we shall often define
a straight mixed graph by describing a straight enumeration of its blocks. Given a
sequence of blocks VI, V2,..., Vp of an undirected graph G, consider the mixed graph
H obtained by leaving all edges xy of G with x and y from the same Vj undirected
and orienting each edge xy with x V, y Vj, and i < j from x to y. Then this is
a straight mixed graph provided that for any and j such that V is adjacent to V,
the subgraph induced by the intermediate blocks V t2 V+ t2... U V is complete.

If we orient the undirected edges so that each Tv becomes a transitive tour-
nament, we obtain a straight oriented graph. Conversely, starting from a straight
oriented graph, we obtain a straight mixed graph by replacing all balanced arcs by
the corresponding undirected edges. Therefore we may extract from Corollaries 2.2
and 2.4 the following useful result.

COROLLARY 2.5. Each connected proper interval graph is uniquely orientable as
a straight mixed graph up to full reversal.

A similar discussion applies to general (possibly strong) local tournaments. A
round enumeration of an oriented graph D is a circular ordering Vl,V2,...,vn of
its vertices such that for each there exist nonnegative integers k and such that
the vertex vi has inset {vi_, vi-2,..., vi-k} and outset {vi+, vi+2,..., vi+t}; here
additions and subtractions are modulo n. Note that in this case there can be arcs

vivj with both i < j and > j; however, it is still true that if vivj is an arc (regardless
of whether < j or j < i), the subgraph induced by vi, Vi+l,..., vj is a transitive
tournament. (The subscripts are again computed modulo n.) An oriented graph
which admits a round enumeration is called round. An undirected graph is said to
have a round orientation if it admits an orientation which is a round oriented graph.
Clearly a round oriented graph is a local tournament. It is easy to see that an induced
subgraph of a round oriented graph is a round oriented graph and a straight subgraph
of a straight oriented graph is a straight oriented graph. Moreover, it is clear that
a straight enumeration is a special case of a round enumeration and that, in fact, a
round oriented graph is straight if and only if it is nonstrong.

PROPOSITION 2.6. The following properties are equivalent for a connected ori-

394 XIAOTIE DENG, PAVOL HELL, AND JING HUANG

ented graph D"
1. D is round;
2. there exists an inclusion-free family of circular arcs associated with the vertices

of D such that u---,v in D if and only if the circular arc associated with u contains
the counterclockwise endpoint of the circular arc associated with v. D

COROLLARY 2.7. A connected graph is a proper circular-arc graph if and only if
it has a round orientation.

The proof of Proposition 2.6 is analogous to that of Proposition 2.1, and it also
yields an O(m+n) method to find a representation of a given graph G by circular arcs,
provided that a round enumeration of an orientation of G is given. In fact, we may
modify the interval representation given in the proof of Proposition 2.1 by identifying
two vertices x and y of the real line whenever Ix Yl n + 1. This makes the real line
into a circle and the intervals into circular arcs. Thus it will be sufficient to specify
a linear-time algorithm to provide a round enumeration of an oriented graph D with
G(D) G if one exists and to report that one does not exist otherwise.

Just as nonstrong local tournaments are related to straight oriented graphs in
Theorem 2.3, general local tournaments are related to round oriented graphs. How-
ever, the relationship is more complicated. The next theorem describes a method to
generate all possible local tournaments as well as all possible local-tournament orien-
tations of a fixed undirected graph. A special reversal of a round oriented graph D is
defined as follows: Consider the complement G of G(D). If G has an odd cycle or if
G is connected, then no special reversal is possible. Otherwise (G is disconnected and
bipartite), we let A be either the set of all unbalanced arcs within a fixed component
of G or the set of all unbalanced arcs between two fixed components of G. The special
reversal corresponding to A is the operation that reverses the directions of all arcs in
the set A.

THEOREM 2.8 ([12, 13]). Let D be a connected oriented graph. Then D is a local
tournament if and only if it is obtained from some reduced round oriented graph R by
the substitution operation with respect to some family Tv, v E V(R), possibly followed
by special reversals.

Moreover, if D is a local tournament, then every local-tournament orientation

of G(D) is obtained from the same R by the substitution operation with respect to a
family T, v e V(R), where IT’ll ITvI for each v e V(R), possibly followed by special
reversals and/or a full reversal.

COROLLARY 2.8. Let G be a connected proper circular-arc graph and D and D’
be two arbitrary local-tournament orientations of G. Then D’ can be obtained from D
by changing the directions of some balanced arcs and then possibly performing special
reversals and/or a full reversal.

A round mixed graph H is a mixed graph obtained from a reduced round oriented
graph R by such a substitution operation with respect to a family T (v e V(R)) of
complete graphs. Note that if we orient the undirected edges of a round mixed graph
in an arbitrary way, we obtain a local tournament, and if we do it in such a way that
each Tv is a transitive tournament, then we get a round oriented graph. Conversely,
if we erase the directions of all balanced arcs in a round oriented graph, we obtain
a round mixed graph. Thus we obtain the following result from Corollaries 2.7 and
2.9 (using the fact that no special reversals are possible if the complement of G is
connected or nonbipartite).

COROLLARY 2.9. Let G be a connected proper circular-arc graph. If the com-
plement of G is connected or nonbipartite, then it is uniquely orientable as a round
mixed graph up to full reversal.

REPRESENTATION OF PROPER CIRCULAR-ARC GRAPHS 395

3. Proper circular-arc graphs. We now give our linear-time algorithm for the
representation of proper circular arc graphs. Recall that Tucker [18] gives an O(n2)
algorithm; thus we only need to deal with the case when the number of edges is small
relative to n2. Let x be a vertex of minimum degree in G. Let A be the graph induced
by Nix] and let B G- A. We may assume that B is not a complete graph. Indeed,
if B is complete, we can find a representation of G by Tucker’s algorithm; since x is
vertex of minimum degree, we conclude that the number of edges of G is m > n-2n

4
and so n2 O(m + n), i.e., Tucker’s algorithm is in fact linear in this case. We may
also assume that G is not a proper interval graph--this can be tested in linear time
by the algorithm presented in the next section. Note that a proper circular-arc graph
which is not a proper interval graph must be connected.

Thus let G be a proper circular-arc graph which is not a proper interval graph.
Note that this implies that G is connected and can be oriented as a strong round
oriented graph G. As mentioned above, we wish to find some round orientation of G.
We assume from now on that B is not complete.

PROPOSITION 3.1. Both A and B are connected proper interval graphs.
Proof. Let vl,v2,...,vn be a round enumeration of G and let x Vl. Let f

be the least integer such that vf dominates x in G and let g be the largest integer
such that x dominates Vg in G. Then f > g and both the subgraph of G induced

by {vf, v+l,..., v } and the subgraph of G induced by {v, v2,..., vg} are transitive
tournaments; hence A {v, v+,..., Vn, v, v2,..., vg} and B {v+l,..., v_ }.
It follows that A and B are connected graphs. Let A be the subgraph of G induced
by the vertices of A and let B be defined similarly. Then both A and B are round
oriented graphs. We shall argue that they are, in fact, straight oriented graphs, and
hence A and B are proper interval graphs. We shall show that, in fact, both A and
B are acyclic oriented graphs. The subgraphs of A induced by {vf, vf+,..., v } and
by {v, v2,..., Vg} are transitive tournaments oriented from vf to vl and from Vl to
vg. Thus for A it only remains to verify that there is no arc vivj with 2 _< _< g and
f _< j <_ n. Any such arc would imply that vi, Vi+l,..., vj is a transitive tournament,
contradicting the assumption that B is not complete. This provers that A is an acyclic
round oriented graph and thus a straight oriented graph. For B the proof is similar,
as any arc vvj with g < j < i < f in B would imply that v dominates vl x,
contradicting the definition of B.

According to the above proposition, we may construct a straight mixed orientation
B of B. For this, we may use the technique of the next section, which will also produce
a straight enumeration B1,..., Bq of the blocks of B. Let L be the set of all vertices
of A which are adjacent (in G) to a vertex of Bq and R the set of all vertices of A
which are adjacent to a vertex of B1. Let C G- L and D G- R. Finally, let
E be the subgraph of G induced by the vertices of A A Bq. Note that C and D both
contain B as an induced subgraph and that E contains A as an induced subgraph.

PROPOSITION 3.2. All three graphs C, D, and E are connected proper interval
graphs.

Proof. Consider again the round enumeration v, v2,..., vn of G, where x
Vl, A {v], v2+,..., v, v, v2,..., v}, and B {v+,..., vf_l }. We claim that

C {V+l, v+2,..., v, v,..., v]_}

for some h,f <_ h <_ n. Consider first the straight enumeration Vg+l,...,vf-1 of
B. Clearly, any block of B consists of consecutive vertices in this enumeration.
Thus we obtain a straight mixed orientation of B by keeping the directions of all

396 XIAOTIE DENG, PAVOL HELL, AND JING HUANG

unbalanced edges of B according to their direction in /. Since the B is unique,
up to a full reversal, we may assume, by considering a full reversal of G if neces-
sary, that Bq {vs,vs+l,...,vf-1} for some s,g + 1 < s < f. Now we prove
that L {vf,vI+,...,Vh}, where h is the largest integer such that vl_ domi-
nates Vh (thus f <_ h _< n). Indeed, it follows from the definition of round enu-
meration that each v, f _< _< h is adjacent to a vertex (namely v,_) of Bq.
On the other hand, if some vj is dominated by a vertex in Bq, then it is also
dominated by vl_; hence f <_ j _< h by the definition of h. Also, no vj in
A can dominate a vertex in Bq because then B would be a complete graph (re-
call that all vertices in Bq have the same closed neighbourhood in B). Having
found L, we now know that C {Vh+,Vh+2,...,vn, vl,...,vf-}. In the order
Vh-t-1, Vh+2,..., Vn, Vl,..., Vf--1 of vertices, there are no arcs from a later vertex to an
earlier vertex because Vh+, Vh+2,..., Vn, Vl,..., Vg is part of the straight enumera-

tion of A, Vg+, vg+2,.., vl_ is our straight enumeration of B, and any arc vvj with

v E B and vj A,j {f, f+ 1,..., h} would imply that v, v+l,..., vj is a transitive

tournament, contradicting the definition of h. Let C be the subgraph of G induced
by the vertices of C. Then Vh+, Vh-t-2,..., Vn, Vl,..., Vf--1 is a straight enumeration

of C. Hence C is a proper interval graph.
The argument for D is symmetric and it also yields the fact that R {vk, vk+,...,

vg}, where 1 < k <_ g. In particular, we note for future reference that the sets L and
R are disjoint.

Let E be the subgraph of G induced by the vertices of E. Recall that B
{vs, v8+1,..., v_}. We claim that v, v+,..., v,, vl,..., vg is a straight enumera-

tion of E. This follows easily from the fact that vf, vl+,..., vn, v,..., v is a straight
enumeration of A, v,, vs+,..., vI_ a part of our straight enumeration of B, and there
is no arc vvj with v A and vj Bq because B is not complete. The connectivity
of C, D, E is clear from the above arguments.

Now we may compute, again using techniques of the next section, straight mixed
orientations C, D, E of C, D, E, respectively. Recall that these orientations are
unique up to full reversal. Our algorithm consists of combining the straight mixed
graphs C, D, E to form a round mixed orientation of G. To do this, we may have
to replace some of C, D, E by their full reversals. It must be possible to do this
consistently, i.e., in such a way that all edges of G which are oriented in more than
one of the mixed graphs C, D, E are oriented there in the same way. To see this,
consider the straight mixed graphs C, D’, E obtained from ,/,/ by replacing all
balanced arcs by the corresponding undirected edges. They clearly have the property
that all edges of G are oriented consistently (because they all arise from); however,
according to Proposition 3.2 and Corollary 2.5, each of C, D, E is equal to the
corresponding C, D, E or its full reversal. To explicitly find the right orientations
C, D, E, we may proceed as follows. Arbitrarily fix C to be either of the two
possible straight mixed orientations of C. This determines D, since C and D both
contain B, which is not complete and hence contains an unbalanced arc. (In other
words, fixing an orientation of C determined the direction of at least one edge of D
and hence determined D.) In turn, this determines the orientation of E since the
edge v_iv of G is an unbalanced edge of both D and E (recall that x is not adjacent
to vf_t but is adjacent to vl). It is clear that these operations can be performed in
time O(m / n) once any straight mixed orientations of C, D, E are known. Thus
assume that C, D, E are oriented consistently and let H be the mixed orientation
of G in which an edge is oriented only if it is oriented in any of the graphs C, D, E
and is oriented according to the orientation it has there; clearly, this can also be done

REPRESENTATION OF PROPER CIRCULAR-ARC GRAPHS 397

in time O(m + n).
PROPOSITION 3.3. The mixed graph H is a round mixed graph.
Proof. We first prove that each unbalanced edge of G is unbalanced in one of the

mixed straight graphs Cp, Dp, E (and hence it is oriented in that graph). Consider an
unbalanced edge uv of G. If both u and v are vertices of B and if uv is balanced in B,
then there exists a vertex z E A such that, say, z is adjacent to u but not to v. Since
L N R (see the last sentence of the proof of Proposition 3.2), z E C or z D.
Thus u, v, z are vertices of C or D and hence the edge uv is an unbalanced edge in
C or D. If uv is unbalanced in B, then it is also unbalanced in C (and D) since B
is an induced subgraph of C. If both u and v are vertices of A and if uv is balanced
in A, then there exists a vertex z B such that, say, z is adjacent to u but not to v.
Suppose first that z dominates u. If any vertex of B dominates u, then a vertex z
of Bq dominates u (consider the round enumeration z,..., vf-2, vf-1,..., u,...
of); thus u L. If z is adjacent to v, then u, v, z are vertices of D and uv is an
unbalanced edge of D; if z is not adjacent to v, then u, v, z are vertices of E and uv
is an unbalanced edge of E. If uv is unbalanced in A, then it is also unbalanced in E.
If (say) u is a vertex of A and v a vertex of B, then x is adjacent to u but not v and
u L or u R; thus u, v, x are vertices of C or D and uv is an unbalanced edge of C
or D. From the way A, B, C, D, E were chosen, we see that they all agree with
or the full reversal of G. Therefore, H is obtained from G (or its reversal) by ignoring
the directions on the balanced arcs. Therefore, H is a round mixed graph.

We now summarize the algorithm.

ALGORITHM 3.4. Let G be a graph with n vertices and m edges.
[Step 1.] Test if G is a proper interval graph by Algorithm 4.4. If it is, then

represent it by linear intervals viewed as a special case of circular arcs.
[Step 2.] Choose a vertex x of minimum degree in G. Let A be the graph induced

by Nix] and let B G- A. If B is a clique, then find a representation of G by
Tucker’s algorithm. Otherwise, proceed as follows.

[Step 3.] If B is not a proper interval graph, then report that G is not a proper
circular-arc graph. Otherwise, orient B as a straight mixed graph B by Algorithm
4.4, which also produces a straight enumeration B1,B2,... ,Bq of the blocks of B.

[Step 4.] Let L be the set of vertices of A adjacent to a vertex of Bq and let R be
the set of vertices of A adjacent to a vertex of BI. Let C G L and D G R,
and let E be the subgraph of G induced by A U Bq. If any of C, D, E is not a proper
interval graph, then report that G is not a proper circular-arc graph. Otherwise, orient
C, D, E as straight mixed graphs C, D, E by Algorithm 4.4.

[Step 5.] If it is not possible to perform full reversals on C’, D’, E’ so that all
edges are oriented consistently, then report that G is not a proper circular-arc graph.
Otherwise find consistent orientations C, D, E and construct H from G by orienting
any edge uv so that u--v provided that u---v in any of the mixed graphs C, D, E.

[Step 6.] Orient all remaining undirected edges of H so that each block of H
becomes a transitive tournament. Let D be the resulting oriented graph.

[Step 7.] Transform D into a circular-arc representation of G by the method of
Proposition 2.6.

The correctness of the algorithm is implicit in our propositions. When we report
that G is not a proper circular-arc graph in Step 3, then Proposition 3.1 implies that
this is true. When we report this in Step 4, then Proposition 3.2 implies that this is
true. When we report the same conclusion in Step 5, then this is true by the remarks
following the proof of Proposition 3.2. The mixed graph H constructed in Step 5

398 XIAOTIE DENG, PAVOL HELL, AND JING HUANG

the claw the net the tent

FIG. 1. The claw, the net, and the tent.

is round by Proposition 3.3. The oriented graph D constructed in Step 6 is round
according to the remark following Corollary 2.8.

Steps 1, 3, and 4 are done in linear-time by Algorithm 4.4. (In Step 4, we also
need to identify L and R, but this can clearly be done in time O(m + n).) Step 2 also
takes only linear-time according to the comments at the beginning of this section. We
have already explained how the test for consistency can be done in time O(m + n).
The remainder of Step 5 and Step 6 are clearly linear. Step 7 can also be carried out
in linear-time, as explained after Proposition 2.6.

4. Proper interval graphs. In this section, we give an O(m/n)-time algorithm
to represent proper interval graphs. As mentioned above, such algorithms already
exist. However, our algorithm is simpler than the existing algorithms, avoids difficult
data structures, and directly produces the straight mixed graph orientation of the
input graph that is required by Algorithm 3.4. Furthermore, the proof of correctness
of our algorithm implies as a byproduct a new proof of a theorem of Wegner [19]; cf.
Corollary 4.3.

Assume that G is a connected graph, as otherwise we can work separately on
each component of G. Our algorithm will insert vertices of G one at a time into
an already formed straight mixed graph to form a new straight mixed graph. If
G is a proper interval graph, then this process continues successfully until a straight
mixed graph orientation of G is obtained. This is what is needed in Algorithm 3.4. If a
concrete representation by intervals is desired, then we can again orient the remaining
undirected edges so that each block is a transitive tournament and then represent the
resulting straight oriented graph as explained in the proof of Proposition 2.1. (All
this can still be done in time O(m + n).) It is easy to see that any chordless cycle of
length greater than three and any of the three graphs (the claw, the net, or the tent)
in Fig. 1 is not orientable as nonstrong local tournament and hence is not a proper
interval graph. (This is also well known [7].) Therefore, no graph which contains a
chordless cycle of length greater than three, a copy of the claw, the net, or the tent,
as an induced subgraph can be a proper interval graph.

We emphasize that by Corollary 2.5 the straight mixed graph orientation of a
connected proper interval graph is unique up to a full reversal. Therefore, the cor-
responding straight enumeration of blocks is also unique up to reversing the order of
the blocks. This is crucial in what follows, even though it is not always explicitly
mentioned. In particular, if we have two connected straight mixed graphs H and H
with straight enumerations V1, V2,..., Vp and V, V,..., V, and if H is an induced
subgraph of H’, then we may assume (by performing a full reversal on H if neces-

REPRESENTATION OF PROPER CIRCULAR-ARC GRAPHS 399

sary) that each edge oriented both in H and H is oriented in the same directions in
both. Moreover, it is clear that two vertices equivalent in H are also equivalent in
H. Therefore, any edge unbalanced in H remains unbalanced in H; this also means
that any edge oriented in H remains oriented in H. Suppose that H has just one
more vertex than H, say vertex v. Then each V breaks into two blocks V N N(v)
and V N(v) of g’ (if v has both some neighbours and some nonneighbours in V),
combines with v to form a block V U {v} of H (if v has exactly the same closed
neighbourhood as V in H’), or remains a block of H (otherwise).

Now we suppose that G is a connected proper interval graph and H is a straight
mixed orientation of a connected subgraph of G. Let V1, V2,..., Vp be a fixed straight
enumeration of the blocks of H. Let v be a vertex of G which is not in H but is
adjacent to a vertex of H. We wish to find a straight mixed orientation H of the
subgraph of G induced by v together with the vertices of H. According to the above
observations on the form of the blocks of H, it remains only to describe which edges
of G not oriented in H are oriented in H. We can do this by describing the straight
enumeration of the blocks of H, because the direction of all unbalanced edges is
determined by this order, to go from the earlier block towards the later block.

Before we can describe the straight enumeration of the blocks of H, we need to
analyze the possible connections of v in H. In fact, these are rather restricted as far
as the blocks of H are concerned.

PROPOSITION 4.1. Let 1 <_ a < b < c <_ p.
1. If v is adjacent to a vertex in Va and to a vertex in Vc, then v is completely

adjacent to Vb (i.e., v is adjacent to every vertex of Vb).
2. If v is adjacent to a vertex in Vb and nonadjacent to a vertex in Va and a

vertex in Vc, then Va is nonadjacent to Vc.
3. If Va--Vb---Vc and if v is adjacent to a vertex in Vb, then v is completely

adjacent to Va or to Vc.
Proof. Assume that v is adjacent to x E Va and z E Vc but not to y ’Vb.

We may assume without loss of generality that a, b, and c are chosen so that c- a
is minimal. Then c- a _> 2 and v is not adjacent to at least one vertex in each
Vd with a < d < c. Moreover, Va and Vc are adjacent blocks, for otherwise any
shortest path from Va to Vc in Va Va+I .’. Vc together with v would induce
chordless cycle of length greater than three, a contradiction. (The subgraph induced
by Va V+ ... U Vb is connected because the connectivity of H implies that each V
is adjacent to V+.) Since V, V2,..., Vp is a straight enumeration of H, the vertices
in V U V+ U... Vb induce a complete subgraph of G. Consider the three blocks
Va, Vb, V; any two distinct blocks have distinct neighbourhoods in H. Thus there
exists a block V which is adjacent to exactly one of the blocks V, Vb, and there exists
a block V- which is adjacent to exactly one of the blocks Vb, V. If V is adjacent to
Va but not to t and V is adjacent to Vc but not to Vb, then clearly i < a < c < j,
and v must be completely adjacent to both V and Vj, as otherwise G would contain
a copy of the claw centered at x or z. Now the vertices x, y, z, v together with any
vertex of V and any of vertex of V induce a copy of the tent, contradicting the fact
that G is a proper interval graph. Thus we may assume without loss of generality
that V is adjacent to Vb but not to V. Then clearly > c and v must be completely
nonadjacent to V, as otherwise G would contain a four-cycle induced by v,x, z and
a vertex of V. If, additionally, V is adjacent to Vb but not to Vc, then we would
similarly have j < a and v completely adjacent to V. In this case G would contain
a copy of the tent induced by x,y,z, v, any vertex of V, and any vertex of V. If,
on the other hand, Vj is adjacent to V but not to Vb, then clearly c < < j and,

400 XIAOTIE DENG, PAVOL HELL, AND JING HUANG

moreover, v must be completely adjacent to V, as otherwise G would contain a copy
of the claw centered at z. Now we conclude that G contains a chordless five-cycle
induced by v,x, y, any vertex of V, and any vertex of V.

For the second statement, suppose that v is adjacent to y E Vb and is nonadjacent
to x E Va and z e Vc. Assume that Va is adjacent to V. The blocks Va and Vb have
distinct closed neighbourhoods in H. If there is a block Vd which is adjacent to Vb
but not adjacent to Va, then d > c because Va is adjacent to Vc. Note that v is not
adjacent to any vertex in Vd according to the first statement. Hence for any w Vd,
{x, y, w, v} induces a claw in G, contradicting the fact that G is a proper interval
graph. Thus there must be a block Ve which is adjacent to Va but nonadjacent to Vb.
Similarly, there is a block Vf which is adjacent to Vc but nonadjacent to Vb. Note
that e < a and f > c. Hence v is adjacent to no vertex in Ve or Vf. Choose any
u e V and any w V and note that the subgraph induced by {x, y, z, u, w, v} is a
copy of the net, again contradicting the fact that G is a proper interval graph.

For the last statement, suppose that there are three vertices x Va, y Vb, and
z Vc such that v is adjacent to y but not to x or z. By the second statement, x is
not adjacent to z. Then G contains a claw induced by {x, y, z, v}.

Remark. We note that the proof of Proposition 4.1 applies even if we replace the
assumption that G is a connected proper interval graph by the assumption that G is
a connected chordal graph which contains no induced claw, net, or tent. (A graph is
called chordal if it contains no chord!ess cycle of length greater than three [7].)

Under the above assumptions that G is a connected proper interval graph (or
indeed that G is a connected chordal graph which contains no induced claw, net, or

tent), H a straight mixed orientation of a connected subgraph of G, and v a vertex
of G but not of H, we also have the following.

PROPOSITION 4.2. The subgraph of G induced byv and the vertices of H is a
proper interval graph.

Proof. According to part 1 of Proposition 4.1, the blocks of H that are com-
pletely adjacent to v form a (possibly empty) sequence of consecutive blocks, say,, V+I,..., Vr, for some and r. We first assume that 1 < < r < p. Let a 1
and c r / 1; thus a _> 1 and c _< p. Note that (again by part 1 of Proposition 4.1),
v is nonadjacent to all V with j < a and j > c. It further follows from part 2 of
Proposition 4.1 that Va and V are nonadjacent. Let b be the largest integer greater
than a such that Vb is adjacent to Va, and let d be the smallest integer less than c
such that Vd is adjacent to V. Then both a < b < c and a < d < c. We claim that
b < d. Suppose b >_ d and let x and y be two vertices in V and Vc, respectively, which
are nonadjacent to v; such vertices exist by the definition of and r. Let z be any
vertex of Vd. Then H has a claw induced by {x, y, z, v}.

We are now ready to describe the straight mixed graph H in the case when
1 < < r < p. If the set N(v) intersects Va, then (cf. above) V breaks into V-N(v)
and Va AN(v) and we modify the straight enumeration of the blocks of H by replacing
V with Va N(v), V A N(v), in this order. Similarly, if the set N(v) intersects V,
then we modify the straight enumeration by replacing Va with VcAN(v), V-N(v), in
this order. Note that these operations imply that some of the previously undirected
edges have become oriented, e.g., the edges oriented from Vc- N(v) to V A N(v). It
remains to describe where the vertex v goes in the straight enumeration of Hp. Recall
that it can form its own block or it can be added to an existing block V.

If N(v) intersects V, then we put {v} as a separate block just after Yb. If N(v)
intersects Vc, then we put {v} as a separate block just before Vd. We note that if
N(v) intersects both Va and Vc, then these two instructions coincide because in this

REPRESENTATION OF PROPER CIRCULAR-ARC GRAPHS 401

case we necessarily have d b + 1. Suppose d > b + 1, and let x and y be vertices of
N(v) N Va and N(v) Vc, respectively. Let z be any vertex of Vb+I. Then {x, y, z, v}
forms a claw of G, a contradiction. (The vertices x, y are nonadjacent because z and y
are nonadjacent and Va precedes Vb+I in the straight enumeration of H+.) It is not
difficult to verify that what we have defined is indeed a straight enumeration of H.
For instance, suppose that both N(v)N V, and N(v) Vc are nonempty and consider
two adjacent blocks from the straight enumeration

Yl,. Ya_l, Va-N(v), VaiN(v),..., Vb, {V}, Vd, VeiN(v), Vc-N(v), Yc_l_l,. Yp

described above. If two blocks V and Vj with < j < a are adjacent, then the
intermediate blocks are V, V+,..., Vj and they induce a complete graph since this
was the case in H; asimilar argument applies ifi > j > c. Ifa < i < c, then
the intermediate blocks may additionally contain also the block (v}, which was not
included in H. However, {v} is adjacent to all blocks V, V+I,... Vj and the graph
induced by the intermediate blocks is still complete. If the block V, N(v) or the
block V, N(v) is adjacent to V, then j _< b by the definition of b and again the
graph induced by the intermediate blocks is complete. If the block v is adjacent to a
block Vj with, say, j _< b, then it is adjacent to all blocks V with j <_ i _< b and once
more the graph induced by the intermediate blocks is complete. A similar argument
applies in the case of the adjacent blocks {v} and Va N(v). In what follows, we shall
omit these simple verifications. They are all similar to the above.

If N(v) intersects neither V nor Vc, then N(v) V L.J... LJ Vr. There may
be a block Vj with b < j < d adjacent to both 1 and Vr. Since by the definition
of b and d we know that Vj is not adjacent to V_I V or Vr+ Vc, the closed
neighbourhood in H of any vertex of V is V L.J... t_J V. Thus there can be at most one
such block Vj, as distinct blocks have distinct closed neighbourhoods. Moreover, the
closed neighbourhood of Vj in H is the same as that of v. Thus we obtain a straight
enumeration of H’ by replacing V with Vj U {v}. On the other hand, each block V
with b < j < d is adjacent to at least one of 1, V because otherwise we would have a
claw formed by v and any vertices from V, Vj, V. Let u be the least integer greater
than b such that Vu is adjacent to V and w be the largest integer smaller that d such
that V is adjacent to V. Note that b < u_< dand b <_ w < d. We may assume
that u > w because otherwise there would be a block V. with b < j < d adjacent
to both 1 and Vr. This means that u w + 1 because each Vj with b < j < d is
adjacent to at least one of V, V. To obtain the desired straight enumeration of H
from V,..., Vp, we insert a new block {v} just before Vu.

The case 1 < r < p is very similar to the above arguments. We let b 1
and c r + 1 and define d as above to be the smallest integer less than c such that
Vd is adjacent to Vc. Then the above discussion applies almost verbatim, except that
we may have d b 1. In this case we insert the block {v} before V1.

Because of symmetry, it only remains to consider the following cases:
When 1 r p, then H has only one block, V1, and v is completely adjacent

to it. Then V LJ {v} is the unique block of H’.
When 1 r < p, then {v), V1, V2 N(v), V2 N(v),..., Vp is a straight

enumeration of the blocks of H.
When 1 < r p, then v is completely adjacent to all blocks of H. We define

b- 1 and d p and proceed as above, letting w be the largest integer greater than 1
such that V is adjacent to V1 and u be the least integer smaller than p such that Vu is
adjacent to Vp. Thus if u w, we have the enumeration V1,.. Vu LJ {v},..., Vp and if
u > w, i.e., u w- 1 (cf. above), we have the enumeration V1,..., V,, {v), Vu,..., Vp.

402 XIAOTIE DEN(], PAVOL HELL, AND JING HUANG

(Clearly, u < w is not possible.)
The case 1 < r < p is impossible by part 3 of Proposition 4.1.
Finally, there is the trivial case when > r, i.e., when v is not completely adjacent

to any block of H. In the ordering the vertices of G as vl,..., vn, we made sure that
v v+l is adjacent to some vertex of H, say in block Vu. By part 3 of Proposition 4.1,
u 1 or u p. Without loss of generality, we may assume that u 1. If p 1, i.e.,
if H has only one block V, then {v}, V N(v), V1 N(v) is a straight enumeration of
the blocks of H. The case p 2 is impossible since distinct blocks of H have distinct
closed neighbourhoods, and when p _> 3 then part 3 of Proposition 4.1 implies that v
is nonadjacent to all V with j > 1. Then {v}, V N N(v), V N(v), V2,..., Vp is a
straight enumeration of the blocks of H. Now we have described the straight mixed
graph H in all cases.

It is interesting to note that the proposition implies the following well-known
result [7] (see also [3] for a refinement).

COROLLARY 4.3 ([19]). Let G be an undirected graph. Then G is a proper interval
graph if and only if it is chordal and does not contain the claw, the net, or the tent
as an induced subgraph.

Proof. We have already observed that the condition is necessary. Therefore,
suppose that there is a chordal graph which does not contain an induced claw, net,
or tent and which is not a proper interval graph, and let G be such a graph which
has the smallest possible number of vertices. Then G must be connected; let v be
vertex of G such that G- v is also connected. By the minimality of G, we know that
G- v can be oriented as a straight mixed graph H. Since Proposition 4.2 is valid
for the graph G (cf. the sentence just before Proposition 4.2), we see that G itself is
orientable as a straight mixed graph, contradicting the fact that G is not a proper
interval graph.

The proof of the above proposition is, in fact, an algorithm for inserting v into
H. We summarize our algorithm for the representation of proper interval graphs as
follows.

ALGORITHM 4.4. Let G be a connected graph.
[Step 1.] Order the vertices of G as vl, v2,..., v in such a way that the subgraph

induced by {Vl,V2,...,vi} is connected, for each 1,2,...,n. Let v v and
tt {v}o

[Step 2.] Perform the following operation as long as possible: If the vertices of H
are {v, v2,..., vi}, then let v vi+ and insert v into H as described above.

[Step 3.] If H does not contain all vertices, then report that G is not a proper
interval graph.

[Step 4.] If desired, transform H into an interval representation of G by first ori-
enting each block to be a transitive tournament and then using the method of Propo-
sition 2.1.

The correctness of the algorithm is assured by Proposition 4.2. Indeed, if the
algorithm halts before H contains all the vertices, then some v could not be inserted
and hence G is not a proper interval graph.

Our Algorithm 4.4 can be implemented in time O(m / n). Since the first version
of this manuscript, Corneil, Kim, Natarajan, and Olariu have published an even sim-
pler linear-time recognition algorithm for proper interval graphs ("Simple linear time
recognition of unit interval graphs," Inform. Process. Lett., 55 (1995), pp. 99-104).
It is possible to use their algorithm instead of ours for the purposes of Algorithm
3.4. One only has to notice that their algorithm can produce a straight mixed graph

REPRESENTATION OF PROPER CIRCULAR-ARC GRAPHS 403

orientation of the input graph because our blocks B consist precisely of vertices v
with equal value of their function NextD(v)- PrevD(v). (Our Algorithm 4.4 remains
interesting because it is incremental, and its correctness proof implies Wegner’s the-
orem.

Finally, we remark that we believe there is an incremental linear-time algorithm
to directly compute a round mixed orientation of a given undirected graph along the
lines of Algorithm 4.4. We hope to return to this idea in the future.

Acknowledgment. The authors wish to thank R. Shamir for his interest and
for helpful comments.

REFERENCES

[1] J. BANG-JENSEN, Locally semicomplete digraphs: A generalization of tournaments, J. Graph
Theory, 14 (1990), pp. 371-390.

[2] J. BANG-JENSEN, P. HELL, AND J. HUANG, Local tournaments and proper circular arc graphs,
Technical report CSS/LCCR TR90-11, Simon Fraser University, Burnaby, BC, Canada,
1990.

[3] J. BANG-JENSEN AND P. HELL, A note on chordal proper circular arc graphs, Discrete Math.,
128 (1994), pp. 395-398.

[4] B. BHATTACHARYA, P. HELL, AND J. HUANG, A linear algorithm for maximum cliques in proper
circular arc graphs, SIAM J. Discrete Math., 9 (1996), to appear.

[5] K. S. BOOTH AND G. S. LUEKER, Testing for the consecutive ones property using PQ-tree
algorithms, J. Comput. System Sci. 13 (1976), pp. 335-379.

[6] X. DENG, P. HELL, AND J. HUANG, Recognition and representation of proper circular arc
graphs, in Integer Programming and Combinatorial Optimization, Proc. 2nd Integer Pro-
gramming and Combinatorial Optimization Conference, E. BalLs, G. Cornuejols, and R.
Kannan, eds., Carnegie-Mellon University, Pittsburgh, PA, 1992, pp. 114-121.

[7] M. C. GOLUMBIC, Algorithmic Graph Theory and Perfect Graphs, Academic Press, New York,
1980.

[8] P. HELL, J. BANG-JENSEN, AND J. HUANG, Local tournaments and proper circular arc graphs,
in Algorithms, Springer-Verlag Lecture Notes in Computer Science, T. Asano, T. Ibaraki,
H. Imai, and T. Nishizeki, eds., Springer-Verlag, Berlin, New York, 1990, pp. 101-109.

[9] P. HELL AND J. HUANG, Lexicographic orientation and representation algorithms for compara-
bility graphs, proper circular arc graphs, and proper interval graphs, J. Graph Theory, 20
(1995), pp. 361-374.

[10] W. L. Hsu, A simple test of interval graphs, in Proc. SIAM Conference on Discrete Mathe-
matics, Vancouver, 1992.

[11] W. L. Hsu AND K. H. TSAI, Linear time algorithms on circular arc graphs, Inform. Proc. Lett.,
40 (1991), pp. 123-129.

[12] J. HUANG, On the structure of local tournaments, J. Combin. Theory Ser. B, 63 (1995), pp. 200-
221.

[13] , Tournament-like oriented graphs, Ph.D. thesis, Simon Fraser University, Burnaby, BC,
Canada, 1992.

[14] N. KORTE AND R. H. MSHRING, An incremental linear-time algorithm for recognizing interval
graphs, SIAM J. Comput., 18 (1989), pp. 68-81.

[15] J. B. ORLIN, M. A. BONUCCELLI, AND D. P. BOVET, An O(n2) algorithm for coloring proper
circular arc graphs, SIAM J. Algebraic Discrete Meth., 2 (1981), pp. 88-93.

[16] D. J. SKRIEN, A relationship between triangulated graphs, comparability graphs, proper interval
graphs, proper circular arc graphs and nested interval graphs, J. Graph Theory, 6 (1982),
pp. 309-316.

[17] A. TENG AND A. TUCKER, An O(qn) algorithm to q-color a proper family of circular arcs,
Discrete Math., 55 (1985), pp. 233-243.

[18] A. TUCKER, Matrix characterization of circular arc graphs, Pacific J. Math, 39 (1971), pp. 535-
545.

[19] G. WEGNER, Eigenschaften der Herren homologische-einfactor familien in Rn, Ph.D. thesis,
Universitt Gottingen, Gottingen, Germany, 1967.

SIAM J. COMPUT.
Vol. 25, No. 2, pp. 404-419, April 1996

() 1996 Society for Industrial and Applied Mathematics
011

AN O(N/M)-TIME ALGORITHM FOR FINDING A
MINIMUM-WEIGHT DOMINATING SET IN A PERMUTATION

GRAPH*

C. RHEEt, Y. D. LIANG$, S. K. DHALL, AND S. LAKSHMIVARAHAN

Abstract. Farber and Keil [Algorithmica, 4 (1989), pp. 221-236] presented an O(n3)-time
algorithm for finding a minimum-weight dominating set in permutation graphs. This result was
improved to O(n2 log2 n) by Tsai and Hsu [SIGAL ’90 Algorithms, Lecture Notes in Computer
Science, Springer-Verlag, New York, 1990, pp. 109-117] and to O(n(n + m)) by the authors of this
paper [Inform. Process. Left., 37 (1991), pp. 219-224], respectively. In this paper, we introduce
a new faster algorithm that takes only O(n + m) time to solve the same problem, where m is the
number of edges in a graph of n vertices.

Key words, algorithm, dominating set, permutation graph

AMS subject classifications. 68Q20, 68Q25, 68R10

1. Introduction. Let ([1], r[2],..., r[n]) be a permutation on the set Vn
{1, 2,..., n}. For example, if (2, 1, 5, 4, 6, 3), then r[3] 5, [5] 6, r-1 [5] 3,
and r-1 [6] 5, where r- [i] denotes the position of the number i in the sequence
([1], [2],...,[n]). Let G() (V, E) be an undirected graph such that V Vn
and (i,j) e E if and only if (i j)(-[i] r-l[j]) < 0. Then an undirected graph
G is called a permutation graph if there is a permutation such that G is isomorphic
to G(r) [5].

For an undirected graph G (V, E), a subset D of V is called a dominating
set for G if for every u E V- D there exists v E D such that (u,v) E, where
V- D denotes the set-theoretic difference of V and D. A graph G is called a weighted
graph if there is a weight function w V --. R (the set of reals), where w[i] is
called the weight of node i. Manacher and Mankus [7] showed that any algorithm for
finding a minimum-weight dominating set for nonnegative weights can be extended to
incorporate negative-weight vertices without loss of efficiency. Hence, for simplicity,
we assume that w[i] is nonnegative. For any subset D C_ V, let W(D) -ieD w[i]
denote the weight of D. A subset D C_ V is called a minimum-weight dominating set
for G if W(D) is a minimum over all dominating sets for G.

Permutation graphs are known to have a variety of practical applications [5],
and for this reason, many algorithms have been developed in the literature. Pnueli,
Lempel, and Even [8] described an O(n3) algorithm for testing if a given undirected
graph G is a permutation graph. Spinrad [10] improved the above result by deriv-
ing an O(n2) algorithm for orienting comparability graphs. A proper subset of the
permutation graphs called cographs has been studied by Corneil, Perl, and Stew-
art [3]. Bipartite permutation graphs were analyzed by Spinrad, Brandstdt, and
Stewart [11]. Farber and Keil [4] developed O(n3) algorithms for finding a minimum-
weight dominating set and a minimum-weight independent dominating set in permu-

Received by the editors February 23, 1994; accepted for publication (in revised form) September
7, 1994. This research was supported in part by CAPS (Center for the Analysis and Prediction of
Storms), an NSF Science and Technology Center at the University of Oklahoma.

Department of Mathematics, Statistics, and Computer Science, Eastern Kentucky University,
Richmond, KY 40475.

Department of Computer Science, Indiana Purdue University at Fort Wayne, Fort Wayne, IN
46805.

School of Computer Science, University of Oklahoma, Norman, OK 73019.

404

MINIMUM-WEIGHT DOMINATING SET IN PERMUTATION GRAPHS 405

tation graphs. In addition, they also described an O(n2) algorithm for the minimum
cardinality dominating set problem. Atallah, Manacher, and Urrutia [2] presented an

O(n log2 n) algorithm for finding a minimum independent dominating set in a permu-
tation graph. Later Atallah and Kosaraju [1] presented an O(n log n) time algorithm
for the maxdominance problem to which the minimum-weight independent dominat-
ing set problem for permutation graphs can be reduced in linear time. Rhee, Dhall,
and Lakshmivarahan [9] gave the first NC algorithm for minimum-weight domination
in permutation graphs. Recently Tsai and Hsu [12] and the authors of this paper [6]
improved one of Farber and Keil’s results for the minimum-weight dominating set
problem to O(n2 log2 n) time and O(n(n + m)) time, respectively. In this paper we
propose an O(n + m) time algorithm for finding a minimum-weight dominating set in
a permutation graph G, where n and m indicate the number of vertices and edges in
G, respectively.

In 2 we provide some preliminary definitions and state some theorems from [6]
that lay out an essential dynamic computation structure of our algorithm. In 3 we
present the algorithm and some data structures that support an efficient implemen-
tation of the algorithm. In 4 we derive time bounds of various subroutines used in
the algorithm. Section 5 is devoted to describing an efficient scheme for computing a
major component of the algorithm. A summary and time-complexity analysis of the
algorithm is given in 6. Finally, some concluding remarks are made in 7.

2. Preliminaries. For a better illustration of our approach, we introduce a visu-
alization of the permutation graph, called the permutation diagram. The permutation
diagram consists of two horizontal parallel channels, named the top channel and the
bottom channel. We put the numbers 1, 2,..., n on the top channel, in this order,
from left to right, and put the numbers r[1], r[2],..., r[n] on the bottom channel in
the same way; then, for each i E V, we draw a straight line joining two i’s, one on
the top channel and the other on the bottom channel. We label each such line by the
same number i. Note that line i intersects line j iff and j appear in reversed order
in r. That is, the criterion for lines i and j to intersect is the same as for nodes i and
j of the permutation graph to be adjacent. Therefore, an intersection graph of the
lines of a permutation diagram is exactly the corresponding permutation graph.

Let D1 and D2 be subsets of V. (From now on, V denotes the set of lines of
the permutation diagram and each member of V is called a line, with weight of line
i equal to w[i].) Then D2 is said to cover DI if every line in D D2 intersects
some line in D2. Our goal is to find a set of lines, say D, with minimum weight
that covers the entire line set Vn of the permutation diagram. It is obvious that the
set D then realizes a minimum-weight dominating set for G. For convenience, we
first add two dummy nodes 0 and n / 1, each with a weight 0, such that [0] 0
and r[n / 1] n + 1, denoting the resulting graph by G+(). Also, for any j _> 0,
Vj+ denotes the set {0, 1,... ,j}. Note that any dominating set D+ for G+ directly
realizes a dominating set for G by removing 0 and n + 1 from D+. Figure 1 shows the
permutation diagram corresponding to (2, 8, 6, 3, 1, 7, 4, 5) along with its weight
function w (8, 3, 4, 1, 7, 1, 6, 12).

Any pair of lines i and j in V:+I, <_ j, is called an ordered cross pair, denoted
by Xij, if i j or intersects (or crosses) j. For example, in Fig. 1, (1, 2) and (3, 3)
are ordered cross pairs, while (2, 3) and (2, 1) are not. For any two ordered cross pairs
Xij and Xi,j,, Xj is said to be less than X,j,, denoted by Xij < X,j,, if (i) j < j
or (ii) j j’ and < i’. For an ordered cross pair Zy, we define MWDS(Xij) to
be a minimum-weight dominating set for V+ such that Sy C_ MWDS(X), where

406 C. RHEE, Y. D. LIANG, S. K. DHALL, AND S. LAKSHMIVARAHAN

w[i] o o- 0 9

a" o 9

8 3 4 7 6 12
2 3 4 5 6 7 8

2 8 6 3 7 4 5

FI. 1. The permutation diagram for G+ (rr).

Sij {i, j}. We first state a couple of results that appeared in [6].
THEOREM 2.1 (see [6]). MWDS(X(n+I)(n+I)) is a minimum-weight dominat-

ing set .for G+, and hence, MWDS(X(n+I)(n+)) {0, n + 1} is a minimum-weight
dominating set for G.

THEOREM 2.2 (see [6]). For each ordered cross pair Xij,j > O, there exists
another cross pair Xbjb, called back (Xj), such that Xbjb < Xj and MWDS(Xij)
MWDS(Xj) + Sij.

Observe that back(Xj) is not unique in Theorem 2.2. That is, back(Xij) is an
arbitrary cross pair satisfying the given conditions. Throughout the paper, for the
purpose of convenience, when a notation, such as back(Xq), is introduced to indicate
a single object, rather than a set, then an arbitrary one will be selected if more than
one candidate is available. Theorem 2.2 leads to a natural algorithm for computing
MWDS(X(n+)(n+)) using the so-called dynamic programming technique similar to
the one used in [6]. Once all back(Xij)’s are computed, MWDS(X(n+)(,+I)) is eas-
ily obtained by tracing through the relation back. That is, MWDS(X(n+I)(n+))
S+ljk+ + Sk + + Sojo, where X+Ij+ X(n+)(n+), Xoo Xoo, and
back(Xisjs) Xs_,j_, for s k + 1, k,..., 1. The algorithm in [6] consists of n
stages and at the jth stage it finds an MWDS(Xj) for each ordered cross pair Xij,
i <_ j. Each of these stages takes O(m + n) steps, giving an overall time complexity of
O(n(m + n)). The algorithm in this paper basically employs a similar technique but
exploits some of the properties of permutation graphs to avoid duplicate computations
so that the total time complexity is sharply reduced to O(m + n).

3. The algorithm. Before stating the algorithm, we first introduce a few defini-
tions. We define four crossing lists, TLCL Top_Left Crossing List), TRCL Top_Right
Crossing List), BLCL (Bottom_Left Crossing List), and BRCL (Bottom_Right Cross-
ing List), that are used in computing back(Xq). For each i e Vn++, TLCL de-
notes the ordered list (k0, k1,..., k,) such that each k, 0 <_ t < r, crosses i and
k0 < kl < < k i. That is, TLCLi is the list of the lines, maintained in the
increasing order of their numbers, crossing i from the left .side of in the top channel
of the permutation diagram to the right side of i in the bottom channel. Note that
itself is a member of the list. The rest of the lists are defined as follows.

TRCLi is the ordered list (ko, k,...,kr) such that each kt, 0 < t <_ r, crosses i
and i k0 < k < < kr.

BLCL is the ordered list (k0, k,... ,kr) such that each k,, 0 _< t < r, crosses i
and zr-[k0] < r-l[k] <... < r-[kr] r-[i].

BRCL is the ordered list (ko, k,..., kr) such that each k,, 0 < t <_ r, crosses i
aIld 7r-l[i]--7r-ilk0] < 7r-l[kl] <... < 7r-l[kr].

In Fig. 1, we have TLCL2 (1,2), TLCLs (1,3,4,5,6,7,8), TRCLI
(1, 2, 3, 6, 8), TRCL2 (2), BLCL (2, 8, 6, 3, 1), BLCLs (8), BRCL2 (2, 1),
and BRCLs (8, 6, 3, 1, 7, 4, 5). Note that TLCLi and BRCLi contain the same set

MINIMUM-WEIGHT DOMINATING SET IN PERMUTATION GRAPHS 407

of lines in a different order. The same is true for BLCL and TRCL. Lemma 4.1
describes an efficient method for computing the various crossing lists defined above.

We now concentrate on the computation of back(Xj) along with mw(Xj) for
each X, where mw(X) denotes the weight of MWDS(Xj). Let Xbj denote a
back(Xj). As shown in the proof of Theorem 2.2 [6], back(X) is an ordered cross
pair with the smallest mw value among all the pairs that satisfy one of the following
conditions:

(1) ib i and < jb < j;
(2) ib < and jb j; or

(3) jb < i, rr-1 [jb] < r-1 [j], and the set of lines between jb and is covered by
Sb + Sj.
Note that ib may intersect or j or both. The three cases are shown pictorially
in Fig. 2. For convenience, we let iback(Xj), jback(Xj), and xback(Xj) indicate
the back(Xj) satisfying conditions (1), (2), and (3), respectively. For any Xj,
back(X) is then one of iback(Xj), jback(Xy), and xback(X), whichever results in
the smallest mw(Xj) value, i.e., the smallest among W(MWDS(iback(X)) + S),
W(MWDS(jback(Xj)) + Sj), and W(MWDS(xback(X)) + Sj). Note that at least
one of the three different backs exists for each Xy except for X00. Figure 2 illustrates
these different types of back(Xj). For example, in Fig. 1, X56 and X57 are candidates
for iback(XDs). Since mw(X57) 17 and mw(X56) 11, we let iback(Xhs) X56.
Among X4s, X3s, and Xs, which are candidates for jback(Xhs), we pick Xas since
mw(Z4s) 16, whereas mw(Xs) 20 and mw(Xs) 19. The candidates for
xback(Xhs) are X2 and X22. Therefore, xback(Xhs) X22, since row(X22) 3 is
smaller than row(X12) 11. Thus in this case back(Xhs) X22 because xback(Xhs)
results in the smallest mW(Xhs). Note that there are no candidates for iback(X36) and
jback(X). The procedures for computing iback(Xj) and jback(Zj) are relatively
simple and are discussed in Lemma 4.4. In the following, we show how to identify
xback(Xj).

We first introduce a few more definitions. For each Xij, we define the clique
of Xij, denoted by CLIQ(Xij), to be the set of lines, say k, satisfying i < k <_ j,
r-[j] _< r-[k] _< :r-l[i] and there is no line k’ such that k < k’ < j and r-l[k] <
r-[k’] < r-[i]. That is, CLIQ(Xj) is the set of lines between and j, including
i and j, that form a clique, and if two lines k and k, k < k, are in two such
different cliques, then we choose the clique that contains the line k, as illustrated
in Fig. 3. For example, in Fig. 1, CLIQ(Xls) {1,3,6,8}, CLIQ(Xas) {4,7,8},
CLIQ(X13) {1,3}, and CLIQ(X11)= {1}.

For each Xiy, we define a minimum cover of Xij, denoted mc(Xij), to be an
ordered cross pair Xi.j. such that rrtw(Xi,j,) is minimum over all pairs satisfying
the following two conditions:

(1) <_ jm < j, rr-[jm] <_ r-[i], and

(2) Si.j. covers CLIQ(Xij).
Note that the existence of mc(Xij) for each Xij is assured since for any k E

CLIQ(Xij), Zkk satisfies (1) and (2) and, therefore, is a candidate for mc(Xij) In
Fig. 1, we have mc(Xls) X66 since mw(X) 8, mw(X2) 11, mw(X3)
12, mw(X6) 9, mw(Xs) 20, row(X33) 7, row(X36) 8, mw(X3s) 19,
mw(Xa6) 5, mw(X4s) 16, mw(X56) 11, mW(Xhs) 22, row(X66) 4,
mw(X6s) 16, mw(XTs) 21, and mw(Xss) 15. Similarly, mc(X2) X22 and
mc(Xr) X4.

For each Xij, except Z00, let V/j {k Ik < i, r-[k] < r-[j]}. That is, V/j is

408 C. RHEE, Y. D. LIANG, S. K. DHALL, AND S. LAKSHMIVARAHAN

i=ib Jb j i= Jb j

(a)

ib J Jb ib J= Jb ib if j---- jb

(b)

ib Jb ib jb j ib Jb j

ib Jb i=j ib jb j

()

FIG. 2. Illustration for iback(Xij), jback(Xij), xback(Xij). (a) ib and < Jb < J; (b) b <
and Jb j; (c) jb < and r-l[jb] < r-l[j].

i k k’k"j i " j

jk"k k" j k" k
(a) (b)

FIG. 3. Examples of CLIQ(Xij). (a) CLIQ(Xij)"-

the set of lines less than i that do not intersect the line j. Then limit(Xij) is the
ordered cross pair, say Xij, such that (i) i, j Vj and (ii) j is the largest number
in Vj and i is such that for all k Vy, r-[i] _> r-[k]. For example, in Fig. 1,
limit(X11) Xoo, limit(X46) X22, limit(X57) X13, and limit(Xg9) X5s.
It is readily seen that for each Xij, there is a unique limit(Xij). As will be seen
shortly, limit(Xij) is useful in cutting down the amount of work needed to compute
xback(Xij). The computation of limit(Xij) is discussed in Lemma 4.2.

We now return to the computation of xback(X). By definition, xback(Xij) is a
cross pair, say Xibjb, with the smallest mw value among the pairs that satisfies the
following two conditions:

(1) jb < i, 7r-[jb] < r-[j], and
(2) the set of lines k such that jb < k < i is covered by Sibjb + Sii.

A brute force method to find such a pair would be to check every pair that satisfies

MINIMUM-WEIGHT DOMINATING SET IN PERMUTATION GRAPHS 409

condition (1) to see whether it also satisfies condition (2). We, however, can put a
limit in searching such pairs with the help of limit(Xij).

THEOREM 3.1. For any Xij
mc(X). Then mw(xback(Xi)) mw(X,j,), if W(MWDS(xback(X)) + S)
W(MWDS(jback(Xij)) +Siy).

Proof. Let $1 {Xi,,lil <_j’ <_jl, r-l[j’] <_ r-l[it], and Si,j, covers
CLIQ(Xij)} and $2 {X,, IJ’ < i, r- [j’] < r-1 [j], and for any k such that
j’ < k < i, {k} is covered by Si,j, + Sij}. By definition, Xi.jm and xback(Xij) are
the cross pairs in $1 and $2, respectively, with the smallest mw value. We show that
S c_ $2 and the mw value of any cross pair in $2 S is no less than the smallest
mw value in S. First, prove S C_ $2. Let Xi,, E $1. Then clearly j < i and
r-[j’] < r-[j] since jt < i and -l[it] < r-l[j]. Next, let k be a line such that
j’ < k < i. If jr < k, then Sy covers {k} by the definition of limit(Xj). Ifj’ < k < jl
and k CLIQ(Xi), then we must have one of the following three cases:

(1) r-[k] > r-[j],
(e) r-l[k] < -l[j/], or
(3) there is a line r e CLIQ(Xij), such that k < r, and r-[k] < r-[r].

In case (1), {k} is covered by {j}, hence by Siy. In case (2), it is covered by {i’},
hence by Si,,. In case (3), {r} is covered by Si,,, so is {k}. Combining all these, we
get S C_ $2.

Next, we show that the mw value of any cross pair in $2 $1 is no less than the
smallest mw value in $1. Suppose it is not true, and let X,, be a cross pair with
the smallest mw value in $2-S. That is, mw(xback(Xi)) mw(X,j,). Since X,j,
$2 $1, we have j’ < i, which implies r-[i’] > r-l[it] in order to cover {il}. This
forces Z,j to be a candidate for jback(X). Then W(MWDS(jback(Xi) +
W(MWDS(Xi,y,) +Siy)) W(MWDS(xback(Xij) + Sij)). This contradicts the
condition that W(MWDS(xback(Zij) + Sij)) < W(MWDS(jback(Xii) + S)).

The significance of this theorem is that instead of explicitly finding xback(Xij)
using its definition, we simply make use of mc(limit(Xj)), which is already available
as a result of the computation in the previous stages.

Now we show how to find mc(Xij) for each Xj. To help us identify such a pair,
we use a line in CLIQ(Xij) that divides CLIQ(Xij) into two parts. This line, denoted
by cdiv(Xij), is defined as

i if j,
cdiv(Xij

max{CLIQ(Xj) {j}} if j.

Now consider the following two cases.
Case 1. cdiv(X) i. Let cdiv(Xj) k. Then it is not difficult to show that

k divides CLIQ(Xij) into two parts: CLIQ(Xk) and CLIQ(Xkj). In Theorem 3.2,
we show that mc(Xiy) is either mc(Xik) or mc(Xkj), whichever has a smaller mw
value.

Case 2. cdiv(Xj) i. Note that in this case, either CLIQ(Xij) (i} if i j
or CLIQ(Xij) (i,j} if j. We compute mc(Xij) from scratch. For convenience,
let mc2(Xij) denote mc(Xij) when ICLIQ(Xij)I <_ 2. In other words, mc2(Xij) is an
ordered cross pair with the smallest mw value among all pairs, say X,j,, satisfying
the following conditions:

() div(X) i,
(2) _< j’ <_ j, r-[j’] <_ r-[i], and
(3) Si,j, covers CLIQ(Xij);

410 C. RHEE, Y. D. LIANG, S. K. DHALL, AND S. LAKSHMIVARAHAN

Section 5 is devoted to computing all mc2(Xij) efficiently.
THEOREM 3.2.
(a) Suppose cdiv(Zj) k(i). Then mc(Xj) X,j, e {mc(Xik),mc(Xkj)}

such that mw(Xi,j.) is a smaller of mw(mc(Xik)) and mw(mc(Xkj)).
(b) Suppose cdiv(Xij) i. Then mc(Xij) mc2(Zij).
Proof. (a) Let
C {Xi,j, li _< j’ _< j, r-l[j’] _< r-l[i], and Si,j, covers CLIQ(Xij)},
C1 {X,j, li _< j’ <_ k, 7r-[j’] _< r-[i], and Si,j, covers CLIQ(Xik)}, and
C2 {Xi,j, Ik _< j’ <_ j, r-[j’] <_ r-[k], and Si,j, covers CLIQ(Xkj)}.

Then it suffices to prove that C C1 /C2. To prove C1 +C2 c_ C, first let X,, E C.
Consider two cases: either (i) i’ or j’ is a member of CLIQ(X), or (ii) neither of
them is a member of CLIQ(Xik). In (i), obviously {i’} (or {j’}) covers CLIQ(Xij).
In (ii), since j’ < k and hence j’ does not cross k, i’ should cross k in such a way
that i’ < k < j and r-[j] < r-[k] < r-[i’], which means that i’ also crosses j.
Therefore, Si,j, covers CLIQ(Xj). In both cases, we have Xi,j, E C. The other case,
i.e., when Xi,j, C2, can be proved similarly.

Now, to prove that C C_ C1 / C2, let Xi,j, C. Again consider two cases:
(i) If i’ or j’ is a member of CLIQ(Xij), then clearly Si,j, covers CLIQ(Xij) and
CLIQ(Xkj). Therefore, X,j, C if i <_ j’ <_ k, or X,j, C2 if k _< j’ <_ j. (ii)
If neither nor jr is a member of CLIQ(Xij), then check two subcases: k < j’ < j
or i < j’ < k. If k < j’ < j, then r-[j’] < r-l[j] < r-[k], which implies that
jr intersects k but not j. This in turn implies that i crosses j, hence, Sij, covers
CLIQ(Xkj). Therefore, Xi,j, E C2. Suppose i < j’ < k. Since j is not a member of
CLIQ(Xij) and r- [1’’] < r-[i], we have r-[j’] < r-[k], which implies that {k} is
to be covered by {i’}. Then r-[k] < r-l[i’]. Hence CLIQ(Xik) is covered by Si,,.

(b) Part (b) of the theorem follows directly from the definition. [:]

Before closing this section, we outline the algorithm for computing back(Xij) in
Algorithm 3.1.

ALGORITHM 3.1. Computing back(Xij) for all Xi’s
{initialization}
mw(Xoo) 0;
mc(Zoo) X00;
{See 4 for the computation of these functions.}
compute TLCLj, TRCLj, BLCLj, and BRCLj for each j;
compute limit(Xj) and cdiv(Xj) for each Xj;

for each j 1, 2,...,n/ 1 do
{compute back (Zj) along with mw(Xij).}
for each TLCLj do in the increasing order of

compute iback(Xij), jback(Xij), and xback(Xij);
{See Lemmas 4.4 and 4.2.}
back(Xij) an ordered cross pair with minimum value among

W(MWDS(iback(Zj)) + Sij),
W(MWDS(jback(Xj)) + Sj), and
W(MWDS(xback(Xij)) +

{ W(MWDS(iback(Xj)) +Siy),
W(MWDS(jback (Xij)) + Sij), and

W(MWDS(xback(Zij)) +

MINIMUM-WEIGHT DOMINATING SET IN PERMUTATION GRAPHS 411

were obtained in previous stages.}

update mw(Xj
endfor; {i}

{compute mc2(Xij) for each E TLCLj with ICLIQ(Xij)I <_ 2.}
call find_mc2(j); {See 5.}

{compute mc(Xj) for each e TLCLj. The mc(Xj)’s computed in this stage
will be used to identify xback values in later stages.}

for each i TLCLy do in decreasing order of
if cdiv(Xiy) k(i)

then
mc(Xij) either mc(Xik) or mc(Xj),
whichever has a smaller mw value;

else

endfor;
endfor; (j}

4. Subroutines. In this section, we show how to compute the four lists (TLCL,
TRCL, BLCL, and BRCL) and basic functions such as limit, cdiv, iback, and jback
efficiently.

LEMMA 4.1. All TLCLj ’s, TRCLj ’s, BLCLj ’s, and BRCL ’s can be computed
in O(m + n) time.

Proof. To compute TLCL for all j V++I, we inspect the given permutation
r (r[1],r[2],...,r[n + 1]) in its reverse order from r[n + 1] to r[1]. Let j be
an element of the permutation in this order. We traverse a sorted list L, from the
beginning, comparing each element of L with j until we insert j at the proper place in
L, where L is maintained in the increasing order of its elements. Initially L is empty
and j r[n + 1]. When j is inserted into L, the sequence k0, kl,..., kr-1 of elements
in L that are less than j, along with j itself, forms TLCLj, since k0 < k < <
kr- < j and -[k0] > 7r-[kl] >"" > 7r-l[kr-1] > -l[j]. For example, let
(4 1 3 2 5). Initially L is empty. We first add 5 to L. In this case, no comparison is
required and we have TLCL5 (5). Next, add 2 to the front of 5 since 2 is less than
5, making L {2, 5}. Since there is no element less than 2 in L at this time, we have
TLCL2 (2). For j 3, put 3 between 2 and 5, making L {2, 3, 5}, which gives (2,
3) as TLCL3. For j 1, add j to the beginning of L and let TLCL (1). Finally for
j 4, we put j right after 3, making L {1, 2, 3, 4, 5}, and get TLCL4 (1, 2, 3, 4).
Note that the number of comparisons made at the time of insertion of j into L is equal
to the number of elements in TLCLj. Thus, the time required in the above procedure
-n+lis z_.j=i TLCLyI- O(m + n) steps, where TLCLiI denotes the length of TLCLi.
The remaining lists can be obtained in a similar way each with a time complexity

of O(m + n).
LEMMA 4.2. All limit (Xj) ’s can be computed in time O(m + n).
Proof. Let Xij limit(Xij), limit(Zij).i it, and limit(Xij).j jt. We

first compute limit(Xij).j for each i TLCLj. For each j, 1 _< j _< n + 1, we
consider TLCL (i0,i,...,i j). Since line i0- 1 does not cross j, we have
limit(Xioj).j i0- 1. Next, to compute limit(Xlj).j, we compare i0 and i. If

412 C. RHEE, Y. D. LIANG, S. K. DHALL, AND S. LAKSHMIVARAHAN

their difference, i -i0, is only 1, then limit(X).j is again i0- 1, since there is
no line between i0 and i. If their difference is greater than 1, then i 1 should be
limit(X).j, because i-I is the largest line that crosses neither nor j. We continue
the same computation for each limit(Xj).j, s 2,..., r, setting limit(X).j to be
limit(Xi,_j).j if is -is- 1 and to is 1 otherwise. The time required is exactly
m + n steps, since each element of TLCLj is inspected only once.

Next, we compute limit(Xii).i in a similar way. For each i, 1 < < n / 1, we
consider BLCLi (jo,j,... ,jr i). Let k r[r-[j0]- 1]. Since k does not cross
i or j, we have limit(Xiyo).i k. To compute limit(Zij,).i, we compare r-[j0] and
r-[j]. If their difference, r-[j]- r-[j0], is only 1, limit(Xij).i is again k, since
r-[k] is the largest among all 7r-[k’] such that k’ < and r-[k’] < r-[jl]. If their
difference is greater than 1, then r[Tr-[j]- 1] should be limit(Xij).i. We continue
the same computation for each limit(Xiy).i, s 2,..., r. Again the time required is
exactly m 4- n, since each element of BLCL is inspected only once.

LEMMA 4.3. All cdiv(Xi) ’s can be computed in O(m / n) time.

Proof. For each j V++, we traverse TLCL (io, i,..., ir j) nd BRCL
(k0 j, k,..., kr) in their reverse order, from right to left. Obviously, cdiv(Xji) j.
We first consider i_, which is the second largest line in TLCLj. For this it-l, we
visit each member of BRCLj in its reverse order starting at k to identify every pair
Xkj, s r,r- 1,..., 1, whose cdiv is i_. It is straightforward to see that it-1
is cdiv for each pair Xki such that ks is a member of BRCL satisfying r-[k] >
7r-[ir_]. Let kt be the first member of BRCLj, going from right to left, such that
7c-[kt] <_ r-[i_]. Since i_ cannot be cdiv(Xy) any more, consider it-2 next.
Again, for this it-2, we traverse BRCLj again in reverse order starting from kt and
setting cdiv(Xay) to it-2 for each ks in BRCLy such that r-[k] > r-[i_2]. We
repeat the above procedure until we get cdiv(Xij)’s for all i’s crossing j. As an
example, consider Fig. 1. Let j 8. Then TLCLs (1 3 4 5 6 7 8) and BRCLs
(8 6 3 1 7 4 5). Then we set cdiv(Xss) to 8. Next, let 7 be cdiv for Xhs, Xas, and
XTs since 7r- [5] > r- [7], r- [4] > r-117], and r- [7] > r- [7]. Next, we consider
6 in TLCLs and traverse BRCLs starting at 1 from right to left and let 6 be cdiv for
Xs, X3s, and X6s for the same reason. This procedure takes TLCLjI-4-IBRCLiI
steps for each j. Therefore, the time complexity for computing all cdiv(Xiy)’s is

O(m + n).
LEMMA 4.4. All iback(Xj)’s and jback(Xj)’s can be computed in O(m + n)

time.

Proof. We first show how to compute all iback(Zj). Let TRCL {i jo, jr }
with j jt for some t e {0,...,r}. Note that iback(Xiyo (= iback(Xii)) and
iback (Xiy) are not defined.

Note that iback(Xiy:) Xiy because Xij is the only candidate. For k
3,... ,r, iback(Xy) is either Xy_ or iback(X_), whichever has a smaller mw
value. The above operation is basically the prefix function on mw values of Xj, Xij.,

and Xij. Note that, in Algorithm 3.1, the mw(Xj)’s are computed in the increas-

ing order of j. Since the total number of iback(Xj)’s is <_ -’+.= ITRCLI <_ m + n,
the result follows.

Next, to compute all jback(Xij), we perform a similar prefix computation using
TLCL instead of TRCL.

5. Computing mc2(Xj). According to its definition, mc2(X) is to be com-
puted only if ICLIQ(Xij) < 2. If ICLIQ(Xii)I--- 1, i.e., i j, then mc2(X.)) Xyj
because mw(Xjj) < mw(Xi,j) for any cross pair Xi,y. In the following, therefore, we

MINIMUM-WEIGHT DOMINATING SET IN PERMUTATION GRAPHS 413

FIG. 4. Illustration of base(Xij).

consider only the cross pairs Xj such that]CLIQ(Xj) 2. We first introduce some
notation that helps characterize all candidates for mc2(Xj). To compute mc2(Xy)
when ICLIQ(Xy)I 2, we need to consider all the ordered cross pairs X,y, such that
i _< j’ _< j, r-l[j’] _< r-l[i], and S,j, covers Sy and then choose a pair for which the
mw value is a minimum. Obviously, Xii and Xjj are candidates for mc2(Xij). Below
we identify all candidates for mc2(Xij) other than Xii and Xyy.

5.1. Identifying candidates for mc2(Xij). Let be any line in Vn++l such
that TRCLz[>_ 2. Define j_base[1] to be the second member of TRCLz. Similarly,
i_base[1] is the second member of BRCLt, provided IBRCLt _> 2. Now let Xy be a
cross pair such that ICLIQ(Xj)I 2. Then [TRCL >_ 2 and IBRCLjl >_ 2. Let
i i_base[j] and j j_base[i]. Then it is easily observable that i j and they
cross each other as shown in Fig. 4. This ordered cross pair Xly is called the base
pair of Xi, denoted by base(Xj). It is obvious that such a base pair always exists
for any given X such that [CLIQ(Xj)[2 since X itself may be its base pair.

Let XIj be base(X). Then let TRCL[jl,j] (jl,j2,...,jr j) be the
sublist of TRCLi consisting of all elements of TRCLi from jl up to j, preserving
the order in TRCLiI. Further, for each such j, 1 _< k <_ r, in TRCLi[jl,j], let
BRCLj[il] (iA() il, iA(2),..., iA(), be the sublist of BRCLy consisting of all
elements from il to the last member of BRCLj, keeping the order intact. Define

C(Zij)--" {Xi,j,[Xij base(Xij) and j’ e TRCLi[jl,j],i’ e BRCLj,[i]}

{X()i,X(:)j,...,X()y, X%(.)y,...,

Xi:(),..., X(), Xi(.),..., X().}.

Then C(Xi) consists of all candidates for mc2(Xi) (other than Xii and Xjj).
To choose mc2(Xj) from C(Xy) efficiently, we introduce an additional def-

inition. Let XiIj be base(Xij), and let TRCLi[j,j] (j,j2,...,jr j) and
BRCLjk[il] (iyk(1) i,iy(2),... ,i(8)) be the sublists defined above. For each
k, 1 <_ k _< r, define minv(Xij) to be the minimum of mw(Xik), mw(Xiy(2)j)

and mw(Xs(sk)y). Then to find mc2(Xy) in C(Xj), compare each of minv
(XiIj), minv(Xij.),..., and minv(Xiy), and pick a cross pair with the smallest
rainy value. That is, for computing mw(mc2(Xii)), we just make use of minv(Xijk)
values for all jk E TRCLi [j,j]. It is not difficult to maintain these minv’s so that
they may be available when we search for mc2(X). After computing mw(Xi)’s,
for all i TLCLi in Algorithm 3.1, apply, for example, the prefix computation on
the mw values. To be specific, let BRCLj (io j, i,..., ir). Then minv(Xij)
mw(Xij), and for s r- 1, r-2,..., 1, minv(Xi8i) min{mw(Xij), minv(Xi+)}.
Obviously, for each j, it requires IBRCL[time to compute all minv(Xj)’s, and thus

nthe overall time to compute all minv’s is -=1 IBRCLyI O(m + n).
The use of minv values considerably reduces the total number of comparisons

needed in computing mc2(Xij) for each Xij. However, this reduction is not sufficient

414 C. RHEE, Y. D. LIANG, S. K. DHALL, AND S. LAKSHMIVARAHAN

2 3 4 5 6 7 8 9 10

6 8 4 3 9 10 2 5 7

FIG. 5. A sample graph for computing mc2(Xij).

to meet our goal since there are still potentially n values to be compared in computing
each mc2(Xij). Fortunately, C(Xij) is well behaved, and it is possible to organize
the computation of all mc2(Xij)’s in an orderly fashion to take advantage of the
comparisons already made. To keep the total number of comparisons within desirable
limits, we access each minv(Xij) at most once during the entire run of our algorithm.
The following observations are not hard to prove.

(1) C(Xj,) C_ C(Xj) if (i) j’ < j and (ii) i_base[j’] i_base[j].
(2) C(Xe) c_ C(Xij) for < i’.

The above properties suggest computing each mw(mc2(Xj)) in increasing order of j
and then in decreasing order of i for each i E TLCLj. Therefore, as we go from j’ to
j, j’ < j, mc2(Xij,)’s are available for all i TLCLj, such that ICLIQ(Xij,)I < 2.
Also, while at j, if i’ > i, then mc2(Xej) is determined ahead of mc2(X{j).

5.2. The algorithm for computing mc2(Xij). Now we develop a formal pro-
cedure for all mc2(Xij)’s. At the jth stage, 0 _< j < n 4- 1, visit each i TLCLj in
reversed order starting at j. Note that we consider only i such that CLIQ(Xj) 2.
Let RS_TLCLj denote the reversed sublist of TLCLj consisting of all such i’s. Note
that no two lines in RS_TLCLj cross each other and/_base[j] is also in RS_TLCLj
as the last member. Since ICLIQ(Xj)I 2 only if cdiv(Xj) i j, and since all
cdiv(Xij)’s are known in advance, it is easy to determine whether CLIQ(Xij)I 2
in constant time. Hence, it takes TLCLjl steps to compute RS_TLCLj from TLCLj.
For example, in Fig. 5, RS_TLCL8 (7, 5, 4, 1) and RS_TLCLa (3). For each line
j, let jp be the largest line less than j such that i_base[jp] i_base[j], if any exists.
Note that jp is the largest line for which mc2(Xijp) is available as a result of the
jpth stage. We can use mc2(Xjp) to compute mc2(Xj) without revisiting the lines
less than jp. To compute all in’S, scan i_base[j] for j from 1 to n, and append j to
list[i], which is empty initially, if i_base[j] i. For each i, let list[i] (tl,... ,tk}.
Thenjp ti_l ifj t, 1 < i < k, and let jp -1 ifj t. This procedure
takes O(n) time. Note that ICLIQ(Xij)I 2, because, otherwise, we would have
either i_base[jp] i_base[j] or]CLIQ(Xij)] = 2. For each Xij, where e RS_TLCLj,
consider the following two cases for computing mw(mc2(Xij)), hence mc2(Zij).

Case 1. is the first member of RS_TLCLj. As usual, let Xilj be the base of
Xij. Then simply visit each member of TRCLiI backward starting at j until we meet
j or jp. Let (jr j, jt-,...,jr) be the list of lines visited in this order. Further
consider the following subcases.

Case 1.1. jr jx. Then clearly, as shown in Fig. 6,

mw(mc2(Xij)) min(minv(Xi,j minv(Xij_,), minv(Xi,jl

For example, in Fig. 5, mw(mc2(X79))
mw(mc2(X23 minv(X23).

min{minv(X29), minv(X28)} and

MINIMUM-WEIGHT DOMINATING SET IN PERMUTATION GRAPHS 415

il j, jj j3 j, j

FIG. 6. The illustration .for subcase 1.1.

i j, jp j,.+ j,.+- j j

FIG. 7. The illustration for subcase 1.2.

Case 1.2. jr jp. This implies that mw(mc2(Xij)) is known as a result of the
computation at the jth stage as illustrated in Fig. 7. Further, C(Xj) c_ C(Xj).
Hence,

mw(mc2(Xij min{minv(Xij), minv(Xij_),..., minv(Xij+), mw(mc2(Xij }.

In Fig. 5, mw(mc2(X7(lO)) min{minv(X2(lo)), mw(mc2(X79))}.
Case 2. is not the first member in RS_TLCLj. Let i’ be the line that immediately

precedes i in RS_TLCLj. Then it is obvious that C(X,j) C_ C(Xy) as mentioned
earlier. As in Case 1, consider each member of TRCLi backward starting at j until
we meet either jl or jp. Again let (jr j, jt-l,...,jr) be the lines to be visited in
this order. Again consider the following subcases.

Case 2.1. jr jl. In this case, we do not actually examine all of the lines
in (jr j, jt-l,...,jr) since some lines, say (jr j, jt-l,... ,js), t >_ s >_ r, were
checked already when mc2(Xi,j) was computed at the i’th step of the jth stage.
(Note that there exists at least one such line since j is one of the lines that was
already computed.) In Fig. 8, only j2 and jl will be examined because jr,jr-l,... ,j3
were visited to obtain mc2(X). Hence, we compare mw(mc2(X,)), minv(Xj_),
minv(Xy_),..., and minv(X) to pick a pair with the smallest value. In Fig. 5,
mw(mc2(X59)) min{mw(mc2(X79)), minv(Z26)}.

Case 2.2. jr jp and i’ > j. Similar to subcase 2.1, let (jr j, jt-1,... ,js),
t >_ s >_ r, be the lines already considered when mc2(Xi,j) was computed. Moreover,
the lines (jp jr,jr-,... ,j) were already checked when mc2(Xiy) was computed at
the ith step of the jpth stage as shown in Fig. 9. So, simply compare mw(mc2(X,j)),
minv(X_), minv(Xj_),..., minv(Zj+), and mw(mc2(Zj)) to pick a pair
with the smallest value. Consider Xhs in Fig. 5 as an example and verify that
mw(mc2(X5s)) min{mw(mc2(Z56)), mw(mc2(XTs)) }.

Case 2.3. jr jp and < in. It is not difficult to show that mc2(Xij) is
either mc2(Zi,j) or mc2(Zij), whichever has a smaller mw value, since C(Xij)
C(X,) + C(Xj). Xas in Fig. 5 is such an example. Recall that i is the/-base line
for both j and jp. (See Fig. 10.)

This procedure is formalized in Algorithm 5.1.

416 C. RHEE, Y. D. LIANG, S. K. DHALL, AND S. LAKSHMIVARAHAN

i J J2 i’ j j, j

FIG. 8. The illustration for subcase 2.1.

il j, j, j,/ j,+2 i" j, j

FIG. 9. The illustration for subcase 2.2.

ALGOIITHM 5.1.
procedure Find mc2(j); {Compute all mc2(Xj)’s for a given j.}

Compute minv(Xj) for each i E BRCLj;

{Compute all mc2(Xj)’s for ICLIQ(Xy)[- 2.}
Let il i_base[j];
Let jp < j be the largest line whose/-base is i l, if exists;

otherwise, let jp =-1.
Let RS_TLCLj (i’m, m--,);
for m downto 1 do

Let i i[;
Let j j_base[i];
Let TRCL, [j, j] (j, j2, jt j);
{Case 1.1} if Zm" and zm" > Jp then

mw(mc2(Xij min{minv(Xil minv(Xi,j,_,), minv(Xi,, }
{Case 1.2} if i "’ and "m m < Jp then

-(-e(Z))
min{minv(X,j), minv(Xy_,..., minv(X,p+), mw(mc2(Xyp))};

Let i[+1;
Let js be the smallest line in TRCL [j, j] visited in the immediately pre-

ceding step of the current stage where mc2(X,) was computed;
" and jp <_ then{Case 2.1 } if i < m

min{mw(mc2(X,j)), minv(Ziys_),..., minv(X,y };
" and < jp < i then{Case 2.2} if < m

min{mw(mc2(Xi,j)), minv(Xjs_,), minv(X,j8_2),... minv(X,y+,),
mc2(Xy)};

"P and i’{Case 2.3} if < m < jp then

MINIMUM-WEIGHT DOMINATING SET IN PERMUTATION GRAPHS 417

mw(mc2(Xij min{mw(mc2(Xi,j), mw(mc2(Xijp }

mw(mc2(Xij)) min{mw(mc2(Xij)), mw(Xi), mw(Xjj)}
endfor; (l}

it i’ jp j, j, j

FI(. 10. The illustration for subcase 2.3.

TABLE 1
Computing mw(mc2(Xij).

{24, 34}
56, 26, 36., 46, 16}

6(X79)-- {56, 26}

{7(10), (10), (lO)} +
(X(ol) + (X)

{56, 26, 36, 46, 16}
{56’,,,26’ 36’,46’ ,16}

{8, 8, 28, 38, 48, 8}
c(xs) + c(x78)
c(x4) + c(x)
C(X1.6) ". 6(X48,)

rainy(X23) 1.i

rainy(X16) 1.1

m,(,.(x)) .
,,(,(x)) .

minv(Xls) 1.1

min(mw(mc2(X56)), mw(mc2(XTs))} 2.2

min{mw(mc2(X46)), mw(mc2(Zss))} 2.3

min{mw.(m.c2(X!.6.).)!.mw!m, c2(Xas)).} 2..3
min{rainy(X29), min)(X28)} 1.1

min{mw mc2 XT9 rainy(X26)} 2.1

mi.{,.(.(,X9)),.,,(z:,),,.(mc(x))), .,
min{rainy(X2(10)), mw(mc2(X79)) } 1.2

min{mw(mc2(XT(lO))),mw(mc2(X59))} 2.3

min{,.mw,,(m.,,c2(X50))), mw,.,!mc2(X29))} 2,.3

Table 1 shows the computational relationship among all mw(C(Xij))’s of our
sample graph in Fig. 5 for CLIQ(Xj)[2.

THEOREM 5.1. All mc2(Xj)’s can be computed in O(m + n) time.

Proof. Since the correctness of our algorithm follows from the preceding discus-
sion, we show its time complexity. As shown previously, all RS_TLCLj’s and jp’S can
be obtained in O(m / n) time and O(n) time, respectively. All minv(Xij)’s can be
obtained in O(n /m) time using the prefix computation. It then suffices to show that
each minv(Xij) value is accessed at most once in calculating all mc2(Xij)’s in our
algorithm that computes all back(Xij)’s. Let minv(Xlj,) be an arbitrary minv value
accessed in computing for some Xij if any exists. Then i_base[j] il. We show that
such Xj is unique.

Let K (kl,... ,ks) be the sublist of TRCLi such that i < kl < < ks and
ICLIQ(X{lk)l 2 for 1 _< r <_ s. Let H (h,...,ht) be the sublist of TLCLk such
that i hi < < h < k8 and ICLIQ(Xhks)I 2 for each r 2,3,...,t. Then
it is readily seen that K and H are disjoint and no two lines in K (and H) intersect
each other, as shown in Fig. 11. Let L (l,..., 18+t) be the list obtained by merging

418 C. RHEE, Y. D. LIANG, S. K. DHALL, AND S. LAKSHMIVAI:tAHAN

FIG. 11. An illustration .for K and H.

K and H in increasing order. Now, try to position j’ in L. If j’ /1(-- il), then
Xilj, is used only in computing mc2(Xili). So, we assume that j > 11. Let lr be
the largest line smaller than j’ in L. Then, we consider the following cases.

(1) lr hu and/r+ kv for some 1 N u N t and 1 <_ v <_ s. Then minv(Xi,j,)
is accessed only in computing mc2(Xhk,). Hence Xij is Xhk,.

(2) lr h and Ir+ h+l for some 1 <_ u < t. In this case, let k’ be
the smallest line in K such that k > hu+ Then minv(Xilj, is accessed only in
computing mc2(Xhk,). Hence Xij is Xhk,.

(3) lr kv and/r+ hu for some 1 N v <_ s and 1 <_ u N t. In this case, let k
be the smallest line in K such that k’ > hu, and let h’ be the largest line in H such
that h’ < k.. Then Xi is Xh, k,.

(4) lr k. and/r+l kv+ for some 1 N v < s. Let h be the largest line in H
such that h’ < k.. Then Xij is Zh,k,+

(5) lr l+t. Then Xij is Xt,+j,.
Clearly such Xij is unique. Thus the number of minv(Xij)’s used in computing

for all mc2(Xi)’s is O(m/n). Since at most two previous computed mc2(Xij) values
are involved in computing a current mc2(Xj) value, the total number of mc2(Xij)’s
used in computing for all mc2(Xj)’s is limited to O(m + n). Therefore, it takes
O(m + n) time to compute all mc2(Xj)’s.

6. Summary. We first review the dynamic strategy for computing back(Xij) in
Algorithm 3.1. The ordered lists (TLCLj, TRCLj, BLCL, and BRCLj), limit(Xiy),
and cdiv(Xij) are computed during the initialization process. Their computational
procedures are described in Lemmas 4.1, 4.2, and 4.3, respectively. At the jth stage,
j 1,2,...,u + 1, our algorithm computes mw(Xi) and back(Xi) for each
TLCLj in increasing order. Each mc(limit(Xij)) is available, and both iback(Xij)
and jback(Xi) can be computed as described in Lemma 4.4. These functions are
used to compute back(Xij). Next in the same stage j, we compute minv(Xij)’s,
mc2(Xij)’s, and mc(Xij)’s. All minv(Xij)’s are computed in reverse order of the list
BRCLj, and mc2(Xj)’s are computed for all i in reverse order of the list TLCLi. The
algorithm for computing mc2(Xj) is described in Algorithm 5.1. Finally, mc(Xj)
are computed for all i in reverse order of the list TLCL. If [CLIQ(Xj)[<_ 2, then
mc(Xij) is equivalent to one of mc2(Xi), Xi and Xj, for which the mw value is a
minimum. On the other hand, if [CLIQ(Xij) > 2, then mc(Xii) is either mc(Xi) or

mc(Xk), whichever has a smaller mw value, where k cdiv(Xiy). Now we are ready
to state the following lemmas.

LEMMA 6.1. All mc(Xj) ’s can be found in O(m + n) time.

Proof. According to Theorem 3.1, if cdiv(Xij) k(i), then mc(Xij)
Xi,j, {mc(Xk), mc(Xk)} such that mw(X,,) is the smaller of mw(mc(Xt:))
and mw(mc(Zkj)). Otherwise, i.e., cdiv(Xij) i, mc(Xij) mc2(Xij). Since all
cdiv(Xij)’s can be found in O(m + n) time (Lemma 4.3) and all mc2(Xij)’s can also

MINIMUM-WEIGHT DOMINATING SET IN PERMUTATION GRAPHS 419

be computed in O(m + n) time (Theorem 5.1), it follows that all rnc(Xj)’s can be
found in O(m + n) time.

LEMMA 6.2. All back(Xj)’s can be obtained in O(m / n) time.

Proof. For each Xj we first identify mc(limit(Xj)), which was computed at a pre-
vious stage. Then back(Xiy)is iback(Xij), jback(Xiy), or mc(limit(Xij)), whichever
has the smallest value in W MWDS iback Xij +Sij W MWDS(jback Xij +Sij
or W(iWDS(mc(lirnit(Xij))) + Siy). The validity of this procedure is supported by
Theorems 2.2 and 3.1.

Note that once all back(Xij)’s are computed, a minimum-weight dominating set
can be obtained by tracing back through the function back, which takes no more than
O(n) time. Thus we have the following main theorem.

THEOREM 6.3. The minimum-weight dominating set problem for permutation
graphs can be solved in O(m + n) time.

7. Conclusion. In this paper, we presented an algorithm for finding a minimum-
weight dominating set in a permutation graph. The algorithm takes only O(n + m)
time, where n is the number of nodes and m is the number of edges in the graph. The
algorithm basically uses the same approach as introduced in [6]. The improvement
in time complexity is achieved as a result of identifying and removing some of the
redundant computations. This is the best available algorithm to date for this problem.

Acknowledgments. The authors thank the anonymous referees for their com-
ments that greatly helped improve the presentation of this paper. We also thank
Glenn Manacher for bringing [7] to our attention.

REFERENCES

[1] M. J. ATALLAH AND S. R. KOSARAJU, An efficient algorithm for maxdominance, with appli-
cations, Algorithmica, 4 (1989), pp. 221-236.

[2] M. J. ATALLAH, G. K. MANACHER, AND J. URRUTIA, Finding a minimum independent dom-
inating set in a permutation graph, Discrete Appl. Math., 21 (1988), pp. 177-183.

[3] D. G. CORNEIL, Y. PERL, AND L. K. STEWART, A linear recognition algorithm for cographs,
SIAM J. Computing, 14 (1985), pp. 926-934.

[4] M. FARBER AND J. M. KEIL, Domination in permutation graphs, J. Algorithms, 6 (1985),
pp. 309-321.

[5] M. C. GOLUMBIC, Algorithmic Graph Theory and Perfect Graphs, Academic Press, New York,
1980.

[6] Y. D. LIANG, C. RHEE, S. K. DHALL, AND S. LAKSHMIVARAHAN, A new approach .for
the domination problem on permutation graphs, Inform. Process. Lett., 37 (1991),
pp. 219-224.

[7] G.g. MANACHER AND T. A. MANKUS, Incorporating negative-weight vertices in certain vertex-
search graph algorithms, Inform. Process. Lett., 42 (1992), pp. 293-294.

[8] A. PNUELI, A. LEMPEL, AND S. EVEN, Transitive orientation of graphs and identification of
permutation graphs, Canad. J. Math., 23 (1971), pp. 160-175.

[9] C. RHEE, S. K. DHALL, and S. LAKSHMIVARAHAN, An NC algorithm for the domination
in permutation graphs, in Proc. 28th Annual Allerton Conference on Communication,
Control, and Computing, Monticello, IL, 1990, pp. 294-295.

[10] J. SPINRAD, On comparability and permutation graphs, SIAM J. Comput., 14 (1985),
pp. 658-670.

[11] J. SPINRAD, A. BRANDSThDT, AND L. STEWART, Bipartite permutation graphs, Discrete Appl.
Math., 18 (1987), pp. 279-292.

[12] K. H. TSAI AND W. L. HSU, Fast algorithms for the dominating set problem on permutation
graphs, in SIGAL’90 Algorithms, Asano et al., eds., Lecture Notes in Computer Science,
Springer-Verlag, New York, 450 (1990), pp. 109-117.

SIAM J. COMPUT.
Vol. 25, No. 2, pp. 420-447, April 1996

() 1996 Society for Industrial and Applied Mathematics
012

GENERALIZED KRAFT’S INEQUALITY AND DISCRETE
k-MODAL SEARCH*

ANMOL MATHURf AND EDWARD M. REINGOLD$

Abstract. A function f R R is k-modal if its kth derivative has a unique zero. We study the
problem of finding the smallest possible interval containing the unique zero of the kth derivative of
such a function, assuming that the function is evaluated only at integer points. We present optimal
algorithms for the case when k is even and for k 3 and near-optimal algorithms when k _> 5 and
odd. A novel generalization of Kraft’s inequality is used to prove lower bounds on the number of
function evaluations required. We show how our algorithms lead to an efficient divide-and-conquer
algorithm to determine all turning points or zeros of a k-modal function. Unbounded k-modal search
is introduced and some problems in extending previous approaches for unbounded searching to the
k-modal case are discussed.

Key words, k-modal search, Kraft’s inequality, k-modal functions, optimal algorithms, binary
search, unimodal search, bimodal search, unbounded search, Fibonacci numbers

AMS subject classifications. 68Q25, 68Q20, 11B39

1. Introduction. The problem of determining properties of an unknown func-
tion by evaluating it at scattered points arises in many different contexts. If the func-
tion is arbitrary, then this might require the evaluation of the function at all points in
its domain. However, if the function is well behaved, it is possible to determine some
parameters of the function from only a few evaluations. Shannon’s sampling theorem
in communication theory is a classic example of this problem. More recently, geo-
metric probing has become an active area of research in computational geometry [20];
such probing aims to find some shape parameters of an object by probing it at the
fewest possible points. In this paper we present a natural measure of the complexity
of a function called the modality and demonstrate its utility in the design of efficient
algorithms for finding certain parameters of the function.

A function f is k-modal if its kth derivative has a unique zero; such a
function can have at most k local extrema. Although the use of local extrema in this
definition suggests an implicit assumption about the continuity of f, the definition is
easily extended to discrete functions f 0, 1,..., N} --. . The analog of the kth
derivative in the discrete case is Ak f, defined recursively by

Akf A(Ak-f),
Af(i) f(i - 1) f(i).

With this in mind, we will use the term "kth derivative of f" to refer to the true kth
derivative of f if f is sufficiently differentiable and to Akf if f is discrete. A "zero"
of a discrete function is an integer i, 0 _< i < N such that either

f(i) --0

Received by the editors March 29, 1993; accepted for publication (in revised form) September
7, 1994.

Department of Computer Science, University of Illinois at Urbana-Champaign, 1304 West
Springfield Avenue, Urbana, IL 61801. The research of this author was supported in part by National
Science Foundation grant MIP-92-22408.

Department of Computer Science, University of Illinois at Urbana-Champaign, 1304 West
Springfield Avenue, Urbana, IL 61801. The research of this author was supported in part by National
Science Foundation grant CCR-93-20577.

420

GENERALIZED KRAFT’S INEQUALITY AND DISCRETE k-MODAL SEARCH 421

or

f(i). f(i + l) < O.

We define a turning point of the discrete function f as an integer i, 0 <_ i < N, such
that

Af(i- 1). Af(i) < O.

A discrete k-modal function can have at most k turning points (this follows from
Lemma 2.2 below). It is important to note that a k-modal function can have fewer
than k turning points (see Fig. 1). One major class of continuous k-modal functions
is the set of polynomials of degree k / 1. A discrete function that is obtained by
restricting a continuous k-modal function to a set of points so that at least one point
lies between any two adjacent roots of the continuous function is k-modal.

Throughout this paper, we assume that for a k-modal function f over the interval
[0, N), Akf is increasing and f(0) (--1)k+l(:x:), f(N) (--1)k(:x). We define the
discrete k-modal search problem as the determination of an interval [i, i + k + 1)
containing the unique zero of the kth derivative of f by evaluating (probing) the
function only at integer points in the range [0, N). The smallest range to which the
unique zero of the kth derivative of f can be localized is of size k + 1 because at least
k / 1 values of f are required to compute a single value of A f.

The problem of finding the zeros of continuous functions in one variable is closely
related to its discrete counterpart in the case when only function evaluations are
allowed [14], [19]. In order to approximate a zero of a continuous function f’[0, 1]

to an accuracy e > 0, we can locate the zero of the discrete function obtained by
sampling the continuous function at ie, 0 _< _< 1/e. Thus, the lower bounds and
algorithms presented in this paper apply to continuous functions if the discretized
function is k-modal.

The case k 0 is the problem of finding the zero of a monotonic function,
for which binary search is the optimal strategy. The case k 1 corresponds to
searching for the unique local maximum/minimum of a unimodal function. This
problem was first studied by Kiefer [10], who gave an optimal algorithm for narrowing,
in n probes, a unit interval containing the local extremum to an interval of length at
most 1/F,+1 + e, for any fixed e > 0, where Fi is the ith Fibonacci number defined
by F0 0, F1 1, and Fi Fi_l + Fi_2. Kiefer proved that this Fibonacci search
is optimal in the sense that any algorithm using n probes that narrows the interval
containing the local extremum to at most 1/F,+ for some functions must fail to
narrow the length of the interval to at most 1/F+ + for other functions. Further
work on variants of the unimodal search problem was done by Avriel and Wilde [2],
Oliver and Wilde [15], and Witzgall [23]. Karp and Miranker [9] considered the
unimodal searching problem under the assumption that several probes can be done
in parallel. More recently, Goldstein and Reingold [6] studied the discrete unimodal
search problem in which the probes are restricted to integer points. They use a variant
of Kraft’s inequality to prove a lower bound on the number of function evaluations
required for the discrete unimodal search problem. We generalize their results.

Interest in discrete k-modal searching arises because of its applications in com-
putational geometry, especially in algorithms for intersection of convex objects in two

This does not entail any loss of generality because if Akf is decreasing, then Ak (--f) is increas-
ing. So, we can determine whether Akf is increasing or decreasing by looking at the sign of f(0)
and, if it is decreasing, substitute -f for f.

422 ANMOL MATHUR AND EDWARD M. REINGOLD

f is bimodal

Af is unimodal

"" A2f is monotonic

FIG. 1. Example of a bimodal function. Notice that because Af > O, f has no turning points.

and three dimensions [1], [4]. However, the case of k-modal searching for k >_ 2 has
received little attention. Veroy [22] studied the problem of finding the extrema of
a continuous, periodic bimodal function. Hyafil [7] studied the continuous k-modal
search problem and proposed optimal algorithms for even k. He used the relationship
between the complexity of finding the unique zero of a monotonic function with k
asynchronous processors and that of (k- 1)-modal searching with a single processor
to prove lower bounds on the number of function evaluations required for k-modal
search. This technique for proving lower bounds was first used by Kung [12]. In [13],
Kung makes use of adversary arguments to prove lower bounds on the complexity
of finding a zero of a continuous function. In contrast, we use characteristics of k-
modal search trees to prove a generalization of the Kraft’s inequality. The k-modal
search algorithms and the algorithm for finding all the turning points of a discrete k-
modal function have applications in one-dimensional optimization problems for which

GENERALIZED KRAFT’S INEQUALITY AND DISCRETE k-MODAL SEARCH 423

the objective function is not available in closed form and/or is time consuming to
evaluate.

In this paper we extend the algorithms of [7] to discrete k-modal search and
use a novel generalization of Kraft’s inequality to give lower bounds on the number
of function evaluations required for discrete k-modal search; a related, continuous
generalization of Kraft’s inequality was used by Karp [8] to derive lower bounds on
the cost of some lopsided prefix-free codes. In the process of our work, some identities
are proved for a natural generalization of the Fibonacci numbers. One consequence
of our work is an improvement to an algorithm in [4] which uses bimodal searching
(k 2). We also present an algorithm to find all the local extrema of a k-modal
function.

The organization of the rest of the paper is as follows: 2 discusses the representa-
tion of k-modal search algorithms as k-modal search trees and formulates a theorem
that is used to prove lower bounds on the number of probes required for k-modal
search. In 3 we prove the theorem establishing the lower bounds. Section 4 discusses
algorithms for k-modal search and 5 describes how to use those algorithms to design
an efficient algorithm for finding all the extrema of a k-modal function. Section 6
discusses unbounded k-modal search. Finally, in 7, we conclude with some open
problems.

2. k-modal search trees and lower bounds. All algorithms that use only
function evaluations for k-modal searching maintain an interval of uncertainty, I
[0, N), that is guaranteed to contain the unique zero of the kth derivative of the
function. The algorithms begin with I [0, N) and use function evaluations to prune
I until it becomes sufficiently small. These algorithms rely on the following lemmas.

LEMMA 2.1. Given a k-modal function f, the knowledge of the function at fewer
than k + 1 points inside the interval of uncertainty cannot reduce the length of the
interval of uncertainty.

Proof. It is easy to see that for a monotonic function, the interval of uncertainty
cannot be shortened without making at least one probe. Since the kth derivative of
k-modal function f is monotonic and at least k+ 1 values of f are required to compute
one value of the kth derivative of f, it follows that at least k + 1 values of f inside
the interval of uncertainty are required to shorten it.

LEMMA 2.2 (discrete Rolle’s theorem). Given a discrete function

having zeros at i and j, i < j, there is a k, <_ k <_ j, such that Af has a zero at k.
Proof. Assume without loss of generality that j is the first zero of f greater than

(otherwise one can replace j with the first zero greater than in the subsequent
argument). Since is a zero of f, either f(i) 0 or f(i). f(i + 1) < 0. Without
loss of generality, assume that f(i + 1) _> 0. If f(i) f(i + 1) 0, then Af(i) 0
and we are done. Otherwise, f(i) < 0 and f(i + 1) > 0, and then Af(i) > 0. Since
there is no other zero of f between i and j, f(j) >_ 0 and f(j / 1) _< 0. Again, if
f(j) f(j + 1) 0, then j is a zero of Af and we are done; otherwise Af(j) < O.
Hence, there must be some k, _< k < j such that either Af(k) 0 or Af(k) > 0
and Af(k + 1) < 0. But such a k is a zero of Af, thus proving the theorem.

LEMMA 2.3. Let f {0, 1,...,N} --. be a discrete function such that Akf
is increasing and Akf(i) > O, for all i E {0,1,...,N- k}. Then for every set
{Xo, Xl, xk } of k + 1 distinct values in {0,..., N},

P(x0, x,..., x, f) > 0,

424 ANMOL MATHUR AND EDWARD M. REINGOLD

where

P(xo, Xl,...,Xk,Y)
k f()

i--O

Proof. Consider the Lagrange interpolation formula. [5] for the set of points
k X-x and its error(xi, f(xi)), 0 _< _< k, given by ’].=o f(xi) [Ij

_
k

E(x) S(x) f(x) rl x x
i=0 ji x xj

Since E(xi) 0, 0 <_ i _< k, by repeated application of Lemma 2.2, we can conclude
that AkE has a zero at some m (0,..., N- k}. Furthermore, since A distributes
over summation and Akx 0, if < k, we have

Akf(x) AkE(x) + k!P(xo,xl, ,xk, f).

By assumption, Akf is positive at all points in {0,..., N k}. Also, since m is a zero
of AkE, either AkE(m) 0 or one of AE(m) or AkE(m + 1) is negative. Hence,
from equation (1) we get that P(xo,xl,... ,x, f) > O.

LEMMA 2.4. Given a k-modal function f and k + 3 of its values

f(x0), f(xl), f(xk+2),

with

XO Xl Xk+l Xk+2,

the interval of uncertainty can always be reduced to [XO, Xk+) or [X,Xk+2) irrespec-
tive of the choice of x,... ,Xk+2. Furthermore, in the worst case, the interval of
uncertainty cannot be shortened by more than this amount.

Proof. Suppose the unique zero of Akf lies in Ix0, x1). Then, Akf is positive in
Ix1, N). So, using Lemma 2.3,

P(x, x2,..., x+, f) > O.

Thus, if

P(xl, x2, Xk+, f) <_ O,

we can conclude that the unique zero of Akf does not lie in [x0,xl). By a symmetric
argument, if P(xl,x2,...,x+,f) >_ 0, then the unique zero of Akf does not lie
in [xk+,xk+2); see Fig. 2. If P(x,x2,...,x+,f) 0, then both [x0,xl) and
[Xk+, x+2) can be pruned.

Given k + 3 values of f such that P(x,x2,... ,x+, f) _< 0, one can construct
a function g which has the same values as f at the k / 3 specified points but has
the unique zero of its kth derivative anywhere in [x, x+2). Thus, no algorithm for
discrete k-modal search can shorten the interval of uncertainty to be smaller than
[x,xk+), given only the values of the function at xi,0 _< i _< k + 2. A symmetric
argument works for the case when the P function is nonnegative.

Thus, the algorithms for k-modal search maintain an interval of uncertainty
I [Xo,Xk+l) in the form of an array of positions [XO, Xl,...,x,xk+] at which

GENERALIZED KRAFT’S INEQUALITY AND DISCRETE k-MODAL SEARCH 425

XO Xl

P(xi, z2,. Xk+, f) >O
XO Xl X2 Xk+l

Xk+l Xk+2

,Xk+l, f) < 0

Xl X2 Xk+l Xk+2

FIG. 2. Illustration of Lemma 4; if P(xl,X2 ,Xk+l,f) O, then both the leftmost and
rightmost segments can be discarded.

[A xo xlf/.
/

[A, yo, yl, yk-, ZL] JAR, zo, zl,.. zk-1, Z]

[A, A + 1, A / 2, Z- k,...,Z]

FIG. 3. A subtree of a k-modal search tree. The path from the root to the leftmost (rightmost)
leaf is the left (right) spine.

the function has been evaluated; at each step another probe is made inside I and ei-
ther the leftmost or the rightmost segment is discarded, depending on the particular
values of f at the k + 3 points in the interval at which its values are known.

Lemmas 2.1 and 2.4 tell us that an algorithm that solves the discrete k-modal
search problem by probing can be described by a k-modal search tree as shown in
Fig. 3. Each node is an array of the form [A, xo,x,... ,xt:-, Z] and represents the
current interval of uncertainty [A, Z) and the distribution of probes within it, with
A x-1 and Z xk. The left (right) child of a node represents the new interval of
uncertainty after the rightmost (leftmost) segment is discarded following a new probe.
If the new probe is made at y, xi < y < Xi+l, -1 _< _< k- 1, then the let child
is [A, yo, yl,...,yk-l,Zi] with A Y-1 and ZL Yk, where yj xj,-1 <_ j <_ i,
yi+l y, and yj xj_,i + 2 <_ j <_ k. Similarly, if [An, zo, z,...,zk_,Z] is
the right child with An z_ and Z z, then z xy+l,-1 _< j _< i- 1,
zi y, and zj xj,i/l <_ j <_ k. The root of the tree is [0,w0,...,wk_,N],
where Wo, Wl,...,Wk-1 are the initial k probes, and the leaves all have the form
[1, / 1,1 + 2,..., + k / 1]. The leftmost (rightmost) path in a k-modal search tree
is referred to as the left (right) spine.

The cost of i in a given k-modal search tree, c(i), is k plus the longest distance
from the root to a leaf node containing the interval [i, i / 1). The k initial probes
contribute the additive factor of k to the cost. c(i) is the maximum number of probes
required for k-modal search using the k-modal search algorithm corresponding to the

426 ANMOL MATHUR AND EDWARD M. REINGOLD

given k-modal search tree, if the unique zero of the kth derivative of f is in the interval
[,+].

We are now ready to state the main theorem that establishes the lower bounds;
it is a generalization, to k-modal search trees, of Kraft’s inequality [11] and the
Fibonacci-Kraft inequality of [6].

THEOREM 2.5. In a k-modal search tree over the range [0, N),
N-1

1
<1,

i--0

where

(3) Ln Ln-l-Lk/2J + Ln-l-[k/2,
and if k is even, then Li 1 .for 0 <_ i <_ [k/2], while if k is odd, then Lo 0 and
Li 1 for 1 <_ i <_ [k/2]. In (2),

(4) K=L-I(k)+I.
So, K is the smallest integer for which LK-1

_
k.

COROLLARY 2.6 (see [11]). For arbitrary binary trees (which correspond to O-
modal search trees),

N-1

i--O

COROLLARY 2.7 (see [6]). For a unimodal search tree over the range [0, N),
N-1

F()+i-o

<_1,

where Fi is the th Fibonacci number.
The lower bound on the number of probes required is given by the following

corollary.
COROLLARY 2.8. Irt k-modal searching, in the worst case the minimum number

of probes required to narrow the interval of uncertainty from [0, N) to an interval of
length k + 1 is at least L-I(N) K. Thus, if k 2p is even, the minimum number of
probes is at least (p+ 1)lg N- K, and if k 2p+ 1 is odd, then the minimum number
ofprobes is at least (log 2) lg N-K, where " is the dominant root ofxp+2-x 1 O.

Proof. Let h max0<i<N c(i). Theorem 2.5 implies that N/Lh+K _< 1. Hence,
h >_ L-(N) K. The actual values of L-(N) when k is even or odd follow from
the definition of the sequence L. 0

COROLLARY 2.9. In binary (O-modal) search, the minimum number of probes
required to narrow the interval of uncertainty from [0, N) to an interval of length 1 is
at least [lgN.

COIOLLAIY 2.10 (see [6]). In unimodal search, the minimum number of probes
required to narrow the interval of uncertainty from [0, N) to an interval of length 2 is
at least F-(N) 2, where F-(N) is the smallest such that Fi >_ N.

COROLLARY 2.11. In bimodal search, the minimum number of probes required to
narrow the interval of uncertainty from [0, N) to an interval of length 3 is at least
2[lg N] 3.

GENERALIZED KI:tAFT’S INEQUALITY AND DISCRETE k-MODAL SEARCH 427

3. Proof of Theorem 2.5. In this section we prove Theorem 2.5, establishing
the lower bound on the number of probes for k-modal search. The proof of the theorem
is by induction on the height of the k-modal search tree. The proof for the case when
k is even is much simpler since the recurrence relation in Ln is simple for this case.
For odd k we must prove a stronger version of the generalized Kraft’s inequality in
Theorem 2.5, and the proof is more complicated. In both the cases, the proof makes
use of the observation that the intervals of uncertainty at nodes that are not too far
down the left and right spines overlap. This allows the sum in the generalized Kraft’s
inequality to be split into two sums that can be bounded by induction. The following
lemma formalizes the crucial observation regarding overlap of intervals of uncertainty.

LEMMA 3.1. Let [A, Z) be the interval of uncertainty at the root of a k-modal
search tree and let [A, ZL) and JAR, Z) be the intervals of uncertainty at the nodes at
distance dL and dR along the left and right spines, respectively. If

dL+ dR <_ k + 2,

then

[A, ZL) U JAR, Z) [A, Z)

and

ZL AR >_ k + 2- (dL + dR).

Proof. Let xo,xl,...,xk be the k / 1 probes inside the interval of uncertainty
[A, Z) at the root of the k-modal search tree; these k + 1 probes include the additional
probe made just before one of the extreme segments is discarded. By Lemma 2.1,
in one step down any path in a k-modal search tree at most one of the extreme
segments can be discarded. Hence, after dL steps down the left spine, at most dL
of the rightmost segments, out of the k / 2 initial segments, can be discarded. So,
ZL >_ Xk-dL+I. Similarly, the left endpoint of the interval of uncertainty of the node
dR steps down the right spine must be at or to the left of XdR-1. If

dL -dR

_
k + 2,

then

Hence,

Furthermore,

dR- 1 <_ k- dL+ 1.

AR <_ Xdt-1

_
Xk-dLZ-I

_
ZL.

[A, ZL) (2 [An, Z) [A, Z).

ZL AR >_ Xk-dL-i XdR-1
>_ k- dL+ 1- (dR- 1)

k + 2- (dn + dR),

as claimed.

428 ANMOL MATHUR AND EDWARD M. REINGOLD

[A, x0, Xl,.. X2p, Z]

steps .

[A,A+I,...,A+k+I]

..<_ p steps

".

[z- z]
FIG. 4. Base case for the inductive proof for even k.

3.1. k even. We first note that for the case when k 2p, the recurrence in
equation (3) reduces to

Ln 2Ln_(p+l),

with Li 1, 0 <_ i _< p, as the initial conditions. The solution to this recurrence is
clearly

Ln =2[-l

For the base case of the induction, the subtree has both the left and right spines
of length at most p (see Fig. 4). Consider the extreme case when both the left
and the right spines have length p. Let [A, Z) be the interval of uncertainty at the
root and let xo, xl,... ,X2p be the 2p + 1 probes inside the interval of uncertainty,
including the probe made just before the first outermost interval is discarded. By
Lemma 3.1, if [A, ZL) and [An, Z) are the intervals of uncertainty at the leaves at
the end of the left and right spines, respectively, then these two intervals overlap and
An ZL 2p / 2- 2p 2. Since both the intervals [A, ZL) and [An, Z) correspond
to leaves of the k-modal search tree, each has length k + 1. So, the length of the
interval [A, Z) is at most 2(k + 1) 2 2k. Also,

Lk+L-l(k)+l

_
2k.

Hence,

z- 1 < 2k

i=A Lc(i)+K Lk+L-l(k)+l

The theorem is thus true for all the base cases.
We now ssume that the theorem is true for subtrees with height at most h,

h >_ p + 1. There are two cases for the induction step.

3.1.1. Case 1. Suppose that both left and right spines have length at least p+ 1.
Here the situation is as shown in Fig. 5. Let [A, Z) be the initial interval of uncertainty
and let xo,x,... ,x2p be the initial probes inside [A, Z), including the probe made
just before the first step down the tree. If [A, ZL) and [An, Z) are the intervals of
uncertainty after p + 1 steps down the left and right spines, respectively, then by
Lemma 3.1, [A, ZL) and [An, Z) overlap. Hence, the subtrees TL and TR cover the

GENERALIZED KRAFT’S INEQUALITY AND DISCRETE k-MODAL SEARCH 429

[A, x0, x1,....., x2p, Z]

p / 1 steps. p / 1 steps

[A, ZL] [A, Z]

FIG. 5. Case 1 of the induction for even k.

entire range [A, Z). Let CL and cn be the cost functions in TL and Ts, respectively;
then, using the induction hypothesis on TL and Ts, we have

and

zL-1 1
sum in TL

i--A LcL (i)+K
<1

Z-1
1

<1.sum in Ts
LcR(i)+gi’-’A1

Since c(i) >_ max{cL(i), cA(i)} + (p + 1) and Lj+(p+) 2Lj, we have

Z-1

Z 1 < 1
(sum in TL) + 1

(sum in Ts) < 1
i=A Lc(i)+g 5

This proves the theorem for Case 1.

3.1.2. Case 2. Suppose that one of the two spines has length less than p + 1.
Without loss of generality, assume that the left spine has length <_ p. Let Ts be the
subtree rooted at the node at distance p + 1 from the root along the right spine. By
Lemma 3.1, it follows that the interval of uncertainty at the root of Ts, [As, Z), and
the one at the leaf at the end of the left spine, [A, A -}- k + 1), will overlap. In fact,
if [A, xo, Xl,..., X2p, Z] is the distribution of probes in the interval of uncertainty at
the root of the subtree, then A / k / 1 _> xp+ and As <_ Xp. So, we can consider the
term corresponding to the interval [A + k, A -}- k / 1) to be part of the sum over
Thus,

ATk-1 1
z-

1

i=A Lc(i)+K i=A Ll+k+L-l(k)+l i=AR Lca(i)+p+l+K
k 1
2k 2

=1,

completing the proof of the theorem for even k.

430 ANMOL MATHUR AND EDWARD M. REINGOLD

steps.

[A, x0, xl,...., X2p, Z]

[A,A + 1,...,A + k + 1]

.._< p / 1 steps

".

[z 1),...,z]
FIG. 6. Base case for the inductive proof for odd k.

3.2. k odd. Let k 2p + 1; we prove the following lemma, from which the
theorem follows as a corollary.

LEMMA 3.2. In a k-modal search tree, k odd, let [A, x0, xl,..., x_, Z] be a node
at distance from the root and let q be a value in the range A <_ q < Z having the
least cost in the tree--that is, for all i, A <_ < Z, c(q) <_ c(i). Then

z-1
1 < Lc(q)+K-l

i=A Lc(i)+K Lc(q)+K

where Ln and K are defined by equations (3) and (4) in Theorem 2.5.
The following identity is used in the proof of Lemma 3.2 in the two subsections

below. Its proof and that of some other identities describing the behavior of Ln when
k is odd are given in the Appendix. For _> 0, > 0, j > 0, if 2,3,...,p (mod
p + 1), then

(5) Li Li+._____L_
Li+j Li+j+l;

if/---- 0 or 1 (mod p + 1) and [J is odd, then

(6) Li Li+t
L+j L+j+t

if i 0 or 1 (mod p / 1) and p is even, then

(7) L < L+z
Li+j Li+j+l

The proof of Lemma 3.2 is by induction on the height of the subtree. As in the
proof of the theorem for even k, this proof uses Lemma 3.1 to infer that the intervals
of uncertainty of the nodes at distance p / 1 and p / 2 down the left and right spines
overlap and cover the entire interval of uncertainty at the root. This case, however, is
much more complicated than for even k because the recurrence governing the lower
bound does not have a simple, closed-form solution.

For the base case, the length of the left and right spines of the subtree are at
most p and p / 1 (see Fig. 6). Again, by Lemma 3.1, we know that the intervals of
uncertainty at the leaves at the end of the left and right spine overlap and have at

GENERALIZED KRAFT’S INEQUALITY AND DISCRETE k-MODAL SEARCH 431

least two common segments. Hence, the length of the interval of uncertainty at the
root is at most 2k. So,

z-1
1 2k

i=A Lc(i)+K "= Lc(q)+K Lc(q)+K

Since c(q) >_ + k, Lc(q)-l+g

_
Lk+L-l(k)+l

_
2k,

z-1
1 Lc(q)-l+g<

i=A Lc(i)+g Lc(q)+g

We now assume that the lemma is true for all subtrees of k-modal search trees of
height at most h for any h >_ p / 1.

For the induction step, we have a k-modal search tree in which both the spines are
of length at least p + 1. In the following discussion, we will assume that the interval
of least cost, [q, q + 1), is contained in the subtree TR rooted at a node at distance at
most p / 2 along the right spine. The case when [q, q + 1) lies in the left subtree is
symmetric.

Let TL and TR be the subtrees rooted at distance min{p+1, dL } and min{p/2,
along the left and right spines, respectively, where dL and dR are the lengths of the
left and right spines. From Lemma 3.1, we know that the intervals of uncertainty at
the roots of TL and TR overlap.

3.2.1. Case 1. Suppose that the left and right spines have length at least p / 1
and p + 2, respectively; see Fig. 7. Let Jr, r + 1) be the least-cost interval in TL. By
the induction hypothesis, we have

ZL--1 1 Lc(r)-(l+p+l)+g
sum in TL

i=A Lc(i)+g- Lc(r)+g

and

sum in TR

Now, if

z-1
1 < Lc(q)_(l+p+2)+K

i--AR Lc(i)/K Lc(q)/K

(8) Lc(r)-(l+p+l)+K < Lc(q)-(l+p+l)+K
Lc(r)+K Lc(q)+K

z-1

i--A Lc(i)+K

then

(sum in TL)/ (sum in

< Lc(r)-(l/p/l)+K + Lc(q)-(l/p+2)/K
Lc(r)/K Lc(q)/K

< Lc(q)-(l+p+l)+g _. Lc(q)-(l+p+2)+g
Lc(q)+g Lc(q)+g

Lc(q)_(l+p+l)+g -- nc(q)_(l+p+2)+g

Lc(q)-l+K
Lc(q)+K

Lc(q)+K

432 ANMOL MATHUR AND EDWARD M. REINGOLD

[A, xo,xl, ,xk-, Z]

steps.. ..p 4- 2 steps

[A,... ,Zg]
JAR,... ,Z]

FIG. 7. Induction when k is odd and no expansion of TL is required.

From (5) and (6), inequality (8) is true when c(q) (1 4- p 4- 1) 4- K =_ 2, 3,... ,p
()-(++)+g(mod p 4- 1) or when c(q) (l 4- p 4- 1) 4- K

_
0, 1 (mod p 4- 1) and p+

is odd. If inequality (8) is not satisfied, then we have two subcases.
Case 1(a). Suppose the left and right spines of TL have length at least p 4-1 and

p 4- 2, respectively. Let TLL and TLR be the subtrees at distance p 4-1 and p 4- 2 along
the left and right spine of TL (see Fig. 8). Let [s, s 4- 1) and Jr, r 4- 1) be the intervals
of least cost in TLL and TLn, respectively. Then by the induction hypothesis,

ZLL-- 1 Lc(s)-(l+2p+2)/K
sum in TLL E Lc(i)+g

(
Lc(s)+Ki----A

ZI-I 1
sum inTL,= E

i=ALa Lc(i)+K
< Lc(r)-(l+2P+3)+K

Lc(r)+K

and

Z-1

sum in T, E 1

i=AR Lc(i)+g
< Lc(q)-(l+p+2)+K

Lc(q)+K

Since inequality (8) is not satisfied,

a
c(q) -(l + p + 1) + K|

p+l J
is even. Hence,

p+l p+l
=a-1

GENERALIZED KRAFT’S INEQUALITY AND DISCRETE k-MODAL SEARCH 433

is odd. Thus, from inequality (6) it follows that

and

Lc(s)-(l+2p+2)+K < Lc(q)-(l+2p+2)+K
Lc(s)+K Lc(q)+K

Lc(r)-(l+2p+3)+K < Lc(q)-(l+2p+3)+K
Lc(r)+K Lc(q)+K

Now, by Lemma 3.1,

Z-1

i=A Lc(i)+K
(sum in TLL) / (sum in TLR) + (sum in

ZLL --1

i=A Lc(i)+K

< Lc(s)-(l+2p+2)+K
Lc(s)+K

Lc(q)-(l+2p+2)+g
Lc(q)+K

Lc(q)-l+K
Lc(q)+K

ZL --1 Z--1

i-’ALR Lc(i)+K i--AR Lc(i)+K__
Lc(r)-(l+2p+3)+g

__
Lc(q)-(l+p+2)+g

Lc(r)+K Lc(q)+K
Lc(q)-(l+2p+3)+g Lc(q)-(l+p+2)+g+ +Lc(q)+K Lc(q)+K

Case l(b). Suppose that TL is not big enough to be sufficiently expanded. Let
y min{dLL,P+ 1} and z min{dLR,p+ 2}, where dLL and dLR are the lengths of
the left and right spines of TL, respectively.

If y <_ p and z <_ p + 1, then by Lemma 3.1, the intervals [A, ZLL) and [ALR, ZL)
overlap and ALR- ZLL 2. Since both these intervals correspond to leaves in
the k-modal search tree, their length is k / 1. So, the length of [A, ZL) is at most
2(k+ 1)-2 2k. Furthermore, since c(q) <_ c(i) for any such that [i, i+ 1) C [A, ZL),
we have

ZL--1 1 2k
sum in TL E <

i--A Lc(i)+g Lc(q)+g

Since c(q) >_ k + + 1,

nc(q)_(l+p+l)+K > nk+L-l(k)+l > 2k.

sum in TL <_ Lc(q)-(l+p+l)+K
Lc(q)+K

By the induction hypothesis, we know that

sum in TR <_ Lc(q)-(l+p+2)+K
Lc(q)+K

434 ANMOL MATHUR AND EDWARD M. REINGOLD

[A,Z)

p + 1 steps.

p + 1 steps ..p / 2 steps

".p / 2 steps

[A, ZLLi [ALR, ZL)

JAR, Z)

FIG. 8. Subcase when TL expands sufficiently.

Hence,
Z-1

Lc(i)+Ki--A

(sum in TL) + (sum in TR)

< Lc(q)-l+K
Lc(q)+K

If y p + 1 and z <_ p + 1, then by Lemma 3.1, we know that ALR ZLL >_ 1.
Furthermore, since the interval [ALR, ZL) corresponds to a leaf, we have

(9) sum in TL <_ (sum in TLL) /
ZL--I 1

i--ZL--]g Lc(i)+K

By the induction hypothesis,

(10) sum in TLL <_ Lc(s)-(l+2p+2)+K
Lc(s)+K

By the same argument as in Case l(a),
Lc(s)-(l+P+l)+K < Lc(q)-(l+p+l)+K

Lc(s)+K Lc(q)+K
Also, since c(q) <_ c(i) for any in the range [AIR, ZL),

ZL--1 1 < k

Lc(i)+g Lc(q)+g
i’-ZL --k

GENERALIZED KRAFT’S INEQUALITY AND DISCRETE k-MODAL SEARCH 435

Since c(q) >_ k + + 1,

Lc(q)-(l+2p+3)+K >_ Lk-2p-2+L-l(k)+l LL-I(k) k.

(11)
ZL --1

1 < Lc(q)-(l+2p+3)+g

i=ZL--k
Lc(i)+g Lc(q)+g

Thus by (9), (10), and (11),

sum in TL <_ Lc(q)-(l+p+l)+K
Lc(q)+K

and by the induction hypothesis,

sum in TR <_ Lc(q)-(l+p+2)+K,
Lc(q)+K

yielding

Z-1
1

iA Lc(i)+K
(sum in TL) q- (sum in TR) < Lc(q)-+K

Lc(q)+K

as desired.
The case when y _< p and z p + 2 is identical to the above, mutatis mutandis,

completing the proof of Lemma 3.2 for Case 1.

3.2.2. Case 2. Suppose that the spines of the k-modal search tree are not suf-
ficiently long. Again, we consider two subcases.

Case 2(a). Assume that the left spine has length y _< p and the right spine has
length at least p + 2. Let TR be the subtree rooted at the node at distance p+ 2 along
the right spine (see Fig. 9). By Lemma 3.1, we know that

Z-1 Aq-k

=A L(+K .= L(I+ + (sum in Tn).

By the induction hypothesis,

sum in TR <_ Lc(q)-(l/p+2)+K
Lc(q)/K

Z-1
1

iA Lc(i)+K

A+k 1 Lc(q)_(l+p+2)+K
-.= L(I+ L(I+

k + 1 /-,()_(++)+< +Lc(q)+K Lc(q)+K

Since c(q) >_ + k + 1,

Lc(q)-(l+p+l)+K >_ Lk+L-(k)+l >_ 2k >_ k + 1.

436 ANMOL MATHUR AND EDWARD M. REINGOLD

y steps..

[A,A+k+)

[A.,Z)

.p / 2 steps

JAR, Z)

FIG. 9. Induction when TL does not expand suJficien$ly.

Hence,
z-1

1 < Lc(q)-(l+p+l)+K
-b

Lc(q)-(l+p+2)+K
Lc(i)+g Lc(q)+g Lc(q)+gi=A

Lc(q)-l+g
Lc(q)+K

as desired.
Case 2(b). Suppose the right spine has length z _< p + 1 and the left spine has

length at least p / 1. This case is symmetric to Case 2(a). To show that the sum in

TL is sufficiently small, we use exactly the same arguments as in Case 1.
This completes the proof of Lemma 3.2, thus proving Theorem 2.5.

4. Algorithms for k-modal search. We first note that an algorithm for (k-1)-
modal search can be used for k-modal searching because the derivative of a k-modal
function f is the (k- 1)-modal function Af. Hence, we can replace each probe of Af
by the algorithm for (k- 1)-modal searching by two probes at adjacent points, and
use Af as the result of the probe made by the algorithm for (k- 1)-modal search.
This gives an algorithm for k-modal searching that uses twice as many probes as
the algorithm for (k- 1)-modal searching. However, these naive algorithms are not
optimal. The key to designing optimal algorithms for k-modal searching is to find a
probing strategy that insures that the k probes in the current interval of uncertainty
divide that interval in such a way that both the outermost segments are "sufficiently
large." Since this property must be satisfied recursively by the configurations that
result after one of the outermost segments has been eliminated, it is necessary that
the distribution of probes be "balanced" and the probing strategy must regenerate a
distribution of probes similar to the starting distribution.

4.1. Optimal algorithms for even k. When k 2p, the recurrence relation
used in deriving the lower bound on the number of probes required is

Ln 2Ln_(p+l),

with L 1 for 0 <_ i <_ p. The algorithm halves the length of the interval of
uncertainty after p / 1 probes and is hence optimal with respect to the number of

GENERALIZED KRAFT’S INEQUALITY AND DISCRETE k-MODAL SEARCH 437

new probe F

A F B E F B E C

new probe

E C G

Gnew probe

E C G D

FIG. 10. Part of the bimodal search tree generated by the optimal bimodal search algorithm.

probes used. This algorithm is an extension of the discrete case of the algorithm
proposed in [7].

Initially, the algorithm distributes the k probes uniformly over the interval [0, N).
Thus, the configuration of probes in the initial interval of uncertainty is of the form
[0, Lm, 2Lm, 3Lm,..., 2pLm, N], where m is chosen so that the rightmost segment has
length at most Lm, m L-I(N/(k + 1)). Now, the algorithm probes at the midpoint
of the unique center segmentmthis is the (p / 1)st segment from either end of the
interval of uncertainty--dividing it into two segments of length Lm_(p/1) each. Next,
either the leftmost or the rightmost segment is discarded and a new probe is made
at the midpoint of the segment adjacent to the center segment on the side opposite
the side that lost a segment. The algorithm maintains a central "region of division"
consisting of segments half as long as the segments on either side of this region. A
new probe is always made at the midpoint of a segment adjacent to the "region of
division" on the side opposite the side that lost a segment on the previous probe.
This guarantees that the first p probes cause segments of length Lm to be discarded
(except the first probe, which might result in the loss of the rightmost segment, which
might have length less than L,). After p/ 1 probes, the algorithm has a configuration
of probes that divides the interval of uncertainty into segments of length Lm_(p+l),
except the rightmost segment, which can be shorter. Thus, after p + 1 probes, the
interval of uncertainty is halved and a configuration similar to the starting one is
regenerated; this process is repeated until the interval of uncertainty is of length
k / 1. A part of a bimodal search tree generated by the above algorithm is shown in
Fig. 10.

In the pseudocode of Algorithm 4.1, we use a binary search tree to store the pairs
(x, f(x)) corresponding to probes in the current interval of uncertainty. The function
InsertPair inserts a new pair (x, f(x)) into the binary search tree. DeleteExtreme-
Segment deletes the pair corresponding to the right or left endpoint of the interval of
uncertainty. FindSide determines which of the two extreme segments in the current
interval of uncertainty can be discarded by computing the sign of P(xo,xl,... ,xk, f),
defined in the proof of Lemma 2.3 (see Fig. 2). Notice that our time complexity
measure considers only function evaluations, ignoring the O(log k)-time-per-tree op-
eration.

4.2. Optimal algorithm for trimodal search. Goldstein and Reingold [6]
presented an optimal algorithm for discrete unimodal (k 1) search based on Kiefer’s

438 ANMOL MATHUR AND EDWARD M. REINGOLD

ALGORITHM 1. Optimal discrete k-modal search over the interval [0, N).

function ModalSearch
f: function(NonNegativeInteger)" real; (k-modal function to be searched }
k" NonNegativeInteger; (Modality of function f)
low: NonNegativeInteger;
high: PositiveInteger; (Interval [low, high) defines the domain of f)
)" NonNegativeInteger; (Left endpoint of an interval of length k + 1

containing the unique zero of Akf)
{ Search over interval [low, high), high low >_ k / 2 }
procedure InsertPair(

Fvalues: BinarySearchTree;
x: NonNegativeInteger)

{Evaluates f(x) and inserts the pair (x, f(x)) into a binary search tree indexed by x }

end;
procedure Search

{ See Algorithm 4.1 }
end;
var

i: NonNegativeInteger; { Left endpoint of interval containing the unique zero of Akf }
j, m: NonNegativeInteger;
Fvalues: BinarySearchTree;
p: NonNegativeInteger;

begin
:=

m := n-l((high- low)/k + 1);
for j-- ltokdo

InsertPair(Fvalues, low+jLm
i := low;
Search (i, high, m);
ModaISearch := i

end

Fibonacci search algorithm for the continuous version of unimodal search [10]. In this
section, we give an optimal algorithm for trimodal search, modeled after Hyafil [7],
and in the next section, we sketch a family of similar but not quite optimal algorithms
for odd k > 3.

For trimodal searching, the recurrence relation governing the lower bound on the
number of probes needed is

(12) Ln Ln-2 + L-3.

It is easy to show that we also have

(13) nn Ln-1 + Ln-5.

For simplicity, assume that the initial length of the interval of uncertainty is Ln. Then,
equations (12) and (13) can be used to generate an initial distribution of probes in

GENERALIZED KRAFT’S INEQUALITY AND DISCRETE k-MODAL SEARCH 439

ALGORITHM 2. Discrete k-modal search procedure.

procedure Search(
var i: NonNegativelnteger;(Upon entry, search has reached)
j, m: gongegativeInteger); { node [i, + Lm, + 2Lm,..., A" kLm, j] }

procedure DeleteExtremeSegment
Fvalues: BinarySearchTree;
side: (LEFT, RIGH);

{Deletes the pair (x, f(x)), corresponding to the left or the right
endpoint of the interval of uncertainty, from Fvalues)

end;
function FindSide(Fvalues: BinarySearchTree): (LEFT, RIGHT);
This function determines the side that will lose its extreme segment by applying
Lemma 2.4, after k + 1 probes have been made}

end;
vat

left, right: NonNegativeInteger; (These delimit the left and right boundaries
of the "region of division"}

Side: (LEFT, RIGHT); (Flag indicating which side lost a segment as a result
of the last probe}

hum: NonNegativelnteger;
NewProbe: NonNegativeInteger;

begin {Search)
if j < k + 1 then

{k-modal search ends at interval [i, + k + 1)}
else begin

left :-- right :-- + (p A- 1)Lm;
Side :-- RIGHT;

for num := 1 to p + 1 do begin
if Side LEFT then begin (Probe just beyond the right end of the

"region of division"}
NewProbe :-- right +Lm_(p+l);
right := right +Lm
end

else begin {Probe just to the left of the left end of the "region of division"}
NewProbe := left-Lm-(+);
left := left -Lm
end

InsertPair(Fvalues, NewProbe
Side :- FindSide(Fvalues
DeleteExtremeSegment Fvalues, Side)
end {of for loop}

{ Now we make the recursive calls }
if Side LEFT then begin

:-- left --Lm_(p+l);
Search(i, right, m- (p + 1))
end

else begin
:= left;

Search(i, right -Lm_(p+l), m (p + 1))
end

end {of else}
end

440 ANMOL MATHUR AND EDWARD M. REINGOLD

S

A

Ln-8 Ln-7

new probe

new probe

Ln-9Ln-lO
Ln-8 Ln-7 Ln-8 Ln-9

new probe

Ln-8’ iLn-9

Ln-8 Ln-7 Ln-6 Ln-5

ignored probe

Ln-7 Ln-8Ln-9 Ln-5

C
Ln-8 Ln-gLn-10Ln-6

FIG. 11. Pattern of probes in the optimal trimodal search algorithm. The root interval, labeled
A, has length Ln Ln-3 -b Ln-7 -b Ln-6 q- Ln-5; its le# child, labeled B, has length Ln-1
Ln-4-bLn-8"bLn-7"bLn-6 The interval labeled C has length Ln-3 Ln-8-FLn-9-FLn- lo-FLn-6
The interval labeled D has length Ln-2 Ln-7 q- Ln-8 q- Ln-9 q- Ln-5.

which the segment lengths are, respectively, Ln-3, Ln-7, Ln-6, Ln-5. The subsequent
pattern of probes in the optimal trimodal search algorithm is shown in the part of the
trimodal search tree in Fig. 11. The distribution of probes at the leaves of this subtree
is the same (up to symmetry) as the initial distribution of probes. This enables the
recursive application of this probing strategy at these leaves. Furthermore, at leaf B
the length of the interval of uncertainty is Ln-1 after one probe, at leaf D the length
of the interval of uncertainty is Ln-2 after two probes, and at leaf C the length of the
interval of uncertainty is Ln-3 after three probes, insuring optimality. Notice that to
regenerate a distribution of probes symmetric to the initial distribution of probes at
leaf C, a "rearrangement probe" is made and an earlier probe is ignored.

4.3. Near-optimal algorithms for odd k >_ 5. Suppose k 2p-F 1, p > 1.
For simplicity, assume that the length of the initial interval of uncertainty is Ln,
where Ln is a member of the series defined by recurrence (3). To get the initial

GENERALIZED KRAFT’S INEQUALITY AND DISCRETE k-MODAL SEARCH 441

ALGORITHM 3. Algorithm for finding all local extrema of a k-modal function.

var
extrema: array of NonNegativeInteger; {stores the extrema found so far}

procedure FindAlIExtrema(
f: function(NonNegativeInteger): real;
k: NonNegativeInteger; {Modality of function f}
low: NonNegativeInteger;
high: PositiveInteger); {f is k-modal in the range [low, high)}

procedure InsertExtremum(i: NonNegativeInteger)
{Inserts in the array extrema, indicating an extremum in [i, i / k / 1)}

end;
var

i: NonNegativeInteger;
begin

i :-- ModalSearch(k, low, high, f);
if k 1 then

InsertExtremum
else begin

FindAllExtrema(f k- 1, low, + k + 1);
FindAllExtrema(f, k- 1, + 1, high)
end

end

distribution of probes, we recursively divide the largest segment in the current set of
segments into two parts, using recurrence (3), until there are k + 1 segments. This
results in an initial configuration of probes that has all segments with lengths in the
set {Ln_gl, Ln-g+l,..., Ln-g }, where K1 and K2 are constants depending on p.
Now, the algorithm uses the same strategy as in the case when k is even; starting with
one of the two center segments, a probe is made in a segment adjacent to the "region
of division" on the side opposite the side that lost a segment as a result of the previous
probe. Unfortunately, the nonuniqueness of the center segment (since k + 1 is even)
forces the algorithm to use, in the worst case, p+2 probes to shift the indices of the set
of lengths of segments down by p + 1. Thus, the algorithm is suboptimal, but as the
value of k increases, its performance approaches the lower bound since the P+ 1 asp+2
p --* c. The proper choice of the distribution of segments of different lengths in the
interval of uncertainty might hold the key to designing optimal algorithms for these
cases.

5. Finding all extrema of a k-modal function. We can use a k-modal search
to obtain an efficient algorithm for finding all the local extrema (or zeros) of a k-modal
function. The algorithm makes use of the following lemma.

LEMMA 5.1. Let f {0,...,N} -- be a k-modal function and let [i,i + 1)
be the interval containing the unique zero of its kth derivative. Then the functions
f: {0,...,i + k + 1} and f: {i + 1,...,N} --, are both (k- 1)-modal.

Proof. Since [i, + 1) is the unique zero of Akf, Ak- is necessarily unimodal.
Assume without loss of generality that the part of Ak-f to the left of i + 1 is
decreasing and the part to the right is increasing. We now note that Ak-f in the

442 ANMOL MATHUR AND EDWARD M. REINGOLD

range [0, i + 1) is determined by the values of f in the range [0, i + k). Also, the values
of Ak-lf in the range [i + 1, N- k- 1) are determined by the values of f in the
range [i + 1, N). Now, when splitting the original k-modal function f into the ranges
[0, + k) and [i + 1, N), we will assume that f(i + k) -oc for the function f over
the range [0, i + k) and f(i + 1) oc for the restriction of f to the range [i + 1, N).
This then implies that both the restrictions of f defined above have a unique zero in
their (k- 1)st derivative and are hence (k- 1)-modal.

This lemma suggests a divide-and-conquer algorithm for finding all the local ex-
trema (or zeros) of a k-modal function in which k-modal searching serves as the
"divide" step. It is important to note that the number of local extrema of f need
not be symmetrically distributed about the unique zero of the kth derivative of the
k-modal function. In fact, there might be just one local extremum of f on one side
and all the others (at most k- 1) might lie on the other side.

A divide-and-conquer algorithm based on Lemma 5.1 is presented as Algorithm
3.

The k-modal searching algorithms discussed in 4 use at most ([k/2] + 1)lgN
probes for a k-modal function over the range [0, N). The recurrence relation for the
number of probes made in the worst case of Algorithm 4.3 is of the form

T(N,k)= max {T(i+k+ l,k-1)+T(N-i- l,k-1)}+([k/2 + l)lgN.
0_<i<N

Furthermore, in this recurrence, the worst case arises when the division is perfectly
balanced. Hence,

(14) T(N,k) <_ 2T(NI2, k 1) + (Fk/21 + 1)lgN.

On unfolding this recurrence, we get

min{k,lg N}

T(N,k) <_ ([(k- i)/2] + 1)2ilg(N/2)
i--o

min{k,lg N}

< k 2 lg N
i=0

O(k2min{k’lgN} lg N).

Thus the algorithm is better than the naive sequential scan algorithm when k <
lgN- 2 lg lg N. But, this algorithm does not make use of the probes made during
k-modal searching while doing (k- 1)-modal searching; hence, it should be possible to
devise more efficient algorithms for finding all the local extrema of a k-modal function
by reusing some of the probes made in k-modal search during the subsequent lower
modal searches.

6. Unbounded k-modal search. In the unbounded discrete k-modal search
problem, the search takes place over an infinite domain, the nonnegative integers.
The problem of unbounded search was first introduced by Bentley and Yao [3]. Rein-
gold and Shen [17] presented a hierarchy of successively better algorithms and corre-
sponding lower bounds. Goldstein and Reingold [6] extended some of these ideas to
unimodal searching.

GENERALIZED KRAFT’S INEQUALITY AND DISCRETE k-MODAL SEARCH 443

6.1. Algorithms for unbounded discrete k-modal search. The infinite se-
quence of increasingly better algorithms for unbounded searching described for mono-
tonic functions [17] and for unimodal functions [6] can be extended to k-modal search-
ing. This follows from the observation that. Lemma 2.4 gives us an efficient way of
finding a finite interval containing the unique zero of the k-modal function by main-
taining a set of k + 2 probes and making probes at successive values of an Ackermann-
like (rapidly growing) function. By computing the sign of the P function (see Lemma
2.4) for the last k / 1 probes in the current set of probes, we can decide whether the
zero lies in the interval spanned by the current set of probes. This strategy is used
to mimic the top level search in [17] and [6]. The level-by-level search requires the
definition of a hierarchy of Ackermann-like functions, At(n), satisfying

A(n) A_I(A(n- 1)).

The function A1 (n) needs to be chosen carefully so that the distribution of probes
when the search reaches level 1 conforms to the distribution required by the finite
k-modal search algorithm. The exact details of these Ackermann-like functions have
been a stumbling block in our exploration of unbounded k-modal search.

6.2. Lower bounds for unbounded discrete k-modal search. The main
tool used in generating lower bounds for unbounded discrete k-modal searching is the
following infinite version of the generalized Kraft’s inequality (2), which is a corollary
of Theorem 2.5.

COROLLARY 6.1. In an unbounded discrete k-modal search, if c(i) is the number
of probes used in the worst case when the unique zero of Akf lies in [i, + 1), then

(15)
1 < 1.

i=o Lc(i)+g

Proof. If not, then there must be some N for which

N-1

i=0 Lc(i)+K
>1,

contradicting Theorem 2.5. [’!

As a direct consequence of Corollary 6.1, we have the following corollary that is
used to prove lower bounds for unbounded discrete k-modal search.

COROLLARY 6.2. Let c(i) be the number of probes used in the worst case by
an unbounded discrete k-modal search algorithm when the unique zero of Akf occurs

oin the range [i, + 1). If.for some nondecreasing function d, the sum -]=o La()+K
diverges, then c(i) > d(i) for infinitely many i.

Unfortunately, the algebra in trying to prove lower bounds using this approach
gets too involved, at least for the definitions of the Ackermann-like functions that we
examined.

7. Conclusions. One of the important problems related to k-modal searching is
the the determination of the modality of a function. Although a linear scan can find
all the turning points of the function, there does not seem to be an obvious linear-
time algorithm for finding the modality of a function, when modality is defined as the
largest derivative of the function having a unique zero. It would be interesting to find
out if k-modal searching can be used to solve this problem.

444 ANMOL MATHUR AND EDWARD M. REINGOLD

FIG. 12. The distances of the vertices of a convex polygon from a line, when considered in order
around the perimeter, yield a bimodal function.

Bimodal search has been used in [4] to design algorithms for intersecting convex
objects in two and three dimensions. These algorithms use the fact that the distances
of the vertices of a convex polygon from a line yield a bimodal function (see Fig.
12). This raises the following question: given a polygon with a bounded number of
concavities, do the distances of its vertices from a line yield a k-modal function? If so,
can the algorithm for intersecting two-dimensional convex polygons be extended to an
algorithm for intersecting nonconvex polygons with a bounded number of concavities
by using k-modal search?

Using generalizations of Kraft’s inequality to prove lower bounds seems to be
applicable to several problems such that an algorithm for the problem can be mapped
to a computation tree. A generalized Kraft’s inequality then captures the minimum
"degree of imbalance" that must be present in any computation tree solving the
problem. In particular, the problem of discrete search in the presence of lies [16], [18],
[21] might be a suitable candidate for a problem which can be attacked using this
technique. It would also be interesting to see whether the lower-bound proof in this
case suggests an optimal algorithm for discrete searching in the presence of lies, as
was the case in k-modal searching.

Appendix: Some combinatorial identities. Here we give some identities de-
scribing the behavior of Ln when k is odd. Let k 2p/ 1; then the recurrence relation
defining the sequence L used in the theorem is

0 if n=0,
Ln 1 if 1 _< n _< p + 1,

Ln_(p+l - Ln_(p+2), otherwise.

When p 0 this sequence is the Fibonacci sequence, so the identities we prove are
generalizations of some well-known identities for the Fibonacci numbers.

PROPOSITION 7.1. For m >_ p + 1, n >_ O,

Lm+n LmLn+p+l - Lm-(p+l)Ln.

Proof. We use induction on m and n. Assume that m is fixed. For the base case
we have n 0, so the proposition reduces to

Lm LmLp+l + Lm-(p+l)Lo.

GENERALIZED KRAFT’S INEQUALITY AND DISCRETE k-MODAL SEARCH 445

Since Lp+l 1 and L0 0, the proposition holds for the base case. Assume that the
proposition holds for all n _< q and consider the case when n q + 1:

Lm+q+l Lm+(q-p) 4- Lm+(q-p-1).

Applying the induction hypothesis to both of the terms on the right-hand side, we
have

Lm+q+l LmLq+l + Lm_(p+l)Lq_p 4- LmLq + Lm_(p+l)Lq_p_l,

which, on collecting the common terms, reduces to

Lm+q+l LmLp+q+2 4- Lm_(p+l)Lq+l.

This proves the proposition for the case n p + 1, thus completing the proof by
induction. A similar proof works when we assume n is fixed.

PROPOSITION 7.2. For n >_ p + 1,

Ln+(p+l)Ln-(p+l) L2n 0
if n O or l (modp+l),
otherwise.

Proof. The proof is by induction on n. For the base case, n p + 1 and the
identity is obvious. The induction step uses the following matrix identity, which is a
consequence of Proposition 7.1"

Ln Ln-(p+ Lp+ 0 Ln-(p+ Ln-2(p+

Taking determinants on both sides of this identity, we get

Ln+p+lLn-(p+l) L2n -L2p+l(LnLn-2(p+l) L2n_(p+l)).
Since Lp+l 1 and by the induction hypothesis

2 { (-I) L"-(+)J+
LrL,-.(p+l) Lr_(p+l 0

ifn-(p+l)Oorl (modp+l),
otherwise,

we get the required identity.
PROPOSITION 7.3. For m, n >_ p + 1,

Lm(-l)L-J+lLn+m-(p+l)Ln L,_(p+l)Lm+n 0
if n O or l (modp+l),
otherwise.

Proof. Using Proposition 7.1 to expand the terms on the left-hand side of the
identity, we have

Ln+m-(p+l)Ln Ln-(p+l)Lm+n
L(L,Ln + L,-(p+l)L-(p+l)) Ln-(p+l)(LmLn+p+l 4- Lm_(p+l)Ln)
Lm(L2n- L_(p+l)Ln+p+l).

446 ANMOL MATHUI:t AND EDWARD M. REINGOLD

Now, using Proposition 7.2, we get the required identity. [’1

PROPOSITION 7.4. Fori > O, > O, j > O, ifi =_ 2,3,...,p (mod p+ 1), then

Li L+t
Li+j Li+j+l

if i 0 or 1 (mod p + 1) and [p- is odd, then

Li Li+t

if i = 0 or 1 (mod p + 1) and [-$J is even, then

Li Li+<L+ L+j+

Proof. These realtions can be written jointly as

LiLi+j+t <?> Li+tL+j,

which on expansion, using Proposition 7.1, yields

Li(LILi+j+p+I + Lt_(p+l)Li+) <?> Li+(LtLi+p+I + LiLt_(p+I)).

Simplifying, we have

LiLi+j+p+l <?> Li+jLi+p+

or

<?LiLi+j+p+ Li+jLi+p+l > O.

Using Proposition 7.3 with m j and n + p + 1, we get

ifi----Oorl (modp+l) } <?
otherwise.

> O.

This yields the required identities.

Acknowledgments. The authors would like to thank the referees for valuable
comments and for pointing out references [13], [14], and [19]. The first author would
like to thank Professor C. L. Liu for his support and encouragement during this work.

REFERENCES

[1] A. AGGARWAL AND R. C. MELVILLE, Fast computation of the modality of polygons, J. Algo-
rithms, 7 (1986), pp. 369-381.

[2] M. AVRIEL AND D. J. WILDE, Optimality proof for the symmetric Fibonacci search technique,
Fibonacci Quart., 4 (1966), pp. 265-269.

[3] J. L. BENTLEY AND A. C.-C. YAO, An almost optimal algorithm for unbounded searching,
Inform. Process. Lett., 5 (1976), pp. 82-87.

[4] B. CHAZELLE AND D. P. DOBKIN, Intersection of convex objects in two and three dimensions,
J. Assoc. Comput. Mach., 34 (1987), pp. 1-27.

[5] G. DAHLQUIST AND A. BJOrtCi, Numerical Methods, Prentice-Hall, Englewood Cliffs, NJ, 1974.

GENERALIZED KRAFT’S INEQUALITY AND DISCRETE k-MODAL SEARCH 447

[6] A. S. GOLDSTEIN AND E. M. REINGOLD, A Fibonacci version of Kraft’s inequality applied to
discrete unimodal search, SIAM J. Comput., 22 (1993), pp. 751-777.

[7] L. HYAFIL, Optimal search for the zero of the (n- 1)st derivative, Report de recherche 247,
IRIA Laboria, Le Chesnay, France, 1977.

[8] R. M. KARP, Minimum-redundancy coding for the discrete noiseless channel, IRE Trans. In-
form. Theory, 7 (1961), pp. 27-39.

[9] R. M. KARP AND W. L. MIRANKER, Parallel minimax search for a maximum, J. Combin.
Theory, 4 (1968), pp. 19-35.

[10] J. KIEFER, Sequential minimax search for a maximum, Proc. Amer. Math. Soc., 4 (1953), pp.
502-505.

[11] L. G. KRAFT, A device for quantizing, grouping and coding amplitude modified pulses, Mas-
ter’s thesis, Electrical Engineering Department, Massachusetts Institute of Technology,
Cambridge, MA, 1949.

[12] H. T. KUNG, Synchronized and asynchronous parallel algorithms for multiprocessors, in Algo-
rithms and Complexity: New Directions and Recent Results, J. F. Traub, ed., Academic
Press, New York, 1976, pp. 153-200.

[3] The complexity of obtaining starting points for solving operator equations by Newton’s
method, in Analytic Computational Complexity, J. F. Traub, ed., Academic Press, New
York 1976, pp. 35-57.

[14] E. NOVAK AND g. RITTER, Some complexity results for zero finding for univariate functions,
J. Complexity, 9 (1993), pp. 15-40.

[15] L. W. OLIVER AND D. J. WILDE, Symmetrical sequential minimax search for a maximum,
Fibonacci Quart., 2 (1964), pp. 169-175.

[16] A. PELC, Solution of Ulam’s problem on searching with a lie, J. Combin. Theory, Ser. A, 44
(1987), pp. 129-140.

[17] E. M. REINGOLD AND X. SHEN, More nearly optimal algorithms for unbounded searching, part
I: The finite case, SIAM J. Comput., 20 (1991), pp. 156-183.

[18] R. L. RIVEST, A. R. MEYER, D. J. KLIETMAN, g. WINKLMANN, AND J. SPENCER, Coping with
errors in binary search procedures, J. Comput. System Sci., 20 (1980), pp. 396-404.

[19] K. SIKORSKI, Optimal solution of nonlinear equations, J. Complexity, 1 (1985), pp. 197-209.
[20] S. S. SKIENA, Interactive reconstruction via geometric probing, Proc. IEEE, 9 (1992), pp. 1364-

1383.
[21] S. M. ULAM, Adventures of a Mathematician, Scribner’s, New York 1976.
[22] B. S. VEROY, An optimal algorithm for search of extrema of a bimodal function, J. Complexity,

2 (1986), pp. 323-332.
[23] C. WITZGALL, Fibonacci search with arbitrary first evaluation, Fibonacci Quart., 10 (1972),

pp. 113-134.

SIAM J. COMPUT.
Vol. 25, No. 2, pp. 448-476, April 1996

() 1996 Society for Industrial and Applied Mathematics
013

AN ALGEBRAIC MODEL FOR COMBINATORIAL PROBLEMS*

RICHARD E. STEARNS AND HARRY B. HUNT IIIt

Abstract. A new algebraic model, called the generalized satisfiability problem (GSP) model, is
introduced for representing and solving combinatorial problems. The GSP model is an alternative to
the common method in the literature of representing such problems as language-recognition problems.
In the GSP model, a problem instance is represented by a set of variables together with a set of terms,
and the computational objective is to find a certain sum of products of terms over a commutative
semiring. The model is general enough to express all the standard problems about sets of clauses and
generalized clauses, all nonserial optimization problems, and all {0,1}-linear programming problems.
The model can also describe many graph problems, often in a very direct structure-preserving way.
Two important properties of the model are the following:

1. In the GSP model, one can naturally discuss the structure of individual problem instances.
The structure of a GSP instance is displayed in a "structure tree." The smaller the
"weighted depth" or "channelwidth" of the structure tree for a GSP instance, the faster
the instance can be solved by any one of several generic algorithms.

2. The GSP model extends easily so as to apply to hierarchically specified problems and
enables solutions to instances of such problems to be found directly from the specification
rather than from the (often exponentially) larger specified object.

Key words. GSP, structure tree, SAT, separator, tree decomposition, treewidth, bounded
bandwidth, nonserial optimization, hierarchical specifications

AMS subject classifications. 68Q25, 90C27

1. Introduction. It has proven very useful to model computational problems
as language-recognition problems. Under this paradigm, a computational problem
is expressed as the question "Does an input string belong to a specified language?"
This approach enables the application of concepts from automata theory including
the concepts of P, NP, NP-completeness etc., [8, 15, 10]. In this paper, we develop
a different model for computational problems, an algebraic model we call the GSP
model. GSP is an abbreviation of "generalized satisfiability problem." In this model,
a computational problem is expressed as the question "given a set of variables and
terms using these variables, what is the value of a certain sum of products on these
terms?" We call this collection of variables and terms a "formula."

The advantage of representing a problem instance as a formula is that problem
instances then have a combinatorial structure determined by which variables appear
in which terms. Using an appropriate (nonunique) representation of this structure,
a certain kind of "subproblern independence" is displayed in a manner that can be
exploited by any of several algorithms to speed up the computation of a formula’s
value.

We call the data structure used to display formula structure a "structure tree."
We give several algorithms which take a formula and structure tree as input and
compute the sum-of-products "value" of the formula. In these algorithms, the or-
der of operations and the flow of control are determined exclusively by the problem
structure as displayed in the structure tree. The operations performed and values
manipulated are determined exclusively by the meaning of the terms and specific
"sum" and "product" operators which define the formula value. The algorithms are

Received by the editors January 19, 1993; accepted for publication (in revised form) September
7, 1994. This research was supported in part by National Science Foundation grant CCR-89-03313.

Department of Computer Science, State University of New York at Albany, Albany, NY 12222.

448

AN ALGEBRAIC MODEL FOR COMBINATORIAL PROBLEMS 449

"generic" in the sense that they can be described with Pascal-like pseudocode using
uninterpreted operators and functions.

The complexity of the generic algorithms can be expressed in terms of the num-
bers of each kind of operation performed. These numbers depend primarily on the
tree’s "weighted depth" or "channelwidth" as defined in 3. Some of these algorithms
are exponential only in the weighted depth and others are exponential only in chan-
nelwidth. This can be a significant improvement over the generic brute-force method,
which is exponential in the total number of variables. Although the weighted depth is
never smaller than the channelwidth, the weighted-depth algorithms have an advan-
tage in that they use only linear space. In contrast, the channelwidth methods use
space exponential in channelwidth.

We also introduce a concept of hierarchically specified formulas whereby large
formulas are constructed in a recursive manner from copies of smaller formulas. This
mimics the way larger circuits are constructed from smaller circuits and large graphs
are sometimes constructed using copies of smaller graphs. We show that the value
of such formulas can be found using generic algorithms whose complexity depends
only on the size and structure of the description. The formula description can be
exponentially smaller than the formula it describes.

Sometimes there is an (often nonunique) assignment that can be associated with
a formula’s valuemfor example, the assignment which minimizes a certain sum or
which satisfies a conjunction of clauses. In these cases, generic enhanced algorithms
will produce an assignment along with a value. These problems include all those
problems known as "nonserial optimization problems" (NOPs) as well as constrained
versions of these problems. We note that all {0,1}-linear programming problems are
included among the constrained NOPs.

As the name suggests, the GSP applications also include problems centered around
the set of assignments which satisfy a set of Boolean-valued terms. Not only is satisfi-
ability itself modeled, but so are the other questions often asked about such problems.
Some of these questions are how many satisfying assignments does the formula have,
is the number of satisfying assignments even or odd, what is the maximum number
of terms which can be simultaneously satisfied, and what is the maximum number of
ones in a satisfying assignment? From the GSP viewpoint, these questions are nearly
trivial variations on the same problem. The structure of each problem instance is the
same regardless of the question asked and the only difference is whether the terms are
thought of as mapping into TRUE and FALSE or into other values appropriate to the
question asked. We note that among the problems modeled are complete problems
in the complexity classes NP, CoNP, #P [34], DP [23], OPT-P [16], MAX SNP [24],
MAX H1 [22], PSPACE [17], and #PSPACE [4].

We have also found that the GSP model can be applied easily to many graph
problems and that it clearly does not apply to certain other graph problems. Exactly
which graph problems should be considered as GSPs is a nonmathematical question.
There are graph problems whose semantics can only be described awkwardly and
artificially as GSPs and it is a matter of taste which of these problems should be
called GSPs.

A major advantage of the GSP framework is that it partitions the algorithmic
considerations into four orthogonal issues: how to model the problem as a GSP, how
to analyze the structure of problem instances, which generic algorithm to use, and
how to implement the algebraic operations. Any of these four issues can be studied
in isolation and the results then applied to the full spectrum of GSP problems.

The GSP model together with structure trees unify several general themes that

450 RICHARD E. STEARNS AND HARRY B. HUNT III

have been widely used in the literature. These themes include "separator theorems"
[20, 11, 33], "planarity" [18, 9, 26, 36], "graph treewidth" [1, 3, 5, 28, 2], and "bounded
bandwidth" [21]. From a separator-theorem viewpoint, a structure tree can be inter-
preted as a method of displaying separator sets for a problem and its recursively
defined subproblems. From the viewpoint of tree decompositions, the structure tree
is an alternative way of displaying the same information. The GSP viewpoint "uni-
ties" these themes in the sense that many of the techniques, especially insights into
structure, can now be applied automatically to a much broader class of problems.

Our generic algorithms can be thought of as exhaustive methods modified to
exploit subproblem independence. This is to be expected because the GSP model is
a very general model and we are investigating methods that apply universally to all
GSPs. When the generic algorithms are specialized to a particular class of formulas, it
may be possible to enhance and fine tune the algorithms to exploit the semantics of the
particular problem. For example, certain branches of the computation can sometimes
be seen as unnecessary and thereby circumvented or pruned. Nevertheless, the gains
just from subproblem independence are often very significant and sufficient to obtain
many of the complexity bounds on structured problems found in the literature.

This paper is organized into 12 sections. In 2, we introduce the ideas of a
formula, a formula value, and a GSP. In 3, we define structure trees and associated
concepts. This section also presents the key connections between structure trees and
subproblem independence, the connections which make the generic algorithms work.

In 4, we present the generic algorithms and bound the number of algebraic
operations they perform.

In 5, we sketch the relationship between two parts of the structure tree, the c
and functions. These relationships suggest two approaches to finding good structure
trees, namely, find a good a and construct or find a good/ and construct a. They
also establish a small upper bound on the number of nodes needed for a good structure
tree.

In 6, we discuss the relationships between weighted depth and channelwidth, the
key parameters which determine the usefulness of a structure tree. In 7, we discuss
the problem of finding good structure trees, even for instances where nothing is known
about the structure in advance. The methods discussed are based on applying hyper-
graph techniques to a "formula hypergraph" representing the combinatorial structure
of a formula.

In 8, we extend the ideas to hierarchically specified formulas. A fundamental
property is proven that the hierarchical definition can, from a value standpoint, be
equivalently regarded as defining an object or as defining a sequence of functions. The
implications for efficient calculation of the value are presented.

In 9, we characterize the situations where a GSP has an optimal assignment
in addition to a value and show how the generic algorithms can be modified to find
the assignment along with the value without more than a constant multiplier on the
complexity. The case of optimal assignments corresponds precisely to NOPs [30].

In 10, we discuss the concept of a "constrained GSP," in which the formula value
is determined by a constrained set of formulas. We show that this concept can be
reinterpreted back into the original model.

In 11, we discuss applications to Boolean satisfiability problems and their vari-
ations. We show that, from the GSP viewpoint, satisfiability, counting solutions,
maximizing the number of terms satisfied, and several other variants all have the
same structure and are, in fact, identical in appearance. Thus any way of solving one
of these problems through good structure will apply to all these problems.

AN ALGEBRAIC MODEL FOR COMBINATORIAL PROBLEMS 451

In 12, we discuss briefly the application of GSPs to graph problems. We discuss
and illustrate the thesis that the key step in applying the theory to graph problems
is to pick a representation of the problem as a GSP so that the GSP inherits the
structure of the input graph.

Sections 9-12 demonstrate that the GSP model applies to a broad range of prob-
lems. However, the range is much broader than we have space to discuss. Additionally,
it should be noted that the ideas behind subproblem independence and structure trees
have natural extensions beyond GSPs [25].

The appendix gives the various algorithms discussed in the text. These algorithms
incorporate major general-purpose themes in common use: top-down backtracking,
top-down backtracking with table look-up or memoization, and bottom-up nonserial
dynamic programming. The point of the appendix is that, in the GSP context, these
themes can be coded generically using uninterpreted operators.

2. The GSP model. Here we present a series of definitions leading to the central
concept of a GSP. The GSPs are computational problems where the solution is a
single value obtainable by considering all assignments to some set of finite-domain
input variables. The value sought is an element of a commutative semiring (rather
than just TRUE or FALSE), the semiring times operator is used instead of the Boolean
and operator, and the semiring plus instead of the Boolean or.

DEFINITION 2.1. A commutative semiring is specified by a 5-tuple (S, +,., O, 1),
where S is a set containing elements 0 and 1, + is a commutative associative binary
operator on S with identity O, is a commutative associative operator on S with
identity 1, distributes over + (i.e., a (b / c) a b + a c), and 1.0 O.

The identity elements are mathematically necessary so that sums and products
are well defined for empty sets, namely ae a 0 and l-Iae a 1. The condition
1.0 0 is really the distributive law for empty sums, namely 1. be b -be 1. b.

Note that the Boolean lattice ({FALSE, TRUE}, /, A, FALSE, TRUE) is a commuta-
tive semiring. We refer to this semiring as the Boolean semiring.

DEFINITION 2.2. Given a set of variables V, an assignment on V is a pairing
in which each variable v from V is paired with a value in the domain of v. The
set of assignments to V will be designated by the notation F(V). F(0) contains one
assignment, namely the empty set of pairs. For any assignment /, we denote the
variables in by VAR(7) (i.e., VAR(7) V if and only if F(V)). If and
are assignments such that VAR(/) VAR(/) O, we let / + be the assignment
in F(VAR(’) VAR(’2)) formed by taking the union of the two assignments.

Conjunction normal form (CNF) formulas can be described as a set of clauses.
More generally, as in [31], a generalized CNF formula is described by a set of terms
which evaluate to a Boolean value. For GSPs, we use terms which evaluate to an
element of a commutative semiring. Continuing the analogy with Boolean formulas,
we refer to these terms as "predicates." On occasion, we will need other kinds of
"terms," including terms which behave like macros in hierarchical specifications.

DEFINITION 2.3. A base symbol "f" is a symbol which has an associated integer
k called the arity of "f" and as associated vector of k domains D1,..., Dk, where
each Di is a finite set. A term for "f" is a string of the form "f(xl,... ,xk)," where
the xi are variables or constants and the type of xi is the domain Di. If "f" is the
name of a function which maps D1 D into a set S, any term for "f" is also
called an S-term. If S is the set of elements from a semiring R, monoid R, or other
algebraic object R, an S-term will also be called an R-term. If R is a commutative
semiring, an R-term will also be called an R-predicate or simply a predicate if R is

452 RICHARD E. STEARNS AND HARRY B. HUNT III

understood.
For any term P ="f(xl,...,xk)," IPI is defined to be k + 1 and is called the

size of P. VAR(P) is defined to be the set of variables on the list Xl,... ,xk. If
is an assignment such that VAR(’) VAR(p) and p is an S-term for some set S,
we define p[/] to be the set element f(dl,... ,dk), where di is the value assigned to
variable xi by /. If P is a set of terms, define VAR(P) pepYAR(p).

In practice, we treat any expression as a term or predicate provided the meaning
is clear. Thus we write "x X/z /" instead of "f(x, z, y)," where symbol "f" denotes
the function f defined by f(vl, v2, v3) Vl

DEFINITION 2.4. A formula F is a pair (V, P), where V is a set of variables and
P is a set of terms such that V VAR(P). If P is a set of S-terms for some set S,
F is also called an S-formula; if S is the set of elements of a semiring R, semigroup
R, or other algebraic object R, F is also called an R-formula. If R is a commutative
semiring, the value of F, denoted by VALUE(F) is defined by

VALUE(F) E HP[/]"
yeF(V)peP

The size of F, written IFI, i8 defined to be IVI + Ep P IPI.
The pair (V, P) is a "formula" in the same sense that a set of clauses is a CNF

formula. In the case of clauses, it is understood that the clauses are to be connected
by the "and" operator. For R-formulas, we understand that the terms are to be
connected by the "." operator (i.e., think of HppP aS the full formula).

So far, we have placed no restrictions on the formulas to be considered. Even so,
any R-formula has a value and, as we shall see, there are many generic insights that
can be derived about finding values, even if the domains, functions, and semirings
are uninterpreted. Indeed, this paper is mainly about such results. However, to
model specific computational problems, the formulas considered must come from some
specified domain.

DEFINITION 2.5. A problem domain :D is a set of R-formulas for some commu-
tative semiring R. A formula in T) is called a problem instance. The GSP for T is
to take formulas F from T) as input and produce VALUE(F) as output.

CNF satisfiability is modeled by the GSP for the domain consisting of formulas
constructed from Boolean predicates that can be described by clauses. It is easily
verified that, for this domain, the value of a formula is TRUE if and only if the formula
has a satisfying assignment.

Other questions about CNF formulas can be modeled simply by reinterpreting
the functions defined by the clauses. To model the problem of counting the number of
satisfying assignments, take the semiring of nonnegative integers (N, +,., 0, 1) and let
a clause have the integer value 0 when an assignment makes it false and integer value
1 when an assignment makes it true. A product is 1 when an assignment satisfies all
clauses and 0 otherwise and so the sum of products equals the number of assignments.

Notice how V is a nontrivial consideration when counting solutions. For example,
if P {" V y","x V " }, then F1 ({x, y, z}, P) has four solutions, whereas
F2 ({w,x, y,z},P) has eight solutions.

Most of what we say about formulas has nothing to do with problem domains.
For example, we can analyze a formula’s structure and find its value without regard
to which problem domain it was taken from. Every formula, in fact, belongs to
many problem domains. Thus we often make reference to GSPs and formulas without
mention of a problem domain.

AN ALGEBRAIC MODEL FOR COMBINATORIAL PROBLEMS 453

One way to solve a GSP is to use Algorithm 1, given in the appendix. This
program has an inner loop which computes products for individual assignments and
an outer loop which sums these products. It is best described as the "brute-force
method." The program is "generic" in the sense that it works independently of any
particular semiring or problem domain. We can understand the complexity of this
algorithm by counting operations. If each variable has a domain of size D, there are
Ip DIvI "multiplications," DIvI "additions," and DIvI evaluations of each predicate.
Assuming a unit cost for each "+" and "." operation and a cost k for evaluating k-cry
functions, the above counts imply a O(IF DIvI) time complexity.

When the semiring and symbol sets of the problem domain are both finite, the
above cost assumptions are reasonable. Infinite semirings or symbol sets are not nec-
essarily a problem since the set of values which arise while solving a given problem
instance is finite--for example, if we are trying to count the number of solutions, the
number of bits involved is at most IFI. In any case, we will be content to count opera-
tions. Issues concerning the representation of semirings, the complexity of performing
semiring operations, or the complexity of evaluating functions are mostly outside the
scope of this paper.

Although we require that all variable domains be finite, the number of the domains
need not be finite. In particular, it is sometimes useful to allow formula variables to
take on IYl values. In such cases, we encounter running times such as O(IF IYl Iyl)
or, equivalently, O(IF 21Yl’lgY).

3. Structure trees. Given a formula F (V, P), we would like to compute
VALUE(F) faster than by the exhaustive method of Algorithm 1. We do not know
how to do this in general but we can do it better if we can associate the formula
with a suitable "structure tree" as defined below. The structure tree can be thought
of as an organization of the formula which displays subproblem independence. This
independence can be exploited in several ways, as given in 4, to compute the value.
In this section, we present the structure tree concept and certain algebraic equations
which explain the correctness of the faster algorithms given in 4. When we use the
term "ancestor" and "descendant," we consider any tree node to be an ancestor and
a descendant of itself.

DEFINITION 3.1. Given a formula F (V, P), define a structure tree S for F to
be a triple (T, a,/), where

1. T is a rooted tree with node set N,
2. " V - N gives the variable association,
3. " P -- N gives the predicate association,
4. for all y in V and p in P, if y VAR(p), then a(y) is an ancestor of (p)

in T.
There are several concepts pertaining to the nodes of the structure tree that are

needed later. We present these in the next definition.
DEFINITION 3.2. Let F (V, P) be a formula and S (T, (,) be a structure

tree for F with node set N. For each node n, define the following:
1. A(n) {y e Via(y) n}, the variables associated with n.
2. B(n) {p e P I(P) n}, the predicates associated with n.
3. AD(n) is the union of the A(n’) such that n’ is a descendant of n.
4. BD(n) is the union of the B(n’) such that n’ is a descendent of n.
5. y in V is a branch variable at node n if and only if a(y) is an ancestor of n.

Let BV(n) be be the set of branch variables at n.
6. y in V is a channel variable at node n if and only if y is a branch variable

454 RICHARD E. STEARNS AND HARRY B. HUNT III

and either (i) n a(y) or (ii) there is a p in P such that y is in VAR(p) and
(p) is a descendant of n. Let CY(n) be the set of channel variables at n.

In (6), case (i) is implied by case (ii) whenever y appears in some predicate. Case
(i) insures that every variable is a channel variable of at least one node, an assumption
necessary for certain proofs.

Intuitively, the nodes c(y) and (p), where y is in VAR(p), delineate the "scope"
of variable y and CV(n) is the set of variables whose values must be "channeled"
through n to connect (y) and (p).

Example. Figure 1 shows a structure tree for formula ({w,x, w,z}, {"f(x,y),"
"f(x, z)," "f(x, w)," "f(v, w)"}. The figure shows the sets A(n), B(n), BV(n), and
CV(n) for each node n. The functions a and can be inferred from A and B (e.g.,
a(x) b because x e A(b)).

Node

A(a)=

B(a)
BY(a)
CV(a)

Node b

A(b)
n(b) f(x,w)

nvco) w, x
cv(b) w,

Node

A(c)
(c) f(v,w)

BY(c) v,

CV(c) v,

Node d

A(d)-
(d) f(x,y)

BY(d) w,x,y

CV(d)

Node

A(e)
B(e) f(x,z)

By(e) {w, x,

C(e) {x,z}

FIG. 1. Structure tree for ({w,x, y, z}, {f(x, w), f(x, y), f(x,z), f(v, w))).

The algorithms described in the next section take a structure tree as part of
their input and the complexities of these algorithms are characterized in terms of the
parameters "weighted depth" and "channelwidth" defined as follows.

DEFINITION 3.3. If S is a structure tree with node set N, we define WD(S),
the weighted depth of S, to be the maximum of {IBV(n)l forn e N}. We define
CW(S) to be the maximum of {ICV(n)l for n e N}.

If F is a formula, the minimum weighted depth over all structure trees for F is
called the weighted depth of F. The minimum channelwidth over all structure trees
for F is called the channelwidth of F.

In the example, the weighted depth of (T, a,/) is 3 and the channelwidth is 2.
There is another structure tree for F (with c(x) at the root) which also has weighted
depth 3, but no structure tree has a smaller weighted depth. Therefore the weighted
depth of the formula is 3. The channelwidth can never be less than the number of
variables in a predicate so we know at once that channelwidth 2 cannot be improved
upon.

Certain relationships among the concepts introduced above are needed to prove
the correctness of various formulas and procedures given later. They are given by the
following.

LEMMA 3.4. Let F (V, P) be a formula, S (T, c,) a structure tree for F,

AN ALGEBRAIC MODEL FOR COMBINATORIAL PROBLEMS 455

and n a node of T. Then the following hold:
1. VAR(BD(n)) C CY(n) U AD(n),
2. AD(n) N VAR(B(n)) c A(n), and
3. for all children n’ of n, AD(n) VAR(BD(n’)) C A(n) U AD(n’).

Proof. These are all consequences of Definition 3.1(4). To prove (1), let x and
p be such that p e BD(n) and x e VAR(p). Since (x) must be above (p), a(x)
is either above n or below n. In the case that a(x) is above, x will be in CY(n) by
definition. In the case that a(x) is below, x will be in AD(n) by definition.

To prove (2), let x and p be such that p E B(n) and x VAR(p). By definition,
/(p) n so a(x) must be at or above n. If a(x) e AD(n), c(x) also must be at n or
below. Therefore, a(x) n.

To prove (3), let x and p be such that p e BD(n’) and x e VAR(p). If x is also in
AD(n), then a(x) is in the subtree of T with root n and a(x) must be on the branch
from n to (n), the branch going through n’. This implies that a(x) is at the root
itself (i.e., x e A(n)) or in the subtree with root n’ (i.e., x

So far, the concepts in this section are combinatorial concepts having nothing to do
with the interpretation of the terms. That is, they depend only on memberships in the
sets VAR(p). This means that the structure of a formula, namely its structure trees,
weighted depth, channelwidth, etc., is independent of the semantics of the formula.
Hence the structural analysis of formulas (as in 7) can be carried out orthogonally
to any consideration of the meaning of the formula.

Now we introduce concepts which require that the formulas be R-formulas for
some semiring R. These concepts connect structure trees with formula evaluation.

DEFINITION 3.5. Let S (T, a,) be a structure tree for formula F (V, P),
let n be a node of T, and let 7 be any assignment such that (1) VAR(7)
and (2) VAR(7) AD(n) VAR(BD(n)). Then let E(n, 7) be the semiring member
defined by

E(n, 7) H P[7 + 7’].
’er(AD(n)) pBD(n)

The two conditions of the definition are necessary and sufficient for the expression
to be well defined. Condition (1) is needed so that VAR(7’) VAR(7) , as
required in Definition 2.2. Condition (2) is needed so that VAR(7+7’) VAR(p) for
all predicates p in the expression, as required in Definition 2.3. VALUE(F) is identical
to E(r,), where r is the root of the structure tree. E(n, 7) can also be described as
the value of subproblem (AD(n), BD(n)[7]), where the notation BD(n)[7] represents
the set of predicates obtained from BD(n) by replacing variables from VAR[7] by
their assigned values.

The formula in Definition 3.5 suggests an exhaustive method for computing
E(n, 7). The next result shows that E(n, 7) can be computed from certain values
associated with the children of n, values which can be viewed as solutions to subprob-
lems. This key result is needed to prove the correctness of the generic algorithms in

4.
THEOREM 3.6. If F, S, 7, and n are as defined in Definition 3.5 and node n has

k children nl,..., nk, then

,er(A(n))
P[7 + 7’] H E(n, 7 + 7’).

p i--1

456 RICHARD E. STEARNS AND HARRY B. HUNT III

Proof. We first prove that the P[7 + 7’] in the given expression are well defined.
We know that VAR(7’) A(n) C AD(n) and so VAR(7’)AVAR(7) 0 follows from
condition (1)of Definition 3.5, and thus 7+7’ is well defined. Because B(n) C BD(n)
and because of Lemma 3.4(2), condition (2)of Definition 3.5 implies VAR(p) C
VAR(7 + 7’). Thus P[7 + 7’] is well defined.

Now consider if n and 7 satisfy Definition 3.5. Because AD(n) c AD(n) and
AD(n) A(n) , condition (1) for n and 7 follows from condition (1) for n and
7. From Lemma 3.4(3), condition (2) for n and 7, and BD(n) C BD(n), one can
derive condition (2) for n’ and 7.

Now that the right-hand side of the equation in the theorem has been shown to be
well defined, we prove the equality by induction. If n has no children, A(n) AD(n),
B(n) BD(n), and the equation is identical to Definition 3.5.

Finally, to prove the inductive step, substitute Definition 3.5 into both sides of the
equation in the theorem. Applying the distributive and commutative laws to move
products inside of sums, and using the two identities given below, the right-hand side
can be transformed into the left-hand side. If V1 and V2 are disjoint sets of variables
and P1 and P2 disjoint sets of predicates such that V D VAR (P), the first identity
is

q’l er (Yl) /2 eF(Y2) pePUP2 q,EF(V UV2 pEPUP2

This identity holds because 7 is in F(V1 U V2) if and only if there are 7 in F (V1) and
72 in F (V2) such that 7 71 + 72. For any 71 in F(V) and 72 in F (V2), the second
identity is

1-[
pePs.UP2

This identity holds because p [7] P[71 + 72] for all p in P, the value of p being
independent of the values assigned to variables not in VAR(p).

Notice that the above proof makes use of each of the commutative, associative,
and distributive properties of the binary operators. This explains why commutative
semirings are the natural algebraic objects for the GSP model.

4. Algorithms based on structure trees. In this section, we discuss three
algorithms (located in the appendix) for the GSP. Each algorithm requires that both
a formula F and a structure tree for F be given as input. All three are "generic" in
that they apply to all GSPs regardless of the problem domains. There are two main
conclusions from this section. One is that structure trees are useful for organizing
calculations for three general approaches, namely backtracking, backtracking with
table look-up, and dynamic programming. The second is that weighted depth and
channelwidth are the critical parameters in bounding the number of operations these
algorithms perform.

The first algorithm is Algorithm 2. We refer to this algorithm as "generalized
backtracking" since it evaluates particular partial assignments by considering all ex-
tensions and then "backs up" to try the next partial assignment. The key facts about
this algorithm are as follows.

LEMMA 4.1. When computation is initiated by calling EVALUATE(r) from Al-
gorithm 2, where r is the root of a structure tree for formula F, then the following
hold for each node n:

AN ALGEBRAIC MODEL FOR COMBINATORIAL PROBLEMS 457

1. When EVALUATE(n) is called, variables from BY(n)- A(n) have an as-
signment /o.

2. EVALUATE(n) returns E(n,’o).
3. EVALUATE(n)is called IF(BV(n)- A(n))l times.
4. Summed over all calls, statements in the outer loop are executed

times.
5. EVALUATE(r) returns VALUE(F).

Proof. Statement (1) is proved by induction starting from root r. BV(r)
A(r) by definition so BY(n)- A(n) is empty and trivially has an assignment. The
assignment to BV(n)- A(n) is extended by the "FOR statement" to an assignment to
BY(n) before the procedure is applied to child n’ of n. But BY(n) is BV(n’) A(n’)
(this is immediate from Definition 3.2) and so (1) holds.

Statement (2) is now immediate because Algorithm 2 is a straightforward imple-
mentation of the formula in Theorem 3.6.

Whenever statement (3) is true, statement (4) must also be true since the outer
loop is executed Ir(A(n))l time per call and multiplying the number of calls as given
in statement (3) by Ir(A(n))l gives statement (4).

Statement (3) can now be proven by induction. It is true of the root r since
EVALUATE(r) is called once and BY(r) A(r), being empty, has exactly one as-
signment. Now assume that statements (3) and hence (4) are true for node n and
consider any child n’ of n. EVALUATE(n’) is called only from EVALUATE(n) and
is done once each time the procedure goes through its outer loop. By statement (4),
this happens IF(BV(n))I times and BY(n) BY(n’) A(n’). Thus statement (3)
holds for n.

Statement (5) is immediate since E(r,) is VALUE(F) by Definition 3.5.
From Lemma 4.1, we can bound the number of operations used to solve a GSP

instance as follows.
THEOREM 4.2. Let F (V, P) be a formula where each variable in V takes on

at most D values. Let T be a structure tree for F having m nodes and weighted depth
WD. If the procedure of Algorithm 2 is used with F and T, then

1. the number of "." operations is at most (m + IP[). DWD;
2. the number of ’%" operations is at most m. DWD;
3. each p in P is evaluated at most DWD times.

Proof. We consider part (3) first. A given predicate p is evaluated only when
EVALUATE is called at node /(p). The evaluation of p is done in the outer loop
and so is done IF(BV(n))I times by Lemma 4.1(4). This quantity is no greater than
DWD, and part (3) is proven.

The "." operation is performed once for each predicate evaluation and once for
every procedure call (except the original call). From part (3), there are at most

IPI. DWD predicate evaluations and from Lemma 4.1(3), there are at most m. DWD
procedure calls.

The "/" operation is done once each time through the outer loop. By Lemma
4.1(4), this is at most DWD per node, and hence part (2) is proven.

In the next section, it is shown that, without changing WD, the structure tree
T can be assumed to satisfy m <_ 2-IV[and m <_ 2. IPI. Thus the bounds in parts
(1) and (2) can be described as 3. IPI. DWD and 2. [VIWD or 2. [PI .WD. Under the
unit-cost assumptions in 2, the time of the algorithm is O(IF DWD), the largest
contribution being the cost of evaluating predicates at k units per single k-cry function
evaluation.

The space requirement is minimal. In addition to the space needed to store the

458 RICHARD E. STEARNS AND HARRY B. HUNT III

structure tree, the procedure has a global variable for each variable in IVI, where each
such variable must store a corresponding domain value, and two local variables x
and y which must store any semiring elements generated by the procedure. Actually,
only O(WD) space is needed for variables since variables from different branches can
share locations. We next consider Algorithm 3, the second of the three algorithms
discussed in this section. It works similarly to Algorithm 2 except that tables are
kept to remember the results of each procedure call and the tables are consulted at
the beginning of any call to determine if the result the call can be read from a table
rather than be recomputed. The key facts about this procedure are as follows.

LEMMA 4.3. When computation ’is initiated by calling EVALUATE(r) from Al-
gorithm 3, where r is the root of a structure tree for formula F, then the following
hold for each node n:

1. When EVALUATE(n) is called, variables from CV(n)-A(n) have an assign-
ment Y0;

2. EVALUATE(n) returns E(n, /0);
3. If no is the parent of node n, then EVALUATE(n) is called at most

times;
4. EVALUATE(r)returns VALUE(F).

Proof. To prove statement (1), observe that variables in BY(n)- A(n) have
assignments for the same reason as in Lemma 4.1(1). The result here is then immediate
because BY(n) CY(n)

To prove statement (2), first observe that 0 does meet the conditions imposed
by Definition 3.5 because Definition 3.5(2) is implied by Lemma 3.4(1). Then observe
that Algorithm 3 is a straightforward implementation of the formula in Theorem 3.6.

To prove statement (3), observe that EVALUATE(n) is only called from inside
EVALUATE(no), and is only invoked at n for those calls, at no in which an assignment
to CV(no)- A(no) is seen for the first time. Those calls at no which do invoke
EVALUATE(n) do so IF(A(n0))l times, once for each time through the variables
loop. Multiplying the number of times the variables loop is used by the number of
loop iterations gives Ir(CY(no))l.

Statement (4) is immediate from statement (2) since E(r,O) is VALUE(F) by
Definition 3.5.

From Lemma 4.3, we can bound the number of operations used to solve a GSP
instance via Algorithm 3.

THEOREM 4.4. Let F (V, P) be a formula where each variable in V takes on
at most D values. Let T be a structure tree for F having m nodes and channelwidth
CW. If Algorithm 3 is used with F and T, then

1. the variable number of "." operations is at most (m + IPI). Dew;
2. the number of ’%" operations is at most m. DCW;
3. each p in P is evaluated at most DeW times.

Proof. This follows from Lemma 4.3 in the same way Theorem 4.2 follows from
Lemma 4.1.

Under the cost assumptions of the previous discussion, the time of the algorithm
is O(IF DCW). This is usually an improvement over the first algorithm since CW
is never larger than WD. However, the space requirement now includes space fom m
tables whose size could be as large as DeW

The third algorithm considered in this section is dynamic programming (Algo-
rithm 4). The idea behind this algorithm is to work bottom-up in the structure tree,
computing each table Tn (as defined above and in Algorithm 3) sometime after the ta-
bles for the children of n have been constructed. This algorithm also satisfies Theorem

AN ALGEBRAIC MODEL FOR COMBINATORIAL PROBLEMS 459

4.4. We omit further analysis.
Backtracking with table look-up does hold a practical advantage over dynamic

programming in that backtracking may leave some entries of the tables Tn uncom-
puted. On the other hand, dynamic programming can be organized to be more space
efficient since tables can be discarded once the parent’s table has been constructed.
This is not a substantial difference from a complexity viewpoint.

5. Relationships between c and 3. The relationship between a and/3 has
implications for finding good structure trees and for bounding the number of nodes
which must be considered by the generic algorithms. We omit proofs because they are
easy and can be found in [32]. For ease of exposition, we assume that each variable of
a formula appears in some predicate and that each predicate has at least one variable.
Accommodating trivial variables and predicates is also discussed in [32].

Given a formula F (V, P), a rooted tree T, and a suitable a mapping V to tree
nodes, a mapping is easily constructed so that (T, a,) is a structure tree for F.
By "suitable," we mean that for each p in P there is a branch of T containing all a(y)
for y in VAR(p). This mapping is defined by

(p) lowest node in {a(x) lx e VAR(p)}.

In other words, (p) is placed as high in the tree as possible without violating Deft-
nition 3.1(4). This placement is optimal in that it gives the smallest channel variable
sets. The pair (T, a) is called an a-tree. This concept opens an approach for finding
structure trees, namely find
Given a formula F (V, P), an unrooted tree T, and an arbitrary mapping P
to tree nodes, a mapping a can be constructed, using any node as root, such that
(T, a,) is a structure tree for F. This a is defined by

a(x) lowest common ncestor of {(p) x VAR(p)}.

In other words, a(x) is placed as low in the tree as possible without violating
Definition 3.1(4). Again, this is optimal in that it gives the smallest branch-variable
sets. The pair (T,) is called a, -tree. This opens a second approach for finding
structure trees, namely find
The mapping a constructed above has the property that a variable x is a channel
variable at node n if and only if there are predicates p nd p2 in P such that x is
in VAR(pl) N VAR(p2) and n is on a simple path between/(pl) and (p2). This
implies that channel variables can be defined by 3 alone and, therefore, channelwidth
can be defined and computed directly from 3 just like weighted depth can be defined
and computed directly from a.

Using the above ideas, one can modify a structure tree (in polynomial time)
by moving various a(x) down the tree, moving various (p) up the tree, and deleting
nodes n with only one child where A(n) and B(n) are empty. The result is a "compact"
structure tree defined as follows.

DEFINITION 5.1. Let F (V, P) be a formula in which every predicate has a
variable and every variable belongs to some predicate. Let S (T, a,) be a structure
tree for F. The structure tree is called compact if and only if the following conditions
hold:

1. for v in V, a(v) is the lowest common ancestor of {(p) Iv e VAR(p)};
2. for p in P, (p) is the lowest node in {a(v)]v e VAR(p)};
3. for nodes n in T, A(n) or B(n) implies n has at least two chil-

dren.

460 RICHARD E. STEARNS AND HARRY B. HUNT III

The compact structure tree always has fewer nodes, smaller branch-variable sets,
and smaller channel-variable sets than the original. Thus all the generic algorithms
given here run more efficiently on compact trees. Compactness bounds the number
of nodes as follows.

PROPOSITION 5.2. If S (T, c,) is a compact structure tree for formula
F (V,P) and N is the set of nodes ofT, then INI <_ 2. IYl and INI <_ 2. IPI.

6. Relationship between weighted depth and channelwidth. There is a
tradeoff between the algorithm based on weighted depth (Algorithm 2) and the al-
gorithms based on channelwidth (Algorithms 3 and 4). The weighted-depth algo-
rithm runs in linear space whereas the others use space exponential in channelwidth.
However, the number of operations performed by the weighted-depth algorithm is
exponential in the weighted depth whereas the others are exponential only in the
channelwidth, which might be significantly smaller. Thus the relationship between
weighted depth and channelwidth is of considerable interest.

Here we summarize the relationship without proof. By definition, a channel vari-
able is also a branch variable so that, in any tree, the channelwidth is never more than
the weighted depth. Also, it is easy to construct a formula and structure tree such
that the structure tree has channelwidth 2 and arbitrary weighted depth. However,
given a structure tree of good channelwidth, a tree of reasonably good weighted depth
can be constructed easily as stated in the next theorem.

THEOREM 6.1. Given a formula F (V, P) and a structure tree S (T, ,/) for
F with channelwidth CW, a structure tree S (Tt, ct, t) for F can be constructed
in polynomial time such that the weighted depth of S’ is at most CW. (log2(INI) + 1),
where N is the set of nodes of T and also of Tt.

The theorem can be proven with a restructuring algorithm to construct T from
T given in [32]. It first changes the root of the tree to be one of the "middle nodes."
(By middle node we mean a node with minimum maximum distance to any other
node.) It then recursively applies this idea to the subtrees represented by each child
of the new root r and edges from r are changed so that the roots of the restructured
subtrees become the new children of r. The result is a new tree having the same node
set as the original. The function/ from the original structure tree is retained and
a new a is computed using the principles of 5. Restructuring can also be achieved
with a straightforward generalization of an algorithm from [6] so that weighted depth
is O(CW. log(Igl) and simultaneously channelwidth is O(CW). The new tree in this
case has more nodes than the old.

7. Finding good structure trees. The algorithms described in 4 assume that
a structure tree for the input formula is already known. It is therefore of considerable
importance to understand the complexity of finding good structure trees since we
would like to apply these techniques to situations where the structure tree is not given
in advance. This includes situations where other structural information is known in
advance.

As pointed out in 3, the concept of the structure tree for a formula is independent
of the formula and depends only on a knowledge of which variables belong to which
predicates. This information can be represented by a "formula hypergraph," defined
as follows.

DEFINITION 7.1. If F (V, P) is a formula, the formula hypergraph HG(F) for
F is the hypergraph (N, E), where N has one node nv for each variable v in V, E has
one edge ep for each predicate p in P, and nv E ep if and only if v VAR(p).

The formula hypergraph provides links between the structure of formulas and

AN ALGEBRAIC MODEL FOR COMBINATORIAL PROBLEMS 461

previously studied structural concepts from graph and hypergraph theory. Some of
these connections are as follow.

THEOREM 7.2. Let T be a problem domain and let TI {HG(F) F E T} be the
set of hypergraphs for formulas in :D. Then the following hold:

1. If the hypergraphs in TI have treewidth at most k, the formulas in T have
channelwidth at most k + 1.

2. If the hypergraphs in Tl are planar and each edge has at most rn nodes, then
each formula F in T has 0() weighted depth.

3. If the hypergraphs in 7-t have bandwidth at most d and each edge has at most
m nodes, then formulas in T) have channelwidth at most d. m.

4. If the hypergraphs in 7-I satisfy a n
r < 1 and each edge has at most rn nodes, then each formula F in Tl has
weighted depth O(nr).

Proof. Since we are not providing the definitions which appear elsewhere in the
literature, we do not provide a proof. However, the results are almost immediate from
the definitions.

Theorem 7.2 together with the general theory make many insights available just
by showing a problem can be modeled as a GSP. For example, it can be immediately
confirmed that the planar version of such a problem can be solved in 2(v) operations
and linear space (plus the polynomial time needed to find a structure tree of weighted
depth O(x/ using planar separators).

We now discuss the problem of finding structure trees in the general situation.
The methods discussed all start with the idea that the structure tree concept can be
applied directly to hypergraphs using a to map nodes and to map hyperedges and
condition 4 of Definition 3.1 becoming "node v in edge p implies a(v) is above/3(e)."
The methods all find a structure tree for HG(V, P) and then return the corresponding
formula structure tree.

If F (V, P) is a formula and V0 c Y and P0 c P, we use the notation IV0, P0]
to represent the hypergraph with node set V0 and edge set {VAR(p) N Volp Po}.
Observe that HG(V, P) IV, P]. It is easy to verify that, for any node n of a structure
tree for IV, P], the subtree with root n is a structure tree for lAD(n), BD(n)]. This
enables a recursive approach to finding structure trees, namely the following:

1. Pick a set V0 c V.
2. Construct a root node r.
3. Set A(r) Vo and B(r) {p e P IVAR(p) c V0}.
4. Find the connected components of IV- A(r), P- B(r)].
5. Construct a structure tree for each component and attach that tree to r.
The preferred choice of V0 are sets which cause the graph to "separate" in step

4 into two or more connected components of substantial size. Under the right cir-
cumstances, a good choice of V0 can be found by a "separator theorem" as in [20] or
[11] and a structure tree built from recursive applications of the separator theorem.
However, separator theorems do not have enough generality to explain all the cir-
cumstances where good separator trees arise. For example, recursive O(n) separator
theorems hold only for classes of graphs where the number of edges for graphs in the
class is linear in the number of nodes (see Theorem 12 of [19]).

In [32], we incorporate exhaustive trials of all possible V0 into the recursive ap-
proach. The result is an algorithm which takes graph (V, P) and integer d as input
and, in O(IF
structure tree of weighted depth d and finds such a structure tree if one exists. Be-
cause this time bound is somewhat close to the O(IFI. Dd) operations, which suffice

462 RICHARD E. STEARNS AND HARRY B. HUNT III

to solve a problem if a structure tree of weighted depth d is given, there are some
interesting implications about exploiting structure even if no structure tree is given
and no separator theorem applies.

Consider the implications of the above for SAT. If we allow time IFI to evaluate a
CNF formula F, SAT is solved by exhaustive search in O(IF 21vl) time. In contrast,
the above remarks imply the following result.

THEOREM 7.3. SAT can be solved in O(WD. IFI 2WD’lg [vI) time.

Proof. Given F, apply the algorithm cited above repeatedly for d 1, d 2,
until a separator tree is found. This happens when d WD. Then apply Algo-

rithm 2. Because Boolean operations can be performed in constant time, Theorem
4.2 implies the result.

This last theorem shows that merely the existence of a good weighted-depth struc-
ture tree is sufficient to solve a SAT instance quicker than trying all cases, even though
we are not given the structure tree as part of the input. With adjustments on the
time bound for the domains and semirings involved, this idea applies to all GSPs.

Structure trees for hypergraphs have essentially the same information content
as tree decompositions for hypergraphs. We now briefly explain this connection for
readers familiar with tree decompositions (defined for graphs in [1]). A structure
tree becomes a tree decomposition simply by taking X(n) CV(n) and viewing the
tree as undirected. In the other direction, pick /(p) to be one of the nodes such
that VAR(p) is in X(n) and convert the resulting/%tree into a structure tree by the
method of 5.

Because of the tight coupling of structure trees and tree decompositions, the
tree-decomposition literature is quite useful for understanding structure trees. The
intent of most papers on treewidth is to study graphs with bounded treewidth. The
motivation for bounded treewidth is to obtain polynomial algorithms. (Bounded
treewidth implies bounded channelwidth, which by Theorem 4.4 implies polynomial
time when semiring operations are easy.) However, most of the results we have seen
from the bounded-treewidth literature do generalize easily to hypergraphs and, except
for conclusions about polynomial time, do not depend on the treewidth being of fixed
size. We have already mentioned a procedure from [6] in 6. From [1], we infer that the
problem of deciding if a formula has channelwidth less than some k is NP-complete,
even if each predicate has only two variables. The literature has a succession of papers
with procedures for finding tree decompositions (if any) for some given k. These
procedures generalize without much difficulty to hypergraphs. The papers include [1,
27-29] and most recently [7]. The algorithms in [1] and [28] take space exponential in
k (no problem when k is bounded). The algorithms in [29] and [27] are approximate
in that they only find the best treewidth within a factor of 4. The approximation
algorithm in [27] takes 0(27CW .CW. IFI) time and polynomial space. The algorithm
in [7] is exact and linear for fixed treewidth. However, its time is exponential in the
cube of the treewidth. A treewidth algorithm explicitly for hypergraphs is given in
[32]. It finds a structure tree of channelwidth k (if any) in O(IFI. IYl k’lglPI) time
and uses only polynomial space. The algorithms imply that statements analogous to
Theorem 7.3 can be made about channelwidth.

8. Hierarchically specified formulas. In this section we look at how formulas
can be specified hierarchically using a sequence of templates. These templates can be
visualized as macros which can be used to expand a given formula into a much larger
formula, a formula which can be exponentially larger than the original. The good
news is that the complexity of finding the value of this large formula depends only on

AN ALGEBRAIC MODEL FOR COMBINATORIAL PROBLEMS 463

the size and structure of the templates.
DEFINITION 8.1. A template is a 4-tuple ("f", V, V’, P) where
1. "f" is the defined symbol,
2. V is an ordered set of variables called parameters,
3. V is a set of variables with V N V called local variables,
4. P is a set of predicates with V U V’ VAR(P).
DEFINITION 8.2. If t "f(Xl,...,Xk)" i8 a term and M ("f",V,V’,P) is

a template defining "f" with YAP(t) N Y and IYl k, then the expansion of t
by M is the formula (VAR(t)[2 V’, P’), where the predicates in P’ are the predicates
obtained from P by replacing occurrences of variables from V with the corresponding
xi. The same formula with variables in V renamed will also be called an expansion
of t by M.

We always assume that when several expansions are involved, local variables are
renamed for individual expansions so that they are different from the variables from
any other expansion by the same or any other template.

DEFINITION 8.3. Let be a set of base symbols. A hierarchical specification H
using is a sequence M1,..., Mk of templates ("fi", V, V, P) and a base formula
(V, P), where the terms in P are U {fl,..., f_}-terms and the terms in P are
U {fl,..., fk}-terms. The formula specified by H is the formula obtained from

(V, P) by repeatedly expanding {fl,..., fk}-terms until only O-terms remain.
We want to discuss how obtaining structure trees for templates can be used to

construct a structure tree for the expanded formula. We first need a structure tree
concept for templates.

DEFINITION 8.4. IfM "f",g, g, P) is a template, a structure tree for M is a
triple S (T, s,), where S is a structure tree for formula (Y Y’, P) and Y C A(r),
where r is the root of T.

THEOREM 8.5. Let M, ..., M1, Fo be a hierarchical specification, To a structure
tree for formula Fo, and T for 1 <_ <_ a structure tree for template Mi. Let WDi
be the weighted depth and CW be the channelwidth of T for 0 <_ <_ 1. Let F be the
formula specified by the specification. Formula F has a structure tree with weighted
depth no greater than -=o WD and channelwidth no greater than max{CW I0 <_

Proof. We first describe how to construct a structure tree for a formula obtained
from just one expansion. This will imply how a tree can be constructed from a series
of expansions.

Let F0 (V0, P0) be a formula, M ("f", V, V, P1) be a template, and t
"f(xl,...,xk)" a term in Po. Let So (T0, so,o) be a structure tree for Fo and
$1 (T1, Sl, 1) be a structure tree for M. Let F be the result of expanding F0 by
t. With this notation, we now describe how to construct a structure tree (T, s,) for
F from the trees for F0 and M1.

The tree T is the tree obtained from To and T1 by making the root of T be a
child of node 0(t) in To. The variables of F are by definition V0 2 V and we define
s(v) s0(v) for v in V0 and s(v) s (v) for v in V1. For terms p in P0- {t}, define
(P) =/0(P). If p is a predicate of F obtained by substitution for the parameters of
some p in P1, define (p) 1 (Pl).

To verify that the constructed tree is a structure tree, we must check condition
(4) of Definition 3.1. Consider now a term p from P and a variable v in VAR(p). If v
in Vo and p in P0, s(v) so(v) is above (p) =/0(v) because s0(v) is above 0(v).
If v in V{ and p is obtained from pl in P by substitution, s(v) s (v) is above
(p) (pl). Finally, consider v in V0 and p obtained from p in P. Since v is not

464 RICHARD E. STEARNS AND HARRY B. HUNT III

in VAR(p), v must be x for some i. Thus a(v) a0(v) is above/0(t) and i0(t) is
above the root of T1 and hence above 1 (p), so again (4) holds.

It is easy to verify that for node n of T originally from To, the channel variables
are the same in both S and $1. It is also easy to verify that the channel variables
of a node n from T1 is the set obtained from the original set of channel variables
by replacing arguments with the corresponding x. In either case, the set of channel
variables at a node is no larger than the original set.

Now consider the structure tree for the full expanded formula obtained by re-
peated use of the above construction. Since the channel variable sets never increase,
the channelwidth of the constructed tree is no larger than any of the parts. Regarding
weighted depth, any branch of the constructed tree consists of segments of at most
one branch from each T. Thus the weighted depth of the branch is no more than the
sum of the individual weighted depths.

When the O-terms in Definition 8.3 are R-terms for commutative semiring R, then
the hierarchical specification H describes a GSP. The weighted depth and channel-
width of the formula are bounded by Theorem 8.5 and any of the methods of 4 can be
applied. However, the m and]PI in Theorems 4.2 and 4.4 may be exponential in the
size of the specification. Thus the number of operations can be exponential is speci-
fication size, even for bounded channelwidth. We now develop an alternative where
the number of operations is bounded by the size and channelwidth of the templates.
The improvements come from viewing templates as defining predicate symbols.

DEFINITION 8.6. If M "f", V, V’, P) is a template where the terms in P are
all R-terms for some commutative semiring R, then M is also called an R-template
and the function "f" from F(V) to R defined by

[I +

is called the predicate function defined by M.
This definition enables us to view a hierarchical specification as a sequence of

function definitions. The next result says that the value implied from the "function"
view equals the value implied by the "macro" view.

THEOREM 8.7. Let be a set of function names for functions into commutative
semiring R. Let M,..., M, Fo be a hierarchical specification and F the formula
described by the specification. Then each M is an R-template and Fo is an R-formula.
Furthermore,

VALUE(Fo) VALUE(F).
Proof. The terms of M are all -terms and hence they are R-terms and M1 thus

defines a function to R. This implies that the terms of T2 are all R-terms and so on
by induction. Finally, the terms of F0 are all R-terms because they are constructed
from and the function symbols defined by the templates. All that remains to be
shown is the claim about values.

We first consider the case where there is just one template T ("f",V, V{,PI)
and formula F0 (V0, P0) has one f-term, namely t "f(x,...,xk)." Let F
(V0 u V/1, (Po {t})U P{) be the expansion of f0 by t, where P is the set P with
the x replacing the corresponding vi from V. We want to show VALUE(Fo)
VALUE(F). By definition,

’or(Vo) pC {t}

AN ALGEBRAIC MODEL FOR COMBINATORIAL PROBLEMS 465

Consider t[/0], which is "f(xl,...,xk)"[/o]. The list Xl,...,xk and ’0 imply
a corresponding assignment , in F(V1) where each vi in V1 is assigned the value
assigned to xi by ’0. The value of t[’y0] is defined to be

Now Pl[’)/+ "] p[’ + 70], where p is the result of replacing vi in P1 by the
corresponding x. Thus t[’0] can be written as

E 1--[P[7’ + %].
’er(y’) lP;

Thus VALUE(Fo) is

-oeF(Vo) pe {t} -,eF(v’) peG
Applying the distributive law gives

II
")’o eF(Vo) "y’ eF(V) pe(Po-{t})UP

which is VALUE(F).
Having proven the result when F is the result of just one expansion, the result

follows by induction. [

By treating a hierarchical specification as a sequence of function definitions, we
can obtain alternative algorithms for computing the value. The most straightforward
approach is to make a table for the predicate function defined by the first template
M1, then a table for the predicate defined by M2, etc., and finally compute the value
of the formula F0. If the template values are computed with the backtracking of
Algorithm 2, the space will be exponential in the arity of the templates and the
number of operations will depend on the templates’ weighted depths. If computed
with Algorithms 3 or 4, the space will be exponential in template channelwidth which
could be substantially larger, but the number of operations will be smaller depending
only on channelwidth. More precisely, this case can be stated formally as follows.

THEOREM 8.8. Let H (MI,...,Mk,Fo) be a hierarchical specification where
each variable takes on at most D values. Let (T,...,T,T0) be structure trees for
the templates and formula of H. Let CW be the maximal channelwidth of any of the
structure trees T. Then the value ofH can be found algebraically where the number of
"." operations, the number of "+" operations, and the number of predicate evaluations
are bounded by 2. IHI DCW.

Proof. The method of computing the value has already been described. Because
template variables are all channel variables of the root, the tables giving a value for
each assignment to template parameters is the projection of the root table computed
in Algorithms 3 or 4. By using compact structure trees, we can insure by Proposition
5.2 that the number of nodes in all the structure trees is no more than twice the
number of specification variables. The result follows from Theorem 4.4. [:3

The importance of this result is that the bound contains]H instead of IFI, where
F is the formula obtained by expanding H, a formula which can be exponentially
larger than H. Finally, these observations hold for the analogous problems over any
finite algebraic structure, e.g., the problems in [12].

466 RICHARD E. STEARNS AND HARRY B. HUNT III

9. Optimization problems. In this section, we consider the circumstances in
which the GSP model can be used to answer questions of the following form: "given
a formula (V, P), find an assignment /0 in F(V) which results in the best value for
HpEP P[0]’" Intuitively, such a 0 is properly referred to as an "optimal assignment."
In this section, we argue that the GSP concept applies precisely to those optimiza-
tion problems where the question can also be posed as a question of the form "find
an assignment /0 in F(V) which minimizes }-’pEpp[Fo]," and we present a generic
algorithm for solving such problems. Since problems of this form are known as NOPs
[30], we can say that the GSP models all NOPs.

If the value of a formula is to be an "optimal" value associated with an "opti-
mal assignment," then the optimal assignment must (at least) satisfy the following
definition.

DEFINITION 9.1. Given an R-formula F (V, P) for commutative semiring R,
an optimal assignment for F is an assignment "o in F(V) such that

VALUE(F) II P[’0].
pEP

This concept of "optimal assignment" seems unrelated to any concept of "best
value," but the next two propositions show that such an assignment and the value it
produces are, in fact, the solution to a minimization problem.

PROPOSITION 9.2. Let R (S, +,., 0, 1) be a commutative semiring. Then every
R-formula has an optimal assignment if and only if, for all a and b in S,

a+b=aor a+b=b.

Proof. If the condition on R holds, then for any al,..., an in S, a ak for
some k, 1 _< k < n. Since VALUE(F) is a sum of assignments to I-[pEP P, the sum
must be equal to some HpEP P[0] and 70 is an optimal assignment.

If, for some a and b, a + b a and a + b 7 b, define f" {0, 1} -- S by f(0) a
and f(1) b. Let F ({x}, {"f(x)"}). VALUE(F) a + b and neither of the two
assignments x 0 or x 1 is an optimal assignment.

It should be noted that all formulas in a problem domain might have a solution
even if a a + b =fi b for some a and b. This is because the problem domain might not
include the formula F from the proof. Nevertheless, the proposition indicates special
attention should be given to the condition "a + b a or a + b b." This condition
takes us immediately to commutative ordered monoids and nonserial optimization.

PROPOSITION 9.3. If R (S,+,.,0,1) is a commutative semiring in which
a + b a or a + b b for all a, b in S, then the binary relation <_ on S defined by

a < be=a+b=a

is a total order on S. Furthermore,

a + b min(a, b)

and

a <_ c and b <_ dimplies a. b <_ c. d.

Proof. The first claim is easily verified. The last claim is slightly tricky. Suppose
a a + c and b b / d. The condition on / implies x / x x for all x E s. Thus

AN ALGEBRAIC MODEL FOR COMBINATORIAL PROBLEMS 467

ab ab+ab (a+c)(b+d)+ab (ab+cb)+(ab+ad)+cd (a+c)b+a(b+d)+cd
ab +cd. []

Because plus is really a minimization operator, we see that the value of the formula
is actually the minimum value of l-Ipeg P[9’] over all possible assignments 9’ E F[V]
and the optimal assignment is the assignment which achieves this minimum. Hence
the appropriateness of the adjective "optimal."

A further change in notation puts this problem into standard nonserial dynamic
optimization notation. In addition to changing "/" to "min," change "." to "+," "0"
to "x" (the identity element for min), and "1" to "0" (the identity element for +).
Thus (S, +,., 0, 1) becomes (S, min,., x, 1). With these changes in notation,

VALUE((V, P)) miner(y) E P[9’]
peP

and an optimal assignment is a 9’o in F(V) which achieves the minimum.
To argue the converse that nonserial optimization can be modeled by a GSP, we

first define nonserial optimization in a very general way.
DEFINITION 9.4. An ordered commutative monoid is specified by a 5-tuple

G- (S, +, 0, <_, x), where + is a commutative associative binary relation on S with
identity 0 and <_ is a total order on S such that a <_ c for a in S and a <_ c and
b <_ d implies a + b <_ c + d. If :D is a set of G-formulas, the NOP for I) is to take a

formula F (V, P) from T) and find both the minimum value of the set

and an assignment o for which the minimum is obtained.
Sometimes an ordered monoid is defined without an x. The integers and rationals

under addition are such monoids. However, an ordered monoid without c can always
have an x appended and + extended so that a+x x+a c for all a in St {x}.

Proposition 9.3 can now be interpreted as saying that any optimization problem
based on GSPs can also be interpreted as a NOP. The semiring + is interpreted as
min and the as monoid /. The next result says that the converse is true.

THEOREM 9.5. For any ordered commutative monoid G, there is a commutative

semiring R such that any G-formula F is an R-formula, the minimum value of G-
formula F is VALUE(F), and the optimal assignments for the G-formula are the
same as the optimal assignments for the R-formula.

Proof. Suppose G (S, +, 0, _<,). Let R be (S, min, +, oe, 0). R is easily
verified to be a commutative semiring. The distributive law, namely a + min(b, c)
min(a+b, a+c), follows because min(b, c) b implies b _< c, which implies a+b <_ a/c,
which implies min(a + b, a + c) a + b. Because G-terms map into S, they are also
R-terms and hence G-formulas are S-formulas. The problem equivalence follows for
reasons already discussed.

We now consider how the generic algorithms can be modified to find an optimal
assignment together with the value. Roughly speaking, the modifications are achieved
by remembering the partial assignments which cause the best partial result to occur.

The modified version of Algorithm 2 is Algorithm 5. The modifications are de-
signed so that when a call is completed, the global variables from AD(n) have the
assignment which (together with values assigned to BV(n)- AD(n)) gives the re-
turned value. We have also switched from semiring notation in Algorithm 2 to ordered
monoid notation. The performance of the algorithm is as follows.

468 RICHARD E. STEARNS AND HARRY B. HUNT III

THEOREM 9.6. Let F (V, P) be a formula where each variable in V takes on
at most D values. Let T be a structure tree for F having m nodes and weighted depth
WD. If Algorithm 5 is applied to F and T, then

1. the number of "+" operations is at most (m + IPI) D TO;
2. the number of "min" operations is at most m. DTO;
3. each p in P is evaluated at most DWD times;
4. the number of "save a value" operations is at most 2. IVI m. D WD.

Proof. Except for (4), this is Theorem 4.2 translated to NOP notation. The saves
only occur after a comparison or just prior to a return. Since up to IV values need
to be saved, (2)implies (4).

We note that Algorithm 5 becomes more efficient if we change "if x
y." However, the programmer must then also take into account the possibility that
the local variables may not contain any assignment if the value x is returned. Other
improvements to cut off unnecessary computations are possible but are beyond the
scope of this presentation. The traditional method of solving NOPs is to use nonserial
dynamic programming similar to Algorithm 4. However, our approach indicates that
the full range of GSP techniques are available.

Because NOPs can be regarded as special GSPs, the methods of 8 define hier-
archical NOP and tell us how to find their values efficiently. To print an optimal
assignment could take time exponential in the size of the hierarchical specification
simply because the number of variables may be exponential in this size. A reasonable
alternative method of representing an assignment is to give an assignment of vari-
ables in the base formula together with a table for each template showing an optimal
assignment of local variables for each assignment of parameter variables. From this
information, the assignment to any particular variable in the expanded formula is eas-
ily computed. The appropriate tables can be computed by enhancing the algorithm
of Theorem 8.8 with the techniques discussed earlier in this section.

10. Constrained GSPs. The value of a GSP formula is, by definition, deter-
mined from a consideration of the set of all variable assignments. Here we consider
situations where the value we want depends only on a subset of the assignments. We
call these "constrained formulas" because the assignment subset is specified by a set
of "constraints." However, instead of developing a separate theory for constrained
GSPs, we show how constrained GSPs (CGSPs) are easily transformed back into or-
dinary unconstrained GSPs. This further illustrates the scope of the GSP model and
makes the model easier to apply since it is often easy to see that a given problem can
be posed as a CGSP.

DEFINITION 10.1. If R (S, +,., 0, 1) is a commutative semiring and B is the
Boolean semiring, then a constrained R-formula is given by a triple C (V, P, Q),
where (V,P) is an R-formula and (V, Q) is a B-formula. The value of C, denoted by
VALUE(C), is defined by

l]
ffEFo pEP

where

r0 { e r(v)I q[] wvfor all q e Q}.

If 7) is a set of constrained R-formulas, then the constrained GSP (or CGSP) for 7)

is to take a constrained formula from 7) and find its value.

AN ALGEBRAIC MODEL FOR COMBINATORIAL PROBLEMS 469

Note that if 70 , then the sum is on the empty set and VALUE(C) O.
The transformation from CGSP to GSP employs a very simple kind of term

transformation achieved by mapping the term output into another set:
DEFINITION 10.2. If r is a function from S to S2 and p ="f(x,...,xk)" is an

S-term, then we use the notation rop to mean an S2-term equivalent to the expression
’(f(xl,...,xk))". If Q1 is a set of S-terms, we call the set Q2 {roplp e Q} a
reinterpretation of Q by r and we write Q2 r Q.

THEOREM 10.3. If (V, P, Q) is a constrained R-formula, Q has a reinterpretation
Q= r o Q such that formula (V, P U Q) is an R-formula having the same value.

Proof. Let R (S, +,., 0, 1) be the commutative semiring for P. To get Q,
use the reinterpretation r, where r(TtUE) is 1 and r(FALSE) is 0. Observe that
EtPWQ’ t[/] is equal to Epg t[’] whenever q[] 1 for all q in Q’ and is equal
to 0 if q[,] 0 for some q in Q. The result about values follows easily. [

Remark. Because Q and r Q have identical hypergraphs, Theorem 10.3 shows
that it is the structure of P and Q combined (i.e., of Put.Q) that must be considered
in order to apply the generic algorithms to (V, P, Q). An important special case is the
"linear case" where the predicates in P all have the form "f(x)." In this case, any
structure tree (S, a,/) for (V, Q) is, for structural purposes, identical to a structure
tree (S,a,’) for (V, PurQ), where/’(roq) =/(q) and ’("f(x)") (x). The
branch variables at each tree node are the same in both cases and so are the channel
variables. Thus both cases have the same weighted depth and the same channelwidth.

By analogy, for an ordered commutative monoid G, we can define a "constrained
G-formula" and hence a "constrained NOP" (CNOP).

COROLLARY 10.4. If G (S, +, 0, <_, c) is an ordered commutative monoid, any
constrained G-formula F can be transformed into a GSP-formula F’ such that

1. F and F have the same value and same optimal assignments whenever the
constraints are satisfiable;

2. the value ofF is oc and all assignments are optimal whenever the constraints
are unsatisfiable.

Remark. In the case where the G-terms of F have the form "f(x)", the structure
of the problem is captured by the structure of the constraints for the same reason as
in the previous remark. We call this the "linear objective function case."

We note that {0,1}-linear programs are a GSP with linear objective functions.
The variable domains are {0, 1}, the linear constraints describe predicates, and the
objective function terms are the single variable expressions cv.

11. Boolean satisfiability problems. By a "Boolean formula," we mean a B-
formula where B is the Boolean semiring ({TRUE, FALSE}, /, /k, FALSE, TRUE). By
a "Boolean satisfiability problem," we mean a GSP whose problem domain is some
set of Boolean formulas. As observed in 2, the question "does a Boolean formula F
have a satisfying assignment?" has answer "yes" if and only if VALUE(F) TRUE.
Thus SAT, 3SAT, and the problems from [31] are Boolean satisfiability problems.
Satisfiability is one of several questions commonly asked questions.

DEFINITION 11.1. We define the following problems for Boolean formulas F:
SATISFIABILITY. Does F have a satisfying assignment?
COUNTING. How many satisfying assignments does F have?
MAXIMIZATION. What is the maximum number of predicates from F that
can be simultaneously true?

PARITY. Is the number of satisfying assignments odd or even?
UNIQUENESS. Does F have a unique solution?

470 RICHARD E. STEARNS AND HARRY B. HUNT III

TABLE 1
Semirings for Boolean formula questions.

PROBLEM S + 0 1
SATISFIABILITY
COUNTING

MAXIMIZATION
PARITY

UNIQUENESS

{T,F} OR AND F T
integers + 0 1
naturals max + 0 0
{0,1} XOR AND 0 1
{0,1,2} min(a + b, 2) min(a b, 2) 0 1

Each of the defined problems can be expressed in a well-known way as a language-
recognition problem, namely recognize the set of satisfiable formulas, recognize the
set of pairs (F, k), where F has at least k satisfying assignments, etc. For CNF
formulas, the corresponding language problems are known as SAT, #SAT, MAX SAT,
PARITY SAT, and UNIQUE SAT and are complete for NP, #P [34], MAX-SNP [24],
PARITY-P, and DR [35]. The hierarchically specified versions of 3SAT and #3SAT
are PSPACE- and #PSPACE-complete, respectively [13].

Recalling the concept of reinterpretation given in Definition 10.2, representations
for each problem in Definition 11.1 are obtainable as follows.

PROPOSITION 11.2. For each of the problems given in Definition 11.1, there is a
commutative semiring (S, +,., 0, 1) (given in Table 1) and a reinterpretation function
r {FALSE, TRUE} ---+ S such that the answer for Boolean formula F (V,P) is
VALUE(V, r o P).

Proof. The semirings are given in Table 1 and, in each case, r maps FALSE to
0 and TRUE to 1. In the case of UNIQUENESS, think of "2" as "more than one."
In this case, VALUE(V, P) returns three possible answers, namely "no satisfying
assignment," "one (unique) assignment," or "more than one assignment." For each
problem, the assertion about VALUE(V, r o P) is easy to verify.

Because formulas (V, P) and (V, r o P) have the same structure (i.e., they have
identical formula hypergraphs), the problems from Definition 11.1 have equal com-
plexity with regard to finding good structure trees and with regard to the number
of operations performed by the generic algorithms. There may, however, be cost dif-
ferences associated with performing the operations. For example, COUNTING can
involve numbers with IVI bits whereas SATISFIABILITY involves only Boolean val-
ues. In this same regard, care must be taken when extrapolating to a hierarchical
specification H. For example, COUNTING then can involve numbers with 2IHI bits.

Of the five problems from Definition 11.1, SATISFIABILITY and MAXIMIZA-
TION are optimization problems, and hence optimal assignments can be computed
along with the value. Although UNIQUENESS is not an optimization problem
(1 + 1 #- 1 contrary to Proposition 9.2), the uniquely satisfying assignment (if any)
can be found by very similar methods.

Closely related to the above are problems of the form "find a satisfying assign-
ment which minimizes -xey f(xi)." One of these problems is "find the satisfying
assignment with the largest number of variables assigned TRUE," which is described by
setting fi(FALSE) 0 and fi(TRUE) 1 for all i. This problem is MAXIIl-complete
[22]. Another is "find the lexicographically smallest satisfying assignment," which is
described by setting fi(F) 0 and f(T) 21vl- for all i. This last problem is
OPT-P-complete [16]. Both problems are constrained NOPs with a linear objective
function and, as discussed in the remarks of 10, their structure is essentially just the
structure of the constraints inherited from the original Boolean formula.

One implication of the fact that all problems in this section have identical struc-

AN ALGEBRAIC MODEL FOR COMBINATORIAL PROBLEMS 471

ture is that Theorem 7.3 applies to all these problems, not just for SAT, after possible
adjustments for the complexity of performing the corresponding semiring operations.

12. Graph problems. A fundamental question about graphs is the following:
for which hard graph problems are highly structured input graphs easier to solve than
the general case? A sufficient condition is provided by the GSP model: structured
graphs are easier to solve when the semantics of the graph problem can be described by
a GSP in such a way that the formula hypergraph inherits the structure of the graph.
This inheritance is most direct and useful when the formula hypergraph and input
(hyper)graph are identical. This happens if the GSP has variables corresponding to
each node, predicates corresponding to each hyperedge, and each predicate has the
variables which correspond to its hyperedge nodes. We call this the node-variable
edge-predicate (NVEP) case.

A good example of NVEP is graph k coloring. To model this as a GSP, introduce
a variable for each graph node and let the variables range over a set of k colors. For
each graph edge (nl, n2), introduce a predicate "f(vl, v2)", where vl and v2 are the
variables corresponding to n and n2 and f(v, v2) is TRUE if and only if v v2.
Then the graph has a k coloring if and only if the value of the GSP is TRUE. This is
an example of a Boolean satisfiability problem as discussed in the previous section.

The structure of a graph is also passed directly to a GSP when the problem
semantics are described by NVEP constraints and a linear objective function to be
maximized or minimized. (See the Remarks in 10.) A good example of this is
minimum node cover for hypergraphs. There is an obvious representation where the
node variables take on the value TRUE (for nodes included in cover) or FALSE (for nodes
not included), there is a constraint v /... /vk for each hyperedge {xl,...,xk},
and there is an objective term "/(v)" for each variable, where f(TPUE) 1 and
f(s) 0.

A simple extension of the NVEP case is to allow each predicate to contain an
additional variable which is associated with the corresponding hyperedge. With mi-
nor adjustments to the structure tree, this extension can be accommodated .with an
increase of at most one in weighted depth and treewidth/channelwidth. This is essen-
tially the edge condition composition (ECC) case of [5]. We say "essentially" because
ECC is defined only for ordinary graphs, the definitions include conditions on certain
monoids and the complexity of monoid operations, and the results are oriented toward
bounded-treewidth graphs. However, the theme of [5] is the same as in this section,
namely that graph structure can be exploited to solve a graph problem more quickly
provided the semantics of the graph problem has a suitable semantics, and the proofs
of [5] can be viewed as showing that the many graph problems considered are GSPs.

Some problems are more naturally represented with variables for each edge and
predicates for each node, a case we call EVNP. For example, minimal edge cover is
most naturally represented by EVNP constraints and a linear objective function. Here
the structure of the graph is passed on but not so directly. (The formula hypergraph
is actually the hypergraph dual of the input.) A structure tree for the graph can be
converted to a structure tree for the formula, but the weighted depth and channelwidth
can increase by a factor of k, where k is the size of the largest hyperedge. (k-2 for
ordinary graphs.) This case relates to the local condition composition (LCC) case of
[5] in the same way that NVEP relates to ECC. We omit further details.

The minimum edge-cover problem just discussed can also be represented (less
naturally) as a NVEP problem. Let the variable for each node range over the set
of edges for that node. For each hyperedge e, construct an integer-valued predicate

472 RICHARD E. STEARNS AND HARRY B. HUNT III

which is one if any of the arguments are equal to edge e and is zero otherwise. For
any assignment, the set of edges taken on by the node variables is an edge cover and
the number of predicates with value 1 is the size of this edge cover. Thus the value
of the formula under semiring (N, min, +, oc, 0) is the minimum cover.

The last example illustrates the use of "instance-specific domains," in this case
variables which take on edge names as values. With the use of instance-specific
domains, even HAMILTONIAN CIRCUIT and TRAVELING SALESMAN can be
described as GSPs [32]. From a computational viewpoint, the value of such represen-
tations diminishes as the domains become more contrived. It should also be noted
that there are nonalgebraic ways of exploiting structure trees that may be compu-
tationally more appropriate. Thus whether certain graph problems should be called
GSPs is really a matter of taste.

Some graph problems are known to be hard even when the graphs have a very
simple structure. One such problem is BANDWIDTH (problem [GT40] from [10])
which is NP-complete even for trees (trees have channelwidth 2 and treewidth 1).

When the semantics of a graph problem are described as a GSP, we have found
that the hierarchical methods of 8 frequently apply. This is the subject of another
paper.

Appendix.
ALGORITHM 1. Brute force.
Input: Formula (V, P)
Variables: v in V, x for accumulating a sum, y for accumulating products
Output: VALUE(V, P) x - 0;

FOR e F(V) DO
BEGIN
y -- 1;
FORp E P DO y - y. [7];
x--x+y;
END;
OUTPUT (x)

ALGORITHM 2. Generalized backtracking.

Input parameter: n, a structure tree node for formula (V,P).
Global variables: v in V.
Local variables: x for accumulating a sum, y for accumulating products.
Assumptions: When called, global variables from BV(n)- A(n) contain an

assignment /0.
Value returned: E(n, /0) from Definition 3.5. Returns VALUE(V, P) when

is the root node.
Optimization: If ever y 0, the program could skip to the next assignment

A similar remark applies to other algorithms in this appendix.

FUNCTION EVALUATE(n)
x, y are local variables.
x -- 0;
FOR /e r(A(n)) DO
BEGIN

AN ALGEBRAIC MODEL FOR COMBINATORIAL PROBLEMS 473

FOR p e B(n) DO y ,- y. P[7 + 70];
FOR ALL CHILDREN n’ of n DO y y. EVALUATE(n);
x---x+y;
END;
RETURN(x);

ALGORITHM 3. Backtracking with table lookups.

Input parameter: n, a structure tree node for formula (V, P).
Global memory: variables v in V and, for each structure tree node m, a table

Tm having an entry for each assignment 7 in r(CV(m)). Table entries can be semiring
elements or "undefined."

Local Variables: x for accumulating a sum, y for accumulating products.
Assumptions: When function is called, global variables from CV(n)- A(n)

contain an assignment 70. All table entries are initialized "undefined."
Value returned: E(n, 70) from Definition 3.5. Returns VALUE(V, P) when n

is the root node.

FUNCTION EVALUATE(n)
x, y are local variables.
IF Tn (7o) "undefined" THEN
BEGIN
x -- 0;
FOR 7 e F(A(n)) DO
BEGIN
y-l;
FOR p e B(n) DO y - y. P[7 + 70];
FOR ALL CHILDREN n’ of n DO y - y. EVALUATE(n’);
x--x+y;
END;

x;
END
RETURN (Tn (70))

ALGORITHM 4. Dynamic programming.

Input: A structure tree for formula (V, P).
Memory: Variables x and y and, for each node m of the structure tree, a table

T, having one entry for each assignment in F(CY(m)- A(m)). The table entries are
semiring elements.

Assumptions: Each table is initially considered "unconstructed" and is reclas-
sifted as constructed at the time indicated in the program.

Output: The table Troot for the root node has only one entry because CV(root)-
A(root) and thus on exit, this entry contains VALUE(V, P).

WHILE not all Tn are constructed DO
BEGIN
PICK n such that
(1) Tn is not constructed and
(2) T is constructed for all children of n;
FOR all 70 e F(CY(n)- A(n)) DO
BEGIN

474 RICHARD E. STEARNS AND HARRY B. HUNT III

x -- 0;
For all e r(A(n)) DO
BEGIN
yl;
FOR p e B(n) DO y - y. P[7o + 71];
For all children of n’ of n DO y - y. Tn, [70 + 71 projected to CY(n’) A(n’)];

x--x+y;
END;
Tn[7o] *- x
END;
{Tn is now constructed};
END;

ALGORITHM 5. Optimization using generalized backtracking.

Input parameter: n, a structure tree node for formula (V,P).
Global variables: v in V.
Local variables: x for accumulating a maximum, y for accumulating sums, and

v’ for v E AD(n) for remembering the "best assignment for AD(n) seen so far."
Assumptions: When called, global variables from BV(n)- A(n) contain an

assignment
Value returned: E(n, 7o) from Definition 3.5. Additionally, the global variables

v AD(n) contain a corresponding assignment.

FUNCTION EVAL UATE(n)
x, y, v for v AD(n) are local variables

For e r(A(n)) DO
BEGIN
y0;
FOR p e (n) DO y y + p[+ 7o]
FOR ALL CHILDREN n’ of n DO y y + EVALUATE(n);
IF y x THEN {"IF y < x" is better}
BEGIN
xy;
FOR v e AD(n) DO v’ v;
END;
END;
FOR v AD(n) DO v v’;
RETURN (x);

REFERENCES

[1] A. ARNBORG, D. G. CORNEIL, AND A. PROSKUROWSKI, Complexity of finding embeddings in a

k-tree, SIAM J. Algebraic Discrete Meth., 8 (1987), pp. 277-284.
[2] S. ARNBORG AND A. PROSKUROWSKI, Linear time algorithms for NP-hard problems restricted

to partial k-trees, Discrete Appl. Math., 23 (1989), pp. 11-24.
[3] S. ARNBORG, J. LAGERGREN, AND D. SEESE, Which problems are easy for tree-decomposable

graphs?, J. Algorithms, 12 (1991), pp. 308-340.

AN ALGEBRAIC MODEL FOR COMBINATORIAL PROBLEMS 475

[4] A. BERTONI, G. MAURI, AND N. SABADINI, A characterization of the class of functions com-

putable in polynomial time on random access machines, in Proc. 13th Annual ACM Sym-
posium on the Theory of Computing, Association for Computing Machinery, New York,
1981, pp. 168-176.

[5] H. L. BODLAENDER, Dynamic programming on graphs with bounded tree width, Technical Re-
port RUU-CS-87-22, Department of Computer Science, University of Utrecht, Utrecht, the
Netherlands, 1987; Lecture Notes in Comput. Sci., 317 (1988), pp. 105-118.

[6] , NC-algorithms for graphs with small treewidth, Lecture Notes in Comput. Sci., 344
(1988), pp. 1-10.

[7] , A linear-time algorithm for finding tree-decompositions of small treewidth, in Proc.
25th Annual ACM Symposium on the Theory of Computing, Association for Computing
Machinery, New York, 1993, pp. 226-234; SIAM J. Comput., to appear.

[8] S. A. COOK, The complexity of theorem-proving procedures, in Proc. 3rd Annual ACM Sym-
posium on the Theory of Computing, Association for Computing Machinery, New York,
1971, pp. 151-158.

[9] M. E. DYER AND A. M. FRIEZE, Planar 3DM is NP-complete, J. Algorithms, 7 (1986), pp. 174-
184.

[10] M. R. GAREY AND D. S. JOHNSON, Computers and Intractability: A Guide to the Theorem of
NP-Completeness, W. H. Freeman, San Francisco, 1979.

[11] J. R. GILBERT, J. P. HUTCHINSON, AND R. E. TARJAN, A separator theorem for graphs of
bounded genus, J. Algorithms, 5 (1984), pp. 391-407.

[12] J. P. HAYES, Digital simulation with multiple logic values, IEEE Trans. Computer-Aided De-
sign, 5 (1986), pp. 274-283.

[13] H. B. HUNT III, M. MARINE, V. RADHAKRISHNAN, D. J. ROSENKRANTZ, AND R. E. STEARNS, A
unified approach for proving both easiness and hardness results for succinct specifications,
Technical Report 94-5, Computer Science Department, State University of New York at
Albany, Albany, New York, 1994.

[14] H. B. HUNT III AND R. E. STEARNS, The complexity of very simple Boolean formulas with
applications, SIAM J. Comput., 10 (1990), pp. 44-70.

[15] R. M. KARP, Reducibility among combinatorial problems, in Complexity and Computer Compu-
tations, R. E. Miller and J. W. Thatcher, eds., Plenum Press, New York, 1972, pp. 85-103.

[16] M. W. KRENTEL, The complexity of optimization problems, J. Comput. System Sci., 36 (1988),
pp. 490-509.

[17] T. LENGUAER AND K. W. WAGNER, The correlation between the complexities of nonhierarchical
and hierarchical version of graph problems, J. Comput. System Sci., 44 (1992), pp. 63-93.

[18] D. LICHTENSTEIN, Planar formulae and their uses, SIAM J. Comput., 11 (1982), pp. 329-343.
[19] R. J. LIPTON, D. J. ROSE, AND R. E. TARJAN, Generalized nested dissection, SIAM J. Numer.

Anal., 16 (1979), pp. 346-358.
[20] R. L. LIPTON AND R. E. TARJAN, Applications of a planar separator theorem, SIAM J. Comput.,

9 (1980), pp. 615-629.
[21] B. MONIEN AND I. H. SUDBOROUGH, Bounding the bandwidth of NP-complete problems, Lecture

Notes in Comput. Sci., 100 (1981), pp. 279-292.
[22] A. PANCONESI AND D. RANJAN, Quantifiers and approximation, in Proc. 22nd Annual ACM

Symposium on the Theory of Computing, Association for Computing Machinery, New
York, 1990, pp. 446-456.

[23] C. H. PAPADIMIMITRIOU AND M. YANNAKAKIS, The complexity of facets (and some facets of
complexity), J. Comput. System Sci., 28 (1984), pp. 144-159.

[24] Optimization, approximation, and complexity classes, J. Comput. System Sci., 43
(1991), pp. 425-440.

[25] V. RADHAKRISHNAN, H. S. HUNT III, AND R. E. STEARNS, Efficient algorithms for solving sys-
tems of linear equations and path problems, in Proc. 9th Annual Symposium on Theoretical
Aspects of Computer Science, Lecture Notes in Comput. Sci., 577 (1992), pp. 109-119.

[26] S. S. RAVI AND n. B. HUNT III, Application of planar separator theorem to counting problems,
Inform. Process. Lett., 25 (1987), pp. 317-321.

[27] B. A. REED, Finding approximate separators and computing treewidth quickly, in Proc. 24th
Annual ACM Symposium on the Theory of Computing, Association for Computing Ma-
chinery, New York, 1982, pp. 221-228.

[28] N. ROBERTSON AND P. D. SEYMOUR, Graph minors II: Algorithmic aspects of tree-width, J.
Algorithms, 7 (1986), pp. 309-322.

[29] ., Graph minors XIII: The disjoint path problem, J. Combin. Theory Ser. B, 63 (1995),
pp. 65-110.

[30] A. ROSENTHAL, Dynamic programming is optimal for non-serial optimization problems, SIAM
J. Comput., 11 (1982), pp. 47-59.

476 RICHARD E. STEARNS AND HARRY B. HUNT III

[31] T. J. SCHAEFER, The complexity of satisfiability problems, in Proc. 10th Annual ACM Sym-
posium on the Theory of Computing, Association for Computing Machinery, New York,
1978, pp. 216-226.

[32] R. E. STEARNS AND H. B. HUNT III, Generalized satisfiability problems, structure trees, and
their application, Technical Report 90-2, Department of Computer Science, State Univer-
sity of New York at Albany, Albany, New York, 1990.

[33] , Power indices and easier hard problems, Math. Systems Theory, 23 (1990), pp. 209-225.
[34] L. VALIANT, The complexity of enumeration and reliability problems, SIAM J. Comput., 8

(979), pp. 40-42.
[35] L. G. VALIANT AND V. V. VAZIRANI, NP is as easy as detecting unique solutions, in Proc.

17th Annual ACM Symposium on the Theory of Computing, Association for Computing
Machinery, New York, 1985, pp. 458-463.

[36] A. T. WHITE, Graphs, Groups and Surfaces, McGraw-Hill, New York, 1984.

SIAM J. COMPUT.
Vol. 25, No. 3, pp. 477-497, June 1996

() 1996 Society for Industrial and Applied Mathematics
001

STRONGLY COMPETITIVE ALGORITHMS FOR PAGING WITH
LOCALITY OF REFERENCE*

SANDY IRANIt, ANNA R. KARLIN$, AND STEVEN PHILLIPS

Abstract. What is the best paging algorithm if one has partial information about the possible
sequences of page requests? We give a partial answer to this question by presenting the analysis of
strongly competitive paging algorithms in the access graph model. This model restricts page requests
so that they conform to a notion of locality of reference given by an arbitrary access graph.

We first consider optimal algorithms for undirected access graphs. Borodin et al. [Proc. 23rd
ACM Symposium on Theory of Computing, 1991, pp. 249-259] define an algorithm, called FAR,
and prove that it is within a logarithmic factor of the optimal online algorithm. We prove that FAR
is in fact strongly competitive, i.e. within a constant factor of the optimum. For directed access
graphs, we present an algorithm that is strongly competitive on structured program graphs--graphs
that model a subset of the request sequences of structured programs.

Key words, analysis of algorithms, nline algorithms, competitive analysis, paging, locality of
reference

AMS subject classifications. 68Q22, 68R10

1. introduction. Many computer systems have a two-level store of memory
consisting of a small, fast memory and a large, slow memory. The abstraction of a
large, fast, virtual memory is often implemented by dividing the slow memory into
pages and keeping those pages that are likely to be referenced soon in the fast memory.
A page fault occurs when a reference is made to a page that is not resident in fast
memory. Handling a page fault is typically expensive since the page must be brought
into fast memory. A page-replacement strategy specifies which page to replace on a
page fault.

If the future sequence of page requests is known in advance, the optimal page
replacement strategy is clear: replace the page whose next request is farthest in the
future [1]. Unfortunately, the decision about which page to replace must usually be
made online, without detailed information about future requests.

How can we analyze such an online algorithm? Straightforward worst-case analy-
sis is useless; if arbitrary request sequences are allowed, then an adversary that always
requests the last discarded page can force any paging algorithm to fault on each re-
quest. Average-case analysis is also problematic since it requires a statistical model
of the sequence of requests. It is extremely difficult to devise a realistic model, since
the pattern of accesses changes dynamically with time and with different applica-
tions. Nonetheless, several of the early analyses of paging algorithms were performed
assuming a fixed probability distribution on the request sequences [6, 13, 1].

in order to get around these problems, the notion of competitive analysis was
introduced by Sleator and Tarjan [12]. An online page-replacement strategy A is said
to be c-competitive if there exists a constant/ such that for every request sequence

Received by the editors August 19, 1992; accepted for publication (in revised form) September
15, 1994.

Department of Information and Computer Science, University of California at Irvine, Irvine, CA
92717, (irani@ics.uci.edu). The research of this author was partially supported by National Science
Foundation grant CCR-9309456.

DEC Systems Research Center, 130 Lytton Avenue, Palo Alto, CA 94301.
Department of Computer Science, Stanford University and DEC Systems Research Center, 130

Lytton Avenue, Palo Alto, CA 94301. The research of this author was partially supported by National
Science Foundation grant CCR-9010517 and an OTL grant.

477

478 SANDY IRANI, ANNA R. KARLIN, AND STEVEN PHILLIPS

A(cr) <_ c. OPT(a) + fl,

where A(cr) is the cost (i.e., the number of faults) incurred by the algorithm A in
processing the request sequence a and OPT(a) is the cost incurred by the optimal
offline algorithm in processing a. The competitiveness of A, denoted by CA, is the
infimum of c such that A is c-competitive.

Competitive analysis avoids the assumptions of probabilistic analysis, and has
the power of differentiating between different paging algorithms. Sleator and Tarjan
showed that no deterministic paging algorithm can achieve a competitiveness better
than k, where k is the number of pages of fast memory. They also showed that some
practical algorithms, such as first-in-first-out (FIFO) and least-recently-used (LRU),
are k-competitive, and hence best possible in their model.

1.1. Locality of reference. The Sleator-Tarjan results conflict with practical
experience on paging in at least two ways. First, FIFO and LRU have the same
competitiveness, even though in practice LRU usually outperforms FIFO. Second,
LRU usually incurs much less than k times the optimal number of faults, even though
its competitiveness is k.

The reason for the practical success of LRU has long been known: most programs
exhibit locality of reference [1, 4, 11]. This means that if a page is referenced, it is
more likely to be referenced in the near future (temporal locality) and pages near it in
memory are more likely to be referenced in the near future (spatial locality). Indeed,
a two-level store is only useful if request sequences are not arbitrary.

Motivated by these observations, Borodin, Irani, Raghavan, and Schieber [2] pro-
posed a technique for incorporating locality of reference into the traditional Sleator-
Tarjan framework. Their notion of an access graph limits the set of request sequences
the adversary is allowed to make.

An access graph G (V, E) for a program is a graph that has a vertex for each
page that the program can reference. Locality of reference is imposed by the edge
relation--the pages that can be referenced after a page p are just the neighbors of p
in G or p itself. Thus a request sequence a must be a walk on G. The specific walk
that is generated is determined by the data given to the program. The definition of
competitiveness remains the same as before, except for this restriction on the request
sequences. Let CA,k(G) denote the competitiveness of an online algorithm A with k
pages of fast memory on the access graph G. We denote by ck(G) the infimum (over
online algorithms A with k pages of fast memory) of CA,k((). Thus c(G) is the best
that any online algorithm can do. We say an algorithm A is strongly competitive if
CA,k(a) O(Ck(a)).

An access graph may be either directed or undirected. An undirected access graph
might be a suitable model when the page reference patterns are governed by the data
structures used by the program. For example, if a program performs operations on
a tree data structure, and the mapping of the tree nodes to pages of virtual memory
represents a contraction of a tree, then the appropriate access graph might be a tree.
Alternatively, if we were to completely ignore data and focus only on the flow of
control inherent in the structure of the program, a directed access graph might be a
more suitable model.

This terminology differs slightly from that of [7, 9], where strongly competitive was defined as
achieving the competitive ratio ck(G).

STRONGLY COMPETITIVE PAGING 479

Unfortunately, modeling access patterns is not as simple as these examples would
suggest. See 4 for a discussion of the limitations of the model.

1.2. Summary of results. In this paper, we show that there are strongly com-
petitive page replacement strategies in two important settings: (1) undirected access
graphs and (2) directed access graphs representing the stream of instruction references
made by a structured program.

1.2.1. Undirected access graphs. Borodin et al. proved that on any undi-
rected access graph G, CLRU,k(G)

_
2CFIFO,k(G), and that LRU is often better than

FIFO. However, on some graphs the competitiveness of both LRU and FIFO is much
greater than ck(G). For example, it has been observed [8] that LRU and FIFO behave
badly on loops just larger than k. This is substantiated by the following result in the
access graph model: if G is the (k + 1)-node cycle, then ck (G) Vlog(k + 1), while

CLRU,k k. Thus LRU can be far from optimal among online algorithms.
We seek a universal algorithm, with a succinct description, whose competitive-

ness is close to c(G) on every graph G. Importance is lent to this question by recent
operating system research, in which facilities are provided for user-defined page re-
placement strategies [3, 10]. When these facilities are available, one must consider the
following question: what is the best paging algorithm if one has partial information
about the possible sequences of page requests? When the partial information is rep-
resented by an access graph, this question asks for a universal paging algorithm that
is strongly competitive.

Borodin et al. describe a simple and natural algorithm called FAR, and prove
that it achieves a competitiveness within O(log k) of c(G)for every graph G. They
leave open the question of finding an algorithm with competitive ratio O(c(G)). Our
main result for undirected access graphs is that FAR is optimal, within a constant
factor, among online algorithms for paging with locality of reference.

THEOREM 1.1. For any graph G and memory size k, the algorithm FAR is
strongly competitive, i.e.,

The proof relies on a graph decomposition called a vine decomposition [2]. Borodin
et al. show how to find a lower bound on c(G) using a vine decomposition of G. We
show that this lower bound is essentially optimal, by using the fault pattern of FAR
to construct a vine decomposition of G.

1.2.2. Directed access graphs. In 3 we consider optimal algorithms for di-
rected access graphs that represent a subset of the stream of instruction references
made by a structured program. We use the notion of structured program graphs as in

Structured program graphs (spg’s) are defined recursively as follows: Every spg
has a designated start node and a designated stop node. A single directed edge is an
spg, where the node with outdegree 1 is the start node and the node with indegree 1
is the stop node. More complex spg’s can be constructed by applying the following
rules:

(i) Two spg’s (1 and G2 can be combined to get a new spg, by identifying the
start node of G1 and the stop node of G2 (serial composition).

(ii) Two spg’s (71 and G2 can be combined to get a new spg, by identifying the
stop nodes of G1 and G2 (branching statement).

480 SANDY IRANI, ANNA R. KARLIN, AND STEVEN PHILLIPS

(iii) A node v in an spg can be identified with a node u of a directed cycle to
yield a new spg (loop).

Notice that there is no way to represent arbitrary "GOTO" statements. A signif-
icant limitation of this model is that the definition does not allow branching within
loops.

Borodin et al. analyze a simple generalization of FAR, called 2FAR, that is optimal
for spgs in which all strongly connected components have at most k + 1 nodes. We
introduce a variant of 2FAR, called EVEN, and prove that it is strongly competitive
for all spg’s.

THEOREM 1.2. The algorithm EVEN is strongly competitive on the class of
structured program graphs. In other words, for any structured program graph G,

2. Undirected access graphs.

2.1. Background. We review some terminology and results on competitive pag-
ing. A sequence of page requests and the resulting behavior of a paging algorithm
can be divided into phases. At the beginning of a phase, all pages are unmarked.
When a page is requested (or hit) it is said to be marked. A phase ends just before
the request to the (k + 1)st distinct node. At the end of a phase all nodes become
unmarked again. We call the nodes requested in this phase but not in the previous
phase new nodes. A node is said to be evacuated if it has been evicted from the fast
memory during the phase. If a page is in the fast memory, we will say it is covered
by a server.

The algorithm FAR is a marking algorithm. A marking algorithm is an algorithm
that, on a fault, always evicts an unmarked page. The unmarked page that FAR
chooses to evict is the page that is furthest (in the access graph) from the set of
marked nodes.

We think of the sequence of page requests as being generated by an adversary,
and say that the cost of the adversary is the cost of the of[line algorithm on the request
sequence.

PROPOSITION 2.1. (a) If g new nodes are requested in the ith phase, then the
cost of the adversary during the first i phases is at least (’]j=l gj)/2, and at most

j=l gJ" (b) If A is a marking algorithm then for any graph G, CA,k(G) <_ k.
The proof of part (a) is due to Fiat et al. [5], while part (b) is due to Karlin et

A vine decomposition V(H) (T, P) of any graph H is a tree T in H together
with a set 79 P1, P2,.. of pairwise edge disjoint simple paths in H (without loops),
called vines, such that (i) the nodes of H are partitioned between T and the interior
nodes of the Pi’s; (ii) each endpoint of each path is a node in T. If a tree node is
the endpoint of a vine, it is called an anchor. Let nT be the number of leaves of T
that are not anchors. The value of a path P, denoted v(P), is defined to be [log IPI],
where IP is the number of edges in P. The value of the vine decomposition V(H),
denoted v(V(H)) (or v(V) for short), is

v(V(H)) v(Pi) + nT 1.

Lastly, if C is a cycle on k + g nodes, 1 _< g _< k, then the value of C is v(C)
[log k log gJ/2.

STRONGLY COMPETITIVE PAGING 481

THEOREM 2.2. 1. For any graph G and memory size k, let]2 be a vine decom-
position on k + 1 nodes in G. Then ca(G) >_

2. Let G be a graph containing a cycle C on k + g nodes, 1 <_ g <_ k. Then
(a) >_ (C).

Proof. The lower bounds are proved by describing an adversary who walks on the
access graph, causing the online algorithm to fault a large number of times before the
phase ends. This proves something a little stronger: that in each phase, the ratio of
faults made by the online and offline algorithms is at least the stated lower bound.

The proof of part 1 is due to Borodin et al. [2]. For completeness we give an
outline of the proof here. W.l.o.g. assume that G has k + 1 nodes, so that the adver-
sary incurs at most one fault per phase. An online algorithm A always leaves one node
of G uncoveredthis node is called the hole. The bound on ca(G) follows from noting
that during a phase, the adversary can make A incur v0; faults. When A moves
its hole to a new position following a fault, the adversary (and the request sequence)
walks to that position, causing A to fault there. If the new location of the hole is
a tree node, the adversary walks to the hole on a path that contains only marked
nodes or internal tree nodes. If the new location of the hole is an interior node of
vine v, the adversary walks to the hole on a path that contains only marked nodes,
internal tree nodes, anchors, and at most half the unmarked nodes on the vine v. The
hole can be reached at least nT times by requests to nonanchor leaves, and at least
v(P) [log IPI times by requests to each vine P.

For part 2, assume w.l.o.g, that G is just a cycle C on k + g nodes. There are
g "holes" (nodes where the online algorithm A doesn’t have a server) in G at any
time. A phase starts with the adversary and A covering the same set of contiguous
vertices. If A ever has a hole on a marked node, the adversary requests the path to
the hole, passing only through marked nodes. The phase begins with the adversary
issuing requests to all g of the uncovered nodes. At any point, the set of unmarked
nodes forms a contiguous path. The adversary then repeats the following pattern:
he requests all the nodes in whichever half of the path of unmarked nodes has more
holes, causing the online algorithm to incur at least g/2 faults. When the pattern
has been repeated [log k- log gJ times, the path of unmarked nodes has length
[k/2J < 2g, and the adversary simply requests unmarked nodes till g remain, and
the phase ends.

The adversary incurs only g faults during this process; at the start of the phase
he vacates the g nodes that will remain unmarked at the end of the subsequence.
Therefore the ratio between the number of faults incurred by the online algorithm
and the adversary is i/2 [log k- log gJ/2. Since the situation at the end of this
phase is the same as at the start, the adversary can repeat this behavior ad infinitum,
hnc (a) > [o -on]/ (C).

2.2. Proof of FAR’s strong competitiveness. In this section we prove that
FAR is a strongly competitive algorithm.

THEOREM 2.3. For any undirected access graph G, CFAI,k(G) O(ca(G)).
For the entire proof, we restrict our attention to a single phase of the request

sequence. Suppose that g new nodes are requested in the phase. By Proposition
2.1, the adversary incurs at least g/2 faults for this phase, amortized. The proof
works by showing that there is a vine decomposition or large cycle whose value is at
least c/g times the number of faults incurred by FAR in the phase, for some absolute
constant c. The lower bound of Theorem 2.2 then implies that the number of faults
incurred by FAR during the phase is O(g. ca(G)). Because this is true for all phases,

482 SANDY IRANI, ANNA R. KARLIN, AND STEVEN PHILLIPS

We use the concept from [2] of representatives or reps for short. Each time FAR
incurs a fault, it must vacate some node. Consider the sequence of nodes that are
vacated during the phase: we divide this sequence into blocks of g + 1 nodes that are
vacated successively. The number of new nodes requested in the phase is g, so at any
time during the phase, the number of nodes that have been evicted so far during the
phase and are currently outside the fast memory is at most g. Therefore there is at
least one node of each block that is marked before any node of the subsequent block
is vacated by FAR. We pick such a node for each block and call it a rep.

Suppose that the number of reps for this phase is R. We need to construct a vine
decomposition on k + 1 nodes or a cycle whose value is t(R).

2.2.1. Preliminaries. Let G be the directed subgraph of G containing every
node that is marked during the phase, with a directed edge from u to v if the first
request at v immediately follows a request at u. The graph G is a directed tree,
rooted at the first node requested during the phase, and a directed path from x to y
in G implies that x was marked before y.

The following definitions are fundamentM to the rest of the proof.
DEFINITION 1. (i) A node in G is a chain node if it has degree 2 in G and both

indegree and outdegree 1 in G. Nodes that are not chain nodes are called nonchain
nodes. (ii) A chain is a directed path in G whose interior nodes are chain nodes, and
whose endpoints are not chain nodes.

There is a natural reason for not allowing a node whose degree is more than 2
in G to be a chain node in G. The reason is that otherwise a chain might not be
"self-contained" in the following sense: a chain node that had degree at least 3 in G
could be close to a marked node outside the chain, but far from any marked node
inside the chain. Excluding this case makes it possible to analyze chains in isolation.

We divide the reps into two types.
DEFINITION 2. A rep is of type 1 if it is the last or one of the first five reps on a

chain, or it is a nonchain node. Any other rep is of type 2 (i.e., any rep in the middle
of a chain). Let R1 and R2 be the number of type-1 and type-2 reps, respectively.

We have two constructions: The first is a vine decomposition which is a tree on
k + 1 nodes with (R1) leaves. The other construction is a vine decomposition Y on
3k/2 nodes whose vines have total value t(R2). We use to find a vine decomposition
on k + 1 nodes whose vines have total value Ft(R2) or to find a large cycle whose value
is Ft(R2). Since one of R1 and R2 has value t(R), the two constructions will complete
the proof of Theorem 2.3.

2.2.2. Constructing a vine decomposition with value (R1). We prove
the following theorem.

THEOREM 2.4. The graph G contains a subgraph on k + 1 nodes which is a tree
with t(R1) leaves.

Proof. Charge each type-1 rep that is on a chain to the far endpoint of the chain,
and charge reps that aren’t on chains to themselves. Each nonchain node is charged
at most six times (because G is a directed tree, so each node is the far endpoint of
at most one chain). Hence the number of nonchain nodes is at least R/6. Now a
nonchain node is either a leaf of G, the root of G, or has degree 3 or more in G. Let
UG be the undirected version of the graph G. Root the tree UG at the root of G.

Case 1. At least half of the nonchain nodes in G either
1. are leaves or the root in UG,
2. or have degree 3 or more in UG,

STRONGLY COMPETITIVE PAGING 483

3. or have degree 2 in UG and a parent of degree 3 or more in UG.
If v satisfies condition 3, then its child in UG doesn’t (and it has a child since it is not
a leaf). And the first descendent of v that does not have degree 2 satisfies condition 1
or 2. Therefore if a nodes satisfy condition 3, then at least a nodes in the tree satisfy
conditions 1 or 2. And so at least a quarter of the nonchain nodes in the tree satisfy
conditions 1 or 2. Thus, at least R1/24- 1 nodes are leaves in UG or have degree 3
or more in UG.

The average degree of nodes in a tree is less than 2, since any tree with n nodes
has n- 1 edges. Therefore, at least half of the nodes not of degree 2 in UG are leaves,
and UG is the desired tree.

Case 2. Otherwise, at least half of the nonchain nodes in G have degree 3 or
more in G, but degree 2 in UG and a parent of degree 2 in UG. Let S be a maximal
set of vertices in UG that have degree 3 or more in G, degree 2 in UG, and whose
parent in G’ has degree 2 in UG and is not in S. It is easy to see that ISI
For each v E S, let a(v) be an arbitrary vertex that is a neighbor of u in G but not
in UG.

For each w G \ UG, let num(w) I{vla(v) w}l. For each such w, if num(w)
is 1 or 2, then add the node w to UG together with a single edge to one of the
nodes v UG such that a(v) w. Thus w becomes a leaf of UG. Alternatively, if
hum(w) >_ 3, then add the node w to UG together with edges to all the nodes v UG
such that a(v) w. For each of these nodes v, except for the one closest to the root
of UG (breaking ties arbitrarily), sever the edge from v to its parent p(v) in G’. Since
p(v) had degree 2 in UG, it becomes a leaf of UG, and UG remains a tree.

Since UG contains at most one new node for each node in S, at most k/2 nodes
can be added to UG by this process. Finally, since at least ISI/2 leaves were added
to UG, and ISI f(R1), UG has ft(R1) leaves.

We can then prune the tree until there are k + 1 nodes, while keeping the number
of leaves (R1). This can be done by first finding a node v whose removal from T
results in components of size at most k. To find v, pick an arbitrary node u. Consider
the tree rooted at u. If one of the children of u is the root of a subtree with more
than k nodes, reset u to be that child. Keep resetting u until all the subtrees rooted
at children of u have at most k nodes. Since the graph has at most 2k vertices, every
time u is reset, the maximum number of nodes in a subtree rooted at a child of u
decreases. Pick v to be the final u.

Gather the subtrees of v into groups as follows: consider each subtree and put
it in the smallest numbered group possible so that no group has more than k nodes.
There at most four groups, since the sum of the nodes in any two groups is more than
k. One group must contain ft(R1) leaves of T. This group can be easily extended to
a connected subgraph of T containing k / 1 nodes, giving the desired tree.

2.2.3. Constructing a vine decomposition with value (R2). The first
step towards finding a vine decomposition or cycle whose value is (R2) is to show
that the separation between type-2 reps decreases exponentially along directed paths
in G.

DEFINITION 3. For a chain node v, let n(v) be the distance from v to the end of
its chain.

LEMMA 2.5. (i) If v, w, and z are three consecutive reps on a chain, then
(z) _< (v)/2.

(ii) If y is the second-to-last rep on a chain in P and c is the third rep on a later
chain in P, then n(c) < n(y).

484 SANDY IRANI, ANNA R. KARLIN, AND STEVEN PHILLIPS

(iii) If P is a directed path in G, containing rn type-2 reps, then rn _< 2 [log lJ,
where 11 is the length of the first chain in P containing a type-2 rep.

Proof. Part (i) is proven as follows: Since v and w are consecutive reps on a chain,
v is marked before w is evicted. Therefore, if w is the last node on w’s chain to be
marked before w is evicted, then w lies between v and w, and the unmarked portion
of the chain extends from w until the end of the chain at the time w is evicted. Note,
however, that some of these nodes may not have servers on them. Since FAR evicts
an unmarked node furthest from the set of marked nodes, if w is less than half the
way from w to the end of the chain, then every vertex between w and the midpoint
must be a hole. Furthermore, none of them can be reps since any subsequent rep
on the chain must be vacated after w is marked. Therefore, z must be beyond the
midpoint of the chain from w’ to the end, and so n(z) <_ n(w’)/2 <_ n(v)/2.

For part (ii), suppose that z is the last rep on y’s chain, and that a and b are the
first two reps on c’s chain (so the sequence of reps on chains in P is y, z, a, b, c,...).
Since y is marked before z is evicted, z is at distance at most n(y) from the set of
marked nodes at the time it is evicted. Also, by part (i), n(c) <_ n(a)- n(c). Now
suppose that n(c) > n(y). Then n(a)- n(c) > n(y) also. But then the server at c is
further from the set of marked nodes at the time z is evicted than z is, and would be
vacated before z, so c cannot be a rep, a contradiction. So n(c) <_ n(y).

For part (iii), let v, 1 <_ _< m, be the sequence of type-2 reps on P. Let v0
be the fifth type-1 rep on the first chain of P containing type-2 reps. By parts (i)
and (ii) we have n(v+) <_ n(v)/2 or n(v+2)

_
n(v)/2, for 0 <_ i _< rn- 2. Hence

n(v,) <_ n(vo)/2[J. Since there are four type-1 reps on the first chain before v0,

we have by part (i) that n(vo) <_ 11/4. Therefore, n(v,)<_ /1/(2[J + 2). Lastly,

n(v,) _> 1, so 1 _</1/(2[J + 2). Rearranging, we obtain rn _< 2 [log 11. [:]

Because of this lemma, we know that the number of type-2 reps on any chain
is logarithmic in the length of the chain. Therefore, if we could make all chains
be vines in some vine decomposition, then the vine decomposition would have value
Ft(R2), and we’d be done. The problem is that in order to connect the vines, we may
need to use some chains to construct the tree, leaving only a subset of the chains to
become vines. The following procedure constructs a vine decomposition ; (possibly
containing a small number of additional nodes from outside G) for which the value
of the chains that become vines is Ft(R2).

The procedure keeps a contraction G of G, where each edge of G is part of a
chain of G that contains some type-2 reps.2 It never contracts only part of a chain,
so we can refer to a chain of G that hasn’t been contracted yet as a "chain of ("
(though its endpoints in (may be supernodes). The contraction (is always a tree
directed from the .root, as contracting preserves this property.

The procedure repeatedly identifies a chain (: of G that will be a vine 2, and
describes the path between the endpoints of C in the tree of 2. This path may
contain some chains of ((and hence G’), but we use Lemma 2.5 to show that v(C) is
at least a constant fraction of the number of type-2 reps on the path. The identified
chain and the chains used in the path are then contracted, and the process continues.

2 To contract an edge (u, v) in a graph means that u and v are merged into a supernode. Edges
to and from u and v are replaced by edges to and from the supernode, with duplicates deleted. A
contraction of a graph is obtained by repeatedly contracting edges.

STRONGLY COMPETITIVE PAGING 485

root

s

P’2

FIG. 1. An iteration of the loop of FindVineDecomp.

PROCEDURE FINDVINEDECOMP

Input: Undirected graph G, directed graph G on nodes marked during the phase,
and a record of FAR’s faults during the phase.

Output: A vine decomposition in G.
Initialization: First set G GI. Then contract edges not in chains of G, and
contract any chains that don’t contain any type-2 reps. All edges so contracted are
edges of the tree of . now consists of chains separated by (super)nodes.
Loop: Call the (super)node containing the first node marked in the phase Root.
Repeat the following steps until Root is the only node in .

1. Let vl and v2 be two different (super)nodes in (. Let SP be the shortest
path in G from any node contained in vl to any node contained in v2 that doesn’t
use any edges of G’ (if one exists). Choose vl and v2 such that SP exists and ISPI is
minimal.

Let P1 and P2 be the directed paths in G from Root to v and v2, respectively.
Let s be the last supernode contained in both P and P2. Let P be the portion of
P extending from s on, and similarly for P. (See Figure 1. Edges in the picture
correspond to chains in G.)

2. Now assume w.l.o.g, that P has more type-2 reps than P2. Let C be the
first chain of PI" C is identified as a vine of ?, and the edges in SP, PI (except for
and P2 are identified as edges in the tree of]?. In G the paths P and P2 contracted
(see Figure 1).
End FINDVINEDECOMP.

There must always be a pair of supernodes vo and Vl for which SP exists, for the
following reason. Let v be a leaf in G, and let C be the chain leading to v. If all paths
from v to nodes marked earlier than those on C run through C, then there could be
no more than one rep in C and v, by the definition of FAR--a contradiction.

The following lemma bounds the length of SP.
LEMMA 2.6. In any iteration of the loop, the length of SP is at most

486 SANDY IRANI, ANNA R. KARLIN, AND STEVEN PHILLIPS

Proof. The proof is similar to the proof of Lemma 2.5. Let x, y, and z be the last
three reps (type 1 or 2) on the last chain of P1. At the time y is evicted, x is marked,
so at that time there must be some path Q of length at most n(x)- n(y) from z,
along the chain away from y, to earlier marked nodes (else z would be evicted before
y). The path Q joins two different supernodes during this iteration of the loop and
hence has a subpath that also joins two supernodes and has no edges of G/. Thus by
minimality of ISP] we have ISP] <_ IQ] <- n(x)- n(y).

Now from Lemma 2.5 we have n(x) <_ ICI/2, whence ISPI <_ ICI/2. 0
LEMMA 2.7. Procedure FindVineDecomp produces a vine decomposition]2 whose

vines have value at least R2/4, where R2 is the number of reps of type 2. The number
of nodes in - G is at most half the number of nodes in vines.

Proof. Clearly the output of FindVineDecomp is a vine decomposition, Y. During
each iteration through the loop, the number of (type-2) reps that become incorporated
into a supernode is at most four times the value of the vine that is identified (this
follows from Lemma 2.5, part (iii)). Hence the vines of P have value at least R2/4.

The bound on the number of nodes of]2 follows from Lemma 2.6. 0
Lastly we show how to use the vine decomposition to construct either a large

cycle or a vine decomposition on k + 1 nodes, without losing much value.
THEOREM 2.8. Either G contains a vine decomposition]2 on k + 1 nodes whose

value is f(R2), or a cycle on more than k nodes with value (R2).
Proof. Let]2 be the vine decomposition given by procedure FindVineDecomp.

We have two cases.
Case 1. 2 has a vine C with r(C) >_ R2/16. Suppose C has length l, and assume

w.l.o.g, that C is contained in P1. Let a be the length of the shortest cycle in G
containing C. If a _< k + 1, the cycle can easily be extended to a vine decomposition
with value at least log l, while by Lemma 2.5, part (iii), r(C) O(log 1), so R2
O(log/).

Oherwise a > k+l. In addition, a <_ k(l+2-r(c)/a), since his is an upper bound
on he length of he cycle containing SP, PI, Pg., and some nodes inside supernodes
(by Lemma 2.6), Hence by Theorem 2.2, par 2, he shores cycle containing C has
vu t st (C)/SJ (R).

Case 2. No single vine C has r(C) >_ R/16.
Let j be the number of nodes in vines. By Lemma 2.6, has at most k + j/2

nodes, and by Lemma 2.7, 2 has value at least R2/4. Delete the vines one by one,
in decreasing order of length, till no more than k + 1 nodes remain in]2. At most
j/2 nodes are removed prior to the final deletion of vine that brings the number of
remaining nodes below k + 1. Since they are deleted in increasing order of ratio of
value to number of nodes, the vine decomposition remaining before the deletion of
has value at least R2/8. The further deletion of leaves value at least R2/16, since
has value at most R2/16. Lastly, we can easily extend the tree so that]2 has exactly
k + 1 nodes. VI

2.2.4. Summary. We summarize the results of this section.
THEOREM 2.9. For any graph G and memory size k, the algorithm FAR is

strongly competitive, i.e.,

Proof. Let g be the number of new nodes requested in the current phase. By
Proposition 2.1, the adversary incurs at least g/2 faults for this phase, amortized.
Suppose that R is the number of reps for the phase; 2R is an upper bound on the

STRONGLY COMPETITIVE PAGING 487

competitive ratio of FAR for this phase. But Ft(R) is also a lower bound on ck(G).
Indeed, either there are many type-1 reps, so we can find a tree with value t(R) using
Theorem 2.4, or there are many type-2 reps, so we can use Theorem 2.8 to construct
a vine decomposition on k + 1 nodes or a cycle whose value is gt(R). In either case,
Theorem 2.2 gives ck(G) (R). D

3. Structured program graphs. The problem of devising competitive paging
algorithms for directed access graphs is an important one. Unfortunately, in full
generality this problem seems very difficult. There is, however, a restricted class of
directed access graphs that is both important and tractable, which represents a subset
of the stream of instruction references made by a structured program. We examine
the class of structured program graphs (spg’s) as defined in the introduction.

We assume that at run time, the paging algorithm knows the spg (the implications
of this assumption are discussed in 4). The information that is not available until
run time is the number of times a particular loop will be executed or the particular
branch an execution path will take. In other words, it is unknown until run time
exactly which path through the access graph will represent the access sequence for a
particular execution. Fortunately, our analysis is worst-case over all paths through
a particular access graph. The algorithm we introduce, called EVEN, is strongly
competitive on all spg’s. EVEN is a variation of an algorithm introduced in [2] called
2FAR.

Recall that spg’s are recursively defined as follows: Every spg has a designated
start node and a designated stop node. A single directed edge is an spg, where the
node with outdegree 1 is the start node and the node with indegree 1 is the stop node.
More complex spg’s can be constructed by applying the following rules:

(i) Two spg’s G1 and G2 can be combined to get a new spg by identifying the
start node of G1 and the stop node of G2 (serial composition).

(ii) Two spg’s G1 and G2 can be combined to get a new spg by identifying the
start nodes and identifying the stop nodes of G1 and G2 (branching statement).

(iii) A node v in an spg can be identified with a node u of a directed cycle to
yield a new spg (loop). We call v the pivot node for the cycle.

For each subgraph G of an spg G (including the entire graph), we construct an
undirected graph Uc,, called the underlying graph of G, that represents the relative
embedding of the loops of G. To distinguish between G and U, we call nodes in G
nodes and vertices in Uc, vertices.

DEFINITION 4. Let G be a subgraph of an spg G. The underlying graph UG,
of G’ has one vertex for each loop in G’ (called a loop vertex), and one vertex for
each pivot node in G that is in at least two loops (called a pivot vertex). Each pivot
vertex is adjacent to all the loop vertices corresponding to loops containing that pivot
node. With each vertex u in Ua,, we associate a set of nodes of G’, denoted V(u): if
u is a pivot vertex, then V(u) is the corresponding pivot node. If u is a loop vertex
corresponding to loop l, then V(u) is the set of nonpivot nodes in l, and pivot nodes
in that are in only one loop.

Figure 2 shows an example of an spg G and its underlying graph U. For each
vertex v in the underlying graph, the nodes in V(v) are shown in curly braces. Vertices
in Ua with the name of a loop next to them are loop vertices; the remaining vertices
are pivot vertices.

A strongly connected subgraph F of G is a subgraph such that for any two nodes
w and v in F, there is a path from w to v and a path from v to w that only uses
nodes and edges from F. Notice that if F is a strongly connected subgraph of an spg

488 SANDY IRANI, ANNA R. KARLIN, AND STEVEN PHILLIPS

s

L1

0 L2
{f,g,h,i| {p,q|

L5
|r,s,u|

|t|

L6
Iv,w|

stop

L4
{m,n,o|

Structured Program Graph G Underlying Graph U_G

FIG. 2. An spg and its underlying graph.

G with more than one node and v is a vertex in F, then v is in a loop. In other words,
v E V(u) for some u E Uc.

LEMMA 3.1. The underlying graph UF of a strongly connected subgraph F of G
is a tree. The underlying graph Uc of an spg G is a forest.

Proof. By the construction rules for spg’s, a strongly connected subgraph F of
G consists of a connected set of cycles. Suppose that UF contains a cycle. Since two
loop nodes or two pivot nodes are never adjacent, every loop node contained in the
cycle must be adjacent to two pivot nodes in the cycle. Among the loops represented
in the cycle, let be the last one added to the spg according to the construction rules
above. Suppose that v and w are the two pivot nodes adjacent to in the cycle. Since
was added last, a loop containing v and a loop containing w were already in the

spg at the time was added. But by the construction rule for loops, can only be
adjacent to one of them, which contradicts the existence of this cycle. Therefore UF
must be a tree.

Since UG is the union of underlying graphs of maximal strongly connected sub-
graphs of G, and each of these is a tree, U must be a forest. [:1

3.1. A lower bound. A vertex in UF is said to be a peripheral vertex if its
removal does not disconnect UF. If u is a peripheral vertex in UF, V(u) is said to be
a peripheral set in F. The size of a peripheral set is its cardinality, IV(u)l. Note that
if a node is in a peripheral set of F, then it is contained in only one loop in F. For
any strongly connected graph F on k + g nodes, define l(F, g) to be the number of

STRONGLY COMPETITIVE PAGING 489

peripheral sets in F that have size at least g. Whenever the value of g is clear from
context, we say that a peripheral set is large if it has size at least g, and we abbreviate
l(F, g) to l(F).

We need the following preliminary lemmas.
LEMMA 3.2. Let F be any (k + g)-node strongly connected subgraph of an spg.

Let S be the set of peripheral sets in F. Then the following hold:
1. For any s, s2 S, and for any nodes x s and y s2, there is a path in F

from x to y that doesn’t pass through any other peripheral set s3 S, s3 s, s3 s2.
2. For any y that is not in any peripheral set, and for any x, there is a path

from x to y that doesn’t contain nodes from any peripheral set (except perhaps for
some nodes in S such that x E 81 S).

Proof. For the first part, consider the directed graph F obtained from F by
deleting, for each large peripheral set s3 (s3 : sl, s3 - s2), all nodes in s3. Since F
is still strongly connected, the desired path from x to y remains.

For the second part, consider the directed graph F obtained from F by deleting,
for each large peripheral set s (s : sl such that x s), all nodes in s. Since F is
still strongly connected, the desired path from x to y remains.

The following theorem gives a lower bound on the competitive ratio achievable
on an spg G. Let 7-/(G) be the set of strongly connected subgraphs of G on i nodes.
Let

comp(G) maxgmax{(l(F) 1)/g, (Ht(F) 1)},

where the maximum is taken over F ?-lk+g(G),k _> g _> 1, and Hj is the jth
harmonic number.

THEOREM 3.3. If G is a structured program graph, then

> a)

Proof. Let F be any strongly connected subgraph of G on k + g nodes, and let A
be a paging algorithm. Let S be the set of large peripheral sets of F.

We now describe the adversary strategy. The adversary operates in phases (slightly
different from the phases referred to elsewhere). We show that the adversary can force
A to incur g. comp(G) faults in a phase while the adversary only incurs g faults in a
phase. A phase starts with all of the adversary’s holes on one set in S and the last
request on a node in US.

If the algorithm A ever maintains a hole on a node not contained in US, or in a
set in S that has already been requested in the phase, then the adversary requests
a path to the hole without passing through any unrequested nodes in t2S. Thus we
can assume that all of A’s holes are on unrequested nodes in US. In this case, the
adversary requests a path to the peripheral set in S with the most holes, such that
the path followed doesn’t hit any other peripheral sets in S. The phase ends when all
but one of the large peripheral sets have been hit.

When the ith peripheral set is hit, A incurs at least [g/(ISI- i+ 1)] faults.
Therefore, the algorithm incurs at least

[g/ISl + [g/(ISI- 1) +... + [g/2 >_ max(g(H,si 1), ISI- 1)
>_ g comp(G)

faults. Meanwhile, the adversary services the sequence by initially moving all g of its
holes to the peripheral set that will not have been hit at the end of the phase and
thus incurs at most g faults during the phase. [:]

490 SANDY IRANI, ANNA R. KARLIN, AND STEVEN PHILLIPS

3.2. The algorithm EVEN. We now explain the operation of EVEN on spg’s.
EVEN works in two modes. The first mode is when the set of nodes occupied by the
servers and the present request are not contained in a strongly connected component.
In this case, EVEN services a fault by using any server which is on a node that is
not reachable from the current request. In the second mode, all the servers are in
a strongly connected component and EVEN works as a marking algorithm. A new
phase begins either when EVEN switches from mode 1 to mode 2 or when k / 1 nodes
have been marked in the previous phase (during the second mode). Roughly, EVEN
attempts to vacate servers in peripheral node sets, and does so in a uniform way. A
few definitions are necessary in order to rigorously describe the algorithm.

Let P be the set of nodes occupied by servers at the beginning of a phase. Let/5
be the smallest strongly connected subgraph that contains all of P.

Consider the underlying graph of P, Up. Root Up at the vertex whose node set
contains the last request of the previous phase. This vertex is unique. As noted earlier,
each vertex u in the underlying graph of/5, Up, corresponds to a node set in/5, V(u).
A node set is empty if it does not have any servers on it. A limb L (/1,..., lr) in
Up is a simple path in Up such that 11 is a peripheral vertex (leaf of Up) and l+ is
the parent of l for 1 _< < r. The limb set V(L) is the set of nodes corresponding to
the vertices of the limb L (i.e., l<_i<_rV(li)). EVEN keeps track of the limbs, making
sure that each limb has servers only on the nodes in V(l), i.e., all but the last vertex
on the limb is empty. The vertex l (the endpoint of the limb that is furthest from
the leaf) is called the active vertex, and V(l) is called the active set.

Limbs grow toward the root during the phase. At the beginning of a phase,
each peripheral vertex is a limb. The peripheral set is the active set for that limb.
Notice that because we chose P to be the minimum strongly connected subgraph that
contains all nodes with servers, every peripheral set will contain at least one server.
EVEN will always evacuate servers from the active set of some limb. A limb is said
to die when any of the following conditions hold:

1. The active node set empties and some node in the node set of the parent
vertex has been requested.

2. The active node set empties and the parent vertex has another child that is
not yet in a dead limb.

3. A node in the active set is requested.
A live limb is one that has not died. The value of a limb L is the number of nodes in
the limb set V(L) that have been evacuated during the phase.

EVEN’s policy for deciding which node to vacate when servicing a fault is deter-
mined as follows: Pick the live limb of minimum value. Evacuate any node in the
node set of the active vertex. If the active vertex becomes empty then add the parent
vertex to the limb (unless the limb dies for the reasons described above). The parent
becomes the limb’s active set. If there are no live limbs, then evacuate the unmarked
node that is occupied by a server and is farthest from the current request.

Figure 3 shows an example of the operation of EVEN in mode 2. On the left side
of the figure is the subgraph/5, and on the right side is the corresponding underlying
graph Up. At the beginning of the phase all nodes are occupied by servers except
for b and c, and the last request of the previous phase was at a. Initially there are
three limbs, the peripheral vertices of the underlying graph: {k}, {f}, and {o}. The
request to b results in the eviction of o, at which point, the parent vertex is added
to the limb, resulting in the limb ({o}, {n}), with active vertex {n}. The request to
c results in the eviction of f, at which point we observe that the parent of {f} ({e})

STRONGLY COMPETITIVE PAGING 491

a c /b,c]
|d|

|g,i,j| |l,m,p|

{hl In}

{k} 1o}

Last Request of Previous Phase: a

Request Sequence: b,c,d,e,g,h,ij,e,f,e,g,h,k,h,ij,e,a,b,c,d,l,m,n,o

FIG. 3. An example), Up, and request sequence.

in the underlying graph has another child ({g, i, j}) that is not yet in a dead limb,
and so by rule 2, the limb {f} dies. At this point the two holes are at f and at o.
Therefore, no further faults are incurred until the request to f, at which point k is
evicted. The parent vertex of {k} (h) has already been requested, and so by rule 1,
the limb {k} dies. The next fault is at the request to k, which results in the eviction
of n, and the only remaining limb is extended to ({o}, {n}, {1, m, p}), with active set
{1, m, p}. At this point, the two holes are at o and n. Finally, when is requested,
the limb dies by rule 3, since a node in the active set is requested.

In the next section, we bound the competitive ratio of EVEN.

3.3. The upper bound. We will need the following three lemmas.
LEMMA 3.4. Consider a phase of EVEN. If there are no live limbs, but there

remain unmarked nodes that are occupied by servers, then all of the unmarked servers
reside on the only simple path from the currently requested node to the first node that
was requested in the phase.

Proof. If no live limbs remain, then every loop with unmarked servers in P has
node that has been requested in the phase. Consider the set S of all nodes in/5 which
have not been requested during the phase but are contained in cycles where some node
has been requested. All unmarked servers reside on nodes in this set. Furthermore,
since the set of requested nodes is contiguous, S forms a simple connected path in Up
from the most recently requested node to the first node requested in the phase.

LEMMA 3.5. At any point in a phase of EVEN, if there are live limbs, the value
of each limb is bounded above by [g/l, where g is the number of new nodes requested
in the phase.

Proof. The values of any two live limbs differ by at most 1. Furthermore, the
total number of evacuated nodes in live limbs at any time is at most g. The lemma
follows.

LEMMA 3.6. Consider a phase of EVEN where IPI k + g. Let L be the set of
limbs that grows in the phase. Then the limbs in L can be divided into two sets, L1

492 SANDY IRANI, ANNA R. KARLIN, AND STEVEN PHILLIPS

and L2, and there is a strongly connected subgraph H of P of size k + a, 1 <_ a <_ g,
such that the following hold:

1. Every peripheral set in H has size at least
2. ILll

_
2/(H,a).

3. The total number of nodes contained in limbs in L2 and evacuated during the
phase is at most 2(g-

Proof. We trim/5 by repeatedly applying the following procedure: Let R be the
subgraph of P that remains (initially R P). While R has k + h nodes, but has
peripheral sets of size less than h, apply the following rules: Pick a peripheral vertex
r of UR such that V(r) < h. Remove r from UR and remove V(r) from R. (Note that
since every leaf of UR is a loop vertex, R remains strongly connected.) If as a result
of this operation there is a peripheral vertex v that is a pivot vertex, remove v from
UR and set V(p(v)) to be V(p(v)) U V(v), where p(v) is the parent of v in UR. (Note
that p(v) is again a loop vertex.)

Call the resulting graph H. By the termination condition of the procedure, if H
has k + a nodes, then every peripheral set has size at least

Figure 4 shows an example of the trimming operation. On top we see/ and Up,
with thick lines on the underlying graph representing the limbs. During the trimming
process, loops a, b, c, and d are trimmed. The resulting underlying graph, UH, is
shown in the bottom left. Note that in the trimming process, limb 14 was removed
completely, whereas only part of limb 12 was removed. Note that the intersection of
12 with H does not contain a peripheral set of H.

Returning to the remaining two conditions of the lemma, if a limb in L has no
intersection with H, then put it in L2 and remove it from L. The total number of
nodes in the limbs placed in L2 so far is at most the total number of nodes removed
from/5, which is in turn upper bounded by g- a.

All remaining limbs in L intersect H. To account for these, create a limb tree as
follows" Create a special root node. In addition, for each limb, create a node in the
limb tree. Limb is the parent of limb if the highest vertex in
vertex in in the underlying graph Up. Any remaining limbs without parents take
the root to be their parent. Note that any leaf in the limb tree corresponds to a limb
that contains a peripheral set in H. Other limbs may or may not contain peripheral

sets of H. Figure 4 shows an example limb tree.
Let L be the set of nodes in the limb tree whose parent has degree 2 (and is

not the root). Then ILI is the number of degree-2 limb nodes in the tree. Therefore,
there are at least ILl- IL’I nondegree-2 limb nodes. But the average degree of nodes
in a tree is less than two, and so at least (ILl- IL’l)/2 limbs in the tree are leaves and
hence contain a peripheral set in H. We place the limbs in L \ L in L1. Therefore,
the total number of limbs in L1 is at most 2/(H, a) so far.

Consider a limb in L. Let p(1) be the limb corresponding to the parent of in
the limb tree.

If p(1) contains a peripheral set of H, add to L1. This limb can be amortized
against the peripheral set belonging to p(1). Note that p(1) is not a leaf of the limb
tree, and therefore is not charged against by L limbs from L \ L’. (p(1) may or may
not end up in L itself, depending on whether it is in L or not.) Consequently, the
total number of limbs in L remains at most 2l(H,

If p(1) does not contain a peripheral set in H, then place in L2. We just have
to prove that the number of evacuated nodes in p(1) N {P \ H}, which we denote by
S, upper bounds the number of evacuated nodes in 1. (A node is said to be evacuated

STRONGLY COMPETITIVE PAGING 493

underlying graph U-
P

before trimming

underlying graph U
H

after trimming
part of 1_2 and 1_4

limb tree

FIG. 4. An example of the trimming process and limb tree.

if it was evacuated some time in the phase). Since is the only child of p(/), we are
amortizing against the set S only once.

Let t be the highest vertex in I. Let T be the parent of t and t the only sibling of
t in Up. Since the limb p(1) has only one child in the limb tree and does not contain a
peripheral set in H, t and all of its descendants in Up do not appear in UH. That is,
the set of nodes in p(1) corresponding to t and its descendants is exactly S. Recalling
that the loop T is part of the limb p(1) (otherwise p(1) wouldn’t be the parent of
in the limb tree), it must be that died before p(1) died. This means that t became
empty before t became empty and so the number of evacuated nodes in is at most

THEOREM 3.7. The algorithm EVEN is strongly competitive on the class of
structured program graphs. In other words, for any structured program graph G,
Ck,EVEN (G) 0(comp(G)).

Proof. Consider an spg G. If EVEN incurs a fault on node v when in mode 1,
then it is the first time that node v has been requested during the entire sequence.
As a result, both EVEN and the optimal algorithm fault on the request to node v.

494 SANDY IRANI, ANNA R. KARLIN, AND STEVEN PHILLIPS

Thus, when EVEN is in mode 1, the number of faults that it incurs is equal to the
number of faults the optimal algorithm incurs. We must now bound the number of
faults incurred by EVEN in mode 2.

Let P be the set of nodes requested in the phase before the previous phase. Let
P be the set of nodes requested in the previous phase and let C be the set of nodes
requested in the current phase. If the algorithm just switched from mode 1 to mode 2,
then P is the set of nodes currently occupied by the servers, and P are the k distinct
nodes requested previous to the first request to any node in P.

Let g’ be the number of new nodes requested in the last phase (g’
and let g be the number of new nodes requested in this phase (g IC PI). If the
number of faults EVEN incurs for an arbitrary phase is bounded by O((g +g’)cc(G)),
then by Proposition 2.1, Ca,FVEN(G) O(ca(G)).

IfP’nC 0, then g’+g >_ k. In this case, EVEN incurs O(g’+g) faults
during the phase, since no marking algorithm incurs more than k faults in a phase. If
P’ C 0, then there is a strongly connected component containing P, contained in
C U P U P’. Indeed, there is a directed path from the first node requested in C to a
node x in P’ C. (This path contains at most g nodes outside P.) Since x E P’, there
is a path from x to the first node requested in the previous phase. (This path contains
at most g’ nodes outside P.) Finally, there is a path entirely inside P from the first
node requested in the previous phase to the first node requested in the current phase.
Therefore, if/ is the smallest strongly connected subgraph containing P, /5 has at
most k + g + g’ nodes.

Let L be the set of limbs in P that evolve in the phase. We now apply Lemma
3.6 to obtain a graph H of size k + a and a partition of L such that"

1. Every peripheral set in H has size at least a.
2. ILI < 2/(H,).
3. The total number of nodes contained in limbs in L that are evacuated during

the phase is at most 2(g / g).
We can now show that the number of faults that EVEN incurs in the current

phase is O(g / g’ + l(H) / gH(_H)). We count the number of faults by counting the
number of nodes evacuated in P. In fact, we only count the number of nodes in L
that are evacuated. This is sufficient because Lemma 3.4 implies that there are at
most g /g faults inbetween the time that the last limb dies and the end of the phase.
As long as there are live limbs, all evacuated nodes are contained in limbs. Thus, the
number of nodes that are not in any limb in L and are evacuated during the phase is
at most g + g.

We now bound the number of nodes in L that are evacuated. The number of
nodes in L2 evacuated in the phase is at most 2(g + g), by condition 3 in Lemma 3.6.

The number of evacuated nodes that are on limbs in L1 is just the sum over
all limbs in L1 of the value of that limb when it dies. Consider the ith limb in L1
that dies. By Lemma 3.5, the number of evacuated nodes on that limb is at most
[g/(ILll- + 1)]. Thus by condition 2 of Lemma 3.6, the total number of evacuated
nodes in L1 is at most

2/(H)

V(g/J)l
j-’l

O(l(H) + grit(H)).

We have shown that the number of faults that EVEN incurs in the current phase is
O(g + g’ + l(H) + grit(H)). Since a <_ g + g’ and, by Theorem 3.3, l(H)/(+ Ht(H) <_

STRONGLY COMPETITIVE PAGING 495

ck(G), the number of faults EVEN incurs in the phase is

4. Limitations of the model and open problems. There are four funda-
mental limitations to our work. The first is the fact that the model of structured
program graphs that we use does not allow branching within loops.

The second limitation concerns our assumption that the paging algorithm knows
the access graph. This is not realistic for several reasons. If the set of virtual pages
accessed by a structured program and the data on those pages were static, life would
be easy. In fact, the virtual pages associated with the data and instructions of a
program typically fall into three categories.

(i) Static. At link time, program text (code) and global variables are assigned
virtual addresses. These addresses remain fixed for the lifetime of the program.

(ii) Heap. Dynamically allocated data are assigned virtual addresses at runtime,
when the memory is allocated. As long as these data are not deallocated, their
virtual addresses remain fixed. However, once this storage is reclaimed, these virtual
addresses can be allocated to other data. Consequently, the data on virtual pages
associated to the heap may change many times over the lifetime of the program.

(iii) Stack. Variables local to procedures are assigned virtual addresses on the
stack. Since the stack is growing and shrinking as the program runs, in accordance
with the set of procedures being executed, a specific procedure’s local variables may
have several different virtual addresses over the runtime of the program.

Censequently, a given virtual address may store many different data items, and a
given data item may reside in several different virtual addresses. This implies at the
very least that one cannot directly associate program data with specific virtual pages.

Nonetheless, access graphs have well-defined semantics: an edge from virtual page
Pl to virtual page P2 in an access graph means that at some point in the virtual address
trace of the program, a reference to an address on P2 immediately follows a reference
to an address on pl.

Since the access graph depends on the virtual address trace of the program, which
in turn depends on the input data, it is a nontrivial problem to construct it. (In fact,
in its most general form, the problem is undecidable since one must know if the
program will halt in order to determine the access graph.) In practice, if one wishes
the access graph to be accurate, one may need to execute or simulate the execution
of the program.

This limitation raises several interesting open questions: Are there good approx-
imations to the access graph that can be determined at compile time? Is there a
strongly competitive algorithm that "learns" the access graph as more requests are
seen? Also, are there good algorithms that only maintain a portion of the access
graph, say, the subgraph generated by the pages in fast memory?

A third fundamental limitation of this model is that there is only a single pointer
into the access graph at any time. For example, the spg’s that we have studied only
make sense in the context of the instructions of a program. Spg’s do not adequately
model both the instruction and the data references of a program. In order to model
both, one would need at least two pointers into the access graph, one into a structured
program portion of the graph, and another into an undirected or directed subgraph
whose pages are storing program data. The request sequence would then consist
of a walk on the graph, where the next request is always a neighbor of one of the

496 SANDY IRANI, ANNA R. KAI=tLIN, AND STEVEN PHILLIPS

two nodes pointed to. One could also imagine having more than two pointers, for
example, if there were a collection of pointers into arrays, or other data structures in
the program. It remains an interesting open question to generalize our results to the
multiple-pointer case.

The last fundamental limitation of our work is that the competitive analysis we
employ is worst-case. We optimize the worst-case ratio between our algorithm and the
optimal offiine, assuming that an adversary chooses the request sequence. Locality
of reference is enforced by limiting the adversary’s sequences to walks on the access
graph. Nonetheless, walks on the access graph may bear little resemblance to the
program address trace from which the access graph was generated. Therefore it is
not obvious that optimizing the competitive ratio against such an adversary yields an
algorithm that performs well in practice.

Recently, Karlin, Phillips, and Raghavan attempted to address this problem by
studying paging algorithms for the case where the request sequence forms a Markov
chain. The Markov chain incorporates locality of reference into the sequence, while
eliminating the whole notion of an adversary.

The theoretical work on paging with access graphs could be complemented very
well by experimental studies. It would be interesting to evaluate whether there are
approximations to access graphs that model realistic page request sequences well. It
would also be extremely interesting to evaluate how well the competitive algorithms
described in this paper perform in practice.

Another interesting direction for research relates to granularity. In the introduc-
tion, we mentioned that an undirected access graph might be a suitable model for a
program that performs operations on a tree data structure, as long as the mapping
of the tree nodes to pages of virtual memory represents a contraction of the tree.
Similarly, spg’s are good models of the ow of control among individual program
statements. However, once the instructions are assigned virtual addresses, the un-
derlying access graph may not look anything like an spg, since many instructions are
assigned to a single virtual page.

For a fixed page replacement strategy, different assignments of virtual addresses
to data and procedure entry points can result in vastly different page-fault rates, since
changing the layout changes the partition into pages. It would be very interesting to
study techniques for laying out instructions and data in virtual memory, so that the
partition into virtual pages results in a low page-fault rate.

Finally, dealing with the most general definition of structured program graphs
remains open, as well as two questions from [2]:

Open Question 1. Design an algorithm that is strongly competitive on all
structured program graphs (i.e., allow branching within loops).

Open Question 2. Show that for all G and k, CLRU,k(G) CFIFO,k(G).
Open Question 3. Is there a "universal" randomized algorithm that is close to

optimal on every G? Is there a graph-theoretic lower bound on ck(() for randomized
algorithms against an oblivious adversary?

REFERENCES

[1] L. A. BELADY, A study of replacement algorithms for virtual storage computers, IBM Systems
J., 5 (1966), pp. 78-101.

[2] A. BORODIN, S. IRANI, P. RAGHAVAN, AND B. SCHIEBER, Competitive paging with locality of
reference, J. Comput. System Sci., 50 (1995), pp. 244-258.

STRONGLY COMPETITIVE PAGING 497

[3] D. CHERITON AND K. HARTY, Application-controlled physical memory using external page-
cache management, Technical report draft, Department of Computer Science, Stanford
University, Stanford, CA, 1991.

[4] P. J. DENNING, Working sets past and present, IEEE Trans. Software Engrg., SE-6 (1980),
pp. 64-84.

[5] A. FIAT, R. KARP, M. LUBY, L. MCGEOCH, D. SLEATOR, AND N. YOUNG, On competitive
algorithms for paging problems, J. Algorithms, 12 (1991), pp. 685-699.

[6] P. /k. FRANASZEK AND T. J. WAGNER, Some distribution-free aspects of paging performance,
J. Assoc. Comput. Mach., 21 (1974), pp. 31-39.

[7] A. R. KARLIN, M. S. MANASSE, L. RUDOLPH, AND D. D. SLEATOR, Competitive snoopy caching,
Algorithmica, 3 (1988), pp. 70-119.

[8] T. KILBURN, D. B. G. EDWARDS, M. J. LANIGAN, AND F. H. SUMNER, One-level storage system,
IRE Trans. Elect. Computers, 37 (1962), pp. 223-235.

[9] M. S. MANASSE, L. A. MCGEOCH, AND D. D. SLEATOR, Competitive algorithms for on-line
problems, J. Algorithms, 11 (1990), pp. 208-230.

[10] D. MCNAMEE AND K. ARMSTRONG, Extending the Mach external pager interface to accom-
modate user-level page replacement policies, Technical report 90-09-05, Department of
Computer Science and Engineering, University of Washington, Seattle, WA, 1990.

[11] G. S. SHEDLER AND C. TUNG, Locality in page reference strings, SIAM J. Comput., 1 (1972),
pp. 218-241.

[12] D. D. SLEATOR AND R. E. TARJAN, Amortized ejficiency of list update and paging rules, Comm.
Assoc. Comput. Mach., 28 (1985), pp. 202-208.

[13] J.R. SPIRN, Program Behavior: Models and Measurements, Elsevier Computer Science Library.
Elsevier, Amsterdam, 1977.

SIAM J. COMPUT.
Vol. 25, No. 3, pp. 498-519, June 1996

1996 Society for Industrial and Applied Mathematics
O02

ON THE VALUE OF COORDINATION IN DISTRIBUTED DECISION
MAKING*

SANDY IRANIt AND YUVAL RABANI*

Abstract. We discuss settings where several "agents" combine efforts to solve problems. This is
a well-known setting in distributed artificial intelligence. Our work addresses theoretical questions in
this model which are motivated by the work of Deng and Papadimitriou [Proc. 12th IFIPS Congress,
Madrid, 1992; Proc. World Economic Congress, Moscow, 199,2]. We consider optimization problems,
in particular load balancing and virtual circuit routing, in which the input is divided among the
agents. An underlying directed graph, whose nodes are the agents, defines the constraints on the
information each agent may have about the portion of the input held by other agents. The questions
we discuss are as follows: Given a bound on the maximum out-degree in this graph, which is the
best graph? What is the quality of the solution obtained as a function of the maximum out-degree?

Key words, analysis of algorithms, distributed computation, competitive analysis, load bal-
ancing, virtual circuit routing

AMS subject classifications. 68Q22, 68Q25

1. Introduction. In recent years, there has been a great deal of research activ-
ity focused on analyzing algorithms which must compute using partial information
about the problem to be solved. Much of this research effort has focused on on-line
algorithms, where the limitation is due to temporal constraints: the input is arriving
a piece at a time, and output must be produced before all the input arrives. The
study of on-line algorithms is motivated by the fact that many problems which arise
in a wide variety of settings are inherently on-line (i.e., one doesn’t have the luxury of
being able to collect all the information about an the instance of the problem before a
partial answer must be produced). However, part of the reason for the recent interest
in this area is the introduction of an appealing means of evaluating on-line algorithms
called competitive analysis [18, 15]. The idea is to determine the quality of an on-line
algorithm by comparing its performance to the performance of the optimal algorithm
that can see the entire input in advance. Thus we measure what is lost by solving the
problem on-line.

The work in this paper follows a model proposed by Deng and Papadimitriou [11]
and further discussed by Papadimitriou and Yannakakis [17] who extend the use of
competitive analysis to a more general setting than on-line algorithms. They discuss
settings where several "agents" combine efforts to solve problems. The idea is that
global information about a problem to be solved may be lacking due to spatial (or
other) constraints. The framework suggested in [11] is to model specific constraints
in the availability of information and study the solution quality that can be obtained
under these information regimes. In [17], the information regime is determined by
the input. Linear programming is considered, where each agent is responsible for a

Received by the editors January 12, 1994; accepted for publication (in revised form) November
1, 1994. An earlier version of this paper appeared in Proc. 34th IEEE Symposium on Foundations

of Computer Science, Palo Alto, 1993, under the title "On the value of information in coordination
games."

Department of Information and Computer Science, University of California, Irvine, CA 92717
(irani@ics.uci.edu). The research of this author was supported in part by NSF grant CCR-9309456.

Laboratory for Computer Science, Massachusetts Institute of Technology, 545 Technology
Square, Cambridge, MA 02139 (rabani@theory.lcs.mit.edu). The research of this author was per-
formed at the International Computer Science Institute, Berkeley, CA and supported by a Rothschild
post-doctoral fellowship.

498

VALUE OF INFORMATION IN DISTRIBUTED DECISIONS 499

variable or a set of variables and sees all constraints involving those variables.
We take a different approach that is suitable for the case where information is

available at a price. Rather than analyzing particular constraint structures, we focus
on the best constraint structure given a bound on the amount each agent communi-
cates. We address the following questions. To what extent is it useful for the agents
to communicate information about the piece of the input that each holds? What is
the most effective pattern of communication? If some a priori information about the
problem instance is known, how can this information be used to improve the solution
quality?

1.1. The model. We consider optimization problems in the following context:
A set of agents A {a0, al,... ,an-l} are given an instance I of an optimization
problem. Each agent is presented with a portion of the input: a gets input Ii, where
I t2Ii. We assume that the objective function is not part of the input and is known
to all agents.

A strategy S for the agents is a pair (G,D), where G is a directed graph and
D is a set of algorithms, one for each agent. We refer to G as the knowledge graph
because it represents the information available to each agent: a directed edge (a, b)
in G means that agent a knows of the input portion given to agent b. Each agent’s
decisions are a function only of the input it knows: a set of algorithms D is valid for a
knowledge graph G if the algorithm for each agent aj is a function only of Ij and all
Ik such that (j, k) E E. If S (G, D) is a strategy, then D must be valid for G. In
some cases, we refer to an undirected knowledge graph in which case an edge between
agents a and b indicates that a and b know each other’s input.

We denote by costs(I) the value of the objective function for a strategy S on input
I, and we denote by cost(I) the value of the objective function for the optimal, global
strategy on input I. A strategy S is c-competitive if for every I, costs(I) -c. cost(I)
is bounded by a constant. The competitive ratio of S, denoted cs, is the infimum over
all c such that S is c-competitive.

If the knowledge graph is predetermined, then the goal is to devise the best
algorithm with the given limitation in information. Thus, for a given knowledge graph
G, we would like to choose the best set of algorithms D that are valid for that graph.
The competitive ratio for a knowledge graph, denoted ca, is the infimum of c(C,D)
over algorithms D that are valid for G. On the other hand, if complete information
is available (that is, any two agents can communicate) but at a cost, we would like
to determine to what extent the solution can be improved with more information.
Thus, we consider strategies that are constrained by limiting the maximum degree of
a vertex in G. If G has maximum degree r, we call S an r-strategy, cr is the infimum
of cs over all r-strategies. What pattern of communication and what algorithm are
best for a given limitation in communication: for a given r, what r-strategy achieves
cr? To what extent is communication useful: how does c decrease as r increases?
We study these general issues with respect to two specific problems: load balancing
and virtual circuit routing.

Awerbuch et al. [3] study a problem very similar in flavor to the problems we
consider here. They consider the number of steps necessary to broadcast a message in
a fixed network. They show bounds on the number of steps necessary as a function of
the radius of the network graph each vertex knows. Unlike our model the processors
do not get to choose the information they acquire. However, for the problems we
consider, it is always optimal for the agents to communicate by grouping themselves
into disjoint cliques and completely sharing information within a clique.

500 SANDY IRANI AND YUVAL RABANI

This model has several applications. We mention some of them here.
Parallel programming. It is now clear that realistic models of parallel computation

must address communication overhead as well as processing time [1, 10, 12, 16, 19].
It seems easier to design and implement a parallel program where the parallel tasks
are oblivious to each other as much as possible. Coordination between parallel tasks
requires additional programming and increases communication overhead. Our work
speaks to the tradeoff between the amount of coordination in a parallel program and
the effectiveness of that program in solving specific problems. Particularly, the design
of system services such as batch execution might benefit from this analysis.

High-speed network management. High-speed networks are expected to serve a
large number of users bidding for a variety of services. The allocation of network re-
sources by a centralized network manager becomes impractical under such conditions.
As pointed out in [17], the multiple-agents model is suitable for discussing performance
degradation due to the distributed nature of network management. Specifically, our
results relate to the following questions: Network managers are requested to allo-
.cate virtual connecting paths between pairs of sites. Each virtual circuit consumes
a fixed bandwidth. What is the required capacity of network links and switches to
handle the expected traffic? How does this capacity change as a function of com-
munication among network managers? What network structures support distributed
management?

Large-scale planning. The question of cooperation among communicating problem
solvers is considered fundamental in distributed AI, as it addresses planning problems
in a large-scale system or organization that is faced with a rapidly changing environ-
ment. See [6] for a comprehensive collection of papers in the field. The AI approach
tends to be either qualitative or experimental. Recent theoretical results [II, 17] as
well as this work focus on quantitative analysis of such problems.

1.2. Outline of results. We consider the load-balancing problem discussed in

[11]. Each agent gets a set of jobs to be executed, where the length of each job is
known in advance. The agents redistribute the jobs among themselves. Their goal is
to minimize the maximum load on an agent. The optimal strategy clearly divides the
jobs evenly among all the agents, or as evenly as possible given the granularity of the
job lengths.

Deng and Papadimitriou give a complete analysis of the problem of three agents
scheduling jobs on two processors for all possible knowledge graphs. They also show
that for an arbitrary number n of agents distributing jobs among themselves, when
the agents do not communicate at all (i.e., the knowledge graph has no edges), then
there is a way for each agent to redistribute its jobs that achieves a competitive ratio
of 2v/. Furthermore, for any deterministic strategy, there is a way of assigning n
jobs of length 1 to the n agents such that some agent receives at least v jobs. Thus,
if G has no edges, then x/ _< ca _< 2.

We generalize their results to show that for a fixed knowledge graph G, V/c(G) _<
cc <: 2v/(G), where a(G) is the size of the maximum independent set of G and (G)
is the size of the minimum clique cover in G. Thus, by choosing G to be a collection
of disjoint (r / 1)-cliques, v/n/(r + 1) <_ cr <_ 2v/n/(r + 1). The factor of two can be
reduced when all the job lengths are identical.

As one might suspect, randomization is a very powerful tool in this setting. Deng
and Papadimitriou show for the empty knowledge graph that if each agent sends
each job to a random destination, then the competitive ratio is log n/ log log n. We
show an asymptotically matching lower bound (also shown independently by Alon

VALUE OF INFORMATION IN DISTRIBUTED DECISIONS 501

[2]). Furthermore, we consider r-strategies for all r. We show tight bounds of
c e O(log(n/r)/log log(n/r)). The lower bound holds for any distribution of r-regular
graphs, i.e., even when global information available to all agents is hidden from the
adversary. For example, the lower bound holds even if the agents can organize them-
selves into random collections of disjoint (r / 1)-cliques. The upper bound follows, as
in the deterministic case, from an algorithm that gives cG O (log (G)/log log (G))
for all knowledge graphs G. The upper bound requires that agents which share their
pieces of input can also toss common coins (but no global coins are needed).

We also consider questions that relate to virtual circuit routing. The problem
is to route permutations in a network where each agent is responsible for selecting
the route of a single input. The goal is to minimize the node or edge congestion.
When no information is available to the agents besides their own destination assign-
ment, this is the well-studied question of oblivious routing. If the paths for each
input-output pair are precomputed by some central algorithm, we have the problem
of global routing--also a very well-understood problem. We consider routing where
the available information is in the spectrum between the oblivious and the global
cases. Each agent (which represents a single input vertex in the network) knows its
own destination and the destinations of some of the other agents and must decide
on its path using the available information. The knowledge graph represents what
information is available to which agents, and we determine the benefit obtained when
each agent has degree at most r in the knowledge graph.

We consider N-node, degree-d networks with n input and n output nodes. We as-
sume that the network is optimal for the required task, i.e., the agents may choose the
structure of the network. For that reason, we do not give a competitive analysis but
rather a worst-case analysis. We show an r-strategy for routing in a log n-dimensional
Bens network [4, 20] with maximum edge congestion of x/. The lower bounds on

oblivious routing of [7, 14] can be modified to show lower bounds of (1/2d)v/t2/(gr)
on edge congestion and (1/2)v/n2/(Nr(d + 1))- (n/2Nr) on node congestion. We
show a lower bound on node congestion of (log(n/r)/loglog(n/r)) for randomized
r-strategies. The lower bound follows the lower bound on oblivious single-port routing
of Borodin et al. [9]. All of our bounds match the previously known bounds for r 1
(oblivious routing) and r- n (global routing).

2. Load balancing. Each agent decides deterministically where to send its jobs
based on the set of jobs it has and the set of jobs each of its neighbors in the knowledge
graph has. Let (G) be the size of the minimum clique cover for a graph G and c(G)
the size of the maximum independent set of G. We prove the following theorem.

THEOREM 1. For every graph G, V/a(G) <_ CG

_
2V/(G).

Proof. Let S be an independent set. Let ISI s. Give n/v jobs to each agent
in S. After the jobs have been redistributed, some agent a will get v/ jobs. Pick a
subset of at most v agents such that the total number of jobs given to agent a by
agents in the subset is at least v/. Now instead, give n/x/ jobs only to agents in the
subset. Since there are at most n jobs total, the optimal cost is one. Agent a still
gets v jobs.

Let (G) . Partition the vertices into cliques, co,..., c-1. A clique acts
as one agent since all the agents know the inputs of the other agents in the clique.
Fix an arbitrary ordering on the agents: a0,..., an-1. Let m n/. Each clique ci
divides its tasks into at most n groups so as to minimize the maximum length of a
group’s tasks. Then it sorts the groups in decreasing order by length. Clique ci sends
the jobs in group k to agent a[mij+k (mod n).

502 SANDY IRANI AND YUVAL RABANI

Fix some agent aj. Let ij be the number that satisfies LmiyJ <_ j < [rn(ij + 1)J.
Let ti denote the number of jobs given to agent j from the clique cij_i (rood) (the
clique that precedes clique ij in the ordering by i). Fix some k such that 1 _< k < O.

k-1We divide the work sent to agent aj into two parts" T1 -i=o ti and T2 ’__-k ti.
The total job length sent to agent aj is T T1 + T2 <_ 2 max{T1, T2}. We can lower
bound the cost to the optimal strategy by maxo<i<k ti because each clique divides
its jobs into groups so that the maximum total length in any group is minimized. If
T1 >_ T2,

T 2T< < 2k.
maxo_<i<k ti maxo_<i<k ti

Clique ci,_i (mod O) sends at least ti jobs to agents [(ij-i)rn (mod n)J,..., [rnijJ.
Thus the total number of jobs originating at clique %_ (mod) is at least ([rnijJ
[rn(ij --i) (mod n)J + 1)ti _> rniti. The total length of all the jobs in the system is at
least E__-k rniti >_ rnk Ei%-k ti. Thus, the optimal solution sends jobs of total length
at least

m] --1=k t
n

to some agent. Thus, if T2 >_ T1, then

T
<

kT/- kT./

Picking k to minimize the maximum of the two bounds 2O/k and 2k, we get k
which yields an upper bound of 2x/.

2. + < < ev/nl(+ 1).
Proof. The lower bound follows from the fact that any graph with maximum

degree r has an independent set of size at least n/(r + 1) (the greedy algorithm finds
such a set). For the upper bound, partition the set of agents into disjoint subsets of
size r + 1 each. The knowledge graph consists of n/(r + 1) complete graphs, one on
each of the subsets.

Remark. The upper bound can be improved to x/ when all the job lengths are
the same. When the jobs lengths are not the same, it is an NP-hard problem to divide
a set of jobs into at most n groups so as to minimize the maximum total length in any
group. However, there is a polynomial-time approximation algorithm which comes
within a factor of 4/3 of the optimal solution [13]. Thus, the above upper bound can
be achieved by polynomial-time bounded agents with an extra factor of 4/3 in the
ratio.

A natural question to ask is whether the upper or lower bound of Theorem 1
is tight. In order to answer this question, we need to examine a class of graphs
whose maximum independent set and minimum clique cover differ. The distribution
G(n, 1/2) is the distribution over all n-node undirected graphs where each pair of nodes
is adjacent independently with probability 1/2. If G is drawn according to G(n, 1/2),
then with high probability, (G) (n/log n) and c(G) O(log n) [5]. These facts
combined with the following claim imply that the upper bound of Theorem 1 is not
tight for the case when all job lengths are 1. We suspect that the lower bound is not
tight either, that there are graphs G for which ca lies strictly between x/c(G) and

VALUE OF INFORMATION IN DISTRIBUTED DECISIONS 503

CLAIM. If G is drawn at random from G(n, 1/2), then with high probability,
ca O(n1/3 log n) when all job lengths are uniform.

Proof. We can assume that no agent receives more than n jobs. If an agent
receives x jobs, it can distribute nlx/nJ jobs evenly among the agents and it is left
with the problem of distributing the remaining x mod n jobs.

An i-adversary gives each agent either 0 jobs or x jobs, where 2 _< x < 2+.
Suppose that for every 0 <_ <_ log n, we can achieve a ratio of c against an i-
adversary. Then we can achieve a ratio of c(log n + 1) against any adversary. Let
the i-agents be those agents that start with y jobs such that 2 _< y < 2+. Each
/-agent follows the strategy against the/-adversary with the following change. For
every non-i-agent whose input it can "see," it assumes that that agent received 0
jobs. Let M be the number of jobs given to the agent who receives the maximum
number of jobs from/-agents after the jobs have been redistributed. Let X be the
total number of jobs given to/-agents by the adversary. Let t log n. The agent
with the maximum number of jobs after redistribution has no more thn =0M
jobs. The optimM solution gives at least [(=0 X)/n jobs to some agent. We are
guaranteed that M/[X/n c.

Since E=o[(X/n) _< (t + 1)[(Eti=0 X)/n, we have that

E =0 < E =0
FE =0 i=0

< (t + 1) "mx{ Mi } <c.(log+l).

Now for every 0 log n, we show a strategy against an/-adversary. Then we
show that with high probability, G has a certain property which ensures that each
strategy achieves a ratio of O(n/a). Say that G has property A if for every subset of
8n/a nodes in G, the subgraph induced by that subset has more than 4n/a edges.
We have the tllowing lemma.

LMMA a. Whe G is chose accordi9 to (, 1/2), the

/(alog /
Prig does ot have propert A] 2).

Pro@ Let s n/a. Consider a fixed subset S of 8s vertices. What is the
probability that there are at most 4s edges in the subgraph induced by S? here are
at least () 28s edge slots. Thus the expected number of edges is at least 14s.
Using Chernoff bounds, the probability that a fixed subset of 8s vertices induces a
subgraph with no more than 4s edges is at most

e-(0l/’s < 2-.
Thus, the probability that there is a subset of size 8s vertices in the graph whose
induced subgraph has fewer than 4s edges is at most

(n2_s2 < nSnl/32-n2/3 < 2n/3(81gn-nl/3) D

Now we will show the strategy against an /-adversary. Our strategy gives the
desired ratio if G has property A. Therefore, if property A holds, the strategies for
all i give the desired ratio. Let m- 2[g nl. There will be n agents sending jobs and

504 SANDY IRANI AND YUVAL RABANI

m receivers. The jobs sent to receiver j are sent to agent j (mod n). An agent gets
no more than twice the load of the most heavily loaded receiver. We will determine
the ratio of the most heavily loaded receiver in the distributed solution to the most
heavily loaded agent in the optimal solution. Let X 2i. Let xj be the number of
jobs that originate with agent j. Since we are playing against an/-adversary, xj 0
or X <_ xj < 2X for all j.

If X > nu/3, then agent j sends a job to receiver k + j mod n for all 1 <_ k <_ xj.
If some agent gets a jobs after redistribution, then there are at least aX jobs among
all the agents. The optimal solution gives at least aX/n to some agent. This gives a
ratio of at most niX.

If X <_ n1/3, then each agent keeps all the jobs that it receives.
If n1/3 <_ X <_ n2/3, then divide the receivers into miX groups of X consecutive

receivers. The agents are also divided into consecutive groups of X. There are only
[n/X such groups and the last group may have fewer than X agents.

There are two cases.
Case 1. If an agent in group i gets jobs and is adjacent to no more than n1/3

agents with jobs in its group, then it distributes its jobs evenly among the
receivers in group i. In this case, an agent gives at most two jobs to each
receiver.
Case 2. If an agent j is adjacent to at least n1/3 agents with jobs in its group,
it sends its jobs to receiver (Xk + (j mod X)) (mod m) for 0 <_ k < xj.
In other words, each agent can be specified by the group to which it belongs
(j div X) and its number within the group (j (mod X)). Starting with group
0 and cycling through the miX groups of receivers, agent j gives its jobs to
the receiver in each group which has the same number within its group.

Now consider a group of X agents with more than 8nl/3 agents that fall into Case
1. Pick 8n/3 of them and call this set S. Every agent in S has fewer that n/3 edges
to agents in S. That means that the subgraph induced by S has no more than 4n2/3

edges (since the sum of degrees is twice the number of edges); i.e., G does not have
property A. Thus, by Lemma 3, with high probability G has the property that it is
impossible to have more than 8n173 agents that fall into Case 1. For the remainder of
the proof, we assume that this is the case. Using the fact that an/-agent from Case
1 gives at most two jobs to each agent in its group, we can conclude that the number
of jobs given to an agent by/-agents from Case 1 is at most than 16n1/3.

So suppose that some receiver j gets jobs from Case 2 agents. Receiver j only
gets these jobs from agents whose number is congruent to j mod X. Each of these
agents is in a different group and spreads its jobs as evenly as possible among the
groups of receivers. Since each agent starts with at most 2X jobs and there are miX
groups, at most [2XU/m] <_ max{1,4X/m} jobs that end up with agent j come
from the same group. Thus, there are at least min{/, lm/4X2} groups where n1/3 of
the agents get jobs. Each such group has at least Xn/3 jobs. Therefore, the total
number of jobs is at least Xnl/3min{1,1m/4X2}, and the optimal solution gives at
least (X/n/3) min{/, lm/4X} to some agent. Thus, the competitive ratio due to
Case 2 is at most max{n2/3/X, 4X/n1/3}. For n1/ <_ X <_ n2/a, the ratio is at most
4n/3.

We show the following upper bound on randomized strategies.
THEOREM 4. For every knowledge graph G, there is a randomized load-balancing

strategy whose competitive ratio is in 0 (log((I))/loglog((I))), where (I)= (G).
Proof. Let m [n/(. Pick a clique cover of G of size (I). We assume that the

VALUE OF INFORMATION IN DISTRIBUTED DECISIONS 505

agents within a clique know the set of jobs assigned to the other agents in the clique
as well as their random bits. Thus, each clique operates as a single agent. The agents
will be divided into (I) sets of size m. Each agent will be indexed by a pair (i, j), where
0 _< i _< 1 and 0 _< j _< m- 1. indicates the set to which the agent belongs and
j indicates the place within the set.

Each clique ct divides its tasks into at most n sets such that the maximum length
of a set’s tasks is minimized. Then it sorts the sets in decreasing order of length. Each
set will be indexed by a triplet (i, j, l) where 0 <_ i, <_ - 1 and 0 <_ j <_ m- 1. The
third index denotes the clique where the jobs originate. The first two indices identify
the specific set at clique 1. Let s(i, j, l) be the total length of the jobs in set (i, j, 1).
They are sorted so that s(i,j, l) >_ s(i’, j’, l) if i < i’ or if i i’ and j <_ j’. For each
E {0,...,- 1}, clique ct draws k E {0,...,- 1} uniformly at random. Then for

all j {0,... ,m- 1}, it sends all the jobs in set (i,j, 1) to agent (k,j).
Denote the optimal cost for this instance by OPT. Denote the cost due to the

distributed algorithm by the random variable D. We wish to show that E[D]
O((o/oo)OP).

Consider a related problem: we have (I) agents. Agent gets a set of jobs of
lengths s(0, 0,1), s(1, 0,/),..., s(O 1, 0,1). (Some of these could be of length 0.) Let
OPT’ be the cost when the jobs are optimally distributed among the agents. Let
D’ be the random variable denoting the cost of the distributed algorithm which sends
each job to a random agent. The result of [11] gives that E[D’] e O((log (I)/log log (I))
OPT’). Clearly, D and D’ are identically distributed, so E[D] E[D’]. We show
that OPT >_ (1/3)OPT’, which completes the proof.

Divide the jobs from the second problem into two sets:

/=0

(I)-- (I)--

0,
i=1 l--0

Let MAX max0</<(i,-1 s(0, 0, l) Clearly, MAX >_ T1/O. We claim two facts.
1. OPT >_ max{MAX, T2/O};
2. OPT’ _< MAX + (T1 + T2)/O.

The theorem follows from the two claims because

TOPT’ _< 2MAX + - <_ 3OPT.

To prove the first claim, observe that in the first problem each clique divides the
jobs into sets so as to minimize the maximum length of the jobs in any set. So the
length of the jobs in any set is a lower bound on the optimal solution. The second
part of the "max" in claim 1 follows from

--i

=o {=o I=o

since for

--1--1 --1 --j=O i=0 /=0 i=1 /=0

506 SANDY IRANI AND YUVAL RABANI

rnT
n

To see the second claim, observe the discrepancy disc in the optimal solution.
The discrepancy is the difference between the maximum load on an agent and the
minimum load on an agent. Clearly, disc < MAX. Since (T1 + T2 + O. disc)/(I) is an
upper bound on the optimal cost, the claim follows. []

COROLLARY 5. There are randomized load balancing r-strategies for all n and r
with a competitive ratio in 0 (log(n/r)/loglog(n/r)).

Proof. Partition the set of agents into disjoint subsets of size r + 1 each. The
knowledge graph consists of [n/(r / 1) complete graphs, one on each of the sub-
sets. []

Corollary 5 is tight up to a constant factor, as the following theorem shows.
THEOREM 6. If 4/r(n)/n -- 0 as n -- oc, then for every sufficiently large n

and for r r(n), the competitive ratio of every randomized load-balancing r-strategy
on n agents is in f. (log(n/r)/log log(n/r)).

Remark. If /r(n)/n _> e > 0 for all n, then (n/r(n)) < e-4. So, we get a lower
bound of Ft (log(n/r)/log log(n/r)) for all r < n. Alon [2] has independently shown a
lower bound of ft(logn/log log n) for the special case of an empty knowledge graph.
This bound follows from our proof as well.

Proof. We need to consider only r-regular knowledge graphs (i.e., with out-degree
r). Applying von Neumann’s minimax principle (see [21, 8]), we show a probability
distribution over inputs which beats every deterministic algorithm.

For the sake of completeness, we state and prove the exact claim that is needed
(see [8, Lem. 7.2] for the original version).

LEMMA 7. Let I be a probability distribution over a finite sample space of inputs
such that for every deterministic r-strategy S, Ei[costs([-c. cost(i)] _> 0. Then for
every randomized r-strategy , there exists an input instance I- I() for which

E[cost(I)] > c.
cost(I)

Proof. Fix . is a probability distribution over deterministic strategies S.
Since for every X, Ei[costs (i)- c. cost(i)] _> 0, we have that E[Ei[cost (i)- c.

cost(i)]] _> 0. We may switch the order of integration since all expectations are finite.
We get Ei[Ex[costs ([)- c.cost(i)]] _> 0, or Ei[cost([)- c. cost(i)] _> 0. Therefore,
there exists I E I for which cost(I) -c. cost(I) _> 0. []

The distribution we choose gives every agent d jobs independently with probability
p and 0 jobs otherwise. We use d and (4/d) < p < (de/d) so that p(1-p)d
4. Notice that d w(r)N o(n). The expected cost of the optimal algorithm is at most
Be. Our goal is to show that the expected cost of any deterministic r-strategy is in
Ft(/), where/- log(n/r)/log log(n/r).

Let k log(d/r)/log log(d/r). By our choice of d, k _> /4. We need the following
lemma.

LEMMA 8. If r(n) e o(d(n)) and if Z Z(n) is distributed according to the
ona dtto ((+ 1)/d, d/4(+)), th fo a oh,

r
Prob[Z >_ k] >_ .

Proof. Let A- E[Z]- 1. Prob[Z k] (which is a lower bound for Prob[Z _> k])
can be estimated using the Poisson approximation to the binomial distribution. It

VALUE OF INFORMATION IN DISTRIBUTED DECISIONS 507

gives

Prob[Z k] > p(k;))e

where p(k; ;) e-Ak/k!.
We can estimate p(k;) for large k using Stirling’s formula as follows:

for some constant a.

Also, e- d/4(+l)-k

lower bounded by 1/2.
We have, for sufficiently large n,

2
---d/4(+1)-

__
1 as n - x, so for sufficiently large n this is

()log
2V/-

_< klogk _< log _d

The condition that /r(n)/n 0 as n cx, implies that r(n) E o(d(n)).
We use Lemma 8 to bound a similar distribution. A vertex of G is said to be

chosen if it gets jobs. A vertex is isolated if it is chosen and none of its neighbors are
chosen.

LEMMA 9. Let A be a subset of the vertices of G. To each vertex v A, assign
an integer weight Wv between 1 and k/8 such that EveA Wv d/4. Let Y be the
sum of the weights of the isolated vertices in A. Let Z be as in Lemma 8. Then for
n sujficiently large,

Prob Y _> _> --Prob[Z _>

Proof. Recall that k log(d/r)/log log(d/r). Let s d/4. We may assume that
,eaW s; otherwise, we reduce weights and remove 0-weighted vertices from A
until equality holds. or each vertex v A, we introduce W indicator variables. Each
variable is set to 1 if its corresponding vertex is isolated and to 0 otherwise. Denote
the indicator variables by Y,...,Y. Y Y. or X a k-subset of {1,...,s},
Vg(X) is the subset of vertices associated with {YIi X}.

The proof proceeds in two steps. First, we relate the probability of the desired
event in G to the probability of a similar event in a graph Gu, derived from G, where
vertex weights are 1. Then we relate the probability of the desired event in Gu to the
distribution of Z.

We form a graph Gu which is identical to G except that for every vertex v A,
we have a set Sv of W, nodes in Gu. If v and are adjacent in G, then in G every
vertex in S is adjacent to every vertex in S,. Note that the degree in Gu is at most
kr/8. Let Av U,eaS,. Notice that IAI s. Let U denote the indicator variable
that is 1 if vertex i in Au is isolated and 0 otherwise when each vertex ofG is chosen
independently of the others with probability p. Let U U.

Now consider a particular graph Gz of s vertices consisting of disjoint (r + 1)-
cliques. Let Z1,..., Z be the indicator variables which indicate for each vertex
whether it is isolated when each vertex is chosen with probability p. Clearly, the
distributions of Z from Lemma 8 and Z are identical.

We wish to show the following:

508 SANDY IRANI AND YUVAL RABANI

1. Prob[Y >_ k/2] > Prob[U >_ g]/e4.
2. Prob[U _> k] > Prob[Z > k]/e5.

Proof of part 2. Define

XC(1 IXl=

Similarly,

xc{1 ,s},lXl-k jx

Clearly, Su is an upper bound on Prob[U >_ k] and Sz is an upper bound on Prob[Z _>
k]. First we prove that Su >_ Sz/e2.

Examine a fixed k-set X of {1,... ,s}. When does 1-Iyex Uy 1? This happens
when X forms an independent set, all the vertices in X are chosen, and all the
vertices in the neighborhood set of X are not chosen. Notice that IXI k and the
neighborhood set of X has at most rk2/8 vertices. Thus if X forms an independent
set, then 1-Ijex uj 1 with probability at least p(1-p) >_ p/e > pk(1- p)/e.
(The first inequality follows from the fact that for sufficiently large n, rk2 << lip.
Since (1 l/x)x-1 > e-1 for all x > 2, the inequality follows.)

Now let’s look at the Zj’s. If X forms an independent set, then the neighborhood
set of X has size rk (because the graph is composed of disjoint (r / 1)-cliques). Thus,
if X is an independent set, then YIjez zj 1 with probability exactly pk(1 -p)k.

Therefore, we have to prove that the number of k-sets X that are independent sets
in Gu is at least 1/e times the number of k-sets X that are independent sets in Gz.
We do this by picking X at random and showing that Prob[X is independent in Gu] >
e-. We pick a random k-set vertex by vertex in Gu. Let vi denote the ith vertex that
is picked and V denote {v,..., v}. The neighborhood set of V is denoted N(V).

Thus, we have

Prob[Vk is independent]
k

H Prob[vj 9 N(Vj-1) V-I is independent]
j=l

k

(rk(j-1)) fi(2rk(j-1))>-jl-I 1-8(s_j+l) >- 1-
"= j=l

88

_> 1---8 _>e-1.

The last inequality holds for sufficiently large n, since k << d/rk2. Therefore, we
conclude that Su >_ Sz/e.

We now complete the proof that Prob[U _> k] _> Prob[Z >_ k]/e. Observe that

Prob[g >_ k] _> Su(1- p)-k >_ Su/e >_ Su/e3.

The first inequality comes from the fact that the probability that there are exactly
k isolated vertices in A is at least Su(1- p)-k (The lower bound is obtained by

VALUE OF INFORMATION IN DISTRIBUTED DECISIONS 509

summing over all independent k-sets in Gu the probability that the k-set is isolated
and all other vertices in Au are not chosen). The second inequality uses the fact that
p < e/s and that for sufficiently large n, k > e, and thus s-k < (s/e- 1)e. Therefore,
to complete the proof of part 2,

1 1
Prob[U >_ k] >_ --Su >_ --gSz

>_ eProb[Z >_ k].

Proof of part 1. Let Z be the set of independent sets in A of size at most k/2
whose weights sum to at least k/2. We want to relate the number of independent
k-sets in Au to the number of subsets in 27. To do that, we map every independent
k-set X in Au to an independent set in 27 as follows: if [Vy(X)I k/2, then map X
to an arbitrary size-k/2 subset of Vy(X). Since the weight of a vertex is at least 1,
the weight of the subset is at least k/2. If IVy(X)I < k/2, then map X to Vy(X). For
any independent set I E 27, there are at most (k/8)k/2 (k/2) independent sets mapped
to I: there are at most (k/8)k/2 ways to pick the first k/2 vertices from the sets in

8Gu associated with the vertices of I and (k/2) ways to pick the remaining vertices
from Au. Define

Sy Ep’I’(1 p) Ig(’r)l.

We can lower bound Sy by Su/e as follows:

Su <_ E P
X indep.,

We show that

(s)
8 pk/2 pk/2

E epk/2(1 p)kr/2

thus concluding that Sy >_ Sv/e.

k/2 (s "pk/2 <1
\k/]

Observe that p was chosen so that p(1- p)r
4/d 1Is. So pk/2 (1iS)k p)-r/2 <_ e(1/s) for sufficiently large n.

k (k/2)pk/2(g)/

510 SANDY IRANI AND YUVAL RABANI

Il
k/2 Sk/2 -k/2<_). es

where the inequalities hold for sufficiently large n. In a similar manner to the proof
of prt 2,

Prob[Y _> k/2] >_ Sy >_ -Su
>_ eProb[U >_ k].

This completes the proof of Lemma 9. We now proceed with the proof of Theo-
rem 6.

Consider the following n by n bipartite graph H. There is an edge between a
vertex x on the left and a vertex y on the right for every job that agent x sends to
agent y when agent x is isolated. There is an edge from vertex x on the left to vertex
x on the right for every job that x keeps when x is isolated. Note that the degree of
a left node in H is exactly d. If a vertex is isolated, then it sends its jobs according
to the edges in H. We examine the load due to isolated vertices only.

Our proof proceeds in three steps. First, we address two special cases: (i) there
is a right vertex in H of degree at least 3d; (ii) there are at least d left vertices in
H that have an edge of multiplicity 3/32 or more. Then, we prove the theorem for
graphs H that do not fall into either of these categories.

LEMMA 10. If H has a right vertex v of degree at least 3d, then the expected
number of jobs sent to v is at least 4.

Proof. Let u, u2,..., u be the neighbors of v on the left. For 1, 2,..., k, let
Wi denote the multiplicity of the edge between ui and v. Wi >_ 3d. Each of the
ui’s is isolated with probability p(1- p)r. Therefore, the expected number of jobs
that v get is p(1- p)y Wi >_ p(1- p)3d >_ 4.

LEMMA 11. If there are at least d left vertices in H with an edge of multiplicity
/3/32 or more, then the expected maximum number of jobs an agent gets is at least
//Sea

Proof. There is a set S of at least d vertices such that if any of them is isolated,
some agent has a load of at least 5/a2. For v ’e S, let E denote the event that v is
isolated and the remaining vertices in S are not chosen. ProblEm] >_ p(1 -p)(1
p)/4-1 _> (4idea). (Recall that p <_ 4e/d and for n sumciently large rk << lip.) The
probability that some vertex in S is isolated is at least --es Prob[E] >_ 4/ea. Thus,
the expected maximum load is at least /8e3. []

We now consider the remaining case, where all right vertices in H have degree at
most/d, and at most d left vertices in H have edges of multiplicity 3/32 or more.
Remove all the vertices on the left which have an edge of multiplicity at least/3/32.
There are at least n- d left vertices remaining.

We need the following lemma.
LEMMA 12. If the maximum degree of a right vertex in H is/3d, then there exists

a subgraph H’ of H such that the following hold:
1. The number of right vertices in H is at least d/r.
2. The degree of each right vertex in H is at least d/4.

VALUE OF INFORMATION IN DISTRIBUTED DECISIONS 511

3. For every two distinct right vertices x and y in H, their neighborhood sets
do not intersect.

Proof. Let c 2d3/r(n- 2d). Define a graph I whose vertices are a subset
of the right vertices of H as follows. Remove all right vertices of degree less than
d/2. Remove edges until each remaining right vertex has degree exactly d/2. Call
the remaining graph H". Connect two right vertices by an edge iff the size of the
intersection of their neighborhood sets in H" is at least c. The degree of any vertex
in I is at most d2/c. The number of right vertices in H that have degree at least d/2
is at least (n- 2d)/2/ because the maximum degree is/d and the sum of degrees is
(n- d)d. Therefore, there is an independent set of size at least (n- 2d)c/2d2 >_ d/r
in I. Take a subset of size d/r of the independent set together with the neighborhood
sets of these vertices in H" and the connecting edges. What we get is a collection of
d/r stars. Each right vertex is a root of one star and has degree d/2. Remove from
this collection any left vertex that participates in more than one star. Since each
right vertex removes from each other star at most c left vertices, the resulting stars
are vertex disjoint and have minimum root degree of at least d/2--cd/r which is at
least d/4 for sufficiently large n.

The neighborhood sets of the right vertices of H induce a collection of d/r disjoint
sets of vertices in G. We call this collection of sets ,4 A,A2,... ,Ad/r. To ech
vertex v that belongs to such a set, we assign it a weight W which is equal to the
multiplicity of its edge to its adjacent right vertex in H. Since we hve removed
the vertices incident to edges of high multiplicity, the weight of any vertex is t most
/32 _< k/8. Each set has a total weight of at least d/4. Let a be the sum of the
weights of the isolated vertices in set A. We wish to show that the expected maximum
over all a is in

For the remainder of the proof, "adjacency" refers to adjacency in the knowledge
graph G. N(X) denotes the neighborhood set of a set of vertices X. A subset
X of vertices is isolated (not isolated/chosen/not chosen) if every vertex in the set is
isolated (not isolated/chosen/not chosen). Let Ej denote the event (hi
k/2) A... A (aj < k/2).

LEMMA 13. Let 1 <_ j <_ d/r. If Prob[Ej_] _> 1 (1/2e), then

1
Prob[ay _> k/21Ey_l >_ -eProb[ay _> k/2].

Proof. Let A-- AIUA2U...UAj-. Let E Ey_. For each vertexv Ay
we introduce W indicator variables as in the proof of Lemma 9. Let Y,..., Y be
those variables. Sy is defined as in Lemma 9. Using the arguments from the proof
of Lemma 9, we have that Prob[aj >_ k/2 E] >_ E[Sy Elle3. Also, E[Sy] is
a trivial upper bound on Prob[ay _> k/2]. Therefore, it is sufficient to prove that
E[Sy E] >_ E[Sy]/2e. Fix n arbitrary independent set I 27. We need to prove
that ProD[/is isolated E] _> ProD[/is isolted]/2e.

The event that I is isolated happens if and only if I is chosen and N(I) is not
chosen. Therefore, pllI >_ Prob[I is isolated]. Also,

Prob[I is isolated

--plZlprob[N(I) is not chosen

Since

Prob[N(I) is not chosen]- (1-
> (1--p)k > e-1

512 SANDY IRANI AND YUVAL RABANI

we have that

Prob[N(I) is not chosen

>_ Prob[N(I) is not chosen A E

>_ Prob[N(I) is not chosen] + Prob[E]- 1

1

Putting these facts together, we get that

Prob[I is isolated E] > >
2e

Prob[I is isolated]
2e

We can now complete the proof of Theorem 6. The condition of Lemma 9 holds
for sufficiently large n. If there exists j, 1 <_ j <_ d/r, for which Prob[Ej] < 1 1/2e,
then the expected maximum load is at least k/4e >_//16e. Otherwise, we may use
Lemma 13 to get

Prob[maxaj _> k/2]
1- Prob[Vj, aj < k/2]

1 HPrb[aj < k/2]Ej_l]
J

1-H(1- Prob[aj _> k/2[Ej_x])
J

>_ 1-H 1-i-e4Prob[a >_ k/2]

(1_
(r) -1

_>1- 1
2e--d

_> 1- e.-;

where the last inequality holds for sufficiently large n. Therefore, E[max{a}] >_
(1-e-1/2e13)(k/2) >_ (1-e-1/2e13)(//8) gt(/). Recalling that the expected optimal
cost is at most Be, the theorem follows. [:]

3. Routing. We show n(log n + log r)-node networks with n input nodes where
a maximum edge congestion of V/-/r can be guaranteed by a particular r-strategy.
Theorem 16 proves this to be at the least nearly optimal.

THEOREM 14. Divide all the input nodes into groups of r consecutive nodes. If
each agent knows the destinations of the other input nodes in its group then we can
route any n n permutation on an n(log n + log r)-node network with maximum edge
congestion //r.

Proof. The network is derived from the Bens network. We take the first
log(n/r)/2 levels of a log n-dimensional Bens network, then the middle 2 log r levels
of that network, then the next log(n/r)/2 levels. As with global routing on a Bens

VALUE OF INFORMATION IN DISTRIBUTED DECISIONS 513

network, the bound on edge congestion is guaranteed even if there are two inputs for
each source and two outputs for each destination. In the proof, we trace the selection
of each path by describing the motion of a "packet" that moves along the path.

In every level, number each node from top to bottom 0, 1,..., n- 1. The nodes
in each level are divided into n/r groups of r nodes. The groups in the first level (the
input level) determine the knowledge graph--each group is a clique in the knowledge
graph.

For the first log(n/r)/2 levels, each input picks the greedy path based on the first
log(n/r)/2 bits of the destination.

At this point, each packet reaches a place which differs with its input in only the
first log(n/r)/2 bits. There are n/r log r-dimensional Ben(s networks in the middle.
The source nodes of each such subnetwork (i.e., the nodes at level log(n/r)/2 / 1 of
the whole network) receive packets from at most X//r different cliques. Furthermore,
the place of each packet within its clique has not changed (that is, the place of each
packet agrees with its source in the last log r bits). Thus, each node has at most two
packets from each clique.

Now we will use the next 2 log r levels to route within each r x r network according
to the last r bits of the destination (to be explained later).

Afterwards, the place of each packet corresponds with its destination in the first
log(n/r)/2 bits and the last log r bits. If the bits are numbered from left to right,
then the place of a packet can only disagree with its destination in bits log n/r/2 + 1
through log n/r. Thus, there are at most V/-/r packets per node. Each packet then
takes the greedy path to its destination. The congestion never exceeds V//r since at
each successive level, the upper bound on the congestion decreases by a factor of two.

So far, everything specified about the paths can be determined by each source
node without any extra information besides the destination of its own inputs.

We now have to explain how to do the routing in the middle r r subnetworks.
Now source and destination refer to the source and destination within the r r network.
We are guaranteed that for any such subnetwork, we only have V/-/r cliques routing
simultaneously on that subnetwork. There are at most two packets per source from
any single clique. There are at most x/-/r packets per destination from all cliques.
Each clique determines the paths for all inputs in that clique so as to satisfy the
conditions of Lemma 15 below. We then examine what happens when we have x//-/r
cliques superimposed on the same r x r network.

In each level, number the nodes 0, 1,...,r- 1 from top to bottom. Number
levels from right to left so that the destination nodes are at level 1. For j E
{0,...,2lgr-k-1 1}, define S(j,k) to be the nodes in the ith level numbered
21gr-k+lx / j, for all x E {0, 1,... ,2k-1 1}. So, for any i, with > and any
k _> i, packets arriving at nodes in S(j, k) can only reach level-/’ nodes in S,(j, k).
In particular, packets arriving in S(j, i) can only reach level-1 nodes in S (j, i). We
have the following lemma.

LEMMA 15. Each clique can route the paths of its inputs so that the following
hold:

1. In the first half of any particular r r Bangs network, each edge carries at
most one path.

2. In the second half of the network, the congestion along each edge coming into
nodes in Si(j, i) from the previous level is the same (J:l).

Proof. The proof is by induction on r. Consider the two (r- 1) (r- 1)
subnetworks in the middle. Suppose we manage to route the r r problem so that

514 SANDY IRANI AND YUVAL RABANI

each source sends one packet through the bottom network and one through the top
network. And suppose that we manage to route the packets so that if a destination
gets t packets, t/2 are routed through the bottom network and t/2 are routed through
the top. (If t is not even, the number of packets routed through the top and the number
routed through the bottom may differ by 1). Then we have managed to satisfy the
constraints for the outer two level. By induction, we can satisfy the constraints for
the inner levels.

Therefore, we just have to show that we can route the packets in that way. Make
a bipartite graph--left vertices represent sources, right vertices represent destinations.
An edge from a left vertex to a right vertex represents a path routed from that source
to that destination. The degree of each vertex on the left is 2. The edges can be
colored red and blue so that every vertex has half its edges red and half blue. The
red edges represent paths through the upper subnetwork and the blue edges represent
paths through the lower one. To see that the coloring of the edges can be done, split
every vertex on the right with degree higher than 2 into vertices of degree 2 and at
most one of degree 1. Now combine pairs of degree 1 vertices so that the graph is
2-regular. By Hall’s theorem, the edges can be colored so that every vertex is incident
to a red and a blue edge. When the vertices are recombined to get the original graph,
if a vertex is incident to d edges, then at least [d/2] of the edges are colored with
each color. [:]

We argue that if each clique can route its paths through each subnetwork so that
conditions 1 and 2 are maintained, then the congestion is at most v/ even when
we consider the congestion from all V//r cliques that are routing simultaneously on
a particular subnetwork. In the first half of the network, each clique has only one
path per edge. Thus, the total edge congestion is at most V/. In the second half
of the network, paths that reach a node in Si(j, i) can only reach nodes in SI(j, i).
If there are x paths coming into a node in Si(j, i), then property 2 guarantees that
there are a total of x2i- paths coming into all nodes in Si(j, i). These paths are all
destined for nodes in SI(j, i). There can only be 2i-V such paths because each
destination gets only x//r paths from all cliques. Thus x _< V. [’1

THEOREM 16. For every n-input, n-output, N-node, degree-d network, for every
deterministic routing strategy with degree-r knowledge graph,

1. there exists a permutation for which the maximum congestion at a node is at
least (1/2)v/n2/Nr- (n/2ir);

2. there exists a permutation for which the maximum congestion at an edge is
at least (1/2d)v/n2/Nr.

The proof is more or less a straightforward adaptation of the oblivious routing
lower bounds of Borodin and Hopcroft [7] and Kaklamanis, Krizanc, and Tsantilas

Proof: Part 1. Let S be an independent subset of size n/2r in the knowledge
graph. It has a neighbor set (in the knowledge graph) of size at most El2. Fix the
destinations of the sources in this neighbor set. We will ignore the congestion due to
these paths. The algorithm for the inputs in S is now specified by a set of at least
El2 paths for each input--one to each remaining target.

Let a (1/2)/n2/(Nr(d + 1)). We can assign to each of t >_ (n/2) da of the
possible paths of an input node in S an internal node w such that each assigned w
is assigned for at least a paths and at most (d + 1)a (1/2)v/n2/(Nr(d + 1)) paths.
The reason is as follows. Let u S. Repeat the following process. Find a node w
that is an internal node of at least a paths from u. Mark it and assign w to a of these

VALUE OF INFORMATION IN DISTRIBUTED DECISIONS 515

paths. Remove the paths and repeat till no such node can be found. Now, for each
of the paths that have not been assigned a node, trace the path from its destination
to its source, and assign it the first marked node that it encounters (excluding its
source or destination) if there is one. A path does not get assigned a node either
if its destination is a neighbor of u or if it passes through an unmarked neighbor of
u. There are at most da such paths. The number of paths that get assigned any
particular marked node w is at most the a paths that marked w plus any path that
passed through an unmarked neighbor of w. There are at most da of the latter.

The number of distinct nodes w assigned for a fixed input in S is at least
(n/2- da)/((d + 1)a) >_ n/(2(d / 1)a)- 1. There are n/2r nodes in S, so a to-
tal of n2/(4(d + 1)ra)- (n/2r) nodes w are hit. Since there are N nodes in the
network, there is a node w that is hit by at least n2/(4N(d / 1)ra)- (n/2Nr)
(1/2)v/n2/(Nr(d + 1))- (n/2Nr) paths from different input nodes. Each input node
that hits w can choose from among at least (1/2)v/n2/Nr(d / 1) destinations that
cause a hit on w, so there is a choice of distinct destinations for all input nodes that
hit w.

Part 2. Let S be an independent set of size t n/2r in the knowledge graph.
As in part 1, we fix the destinations of the sources in the neighborhood set of S and
ignore the congestion due to the paths they choose. The destination of any source in
S can be any of at least n/2 remaining output nodes in the network. An algorithm is
specified by nt/2 paths. There are at least t- 1 paths that end at any output node
v (because v can also be a source node in S). Let S(v) denote the set of edges in the
network which have k v/n2/Nr/2d or more paths ending in v passing through them.
Let S*(v) be the set of nodes incident to edges in S(v). Note that
Also, v E S* (v). Thus,

IS- S*(v)l <_ (k-

(For each source u not in S*(v), follow its path to v until it hits a node in S*(v). The
last edge in this path has less than k paths in it.) This gives us that

t <_ kdlS*(v)l <_

Thus t/2kd <_ IS(v)l. Summing over all n/2 destinations v,

Is()l >
nt
4kd"

v6V

Since there are Nd/2 edges in the network, there is some edge e for which e E S(v)
for at least

nt/4kd
Nd/2

=k

different values of v.
Select e and Vl,..., Vk such that e S(v) for 1 _< _< k. This means that we

can find ul,..., uk such that u :fi uj for i -- j and the paths from u to v all pass
through e.

The following is a lower bound for randomized oblivious routing strategies. The
lower bound holds when the knowledge graph is a set of fixed r-cliques.

516 SANDY IRANI AND YUVAL RABANI

THEOREM 17. For every n-input, n-output, n-node, degree-d network, for every
randomized routing strategy with a deterministic knowledge graph consisting of dis-
joint r-cliques, if dr

_
n/2 log4 n, then there is a permutation for which the expected

maximum congestion at a node is in (log(n/r)/loglog(n/r)).
Proof. The proof follows a lower bound on randomized oblivious routing due

to Borodin et al. [9]. We show a probability distribution over permutations that
beats every deterministic routing strategy. Let t n/r. There are t r-cliques in the
knowledge graph. Each node will be numbered by a pair (i, j), where i represents
the name of the clique the node is in and j represents the name of the node within
the clique. 1 <_ i <_ t and 1 <_ j <_ r. We pick one of t! permutations uniformly at
random. Each permutation is specified by a permutation over the cliques. If clique
is mapped to clique k, then (i, j) has to connect to (k, j) for all 1 <_ j <_ r. Thus each
node has to connect to one of t destinations. For some valid source-destination pairs
(u, v), we assign a node (called Y(u, v)) which is an internal node in the path from u
to v. V(C,D) denotes the multiset of nodes Y(u, v), where u E C, v E D, (u, v) is
a valid source-destination pair, and V(u, v) exists. IV(C, D)I denotes the size of the
set, counting multiplicity.

LEMMA 18. Consider a clique C. The assignment can be picked so that the
following hold:

1. A node w appears in at most (d + 1)logt multisets V(C,D).
2. If a node w appears in a multiset V(C, D), then it appears in V(C, D) for at

least log t different cliques D
3. -D IV(C, D)l >_ n dr logt.

Proof. Consider all the paths from a clique C to all the destination cliques D.
There are a total of n paths. (For each source-destination pair of cliques, there are
r paths and t destination cliques). Color each path so that the paths arriving at
the same clique have the same color. This means that all the paths originating at a

single source node have different colors. There are at most r paths colored with the
same color. Now for each node that has at least log t paths of different colors going
through it, mark the node and assign it log t paths of different colors. Then for each
unassigned path, follow it from destination to source and assign it to the first marked
node that it hits. A node will get at most dr log t paths of at most d log t colors this
way. (This is because if a path gets assigned to a node, it came from an unmarked
node. There are at most d unmarked nodes adjacent to a marked node. The paths
that pass through an unmarked node have fewer than log t colors. There are at most
r paths of a given color.)

How many paths don’t get assigned? A path doesn’t get assigned if it reaches its
source node without hitting a marked node. There are r source nodes. How many
make it back to a single source node u without getting assigned? If it doesn’t get
assigned, it passes through an unmarked neighbor of u just before it hits u. Call the
neighbor v. All the paths going into u have different colors. If v is unmarked, than
there are fewer than log t paths of different colors that pass through v. Thus there
are fewer than d log t unassigned paths that reach u. [:1

In what follows, we denote by (C, D) the color of the r paths that lead from
sources in C to destinations in D. Each of the t2 combinations has a distinct color.

Now execute the following procedure. Find a node w that is hit by a single color
(C, D) at least log t times. Remove all paths from C and repeat.

If at least t/2 such nodes are found, then we have the following situation" There
is a sequence C1, C2,..., Ct/2 of source cliques and a sequence D, D2,..., Dr of

VALUE OF INFORMATION IN DISTRIBUTED DECISIONS 517

destination cliques (not necessarily distinct) such that if D is assigned to C, there
is a node that is log t congested. The probability that D is assigned to C is lit.
Conditioned upon D1 not assigned to C1, D2 not assigned to C2, Di-1 not assigned
to C-1, the probability that D is assigned to C is still at least 1/2t. Therefore, with
probability at least 1 (1 1/2t)t/2 _> 1 -e-1/4, there is a logt-congested node.

Otherwise, we have removed at most t/2 source cliques. The remaining source
cliques have the property that no node is hit more than log t times by the same color.
From now on, we consider only the remaining source cliques.

Let Ec denote the expected number of paths from sources in C that pass through
w. The assignment of V(C, D) has the property that -c Ec >_ (n-dr logt)/2,
where the second sum is taken over the remaining source cliques C.

Suppose that for all w, cEc <_ log t (Otherwise, the lower bound on the
expected congestion is established). Let 5 1/8. A node w is good if -c Ec >_ .
The number of good nodes is at least (n/2 5n dr logt/2)/(logt) >_ n/8 logn.

Fix a good node w. The assignment of V(C, D) has the following property. For
every clique C, either Ecw 0 or log tit <_ Ec <_ ((d + 1)log2 t)It. To see the upper
bound, recall that none of the nodes are hit more than log t times by a single color
(C, .). By claim 1 of Lemma 18, the upper bound follows. The lower bound follows
from claim 2 of Lemma 18.

We want to lower bound the probability that h source cliques hit w for some
h < log t. Each hit corresponds to some clique C such that Ec >_ log t/t. There
are at least logt cliques D such that w is in V(C,D). A hit by C removes one
destination clique D from the list of possible destinations of other source cliques.
Consider the conditional expectation of the number of paths from sources in C that
pass through w, conditioned upon at least h other source cliques having hit w. By the
above arguments, this conditional expectation is at least 1/t. Notice further that if
w E V(C, D), it may appear in V(C, D) at most log t times (because of our assumption
on the remaining source cliques). If D is assigned to C, we will count this as only one
hit, so the expected number of hits on w is bounded below by 1/log tc Ec. Also,
the probability of a hit due to source C is at most (d + 1) log tit.

We use the following probabilistic lemma, due to Borodin et al. [9].
LEMMA 19 (Borodin et al.). Let x,...,xk be independent Oil random variables.

Letp Prob[x 1], EP a, and a <_ p <_ b. Then, for any Y <_ a/(2eb log(b/a)),

2e log(b/a)Y

In our case, a=5/logt= 1/81ogt, a= l/t, andb= (d+ 1)logt/t.
According to the lemma, for n sufficiently large, the probability that node w

is at least Y log t/8 log logt congested is at least 1/v/ >_ log t/t, provided that
the condition on Y holds. It can be easily verified that for sufficiently large n, the
condition that dr <_ n/2 lognn implies the required condition on Y.

To summarize, we have shown that one of the following properties holds:
1. there is a sequence of (not necessarily distinct) nodes Xl,X2,...,Xt/2 such

that with constant probability, at least one of them is at least log t congested; or
2. there is a node w whose expected congestion is at least log t; or
3. there is a node Wl that is at least log t/8 log log t congested with probability

at least 1/v/ >_ log t/t.
If the first or second case holds, we are done. If the third case holds, we would

like to construct a sequence of t/logt nodes Wl,W2,...,Wt/log with the property

518 SANDY IRANI AND YUVAL RABANI

that for every i, if wl, w2,..., Wi-1 are less than logt/aloglogt congested, then wi is
at least log t/a log logt congested with probability at least log t/t for some constant
c. We construct such a sequence by repeating the entire argument above at most
t/logt times. If wl,w2,...,wi, < t/logt, are less than logt/loglogt congested,
this constrains t logt/loglogt < t/log log t source cliques to their destination
cliques. We remove these cliques and can thus repeat the above discussion setting
t := t" t- t and assigning new values V(u, v) for the remaining cliques. Notice
that t" >_ t(1 1/log log t). We get one of the following properties:

1. there is a sequence of (not necessarily distinct) nodes Y,Y2,... ,Yt,,/2 such
that with constant probability, at least one of them is at least log t" _> log t- 1
congested; or

2. there is a node w whose expected congestion is at least log t" >_ log t- 1; or
3. there is a node w+x that is at least log t"/S log log t’ >_ (logt- 1)/81oglogt

congested with probability at least 1/v _> logt/t.
All the probabilities and expectations are conditioned upon the assignment of

destination cliques to the t constrained source cliques.
In the first case, recall that it followed from each of the y’s being hit by log t"

paths of one pair of source-destination cliques. If we remove the conditioning upon
the assignment of destination cliques to the t-constrained source cliques, this at most
halves the probability of such a hit (because t < t/2), so there would still be a
constant probability for one of the y’s to be at least log t- 1 congested. In the
second case, a similar argument shows that removing the condition at most halves
the expected congestion at w (using linearity of expectations). In the third case, we
have constructed another node in the sequence w, w2,..., Wt/logt and may proceed
to constructing the next one.

In the above proof, the permutation depends on the r-cliques. Assuming that
dr3 <_ n log3 n, the lower bound in fact holds even when the agents can organize
themselves into random r-cliques. The proof requires choosing uniformly at random
an n-permutation of destinations rather than mapping cliques to cliques. We omit
the proof.

4. Open problems. We have given tight bounds, up to constant factors, for
cr, both in the deterministic and the randomized cases. It would be interesting to
give better bounds for ca in terms of other parameters of the graph G. Given G,
what is the computational complexity of determining cG? Our randomized upper
bounds use shared coins. Can the same bounds be achieved with private coins? Our
bounds for routing are far from being tight. Can one route deterministically on a
high-degree network (where d is not a constant) achieving node or edge congestion
close to the lower bounds given in Theorem 16? Does the randomized lower bound for
node congestion hold for arbitrary knowledge graphs? Can a matching upper bound
be achieved for large r?

Acknowledgments. We would like to thank the referees for their thorough read-
ing and useful comments and suggestions. In particular, we would like to thank referee
B for pointing out a flaw in our original proof of Lemma 9.

REFERENCES

[1] A. AGGARWAL, A. K. CHANDRA, AND M. SNIR, Communication complexity of PRAM’s,
Theoret. Comput. Sci., 71 (1990), pp. 3-28.

[2] N. ALON, private communication.

VALUE OF INFORMATION IN DISTRIBUTED DECISIONS 519

[3] B. AWERBUCH, O. GOLDREICH, D. PELEG, AND R. VAINISH, A tradeoff between information
and communication in broadcast protocols, J. Assoc. Comput. Mach., 37 (1990), pp. 238-
256.

[4] V. BENIS, Mathematical Theory of Connecting Networks and Telephone Traffic, Academic
Press, New York, 1965.

[5] B. BOLLOB.S, Random Graphs, Academic Press, New York, 1985.
[6] A. n. BOND AND L. GASSER, EDS., Readings in Distributed Artificial Intelligence, Morgan

Kaufmann, San Francisco, 1988.
[7] A. BORODIN AND J. HOPCROFT, Routing, merging, and sorting on parallel models of com-

putation, J. Comput. System Sci., 30 (1985), pp. 130-145.
[8] A. BORODIN, N. LINIAL, AND M. SAKS, An optimal on-line algorithm for metrical task

systems. J. Assoc. Comput. Mach., 39 (1992), pp. 745-763.
[9] A. BORODIN, P. RAGHAVAN, B. SCHIEBER, AND E. UPFAL, How much can hardware help

routing?, in Proc. 25th ACM Symposium on the Theory of Computing, San Diego, Asso-
ciation for Computing Machinery, New York, 1993, pp. 573-582.

[10] D. CULLER, R. KARP, D. PATTERSON, A. SAHAY, K. E. SCHAUSER, E. SANTOS, a. SUBRA-
MONIAN, T. VON EICKEN, LogP: Towards a realistic model of parallel computation, in
SIGPLAN Notices, vol. 28, Special Interest Group on Programming Languages, Associ-
ation for Computing Machinery, New York, 1993, pp. 1-12.

[11] X. DENG AND C. H. PAPADIMITRIOU, Competitive distributed decision making, International
Federation for Information Processing, A-12 (1992), pp. 250-256.

[12] C. DWORK, M. HERLIHY, AND O. WAARTS, Contention in shared memory algorithms, in Proc.
25th ACM Symposium on Theory of Computing, San Diego, Association for Computing
Machinery, New York, 1993, pp. 174-183.

[13] R. L. GRAHAM, Bounds on multiprocessing timing anomalies, SIAM J. Appl. Math., 17
(1969), pp. 416-429.

[14] C. KAKLAMANIS, D. KRIZANC, AND T. TSANTILAS, Tight bounds for oblivious routing on the
hypercube, Math. Systems Theory, 24 (1991), pp. 223-232.

[15] A. R. KARLIN, M. S. MANASSE, L. RUDOLPH, AND D. D. SLEATOR, Competitive snoopy
caching, Algorithmica, 3 (1988), pp. 70-119.

[16] C. H. PAPADIMITRIOU AND M. YANNAKAKIS, Toward8 an architecture-independent analysis
of parallel algorithms, SIAM J. Comput., 19 (1990), pp. 322-328.

[17] Linear programming without the matrix, in Proc. 25th ACM Symposium on Theory of
Computing, San Diego, Association for Computing Machinery, New York, 1993, pp. 121-
129.

[18] D. D. SLEATOR AND R. E. TARJAN, Amortized eJficiency of list update and paging rules,
Comm. Assoc. Comput. Mach., 28 (1985), pp. 202-208.

[19] L. G. VALIANT, A bridging model for parallel computation, Comm. Assoc. Comput. Mach.,
33 (1990), pp. 103-111.

[20] A. WAKSMAN, A permutation network, J. Assoc. Comput. Mach., 15 (1968), pp. 159-163.
[21] A. C. YAO, Probabilistic computations: Toward a unified measure of complexity, in Proc.

18th IEEE Symposium on Foundations of Computer Science, IEEE Press, Piscataway,
NJ, 1977, pp. 222-227.

SIAM J. COMPUT.
Vol. 25, No. 3, pp. 520-539, June 1996

() 1996 Society for Industrial and Applied Mathematics
003

COMPLEXITY OF SUB-BUS MESH COMPUTATIONS*

ANNE CONDONt, RICHARD LADNER$, JORDAN LAMPE, AND RAKESH SINHA

Abstract. The time complexity of several fundamental problems on the sub-bus mesh parallel
computer with p processors is investigated. The problems include computing the PARITY and
MAJORITY of p bits, the SUM of p numbers of length O(log p), and the MINIMUM of p numbers.
It is shown that in one dimension the time to compute any of these problems is O(logp). In two

log p). It wasdimensions the time to compute any of PARITY, MAJORITY, and SUM is O(loglogp
previously shown that the time to compute MINIMUM in two dimensions is O(log log p) JR. Miller
et al., IEEE Trans. Comput., 42 (1993), pp. 678-692; L. Valiant, SIAM J. Comput., 4 (1975), pp.

Key words, sub-bus mesh, reconfigurable mesh, time complexity, parity, majority, sum, mini-
mum, CRCW, PRAM, complexity

AMS subject classifications. 68Q10, 68Q15, 68Q22, 68Q25

1. Introduction. A sub-bus mesh computer is a single-instruction multiple-data
(SIMD) two-dimensional array of processors, where processors can broadcast data
vertically or horizontally on segmented busses. On a segmented bus, some of the
processors on the bus are active while others are inactive. Each active processor can
broadcast on the bus to all processors up to the next active processor. Thus, all the
intervening inactive processors receive the data that has been broadcast. The sub-
bus mesh computer architecture has been implemented on the commercially available
MasPar MP-1 [5].

Typically, there are p processors in a v/ v/ two-dimensional array, where x/ is a
power of two. We will also consider one-dimensional meshes. For each of the problems
we will consider, we assume there are p inputs, distributed one per processor.

The purpose of this paper is to present upper and lower bounds on the time to
compute several fundamental functions including the PARITY and MAJORITY of
p bits, the SUM of p numbers of length O(logp), and the MINIMUM of p numbers.
Reisis and Prasanna Kumar appear to be the first to consider efficient algorithms for
the sub-bus mesh architecture [26]. To our knowledge, this is the first paper to prove
extensive results on the power and limitations of the sub-bus computer architecture.

1.1. Results. There are simple algorithms for computing the Boolean OR and
AND in constant time on a one- or two-dimensional sub-bus mesh computer [26].

Receved by the editors October 12, 1993; accepted for publication (in revised form) September
20, 1994.

Computer Sciences Department, University of Wisconsin, Madison, WI 53706. The research of
this author was supported by National Science Foundation grants CCR-9100886 and CCR-9257241
and by matching funds from Digital Equipment Corporation and the AT&T Foundation.

Department of Computer Science and Engineering, University of Washington, Seattle, WA
98195. The research of this author work was supported by National Science Foundation grant
CCR-9108314. Part of this author’s research was done while he was visiting Victoria University of
Wellington, New Zealand.

Department of Computer Science and Engineering, University of Washington, Seattle, WA
98195. The research of this author work was supported by National Science Foundation grant CCR-
9108314.

Department of Computer Science and Engineering, University of Washington, Seattle, WA
98195. Current address: School of Computer Science, Florida International University, University
Park, Miami, FL 33199. The research of this author was supported by National Science Founda-
tion/Defense Advanced Research Projects Agency grant CCR-8907960 and National Science Foun-
dation grant CCR-8858799.

SUB-BUS MESH COMPUTATIONS 521

Two other natural Boolean functions are PARITY and MAJORITY. We show that
PARITY and MAJORITY are computable in time O(logp) on a one-dimensional
sub-bus mesh. The proofs of the lower bounds use a new technique for bounding the
amount of information about the input that can be distributed on a one-dimensional
mesh. The proof of the lower bound for MAJORITY can be used to show lower
bounds for some other symmetric Boolean functions. We also consider the problem
of computing the MINIMUM on a one-dimensional sub-bus mesh, and show that
MINIMUM is computable in O(logp) time. The lower bound for MINIMUM on
the one-dimensional sub-bus mesh uses the same technique as the lower bound for
PARITY.

We then show that PARITY and MAJORITY are computable in time (1oop)
on a two-dimensional sub-bus mesh computer. The lower bounds follow from the
fact that a concurrent-read/concurrent-write parallel random-access machine (CRCW
PRAM) can simulate a sub-bus mesh computer to within a constant factor of the
time and within a polynomial number of processors. Thus, the CRCW PRAM lower
bounds on PARITY and MAJORITY [4] apply to the sub-bus mesh computer. The
upper bounds follow from an algorithm for SUM, the sum of p numbers of length

log p The SUM algorithm is nontrivial, usingO(logp), which runs in time O(logog p
mixed radix arithmetic, the Chinese remainder theorem, and recursion to achieve the
result. The obvious algorithm for SUM takes time O(logp). The two-dimensional
bound of (ogp for SUM on the CRCW PRAM follows from the lower bound onlog log p
PARITY.

1.2. Related results. The mesh or array parallel computer architecture has
been investigated for a number of years, with numerous articles on its many variants
[13, 17, 18, 22, 21, 26, 29]. The sub-bus mesh architecture was first investigated by
Reisis and Prasanna Kumar [26], where they gave constant time algorithms for the
OR of p bits and the MINIMUM of v/ numbers (all on one row), and an O(logp)
algorithm for combining p data items with an associative operator. Two variants
of the mesh computer are closely related to the sub-bus mesh. First, there is the
full-bus mesh where processors can broadcast vertically or horizontally, but on a
vertical (horizontal) broadcast at most one processor per column (row) can be active.
The MPP of Goodyear and NASA is an example of a full-bus two-dimensional mesh
computer [3]. Full-bus meshes are generally less powerful than sub-bus meshes. Both
PARITY and MINIMUM require (p) time for some a > 0 on full-bus meshes [2, 25].

Second, there is the reconfigurable mesh, which allows the topology of the mesh
to be changed by the executing program [18]. Several prototype, but no commer-
cial, reconfigurable mesh computers have been built. PARITY can be computed in
constant time on the reconfigurable, two-dimensional mesh [18]. Thus, our results
demonstrate that the sub-bus mesh computer architecture is strictly more powerful
than the full-bus mesh computer architecture, but strictly less powerful than the re-
configurable mesh computer. In other work on the PARITY function, MacKenzie
[19] independently obtained a lower bound of (logp/k) for computing PARITY on
a restricted p k reconfigurable mesh model, which is exactly our one-dimensional
sub-bus mesh model for k 1. However, he did not extend this to other symmetric
functions.

The SUM function has also been previously studied on the reconfigurable mesh.
Nakano [23] and Nakano, Masuzawa, and Tokura [24] developed algorithms for SUM
on the reconfigurable mesh that also use Chinese remaindering. Their results do not
apply directly to the sub-bus mesh architecture. MINIMUM has also been previously

522 A. CONDON, R. LADNER, J. LAMPE, AND R. SINHA

studied on the two-dimensional reconfigurable mesh, and the techniques used can be
applied directly to show that MINIMUM can be computed in O(loglogp) time on
the two-dimensional sub-bus mesh. From the work of Hao, MacKenzie, and Stout
[12], a lower bound of t(log log p) is obtained for computing MINIMUM on a two-
dimensional sub-bus mesh. Their proof is based on a PRAM simulation of the mesh
model, and applies a result of Fich et al. [11] in which an equivalent lower bound
is proved for the CRCW PRAM. However, this proof requires that the inputs be
very large. Another lower bound of t(log log p) for computing MINIMUM on the
two-dimensional sub-bus mesh follows from the generM lower bound for the parMlel
comparison model of Valiant [31] and applies to comparison-based algorithms. A
matching upper bound is due to Miller et al. [21], and is basically an implementation
of the parallel MINIMUM algorithm of Valiant [31].

The PRAM is probably the most well-studied theoretical model of parallel com-
putation. There are a number of variants of the PRAM, depending on whether reads
or writes to the same memory location can be done concurrently. The variant most
closely related to the sub-bus mesh is the CRCW PRAM (see [14] for an introduction
to the PRAM model). In this version more than one processor can read or write
the same memory location at the same time. A simultaneous write can be resolved
in a number of ways. The ability of the sub-bus mesh to broadcast on segments
of the bus is very much like a combination of a concurrent read and a concurrent
write. Those processors that are actively broadcasting are executing a concurrent
write while those that are inactive are executing a concurrent read. Indeed the sub-
bus mesh can compute OR in constant time just as a CRCW PRAM can. We show
that CRCW PRAM can simulate a sub-bus mesh computer to within a constant
factor of the time. This simulation immediately implies that lower bounds for the
CRCW PRAM are also lower bounds for a sub-bus mesh. Interestingly, some CRCW
PRAM algorithms can be translated into sub-bus mesh algorithms. For example, the
constant-time OR algorithm and Valiant’s MINIMUM algorithm can be implemented
on the sub-bus mesh. By contrast, some CRCW PRAM algorithms, such as the
constant-time CRCW PRAM MINIMUM algorithm of Fich, Radge, and Wigderson
[10], appear to be impossible to implement on the sub-bus mesh. More generally,
the CRCW PRAM is strictly more powerful than the sub-bus mesh regardless of the
number of dimensions. This is because problems like SORT require time t(pa) on
mesh computers, but can be done in time O(log p) on a PRAM.

The sub-bus model is also incomparable with the exclusive read, exclusive write
(EREW) PRAM model. To see this, note that computing the OR of p bits requires
t(log p) time on a CREW PRAM [9], whereas the sub-bus mesh can compute OR in
constant time. By contrast, p integers can be sorted in O(logp) time on an EREW
PRAM with p processors [1, 7, 16], but, by a simple bisection bandwidth argument,
this task requires time t(pa) on mesh computers [30].

1.3. Organization of the paper. In 2 we present our model of the sub-bus
mesh computer. In 3 we prove our upper and lower bounds for the one-dimensional
sub-bus mesh computer. In 4 we give two-dimensional algorithms for PARITY and
SUM. In 5 we give our simulation of a two-dimensional sub-bus mesh by a CRCW
PRAM, thereby yielding our two-dimensional lower bounds for PARITY, MAJOR-
ITY, and SUM. In 6 we present two-dimensional upper and lower bounds for MINI-
MUM. Finally, we have our conclusions in 7.

2. Sub-bus mesh computer model. For the purposes of this paper we present
a simple version of the sub-bus mesh computer architecture. Actual machines have a

SUB-BUS MESH COMPUTATIONS 523

richer organization.
The sub-bus architecture can be easily explained for the one-dimensional mesh or

linear array of processors. There are p processors, numbered consecutively 0 to p- 1 on
a circle. Processor 0 is the front-end which runs the parallel program. Each processor
is a random-access machine (RAM) with its own memory which is referenced using
plural variables. In addition, there are singular variables for which there is only one
copy which is stored at the front-end processor. There is a special plural variable
PID that always holds the processor’s number. Processor operations include direct
and indirect Boolean operations, arithmetic operations, shifts, and comparisons. In
addition, the front-end can perform normal branching operations and issue parallel
instructions.

A parallel instruction issued by the front-end has the form "if < condition> then
<statement>." Each processor evaluates the condition, which can be any sequence of
nonbranching operations on plural or singular data that evaluates to a Boolean value.
If the condition is true then the processor is said to be active; otherwise it is said to
be inactive. Only the active processors execute the statement part of the instruction.

There are two kinds of statements, local operations and segmented broadcasts. A
local operation is just a typical nonbranching RAM operation executed on plural or
singular data at each processor. A segmented broadcast has the form

broadcast_direction[distance].plural variable -- plural variable.
The direction can be either left or right. The variable distance must be singular.

When an active processor executes the instruction broadcast_right [d]. y - x then
the location y at the processors (i + 1) mod p, (i / 2) mod p,..., (i + j) mod p receive
the value stored in location x of processor i, where processors (i + 1) mod p, (i +
2) mod p,..., (i + j 1) mod p are inactive and either j d or j < d and processor
(i + j) mod p is active. The segmented broadcast to the left is similar. In either case,
the circle is partitioned into nonoverlapping segments. Each segment behaves like a
sub-bus of the bus that includes all the processors. The MasPar MP-1 implements the
segmented broadcast as xnetc. Table 1 describes the result of a segmented broadcast.

TABLE
Demonstration of segmented broadcast. The * indicates that the value of y did not change

because of the broadcast.

active
x
y

broadcast_right [2]. y x
0 1 2 3 4 5 6 7
no no yes yes no no no yes
a b c d e g h
h h * c d d * *

In two dimensions there are also p processors, where p is a square number. The
mesh processors are arranged in a vffi xflfi array. The coordinates of a mesh pro-
cessor’s number are stored in PIDx and PIDy. A mesh processor’s number is stored
in PID PIDy * + PIDx. The sub-busses go in four directions: up, down, right,
and left. Processor (x, y) is immediately up from processor (x, (y + 1) mod x/) and
immediately to the left of processor ((x + 1) mod vffi, y). So vertical busses go up and
down, while horizontal busses go right and left, all in a circular fashion. The front-end
processor is processor (0, 0).

2.1. Time of sub-bus mesh algorithms. For the purpose of analyzing our
algorithms we consider time to be evaluated using the unit-cost RAM criterion where
the values operated upon must have length O(logp). Each sequential operation by

524 A. CONDON, R. LADNER, J. LAMPE, AND R. SINHA

the front-end, each parallel operation used in evaluating the condition in a parallel
instruction, and each statement of a parallel instruction costs 1 in our model. We
do not charge for the broadcast of parallel instructions by the front-end to the mesh
processors. We assume that cost is dominated by the cost of executing the parallel
instruction.

As mentioned earlier, the RAM instructions include the usual direct and indirect
Boolean operations, arithmetic operations, shifts, and comparison. In addition, we
permit any fixed finite set of RAM instructions for our processors, provided each in-
struction can be implemented in uniform NC [8, 28], that is, each instruction can be
built from log() p hardware and runs in time log() Iogp. The set of RAM opera-
tions is independent of p. Thus, the total hardware in the sub-bus mesh computer of
p processors is p logO(1) p. The running time of log(1) Iogp per RAM instruction is
fast enough to be considered constant time in the mesh of processors.

For the purpose of proving our lower bounds we allow our model to be even more
general. We do not restrict the length of the values operated on and do not restrict
the RAM operations in any way. There is one exception. The two-dimensional lower
bound for MINIMUM is done in the so-called "comparison model," where the only
RAM operations allowed on input values are comparison, copy, and broadcast. Thus,
with one exception, the lower bounds reflect the cost of computing functions due to
the sub-bus mesh architecture, not any limitations on the individual processors. The
two-dimensional lower bound for MINIMUM is still quite general, but is limited to
the comparison model of the sub-bus mesh computer.

2.2. Examples of sub-bus mesh algorithms. Below we give two examples
of sub-bus mesh algorithms, both of which will be building blocks in subsequent
algorithms. Both examples can be found in the paper by Reisis and Prasanna Kumar
[26]. In our terminology, if x is a plural variable then we indicate its value at processor
by x or at processor (i, j) by x,j.

Our first program computes the OR in constant time.

CONSTANT-TIME-OR on a one-dimensional mesh
input: plural Boolean x
output: OR of all values xi in plural variable y
begin

y -- false
ifx true then

broadcast_left [p]. y .- true
end

In CONSTANT-TIME-OR, if any of the values x are true, then one or more
of the processors will make sure to broadcast true into all processors’ y’s. However,
if none of the x bits are true, then no processor will run the broadcast step, and
so all the y’s will remain false. Clearly, using DeMorgan’s law, AND can also be
computed in constant time.

Our second program computes the MINIMUM of v values in constant time on
a two-dimensional v x/ mesh.

CONSTANT-TIME-MINIMUM of v/ values on a two-dimensional mesh
input: plural integer/real variables x0,0,..., Xv-l,0
output: MINIMUM value xi,0 in plural variable y
other: plural Boolean t

SUB-BUS MESH COMPUTATIONS 525

begin
if PIDy 0 then

broadcast_down[V- 1] .x .- x
if PIDx PIDy then

broadcast_left [x/]. y .- x
te-x > y
if t then

broadcast_up [v/ l] t +- true
if not t then

broadcast_left [x/] .y +- x
end

In CONSTANT-TIME-MINIMUM, the first two broadcasts have the effect of
setting x,j x,o and y,j xj,o. The comparison x,j > y,j is then equivalent to the
comparison x,o > xj,0. If such a comparison holds then x,o is not the minimum. The
statement "if t then..." computes, in one step, the "or" of the outcomes of these
comparisons. Thus, after the broadcast up, if t,o false then x,0 is the minimum.
This minimum is then broadcast to the first row of the mesh.

3. One-dimensional bounds. In this section we give precise upper and lower
bounds on the parallel time to compute PARITY, MAJORITY, SUM, and MINIMUM
on the one-dimensional sub-bus mesh computer.

3.1. Upper bounds in one dimension. As observed by Reisis and Prasanna
Kumar [26], all our problems can be computed by a one-dimensional algorithm which
works for any associative binary operator and runs in O(logp) time. Let @ be any
binary associative operation. The value REDUCE-(x) is x0@x. .(R)Xp_ stored in
processor 0. The following algorithm simply computes the expression for REDUCE-
(x) as a balanced binary tree.

REDUCE-(R) on a one-dimensional mesh
input: plural variable x.
output: Y0 x0 @ x @ @ xp_
other: plural variable z, singular integer i
begin

ye-x
i+-I
while i < p do begin

if PID rood i 0 then
broadcast_left [i] z +- y

ifPID mod 2i 0 and PID + i < p then
y+-y(R)z

i-i,2

endwhile
end

Both SUM and MINIMUM can be expressed as REDUCE-@ operations, where @
is integer ddition in the case of SUM and the minimum of two numbers in the case of
MINIMUM. PARITY and MAJORITY re easily computable in constant time from
SUM. Thus we have the following theorem.

THEOREM 3.1 (see [26]). On a one-dimensional sub-bus mesh with p processors,
PARITY, MAJORITY, SUM, and MINIMUM can be computed in time O(logp).

526 A. CONDON, R. LADNER, J. LAMPE, AND R. SINHA

3.2. Lower bounds in one dimension. Our lower bounds for the one-dimen-
sional sub-bus mesh computer are based on the limited communication bandwidth
of this architecture. Thus, in proving our lower bounds, we use a simplified model
in which internal computations in a processor are "free" and only the time taken for
communication is measured. It will be clear that any lower bound for this model
applies also to the upper-bound model.

As before, there are p processors, numbered 0, 1,..., p- 1, connected by a circular
sub-bus. The computation proceeds in rounds; we charge 1 time unit for a round. In
each round of the computation, the processors first communicate and then perform
arbitrary internal computation. The communication is controlled by the front-end,
processor 0, just as in the upper-bound model described in 2. Once this is done, pro-
cessors can do arbitrary internal computation that does not require communication.
There is no bound on the length of values broadcast or computed by the processors.

An algorithm consists of both the algorithm that determines the sequence of
communication instructions broadcast by processor 0, and the algorithms of processors
0,..., p- 1 that determine the internal computations at each round. Since processor 0
can read any information on the bus that passes in either direction between processor
p-1 and processor 1, the communication instructions may depend on this information.

Let f be a function with domain Dp. We say algorithm A computes f if for
all (xo, xl,...,Xp-1) E Dp, if at the start of the algorithm each processor has in
its memory the value xi, then at the end of the algorithm, every processor has in a
special memory location the value f(x0, xl,... Xp-1). The tuple (x0, Xl,..., Xp_l) is
called the input. In all of the results of this section, we assume that IDI >_ 2.

Fix an input x (xo, x,...,Xp_). Processor k’s view on input x at time t is
a sequence k, xk, (1, v), (2, v2),..., (t, vt), where vi is the value received by processor
k at time i during the broadcast instruction. String v is a special symbol, say e, if
no value is received. We denote by Viewk(x,t) the view of processor k at time t.
For a fixed input x, we say x is unknown to processor k at time t if Viewk(, t)
Viewk(x, t) for all x that differs from x only at component i. Otherwise, we say x
is known to processor k at time t.

Our main result is the following theorem.
THEOREM 3.2. On a one-dimensional sub-bus mesh with p processors and for

any algorithm A, there exists an input x such that for some i, 1 <_ <_ p- 1, x is
unknown to processor 0 at time logp- 1.

This result is true, regardless of what function is being computed by A, as long as
the domain size [DI >_ 2. Hence, the result immediately yields a lower bound of log p
for the time to compute functions f with the property that for any (x0, Xl,..., Xp-1) E
Dp and any i, 0 _< _< p- 1, there is some xi D such that

f(xo, x,...,X_l,X,X+,... ,Xp_) f(xo, x,...,x-,xi, x+,...,Xp_).

Clearly PARITY is an example of such a function, where D {0, 1}, and so Theorem
3.2 implies a lower bound of log p for PARITY. Also, the MINIMUM function over
the integers is an example of such a function, so again Theorem 3.2 implies a lower
bound of logp for computing MINIMUM.

We now describe informally the ideas in the proof of Theorem 3.2. Note that, for
all inputs x and processors k, if : k then x is unknown to k at time 0. Consider
a processor at the first round. We consider two possibilities. The first is that is
inactive at round 1, regardless of its input value x. This is good since then, for any
processor k :/: i, x is still unknown to processor k at time 1.

SUB-BUS MESH COMPUTATIONS 527

The other possibility is that i is "potentially active," that is, i is active on at
least one possible value of its input. Then, unfortunately, at the end of round 1,
x may be known to some, and possibly all, other processors. We can use this to
our advantage, however, by setting i’s input x to force i to be active. Then, the
broadcast of processor will block any other broadcast that might otherwise have
sent information through i.

For the purpose of this informal discussion, suppose that at round 1 all processors
are potentially active. Our strategy in this case will be to fix the values of alternate
processors, in order to force them to be active. These fixed values determine a partial
assignment c (D t2 {.})P, and partition the processors into fixed and free processors.
On any input x consistent with the partial assignment a, the broadcasts of the fixed,
active processors block the free processors from revealing any information about their
values to too many processors.

In general, for any t, 0 _< t <_ logp- 1, we will define a partial assignment c that
fixes the input at all but L(p- 1)/2tj free processors. On any input x consistent with
the partial assignment c, the input x of a free processor will be known only to a
set of contiguous processors containing i at time t.

We now state and prove the main lemma leading to the proof of Theorem 3.2.
LEMMA 3.3. Fix an algorithm A. For any t, 0 <_ t <_ logp- 1, there is a partial

assignment a with at least [(p- 1)/2tJ free processors with the following property. On
any input consistent with (, the input x of a free processor will be known only to
a set of contiguous processors S containing at time t, where 0 S. Moreover, for
any two distinct free processors i and j, S Sj O.

Proof. The proof is by induction on t. The base case is when t 0. In this
case, since no communication has taken place, it is immediate that if c is the partial
assignment that is not fixed anywhere, then all possible inputs x are consistent with
a, all processors in the range 1,..., p- 1 are free, and the value x of every processor

is known only to processors in the set S {i}.
Suppose the lemma is true for t- 1 _> 0, and let a be the partial assignment as

in the statement of the lemma. Suppose that at round t, active processors broadcast
to the right (the other case, when active processors broadcast to the left, is handled
similarly).

We will define a partial assignment a which extends a and satisfies the lemma
for time t. To do this, we consider the free processors at time t- 1 in order from
that with the largest index to that with the smallest index. (We consider processors
in the opposite order in the case that the broadcast is to the left.) If free processors
j, i occur consecutively in this ordering, with j > i, we say that j is i’s free neighbor
to the right at time t- 1.

For each of these processors in turn, we will determine whether remains free
at round t, and if not, we will extend c to fix input value x. If does remain free,
we will define a corresponding set S containing i, and will show that at time t, on
any input x consistent with a, x is known only to processors in S, that 0 S, and
that S A S are disjoint, for free processors j.

Hence consider some processor that is free at time t- 1. We say that S is
potentially active if there is some input consistent with a such that some processor in

S broadcasts at round t with that input. Otherwise S is said to be inactive.
If S is potentially active, then we define i to be free at round t if and only if the

following conditions hold: (i) it is not the largest numbered free processor at time
t- 1, and (ii) processor i’s free neighbor to the right at time t- 1 is not free at time t.
(Note that since i’s free neighbor to the right has index j > i, and since we consider

528 A. CONDON, R. LADNER, J. LAMPE, AND R. SINHA

the free processors in order from the largest to the smallest, it is already determined
whether j is free at time t.) The corresponding set S is defined to be the smallest
contiguous set containing S and Sj, where j is i’s free neighbor to the right at time
t- 1. Otherwise, is not free at time t and the value of xi is fixed in a, to force
some processor in S to be active at round t. It is important to note that since the
processors in Si do not know the values of xj for the free processors j : i at time
t- 1, then some assignment to the input x will force some processor in S to be active
at round t regardless of any assignment to other inputs whose processors are free at
time t- 1.

If S inactive, then we define to be free at round t and the corresponding set of
processors S to be equal to S. This completes the description of a and the set S
for each free processor i.

We now argue that a satisfies the lemma at time t. It is straightforward to see
from the construction that for each free processor i at time t, E S and S is a set of
contiguous processors. Also, for any two distinct free processors, i and j, S Sj 0.
This is because the S are contiguous, nonoverlapping sets, and each
or is formed by "collapsing" two neighboring sets Si and Sj, where processor j is
free at time t- 1 but not at time t. Finally, using the fact that no set S contains
processor 0, we show that no set S contains processor 0. This is easy to see if
equals S, since we know S does not contain processor 0. Otherwise, S is the smallest
contiguous set containing S and Sj, where j is i’s free neighbor to the right at time
t- 1. Since 0 < < j, processor 0 cannot lie between the contiguous sets Si and Sj.
This, together with the fact that neither S nor Sj contain processor 0, implies that

S does not contain processor 0.
We next show that for any x consistent with a, if is free at time t then x is

known only to those processors in S. First note that since processor 0 is not in
for any processor i that is free at time t- 1, the instruction broadcast by 0 at time t
does not reveal any information about the values of processors that are free at time
t- 1. Also, it is clear that if S is inactive at time t, for all x consistent with a, then
xi is still known only to those processors in S at time t.

Consider the other case, where S is potentially active at time t. Then i’s free
neighbor to the right at time t- 1, say processor j, is free at time t- 1 but not at
time t. Moreover, by our construction of a, on any x consistent with a there is a
processor b in Sj that broadcasts at time t. Hence, on any input x consistent with a,
any broadcast of a processor in set S reaches only processors in the segment between
this active processor and processor b. The processors in this segment are contained
in the smallest contiguous set containing both S and Sj. Hence, xi is known only to
processors in S at time t.

To complete the proof, it remains to show that there are >_ [(p- 1)/2tJ free
processors at time t. By the inductive hypothesis, there are >_ [(p- 1)/2t-lj free
processors at time t- 1. If and j are two neighboring free processors at time t- 1,
then at least one of these is still free at time t. To see this, suppose that < j and
that j is not free at time t. Then either S is inactive at time t, in which case i is
free at time t, or S is potentially active, in which case both conditions (i) and (ii) are
satisfied, so again is free at time t. Hence the number of free processors at time t is
at least [(p- 1)/2t-lJ/2J (p- 1)/2tJ, as required.

The proof of Theorem 3.2 now follows easily from Lemma 3.3. If p >_ 2 then
[(p- 1)/21gP-lJ _> 1. Hence by the lemma, there is a partial assignment a that
is not fixed at one free processor, say i, with the following property. On any input
x consistent with a, at time logp- 1, the input x will be known only to a set of

SUB-BUS MESH COMPUTATIONS 529

processors Si, where 0 Si. Hence, xi is unknown to processor 0 at time logp- 1.
Lower bounds of logp time for PARITY and MINIMUM follow immediately from

Theorem 3.2, as discussed after the statement of that theorem. The same lower
bound must also hold for SUM, since PARITY can be computed from SUM without
any communication. Thus, we have the following theorem.

THEOREM 3.4. On a one-dimensional sub-bus mesh with p processors, the time
to compute PARITY, SUM, and MINIMUM is at least logp.

In order to obtain lower bounds for MAJORITY and many other symmetric
Boolean functions we need to modify Lemma 3.3. If a is a partial assignment, define
s0 to be the number of inputs fixed to 0 in a and al to be the number of inputs
fixed to 1 in c. We say a partial assignment a is b-balanced if 0 _< OZb --O1_b 1.
That is, a is 1-bManced if the number of inputs assigned to 1 in a is equal to or one
greater than the number of inputs assigned to 0 in a. Similarly, a is 0-balanced if
the number of inputs assigned to 0 in a is equal to or one greater than the number
of inputs assigned to 1 in a.

LEMMA 3.5. Fix an algorithm A. For any bit b and for any t, 0 <_ t <_ log3p- 1,
there is a b-balanced partial assignment with at least [(p- 1)/3tJ free processors
with the following property. On any input x consistent with (, the input x of a free
processor will be known only to a set of contiguous processors S containing i at time
t, where 0 S. Moreover, for any two distinct free processors and j, S n Sj O.

Proof. This proof is similar to that of Lemma 3.3. Assume we have a b-bManced
partial assignment c at time t- 1 and a number n of free processors with their
associated segments satisfying the condition of the lemma. Assume also that at time
t there is a broadcast to the right. As in the proof of Lemma 3.3, a segment is inactive
if no processor in the segment would become active on any input consistent with (and
is potentially active otherwise. As before, any processor that is free at time t- 1 and
whose segment S is inactive remains free at time t. Assume the free processors at time
t- 1 are indexed by il, i2,..., in, where ij > ij+l for 1 <_ j <_ n. We consider these
processors three at a time, largest index to smallest, to determine which potentially
active processors remain free at time t and for those that do not remain free, what
their inputs will be assigned to in the new b-balanced partial assignment ct. If n is
divisible by 3 then this process will end simply. If not, there will be a remaining group
of 1 or 2 that must be dealt with.

Assume that for j <_ 3m, it has already been determined whether ij is free at
time t and if not, what the assignment to x is in the assignment at. We now
consider the processors i3m+l, i3m+2, and i3m+3, where 3m + 3 _< n. There are four
cases to consider, depending on how many of the segments S3.+1, S3.+., S.+ are
potentially active. If none are potentially active then there is nothing to do. If exactly
one, say S.+k, is potentially active, then set x.+k to a value to make cd b-balanced.
That is, if (a then assign x3.+ to b, otherwise set it 1 -b. If exactly two of the
segments are potentially active, then assign the input associated with one to 0 and the
other to 1. Finally, if all three are potentially active then i3m+3 remains free, x.+
is set so as force a processor in the segment S.+ to be active, and then x.+l is
set to make a b-balanced.

Once the groups of three have been processed there may be one or two remaining
free processors. If exactly one of the segments in this remaining group is poten-
tially active, then assign the input of that processor to a value to make the partial
assignment b-bManced. If exactly two of the segments of the free processors in this re-
maining group are potentially active, then assign the two inputs of the free processors
to opposite values.

530 A. CONDON, R. LADNER, J. LAMPE, AND R. SINHA

At the end of this process, at least [n/3J of the processors are free. If is free at
time t and S is inactive, then S S. If is free at time t and S is potentially active,
then the corresponding set S is defined to be the smallest contiguous set containing
S and Sj, where j is i’s free neighbor to the right at time t- 1. This happens in the
fourth case above when i3m+3 and j i3m+2.

It should be clear that a is a b-balanced partial assignment with at least [(p-
1)/3tJ unassigned inputs. Furthermore, for the same reasons as in the proof of Lemma
3.3, for any input x consistent with a, the input x of a free processor will be known
only to a set of contiguous processors S containing at time t, where 0 S. Clearly,
the segments at time t are disjoint.

As a consequence of Lemma 3.5 we have the following theorem, which allows us to
find a b-balanced input with a component unknown to processor 0 at a time slightly
less than the maximum time to find just some input with a component unknown to
processor 0, as in Theorem 3.2.

THEOREM 3.6. On a one-dimensional sub-bus mesh with p processors and for
any algorithm A and bit b, there exists a b-balanced input
i < p- 1, x is set to b, but is unknown to processor 0 at time log3p- 1.

Proof. If p >_ 2 then [(p- 1)/3g3p-lj >_ 1. By Lemma 3.5, there is a (1 b)-
balanced partial assignment a that is not fixed at a free processor i. Set x b,
then set the remaining unassigned inputs so as to make the input b-balanced. Since
0 is not a member of the segment S at time log3 p- 1, x is not known to processor
0.

THEOREM 3.7. On a one-dimensional sub-bus mesh with p processors, the time
to compute MAJORITY is at least log3p.

Proof. Let A be any algorithm for MAJORITY. There are two cases to consider,
depending on whether p is even or odd. If p is even then by Theorem 3.6 select a
0-balanced input x and an such that x 0 and x is not known to processor 0 at
time log3 p- 1. Clearly, processor 0 cannot have computed the majority of the inputs
by time log3p- 1 since its computation would be identical for the input x and x,

1 The latter input has a majority ofwhich is identical to input x except that x
l’s while the former does not. If p is odd then select a l-balanced input x and an
such that x 1 and x is not known to processor 0 at time log3 p- 1. The remainder
of the argument is similar to that above. [:l

For any symmetric Boolean function f on p inputs define re(f) to be the k such
that 2 k _> 0 is minimal and for some bit b the value of f on an input with exactly
k inputs equal to b differs from the value of f on an input with k + 1 inputs equal to
b. For example, re(MAJORITY) re(PARITY) [2J and re(OR) re(AND) 0.

COROLLARY 3.8. On a one-dimensional sub-bus mesh with p processors, the time
to compute any symmetric function f is at least log3(2m(f)).

Proof. Let f be given. Let b be such that if re(f) inputs have the value b then f
has one value and if re(f) + 1 inputs have the value b then f has another value. For
simplicity consider the case in which re(f) inputs equal 0 implies the value of f is 0
and re(f) + 1 inputs equal 0 implies the value of f is 1. If exactly p- 2re(f) inputs
are set to 0 then the restricted function has 2re(f) inputs. By a proof identical to
the proof of Theorem 3.7, any algorithm to compute the restricted function must take
time log3(2m(f)). The argument for b 1 is similar.

Define THRESHOLDk to be the Boolean function that is 0 with k or fewer inputs
set to 1 and 1 otherwise. Clearly, m(THRESHOLDk) min(k,p-k). Thus, we have
the following corollary.

SUB-BUS MESH COMPUTATIONS 531

COROLLARY 3.9. On a one-dimensional sub-bus mesh with p processors, the time
to compute THRESHOLDa is at least log3(2min(k,p- k)).

4. Algorithms for PARITY and SUM. In this section we present asymp-
totically optimal algorithms for PARITY and SUM on the two-dimensional sub-bus
mesh computer. We start with the PARITY algorithm. It is the simpler of the two,
and introduces some of the key ideas that are useful in the SUM algorithm.

4.1. PARITY algorithm. We will introduce a series of problems in increasing
order of difficulty. The algorithm for each problem will lead to the next one with
some fresh tricks. This will help us concentrate on one idea at a time.

Each of the algorithms below can be executed on a submesh of the
mesh. By an array or subarray we mean a submesh of the full mesh which may
be nonsquare and noncontiguous. In case it is noncontiguous, it is assumed that
the processors between any two processors in the subarray are inactive so as not to
interfere with communication between the processors in the subarray. Furthermore,
any of the algorithms below can be executed in parallel on disjoint and properly
aligned subarrays of the full v/ v/-fi array. If the algorithm is executed on a rn n
subarray, then we say processor (i, j) is the processor in the (i, j)th position (the ith
column and jth row) of the subarray, where 0 <_ < rn and 0 <_ j < n. Although it
is not generally the case that processor (i, j) has its PIDx and PIDy j, it will
always be the case that i, j, and dimensions of the subarray can be computed from
the PID of the processor and other local data in constant time.

LEMMA 4.1. On an n 2n array with each processor in the top row having an
input bit, the parity of the input bits can be computed in constant time.

Proof. There are 2’ possible inputs, so we will make row j of the array responsible
for determining whether the input, thought of as an integer x with 0 _< x < 2 1,
actually equals j. In particular, processor (i, j) determines if the input in processor
(i, 0) equals the ith bit of j. A downward broadcast of the input gives processor (i, j)
knowledge of the input in processor (i, 0). Then processor (i, j) compares the input
of processor (i, 0) with the ith bit of j. A constant time AND of the outcomes of
these comparisons in all the rows in parallel tells processor (0, j) whether the input,
thought of as an n-bit number, equals j. This information can then be broadcast up
to processor (0, 0). Since 2 < x/-, we know j _< logp so that processor (0, 0) can
compute the sum of the bits in j in constant time, using the fact that computing the
sum of the bits of an input is in uniform NC. The parity of the input bits is the parity
of this sum.

We saw that with exponentially many rows we can compute the parity in constant
time. In general, if we have nore than a constant number of rows, we can beat the
straightforward O(log n) time algorithm.

LEMMA 4.2. On an n m array with each processor in the top row having an
O log ninput bit, the parity of the input bits can be computed in time .oglog,"

Proof. We can think of the n rn array as subarrays of dimension log rn rn
placed side by side. As in the previous proof, we can compute the prity of groups

nof log m bits in constant time. This leaves partial results in the first row of an
og times we have the parityarray of dimension m. Repeating the process og og m

of all the n bits.
So far we have been assuming that only the processors in the top row have inputs.

Let us now consider the case where each processor has an input.
LEMMA 4.3. On an n m array with each processor having an input bit, the

logparity of the input bits can be computed in time O(log rn / ogom)"

532 A. CONDON, R. LADNER, J. LAMPE, AND R. SINHA

Proof. First, in parallel, the processors within each column run the one-dimensional
PARITY algorithm described in 3.1. This part takes time O(logm). At this point,
we have partial results stored in the top row. From the previous lemma, the parity of
these partial results can be computed in an additional O(og,

log log m steps. [:]

We are ready to give our PARITY algorithm.
THEOREM 4.4. On a v mesh with each processor having an input bit,

PARITY can be computed in time O(ogp
log log p 1"

Proof. Think of the v/ yr mesh as v/ smaller arrays of dimension V/ mm
one on top of the other. Each of these arrays computes the parity of its input bits in

parallel. By the previous lemma, this takes O(log rn + time and leaves
partial results in the leftmost column. By Lemma 4.2 their parity can be computed

ogv Choosing logm log p we get a total running time ofin time O(ogog(//,) ogogp
logpO(log log p

4.2. SUM algorithm. Computing PARITY is the same as computing the sum
of the inputs modulo 2. Lemms 4.1 and 4.2 can be generalized to compute the sum,
modulo a small integer, of inputs on the top row. For all the problems below we
assume that the inputs are nonnegative integers of length O(log p).

LEMMA 4.5. if log Q _< v/log n then on an n n array with each processor having
Q and with each processor in the top row having an input integer, the sum of the

log ninputs modulo Q can be computed in time O(ogiogn.
Proof. Let rn .lo_2_. Let us focus on an rn n subarray that has rn inputs on

lOg

the top row. There are ’ n possxblhtxes for the m inputs mod Q. For 0 _< j < n,
think of j as an integer written in base Q. As in the computation of parity, processor
(i, j) is responsible for determining if the ith input mod Q is equal to the ith Q-ary
digit of j. Processor (i, j) learns of the input at (i, 0) by a broadcast down from the
first row. Then, processor (0,j) learns from an AND on its row that the ith Q-ary
digit of j is the ith input mod Q for all such that 0 _< i < m. Processor (0,j)
then transmits j to processor (0, 0) where the sum mod Q of the Q-ary digits of j is
computed.

The original n n array can be divided into n subarrays of dimension rn nm
placed side by side where the algorithm above is performed in parallel. What remains

n numbers in the top row. Iterate this process O(lg) O(oare log m log log n-iog’log Q
times to compute the sum of all the n integers modulo Q.

To complete the proof we must argue that computing the sum mod Q of the
Q-ary digits of a number x is in uniform NC. We assume both Q and x are written
in binary. First, since log Q _< n and n _< xffi, then the length of Q is o(vqogp).
Second, x < v, so that x is of length O(v/logp). Thus, the lengths of Q and x can
be assumed to be bounded by the same number b, which we can assume is a power of
two and of length O(v/logp). To find the sum mod Q of the Q-ary digits of x, write
x as xo + Q,b/2xl, by dividing x by Qb/2. Recursively, find the ao and a that are the
sums mod Q of the Q-ary digits of xo and Xl, respectively. Then, a (ao+a) mod Q
is the sum mod Q of the Q-ary digits of x. The necessary powers of Q, division by
these powers, and sum are all in uniform NC. Since the number of levels of recursion
is bounded by log2 b, then the result a can also be computed in uniform NC. []

By the Chinese remainder theorem we know that if we can compute the sum
modulo sufficiently many small integers, we can compute the exact sum.

LEMMA 4.6. If 6 <_ 1ogt <_ v/logn then on an n tn array with each processor
in the top row having an input integer such that the sum of these integers is less than

SUB-BUS MESH COMPUTATIONS 533

10g n2 the sum of the inputs can be computed in time O(log og
Proof. Think of the n tn array as t subarrays, each of size n n, one on top

of the other. Let M be the product of all primes less than t. If t _> 41 then M _> 2
[27, Cot. to Thm. 4, p. 70]. Hence, if the sum of the input integers is less than 2
then it is enough to compute the sum modulo M. We already know how to compute
the sum modulo small primes. Our plan is to let each n n subarray compute the
sum modulo a different prime and then apply the Chinese remainder algorithm to
compute the sum modulo M.

To begin with, the processors in the top row broadcast the input values down
the columns. The jth subarray decides whether j is a prime. This can be done in
two stages. A number j is prime if and only if it is not divisible by any number
between 1 and x/. In the first stage, assign v/ff processors in the first row to check for
each possible divisor. In the second stage, these processors compute an AND of their
results. Only processors in the jth subarray for prime j participate in all subsequent
steps. The jth subarray computes aj, the sum of all the inputs modulo j. By Lemma

log n4.5, this can be done in O(ogogn time.

Next, in O(logt) steps, each processor in the jth subarray computes M, the
product of all primes less than t, and mj

M The processors in the jth subarrayj.

compute (ajmj)((mj) -1 mod j). This can be done in constant time. The nontrivial
part is computing ((mj)- mod j). There are at most j possible values for the inverse.
We assign j processors in (say) the first row of the jth subarray for each possible value
of the inverse. In one step, each of these assigned processors can check whether it has
the right value of the inverse. The processor corresponding to the right value of the
inverse broadcasts this to all other processors. By the Chinese remainder theorem,
the exact value of the sum is the summation of (ajmj)((mj) -1 mod j), which can be
computed in O(log t) steps.

log nlogIn total the computation can be done in O(logt + log logn
time. [:]

LEMMA 4.7. If tw <_ m and 6 <_ log t <_ v/log w then on an n m array with each
processor in the top row having an input integer such that the sum of these integers
is less than 2t, the sum of the inputs can be computed in time O(loggUlogo)"

Proof. Think of the n m array as subarrays, each of dimension w m, side
by side. Since tw <_ m, each w m subarray can be thought of as containing a
w tw subarray at the top. Each w tw subarray has its input on the top row.
By Lemma 4.6, the sum of the inputs of all the w tw subarrays can be computed

n partial sums in the top row. This process is repeatedin time O(olo.w) leaving

times until the input is reduced to a single number. This reduction takes timelog w
!oO(ogog
We now consider the case where each processor has an input.
LEMMA 4.8. If tW

_
Irt and 6 <_ log t <_ x/log w then on an n ra array with each

processor having an input integer such that the sum of these integers is less than 2t,
!9g nthe sum of the inputs can be computed in time O(logm + ogogw)"

Proof. The first step is simply to add the columns in parallel in time O(log m).
We are now reduced to the problem in the previous lemma. Hence the total time is
O(log m +iog log

THEOREM 4.9. On a v/-fi x/-fi mesh with each processor having an input integer
logpof length O(log p), SUM can be computed in time O(log log p

Proof. Choose t log(pa), where pa is an upper bound on the sum of the input

534 A. CONDON, R. LADNER, J. LAMPE, AND R. SINHA

integers and log t

_
6. Let c be a constant, which depends only on k, such that

clogp choose such that c logp Let thatlog t _< log log p" Now, w log w log log p" m tw, SO

t, w, and m satisfy the hypothesis of Lemma 4.8. Think of the x/ v mesh as
v arrays of dimension V/ m one on top of the other. By Lemma 4.8 the sum ofm

these arrays can be computed in time O(log rn + !g"v/’ leaving v/ partial sums inlog low
the first column. We may now apply Lemma 4.? to these inputs to find the full sum

o oin an additional O(log log) time. The total time is then O(log m + log log)" Since
log pc log and logm log w + log t O(lo log), the total time of the algorithmlog w log log p

It is interesting to note that if we assume that the individual processors can
operate on integers of arbitrary length in constant time, then using the technique of

Theorem 4.9, the sum of p integers of length 2(V/lg/lglgp) can be computed in
log ptime O(log log

Since MAJORITY can be computed from SUM in constant time we may now
state the following theorem.

THEOREM 4.10. On a two-dimensional sub-bus mesh with p processors, PARITY,
log pMAJORITY, and SUM can be computed in time O(.ioglog

In the next section we will show these bounds are optimal.

5. Simulation of a sub-bus mesh by a CRCW PRAM. In this section,
we prove a Ft(!ogp lower bound for computing PARITY, MAJORITY, and SUMlog log p
on the two-dimensional sub-bus mesh computer. To prove this, we show that any
algorithm for the sub-bus model can be simulated by a CRCW PRAM algorithm
with only a constant-factor loss in running time. We then apply lower-bound results
for PARITY on the PRAM model. We begin this section by describing the PRAM
results. Then we describe our lower-bound model and describe the simulation in
detail.

Beame and Hstad [4] considered lower bounds for the following "ideal" CRCW
PRAM model. There are p(n) numbered processors that share c(n) numbered memory
cells, where p(n) and c(n) are polynomially bounded. There is no bound on the
possible contents of a memory cell. Initially, the input bits x0,... ,x-i are stored
in the first n memory cells and the remaining cells have value 0. Before each step
t, a processor is in some state, say q. At the tth step, the processor may read the
value v stored in some memory cell C. Based on C, v, and q, the processor moves
to a new state q, and may write a value v to some cell C. There is no limit on the
number of states of a processor nor on the resources needed to compute v and C.
If several processors attempt to write into the same memory cell at the same step,
the lowest numbered processor succeeds. This model is called the priority CRCW
PRAM. Beame and Hstad [4] have shown that the time to compute any of PARITY,
MAJORITY, and SUM on the ideal CRCW PRAM is (log n/log log n).

In our lower bound model of the two-dimensional sub-bus there are p processors,
numbered 0, 1,... ,p- 1, connected in a v/-fi v/-fi mesh as in the two-dimensional
upper bound model. Processor 0 is the front-end. The computation proceeds in
rounds costing one unit, and in each round, the processors first communicate and
then perform arbitrary internal computation. The communication is done just as in
the upper-bound model. Again, there is no bound on the size of values broadcast or
computed. The main result of this section is the following theorem.

THEOREM 5.1. Any problem that can be solved in time t(p) on a two-dimensional

SUB-BUS MESH COMPUTATIONS 535

sub-bus mesh computer with p processors can be solved in time O(t(p)) on a priority
CRCW PRAM with O(p3/2) processors.

Proof. Let A be a T(p)-time algorithm for solving a problem on the two-
dimensional sub-bus lower bound model. We describe an ideal CRCW PRAM that
simulates A, such that each round of A takes O(1) steps.

In the simulating PRAM, there are p processors, numbered 0, 1,..., p- 1, corre-
sponding to the p processors of the sub-bus model. There are also auxiliary processors,
whose computation will be described later.

There are two special memory cells, called Condition and Statement, used by
processor 0 to communicate the instruction at each round. Also, corresponding to
each processor i, 0 _< _< p- 1, there are the following special memory cells (we do
not specify their exact addresses, but assume they are computable by processor i).
Active(i) is used to denote at each round whether i is active. It is initialized to false
at the beginning of each round. Send(i) is used to store the value broadcast by i, at
each round, if is active. Receive(i) is used to store the value, if any, received by i
in each round. At the start of each round, processor sets Active(i) to false and sets
Receive(i) to some special value which is not in the range of possible values that can
be broadcast by A.

We now describe the simulation of a single round of A. First, processor 0 writes the
strings < condition> and <statement> in cells Condition and Statement, respectively.
Each processor i, 0 < i < p- 1 reads these cells and decides if it is active at this round.
If so, writes the value to be broadcast in Send(i) and sets Active(i) to true.

We next describe how each processor determines the value it receives (if any)
during the broadcast instruction. If receives a value, it is from one of v/ processors
on either the vertical or horizontal bus along which i is connected. Let these processors
be numbered l,..., ivy, where the ordering is such that if is active, then i is the
processor from which receives a message; if i is not active but iu is, then i2 is
the processor from which receives a message, and so on, so that if ik is active
and none of il,... ,ik- are active, then ik is the processor from which i receives a
message. For example, if the direction of communication is up, then the sequence is
(i + v) mod p, (i + 2v/-fi mod p,..., (i + vxffi) mod p.

Each processor has xflfi auxiliary processors to help it compute the value it
receives, if any. Let the auxiliary processors of be numbered ni + 1,..., ni + x/,
where ni p + ivff 1. Each processor ni + k computes ik; this can be done by
reading <statement>, to determine the direction of communication. If processor
is active, that is, Active(ik) is true, then processor n + k reads the value Send(ia)
and writes it in Receive(i). Because of the ordering of the auxiliary processors, and
the priority write conflict resolution assumption, the value written in Receive(i) is the
value received by processor at that round of A, in the sub-bus computation.

Once the cells Receive(i) have been computed, each processor i, 0 _< _< p-
1 completes the round by simulating the internal computation of the ith sub-bus
processor. This completes the description of the simulation. It is clear that all the
steps described can be done by the processors of the ideal CRCW PRAM, since they
have unbounded resources with which to compute at each step, and an unbounded
number of states that can be used to store the internal configurations of the processors
of the sub-bus mesh computer.

As a direct consequence of Theorem 5.1 we have the following theorem.
THEOREM 5.2. On a two-dimensional sub-bus mesh with p processors, the time

to compute PARITY, MAJORITY, and SUM is gt(ogp
log logp

536 A. CONDON, R. LADNER, J. LAMPE, AND R. SINHA

6. MINIMUM. In this section we survey the two-dimensional complexity of
MINIMUM in the comparison model of the sub-bus mesh. Previous work for the re-
configurable mesh shows that the time to compute MINIMUM on the two-dimensionM
mesh is O(log log p). For completeness, we include the algorithm, adapted to the sub-
bus model.

THEOREM 6.1 (see [21, 31]). In the comparison model of a two-dimensional sub-
bus mesh computer with p processors, the time to compute MINIMUM is O(log log p).

Proof. Recall that in the comparison model we assume the only operations allowed
on input values are comparison, copy, and broadcast. With this restriction any sub-
bus mesh algorithm for MINIMUM can be thought of as a "parallel comparison tree"
as defined by Valiant [31]. In this model, any p comparisons of arbitrary input values
can be made in one step. Depending on the outcome of these comparisons, one
of 2p branches to the next step can be made. Valiant showed that in the parallel
comparison tree model with p processors, Ft(log log p) steps are necessary to determine
the minimum of p inputs.

In the same paper Valiant [31], gave an algorithm for the minimum which runs
in O(loglogp) time. The Valiant algorithm can be realized on the reconfigurable
mesh computer as shown by Miller et al. [21]. In fact, their work also applies to the
two-dimensional sub-bus mesh computer. In the Valiant algorithm, assume there are
p processors, where p 22 for some k. With one parallel comparison the number
of possible minima to consider is reduced to 2

. Subsequently, if there are b possible
minima remaining, then in one parallel comparison this number can be reduced to

2_b This is done by dividing the b numbers into groups of size b and using one
parallel comparison to find the minimum of all the groups simultaneously. A group of
size b requires b2 processors to find the minimum in one parallel comparison. Thus, p
processors are utilized to find the possible minima.

The Valiant algorithm can be realized on the two-dimensional sub-bus mesh com-
puter. The basic building block is the MINIMUM algorithm described in 2.2, which
in constant time finds the minimum of n vMues if they re in the first row of an n n
array of processors. In the two-dimensional algorithm, if there are values remaining
(for b >_ 2) then there are subarrays of the x/ array, each of which is b b
with b inputs in the first row of the subarray. The leftmost corner of the subarrays
appear at processors (ib, jb), where 0 _< i,j < -bp. Using the basic building block,
the b possible minima can be reduced to possible minima in constant time. These

possible minima are located at processors indexed (ib, jb), where 0 <_ i,j < bp. By
first broadcasting these values to the right, then selectively broadcasting these values
up, we end up with remaining values in the first row of subarrays, each of size

b . The iterative version of this algorithm is given below.

MINIMUM of p values on a two-dimensional mesh
input" plural number variable x
output: MINIMUM value x,y
other: plural number variable y, Boolean variable t, singular integer b

NOTE: We assume p 22 for some k.
begin
b-2
broadcast_up [1]. y x
if y < x then

x --- yrepeat begin

SUB-BUS MESH COMPUTATIONS 537

Step 1
if PIDy mod b --0 then

broadcast_down[b-l] .x -- x
if PIDx rood b PIDy rood b then begin

y+-x
broadcast_left [b-l]. y - y

endif
ifPIDx rood b 0 then

broadcast_right [b- 1]. y -- y
t -(x > y)
if t then

broadcast_up [b-1]. t - true
if not t then

broadcast_left[b-l] .x +- x
Step 2
if b p then

return x0,0
if PIDy rood b 0 then begin

if PIDx rood b 0 then
broadcast_right [b- i]. x *- x

if PIDx rood b (PIDy mod b2) / bthen
broadcast_up [b2- I] x +- x

endif
bw-b2

endrepeat
end

To explain the algorithm in more detail, at the beginning of step 1 there are possible
minima in every processor along every bth row. Then step 1 does the constant time
MINIMUM on each b b block in parallel. Within each block, it distributes the b
initial values into the variables x and y for each processor. Thus, the processor in
position (i, j) in each block has the initial value of processor (i, 0) in its x register
and the initial value of processor (j, 0) in its y register. A comparison of x and y is
recorded in the Boolean value t. After broadcasting t up the only processor with the
value false is the processor in position (i, 0) which has the minimum for this block.
So, that processor will broadcast its initial value x to processor (0, 0) within the block.

In step 2 we have the situation where the processors (ib, jb) have possible minima,
and we want to move them all to rows, so that the processors (i, jb2) all have potential
minima. This is accomplished in two substeps. First, broadcast the potential minima
to the right. Second, selectively broadcast the minima up. That is, each potential
minimum at processor (ib + k, jb2 + kb) for 0 <_ k < b is broadcast up.

In case p is not of the form 22k for some k then the algorithm must be modified
slightly. In the modified algorithm we will always maintain an active rectangular sub-
mesh which is v/ q, where q _< v/ and b divides q evenly. In attempting step 2 it
may happen that b2 does not divide r evenly. If this is the case we set q b2 [q/b2J
and use the upper f q subarray. The blocks below this new rectangle can easily
be merged into the blocks directly above them in constant time. Thus, in constant
time we go from b b blocks to b2 b2 blocks. This is sufficient to solve the problem
in time O(log log p). [3

538 A. CONDON, R. LADNER, J. LAMPE, AND R. SINHA

7. Conclusions. We have proved tight bounds (to within constant factors) on
the time needed to compute several functions on the sub-bus mesh computer. For
some of these problems, such as PARITY, MINIMUM, and SUM, the running times
on a sub-bus mesh computer match (to within constant factors) the running times
on a general PRAM. Moreover, machines based on the sub-bus mesh architecture
are commercially available [5]. For these reasons, we believe that the sub-bus mesh
architecture deserves further study.

Our algorithms for PARITY and SUM are probably not practical for any reason-
able size p for two reasons. First the speed-up by a factor of O(log log p) has too large a
constant factor to be significant. Second, it is doubtful that hardware designers would
want to implement the new NC functions required by the algorithm. It is possible
to remove the second factor inhibiting practicality by adding preprocessing phases to
the algorithms. A preprocessing phase uses only standard arithmetic/Boolean oper-
ations to compute values that depend only on the processor PIDs and the structure
of the algorithm and which, in the original algorithm, would be computed as results
of NC functions. Using preprocessing, many more values would be computed than
are actually used in the algorithm, since during the preprocessing it is not known
exactly which values will be needed later on. The necessary preprocessing for the two
algorithms PARITY and SUM is complicated, but can be accomplished within the

log pO(log log p) time bound.

We have implemented the O(log log p) MINIMUM algorithm on a 1,024 processor
MasPar MP-1. The constant factor in front of the log logp forces the algorithm to
run more slowly than the standard O(logp) algorithm. However, we believe that the
ideas in the O(loglogp) MINIMUM algorithm have the potential to be used in a
competitive practical algorithm for finding the minimum on commercially available
meshes with more than 1,024 processors.

Several open questions are suggested by our results. Are there simpler O(log p
log logp

algorithms for PARITY or SUM on the two-dimensional sub-bus mesh that may De

competitive on real machines? Is it possible to improve the lower bound for MA-
JORITY on a one-dimensionM mesh from log3 p to log2p? Can our lower bound for
PARITY on the two-dimensional sub-bus mesh can be simplified, or improved by a
constant factor, using the mesh model directly rather than translating results from
the PRAM model?

Acknowledgments. We thank Eric Bach, David Barrington, and Paul Beame
for several useful discussions and suggestions. We thank Tosten Suel and Phil MacKen-
zie for providing us with several references to previous work on the reconfigurable
mesh. We thank the anonymous referees for useful suggestions and for pointing out
a seminal reference to the sub-bus mesh architecture.

REFERENCES

[1] M. AJTAI, J. KOML6S, AND E. SZEMERtDI, An O(n log n) sorting network, in Proc. 15th Annual
ACM Symposium on Theory of Computing, Association for Computing Machinery, New
York, 1983, pp. 1-9.

[2] A. BAR-Nov AND D. PELEG, Square meshes are not always optimal, IEEE Trans. Comput., 40
(1991), pp. 138-147.

[3] K. E. BATCHER, Design of a massively parallel processor, IEEE Trans. Comput., C-29 (1980),
pp. 836-840.

[4] P. BEAME AND J. H/STAD, Optimal bounds for decision problems on the CRCW PRAM, J.
Assoc. Comput. Mach., 36 (1989), pp. 643-670.

SUB-BUS MESH COMPUTATIONS 539

[5] T. BLANK, The MasPar MP-1 architecture, in Proc. COMPCON Spring 90--35th IEEE Com-
puter Society International Conference, IEEE Press, Piscataway, NJ, 1990, pp. 20-24.

[6] (. E. BLELLOCH, Vector Models for Data-Parallel Computing, MIT Press, Cambridge, MA,
1990.

[7] a. COLE, Parallel merge sort, SIAM J. Comput., 17 (1988), pp. 770-785.
[8] S. A. COOK, A taxonomy of problems with fast parallel algorithms, Inform. and Control, 64

(1985), pp. 2-22.
[9] S. A. COOK, C. DWORK, AND R. REISCHUK, Upper and lower time bounds for parallel random

access machines without simultaneous writes, SIAM J. Comput., 15 (1986), pp. 87-97.
[10] F. FICH, P. RADGE, AND A. WIGDERSON, Relations between concurrent write models of parallel

computation, SIAM J. Comput., 17 (1988), pp. 606-627.
[11] F. E. FICH, F. MEYER AUF DER HEIDE, P. RAGDE, AND A. WIGDERSON, Lower bounds for

parallel random access machines with unbounded shared memory, Adv. Comput. Res., 4
(1987), pp. 1-15.

[12] E. HAO, P. D. MACKENZIE, AND Q. F. STOUT, Selection on the reconfigurable mesh, in Frontiers
of Massively Parallel Computing, IEEE Computer Society Press, Los Alamitos, CA, 1992,
pp. 38-45.

[13] W. D. HILLIS AND G. L. STEELE, JR., Data parallel algorithms, Comm. Assoc. Comput. Mach.,
29 (1986), pp. 1170-1183.

[14] J. JJ, An Introduction to Parallel Algorithms, Addison-Wesley, Reading, MA, 1992.
[15] R. E. LADNER AND M. J. FISCHER, Parallel prefix computation, J. Assoc. Comput. Mach., 27

(1980), pp. 831-838.
[16] T. LEIGHTON, Tight bounds on the complexity of parallel sorting, IEEE Trans. Comput., C-34

(1985), pp. 344-354.
[17] , Introduction to Parallel Algorithms and Architectures: Arrays, Trees, Hypercubes, Mor-

gan Kaufmann, San Mateo, CA, 1992.
[18] H. LI AND Q. F. STOUT, EDS., Reconfigurable Massively Parallel Computers, Prentice-Hall,

Englewood Cliffs, NJ, 1991.
[19] P. D. MACKENZIE, A separation between reconfigurable mesh models, Parallel Process. Lett., 5

(1995), pp. 15-22.
[20] Y. MATIAS AND A. SCHUSTER, On the power of the 2 n reconfigurable mesh, manuscript,

AT&T Bell Labs, Murray Hill, NJ, 1993.
[21] R. MILLER, V. K. PRASANNA KUMAR, D. I. REISIS, AND Q. F. STOUT, Parallel computations

on reconfigurable meshes, IEEE Trans. Comput., 42 (1993), pp. 678-692.
[22] R. MILLER AND Q. STOUT, Mesh computer algorithms for computational geometry, IEEE Trans.

Comput., 38 (1989), pp. 321-340.
[23] K. NAKANO, An efficient algorithm for summing up binary values on a reconfigurable mesh,

IEICE Trans. Fund. Electron., Comm. and Comput. Sci., E77-A (1994), pp. 652-657.
[24] K. NAKANO, W. MASUZAWA, AND N. TOKURA, A sub-logarithmic time sorting algorithm on a

reconfigurable array, IEICE Trans., E74 (1991), pp. 3894-3901.
[25] V. K. PRASANNA KUMAR AND C. S. RAGHAVENDRA, Array processor with multiple broadcasting,

Parallel Distrib. Comput., 4 (1987), pp. 173-190.
[26] D. REISIS AND V. K. PRASANNA KUMAR, VLSI arrays with reconfigurable buses, in Proc. Super-

computing, 1st International Conference, Athens, Greece, 1987, Lecture Notes in Comput.
Sci., 297 (1988), Springer-Verlag, Berlin, pp. 732-743.

[27] J.B. ROSSER AND L. SCHOENFELD, Approximate formulas for some functions ofprime numbers,
Illinois J. Math., 6 (1962), pp. 64-74.

[28] W. L. Ruzzo, On uniform circuit complexity, J. Comput. System Sci., 22 (1981), pp. 365-383.
[29] Q. F. STOUT, Meshes with multiple buses, in Proc. 27th Annual IEEE Symposium on Founda-

tions of Computer Science, IEEE Press, Piscataway, NJ, 1986, pp. 264-273.
[30] C. THOMPSON, Area-time complexity for VLSI, in Proc. of llth Annual ACM Symposium on

Theory of Computing, Association for Computing Machinery, New York, 1979, pp. 81-88.
[31] L. VALIANT, Parallelism in comparison problems, SIAM J. Comput., 4 (1975), pp. 348-355.

SIAM J. COMPUT.
Vol. 25, No. 3, pp. 540-561, june 1996

() 1996 Society for Industrial and Applied Mathematics
O04

PATHWIDTH, BANDWIDTH, AND COMPLETION PROBLEMS TO
PROPER INTERVAL GRAPHS WITH SMALL CLIQUES*

HAIM KAPLANt AND RON SHAMIR:

Abstract. We study two related problems motivated by molecular biology.
Given a graph G and a constant k, does there exist a supergraph G of G that is a unit
interval graph and has clique size at most k?
Given a graph G and a proper k-coloring c of G, does there exist a supergraph G of G
that is properly colored by c and is a unit interval graph?

We show that those problems are polynomial for fixed k. On the other hand, we prove that the
first problem is equivalent to deciding if the bandwidth of G is at most k- 1. Hence, it is NP-hard
and W[t]-hard for all t. We also show that the second problem is Will-hard. This implies that
for fixed k, both of the problems are unlikely to have an O(na) algorithm, where a is a constant
independent of k.

A central tool in our study is a new graph-theoretic parameter closely related to pathwidth. An
unexpected useful consequence is the equivalence of this parameter to the bandwidth of the graph.

Key words, design and analysis of algorithms, parameterized complexity, interval graphs,
bandwidth, pathwidth

AMS subject classifications. 68Q25, 68R10, 05C78, 05C85, 03D15, 68Q15

1. Introduction. This paper studies the following graph-theoretic questions.
Problem A. Given a graph G and a constant k, does there exist a supergraph
G of G that is a unit interval graph and has clique size at most k?
Problem C. Given a graph G and a proper k-coloring c of G, does there exist a
supergraph G of G that is properly colored by c and is a unit interval graph?

A related problem that generalizes both of these problems is the following.
Problem B. Given two graphs G and G2 such that G c_ G2, is there a unit
interval graph G such that G c_ G c_ G2 and G has clique size at most k?

Those questions arise as abstractions of practical problems in molecular biology,
as will be explained later. They are NP-complete, but we show that they are all
polynomial when the parameter k is fixed. We prove that Problem A is equivalent
to the BANDWIDTH problem. In particular, this equivalence together with a recent
result of Bodlaender, Fellows, and Hallet [4] imply that Problems A and B are hard
for the parameterized complexity class Wit] for all t. We prove here that Problem C
is Will-hard. This implies that none of the problems is likely to have an algorithm
with time complexity bounded by f(k)n for any constant

Problem B may be viewed as a sandwich problem, since G must be sandwiched
between G and G2. Sandwich problems were introduced in [22] and studied further
in [20]. Problem B was shown to be NP-hard for the case where k IVI (i.e., without
any restriction on the clique size) in [21]. The NP-hardness results here are stronger
since they apply to Problem C, a restriction of Problem B in which the forbidden
edges are those between like-colored endpoints.

Received by the editors November 5, 1993; accepted for publication (in revised form) Septem-
ber 26, 1994. Portions of this paper were presented at the 34th Annual IEEE Symposium on the
Foundations of Computer Science, Santa Fe, NM, 1994.

Department of Computer Science, Princeton University, Princeton, NJ 08544 (hkl@cs.princeton.
edu).

Department of Computer Science, Sackler Faculty of Exact Sciences, Tel Aviv University, Tel-
Aviv 69978, Israel (shamir@math.tau.ac.il). The research of this author supported in part by a grant
from the Ministry of Science and Technology, Israel.

54O

PROPER INTERVAL GRAPH COMPLETION PROBLEMS 541

Let A, B, and C be analogous to Problems A, B, and C, respectively, with the
only change that the supergraph G is required to be interval instead of unit interval.
Problem A is equivalent to asking if the pathwidth of G is at most k- 1, and it
arises in various guises (and under different names) in numerous areas (el. [33]). It
is NP-hard [2, 24, 28, 35] but linearly solvable for fixed k [3, 30]. Problem C’ (and
hence also B’) was shown to be NP-hard when k IVI independently in [21] and [13].
Fellows, Hallet, and Wareham [13] also showed that the Problem C’ is hard for WIll
and that it is not finite state for bounded pathwidth or treewidth and, hence, not
polynomially solvable by conventional algorithmic techniques. Recently, Bodlaender,
Fellows, and Hallet [4] strengthened these results by proving that Problem C is hard
for Wit] for all t. Note that the known results on Problems A and C do not directly
imply analogous results for Problems A and C or vice versa. For example, as we
show here, the parametric complexities of Problems A and A are qualitatively very
different.

The three problems that we study here arise in molecular biology. In order to
study a genome, several copies of it are cut or broken down, and some of the resulting
shorter segments (called clones) are preserved for further analysis. Depending on the
technique used, the preserved clones may have variable length, or they may all have
essentially the same length. In the process of producing the clones, all information
about their relative position along the DNA chain is lost. The goal of physical mapping
of DNA is to reconstruct that order, based on experimental data on the overlaps
between pairs of clones [8, 26, 36]. Hence, the graph with vertices corresponding to
clones and edges corresponding to overlapping pairs of clones should be an interval
graph if clone lengths vary or a proper interval graph if all clones have the same
length. Both types of graphs can be recognized in linear time [7, 10, 32].

In practice, information on overlap is never perfect. There are several ways to
model this imperfection: If one assumes that all the errors in the data are false
nonoverlaps (false negatives) and wishes to minimize their number, one gets the in-
terval graph completion problem [17, Prob. GT35; 27], that is, minimize the number
of edges whose addition to the graph will form an interval graph. If one assumes that
all errors are erroneous overlaps (false positives), the interval graph deletion problem
comes up [18]. If some pairs of clones are definite overlaps, some are definite nonover-
laps, and the rest are unknown, then one gets the interval sandwich problem [22].
All three problems are NP-hard, for interval and proper interval graphs. Hence, the
question arises if introduction of additional biological constraints can make any of the
problems tractable.

An important feature of real biological data is that the "width" of the map is
consistently very small; the largest number of mutually overlapping clones is typically
between 5 and 15, compared with a total number of clones in the thousands [31, 37].
Our study here focuses on the tractability of the models above in this special situation.
More formally, do the problems remain NP-hard when the clique size of the proper
interval graph is assumed to be bounded by a small constant? Hence, the model in
Problem A bounds the width of the map and assumes false negatives only. Problem
B allows a finer partition of the overlap information (into sure, unsure, and forbidden
overlaps) while again bounding the map width. In Problem C, the set of clones
consists of k disjoint subsets, with each subset originating from the dissection of a
single copy of the genome. This implies that within each subset all clones are disjoint.
Equivalently, the vertices corresponding to such a subset may all be assigned the
same color. Admittedly, these models are crude, but they provide a starting point by
allowing rigorous analysis. We believe that this line of research may eventually lead

542 HAIM KAPLAN AND RON SHAMIR

also to practical, tractable models, especially in view of the positive results given here
for the fixed parameter cases.

The rest of the paper is organized as follows. In 2 we give formal definitions and
background. In 3 we give two characterizations of proper pathwidth, a new graph-
theoretic parameter introduced here, and in particular prove that proper pathwidth
equals bandwidth. This result may be of independent interest, and we expect that it
will be useful elsewhere. It implies immediately the NP-completeness of Problem A,
its polynomiality for fixed k, and its W[t]-hardness for all t. Section 4 expands the
equivalence to sandwich instances. Section 5 then exploits this equivalence to obtain a
polynomial algorithm for Problem B (and hence C) when k is fixed. Section 6 contains
a proof that the parameterized version of Problem C is hard for WIll. Section 7
contains some concluding remarks.

2. Preliminaries. In this section we give definitions and background and state
without proof some well-known facts about notions that we will need in the sequel.
For other graph-theoretical definitions see, e.g., [19].

2.1. Basic definitions. All graphs are assumed to be undirected, simple, and
finite. A graph G (V, E) is a supergraph of the graph G’ (V’, E’) if V V’ and
E

_
E. For a subset W c_ V, the subgraph of G induced by W is (W, Ew), where

gw {(u,v) E E u,v E W}. A clique in agraph G (V,E) is aset C c_ V
such that the subgraph induced by C is complete. A clique is maximal if it is not
properly contained in any other clique in the graph. The clique size of G, denoted
w(G), is the maximum cardinality of a clique in G. An independent set in G is a set of
vertices no two of which are adjacent. A k-coloring of graph G (V, E) is a function
c" V -- {1,..., k} such that c(u) c(v) if (u, v) E. A supergraph G of G’ respects
the k-coloring c of G if c is also a k-coloring for G.

2.2. Interval and proper interval graphs. Let S (U, <) be a linear order.
For every u,w U such that u <_ w, the set [u,w] {v V u _< v <_ w} is
called an interval. The most commonly used example involves intervals on the real
line, but we shall refer also to intervals on finite, linearly ordered sets. A graph
G (V, E) is an interval graph if one can associate with each vertex v an interval
I(v) such that two intervals intersect if and only if their vertices are adjacent. The
set of intervals E {I(v)}vev is called an (interval) representation for G, and G is
called the intersection graph of E. A graph is a proper interval graph if it has an
interval representation in which no interval is properly contained in another. A graph
is a unit interval graph if it is an interval graph that has a representation on the real
line in which all the intervals have equal length. Roberts has shown that these two
definitions coincide as follows.

THEOREM 2.1. (See [38].) A graph is unit interval if and only if it is proper
interval. D

The proof of the following lemma is straightforward and hence omitted.
LEMMA 2.2. Every interval graph (and every proper interval graph) has an inter-

val (resp., proper interval) representation on the real line in which all endpoints are

distinct, and the left endpoints are assigned to the integers 1, 2,..., IV I.
We shall call such a representation canonical.

2.3. Pathwidth and proper pathwidth. A path decomposition of a given
graph G (V, E), is a sequence of subsets of V, X (X1,... ,Xt) such that the
following hold"

PROPER INTERVAL GRAPH COMPLETION PROBLEMS 543

(1) V UX.
(2) For each edge (u, v) E E, there exists some E {1,..., l} so that
both u and v belong to X.
(3) For each v E V there exist some s(v),e(v) {1,... ,/} so that
s(v)

_
e(v), and v E Xj if and only if j E {s(v), s(v)+ 1,..., e(v)}.
x is de ne m (IX l

pathwidth of G, denoted pw(G), is the minimum value of pwx(G) over all path de-
compositions; i.e., pw(G) min{pwx(G) lX is a path decomposition of G}. The
notion of pathwidth was originally introduced by Robertson and Seymour in [39].

LEMMA 2.3. (See, e.g., [6].) For any path decomposition X (X1,... ,Xt) of a
graph G, every clique in G must be contained in some X.

The PATHWIDTH problem is to decide for a given graph G and a given integer k
if pw(G) <_ k. Equivalent problems arise in various areas, including VLSI layout, pro-
cessor management, node searching, and vertex separation (see the excellent survey of
MShring on pathwidth and the relations among these problems [33]). PATHWIDTH
is NP-complete on arbitrary graphs [2, 28] and even for chordal graphs [24] and (us-
ing the equivalence to node search [29]) for planar graphs with vertex degrees at
most three [35]. On the other hand, it is polynomial when k is fixed. The results of
Robertson and Seymour [39] imply nonconstructively that an O(n2) algorithm exists
for fixed k [14, 15]. The recent results of Bodlaender [3] yield a linear algorithm for
PATHWIDTH for every fixed k [30, Chap. 11]. The notions of pathwidth and interval
graphs are related by the following well-known observation.

LEMMA 2.4. (Cf. [33].) For every graph G, the pathwidth of G is one less than
the least clique size of any interval supergraph of G.

We introduce here the notion of a proper path decomposition of G; it is as a path
decomposition X that satisfies (1)-(3) and also

(4) For every u,v E V, {s(u),s(u) + 1,...,e(u)} {s(v),s(v) +
1,...,

(As usual, c denotes strict containment.) The proper pathwidth of G, denoted ppw(G),
is the minimum value of pwx(G) over all proper path decompositions of G; namely,
ppw(G) min{pwx(G) lX is a proper path decomposition of G}.

Clearly, pw(G) <_ ppw(G), but note that pw(G) and ppw(G) can differ dramati-
cally: for the star graph with 2n + 1 vertices, G K1,2n, pw(G) 1 but ppw(G) n.
An easy way to see the last equality is to the characterizations we shall provide in the
next section.

2.4. Bandwidth. Another measure of graph width that we shall use is band-
width; that is, for G (V, E) with IVI n, a linear layout of the graph is a 1-1 func-
tion L: V {1,...,n}. The bandwidth ofL is bwL(G)= max(,v)E{IL(u)-L(v)l}.
The bandwidth of G is the minimum bandwidth over all layouts of G; namely, bw(G)
min{bwL(G) L is a layout of G}. The BANDWIDTH problem is to decide for a
given graph G and integer k, if bw(G) <_ k. This problem has been studied intensely
because of its application to sparse matrix algebra [9]. It is known to be NP-complete
even for binary trees [16] and for caterpillars with hair length at most three [34].
On the other hand, it is solvable in O(nk) for arbitrary k [23] and in linear time for
k 2 [16].

2.5. Sandwich problems. Given two graphs G (Y E1) and G2 (V, E2)
such that G2 is a supergraph of G1, a graph G (V, E) is called a sandwich for this
pair if E C_ E C_ E2. (G must be "sandwiched" between G and G2, hence the name.)
Let E3 be the set of all edges in the complete graph with vertex set V that are not

544 HAIM KAPLAN AND RON SHAMIR

in E2. We assume that a sandwich instance S is actually represented by the triplet
(V, El,E3). For a family of graphs, the 9-SANDWICH problem is to decide for
a given instance if there exists a sandwich graph G E 9. For example, in the proper
interval sandwich problem the set 9 is the set of all proper interval graphs.

Sandwich problems model flexibility (or ambiguity) of the problem data, where
the edges of E2 E are not known for sure to be included or excluded from the
graph. Sandwich problems were introduced in [22] and studied later in [5, 13, 20, 21].
Their applications include matrix algebra, evolutionary tree construction, and tem-
poral reasoning. Physical mapping of DNA motivated our study here of the following
problem.

PROPER INTERVAL SANDWICH WITH BOUNDED CLIQUE SIZE (BPIS):
INPUT: A sandwich instance S (V, E, E3) and an integer k.
QUESTION: Does there exist a sandwich G for S that is proper interval graph

with w(G) <_ k ?
The proper interval sandwich problem (with no restriction on the clique size) was

shown to be iP-complete in [21]. BPIS includes it as a special case by setting k IV[.
Hence, BPIS is NP-complete. In 5 we give an O(f(k) IVI k-l) algorithm for BPIS,
where f(k) is a term that varies only with k. Thus, fixing k, one can determine if
there exists a proper interval sandwich G with w(G) <_ k in polynomial time.
We shall also study the following special case of BPIS.
COLORED PROPER INTERVAL GRAPH COMPLETION (CPIC):

INPUT: A graph G (V, E) and a k-coloring c of G.
QUESTION: Does there exist a proper interval supergraph of G that respects c?

Note that CPIC is a restriction of BPIS: Given a graph G (V, E) with a k-
coloring c, build the sandwich instance S (V, E,E3) where E3 ((u, v) In, v E
V, c(u) c(v)}. Clearly, every supergraph of G which respects the coloring c is a
sandwich graph for S that has clique size at most k, and vice versa.

In order to the describe this algorithm we need to extend the definition of graph
bandwidth to sandwich instances as follows: Let S (V, E1,E3) be a sandwich
instance. As before, a layout L of S is a one-to-one function from V onto {1,..., n}.
The bandwidth ofL is bwi(S) max(u,v)EE {Ii(u)-L(v)l}. A layout L of a sandwich
instance S is a legal layout if for every (u, v) E3 there is no (x, y) E such that
L(x) <_ L(u) < L(v) <_ L(y). The bandwidth of S is the minimum bandwidth over all
legal layouts of G. Namely, bw(S) min{bwL(S) L is a legal layout of S}. If S has
no legal layout define bw(S) c.

Remark 2.5. When E3 , every layout of S is legal and bw(S) bw(G).
2.6. Parameterized complexity. Recently, Downey and Fellows initiated a

systematic analysis of the complexity of parameterized decision problems [1, 11, 12].
An instance of a parameterized decision problem II is a pair (x,k) where k is the
parameter and x is the input other than the parameter, with Ix[n. The inter-
est is usually in parameterized problems that are NP-complete but have polynomial
complexity when the parameter k is fixed. This is the situation for CLIQUE, PATH-
WIDTH, BANDWIDTH, and many other problems. However, the dependence of
the complexity on k may vary drastically. For some problems (like PATHWIDTH),
algorithms of complexity f(k)n are known (for some constant (), while for others
(like CLIQUE) the best known algorithms require f(k)n() steps. Hence, for fixed
k the complexity of the former is polynomial, and in some cases linear, independent
of k, while in the latter the degree of the polynomial depends on k. A parameterized
problem is called fixed parameter tractable if it belongs to the former family; i.e., it
is solvable in time complexity O(f(k)poly(n)), where f is an arbitrary function of

PROPER INTERVAL GRAPH COMPLETION PROBLEMS 545

k only and poly is a polynomial in n only, independent of k. The class of all fixed
parameter tractable parameterized decision problems is denoted FPT. For example,
PATHWIDTH and VERTEX COVER are NP-hard for variable k, but both are in
FPT.

Downey and Fellows defined an appropriate notion of reduction for parameterized
problems as follows: Let II1 and II2 be two parameterized decision problems. A
parameterized reduction from II1 to H2 is an algorithm that, given an instance (x, k)
for II, decides if the answer is "Yes" in O(f(k)poly(n)) time, using an oracle for II2
on instances with parameter value no greater than g(k), where poly is a polynomial
in n only and f and g are arbitrary functions of k only. Thus, if II parametrically
reduces to II2 and 1-I2 E FPT, so is H.

Parameterized decision problems are classified with respect to the W-hierarchy.
To introduce it we need some definitions. A mixed boolean decision circuit is a boolean
circuit with a single output and two types of gates" (1) small gates: AND, OR
gates with fan-in two and NOT gates; and (2) large gates: AND and OR gates with
unrestricted fan-in. The weft of a circuit C is the maximum number of large gates
on an input-output path in C. The depth of C is the maximum number of gates
(small or large) on an input-output path in C. Let F be a family of mixed boolean
decision circuits. The yes-instances of the parameterized problem associated with F,
denoted by HE, are {(C,k) C E F accepts an input vector with k ones}. The class
Wit] consists of those parameterized decision problems that parametrically reduce to
HE, where F is a family of mixed boolean decision circuits of bounded depth and weft
at most t. This family of classes of parameterized decision problems satisfies FPT
C_ WIll C_ W[2] C_ and is called the W-hierarchy. All containments are conjectured
to be proper [11].

A problem II is W[s]-hard if every problem in W[s] has a parameterized reduction
to II. If II is both in W[s] and W[s]-hard, then II is W[s]-complete. Thus, each problem
that is hard for W[s] for some s >_ 1 is conjectured not to have an algorithm with
complexity bound f(k)n. For example, DOMINATING SET is W[2]-complete [11],
and BANDWIDTH was recently shown to be W[t]-hard for all t [4]. We shall use the
latter result in 3. INDEPENDENT SET was shown to be W[1]-complete [1]. In 6
we give a parameterized complexity reduction from INDEPENDENT SET to CPIC.
Hence, if CPIC has an f(k)n algorithm, then so does INDEPENDENT SET, and
every other problem in WIll, which is considered unlikely.

3. Characterizations of proper pathwidth. In this section we show two
equivalent characterizations of proper pathwidth. The following observation is anal-
ogous to Lemma 2.4.

LEMMA 3.1. For every graph G, the proper pathwidth of G is one less than the
least clique size of any proper interval supergraph of G.

Proof. Suppose X (X,...,Xt) is a proper path decomposition of G and
pwx(G) ppw(G) k. On the linear order 1 < 2 <... < l, let I(v) be the interval
Is(v), e(v)]. Then {I(v)}vev is a representation of an interval graph G’. G’ is proper
since no interval is strictly contained in the other, by property (4) in the definition of
a proper path decomposition. G is a supergraph of G, by property (2). Since X is
also a path decomposition of Gp, Lemma 2.3 implies that every clique in G must be
contained in some X. Hence, w(G) <_ k + 1.

Conversely, suppose k / 1 is the least clique size of any proper interval supergraph
of G. Let {I(v)}vev be a proper interval representation of such a supergraph G’
(V, E’) with w(G’) k + 1, in which all endpoints are distinct, and I(v) [/(v), r(v)].
Order the 2n endpoints from left to right as Pl,...,P2n. Define X {v V P

546 HAIM KAPLAN AND RON SHAMIR

I(v)} for i 1,..., 2n. (Here and throughout n IVI.) We claim that (X,..., X2n)
is a proper path decomposition of G. Checking the four requirements from a proper
path decomposition one can observe that (1) is immediate. (2) follows since E c_ E’,
and if (u, v) e E’ and l(u) < /(v), then l(v) e I(v) I(u). In other words, every
edge in E is represented in some X. Since G is a proper interval graph, it follows
that s(v) l(v) and e(v) r(v) satisfy (3) and (4). Since the clique size of G’ is
k + 1, each point p can meet at most k + 1 intervals in the representation. Hence,
maxi Xi] k + 1, so ppw(G) k.

We turn now to the proof of the main theorem in this section. It is actually a
special case of a theorem about sandwich instances that will be proved in the next
section (see Remark 4.3). However, since this theorem is of independent interest and
its proof is simpler and more intuitive, we include its proof below.

THEOREM 3.2. The bandwidth of a graph equals its proper pathwidth.

Proof. For the graph G (V, E) with ppw(G) k, by Lemma 3.1 there exists
a supergraph G (V, E) of G that is proper interval with clique size k + 1. Let
(I(v)}ey be a canonical representation for G’, where I(v) [/(v), r(v)]. Define a
layout L on G by L(u) l(u) for all u V. Suppose L(u)-L(v) > k for some
(u, v) e E, where n(v) i. Then {L-(i),... ,L-I(i + k + 1)} form a clique of size
k + 2 in G’, a contradiction. Hence, bw(G) bWL(G) ppw(G).

Conversely, let L be a layout of G so that bwL(G) bw(G) k. Form a set
of equal-length intervals on the real line {i(v)}ey where I(v) [L(v),L(v) + k].
Let G (V, E) be the intersection graph of that set of intervals. Clearly E E
since if (u, v) e E, then In(u)- L(v)] k, so I(u) I(v) . Since the maximum
clique size for G’ is at most k + 1, using Lemma 3.1, ppw(G) k. Hence, bw(G)

This interestingnd somewhat surprisingequivalence between bandwidth and
proper pathwidth allows us to drw several immediate conclusions from the results
on bandwidth.

COROLLARY 3.3.
A. Finding the proper pathwidth is NP-hard, even for binary trees and for cater-

pillars with hair length at most three.
B. Problem A can be solved in O(f(k)n-) time and, in particular, is polynomial

when k is fixed.
C. Deciding whether the proper pathwidth of a graph is not greater than two can

be done in linear time.
D. The parametric version of Problem A is W[t]-hard for every t > O.
E. Problem B is NP-complete and its parametric version is W[t]-hard for every

t>0.
These results follow immediately from known results on bandwidth, using The-

orem 3.2. Result A follows from [16, 34], B follows from [23], C from [16], and D
from [4]. Result E follows since Problem B is a generalization of Problem A and thus
at least as hard.

4. The bandwidth of a sandwich instance. We saw that one can embed a
graph in a proper interval graph G with w(G’) _< k if and only if bw(G) <_ k. The
question that we consider now is what happens when we cannot use every edge when
forming the embedding and we have forbidden edges. In other words, we ask for a
characterization of those sandwich instances that have a proper interval sandwich G
with w(G) _< k. To state this characterization, we already generalized the notion of
bandwidth to sandwich instances in 2 and we use it in the following theorem.

PROPER INTERVAL GRAPH COMPLETION PROBLEMS 547

THEOREM 4.1. Let S (V,E,E3) be a sandwich instance. There is a proper
interval sandwich in S with w() <_ k + 1 if and only if bw(S) <_ k.

Proof. Suppose bw(S) <_ k, and let L be a legal layout of S for which bwL(S) <_ k.
Let IVI n and e !. For every vertex v V in increasing order of L(v) definen
recursiyely an interval I(v) [/(v), r(v)] as follows.

1. If L(v) 1 define I(v) [1, r(v)] where r(v) max({L(w) (v, w) e E })+.
2. Suppose L(v) p, and I(v) has already been defined for every vertex v

with L(v) < p. Define I(v) [p,r(v)] where r(v) max({L(z) (v,z)
E1} {r(n-l(p- 1))}) + e.

In particular, L(v) l(v) for every v V. One can easily prove by induction
on p that all the endpoints of the intervals are distinct, and for every two vertices
v, w e Y, if L(v) < L(w), then l(v) < l(w) and r(v) < r(w). Thus, the intersection
graph ((V,/) defined by these n intervals is a proper interval graph. The following
observation can easily be proved by induction on the left endpoints of the intervals.

OBSERVATION 4.2. Let I(v) [l(v),r(v)] and let w n-([r(v)J). There is a
vertex u with L(u) <_ n(v) such that (u, w) e E

We now prove that G is a sandwich graph for S: By the construction of the
intervals, E C_/. Suppose E3/ . Let (x, y) be an edge in E3/. Without
loss of generality assume that l(x) < l(y) (so L(x) < L(y)). Since (x, y) E, it follows
that r(x) > l(y). Let w L-([r(x)J). According to Observation 4.2 there is an edge
(u, w) E, and u satisfies that L(u) <_ L(x). This contradicts the assumption that
L is legal since (x, y) e E3, (u, w) e E1, and n(u) <_ L(x) < L(y) <_ L(w).

Suppose that G has a clique C with more than k + 1 vertices. Let x and y be
the vertices in C with minimum and maximum values, respectively, under the layout
n. Since ICI > k + 1, L(y)- L(x) > k. (x, y) e G implies that r(x) > L(y) =/(y),
so according to Observation 4.2 there is an edge (u, w) E where L(u) <_ L(x) and
L(w) [r(x)J

_
L(y), and that is a contradiction to the assumption that bwL(S) <_ k.

To prove the converse, assume that there is a proper interval sandwich ((V,/)
for S with w(() <_ k + 1. Let {I(v)}ey be a canonical proper interval representation
of G where I(v) [/(v), r(v)]. Define a layout n of S by n(v) l(v) for all v
We claim first that L is a legal layout. Suppose on the contrary that there is an
edge (x, y) e E3 and an edge (u, v) e E such that L(u) <_ L(x) < L(y) <_ n(v).
is a sandwich graph for S, so (u, v) must belong to E and thus l(v) < r(u). Since
G is proper interval, the left endpoints must appear in the same order as the right
endpoints in the realization, namely r(u) <_ r(x) < r(y) <_ r(v). Hence, all four
intervals intersect at l(v) and thus {u,x, y, v} induce a clique in G. In particular,
(x, y) /, a contradiction.

Finally, we show that bwL(S)

_
k. Suppose, on the contrary that bwL(S) > k. Let

(u, v) be an E-edge such that n(u) L(v) > k. Let C {x L(v) <_ L(x) <_ L(u)}.
Note that ICI > k + 1. (is a sandwich graph for S, so (u,v) E. Arguments
similar to the ones in the previous paragraph imply that C induces a clique in G,
contradicting the assumption that w(G)

_
k + 1.

Remark 4.3. One can obtain Theorem 3.2 as a corollary to the theorem above
by applying Theorem 4.1 to the sandwich instance S (V, E,). In that case, every
supergraph of G is a sandwich graph for S, so Theorem 3.2 follows by Remark 2.5.

5. A polynomial algorithm for fixed k. In this section we show that deciding
if a given sandwich instance S admits a proper interval sandwich graph with clique
size at most k can be done in O(f(k)n-) steps. Hence, Problems B and C are
polynomial when k is fixed. Our algorithm is based on the equivalence established
in the previous sections with the bandwidth problem. For fixed k, Saxe [40] gave

548 HAIM KAPLAN AND RON SHAMIR

an O(nk+l) algorithm that determines if the bandwidth of an n-vertex graph is at
most k. Gurari and Sudborough [23] reduced its complexity to O(nk). We generalize
that algorithm to the problem of deciding if the bandwidth of a sandwich instance is
at most k. We assume without loss of generality that in the input S each vertex is
incident on at most 2k El-edges and that G (V, E) is connected.

We need the following definitions. Let S (V, El, E3) be a sandwich instance.
A partial layout of S is a 1-1 mapping from some nonempty V’ C_ V to {1,..., Iv’l}.
v is called the domain of L and denoted D(L). In this section we shall use the
term layout for a partial layout and complete layout for a layout L with D(L) V.
The bandwidth of L is bwL(S) max{IL(u -L(v)ll(u,v) E E,u,v D(L)}. If
e (x, y) e E, x e D(L) and y D(L), then e is called a dangling edge in L. The
set of all dangling edges in L will be denoted d(L). A vertex in the domain of L is
called active if it is incident on a dangling edge. Let r min({i L-(i) is active}).
The sequence (n-l(r),L-(r + 1),... ,L-I(ID(L)I)) is called the active region of L
and denoted R(L). Note that the dangling edges of L are exactly the edges in the
cut (D(L), V D(L)) in G. The connectivity assumption guarantees that d(L) 0
if and only if the layout is complete.

A layout L is called legal if the following requirements hold.
1. For each E3-edge with u, v D(L) there is no (x, y) E such that x, y D(L)

and L(x) <_ L(u) < L(v) <_ L(y).
2. No E3-edge has both endpoints in R(L).
A layout n’ augments the layout n if D(n) C_ D(n’) and n’(u) n(u) for all

u D(L). L can be augmented to a complete legal layout L’ with bwL,(S) <_ k only
if (1) n is legal, (2) bwL(S) <_ k, and (3)IR(L)I <_ k. We thus restrict the algorithm
to construct only layouts in A where

A {L L is a legal layout such that bwL(S) <_ k and IR(L)I <_ k}.

For L1,L2 e Ak, define L L2 if R(L1) R(L2) and d(L) d(L2). is an
equivalence relation that partitions Ak into classes. For such a class C with L C,
R(C) R(L) and d(C)= d(L) are uniquely defined. Moreover, the assumption that
G is connected implies that equivalent layouts have identical domains, so D(C) is
also well defined for every class C. We call the pair E(C) (R(C), d(C)) the signature
of the class C, and we call a signature valid if a class with that signature exists. Given
a sandwich instance S and integer k, bw(S) <_ k if and only if there is a class C in Ak
such that E(C) (,). This class contains all the legal layouts in A.

5.1. The algorithm. The algorithm is based on the dynamic programming
technique. It generates systematically all classes in Ak, until the search is exhausted
or a class corresponding to a complete legal layout with bandwidth at most k is found.
It is based on the following observation.

OBSERVATION 5.1. Let X (x,... ,xt), <_ k, and let c_ E be a set of edges,
each incident on one vertex from X. There is a class C’ in Ak with E(C’) (X,)
and ID(C’)I > 1 if and only if for every 1 <_ i <_ l- 1, (xi,xt) E3 and there exists
a class C in Ak such that R(C) (z,...,zj,xl,...,xt_l),0 _< j _< k- + 1, and

d(C) d4- {(x/,y) e E Y e R(C)} {(xt,y) e Ell (xt,y) e d}.

Proof. Suppose a class C’ with [D(C’)I > 1 exists, and let L’ C’. Since L’ is
legal, for every 1 _< i _< l- 1, (xi, xt) E3. Since C’ is in Ak, bwL,(S) <_ k. Clearly
L’(xt) ID(L’)I. Let L be a layout with D(L) D(L’)- {xt} such that L’ augments

PROPER INTERVAL GRAPH COMPLETION PROBLEMS 549

L. It is easy to see that L is legal and bwL(S)

_
k. Thus, the class to which L belongs

will be the required class C. The proof of the converse is similar. D
Under the conditions of the observation we shall say that C extends C. Hence,

the observation says that a nonsingleton class exists if and only if it extends another
class.

Let V {Vl,..., v,}. The algorithm starts by initializing a queue Q to contain
n classes C1,..., Cn where R(Ci) {vi} and d(Ci) contains all the El-edges incident
on vi. In each iteration a class is removed from Q and every class in Ak that extends
it and was not treated before is generated and added to Q. This process ends in one
of two possible ways.

1. If bw(S) <_ k, then the class C whose active region is empty (and then, by the
connectivity of G1, D(C) V) is generated in some stage of the algorithm.
When this happens the algorithm stops with a positive answer.

2. If bw(S) > k, then the algorithm will stop with a negative answer when its
queue becomes empty.

A prototype of the algorithm is depicted in Figure 1.

ALGORITHM BANDWIDTH(S,

/* S (V, E1,E3) is a sandwich instance */
/* initialization */
for eachvEV

1. Create an equivalence class C
with R(C)= {v} and d(C)= {(v, y)I (v, y) E El}.
2. Mark C and add it to the queue Q.

begin
while Q0do
/* iteration */
begin

3. Remove C from Q.
4. Let T be the set of classes in Ak that extend C.
5. for eachCTdo

5.1 if R(C’) 0 output "bw(S)

_
k" and stop.

5.2 if C is unmarked mark C and add it to Q.
end
4. Output "bw(S)> k" and stop.

end

FIG. 1. An algorithm for determining if a sandwich instance has bandwidth at most k.

Let us explain how the set of all classes that extend C (denoted T in step 4 of
the algorithm of Figure 1) can be generated. Distinguish the following two cases.

(A) If IR(C)I k there is at most one class C’ that extends C. If R(C)
(x,..., xk), such C’ can exist only if exactly one dangling edge, say (Xl, y), is incident
on Xl. In that case, C’ must have R(C’) (xi,...,xk, y), where xi is the first
vertex in R(C) that is connected by a dangling edge to a vertex other than y, and
d(C’) d(C)- {(xj, y) (xj, y) e d(C)} + {(y, z) e El lz D(C)}. Class C’ exists
if and only if y is not connected by an E3-edge to any vertex in the set {x2,... ,x}.

(B) If IR(C)I- < k, up to IV-D(C)I classes may extend C: Let R(C)
(Xl,... ,xt) and let y E V- D(C). Suppose x, 1 _< _< l, is the first vertex in R(C)
that is connected to a vertex other than y by a dangling edge. Then, if y is not
connected by an E3-edge to any vertex in {xjl 1 _< j _</}, the class C’ with R(C’)

550 HAIM KAPLAN AND RON SHAMIR

(xi,..., xt, y) and d(C’) d(C) {(xj, y) (xj, y) e d(C)} + {(y, z) z f D(C)}
exists and extends C.

5.2. Implementation. We describe an implementation of the algorithm that
runs in time and space complexity O(f(k)nk). A class C in Ak will be represented
by its signature E(C). We assume that the E3 edges are recorded in a vertex-vertex
incidence matrix, so that the existence of an E3 edge between two given vertices can
be checked in constant time. Constructing an incidence matrix from a representation
of E3 by adjacency lists takes O(n2) time and space, so for k _> 2 such a stage would
not increase the worst case bounds of the algorithm. (The case k 1 is trivial since
bw(S) 1 if and only if the graph G is a path.)

LEMMA 5.2. Given a class C and a vertex y D(C), one can verify whether
there exists a class C’ with D(C’) D(C) U {y} in constant time assuming k is fixed.
If C exists, its signature can also be constructed in constant time.

Proof. Since IR(C)I <_ k, verifying that y is not connected by an E3 edge to
any vertex in the active region takes constant time. To compute E(C’) given E(C),
one must copy each vertex from the region of C starting from the first vertex that
is connected by a dangling edge to a vertex other than y. For each such vertex, E1-

edges that connect it to y should be removed from the new list of dangling edges.
Since Id(C)[is bounded from above by a function of k, this stage takes constant time.
Vertex y should be added as the last vertex in the region. The set of new dangling
edges, {(y, z) z D(C)}, can be constructed in constant time even though D(C)
is not represented explicitly since {(y,z) lz D(C)} {(y,z) lz R(C)}. This
construction takes constant time since the number of El-edges incident on y is at
most 2k.

Let us now analyze the overall complexity of the algorithm for fixed k. Recall that
in G all the degrees are bounded by 2k. Hence, for every active region R the number
of possible sets of dangling edges with active region R is bounded by a constant.
Therefore, the number of classes with active region of size k is O(nk), and the number
of classes whose active region is smaller than k is O(nk-l).

The algorithm inserts into the queue only classes that are new, i.e., previously
unmarked. In order to do that without an increase in the time complexity one can
maintain an array of all possible class candidates and their status as marked or un-
marked, using O(nk) space. The marks enable the algorithm to encounter a class only
once.

For a class with an active region of size k, there is only one possible class that
extends it and by Lemma 5.2 a constant time is needed to check whether this class
exists and if so to generate it. For a class with a smaller active region, there are up
to n possible extensions. All the vertices in V- D(C) are candidates for extension of
C, but D(C) is not maintained explicitly. To find that set, note that after deleting all
dangling edges from G (V, E), one obtains a disconnected graph in which D(C)
and V- D(C) must be disconnected. The vertices in V- D(C) constitute exactly
these connected components of d that do not contain an active vertex. Enumerating
all candidates for extension can be done by depth first search of the appropriate
components in 1 in O(n) steps [41], since lEVI O(n). Checking each candidate
and adding it to Q if it actually exists can be done in a constant time by Lemma 5.2.
Thus, we obtain that the overall time complexity of the algorithm is O(n) using no
more than O(nk) space. The following theorem summarizes our findings.

THEOREM 5.3. Given a sandwich instance S the algorithm determines whether
bw(S) < k in O(f(k)nk) time and space.

PROPER INTERVAL GRAPH COMPLETION PROBLEMS 551

Together with Theorem 4.1 we obtain the following corollary.
COROLLARY 5.4. Problem B (and hence also Problem C) can be solved in

O(f(k)nk-l) time and space and, in particular, in polynomial time and space when k is

fixed. D
By maintaining a representative layout with every class generated by the algo-

rithm, one can obtain a complete legal layout with bandwidth not greater than k when
the algorithm halts with a positive answer. The cost is an increase by a factor of n
in the space complexity of the algorithm. The proof of the "if" part of Theorem 4.1
demonstrates how to obtain from that layout a unit interval sandwich graph in O(n)
time.

6. Colored proper interval graph completion is Will-hard. In this section
we prove the following theorem.

THEOREM 6.1. The Colored Proper Interval Graph Completion Problem is hard

To prove Theorem 6.1 we describe a parameterized reduction from INDEPEN-
DENT SET. Given a graph G (V, F) and an integer k as inputs to INDEPENDENT
SET, we build a graph G’ (V’,F’) colored using only f(k) 8k + 7 colors. The
graph G is built such that it has a unit interval supergraph that respects the same
coloring if and only if G has a size k independent set. Assume that V {1,..., n}
and F {el,..., em}. For convenience, we assume that the edge et (i, j) is denoted
such that < j.

6.1. Constructing G. Let us first give an overview of the construction (see Fig-
ure 2): It consists of a platformma long chain in which certain vertices are replaced by
cliques, with subblocks corresponding to edges, and of k floating pathsmeach one is a
long chain corresponding to a vertex in the independent set. Each path also consists
of subblocks corresponding to edges. The platform and the floating paths are all con-
nected at their endpoints, which forces their intervals to overlap in the representation
of any unit interval graph completion. An additional decision component called arrow
is connected to each edge-subblock in the platform. It is designed so that it prevents
the complete placement of the k floating paths on top of the platform if and only if
the graph does not contain an independent set of size k.

2 floatin_g path

B1

FIG. 2. The graph

To describe these components we introduce the following definitions. Let (1
(V E1) and G2 (V2, E2) be two colored graphs. A colored graph G is a concatena-
tion of G and G2 if it can be constructed by taking their union and identifying pairs

552 HAIM KAPLAN AND RON SHAMIR

of vertices, where in each pair one vertex is from V1, the other from V2, and their col-
ors are identical. The concatenation is completely specified by these pairs of vertices.
We shall occasionally omit listing the pairs in a concatenation when they are clear
from the context. A graph G is a concatenation of GI,..., Gs if one can construct it
by concatenating a graph H with Gs where H is a concatenation of G1,..., Gs-. If
G is a concatenation of the colored graphs H,..., Hs, we denote by Hi(G) the copy
of Hj in G. If X is a set of vertices in a graph G, then X(G) will denote the subgraph
induced by X in G. For x a vertex in H and H’ some copy of H, x(H) will denote
the vertex x in the copy H of H. Greek letters will denote colors, small Latin letters
will denote vertices, and capital Latin letters will usually denote graphs.

6.1.1. The floating paths. We first construct k isomorphic but differently col-
ored floating paths. Each path consists of left and right ends and a middle part.
Figure 3 gives an overview of the structure of such a path.

FIG. 3. The structure of the floating path P.

First we describe the construction of the middle part, which is denoted M. This
part will overlap with the middle part of the platform in a representation of any unit
interval completion. Let U denote a path with five vertices" Vl,V2,...,v5. Color it
such that c(vl) c(v5) 5, c(v3) /, c(v2) c(v4) 7" Take n copies of this
colored U path denoted U1, U2,..., Un and concatenate them by identifying v5(Uj)
with v(Uj+) for every j, 1 < j < n- 1. Denote the resulting path E. Now, take
rn copies of E denoted El,... ,Em and concatenate them by identifying v5(Un(E))
with Vl(UI(Ej+I)) for 1 < j < m- 1. This resulting graph is the middle part M.
Equivalently, one can think about M as a concatenation of nm copies of U or as a
path of 4nrn + 1 vertices colored periodically 5, 7,/, 7, 5, 7,

Next we describe the right and left ends of a floating path. These identical parts
actually let the path "float" on the platform; i.e., using them we gain some flexibility in
the starting position of M relative to the platform. Let Z denote a path on six vertices
denoted z,...,z6. Color it such that c(z) c(z6) al, c(z) a,2 <_ i < 5.

PROPER INTERVAL GRAPH COMPLETION PROBLEMS 553

Concatenate n copies of Z denoted Z1,..., Zn by identifying z6(Zj) with z(Zj+) for
every 1 _< j _< n- 1. Call the resulting graph A.

Complete a construction of a path P as follows. Take two copies of A, At, and Ar
(we shall call these the Left Accordion and the Right Accordion, respectively) and one
copy of M. Connect Zl(Zl(Al)) by an edge to Vl(U(E1)) and connect zl(ZI(Ar)) by
an edge to vs(Un(E,)).

Each of the k floating paths denoted p1,..., pk is isomorphic to the path P above,
where in Pi a private set of colors a, a,..., a, 5i, 7i,/i replaces ax, a2,..., a5, 5, 7, 3,
respectively. Denote the subpaths of Pi as the corresponding subpaths of P with the
additional superscript (e.g., Mi, E).

On each Pi hang vertices colored as follows: two such vertices are connected to
vl(UI(E)) for every 1 _< j _< m. We shall call them the cherries of E. Also, connect
two vertices colored 7 one to v(U(E)) and the other to v5(Un(E)).

6.1.2. The platform. Similar to a floating path, the platform also consists of
three parts: a middle part similar to the M part of a floating path and two flanking
end parts. Certain vertices in the paths are replaced by cliques in the platform,
the end parts are shorter, and colored to allow little flexibility in any unit interval
representation. The structure of the platform is depicted in Figure 4.

FIG. 4. The structure of the platform.

The main component of the platform is the graph UP that can be constructed
from the path U as follows. Replace v3 with a clique X3 on k / 1 vertices, and replace
vl and v5 with cliques X1, X5, respectively, each containing k / 2 vertices. Connect
each vertex of X3 to v2 and v4, each vertex of X1 to v2, and each vertex of X5 to v4.

Color UP as follows: c(v2) c(v4) vP. X3 is colored such that it contains one
vertex colored fl for every 1 <_ <_ k and a vertex colored 1. X and X5 are colored
such that they contain one vertex colored 5 for every 1 <_ _< k, a vertex colored 2,
and a vertex colored .

554 HAIM KAPLAN AND RON SHAMIR

To construct the middle part of the platform, first take n copies of UP denoted
UP1,..., UPn and concatenate them by identifying vertices colored identically in
Xs(UPj) and XI(UPj+) for every 1 <_ j <_ n- 1. Denote the resulting graph
EP. Next, take m+ 1 copies of EP, denoted EP,..., EPm+, and concatenate them
by identifying like-colored vertices in X5(UPn(EPj)) and X(UPI (EPj+)) for every
1 _< j _< m. Denote the resulting concatenation MP. One can also refer to MP as
a concatenation of n(m + 1) copies of UP obtained by identifying vertices colored
identically in X5(UPj) and XI(UPj+) for every 1 <_ j <_ n(m + 1) 1.

To define the flanking ends of the platform, let AP be a path with n- 1 vertices
z,... ,Zn_l,P colored such that c(z) "P if/is odd and c(z) ap for even. (As
we shall see later, this coloring forces such a path to "spread out" with no additional
overlap in any representation.) Take MP and two copies of AP, APt, and AP (which
will be called the Left end and the Right end of the platform). Connect z(APt) to all
vertices of X(UP(EPI)) and connect all vertices of X5(UPn(EPm+)) to z(APr).
The construction of the platform is now complete.

6.1.3. The arrows. An additional graph called an arrow that is "almost a path"
is generated for each edge in the original graph G. Each arrow is connected to a certain
clique in the subpath of the platform corresponding to its edge. The arrow (and, in
particular, two special vertices at one of its ends) is designed to force the independence
of the vertices that the t floating paths will define. Figure 5 demonstrates the details
of this part in the construction.

EP
(4,8), (a)

ej (5,12), EPj (b)

FIG. 5. An arrow and its location on the platform: (a) d- t- s is even, s K; (b) d-- t- s
is odd, s E K, K.

For each edge e (s, t) E F construct an arrow Ve as follows. Set d t- s;
and let U1,..., Ud be d copies of a path U colored such that c(v) c(v5) 2,
c(v3) , and c(v2) C(Vd) /F. Concatenate them by identifying vs(Uj) with
Vl(Uj+) for every 1 _< j <_ d- 1. Call vI(UI(Ve)) the head of the arrow and call
v5(Ud(Ve)) the tail of the arrow. Connect two vertices colored to the head, call

PROPER INTERVAL GRAPH COMPLETION PROBLEMS 555

them the cherries of the arrow V. Connect one vertex colored F to the head of the
path and connect another such vertex to the tail. Let m(V) be the middle vertex of
the arrow, i.e., m(V) Vh(U (V)) if d is even and m(V) v3(Ua2 (Ve)) if d is odd.

Note that c(m(Ve)) 2 if d is even, and otherwise c(m(V)) 1.
For each edge ej connect m(Vj) to all the vertices of X3(UP(EPj)) if d is

even (note that there is no vertex colored 2 in X3(UP(EPj)) and to all the
vertices of Xh(UP+8-1 (EPj)) if d is odd (note that there is no vertex colored 1 in

Xh(UP+-I (EPj)).

6.1.4. Completing the construction. To complete the construction of G take
two more cliques B1 and B2:B1 contains k vertices colored with the k colors 7’, 1 <

1 <j < 5 1 <i< k. Connect everyi < k; and B2 contains 5k vertices colored cj,
vertex of B1 with every vertex of XI(UPI(EP1)) and every vertex of B2 with every
vertex of XI(UPI(EP2)). The role of these two cliques is to force the representation
of each middle part in a floating path to start in between their representations in any
unit interval graph completion.

Finally, to connect the k floating paths and the platform, introduce two vertices

Pl,P2 colored i9p. Connect z6(Zn(A)), 1 < < k, and zn_p (APt) to pl, and connect
Z6 Zn A 1 < i < k, and zn_

p (APt) to p2.

The overall structure of G is drawn schematically in Figure 2.

6.2. Validity of the construction. The construction described is clearly poly-
nomial. We will now prove that G can be turned to a unit interval graph by adding
edges that respect its coloring if and only if G has a size k independent set.

6.2.1. = (if). First suppose that G has a size k independent set K. We shall
show how to represent each vertex in G by a closed unit interval on the real line such
that the following two requirements hold.

1. Intervals that correspond to vertices with the same color do not overlap.
2. Intervals that correspond to adjacent vertices in G do overlap.
The intersection graph defined by this representation of the intervals will be the

required properly colored unit interval supergraph of G.
For every vertex x V, I(x) will denote the interval that corresponds to it. If

this unit interval is placed between c and c + 1 on the real line denote it by I(x)
[/(x), r(x)] [c, c + 1]. For the two intervals I1 and I2, define that I1 < I2 if and only
if r(I1) </(I2). For I an interval and b a point on the real line, define I < b (b < I)
if and only if r(I) < b (b < l(I)).

In every copy of a U path or UP graph in our construction c(v2) c(v4). Thus, in
any representation that fulfills the requirements above I(v2)fI(v4) . A representa-
tion of a U path or a UP graph is called right-oriented if and only if I(v2) < I(va) and
otherwise it is left-oriented. We shall occasionally say that "a graph is right-oriented"
for short when we actually mean that its representation is right oriented.

Let Y be a UP graph on the platform and fix a right-oriented representation for
Y. With respect to this representation define two points on the real line, Right(Y)
and Left(Y), as Right(Y) min(z(y)I(x)) and Left(Y) max(x(y)I(x)).
Note that since X5(Y) and X1 (Y) are cliques, Cex(y)I(x 0 and ex(y)I(x)
0, and thus Right(Y) and Left(Y) are well defined. Say that a unit interval I is in
Y and denote it I <1 Y if and only if Left(Y) < I < Right(Y). For a vertex x in G’,
x is in Y if and only if I(x) <1 Y. Denote it x <1 Y.

6.2.1.1. Placing the platform. The whole representation will occupy the
interval [0, 4nm + 6n]. First assign I(pl) - [0, 1]. For every vertex v on the platform

556 HAIM KAPLAN AND RON SHAMIR

whose distance (length of shortest path) from Pl is d assign I(v) [d, d / 1]. Thus,
the intervals of the vertices in the Left end are assigned to the right of the interval
I(pl); then, further to the right, the intervals of the vertices in MP are placed; and
finally, the intervals corresponding to the vertices in the Right end of the platform
are placed. In particular, I(p2) [4nm + 6n- 1, 4nm + 6n]. Interval I(p2) will be
the rightmost interval of the representation. Note that all the intervals corresponding
to the vertices in one of the cliques X,X3, or X5 in any of the UP graphs on the
platform are assigned to the same position. Also note that the representation of all
the UP graphs on the platform is right-oriented.

Remark 6.2. Let Y be a UP graph on the platform. Obviously Right(Y)-
Left(Y) 3. Moreover, for every vertex x E Xh(Y)2 {vn(Y)}, Right(Y) I(x)
and for every vertex x X1 (Y)t2 {v2(Y)}, Left(Y) I(x). Since there is no vertex
colored in X3 but there is one in X1 and Xh, the maximum number of other vertices
colored that can be placed in each UP graph on the platform is two.

6.2.1.2. Placing the cliques B1 and B2. Assign the vertices of B1 to the
same position as the vertices of X(UP(EP)). The vertices of B2 are assigned to
the same position as the vertices of X(UPI(EP2)).

6.2.1.3. Placing the arrows. Let ej (s, t) be an edge in G, d t- s, and
let Vj be the corresponding arrow. Assign m(Vj) to the same position as that of the
clique on the platform to which it is connected.

Since K is an independent set, it cannot contain both s and t. If s K place
the arrow such that the representation of each U path on the arrow is right-oriented
and v(Ui(V)) <3 UPs+i-I(EPj) for every 1 _< _< d. The two cherries of
that are connected to its head are placed in UPs(EPj) (see Figure 5(a)). If s e K
then place the arrow such that the representation of each U path is left-oriented and
v(U(V)) <3 UPt-+I(EPj) for every 1 _< _< d. In the latter case the two cherries
are placed in UPt(EPj) (see Figure 5(5)).

One should note that the cherries of the arrow of (s, t) are placed in UP(EPj) if
s K and in UPt(EPy) otherwise. Thus, UP(EPj) does not contain vertices colored
originating from an arrow, for every 1 <_ j _< m and K.

6.2.1.4. Placing the floating paths. Let K {i,... ,ik}. The j-th floating
path, PJ, will correspond to ij. First MJ is placed and then the left and right
accordions A and A are placed as follows.

Each U path in PJ is placed such that its representation is right-oriented and
vx(Ul(MJ)) <3 UP+I_I(MP) for 1 _< _< n m. Thus, the whole representation of
My spreads from UPi(EP1) to UPj(EP,+I) on the platform. Recall that to each
Vl (Vl (EsJ)), 1 8 rn, two cherries are connected. These cherries are placed together
with v(UI(E)) in UP(EP).

This placement can be carried out without violating requirement 1 above since
in each of the UP graphs, X3 does not contain a vertex colored 7

y and X1, X5 do
not contain vertices colored Y. One also must check that in each UP graph no more
than two vertices colored are placed. This is indeed the situation since for every
1 _< j _< m the arrows insert vertices colored only to UP(EPj) for indices K.
On the other hand, the floating paths insert vertices colored to UPt(EPj) for every
E K and 1 _< j _< m. Since all the other vertices in the arrows have colors that do

not appear in PJ, property 1 is satisfied.
The left accordion A should be placed between I(pl) and I(vI(UI(MY))). Ac-

cording to the placement of the paths, n + 1 < l(I(Vl (Vl (MJ)))) < 5n 1. Analyzing
the coloring of A one can verify that for each number x such that n + 1 < x < 5n- 1

PROPER INTERVAL GRAPH COMPLETION PROBLEMS 557

a representation of A that spreads out on an interval whose length is x can be con-
structed. Such a representation can be placed between I(pl) and I(vl (Vl (MY))) since

J 1 < i < 5, placed there. A representation of thethere is no other vertex colored a,
right accordion can similarly be constructed and placed between I(Vh(U,m(MJ)))
and I(p2).

The intervals that correspond to the two vertices colored /J connected to
Vl(UI(E)) and Vh(UI(EJm)) are placed with I(vl(UI(E))) and I(Vh(UI(EJm))) in
UPj (EP1) and UPj (EPm+I), respectively.

6.2.2. = (only if). Suppose G has a unit interval supergraph G that respects
the coloring of G. Our goal now is to prove that under these conditions there exists
an independent set of size k in G. We actually show that the structure and coloring
of G force every representation of G" to look very similar to the one we built in the
previous part of the proof.

Let {I(x)}xey, be a representation of G" by closed unit intervals. Since c(pl)
c(p2) 0P, I(pl)N I(p2) . One can assume without loss of generality that
I(pl) < I(p2) (otherwise just reverse the entire representation).

The platform contains paths from Pl to P2 in which every second vertex is colored
P. Every such path starts with APt, ends with APt, and in between contains all the
vertices colored /P in MR, a representative from XI(UP(MP)) and X3(UP(MP)),
for each i, 1 <_ <_ n(m + 1), and a representative from Xh(UP(,+I)(MP)). Since
every second vertex on such a path is colored 9,P, its representation cannot "fold back"
and all the intervals of the vertices colored ’P must be disjoint and appear (from left
to right) in the same order as they appear in the path. This immediately implies that
the representation of each UP graph on the platform is right-oriented.

Let X and Y be two right-oriented UP graphs or two identically colored right-
oriented U paths. We say that X is to the left of Y or, equivalently, Y is to the right
of X if and only if I(v4(Z)) < I(v2(Y)). Denote this situation by Z -< Y or Y >- X.
(We use a different notation here since the sets of intervals corresponding to X and
Y may overlap.) The existence of a path between pl and p2 on which every second
vertex is colored P implies that, there must exist a linear order between the UP
graphs in the platform, i.e., UPy(MP) -< UPy+I (MP) for every 1 <_ j <_ n(m+ 1)- 1.

Let b max(NxeBlJXl(UPl(Ep1))I(x)) and b2 min(xeB2uX(VP(Ep))I(x)).
Note that the assumption I(pl) < I(p2) implies I(pl) < b < b2 < I(p2).

LEMMA 6.3. 51 < I(vl(UI(M))) < 52 for every 1 <_ i <_ k.
Proof. First we prove that 51 < I(vl(UI(M))) for every 1 _< _< k. Fix i.

Clearly bl

_
I(vl(UI(M))), since XI(UPI(EP1)) contains a vertex y colored 5,

the same color of vl(Ul(Mi)), such that bl I(y). Suppose on the contrary that
I(vl(U(M))) < b. Recall that B1 contains a vertex z colored - such that b I(z).
Since every second vertex on M is colored , the whole representation of M will
spread out to the left of bl. In particular, I(Vh(Um(M))) < bl. This implies
that the representation of the right accordion A should intersect b2. That is a

for some I < j < 5contradiction since it means that two intervals of vertices colored aj
overlap in b2.

One can similarly show the other inequality for every i. First, note that b2
I(vl(Ul(M))) since XI(UPI(EP2)) contains a vertex z with the same color as
Vl(UI(M)) such that b2 e I(z). Assume on the contrary that b2 < I(Vl(UI(M))).
Thus, I(pl) < b2 < I(Vl(UI(M))) and the representation of the left accordion A
intersects b2, a contradiction.

LEMMA 6.4.
(a) Uj(M) is right-oriented for every 1 <_ j <_ nm and 1 <_ <_ k.

558 HAIM KAPLAN AND RON SHAMIR

(b) Uj(M) - Uj+I(Mi) for every 1 <_ j <_ nm 1 and 1 <_ <_ k.
Proof. Fix i. Since in M every second vertex is colored -i, its representation

cannot "fold back." Thus, either all the U paths on Pi are right-oriented and satisfy
Uj(M) - Uj+I(Mi), 1 <_ j <_ nm- 1, or they are all left-oriented and satisfy
Uj+I(M) Uj(Mi), 1 <_ j <_ nm- 1.

Suppose the second possibility occurs. Together with Lemma 6.3 this implies that
the whole representation ofM is to the left of b2. In particular, I(vh(Unm(Mi))) < b2
which means that the representation of the right accordion A intersects b2 and that
is a contradiction. [:1

Remark 6.5. Each vertex in M (including the first and the last) that is not
colored , hs two adjacent vertices that are colored /i. This forces the endpoints
of the intervals in each U pth in M to stisfy l(I(v)) < l(I(v2)) < l(I(v3))
l(I(v4)) < l(I(Vh)). Similarly the placement of the intervals corresponding to vertices
in a UP graph on the platform must be such that l(I(xl)) < l(I(v)) < l(I(x3))
l(I(v4)) < l(I(Xh)) for every Xl Xl, x3 X3, x5 Xh.

So far we proved that the representation of each MJ starts, at its left end, in some

UP(EP1) (i.e., v(V(MY)) < UP(EP)) for some 1 _< ij _< n and spreads to the
right. Recall that to each v (U1 (E), 1 _< j _< k, 1 _< s _< m, two cherries colored
are connected. The intervals corresponding to them must be placed in the same UP
graph as Vl(Ul(EJs)) itself, since there are vertices colored in X and X5 of every
UP graph.

Three vertices colored cannot be placed in the same UP graph. Thus, for every
j j2, Mj nd Mj must start in different UP graphs. We obtain that the starting
positions of MJ, 1 <_ j <_ k, in EP1 on the platform define a set of k distinct vertices
K {i,..., ik} in G. We shall prove that K is an independent set.

In the following lemma we nalyze further the structure of a floating pth’s rep-
resenttion and prove that it must be intertwined in the platform in a very specific
mnner.

LEMMA 6.6. If vl(Uj(M)) <1 UPs(MP), then Vl(Uj+I(Mi)) <1 UPs+I(MP) for
every l <_j <_nm-1 and l <_s <_n(m + l)- l.

Proof. Suppose that v(Uj(Mi))<1 UPs(MR). According to Lemma 6.4,
vI(Uj+I(M)) cannot be in UPt(MP) for some < s. Suppose the claim is false.
There are two possibilities for failure.

(1) v (Uj+ (M))<1 UPs(MP). This implies, according to Remark 6.5 and Lemma
6.4, that v3(Uj(M)), which is colored fl, must also be in UPs(MP). Let z be
the vertex colored /3 in X3(UPs(MP)). Clearly I(z)V I(v3(Uj(M))) . As-
sume that I(z) < I(v3(Uj(M))) < Right(UPs(MR)). Since Right(UPs(MR))-
r(z) <_ II(v4(UPs(MP)))I 1, this assumption leads to a contradiction. Assuming
that LeIt(UPs(MP)) < I(v3(Uj(M))) < I(z), since l(z)- Left(UPs(MR))
II(v2(Uj(M)))I 1, this also implies a contradiction. Thus v(Uj+I(M)) cannot
be also in UPs(MP).

(2) Right(UPs+(MP)) < I(vI(Uj+I(Mi))). Let x and y be the vertices col-
ored - in X(UPs+(MP)) and Xh(UPs+(MP)), respectively. Since we assumed
that vt(Uj(M)) <3 UPs(MP), the order of the intervals in the representation is
I(Vl(Uj(M))) < I(x) < I(y) < I(vI(Uj+(M))). Let z be the vertex colored
in X3(UPs+(MP)). According to Remark 6.5 l(x) < l(z) < r(z) < r(y), one gets
that z <1 Uj(M). Consider now the interval I(v3(Uj(M))). Since c(v3(Uj(M)))
c(z), I(z)N I(v3(Uj(M))) . The two possibilities I(z) < I(v3(Uj(Mi))) and
I(v3(Uj(M))) < I(z) will both lead to a contradiction since l(I(v(Uj+l(M))))-
r(I(v3(Uj+(M)))) and l(I(v3(Uj(M)))) r(I(v(Uj(Mi))) cannot be greater than

PROPER INTERVAL GRAPH COMPLETION PROBLEMS 559

one.
The immediate conclusion from this lemma and the discussion preceding it is that

if MJ starts in UPj(EP1), then vl(UI(EJ))<1UPj(EP) for every 1 <_ _< m. Thus,
for every l, 1 <_ <_ m, UP (EPt) contains two cherries of PJ.

In order to prove that K is an independent set we should now check how the
arrows are placed in our representation. Let Ve be an arrow corresponding to the edge
ej (s,t) and again let d t-s. Recall that if d is even Vh(U (Ve)) Vl(Uzrl(Ve))
is connected to the vertices of X3(UP_F_ (EPj)). Thus, vI(U+I(Vj))< UP(EPy)
and the representation of U+(V) is either right-oriented or left-oriented. If d is

odd, then v(U
__

(V)) <3 UP+- (EPj) if the representation of V_(V) is right-
oriented, otherwise Vl(U(Ve))< UP++ (EPy).

Analogously to Lemma 6.4 the following lemma holds with respect to the arrows.
LEMMA 6.7. For every arrow V where e (s, t), all Uj(V), 1 <_ j <_ t- s, have

the same orientation. Moreover, if the Uy (V) are all right-oriented, then Uy (V)
Uj+I(Ve) for every 1
t-s. D

Let V be an arrow corresponding to the edge e (s, t). Define V to be right-
oriented (left-oriented) if Uj (Ve) is right-oriented (left-oriented) for every i _< j _< t-s.

The arrows also must be intertwined in the platform, and the following lemma
can be proved analogously to Lemma 6.6.

LEMMA 6.8. Let Vj be an arrow corresponding to the edge ej (s, t). If V is
right-oriented, then vl(Ui(Vey)) UP+_I(EPj) for every 1 <_ <_ t- s; and if V
is left-oriented, then v(U(V)) < UPt-i+I(EPj) for every 1 <_ i <_ t- s. D

Now suppose on the contrary that K is not an independent set, i.e., there is an
edge ey (i, it) where i, it K. In the discussion following Lemma 6.6 we already
noted that each of UP (EPj) and UP (EPj) contains cherries originating in the
floating paths ps and pt. But from Lemma 6.8 it follows that the two cherries con-
nected to the arrow Vej must be placed together either in UP (EPy) or in UP (EPy).
Since one cannot place more than two vertices colored in any UP graph, we get
a contradiction. Hence, K is an independent set of size k in G, and the proof is
complete.

Since the parameterized reduction of Theorem 6.1 is actually a Karp reduction,
we can also conclude with the following corollary.

COROLLARY 6.9. The Colored Unit Interval Graph Completion Problem is NP-
complete. O

7. Concluding remarks. In this paper we studied proper interval graph com-
pletion problems with small clique size. The problems arise in physical mapping of
DNA. We showed that the Proper Interval Sandwich Problem with fixed bound k
on the clique size is polynomial. On the other hand, we showed that a restriction
of the problem, namely, the Colored Unit Interval Graph Completion Problem, with
k viewed as a parameter is Will-hard and, hence, does not have an O(f(k)na) al-
gorithm unless all problems in WIll (including, for example, INDEPENDENT SET)
have one. This result also implies the NP-completeness of the problem.

Regarding the Proper Interval Graph Completion Problem With Minimum Clique
Size, we showed that the problem is equivalent to BANDWIDTH and also to the new
parameter proper pathwidth, which was defined here. This unexpected equivalence
may be useful to other problems, since it allows one to apply tools from interval
graph theory to bandwidth problems and vice versa. In fact, it has already proved its
usefulness in our results here. It implied, using previous results on BANDWIDTH,

560 HAIM KAPLAN AND RON SHAMIR

that the problem when k is fixed is polynomial but W[t]-hard for all t in its parame-
terized version. This last hardness result is somewhat surprising since the analogous
problem with interval graphs replacing proper interval graphs is known to be linear
for fixed k and, in particular, fixed parameter tractable.

The algorithms presented here for fixed k are still impractical for the range of
k required in the physical mapping problem. However, our results demonstrate that
incorporating more biological restrictions into the model may cause the complexity to
decrease. An interesting line of research is to introduce further realistic restrictions
that will lead to efficient practical algorithms for physical mapping.

Acknowledgments. We thank Mike Fellows and Andrzej Proskurowski for their
helpful comments on an early version of this manuscript. We also thank two anony-
mous referees for their careful remarks and suggestions.

REFERENCES

[1] K. ABRAHAMSON, R. DOWNEY, AND M. FELLOWS, Fixed-parameter intractability II, in Proc.
10th Symposium on Theoretical Aspects of Computer Science, Lecture Notes in Comput.
Sci. 665, Springer-Verlag, Berlin, 1993, pp. 374-385.

[2] S. ARNBORG, D. J. CORNEIL, AND A. PROSKUROWSKI, Complexity of finding embedding in a

k-tree, SIAM J. Discrete Meth., 8 (1987), pp. 227-284.
[3] H. L. BODLAENDER, A linear time algorithm for finding tree-decomposition of small treewidth, in

Proc. 25th Symposium on the Theory of Computing, Association for Computing Machinery,
New York, 1993, pp. 226-234.

[4] H. L. BODLAENDER, M. R. FELLOWS, AND M. T. HALLET, Beyond NP-completeness for prob-
lems of bounded width: Hardness for the W hierarchy (extended abstract), in Proc. 26th
Symposium on the Theory of Computing, Association for Computing Machinery, New York,
1994, pp. 449-458.

[5] H. L. BODLAENDER, M. R. FELLOWS, AND T. J. WARNOW, Two strikes against perfect phy-
logeny, in Proc. 19th International Comput. Algorithms Lang. Programming, W. Kuich,
ed., Lecture Notes in Comput. Sci. 623, Springer-Verlag, Berlin, New York, Heidelberg,
1992, pp. 273-283.

[6] H. L. BODLAENDER AND R. g. MHRING, The pathwidth and treewidth of cographs, in Proc.
2nd Scandinavian Workshop on Algorithm Theory, 1990, Lecture Notes in Comput. Sci.
447, Springer-Verlag, Berlin, New York, Heidelberg, 1990, pp. 301-309.

[7] K. S. BOOTH AND G. S. LUEKER, Testing for the consecutive ones property, interval graphs,
and planarity using PQ-tree algorithms, J. Comput. System Sci., 13 (1976), pp. 335-379.

[8] A. V. CARRANO, Establishing the order of human chromosome-specific DNA fragments, in
Biotechnology and the Human Genome, A. D. Woodhead and B. J. Barnhart, eds., Plenum
Press, New York, 1988, pp. 37-50.

[9] E. CUTHILL AND J. MCKEE, Reducing the bandwidth of sparse symmetric matrices, in Proc.
24th National Conference of the Association for Computing Machinery, Association for
Computing Machinery, New York, 1969, pp. 157-172.

[10] X. DENG, P. HELL, AND J. HUANG, Linear-time representation algorithms for proper circular-
arc graphs and proper interval graphs, Technical Report, School of Computing Science,
Simon Fraser University, Burnaby, BC, Canada, 1993; SIAM J. Comput., 25 (1996), pp.
390-403.

[11] R. G. DOWNEY AND M. R. FELLOWS, Fixed-parameter intractability, in Proc. Structures, IEEE
Press, Los Alamitos, CA, 1992, pp. 36-49.

[12] ., Fixed-parameter tractability and completeness III: Some structural aspects of the W
hierarchy, in Complexity Theory: Current Research (Proc. 1992 Dagstuhl Workshop on
Structural Complexity), K. Ambos-Spies, S. Homer, and U. SchSning, eds., Cambridge
University Press, Cambridge, UK, 1993, pp. 191-226.

[13] M. R. FELLOWS, M. T. HALLET, AND g. T. WAREHAM, DNA physical mapping: Three ways
difficult, in Proc. European Symposium on Algorithms (ESA ’93), Lecture Notes in Comput.
Sci. 726, Springer-Verlag, Berlin, New York, Heidelberg, 1993, pp. 157-168.

[14] M. R. FELLOWS AND M. A. LANGSTON, Nonconstructive advances in polynomial time complex-
ity, Inform. Process Lett., 26 (1987), pp. 157-162.

[15] , On well-partial-order theory and its application to combinatorial problems of VLSI
design, SIAM J. Discrete Math., 5 (1992), pp. 117-126.

PROPER INTERVAL GRAPH COMPLETION PROBLEMS 561

[16] M. R. GAREY, R. L. GRAHAM, D. S. JOHNSON, AND D. E. KNUTH, Complexity results for
bandwidth minimization. SIAM J. Appl. Math., 34 (1978), pp. 477-495.

[17] M. R. GAREY AND D. S. JOHNSON, Computers and Intractability: A Guide to the Theory of
NP-Completeness, W. H. Freeman, San Francisco, 1979.

[18] P. W. GOLDBERG, M. C. GOLUMBIC, H. KAPLAN, AND R. SHAMIR, Four strikes against physical
mapping of DNA, J. Comput. Biol., 2 (1995), pp. 139-152.

[19] M. C. GOLUMBIC, Algorithmic Graph Theory and Perfect Graphs, Academic Press, New York,
1980.

[20] M. C. GOLUMBIC, H. KAPLAN, AND R. SHAMIR, Graph sandwich problems, J. Algorithms, 19
(), .

[21] , On the complexity of DNA physical mapping, Adv. Appl. Math., 15 (1994), pp. 251-261.
[22] M. C. GOLUMBIC AND R. SHAMIR, Complexity and algorithms for reasoning about time: A

graph-theoretic approach, J. Assoc. Comput. Mach., 40 (1993), pp. 1108-1133.
[23] E. GuahaI AND I. U. SUDBOROUGH, Improved dynamic programming algorithms for the band-

width minimization and the mincut linear arrangement problem, J. Algorithms, 5 (1984),
pp. 531-546.

[24] J. GUSTEDT, On the pathwidth of chordal graphs, Technical Report, Fachbereich Mathematik,
Technische Universitit Berlin, Berlin, Germany, 1992; Discrete Math., to appear.

[25] H. KAPLAN, R. SHAMIR, AND R. E. TAaJAN, Tractability of parameterized completion problems
on chordal and interval graphs: Minimum fill-in and physical mapping (extended abstract),
in Proc. 35th Symposium on Foundations of Computer Science, IEEE Press, Los Alamitos,
CA, 1994, pp. 780-791.

[26] R. M. KARP, Mapping the genome: Some combinatorial problems arising in molecular biol-
ogy, in Proc. 25th Symposium of the Theory of Computing, Association for Computing
Machinery, New York, 1993, pp. 278-285.

[27] T. KASHIWABARA AND T. FUJISAWA, An NP-complete problem on interval graphs, in Proc. 12th
IEEE Symposium of Circuits and Systems, IEEE Press, Piscataway, NJ, 1979, pp. 82-83.

[28] , NP-completeness of the problem of finding a minimum-clique-number interval graph
containing a given graph as a subgraph, in Proc. 12th IEEE Symposium of Circuits and
Systems, IEEE Press, Piscataway, NJ, 1979, pp. 657-660.

[29] L. M. KIROUSIS AND C. H. PAPADIMITRIOU, Searching and pebbling, Theoret. Comput. Sci., 47
(1986), pp. 205-218.

[30] T. KLOKS, Treewidth, Ph.D. thesis, Computer Science Department, Utrecht University, Utrecht,
The Netherlands, 1993.

[31] Y. KOHARA, K. AKIYAMA, AND K. ISONO, The physical map of the whole E. coli chromosome:
Application of a new strategy for rapid analysis and sorting of large genomic libraries,
Cell, 50 (1987), pp. 495-508.

[32] N. KORTE AND R. U. MSHRING An incremental linear time algorithm for recognizing interval
graphs, SIAM J. Comput., 18 (1989), pp. 68-81.

[33] R. H. MSHRING, Graph problems related to gate matrix layout and PLA folding, in Computa-
tional Graph Theory, Computing Supplement 7, G. Tinhofer et al., eds., Springer, Vienna,
1990, pp. 17-51.

[34] B. MONIEN, The bandwidth minimization problem for caterpillars with hair length 3 is NP-
complete, SIAM J. Algebraic Discrete Meth., 7 (1986), pp. 505-512.

[35] B. MONIEN AND I. H. SUDBOROUGH, Min cut is NP-complete for edge weighted trees, Theoret.
Comput. Sci., 58 (1988), pp. 209-229.

[36] R. NAGARAJA, Current approaches to long-range physical mapping of the human genome, in
Techniques for the Analysis of Complex Genomes, R. Anand, ed., Academic Press, London,
1992, pp. 1-18.

[37] M. V. OLSON ET AL, Random-clone strategy for genomic restriction mapping in yeast, Proc.
Nat. Acad. Sci. U.S.A., 83 (1986), pp. 7826-7830.

[38] F. S. ROBERTS, Discrete Mathematical Models, with Applications to Social Biological and En-
vironmental Problems. Prentice-Hall, Englewood Cliffs, NJ, 1976.

[39] N. ROBERTSON AND P. D. SEYMOUR, Graph minors I: Excluding a forest, J. Combin. Theory
Her. B, 35 (1983), pp. 39-61.

[40] J. B. SAXE, Dynamic programming algorithms for recognizing small-bandwidth graphs in poly-
nomial time, SIAM J. Algebraic Discrete Meth., 1 (1980), pp. 363-369.

[41] R. E. TARJAN, Depth-first search and linear graph algorithms, SIAM J. Comput., 1 (1972),
pp. 146-160.

SIAM J. COMPUT.
Vol. 25, No. 3, pp. 562-599, June 1996

() 1996 Society for Industrial and Applied Mathematics
OO5

EFFICIENTLY PLANNING COMPLIANT MOTION IN THE PLANE*

J. FRIEDMANt, J. HERSHBERGER:, AND J. SNOEYINK

Abstract. Any practical model of robotic motion must cope with the uncertainty and impre-
cision inherent in real robots. One important model is compliant motion, in which a robot that
encounters an obstacle obliquely may slide along the obstacle. The authors start by investigating the
geometry of compliant motion in the plane under perfect control and find a compact data structure
encoding all paths to a goal. When the authors introduce uncertainty in control and position sensing,
the same data structure allows them to find efficiently a compliant motion that reaches the goal, if
one exists, to compute the boundary of the nondirectional backprojection of the goal, and to com-
pute multistep plans for sensorless robots. This "preprocessing and query" approach has advantages
of speed for online queries and flexibility for considering robots with different capabilities or initial
positions in the same environment.

Key words, computational geometry, compliant motion, path hull data structure

AMS subject classifications. 68U05, 68P05

1. Introduction. Planning the motion of a robot is a practical problem with
many theoretically appealing variants [1, 4, 5, 13, 20, 26, 34]. Given a robot’s initial
and goal position in some environment, there are typically many paths connecting
the initial position and the goal position. The desirability of a path depends not only
on properties of the path (e.g., a shortest path [35] or a high-clearance path [31]) but
also on the control and sensing abilities of the robot.

We investigate a motion paradigm called compliant motion, which is a mathemat-
ical idealization of several robot-control paradigms, including guarded move, general-
ized damper, and sliding mode control [1, Chap. 5]. A robot using compliant motion
follows a "stable" path: even if the robot diverges slightly from the commanded path,
it still reaches the goal. A point moving by compliant motion following a commanded
direction a (with perfect control) travels through free space in direction a until it
encounters an obstacle (see Figure 1). Then it slides along the obstacle until either
friction is too large, or c no longer points into the obstacle. In the former case, it
stops; in the latter, it resumes travel through free space in direction a. This type of
motion enables the robot to "grope" its way towards the goal. In the basic model,
the only way the robot can stop is by getting stuck [8, 9, 12]. In less restricted cases,
some forms of goal sensing are possible [26].

When the robot’s control is imperfect, the actual direction of the motion can
deviate from c. We follow other researchers [8, 11, 26, 27] and assume that the
deviation is bounded by some angle . For a given starting point, we look for all
directions such that any motion whose instantaneous attempted direction deviates
less than e from the commanded direction is guaranteed to reach the goal.

Sliding on a boundary wall is "stable," since there is a range of directions that
forces the robot to slide in the same way along that wall. Given a robot’s control-

Received by the editors February 15, 1994; accepted for publication (in revised form) October
6, 1994. This research was supported in part by Digital Equipment Corporation Systems Research
Center. Preliminary versions of the material in this paper appeared in the 1989 ACM Symposium on
Computational Geometry [15] and in the 1990 Scandinavian Workshop on Algorithm Theory [16].

D. E. Shaw and Company, New York, NY 10036.
Mentor Graphics, 1001 Ridder Park Drive, San Jose, CA 95131.
Department of Computer Science, University of British Columbia, Vancouver, BC V6T 1Z4,

Canada. The research of this author was supported in part by an NSERC Research Grant and a
fellowship from the British Columbia Advanced Systems Institute.

562

COMPLIANT MOTION IN THE PLANE 563

FIG. 1. Compliant motion.

uncertainty parameter , it may be possible to ensure that the robot always slides left
(or right) along any particular wall that it encounters. Thus, it is sometimes possible
to find a stable commanded direction that gets the robot all the way from the starting
point to the goal. When there is no stable direction by which the robot can reach the
goal, we may wish to outline a plan, which specifies a number of subgoals (regions of
the environment), each one directly attainable from the previous one, that eventually
leads to the goal. We would like to find a plan that contains as few subgoals as
possible.

1.1. Previous work. In three-dimensional space, compliant motion planning is
a provably difficult problem. It is hard for PSPACE [30] and for NEXPTIME [5].
Although work has been done on this problem [3], most results, including our own,
deal with the more tractable case of compliant motion in the plane.

Lozano-Perez, Mason, and Taylor [27] describe the preirnage backchaining ap-
proach to compliant motion planning. Their idea is to compute the preimage or
backprojection of the goal--the set of points in the environment from which the robot
can reach the goal by following a single direction command. They treat the preimage
as a new goal and compute its preimage. The second preimage contains all points
that require a two-step plan to reach the original goal. They repeat this process until
a region is found that contains the current position of the robot.

Erdmann [11] and Donald [8] describe algorithms for computing a directional
backprojection: the set of points that reaches the goal by one motion in a given
direction a with a given control uncertainly e. Their algorithms run in O(n log n)
time and O(n) space for an environment composed of n line segments (of size n) and
a goal of constant size. Latombe [26] surveys these algorithms and other issues and
approaches.

When the direction a is not given, Donald [9] presents an O(n4 log n) algorithm
for the one-step case, and an O(nr(1)) algorithm for the r-step case, in which each
motion terminates with the robot getting stuck. Briggs [2] improves the single-step
bound to O(n2 log n).

1.2. Contributions of this paper. Our approach emphasizes two features:
query formulations, and late introduction of control uncertainty.

Query formulations of motion planning problems are based on the assumption that
the robot moves repeatedly in the same environment. We divide the problem into two
phases: preprocessing of the environment, and queries of the form "In what directions
can a robot at a point p reach the goal?" For an environment with k polygonal
obstacles, whose total number of vertices is n, the preprocessing time is O(kn log n)
and the query time is O(k log n). Even if used for a single query, the dependence on

564 J. FRIEDMAN, J. HERSHBERGER, AND J. SNOEYINK

kn (rather than on n2) allows us to describe the obstacles in greater detail, using more
points, without having to pay the quadratic cost of Briggs’ method [2]. For multiple
queries the savings is even greater.

We assume perfect control in the preprocessing phase and build data structures
that efficiently encode the entire set of paths to the goal from every point in the
polygon. The magnitude of the control uncertainty is part of our query data. This
allows us to change the control uncertainty of the robot dynamically, or to consider
multiple robots with different control capabilities and positions, without recomputing
the data structures that support compliant motion calculations. For a starting point
given at query time, we can also compute the maximum possible control uncertainty
under which we can still guarantee that the robot reaches the goal. This does not
increase the query time.

Our basic algorithm for the single-step planning problem has a number of ap-
plications and extensions. First, we can construct the boundary of the region from
which a robot with imperfect control can reach the goal in a single step in O(kn log n)
time. Second, we can answer queries that specify, instead of a starting point, a region
guaranteed to contain the robot’s starting position. We return the set of directions in
which the robot can reach the goal no matter where in the region it starts. The query
time is at most O(kn), but is typically less. Third, we show how to extend our one-
step results to the case of sensorless robots (robots that must stick at the goal) with no
change to the algorithms, data structures, or running times. Finally, we consider two
polynomial variants of the multistep planning problem: we solve a restricted version
of the multistep planning problem for sensorless robots using O(kn2 log n) prepro-
cessing, O(kn2) space, and O(kn log n) query time, improving Donald’s exponential
bound [9] in this special case. When k 1, we show how to solve the multistep
problem for robots with perfect control and sensing with no change to the single-step
complexity.

We employ a novel data structure called a path hull, which represents the convex
hull of a simple polygonal chain (a path). Using the path hull data structure, one
can find a tangent to the convex hull of the path, either from a point or parallel to a

given line, in O(log n) time. Path hulls also support sequences of common maintenance
operations at an amortized cost of O(log n) per operation. These sequences can consist
of additions and deletions at the end of the path, and either path splits or joins (but
not both splits and joins in the same sequence). We believe that path hulls are of
independent interest.

The remainder of the paper is organized as follows. In the next section, we define
our problem more precisely, and investigate the theoretical properties of compliant
motion that we use in the algorithms. For clarity of the presentation, we describe
the main algorithm in two steps. In 3 we present the algorithm for the special case
in which the environment has no isolated obstacles (in other words, the environment
is the interior of a simple polygon) and prove its correctness. In 4 we show how to
extend the algorithm to the general case. In 5 we address the issues of imperfect
control and position sensing, as well as the other applications of the basic algorithm.
Section 6 describes in detail the path hull data structure used by the algorithms. We
conclude in 7 with an open problem.

2. Fundamentals of compliant motion. In this section we define compliant
motion and establish fundamental properties of paths followed by a robot doing com-
pliant motion. We also investigate the a-backprojection, which is the set of points
that reaches the goal when commanded to move in direction

COMPLIANT MOTION IN THE PLANE 565

Environment/
Intedor

a
zone

FIG. 2. A friction cone.

We first define notation. If a and b are points, we denote the direction from a
to b by ab. If c is a direction, then c+/- is the direction 90 counterclockwise from
and -c is the reverse direction. If a and/ are directions, then the interval (c,
denotes the range of directions from a counterclockwise to/. We later define a special
direction 0 such that c < fl means that [(, fl] does not contain direction 0. If is an
angle, then c + e is the direction counterclockwise from c. We use a+ to represent
a direction that is infinitesimally counterclockwise from c, so that if c+ _< / then
c </. Similarly, c- denotes a direction that is infinitesimally clockwise from a.

When the direction c is fixed within a given context, we generally choose the
coordinate system so that c is parallel to the vector (0,-1), and we say that c is
pointing down. Within this frame of reference, the up direction is -(, the right
direction is c+/-, and the left direction is -a+/-.

2.1. Compliant motion trails. The environment, which we call P, is described
by a set of k disjoint simple polygons that has a total of n vertices. Without loss of
generality, we assume that one of the polygons, called the outside polygon, contains
all the other polygons, called the islands. (We can always place a bounding polygon
of constant complexity around an environment that has only islands, and ensure that
the algorithm never uses the new walls for sliding.) The interior of the environment
is the interior of the outside polygon excluding the islands. None of the islands needs
contain any other island.

In this paper, the robot is a point. One can reduce more general robots to
point robots by the configuration space approach of Lozano-Prez and Wesley [28],
in which a nonrotating convex robot corresponds to a reference point moving among
configuration-space obstacles, and the configuration space can be computed in time
linear in the size of the original environment (assuming the complexity of the robot
itself is constant). The robot always moves through the interior of the environment,
which we refer to as free space, or slides along a boundary edge of the environment (a
P-edge).

Each P-edge has an associated friction cone that defines the robot’s behavior
when it hits the edge. Let ab be a.P-edge, and assume that__ the interior of the
environment is locally to the left of ab. The friction cone of ab divides the direction
interval [ba, ab] into three zones: zone a, zone b, and the stop zone, which is a closed
interval. (See Figure 2.) Suppose that a robot moving in direction a hits ab. If a is in
zone a, then the robot slides toward a; if a is in zone b, the robot slides toward b; and
if a is in the stop zone, then the robot is stopped by friction when it hits ab. Note
that we do not require the friction cones to be symmetric, nor even require the stop
zone to include the normal to ab. When the stop zone does not contain the normal,
the P-edge acts as a conveyor belt."

When a robot sliding along a P-edge reaches an endpoint, it does one of three
things: slides along an adjacent P-edge, leaves the boundary and goes into free space,

566 J. FRIEDMAN, J. HERSHBERGER, AND J. SNOEYINK

or gets stuck. Suppose that ab and bc are two adjacent P-edges, and the robot has
just finished sliding along ab toward b. If the commanded direction a falls in zone c
of P-edge bc, then the robot continues to slide. If a does not point into bc, then the
robot goes into free space at b, following direction a. Otherwise, the robot gets stuck
at b, and we say that b is a sticky vertex. A vertex may also be sticky if the robot
reaches it from free space: if the robot slides to a on ab and to c on bc then b is also
considered sticky.

We introduce uncertainty in control in 5.1; before then, we assume perfect con-
trol. A starting point p and a commanded direction a define a unique path (a sequence
of directed segments) that the robot follows, which we call a trail and denote by T(p).
When there is no ambiguity, we may use T instead of T(p).

The preprocessing phase of our algorithm works with a fixed goal on the boundary
of the environment. Throughout the rest of this paper, we assume that the goal is
a vertex g; however, our results also hold for a goal that is a P-edge. When T(p)
contains g, we say that "c is a good direction for p."

We conclude this section with two properties of compliant motion trails. The
first is Observation 2.1, which is in the spirit of the "kinetic framework" of Guibas,
Ramshaw, and Stolfi [19].

OBSERVATION 2.1. Let the commanded direction point vertically downward. If
the leftmost (rightmost) segment along T is not the first or last segment, then is
vertical and is directed down.

Proof. If s and t are segments along T, and s has a positive horizontal component
("s is sloping to the right") while t has a negative horizontal component ("t is sloping
to the left"), then there exists a free-space segment u along T between s and t
(otherwise, there would be a sticky vertex in the middle of the trail). All free, space
segments in T are directed down.

LEMMA 2.2. The trail T has no loops.
Proof. Suppose that T has a loop. If T goes counterclockwise around the loop,

then T must be directed up through the rightmost portion of the loop; if T goes
clockwise around the loop, then T must be directed up through the leftmost portion
of the loop. In either case, we get a contradiction with Observation 2.1.

2.2. The -backprojection. Let c be a given direction. The a-backprojection,
denoted by B, is the set of all points p for which c is a good direction. The c-
backprojection plays an important role in our algorithms for compliant motion plan-
ning. In this section, we gain more insight into the structure of B.

Since c is fixed within the context of this section, we can assume that c points
vertically downward. Thus we say that a point p is above point q when the vector
has direction c. A P-edge ab of P is called slidable towards a if a is in zone a of ab.

Figure 3 shows an example of an c-backprojection. In this figure, and in all the
examples throughout this paper, the friction cones are the edge normals unless we
explicitly state otherwise. Note that the boundary of B is composed of portions
of P-edges and edges that extend through the free space of P. By the definition of
sticky vertices (see 2.1 above), the free-space edges on the boundary of B are not
part of B. (In the degenerate cases in which either of the P-edges incident to g is
not slidable towards g, the free-space edge extending from g is part of B.) On the
other hand, the P-edges on the boundary of B are part of B.

Note that the a-backprojection is "almost" a simple polygon. Although some
of the free-space edges that extend from islands have points of B on both sides,
these free-space edges are not part of B and therefore the islands are not completely

COMPLIANT MOTION IN THE PLANE 567

FIG. 3. The a-backprojection

surrounded by B.
These properties hold not only for the example, but also for the general case,

as we show in Lemma 2.4. For that proof only, we use the following definition and
lemma.

The upper envelope of an island 27 is the set of boundary points of 27 with no
points of 27 above them (with respect to a direction a). We can classify points p of
the upper envelope of an island 27 into three categories:

(i) Left-inclined: p is in B, and the robot slides left through p (c is pointing
down).

(ii) Uninclined: p is not in Ba, or p is the goal g.
(iii) Right-inclined: p is in B, and the robot slides right through p.
LEMMA 2.3. The upper envelope of an island :Y contains at least one uninclined

point.
Proof. Let be the leftmost point of 27, and r be the rightmost point. Let C be

the polygonal chain of the boundary of 2" counterclockwise from r to l, and let U be
the upper envelope of -. The points of U are a subset of the points of C, and form
intervals along the chain C.

If is uninclined, we’re done; otherwise, must be left-inclined. (If 27 contains g,
then both and r are uninclined.) If r is uninclined, we’re also done, so r must be
right-inclined. The points along U cannot change from left-inclined to right-inclined
without having an uninclined point in between, and since neither category is empty,
this proves the existence of an uninclined point.

LEMMA 2.4. The c-backprojection is a simply-connected subset of P whose inte-
riot is bounded by straight line segments. Each edge on the boundary ofB is one of
three types:

Bottom edges: P-edges that have the interior of P locally above them;
Top edges: portions of P-edges that have the interior of P locally below them;
Free-space edges: edges that extend from a P-vertex upward all the way through
the interior of P.
Proof. The a-backprojection is connected because every point p in Ba has a path

connecting p to g. We prove that B is simply connected by showing that every simple
loop t in B is contractible to a point.

Notice that every maximal vertical segment in P that intersects t C B is in B.
If t contains no islands then these vertical segments cannot end inside t. Thus, t can
be contracted to a point in its interior, which is in B.

568 J. FRIEDMAN, J. HERSHBERGER, AND J. SNOEYINK

On the other hand, any simple loop t that contains an island contains an un-
inclined point on the upper envelope of each island. These upper envelopes, being
monotone curves with respect to a+/-, can be ordered consistently with aboveness in
direction a. Then there is a point p E g that is directly above an uninclined point on
the uppermost curve, so p is not in Ba.

Since every point p E Ba implies that every vertical segment in P that passes
through p is also in Ba, the free-space edges on the boundary of Ba must be parallel to
a and extend all the way through the interior of P. The remaining edges of B must
be P-edges; P-edges on which the robot slides are included in Ba in their entirety.

Another way of looking at the structure of B is more suitable for computing
it. Consider the partition of P into trapezoids using the a-visibility graph [14].
Lemma 2.4 implies that every trapezoidal face and every vertical edge is either com-
pletely included or completely excluded from B.

LEMMA 2.5. Consider the directed graph G (V, E), where
the nodes V consist of the trapezoids of the a-backprojection, plus the goal g, and
there is an arc from u to v if points of v slide into u.

Then G is a tree (rooted at g).
Proof. G is connected, by Lemma 2.4. Points of each trapezoid slide into exactly

one other trapezoid (or into g), so G is either a tree or contains a directed cycle. If G
contained a cycle, we could exhibit a loop trail, contradicting Lemma 2.2.

The algorithms that we present in 3 and 4 use a triangulation of the environ-
ment P, that is, a partition of the interior of P into triangles whose vertices are
P-vertices [33]. The following lemma will be used to help bound the working storage
used by these algorithms.

LEMMA 2.6. For a fixed triangulation of the environment P, every triangulation
edge intersects B in at most k segments. (Recall that k is the number of disjoint
simple polygons describing the environment.)

Proof. First we prove a slightly stronger claim for the simple polygon case (k 1):
if points p and q are in B, and the segment - is in free space, then the whole segment
p- is in B. Without loss of generality, assume that p is to the left of q. Let p be
the first boundary point that T(p) hits, and let q be the first boundary point that
T(q) hits. Let C be the portion of the boundary counterclockwise from p to q.
The polygon Q bounded by -, pp, C, and qq is completely contained inside the
environment. Now, any point r on the upper envelope U of C is along T(p) or T(q)
or both, since if there were a point r on U not on either trail, the ray from r in
direction -a would break Q into two disjoint pieces with T(p) confined to one piece
and T(q) confined to the other. Because both trails are known to reach the same
point g, the claim follows.

We can reduce the general case in which the outside polygon contains k-1 islands
to the simple polygon case. It follows from Lemma 2.4 that every island has a ray
extending from the island through free space in direction -a that is not contained
in the a-backprojection. If we cut tunnels in the environment along these rays, we
connect all the islands to the outside polygon without changing the a-backprojection.
These tunnels divide each triangulation edge into at most k segments, and by the
claim above, each such segment intersects the a-backprojection in at most one inter-
val.

2.3. The noncrossing theorem. We now state the key property of compliant
motion paths that holds whether or not the environment has islands, and for arbitrary
friction cones. Given two directions a and/, the trails T(p) and Tz(p) start together

COMPLIANT MOTION IN THE PLANE 569

at p and may touch at other points but never cross. The following theorem establishes
this result by extending one trail to cut the plane into two pieces and showing that
the other trail remains in one piece.

THEOREM 2.7. Let p be a point in the environment, and let (and be directions.
Then there is a biinfinite polygonal curve F that does not cross itself (it may touch
itself without crossing), such that

Ta is contained in F, and

TZ is contained in the closure of exactly one of the open sets into which F partitions
the plane.
The proof is lengthy and only Theorem 2.7 itself is used elsewhere in this paper.

It may be easier to skim this section at first reading and return to it after acquiring
a better feel for compliant motion.

To construct F we concatenate stabbing trails Ta and T-a, where the stabbing
trail T for direction ? is an infinite extension of the compliant motion trail T defined
in the next paragraph and Table 1.

For this section only, split every P-edge lengthwise into two--an internal and an
external edge. Give external edges a friction cone that is a 180 rotation of the corre-
sponding internal edge friction cone. This determines the behavior of a hypothetical
robot hitting the P-edge from the environment exterior. (The real robot cannot do
this, of course.) The stabbing trail T(p) starts off by tracing the compliant motion
of a robot starting at point p with commanded direction -. Whenever the compliant
motion terminates at a sticky point q on a P-edge or a vertex, the stabbing trail
proceeds as described in Table 1. (The first and second cases are relatively natural;
we shall see later why the third case is different.)

TABLE
The stabbing trail T encounters a sticky point q.

Case Example Action

q is on a P-edge.

q is a sticky vertex
reached from free
space.

q is a sticky vertex
reached by sliding
along incident
P-edge e.

The motion switches sides between
the interior and exterior sides of the
P-edge.

We resume the motion at q. (Mo-
tion may resume in the interior or

exterior.)

We interrupt the sliding at a point
q along e that is infinitesimally close
to q.a We then switch between inte-
rior and exterior at q, and continue.

The stabbing trail T stops at point q along e whose vertical projection (a projection on a line
perpendicular to /) is at a distance less than some 5 from the vertical projection of q. A reasonable
upper bound for 5 is the smallest difference between the vertical projections of any two vertices whose
vertical projections are distinct.

Observation 2,1 holds for stabbing trails, because a stabbing trail is nothing

570 J. FRIEDMAN, J. HERSHBERGER, AND J. SNOEYINK

FIG. 4. Stabbing trails do not meet.

but a regular trail in a modified environment, in which the original P-edges are
duplicated and infinitesimal holes are placed where a stabbing trail goes through a
wall. Lemma 2.2 holds for stabbing trails for the same reason, applying the additional
fact that a stabbing trail Can slide only along one side (either the interior or the
exterior) of any given edge. At some point, the stabbing trail crosses the boundary
of the outside polygon for the last time and continues in a straight line to infinity.

The crux of the proof of Theorem^2.7 is the fo^llowing lemma.
LEMMA 2.8. The stabbing trails T_(p) and T(p) share no points other than p.

Proof. We prove the lemma by assuming that T_a and T do meet and by deriving
a contradiction. Let q be the first point (after p) along T_ that is also on T. Denote
the portion of T_ between p and q by A, and the portion of T between p and q by
B. Since q is the first meeting point, A and B share p and q, but no other points.

When A and B separate at p, A goes "up" and B goes "down." More precisely,
there is a line ap through p (ap is not necessarily horizontal) such that in the vicinity
of p, A is above ap and B is below ap. (We may take ap to be the angular bisector of
the initial segments of A and B.)

Observation 2.1 applies to the partial trails A and B--namely, rightmost and
leftmost points, r and l, on A t2 B are p or q or appear on free-space edges going up
on A or going down on B. We look at the cases for these extreme points and show
that A and B must intersect. This contradiction establishes the lemma.

First, suppose that neither r nor is the point q. If both r and come from one
trail, say A, then the portion of A between r and separates p below from q above
because A remains between r and l, goes up at both r and l, and has no loops. But
B also remains between r and and must therefore cross A to connect p to q. On
the other hand, if r comes from A and comes from B, then consider where q is with
respect to the path r from r to that follows A to p and B to 1. If q is above, then
B must cross r from below to reach q; if q is below, then A must cross r from above.

Next, suppose that r q. An analysis like the one above shows that no matter
whether the leftmost point is on A, is on B,r is p, the ath A must reach q from
above and B from below. But then the trails T_(p) and T(p) must both be sliding
towards q on edges that meet at a vertex at q. As illustrated in Figure 4, however, q
is a sticky vertex for both trails, and the stabbing trails would pierce their respective
edges according to line 3 in Table 1, before reaching q. This contradicts their supposed
behavior. Vl

As we mentioned at the beginning of the section, we would like to use the con-
catenation of T and T_ as our F. However, we want T to be completely contained
in F, which is not the case if 5 > 0 (see footnote a at the bottom of Table 1). Thus
we let 5 -- 0. This may cause F to become a nonsimple curve. Figure 4 shows that
if 5 0, the two stabbing trails may touch each other at a sticky vertex and then
separate. The following lemma helps characterize the points where F touches itself.

LEMMA 2.9. Let " be an arbitrary direction, and let v be a point on the boundary

COMPLIANT MOTION IN THE PLANE 571

Environment

at?Zv
FIG. 5. v is sticky for and-’.

of the environment that is sticky for both direction 7 and direction -7. Then v is
sticky for any direction that reaches v (from another point in the environment).

Proof. Every P-edge can affect only one of the directions 7 or -7, and therefore
v has to be a vertex. Furthermore, 7 has to point into one of the P-edges incident
to v, and -7 has to point into the other P-edge. This leaves only one possibility, as
shown in Figure 5: is a conveyor belt at least strong enough to carry -7 into v,
and bv is a conveyor belt that carries 7 into v.

Directions in zone I are forced by -7 to slide along -, and cannot slide out of
v along vb. Similarly, directions in zone III are forced by 7 to slide along bv and are
not affected by -. Directions in zone H are forced by both P-edges to slide into v.
Finally, any other direction that reaches v has to be either between -7 and - but
still slide towards v, or be between 7 and vb but still slide towards v; in both cases
the direction cannot slide out of v along the other P-edge. El

Lemma 2.9 implies that with F set to be the concatenation of the two stabbing
trails Ta and T-a (where 5 0), T can touch only one of the vertices where F touches
itself (and terminate there), and TZ slides along at most one of the edges incident to
that vertex.

LEMMA 2.10. Let F be the concatenation of the stabbing trails Ta and T-a, with
O. The trail T never crosses F.
Proof. When 5 > 0, the simply connected polygonal chain F divides the plane

into two parts, the "left" and the "right" parts (when c points down). The left half
is locally on the right of Ta (when looking in the direction of progress of Ta), and
locally on the left of T-a. When 5 0, there may be more than two regions. We
label the regions "left" and "right" by continuity as 5 0.

Looking along TZ, starting from p, we can see two kinds of "events," a separation.

T separates from F (either at p, or after a common segment), and a meetingT
runs into F. The first event is a separation. Without loss of generality, we can assume
that TZ goes to the right side of F at that point (so fl is in the range counterclockwise
from a to -a). We prove the following three claims by induction on the events:

(1) All meetings occur along P-edges.
(2) If a point q : p on a P-edge e is common to both TZ and F, then TZ slides

along e through q in the same direction as F (recall that t any point, F
is either

(3) At a separation, T always splits off to the right side of F (meaning locally
to the left of Ta and locally to the right of T-a).

Base case. The first event: claims (1) and (2) are trivially true, and claim (3) is
true by assumption.

Induction step. Suppose that all three claims are true for the portion of TZ
between p and the jth event (the old event), and prove that the three claims hold for
the portion between the jth and the (j + 1)th event (the new event).

572 J. FRIEDMAN, J. HERSHBERGER, AND J. SNOEYINK

Case 1. The old event is a separation. We have to prove claims (1) and (2) for
the new event in this case. By the induction hypothesis, TZ splits off to the right
side of F. Since F goes to infinity at both ends, T stays on the right side until the
new meeting. A free-space meeting cannot happen, since at a free-space meeting TZ
crosses from the left side of F to the right side, so claim (1) is true at the new meeting:
the meeting occurs at a point q along a P-edge e. At the meeting point q, exactly
one of TZ or F reaches q from free space (one has to reach q from free space, or else
it would not be an event; and by the argument of the previous sentence (the same
argument that rules out free-space meetings), both cannot reach q from free space).

We divide Case 1 into the following subcases.
Case la. T reaches q from free space. First suppose that T hits Ta. If Ta is

sliding to the left (when c is pointing down) then TZ has to reach q from the left side
of F, since/3 is counterclockwise from a (see Figure 6), but this is a contradiction of
the induction hypothesis, so Ta slides to the right. Now, since c is in the right-sliding
zone of edge e, and/3 is counterclockwise^ from c, is also in the right-sliding zone.
Similarly, we can prove that if TZ hits T-a, then T-a has to be sliding right, which
forces TZ to slide right, too.

Case lb. TZ slides into q. This is essentially the same as Case la, except that a
and/3 switch roles (/3 is counterclockwise from a).

left iJ e

side ""./" right

-.T side

FIG. 6. Trail To never crosses F: induction cases la and 2b.

Case 2. The old event is a meeting. We have to prove claim (2) for the common
portion of TZ and F, and claim (3) for the new event.

We prove claim (2) by a new induction on the number of edges in the common
portion. The base case is by the main induction hypothesis of this 2roof. For the
induction step, if TZ keeps on sliding along F, we use the fact that Ta continues to
slide right and T-a continues to slide left (see Case 1 above) to conclude that they
still force TZ to slide along with them. We omit the details for brevity.

For claim (3), we have a few subcases.
Case 2a. Both trails go into free space. By our initial assumption, TZ splits off

counterclockwise of Ta and clockwise of T-a, so in both cases TZ splits off to the right
side of F.

Case 2b. TZ goes into free space. First suppose that prior to the separation, TZ
was sliding together with Ta. It is not hard to verify that the only way TZ can go into

free space and leave Ta sliding is if both trails were sliding to the right.: This way,
the environment interior was on the left-hand side when looking down Ta. Since TZ
split into free space it must have turned to the left-hand side when looki^ng down Ta,
which is the right side of F. (See Figure 6.) Similarly, when TZ leaves T-a, it turns
to the right-hand side when looking down T-a, which is again the right side of F.

COMPLIANT MOTION IN THE PLANE 573

Case 2c. F goes into free space, but not through a puncture (see Table 1, line 3).
This case is similar to] Case 2b.

Case 2d. F goes into free space through a puncture. Either TZ stops at the
meeting point q, or it does not and only one of Ta and T-a reaches q (Lemma 2.9).
In the latter case TZ and Ta (or T-a) are sliding to the right (else TZ would stop at
q). When Ta (T-a) goes through the puncture at q, TZ continues to travel right, and
hence splits off to the right side of F.

This concludes the proof of Theorem 2.7, the noncrossing theorem.

2.4. Properties of regions bounded by trails. It follows from Theorem 2.7
and Lemma 2.2 that if q is any common point of Ta and T other than p, then there
are points sl, s2, ..., sj and tl, t2, tj, all common to Ta and TZ (it is possible
that some of the s’s coincide with some of the t’s), such that

the points appear in the order sl, t, s2, t2, s, ty along both Ta and TZ;
Ta does not touch TZ between s and t, and coincides with TZ between t and
8i+1;

p=slandq=ty.
This means that the portions of Ta and TZ between p and q bound a simply

connected polygonal region Ra,z,q(p). When a and are both good directions (see
2.1) for some point p, we simply write Ra,Z(p) instead of Ra,Z,g(p); when p is fixed,
we may write Ra,z.

The trails Ta and T form the boundary of Ra,. In 4.1, we need to know more
about whether Ta circumnavigates this region clockwise or counterclockwise. To an-
swer this question, we need to define the direction 0 (zero) mentioned at the beginning
of 2. The direction 0 is one that is not good for any point in the environment other
than the goal itself. An example of such a direction is the one that points into the
environment along the bisector of the two P-edges incident to the goal. This direction
does not point into either P-edge incident to g, so a robot following commanded direc-
tion 0 cannot slide along them. Furthermore, in free space locally around g, it points
away from g. Therefore, no compliant motion path with a programmed direction 0
can end at g. The following lemma states a consequence of the definition of direction
0.

LEMMA 2.11. If (< / are good directions for p, then Ta traverses Ra,z coun-
terclockwise (and T traverses it clockwise).

Proof. Consider To(p), the stabbing trail (defined in 2.3) starting at p with
direction 0. Theorem 2.7 guarantees that To(p) does not cross either Ta or TZ. Fur-
thermore, by definition, To(p) does not reach g. Since To is an unbounded path, it
cannot be inside Ra,. It follows that wherever Ta and T separate for the first time
(usually at p), Ra,Z lies in the interval counterclockwise of Ta and clockwise of TZ.
This proves the lemma.

Combining the above properties, we conclude the section with the following the-
orem.

THEOREM 2.12. Let p be a point inside P, and let (< be good directions for
p. Also, assume that Ra,z contains no islands of P. Then every / E [a,] is a good
direction for p. Furthermore, if [c,] is smaller than 180, then every [,] is a
good direction for any q

Proof. We prove the theorem in three steps: first, we prove that every
is good for p; second, we prove that if [a,] is smaller than 180, then a is good for
any point q along Tz(p) and is good for any point q along Ta(p); third, we prove

574 J. FRIEDMAN, J. HERSHBERGER, AND J. SNOEYINK

FIG. 7. q may escape if [c,] > 180, but not if it is less.

that if [a,/] is smaller than 180, then both a and/ are good directions for every
point q inside Ra,Z. The third step gives a polygon Ra,z(q); applying the first step
to it proves the second part of the theorem.

Let be a direction in [a,]. By Lemma 2.11, T starts off by going into Ra,Z.
A case analysis similar to that in the proof of Lemma 2.10 shows that any time T
hits either Ta or TZ, T slides along with them. Since the interior of R,Z is free of
P-edges, T cannot get stuck in the interior of R,. Because compliant motion trails
inside a bounded region are of finite lengths (in fact, if the absolute height of the
region with respect to a is h, and there are n P-edges totalling length l, the trail T
cannot exceed nh + in length), and because the trail T cannot get stuck inside or
on the boundary of R,, it follows that T has to reach g.

Continuing with the second part of the proof, let q be a point along T(p). We
prove the stated claim by induction on the number of times Tz(q) hits T(p). In the
base case, if T(q) does not hit T(p), then T(q) must hit T(p)--this is because R,
is bounded, and T(q) splits off to the left of Ta(p) and therefore into R,Z ([(,] is
smaller than 180), and the interior of R,Z is free of P-edges. Once Tz(q) hits TZ(p),
it follows T(p) all the way to g. For the inductive step, look at the first time Tz(q)
hits Ta(p). This hitting point has to be along a P-edge, and since T(p) slides on
that P-edge, T(q) slides there also. Follow the two trails together until the first time
they separate, and we’ve reduced the number of meetings between Tz(q) and T(p).
The other direction of the claim is symmetric.

For the third part of the proof, let q be an arbitrary point strictly inside R,Z.
Since Ra,z is bounded, when we extend a ray from q in direction -c, we hit the
boundary of Ra,Z, say at point r. This point cannot be along T(p): if r belonged to
Ta(p) then so would q, but we have assumed that q is inside Ra,z. Therefore, r must
lie along Tz(p). Applying the previous step, we conclude that c is good for r, and
therefore good for q.

Remark. If [a,] > 180, then the second part of Theorem 2.12 does not hold.
Figure 7 shows a counterexample. In the figure, the two P-edges incident to the goal
are conveyor belts toward the goal. Direction is bad for the point q.

3. The simple polygon algorithm. In this section we restrict ourselves to
the case k 1, namely, to environments that have no islands. We present an algo-
rithm for single-step, perfect-control, perfect-sensing compliant motion planning for
an environment with n vertices and a goal vertex g. The algorithm spends O(n log n)
preprocessing time to produce a linear-size data structure that represents the non-
directional backprojection, which is the union of the a-backprojections for all a. This
data structure subsequently enables us to produce a "single-step plan" (i.e., report
all the good directions), once the starting point p is given, in O(logn) time.

Theorem 2.12 says that if P contains no islands, then the good directions of every
point p inside P form a single range, bounded by the directions start(p) and stop(p).

COMPLIANT MOTION IN THE PLANE 575

This range is empty for points that cannot reach the goal in a single compliant motion.
If we can compute the functions start(p) and stop(p) for any given point p, we can
easily answer queries for the one-step compliant motion planning problem.

In this section, we show how to compute two subdivisions of P, called the start and
stop subdivisions, that correspond to the two functions. Each subdivision partitions
the nondirectional backprojection into O(n) triangles and trapezoids. Each triangle
or trapezoid groups together points for which we compute the corresponding function
in a uniform way. By performing a point location in each subdivision, we can in
O(log n) time locate the region that contains a query point, and then compute the
value of the corresponding function in constant time. Once a triangulation of P is
given, we compute the subdivisions in linear space and O(-log n) time, where - is the
number of triangulation edges that intersect the nondirectional backprojection. (We
can compute a triangulation of a simple polygon in O(n log n) time [17], or in linear
time by a more complex algorithm [6].)

In 3.1, we describe an algorithm that computes the c-backprojection" the set of
all points for which c is a good direction. This is easily done by sweeping through
the trapezoidation given by the c-visibility map; we show how to use an extension
of the path hull data structure of Dobkin et al. [7] to perform the sweep without the
trapezoidation. Path hulls are described in detail in 6. This algorithm is used as a
subroutine in constructing the nondirectional backprojection.

Sections 3.2 through 3.4 describe and analyze the rotation algorithm for comput-
ing the start and stop subdivisions that represent the nondirectional backprojection.
The idea is to maintain the -backprojection B as c rotates.

Most of the time (informally speaking) we can rotate a slightly without changing
B significantly: only the free-space edges bounding B rotate. We distinguish two
types of free-space edges: the leading free-space edges sweep over new points and
the trailing free-space edges sweep over points that leave the a-backprojection as a
turns counterclockwise. For some a’s, which we call events, the structure of B may
change more dramatically. Events occur when a rotating free-space edge hits a vertex,
a P-edge starts or stops being slidable, or an edge turns over and goes from top to
bottom. We maintain the directions of events in a priority queue. While the queue
is not empty, the algorithm rotates the current direction a until just past the first
scheduled event. Processing the event involves updating B and the list of events.
Again, path hulls are used to detect events.

3.1. Computing the c-backprojection If we decompose P into trapezoids
with sides parallel to (by cutting through P at every vertex [32], then the
backprojection consists of a subset of adjacent trapezoids that form a tree. (See
Lemma 2.5.) We can compute this by sweeping free-space edges, which are the bound-
aries of trapezoids. Starting from the edge into the goal g, we sweep over adjacent
trapezoids whose bases can slide into g.

Because a triangulation can be converted into a trapezoidation in linear time [14],
we could also use a trapezoid algorithm to compute an a-backprojection given a
triangulation. (A different approach is. developed by Heffernan and Mitchell [21],
who obtain an c-backprojection in linear time without using a trapezoidation or
triangulation.)

We can also compute backprojection Ba by a sweep algorithm based on a triangu-
lation of P rather than on a trapezoidation. The primary advantage of this algorithm
is that it allows us to consider rotating c without the need to maintain a trapezoid-
ation parallel to c. It also can be slightly more efficientJit can be implemented to

576 J. FRIEDMAN, J. HERSHBERGER, AND J. SNOEYINK

FIG. 8. f encounters a vertex v at its base, middle, or top.

compute Ba in time proportional to the number of triangles that intersect B, which
we denote -. (Because we are anticipating the rotation algorithm, we describe an
implementation that is suboptimal for computing B by a factor of O(log n).)

Let us assume that c is directed vertically downward for the description of this
algorithm. We begin our sweep by erecting two free-space edges, one moving left and
one moving right, by walking upward from the goal g through triangles of P.

To sweep, consider how a free-space edge f that is moving left might encounter
a vertex v: either at its base, in the middle, or at the top, as illustrated in Figure 8.
Edges moving right are handled in a symmetric fashion.

If f encounters v at its base and the P-edge counterclockwise (ccw) from f slides
into v, then f sweeps over v to the next vertex, adding a trapezoid to B. If f
encounters v at its middle, then we split f into two segments. The lower one continues
to sweep left to the next vertex it hits. The upper segment sweeps left if and only if
the P-edge ccw from f is slidable into v. Finally, if f encounters v at the top, then we
have two cases. If one of the P-edges incident to v goes to the left, then f continues
to sweep left. If both P-edges incident to v go right, then we extend f beyond v until
it hits the polygon boundary. We create a new front segment for the upper portion
of f which sweeps right if the upper P-edge incident to v is slidable into v; segment
f continues to sweep left.

Without the trapezoidation, determining the next vertex that the free-space edge
f hits is nontrivial. We define L(f) to be the chain of left endpoints of the trian-
gulation edges that intersect f. The order of the points along L(f) is the order in
which the corresponding edges cross f. Similarly, we define R(f) to be the chain of
right endpoints. Because the triangles that intersect f form a simple polygon, L(f)
and R(f) are simple polygonal chains. The following lemma uses these chains to
characterize the first vertex hit by a free-space edge.

LEMMA 3.1. Let f be a free-space edge that touches P-edges t and b, which extend
to the left of f, and let H be the convex hull of L(f). No polygon vertex lies in the
region bounded by f, t, b, and H. A similar claim holds for R(f).

Proof. Suppose that a vertex v lies strictly inside the region. At least two trian-
gulation edges are incident to v; these edges cannot cross other triangulation edges or

f. If the edges incident to v all intersect the convex hull H, however, then v is a reflex
vertex. Since a triangulation has no reflex vertices, no vertex exists in the region. [:]

Suppose that the free-space edge f moves left. (Moving right is handled sym-
metrically.) The first vertex v that f hits is the tangent to the hull H of L(f). The
algorithm maintains H using the path hull data structure that is described in detail in

6. Here it suices to know that the structure maintains the hull of a polygonal chain
and supports, in amortized logarithmic time, finding tangents to the hull, adding and

COMPLIANT MOTION IN THE PLANE 577

TABLE 2
Changing L(f) when f hits a vertex v.

Pos. of v

Base of f

’Middle of f

Top ’of f

Action

Delete v from L(f)’ and add the ’left endpoints of edges that have v
on their right.
Split’ L(f) into" two’ V, remove" v,’ and’add’to’ each chain" the’ ’left
endpoints of edges that have v as their right endpoint.
Remove v from L(’f) and add" hieftipoints Of thdgs that
have v on their right. If f extends above v, we add the left endpoints
of the new edges that cross f. We also generate a new free-space
edge .f, that has. v .as its .base..

deleting vertices from the ends of the chain, and spliting a chain or merging two sub-
chains. (The split/merge bound does not allow intermixed sequences of splits and
merges, but the algorithm does not require them.) All the path hulls in use at any
time during the algorithm take only O(n) storage altogether.

LEMMA 3.2. Assuming that the appropriate path hull has been computed for a
free-space edge, one can add trapezoids to the backprojection in amortized O(logn)
time per intersected triangle.

Proof. Let us go back to Figure 8, this time paying attention to the triangulation
edges that cross f. When a leading free-space edge f slides to the left, the changes
to L(f) depend on the position of v along f, as described in Table 2.

We do similar operations to R(f) for trailing free-space edges that slide to the
right. Whenever a free-space edge moves and its chain changes, we compute the next
event associated with it by updating the convex hull of the chain and finding the
appropriate tangent to it. This takes logarithmic time per triangle intersected by
B. D

This shows how to carry out the sweep, which will also be used as a subroutine
in the rotation algorithm of the next section.

3.2. Events for the rotation algorithm. As mentioned at the beginning of
3, the core of the preprocessing phase is a rotation algorithm, which maintains the
(-backprojection B while rotating through 360. In this section we describe the
representation of B, the events at which it changes, and how to handle these events.

The rotation algorithm represents B as a sequence of edges and vertices. We
define seq(B) (al, a2,..., ate) as follows. Initially, we set seq(B) to (), the empty
sequence. Walking around Ba counterclockwise, starting and ending at the goal vertex
g, we append an element to seq(B,) for each P-edge and for each P-vertex at the
base of a free-space edge. For a P-edge e along the boundary of Ba, we append
either e_ or , depending on whether e is a top or a bottom edge; for a P-vertex
v at the base of a free-space edge, we append v. (If a bottom edge meets a top
edge at a vertex, we introduce a null free-space edge at that vertex.) The polygon
B, the trapezoid tree of B, and the pair ((, seq(B)} are all linear-time equivalent
representations for the a-backprojection. We define events as those directions (for
which seq(B,-) seq(B,+). The next lemma characterizes events.

LEMMA 3.3. A direction a is an event if and only if one of the following conditions
holds at this direction (see Figure 9)"

a bottom edge of Ba ceases to be slidable, or a P-edge next to the base of a free-
space edge becomes slidable into Ba (a "sliding event");
a free-space edge encounters a P-vertex (a "visibility event");

578 J. FRIEDMAN, J. HERSHBEPGEP, AND J. SNOEYINK

a top edge becomes a bottom edge, or a bottom edge becomes a top edge (a "turnover").

FIG. 9. Three rotation events: a sliding event, a visibility event, and a turnover.

Proof. If one of these events occurs, the backprojection gains or loses a vertex of
the polygon, or a P-edge moves between the top and bottom of B. In either case
seq(B changes.

Conversely, suppose that we rotate a so that none of these conditions occurs--we
argue that seq(B) does not change. Consider maintaining the vertical (that is, a)
visibility graph as well as B. While the vertical visibility graph is unchanged, the
trapezoid algorithm includes the same set of trapezoids in the backprojection (because
no sliding events occur), so the sequence does not change. When the visibility graph
changes, a is parallel to the line through two vertices. By assumption, the lower
vertex is not the base of a free-space edge, so the higher vertex does not enter or leave
the backprojection as we rotate; the vertices are not endpoints of a single P-edge,
so no P-edge moves between the top and bottom of B. Thus seq(B) does not
change. [:]

The rotation algorithm maintains the current direction a, the sequence seq(B+),
and for each free-space edge f, a path hull for the left endpoints of triangulation edges
that intersect f, as described in Lemma 3.1. Splits will be performed on path hulls
for leading edges and merges on path hulls for trailing edges.

The algorithm uses a priority queue to determine the next event. The queue
contains, for each P-edge in B or adjacent to it, the next direction at which the edge
becomes or ceases to be slidable (for sliding events) and the direction (i.e., angle) of the
P-edge itself (for turnover events). The queue also contains, for each free-space edge,
the angle at which the edge hits the next vertex as a rotates (for visibility events). It
follows from Lemma 3.3 that the event/ at the top of the priority queue satisfies the
condition seq(B+) seq(B-) seq(B+). At every step, the algorithm takes the
next event off the top of the priority queue and computes the changes that have to be
made to seq(B+) when a advances to/. In the process, the algorithm may discover
and enqueue further events. The algorithm may also recognize that some events in
the queue have become obsolete and dequeue them.

We now describe a single iteration of the rotation algorithm. The sequence
changes during the transition from a- to a+ for the event a. Since a is fixed through-
out the rest of the section, we define direction a to be vertically downward.

A turnover event does not involve any changes to the a-backprojection, and the
changes to the sequence can be carried out in constant time. We also create or destroy
a null free-space edge at the point where a top edge touches a bottom edge.

There are two kinds of events in which points are added to Ba: a sliding event
involving a P-edge adjacent to the base of a leading free-space edge f, or a visibility
event involving a leading free-space edge f. In both cases, we first rotate f to angle a
and then call on the procedure of 3.1 to add trapezoids to B that can now be

COMPLIANT MOTION IN THE PLANE 579

reached because of the event on f. This may cause the scheduling of visibility events
for new free-space edges, and turnover and sliding events for new P-edges.

There are two kinds of events that can cause Ba to lose trapezoids: a sliding event
involving a bottom edge inside the a-backprojection, and a visibility event involving
a trailing free-space edge. If we explicitly had a trapezoidation of B, then in both
cases we would need to cut a subtree off the trapezoid tree. Since we do not have the
trapezoidation, we need to run the algorithm of 3.1 in reverse to remove trapezoids
from B.

In the case of a sliding event, suppose that bottom edge e just stopped being
slidable towards its vertex u. We walk away from u on edges that slide towards u
until we reach the base of a free-space edge fmall edges that we walk on will be
removed from Ba. Then we rotate f to angle a, and begin sliding f in the direction
of u (which is to the left, since f was a trailing edge). Suppose that f encounters a
vertex v (refer back to Figure 8 for the three cases). First, a base vertex v is easily
handled as before. Second, a vertex v in the middle of f implies that anything that
slides into v can no longer reach the goal. We process the upper P-edge into v as if
it had a stop sliding event, moving free-space edges in until there is one based at v.
Then we destroy that free-space edge, shorten f to end at v, and continue sliding f.
Third, a vertex v at the top of f is easy to handle unless both incident P-edges go
right. In that case, we essentially trigger a stop sliding event for the upper P-edge
into v. When the portion of the backprojection that slid to v has been removed and
there is a free-space edge based at v, then we merge that edge with f and continue
sliding f.

In the case of a visibility event for a trailing free-space edge f, we rotate f to
angle a, remove regions from B, if necessary, as described in the previous paragraph,
construct the new free-space edge f, and continue.

In scheduling new visibility events, the algorithm must detect the first vertex
hit by a rotating free-space edge. This can be done easily using path hulls as in
Lemma 3.1. Each free-space edge represents the right and left chains by a path hull.
However, only one of these chains is maintained per edge at any given moment: When
a leading free-space edge is born, we generate its left chain. When a trailing free-space
edge is born, we generate its right chain and use it to move the edge (and split it, if
necessary, as described in 3.1) until we cannot move any further, at which time we
disassemble its right chain and generate its left chain. When a leading free-space edge
has to move to the right, we disassemble its left chain and generate its right chain.
The following lemma shows that left and right motions are not intermixed. Thus we
create the path hulls for L(f) and R(f) only once.

LEMMA 3.4. A leading edge can move right only once, just before it disappears.
A trailing edge can move right when it is created, but never again.

Proof. If a leading edge moved to the right and then rotated counterclockwise,
or if a trailing edge rotated and then moved right, then some points would enter the
-backprojection a second time, in violation of Theorem 2.12.

3.3. The start and stop subdivisions. The start and stop subdivisions en-
code the first and last angles for which points can reach the goal. Each subdivision
consists of trapezoids and triangular sectors whose union is exactly the nondirectional
backprojection.

Let p be a point in P. For the start subdivision, if p is in a trapezoid with
parallel sides of direction a, then start(p) a+; if p is in a sector and sees the base
vertex of the sector in direction c, then start(p) c+. (See Figure 10.) For the stop

580 J. FRIEDMAN, J. HERSHBERGER, AND J. SNOEYINK

subdivision, the corresponding direction is a-. (In the special case in which the goal
g is the base vertex of the sector containing p, then start(p) a (or stop(p)).)

FIG. 10. Determining start angles from trapezoids or sectors of the start subdivision.

Whenever the rotation algorithm moves a free-space edge, it adds regions to the
start and/or stop subdivisions. When a leading edge slides left, or when a trailing
edge slides right, it sweeps over trapezoids that are added to the start subdivision.
Similarly, when a leading edge slides right or when a trailing edge slides left, it sweeps
over trapezoids that go into to the stop subdivision.

If we rotate the direction a counterclockwise and the sequence seq(B) does not
change, then each leading edge f sweeps out a triangular sector of points and adds
them to Ba. A point p in the sector defined by f first enters the a-backprojection at
the direction of the ray from p to the base of f. Trailing edges remove points from
Ba. We include the sectors swept by leading edges in the start subdivision; those
swept by trailing edges go into the stop subdivision.

In addition to a and seq(Ba), we maintain, for each free-space edge f, the direc-
tion of the edge at the last event involving f. Before the rotation algorithm moves
a free-space edge laterally, we check if the current c is different from the direction
associated with the free-space edge. If so, we "rotate" the free-space edge, adding the
triangular sector to the appropriate subdivision.

Some start sectors may be generated by stop events (visibility events involving
a trailing free-space edge, or stop-sliding events). This happens when a leading free-
space edge disappears from the c-backprojection at a stop event, since we first create
a start sector for such an edge.

3.4. Analysis of the algorithm. We now show that the running time of the
rotation algorithm is O(-log n), where T is the number of triangles that intersect the
nondirectional backprojection.

First, we show that O(T) path hull operations are performed. When a triangu-
lation edge enters or leaves the c-backprojection, we add its endpoints to or delete
them from at most two hulls. Each vertex that enters the backprojection can cause
a split; each one that leaves can cause a merge. By Theorem 2.12, a vertex enters
at most once and leaves at most once. Thus the total number of hull operations is

O(-); they take O(" log n) amortized time. As for space, there are O(-) path hulls
at any given moment, and each path hull can be of size O(n); nevertheless, the total
size of all the path hulls is O(n) (this follows from Lemma 2.6). We explain in 6 a
technique in which we allocate a fixed block of storage of size O(n) for all the path
hulls, and hence the working storage is O(n).

Second, the total time spent on priority queue operations is also O(-log n). Since
each P-edge enters and leaves the backprojection once, we perform a constant number

COMPLIANT MOTION IN THE PLANE 581

of priority queue operations for each P-edge. Each time a hull changes, we compute
a new tangent and add it to the queue; there are O(T) such operations.

Finally, since each subdivision is composed of O(-) triangles and trapezoids, we
can preprocess them for point location in O(-) time [10, 24]. At query time, we use
two O(log T) point locations to find the regions of the start and stop subdivisions that
contain the query point p. Using these regions we can determine the start and stop
angles in constant time.

THEOREM 3.5. Given a triangulated simple polygon P and a goal vertex or edge,
we can build a data structure to support queries for one-step compliant motion inside
P under perfect control. Queries take O(log T) time, preprocessing takes 0(- log n)
time and O(n) space, and the data structure takes 0(-) space, where - is the number
of triangles that intersect the nondirectional backprojection.

4. Polygons with islands. Now we consider an environment P with k- 1
islands (k >_ 1), as described in 2.1. In this section, we show how to modify the simple
polygon algorithm to handle the islands. The modified algorithm spends O(kn log n)
time preprocessing the n-vertex environment P and the goal vertex g to produce a
data structure with size O(kn); at query time, the algorithm reports all the good
directions for a given starting point p in O(k log n) time.

For any given a, the a-backprojection has the same structure as in the simple
polygon case (since Lemma 2.4 does not rely on P being a simple polygon), namely, it
has bottom, free-space, and top edges, and it can be computed from the trapezoids of
the a-visibility graph. Also, the events that change the structure of B, represented
by seq(B), are still the same, as stated in Lemma 3.3. Thus, we can use the rotation
algorithm that was defined in 3 to maintain the B. The problem is that the good
directions of a point p inside P may form several ranges, and hence as we rotate a,
points may enter and leave B more than once. This means that the subdivisions of
3.3 are not subdivisions any more, but rather "piles" of possibly overlapping triangles
and trapezoids. In order to build an efficient query structure for polygons with islands,
we will separate each pile into layers so that every layer is indeed a subdivision.

While partitioning the trapezoids and triangles into layers leads to an efficient
query structure, there is a less reductionistic way to think about the nondirectional
backprojection. Triangles and trapezoids of the start subdivision can be stitched
together along their boundaries where a free-space edge moves from one region to
another to form a simply connected surface (due to Lemma 2.2) in space that only
overlaps itself when projected to the plane. Thus, the start triangles and trapezoids
give a subdivision of a subset of the universal covering space of the polygon [22J--the
stop triangles and trapezoids give an alternate subdivision of the same subset. We
concentrate on layers in this section, but the surface model simplifies some of the
applications in 5.

To analyze the complexity of this amended algorithm, we need to bound the
number of events that take place as we rotate a, the total size of the piles, and the
storage requirements of the path hulls used during the rotation. The following lemma
bounds the number of times a point can enter and leave the a-backprojection.

LEMMA 4.1. For a given point p, there are at most k ranges that define all the
good directions for p.

Proof. Let the smallest good direction for p be a, and the largest good direction
for p be w. If the good directions for p form ranges, then there are 1-1 "bad" ranges
between a and w. Every such bad range must contain an island by Theorem 2.12.
An island can appear in at most one bad range, since it can never be split by a trail.

582 J. FRIEDMAN, J. HERSHBERGER, AND J. SNOEYINK

g

FIG. 11. Layers of the start subdivision.

Therefore, 1 cannot exceed the number of islands, which is k 1. [:]

We proceed as follows: in 4.1 we describe the layering scheme of the preprocessing
phase and prove its correctness. In 4.2 we describe how to answer queries for the
single-step, perfect-control, perfect-position sensing case using the data structures
produced by the preprocessing phase. (Section 5 shows how to answer more realistic
queries.) Finally, we analyze the complexity of this scheme in 4.3.

4.1. Layers for the start and stop subdivisions. Let us limit our attention
to the pile that contains trapezoids and triangles that are added to B, known as the
"start pile" (the treatment of the stop pile is symmetric). We need to specify the
layering scheme that we use to partition this pile into subdivisions.

We use k layers, one for each of the k boundary components of the environment.
Recall that a (nonturnover) event involves adding a triangular sector and zero or more
trapezoids. The base vertex of a triangular sector belongs to a particular boundary
component; we place the sector in the layer of that component. All the trapezoids go
to the layer of the component where the event took place, as follows:

for a sliding event, when an edge next to Ba becomes slidable, we use the boundary
component that contains that edge;
for a visibility event, when a leading free-space edge encounters a vertex, we use
the boundary component that contains the base vertex of the free-space edge.

Figure 11 illustrates the layering scheme for a small example with friction cones that
are the normals to the edges and goal vertex at the bottom of the environment. On
the left is the layer that corresponds to the outside polygon, and on the right is the
layer that corresponds to the island. Note that some trapezoids that are based on the
island go into the layer of the outside polygon, because the event in which they were
created took place on the outside polygon. In order to prove the correctness of this
scheme, we need to show that all the regions in any layer are disjoint. First we need
the following lemmas.

LEMMA 4.2. Suppose that p enters the -backprojection at c+ during an event
associated with boundary component C, and suppose that > c+ is also a good
direction for p. Then C is outside Ra+,Z.

Proof. We know that p B and p B+, so T+ has almost the same prefix as
T, but T either gets stuck or takes a wrong turn at a point q on C. The point q is
arbitrarily close to a point r on C where T+ goes through. (See Figure 12.)

Now, since we know that T+ goes counterclockwise around R+,Z, the point q
cannot be inside R+,. Hence the whole interior of C must lie outside R+,. [:]

We must treat sectors and trapezoids differently because some sectors in the start pile can be
generated by stop events, as mentioned in 3.3.

COMPLIANT MOTION IN THE PLANE 583

P

FIG. 12. Proving Lemmas 4.2 and 4.3.

LEMMA 4.3. Let p be a point in the environment, let < be good directions
for p, and let C be a boundary component such that R,Z does not contain C. Then
for any (< / < , the trail T cannot get stuck on C at any point that is not g, the
goal vertex.

Proof. By Theorem 2.7, T stays inside R,Z. The only way T can get stuck on
C is if C touches R,Z where T gets stuck. Suppose that T gets stuck at a point r
on the boundary of R,Z. This means that T cuts R,Z into two pieces: piece A is
bounded by T and T near p, and piece B is bounded by T and TZ near p. If r g,
only one of these two pieces contains g. (See Figure 12.)

Suppose that A contains g. Again by Theorem 2.7, TZ stays in B up to r. But
TZ does not get stuck at r, so it crosses to the "left" (to A) at that point. Because
T always slides left more easily than TZ, it cannot get stuck at r.

The other case is symmetric. [:]

Using these lemmas, we can now prove the correctness of the layering scheme.
THEOREM 4.4. For any layer, any two regions are disjoint.
Proof. We prove the theorem by contradiction. Suppose that in the layer of

boundary component C there are two regions that have a nonempty intersection, and
suppose that p is in their intersection. One region implies a+ as a start direction for
p, and the other region implies +, where > c.

By Lemma 4.2, C is not contained in R+,Z+. Since a+ </ </+, by Lemma 4.3

TZ cannot get stuck on C. However, p is in the region of+ because TZ does get stuck
on C. This is a contradiction, and therefore no such point p exists.

4.2. Queries in layers. When we are given a query point p E P, we locate
it in each layer of the start pile, and in each layer of the stop pile. Every region
that contains p implies a corresponding direction in which p enters or leaves the c-
backprojection (see 3.3), so when we sort the list of directions we end up with an
alternating list of start-stop directions for p. This list specifies the good ranges for p,
and this is the answer to the query.

4.3. Analysis. There are two quantities to consider: space and time. To help
bound working storage, we have the following lemma.

LEMMA 4.5. The total size of all the path hulls at any given is O(kn).
Proof. The total size of the path hulls is the sum, over all the free-space edges,

of the number of triangulation edges and P-edges that cross each edge. Reversing
the order of summation, this number is equal to the sum, over all the triangulation
edges and P-edges, of the number of free-space edges that the edge crosses. There
are 2n + 3(k- 2) triangulation edges and P-edges, and by Lemma 2.6, each such edge
crosses at most 2k free-space edges. [:]

584 J. FRIEDMAN, J. HERSHBERGER, AND J. SNOEYINK

At any time during the algorithm, O(kn) storage is needed for path hulls. Because
individual path hulls may change their storage needs, statically allocating O(kn)
memory is not sufficient. Section 6 describes a dynamic storage allocation scheme
that uses O(kn log n) storage altogether.

Obtaining the triangulation of a polygon with islands takes O(n log n) time [33,
pp. 230-234] instead of the linear time possible in the simple polygon case. However,
the total preprocessing time is dominated by the total number of trapezoids and
sectors plus the number of turnover events (which do not contribute any regions to
the pile, but have to be processed nevertheless), multiplied by the time that it takes
to process each one.

LEMMA 4.6. The total number of sectors and trapezoids in the start and stop
piles is 0 kn

Proof. Each vertex of P enters B at most k times as c rotates. Every trapezoid
or sector added to the start pile can be associated with one of these vertex entrances,
and each vertex entrance has at most one trapezoid and one sector associated with
it. A symmetric argument applies to the stop pile. [’1

Every P-edge can turn over at most twice, so there are O(n) turnovers. Processing
a trapezoid, a sector, or a turnover involves a path hull operation, and since the size
of each path hull is O(n), each operation takes O(logn) time. Therefore, the total
preprocessing time is O((kn + n)logn) O(kn logn).

It is easy to keep track of the adjacency of the regions that we generate in each
layer (since c rotates monotonically). All the regions in each layer are connected by
adjacency to the island that is associated with that layer, so if we triangulate the
island and add the triangles to the layer, we get a connected subdivision at no extra
cost. We can preprocess this subdivision for point location using time and space linear
in the size of the layer [10, 24].

Query answering involves O(k) point location queries, which take O(k log n) total
time, and sorting at most 2k numbers, which takes O(k log k) O(k log n) time.

THEOREM 4.7. Given a triangulated polygonal environment P with n vertices and
k islands, and a goal vertex or edge, we can build a data structure to support queries
for one-step compliant motion inside P under perfect control. Queries take O(k log n)
time, preprocessing takes O(kn log n) time and space, and the data structure takes
O(kn) space.

5. Extensions to the main algorithm. The algorithms of 3 and 4 create
data structures to answer queries for the perfect-control, perfect-position sensing case.
However, once we have formed these structures, we can easily answer more realistic
queries, allowing imperfect-control and imperfect-position sensing.

5.1. Imperfect control. The control uncertainty of a robot is an angular con-
stant e in the range 0 _< e < 90. If the robot is programmed to move in direction
a, its actual direction of motion (in free space) at any given instant lies in the range
[a- e, a + el. The path the robot follows now is not unique, although to simplify
our proofs we will assume that it is piecewise differentiable. We say that a direction
a is good for a starting point p if every path the robot may take, when commanded
to move from p in direction a, is guaranteed to get the robot to the goal. We relate
perfect and imperfect control in Lemma 5.2, but first we need the following lemma.

LEMMA 5.1. Let / be a direction, and call it "down." Given a control uncertainty
< 90, let T(p) be any imperfect-control trail starting at p with commanded direction

/, and let q be a point along T(p) such that no sliding occurs between p and q. Let

COMPLIANT MOTION IN THE PLANE 585

the length of T.(p) between p and q be L, and let the vertical distance between p and
q be D. Then there is a constant c, which depends only on , such that L <_ cD.

Pr.Loof. Since e < 90, and no sliding occurs between p andq, that portion of the
trail T.(p) is monotone with respect to 3’. Therefore, the trail T(p) can be described
by a continuous, piecewise differentiable function f(x), where x measures the vertical
distance from p, and f(x) measures the horizontal displacement (positive values to
the right) from p. We know that

f(0) 0;
[f’(x)[<_ tan almost everywhere.

Now we can bound the length L of T(p) as follows:

L v/dx2 + df2 dxv/1 + If’(x)l 2 < dxv/1 + tan2 e
COS

We set c to 1/cos , and the lemma follows.
We are now ready to prove the lemma relating perfect and imperfect trails.
LEMMA 5.2. Let p be in P, and let (c,) be one of the (at most k) ranges of

good directions for p for a robot with perfect control. Let the control uncertainty be
< 90.

/f (a, fl) is wider than 2e, then any " e (+ e,) is a good direction for the
imperfect robot;
if (c,) is not wider than 2e, then no " (c,) is a good direction for the
imperfect robot.

Proof. Let - be direction in the range (c+e,/-e). It follows from Theorem 2.12
that for any point r in R_,+,, the range (-- e,- + e) is a good range under the

perfect control model. Now, let T be an imperfect control trail starting at p with
commnded direction -. We can prove by a case analysis similar to that of Lemma 2.10
that whenever T touches the boundary of R_,,+,, it cnnot cross outside of this

region (T cnnot touch a free-space boundary edge; when T touches a P-edge on
the boundary, it is forced to slide in the same direction as the corresponding perfect-
control trail; and when it separates from the boundary, it goes into free space inside
the region).

We hve to show that the robot indeed makes progress on its way to the goal.
First, we consider the cases in which T touches the boundary of R_,,+,. Clearly,
the places where T touches T_ are consistently sorted along both trails (because
if r occurs before s along T, then R_,,+,(r) contains R_,,+,(s)). Now, by the

proof of Theorem 2.12, when T travels along a portion of the boundary of R_,,+,, it
slides in the sme direction (never gets stuck, and never slides the wrong way, because
both would imply that there is a direction in the rnge (-- e, " + e) c_ (a,/) that

is not good for a point along the boundary of the region). Finally, whenever T goes
into free space, it has to hit the boundary again (this is because if r occurs before s

along a free-space segment of T, then the rea of R_,,+(r) is strictly smaller than
the area of R_,,+,(s)). Since the lengths of T_, nd T+, nd the area of R_,,+,
are all finite, T has to reach g eventually.

FinMly, we have to prove that we do not run into "Zeno’s paradox," namely, that
we do not have an infinitely long T. We use Lemma 5.1 to bound the length L of T
as follows:

L <_ c,D + B + cB,

586 J. FRIEDMAN, J. HERSHBERGER, AND J. SNOEYINK

where D is the distance in direction /from p to g, and B is the total length of the
boundary of R_,z+ (that is, the sum of the lengths of T_ and T+). The first

term in the bound accounts for the free-space distance; if T goes farther than this in
free space, it overshoots the goal. The second term accounts for thesliding. Finally,
the third term accounts for the fact that some of the edges on which T slides on may
act as conveyor belts, and carry the robot back up a distance that the robot may
later travel through free space. Hence the length of T is finite, and this concludes
the proof of the first part of the lemma.

As for the second claim, by definition, a and are not good directions for p. If
(a,) is not wider than 2e, then for any in (a,) it is possible for the robot to
follow T as its imperfect control path for the commanded direction , and therefore

" is not a good commanded direction for the imperfect robot.
Using Lemma 5.2, it is clear how we can use the structure from 4 to answer

queries under the imperfect control model. First, we find the good ranges under the
perfect control model, as described in 4. Next, we increase every start direction by
e and decrease every stop direction by e. Every range that stays nonempty is a good
range under the imperfect control model. Note that we use e only at query time, so
the preprocessing is independent of the control uncertainty. This means that the same
data structures can support several robots, with different capabilities, that operate in
the same environment.

5.2. The boundary of the nondirectional backprojection. Recall that the
nondirectional backprojection is the set of all points that can reach the goal in a
single compliant motion. If the robot has perfect control, this set is the union of
all the regions in the start pile (which is identical to the union of all the regions in
the stop pile). When the control uncertainty e is greater than 0, the nondirectional
backprojection is the set of all points that has at least one good range of size greater
than 2.

We compute the boundary of the nondirectional backprojection. Specifically, we
compute a closed curve whose interior, as defined by its winding number, is exactly
the nondirectional backprojection. The curve p is a simple Jordan curve on the
universal covering space of the interior of P [22]. That is, the interior of always lies
to the left of when p is traversed counterclockwise, and contains no island of P
in its interior. If k 1 (the simple polygon case), then the universal covering space
is just P itself, and p is a simple curve made up of line segments and circular arcs. If
k > I, is not necessarily simple when projected down from the universal covering
space to the plane.

The algorithm for computing is the same whether or not k I: we simply
trace through the universal covering space. That is, we follow through the regions
of the start and stop piles simultaneously. Whenever p leaves one triangle or trapezoid,
it enters an adjacent one, according to the adjacency relation when the two regions
were created. The triangles and trapezoids of the start (stop) pile, stitched together
by adjacency, form a subpolygon of the universal covering space.

To trace p, we start a point p at g and move p counterclockwise along , walking
through the start and stop piles simultaneously. At each step, the regions of the start
and stop pile containing p dictate the line segment or circular arc that p must follow
until it leaves one of the regions, as described below. The tracing algorithm adds this
segment or arc to as it moves p. When p leaves a region, it crosses a free-space edge
into an adjacent region.

Here are the three possibilities for the regions containing p, and the actions that

COMPLIANT MOTION IN THE PLANE 587

the tracing algorithm takes in order to proceed to the next step. In each case, p
moves so that the region locally to the left of has a good range larger than 2e, as
determined by the current regions of the start and stop piles, and the region locally
to the right of does not (perhaps because follows the polygon boundary).

If p lies in a triangular sector in both the start and stop pile, then follows a
circular arc, the curve described by the apex of a fixed 2e angle whose two rays
pass through two fixed points (the sector bases). If the arc hits the boundary of
P, follows that boundary, as appropriate.
If p lies in a sector in one pile and in a trapezoid in the other, then follows a
radial line of the sector; may also follow the boundary of P if necessary.
If p lies in two trapezoids, then follows the boundary of their intersection.
The tracing algorithm needs to go across free-space edges of the piles, which may

involve changing layers. We can perform this operation in constant time if, during
the preprocessing phase, we record the adjacency information of the pile regions as
follows. The algorithm creates a region in either pile by rotating a free-space edge or
by sweeping a free-space edge across a trapezoid. We maintain, for each free-space
edge, a pointer to the region p of the a-backprojection immediately neighboring it;
we use this pointer to doubly link p with the new region over which the free-space
edge sweeps, and then update the pointer to point to the new region.

The tracing algorithm takes time proportional to the number of times passes
from one pile region to another. The following lemma shows that this quantity is

LEMMA 5.3. Let be the boundary of the nondirectional backprojection in the
imperfect-control case. Then the tracing algorithm follows through each region of
either pile at most four times.

Proof. The start and stop piles are both subdivisions of a single connected portion
of the universal covering space of the interior of P [22]. Viewing the piles from the
perspective of the universal covering space, we see that two regions in the start and
stop piles intersect if and only if they have a common point p and the trails from p
to g determined by the two regions are homotopic (they wind around the islands the
same way).

The tracing algorithm traces through the universal covering space; that is to
say, the tracing algorithm is purely local, following the region adjacencies determined
when the regions were created.

To enter or leave a region of either pile, must cross a free-space edge of the
region. Since each pile subdivides part of the universal covering space, the regions of
the other pile that intersect the edge are all adjacent.

Let p be a point on a free-space edge of the start pile that lies inside . Let a be
the direction determined by the free-space edge. By Theorem 2.12 and Lemma 5.2,
the direction a + is good for every point in R,+2(p), in particular for every point
on the free-space edge between p and the base of the edge, and hence all those points
lie inside . Thus intersects each free-space edge at most twice, possibly at the
endpoints. Each pile region has at most four free-space edges, so the lemma fol-
lows.

5.3. Uncertainty in initial-position sensing. When the robot has imperfect-
position sensing, we may know its starting position only approximately. Formally, we
know that the robot is somewhere in a (typically small) connected subset S of the
environment, known as the start region. In this case, we need to find directions that
are good for all the points in S simultaneously. Note that the answer to a query may

588 J. FRIEDMAN, J. HERSHBERGER, AND J. SNOEYINK

be "unreachable" even when every point in S can reach the goal.
LEMMA 5.4. Let S be a connected subset of the environment. If a direction is

good for all the points on the boundary of S, then a is good for all points in S.
Proof. Let p be a point in S. If p is not a boundary point, then T(p) hits the

boundary of S.
The lemma means that we can find maximum and minimum angles by looking

at the boundary of S. We use the following technique to find the intersection of the
good directions of all the points along the boundary of S. First, we locate a point
p on the boundary of S in each of the two piles. The good ranges of p correspond
to at most k pairs of start/stop regions that intersect in the universal covering space
as in 5.2. For each such pair, we trace the boundary of S in the start and stop
subdivisions of the universal cover simultaneously, maintaining the interval between
the "largest" start-angle a and the "smallest" stop-angle w. We stop a tracing when
we arrive back at p (and we abort a tracing, discarding the corresponding interval,
if it reaches a free-space edge that bounds the nondirectional backprojection). When
we have completed all O(k) tracings, we have generated the O(k) good ranges for
all the points on the boundary of S, and therefore all the points of S, under perfect
control. We can shrink each such range by 2e, as explained in 5.1, in order to obtain
the result under control uncertainty.

Answering the initial query for p takes O(k log n) time, plus time proportional to
the number of subdivision regions traversed during the O(k) traces along the boundary
of S, since we never visit the same region more than the number of times the boundary
of S crosses it, and we spend constant time per triangle or trapezoid. For many
"standard" starting regions, such as a disc (intersected with the environment) or a
polygon with a constant number of sides, the number of triangles or trapezoids that
intersect S is O(kn) in the worst case, but is typically less.

5,4. Sensorless robots. We have so far implicitly assumed that the robot can
detect the goal when it reaches it. If this is not the case (the robot is sensorless [9,
8, 12]), we can still use our data structures to answer queries.

A sensorless robot cannot detect the goal g, and so it must stick at g when it
reaches it. This restricts the range of directions the robot can use; we denote the
allowable range by [a, w]. The range [a, w] contains the directions for which the robot
cannot slide away from the goal on one of its incident edges. To answer a query for a
sensorless robot with control uncertainty e, with or without position uncertainty, we
apply the appropriate algorithm described above, then intersect the query result with
[+ ,].

Once again, we can compute the boundary of the nondirectional backprojection
for sensorless robots: we trace along the boundary while holding an angle fixed.
Whereas in 5.2 the angle was the start-stop range, here it is the intersection of that
range with [a, w].

5.5. Convex polygonal goal regions. By minor modifications to the rotation
algorithm, we can handle convex polygonal goal regions instead of single vertices or
edges. We leave more general goal regions as an open problem.

To compute the a-backprojection of a convex goal polygon G we could decompose
the difference P\G into trapezoids by the a-visibility map and then traverse trapezoids
starting with the set of trapezoids whose bottom edges are on G. (See 3.1.) To apply
the rotation algorithm to maintain this a-backprojection, we need to add turnover
events for the edges of G to the priority queue. By a slight abuse of notation, we say
that a bottom-to-top turnover occurs when the rotating direction a goes from negative

COMPLIANT MOTION IN THE PLANE 589

FIG. 13. The free-space edges bounding the nondirectional backprojection cutoff bays.

to positive projection on the normal to an edge of G; a top-to-bottom turnover occurs
when the projection goes from positive to negative. (See 3.2.)

Since G is assumed convex, top-to-bottom turnovers occur only at the leftmost
edge, with (vertically downward. Suppose that b was the leftpoint point of G until
the turnover for edge (a, b) made a the leftmost point. We handle this turnover as if
it were a sliding event from b to a--we create a sector for the free-space edge that was
based at b, slide the free-space edge to a, and add the left endpoints of triangulation
edges whose right endpoint is a to the path hull for the free-space edge. Bottom-
to-top turnovers occur only at the rightmost edge and can be handled by deleting
triangulation edges from the path hull. The analysis of 4.3 still holds if n is changed
to the total number of vertices in G and P.

5.6. The multistep problem. A robot in an arbitrary polygonal environment
may not be able to reach a goal g in a single step (this corresponds to the fact that
there may be points p for which no direction is good). In this section, we consider
the multistep problem for the following cases:

A simple-polygon environment (k 1), perfect control and goal sensing. We
modify the algorithm of 3 to handle multistep planning within the same time and
space bounds, namely, O(n log n) preprocessing time, linear-size data structures,
and O(log n) query time. One can easily see that in this case, a robot can always
reach g in n steps.
Arbitrary k, sensorless (with control uncertainty), and with plans restricted to be
of the form (go, c, gl, 0/2, g2,..., Om, g,), where go P, gm- g, gi is either a
vertex or an edge, and any point in gi_ reaches gi via ai. Our solution runs in
O(kn2 log n) preprocessing time, O(kn2) space, and O(kn log n) query time.

Consider the multistep problem inside a simple polygon under perfect-control and
perfect-goal sensing. Suppose that we computed a nondirectional backprojection B
from g that did not include the whole polygon P. Since B is composed of triangles
and trapezoids bounded by P-edges and free-space edges, the unreached portions of
P must be bays bounded by free-space edges, as illustrated in Figure 13.

A robot starting inside a bay bounded by a free-space edge f escapes the bay if
it reaches f. We would like to run the rotation algorithm on the bay with f as the
goal. However, we must first fix up the triangulation at the mouth of the bay. We
need to triangulate the polygon defined by f and its left chain (or right chain). This
polygon is weakly visible from f, and hence it can be triangulated in linear time by
a simple algorithm [36].

590 J. FRIEDMAN, J. HERSHBERGER, AND J. SNOEYINK

Note that all the points in the triangles cut by f can reach f. At the next step,
these triangles are strictly inside the nondirectional backprojection of f and thus can
never be cut again. We run the algorithm of 3 on each bay, perhaps forming smaller
bays. We repeat the process until every point is in some backprojection. Since the
rotation algorithm runs in O(T log n) time, where 7 is the number of triangles that
intersect the backprojection, and every triangle is in at most two bays, the total time
is only O(n log n).

With each trapezoid and triangle in the start and stop subdivisions, we store
the free-space edge that is the subgoal and the number of steps to reach g. After
preprocessing for point location, we can, in O(log n) time, answer queries about the
number of steps a point requires to reach g. If the robot is capable of stopping when
it reaches a free-space edge f, then we can list the directions and goals for the entire
path by looking at the direction and goal of each successive edge subgoal.

Solving the multistep-planning problem with goal sensing and imperfect control
is complicated by the fact that the boundary of the one-step nondirectional backpro-
jection contains circular arcs. For sensorless robots with imperfect control, however,
we can still say something about the multistep planning problem. Since the robot is
sensorless, we take all subgoals to be vertices or edges--after the first step, the robot
moves from one vertex or edge of P to another. This suggests the following graph-
based approach. In O(kn2 log n) time and O(kn2) space, compute the nondirectional
backprojection of each P-vertex and each P-edge. Now we have O(n) start and stop
piles, and we can answer queries with each P-vertex or P-edge as a goal. Using these
piles, we construct a directed graph. The nodes are the P-vertices and P-edges, and
there is an arc from vl to v2 if and only if vl can reach v2 by a single step. For each
goal v2, we compute all arcs into it in O(kn) total time, visiting each region in the
start and stop piles for v2 a constant number of times. We perform a breadth-first
search on the graph starting from g, marking every node with its distance from g in
the graph. We use this graph to solve the multistep-planning problem for sensorless
robots. Given a query point p inside P, we find a P-vertex or P-edge that is reachable
from p and is closest to g in the graph by performing at most n queries. This takes
O(kn log n) time.

Note. In this case g does not have to be fixed: we simply defer the breadth-
first search to the query phase, so the total time required for a query increases to
O(n2 + kn log n).

6. The path hull data structure. In this section we describe path hulls, the
convex hull representation that the rotation algorithm of 3 and 4 uses to find the
nondirectional backprojection in O(kn log n) time. These path hulls are an extension
of a data structure due to Dobkin et al. [7]. A path hull represents the convex hull of a
simple polygonal path r, and consists of two separate semipath hulls; the path is the
concatenation of two portions, and each semipath hull represents the convex hull of
one of the two portions. The convex hull representation is simple: each semipath hull
stores the vertices of the convex hull of its portion in an array. This array supports
binary search, and hence supports logarithmic-time intersection finding and tangent
finding on the hull.

Path hulls support the operations required by 3.1 and 3.2. In particular, for a
path with rn vertices and convex hull h, a path hull that stores 7 and represents h
supports the following operations:

1. Find tangents to h, either from a point outside h or parallel to a given line,
in O(logm) time.

COMPLIANT MOTION IN THE PLANE 591

2. Add a vertex to either end of the path r (as long as the resulting path is
simple) and update the hull in O(log m) time.

3. Delete a vertex from either end of the path and update the hull in constant
amortized time, but worst-case O(m) time.

4. Split r at a vertex to get two subpaths, each including the splitting vertex,
and compute the convex hulls of each subpath in O(m) worst-case time.

5. Merge two paths, disjoint except for a single vertex, into a single path of rn
vertices, and compute its convex hull in O(m) worst-case time.

The worst-case time bounds quoted above are not particularly attractive; what
makes path hulls useful is the amortized time bounds on intermixed sequences of these
operations. In particular, if we perform an intermixed sequence of O(m) operations
of types 1, 2, 3, and 4 on paths with a total of rn vertices, the total time required is
O(m log m). The same bound holds for an intermixed sequence of O(m) operations
of types 1, 2, 3, and 5. We can obtain these amortized bounds because we use a pair
of semipath hulls to represent each path; we balance the lengths of the two portions
of the path to bound the average complexity of the operations.

The remainder of this section gives the details of path hulls. We first describe and
analyze semipath hulls, from which we build path hulls. Next we tell how to implement
path hulls based on the underlying semipath hull structures, characterizing precisely
the operations that path hulls support. Finally, we use this characterization to prove
the amortized time bounds quoted above. We defer until 6.4 a description of how to
allocate storage for semipath hulls in our backprojection computation.

In what follows, we speak of simple paths as being directed. If is a simple path,
we distinguish between its endpoints by calling one end the anchor of the path and
the other end the free end of the path. The path is directed from the anchor to the
free end.

6.1. Semipath hulls. The semipath hull of a simple polygonal path represents
the convex hull of the path by storing the hull vertices in a linear array; it allows
vertices to be added to or deleted from the free end of the path. We use the notation
SPH(r,x) to denote the semipath hull of a simple path r anchored at x. (We have
changed the nomenclature of Dobkin et al. slightly: what we call semipath hulls were
called path hulls in that paper [7].)

For a simple path r with anchor x and free end v, the counterclockwise sequence
of the vertices on its convex hull is a subsequence of v... x... v, the concatenation
of the path and its reversal. The semipath hull stores the sequence of hull vertices in
a deque (double-ended queue). The convex hull vertex closest to the free end of the
path, call it v, appears at both ends of the deque. The subsequence property ensures
that adding vertices to or deleting vertices from the free end of the path affects only
the ends of the deque.

When vertices are added to or deleted from the free end of the path, the semipath
hull updates the deque. The update method is based on Melkman’s incremental
algorithm for finding the convex hull of a simple path [29], which we now describe.
Each step of Melkman’s algorithm adds a new vertex to the simple path, then finds
the convex hull of the resulting path. As above, let v be the convex hull vertex closest
to the old free end, and let w be the new free end being added. If w lies inside the
angle formed by the two hull edges incident to v, then it lies inside the convex hull,
as in Figure 14. If w lies outside the old hull, the algorithm uses a Graham scan [18]
to pop zero or more vertices off each end of the deque, then pushes the new vertex
onto both ends of the deque.

592 J. FRIEDMAN, J. HERSHBERGER, AND J. SNOEYINK

FIG. 14. Testing if w is inside or outside the previous hull.

A semipath hull consists of two data structures: a deque and a "transcript"
stack. The deque contains the vertices of the convex hull, as described above, and
the transcript stack records the push and pop operations needed to construct the
current deque from scratch when path vertices are added one at a time. To add
a vertex to the path, we use Melkman’s algorithm to update the deque, and then
record the update operations on the transcript stack. To delete a vertex, we play the
transcript backwards: we pop operations off the transcript stack and perform their
inverse operations until the deque reaches the state that existed before the vertex was
added.

Allocating storage for the semipath hull is easy if we know a priori the maximum
number of vertices that will ever belong to the path. If the upper bound on the
number of vertices in the path is m, then we allocate an array of 2m- 1 memory
locations for the deque. We put the anchor vertex at the middle of the array; because
there are at most rn- 1 pushes on either end of the deque, the deque cannot overflow
its array. Similarly, we allocate a block of O(m) storage for the transcript stack, since
the total number of operations to create the deque is at most 4m.

The approach described so far may spend O(m) time per vertex addition or

deletion, since either operation may require O(m) deque pops or pushes. We can
avoid this overhead by using the array to do lazy pops. When we add a new vertex w,
we find the tangents from w to the old convex hull using increasing-increment binary
search (see below) on the array. This tells us which vertices Melkman’s algorithm
would pop off the deque. Instead of popping the vertices explicitly, we change the
array indices that delimit the ends of the deque, as if the vertices had been popped
off’. When we push w onto the ends of the deque, the transcript remembers the vertex
that was overwritten. To delete w and restore the deque to its former state, we simply
replace w with the vertex that it overwrote, then change the deque-delimiting indices
back to their previous values. Because implicitly popped array locations are altered
only by reversible pushes, no information is lost during restoration. By using lazy
popping, we reduce vertex addition time to O(i) plus the time needed to find the
tangents, and reduce vertex deletion time to O(I).

We use a variant of binary search to find the tangents from the point w to the
old hull. Ordinary binary search on a hull with k vertices takes O(log k) time. By
using "increasing-increment" search, we reduce the search time to logarithmic in d,
where d is the number of vertices that are popped off the hull by the addition of w.
This form of binary search borrows the fundamental idea of finger search trees [23],
but incurs little of the complexity of that data structure. We search in the array for
the tangent vertices, starting at the ends of the deque (at v) and working toward the
middle. Consider the search inward from the left end of the deque. By performing a
constant-time test, we can tell whether the tangent vertex lies in the array interval
between a query vertex and the left end of the deque. We start with the query vertex

COMPLIANT MOTION IN THE PLANE 593

adjacent to the left end of the deque, then double the distance (measured in array
indices) between the query vertex and the left end of the deque until the tangent
vertex lies in the interval. We then use ordinary binary search on the interval to find
the tangent vertex. The cost of the search is proportional to the logarithm of the
interval size, that is, the logarithm of the number of vertices to be popped off on the
left end of the deque. If d is the total number of vertices popped off by the addition
of w, the cost of adding w is O(log(d + 2)). (The extra 2 allows for the case of no
pops at all.)

Because a semipath hull stores the convex hull vertices in an array, it supports
binary search algorithms to find tangents and intersections in logarithmic time. Thus
we have established the following theorem.

THEOREM 6.1. Let 7 be a directed simple path that is subject to addition and
deletion of vertices at the free end of the path. If it is known beforehand that 7 will
never have more than rn vertices, then we can represent the convex hull of 7 in a
semipath hull that supports (1) finding tangents to the hull, either from points outside
the hull or parallel to given lines, in O(log m) time; (2) vertex addition at the free end
of the path in O(log(d + 2)) time, where d is the number of vertices the new vertex
removes from the convex hull; and (3) vertex deletion from the free end in constant
time.

6.2. Path hulls. We now discuss path hulls and their use of semipath hulls.
A path hull for a path distinguishes some vertex x of . The vertex x divides
into two subpaths rl and r2; the path hull stores SPH(zI,X) and SPH(r2,x). We
use the notation PH(r,x) to denote the path hull for with distinguished vertex x.
To make deletions at both ends of r easy, we want x to be close to the middle of .
However, repeated deletions or additions at one end may unbalance the path hull. We
use amortization arguments (Theorems 6.2 and 6.3) to control the cost of imbalance.

At the beginning of 6 we summarized the operations that path hulls support.
Now let us describe those operations in more detail, using Theorem 6.1 to bound their
running times. We use h, hi, and h2 to denote the convex hulls of r, 71"1, and r2, and
rn to denote the number of vertices of .

1. To find the tangents to h, either from a point outside h or parallel to a query
line, we find the tangents to h and h2 separately, then choose the tangents
to h from these four tangents. This takes O(log m) time.

2. To add a vertex to , we add it to the semipath hull for 1 or 2, as appro-
priate. This takes O(log(d + 2)) time, where d is number of vertices popped
from the appropriate semipath hull deque.

3. To delete a vertex w from , we would like to delete it from exactly one of
1 and 2. If w is not equal to x, the middle vertex of the path hull, then
deletion takes O(1) time. If w x, then we must rebuild the path hull, since
one of the semipath hulls does not support deleting x. Suppose that 71" is X.

Then we find the middle vertex of 2 , call it z, and build the path hull
PH(r, z), constructing the two semipath hulls by adding vertices. It takes
O(m) time to disassemble SPH(2, x) by deleting all its vertices and then to
build the two new semipath hulls. (The cost of building is O(- log(d / 2)),
where d is the number of vertices popped off at the ith step of construction.
Because - d is at most 2m, the construction cost is O(m).) Disassembly
and reconstruction also require O(m) temporary storage for the vertices of .

4. To split r at a vertex y E , we delete vertices of 71" until y becomes the
free end of . Let the deleted path be r, let its length be m, and let its

594 J. FRIEDMAN, J. HERSHBERGER, AND J. SNOEYINK

midpoint be z. We build the path hull PH(rt, z) as in the previous case.
These operations take O(mtl) time and temporary storage.

5. To merge two paths rl and r2, we disassemble one path hull and add it to
the other. Suppose that rl and rr2 are disjoint except for a single vertex.
Let the lengths of rl and r2 be ml and m2, and without loss of generality
assume that ml < m2. We disassemble the path hull for 0rl by deleting all its
vertices, then add the vertices to the path hull for r2. This takes O(ml) time
for the disassembly and O(ml) temporary storage. The time for reassembly
is O(log(d / 2)), as in 3 above, but now -. d <_ 2(m + m2), and so the
total time for merging is O(m +m log(m2/m)) O(ml log(1 + m2/m)).

6.3. Analysis. Now that we have characterized the operations that we perform
on path hulls, we use the characterization to bound the time required by sequences
of the operations. We consider intermixed sequences of operations 1, 2, 3, and 4 or
1, 2, 3, and 5. Our time bounds are amortized: we bound the time for the whole
sequence of operations, but not for individual operations. The proofs use potential
functions to amortize the costs of the various operations; that is, we prove that for
each operation, the actual running time plus the change in the potential function is
O(log m). Because the potential function for sequences that include splits is different
from the one for sequences that include merges, we cannot give a good bound for the
time required by an intermixed sequence that includes both splits and merges. An
alternating sequence of m splits and merges may take O(m2) time.

THEOREM 6.2. Given a collection of path hulls and singleton vertices that con-
tain a total of m vertices, we can perform an intermixed sequence of O(m) tangent
computations, vertex additions, vertex deletions, and path splits in O(m log m) total
time.

Proof. The preceding characterization of path hull operations gives the asymptotic
complexity of each. To bound the complexity of a sequence of such operations, we
must be more exact in our accounting. We assign a precise cost to each operation,
then define a potential function related to the costs. We define the cost of a tangent
computation to be log m for a path hull with m vertices. The cost of a vertex
addition is log(d + 2), where d is the number of vertices popped off the semipath hull
by the new vertex. The cost of a deletion is either 1 in the easy case, or m in the
case when a pth hull with m vertices must be rebuilt. The cost of a split is k, where
k is the size of the path hull that is rebuilt.

We define a potential function on the collection of path hulls. For a single path
hull PH(r,x), let m be the length of r and let m and m2 be the lengths of the two
portions of r produced by cutting at x, so m /m2 m / 1. We define the potential
of PH(r, x) to be

2m’ log m’ +]m m21.
The first term of the potential is used to pay for splitting costs, and the second to pay
for rebalncing when necessary. The coefficients are chosen to balance the two terms
against each other for the splitting operation. The potential of the whole collection
of path hulls, which we call , is the sum of the individual potentials. The amortized
cost of an operation is its true cost plus the change in potential, A. We show that
the amortized cost of each operation is O(log m). Notice that is nonnegative and
bounded above by 2m logm + m; if we start with a collection of path hulls whose
potential is nonzero, we are still assured that the total time spent on a sequence of
O(m) operations is O(m log m).

COMPLIANT MOTION IN THE PLANE 595

For a tangent computation, AO is zero, and so the amortized cost is the same as
the true cost, log rn’ O(log rn).

For a vertex addition to a semipath hull with rn’ vertices, A is at most

2(m’ + 1)log(re’ + 1)- 2m’ log rn’+ 1

2 log(re’ + 1)+ 1 + 2m’ log(1 + 1/m’)
21ogre’ + O(1).

The amortized cost is O(log rn).
For a vertex deletion there are two cases. If no rebuilding is needed, then AO is

at most

2(rn’ 1)log(rn’ 1)- 2m’ log m’ + 1

-2 log(re’ 1)+ 1 + 2m’ log(1-
-2 log rn’ + O(1)
o(1).

The amortized cost is certainly O(log rn). If the path hull must be rebuilt, then the
second term of the potential becomes significant. The actual cost is m’, and A is
-2 log rn’ + O(1) -rn’, so the amortized cost is the same as in the first case.

For a split, the actual cost is k, where k is the size of the path hull that must be
rebuilt. There are two cases depending on whether k is more or less than half of rn’,
the length of the path being split. If k <_ m’/2, then the first term of the potential
gives what we want: A is at most

m’-k+l k
2(m’ k + 1) log

rn’ + 2k log ’7 + 2 logm + k + 1

<_ 2 log rn + 1 k.

If k > m’/2 then the second term comes into play. The worst-case upper bound on
AO occurs when 1, the semipath containing the splitting vertex, has size k. AO is
at most

m’-k+l k
2(rn’ k + 1)log m’ + 2k log -7 + 2 logm

+ 1 + (rn’- k) (2k rn’- 1)
logm- 2(m’- k) 3k + 2m’ 2 log rn- k.

In both cases the amortized cost is O(logm). This completes the proof of the
theorem.

THEOREM 6.3. Given a collection of path hulls and singleton vertices that con-
tain a total of m vertices, we can perform an intermixed sequence of O(m) tangent
computations, vertex additions, vertex deletions, and path merges in O(m log m) total
time.

Proof. The idea of this proof is the same as that of the previous proof: we specify
the costs of the operations precisely, define a potential function bounded by 0 and
2m logm / m, and show that the amortized cost of each operation is O(logm). As
in the previous proof, the operation costs are log m’ for tangent finding, log(d + 2)
for a vertex addition, and either 1 or m’ for vertex deletions, depending on whether

596 J. FRIEDMAN, J. HERSHBERGER, AND J. SNOEYINK

path hulls must be rebuilt. The cost of merging two paths to produce a single path
of length m is k log(m/k), where k is the length of the shorter of the two paths.

We define the potential of a single path hull that has two portions of lengths ml

and m2, with m + m2 --m + 1, to be

2m’ log(m/re’)+ Imi -m21.
The potential for the whole collection of path hulls, which we call , is the sum of
the individual potentials. It satisfies 0 < (I) < 2m logm / m.

As in Theorem 6.2, the amortized cost of a tangent computation is the same as
its true cost, log m O(log m). Similarly, the amortized costs of vertex additions
and deletions are O(log(m/m’)) O(log m).

For a merge, A is at most

m-k+l k m2(m’- k + 1)log
m’ + 2k log -7 2 log -7 + k 1

m k m< -2 log -7 + 2k log -7 + k < -k log ---.
Hence the amortized cost of a merge is O(1).

6.4. Storage allocation for semipath hulls. In this section we discuss how
to allocate storage for the semipath hulls used in the algorithms of 3 and 4. In order
to represent the convex hull of a simple path by a semipath hull, we must allocate
block of storage proportional in size to the length of the path. During the rotation
algorithm, the paths lengthen and shorten due to vertex additions and deletions. In
the face of changing path lengths, we must ensure that each semipath hull has a block
of storage whose minimum size is proportional to the length of the path. We describe
three solutions to the allocation problem; these solutions trade conceptual complexity
for space complexity.

The first solution is trivial: simply allocate O(n) storage for each semipath hull.
Each semipath hull has enough space; most have an excess. This scheme takes O(n2)
storage.

The second solution is less trivial: copy semipath hulls when they get too big or
too small. This is the approach used when k > 1, that is, when there are islands
inside the outer polygon (4). Each semipath hull SPH(Tr, x) is initially given
block of storage appropriate for a path at most two times longer or shorter than
Suppose that the block is appropriate for a path of length m. When the length of 7r

becomes less than m/4 or greater than m, we copy the semipath hull into a block of
storage half or twice as big, as appropriate. The copying cost is proportional to the
number of vertex additions and deletions performed on the semipath hull since the last
copying operation, and so the copying does ,not increase the asymptotic complexity
of the semipath hull operations. A straightforward scheme for block allocation uses
O(kn log n) space: for each i between 0 and log n, we allocate O(kn) storage in blocks
of size O(2). Because there are only O(kn) path vertices total, and no path is larger
than O(n), there are always enough blocks of the required sizes.

The third solution reduces the storage to O(n) in the simple polygon case (k 1).
This is the trickiest solution of the three: allocate three linear-size arrays to hold all
the semipath hull data, then assign disjoint subarrays to the different semipath hull
data blocks. Making sure the blocks stay disjoint as the semipath hulls change is the
key to this approach.

COMPLIANT MOTION IN THE PLANE 597

The description of this solution is divided into three parts: keeping semipath
hulls stationary, sharing a deque between two arrays, and indexing the semipath hull
storage.

Section 6.1 shows that a semipath hull changes very little when a vertex is added
or deleted. No vertices are moved except the one being added or deleted. Thus a
requirement of a storage allocation scheme is that if r is a subpath of r with the
same anchor x, then the storage for SPH(Tr,x) should be a contiguous subset of
that for SPH(r,x). Because the paths we deal with are subsequences of the polygon
boundary, this suggests that we number the vertices around the boundary of the
polygon and assign storage based on indices. A path with endpoints numbered and
j along the boundary of P would be assigned storage with indices i..j. This is the
idea we use, although the indexing is not quite so simple.

Before we discuss indexing, we consider storing a deque in an array fixed at one
end. The deque part of SPH(,x) grows at both ends as new vertices are added to, but the array locations reserved for it extend in only one direction: the location
assigned to vertex x is fixed. To allow double-ended growth, we use two arrays, right
and left. We split the deque array described in 6 into a left half and a right half.
If locations x..v are reserved for the deque, then we store the right half of the deque
in right[x..v], growing toward v, and the left half in left[x..v], also growing toward v.
This complicates the deque indexing, but has the properties we need. The transcript
stack is easy to manage; we just store it in a transcript array in locations indexed by
x..v, with the stack growing toward v.

The array indexing scheme we use is not vertex-based, but edge-based. In the
algorithm of 3, we maintain a semipath hull for each free-space edge on the boundary
of B. If each of the associated paths lay outside Ba, in the bay cut off by the free-
space edge, then assigning storage based on polygon vertex indices would work--path
vertices would lie in disjoint intervals of the polygon boundary. However, the path
associated with a free-space edge doesn’t always lie in the bay cut off by the edge,
for example when a leading free-space edge is retreating (moving to the right). To
cope with this difficulty, we allocate the storage for a semipath hull based on the
polygon and triangulation edges that cut the free-space edge. We assign indices 1
through 4n- 6 to the endpoints of all polygon and triangulation edges, numbered
consecutively along the polygon boundary. Semipath hulls are stored in three arrays
with these indices. The path associated with a free-space edge f has as many vertices
as there are polygon or triangulation edges that touch f from a particular side of
the path. This number is no larger than the number of edge endpoints inside the
bay that f cuts off, and so we can allocate the storage for the semipath hull from
that associated with these edge endpoints. In particular, the triangulation or polygon
edge from f to the anchor of the path determines the fixed end of the semipath hull
storage.

7. An open problem. In the standard model of compliant motion [2, 5, 8, 9,
11, 25], a vertex of the environment can be "sticky" when the robot encounters it
coming from free space. In reality, however, if the robot "shakes" a little, it may get
unstuck and reach the goal. In other words, it is possible that this vertex separates
two good ranges for the starting point of the robot. Under the model in which the
robot is able to "shake loose" when it gets stuck, it may be possible to unite these two
ranges. This can produce a good range for the imperfect control case, even when no
good range exists under the standard model. Figure 15 illustrates the problem: the
presence of island I prevents the merging of the two good ranges for p, but if island I

598 J. FRIEDMAN, J. HERSHBERGER, AND J. SNOEYINK

FIG. 15. Should the triangle peak be sticky?

were not there, merging would be possible. We conjecture that it is possible to merge
ranges, given the control uncertainty of the robot, in O(kn log n) preprocessing and
O(k log n) query time.

Acknowledgments. We would like to thank Jean-Claude Latombe for introduc-
ing us to the problem of compliant motion planning, to Leo Guibas for reading an
early draft of this paper and for making important comments about Theorem 2.7,
and to the referees for their comments.

REFERENCES

[1] M. BRADY, J. M. HOLLERBACH, T. L. JOHNSON, T. LOZANO-PEREZ, AND M. MASON, Robot
Motion: Planning and Control, MIT Press, Cambridge, MA, 1982.

[2] A. J. BRIGGS, An ejficient algorithm for one-step planar compliant motion planning with
uncertainty, Algorithmica, 8 (1992), pp. 195-208.

[3] S. J. BUCKLEY, Planning and Teaching Compliant Motion Strategies, Ph.D. thesis, Department
of Electrical Engineering and Computer Science, Massachusetts Institute of Technology,
Cambridge, MA, 1987.

[4] J. F. CANNY, A new algebraic method for robot motion planning and real geometry, in Proc.
28th IEEE Symposium on Foundations of Computer Science, IEEE Press, Piscataway, NJ,
1987, pp. 39-48.

[5] J. F. CANNY AND J. REIF, New lower bound techniques for robot motion planning problems,
in Proc. 28th IEEE Symposium on Foundations of Computer Science, IEEE Press, Piscat-
away, NJ, 1987, pp. 49-60.

[6] B. CHAZELLE, Triangulating a simple polygon in linear time, Discrete Comput. Geom., 6 (1991),
pp. 485-524.

[7] D. DOBKIN, L. GUIBAS, J. HERSHBERGER, AND J. SNOEYINK, An ejficient algorithm for finding
the CSG representation of a simple polygon, Algorithmica, 10 (1993), pp. 1-23.

[8] B. R. DONALD, Error Detection and Recovery in Robotics, Lecture Notes in Comput. Sci. 336,
Springer-Verlag, New York, 1989.

[9] ., The complexity of planar compliant motion under uncertainty, Algorithmica, 5 (1990),
pp. 353-382.

[10] H. EDELSBRUNNER, L. J. GUIBAS, AND J. STOLFI, Optimal point location in a monotone sub-
division, SIAM J. Comput., 15 (1986), pp. 317-340.

[11] M. A. ERDMANN, Using backprojections for fine motion planning with uncertainty, Internat. J.
Robotics Res., 5 (1986), pp. 19-45.

[12] M. A. ERDMANN AND M. MASON, An exploration of sensorless manipulation, in Proc. IEEE
International Conference on Robotics, IEEE Press, Piscataway, NJ, 1986, pp. 1569-1574.

[13] S. FORTUNE AND G. WILFONG, Planning constrained motion, in Proc. 20th ACM Symposium
on Theory of Computing, Association for Computing Machinery, New York, 1988, pp. 445-
459.

[14] A. FOURNIER AND D. Y. MONTUNO, Triangulating simple polygons and equivalent problems,
ACM Transactions on Graphics, 3 (1984), pp. 153-174.

COMPLIANT MOTION IN THE PLANE 599

[15] J. FRIEDMAN, J. HERSHBERGER, AND J. SNOEYINK, Compliant motion in a simple polygon,
in Proc. 5th ACM Symposium on Computational Geometry, Association for Computing
Machinery, 1989, pp. 175-186.

[16] -------, Input-sensitive compliant motion in the plane, in Proc. 2nd Scandinavian Workshop on
Algorithm Theory, Springer-Verlag, Berlin, 1990, pp. 225-237.

[17] M. R. GIRLY, D. S. JOHNSON, F. P. PREPARATA, AND R. E. TARJAN, Triangulating a simple
polygon, Inform. Process. Lett., 7 (1978), pp. 175-179.

[18] R. L. GRAHAM AND F. F. YAO, Finding the convex hull of a simple polygon, J. Algorithms, 4
(1983), pp. 324-331.

[19] L. J. GUIBAS, L. RAMSHAW, AND J. STOLFI, A kinetic framework for computational geome-
try, in Proc. 24th IEEE Symposium on Foundations of Computer Science, IEEE Press,
Piscataway, NJ, 1983, pp. 100-111.

[20] L. J. GUIBAS, M. SHAIIR, AND S. SIFIONY, On the general motion-planning problem with two
degrees of freedom, Discrete Comput. Geom., 4 (1989), pp. 491-521.

[21] P. J. HEFFERNAN AND J. S. B. MITCHELL, Structured visibility profiles with applications to
problems in simple polygons, in Proc. 6th ACM Symposium on Computational Geometry,
Association for Computing Machinery, 1990, pp. 53-62.

[22] J. HERSHBERGER AND J. SNOEYINK, Computing minimum length paths of a given homotopy
class, in Proc. 2nd Workshop on Algorithms and Data Structures, Lecture Notes in Com-
put. Sci. 519, Springer-Verlag, New York, 1991, pp. 331-342.

[23] S. HUDDLESTON AND K. MEHLHORN, A new data structure for representing sorted lists, Acta
Inform., 17 (1982), pp. 157-184.

[24] D. KIRKPATRICK, Optimal search in planar subdivisions, SIAM J. Comput., 12 (1983), pp. 28-
35.

[25] J.-C. LATOMBE, Motion planning with uncertainty: The preimage backchaining approach, Tech.
Report STAN-CS-88-1196, Department of Computer Science, Stanford University, Stan-
ford, CA, 1988.

[26] , Robot Motion Planning, Kluwer international Series in Engineering and Computer
Science, SECS 0124, Kluwer Academic Publishers, Norwell, MA, 1991.

[27] T. LOZANO-PPEZ, M. T. MASON, AND R. H. TAYLOR, Automatic synthesis of fine-motion
strategies for robots, Internat. J. Robotics Res., 3 (1984), pp. 3-24.

[28] T. LOZANO-PREZ AND M. A. WESLEY, An algorithm for planning collision-free paths among
polyhedral obstacles, Comm. Assoc. Comput. Mach., 22 (1979), pp. 560-570.

[29] A. MELKMAN, On-line construction of the convex hull of a simple polyline, inform. Process.
LeAr., 25 (1987), pp. 11-12.

[30] B. K. NATARAJAN, On Moving and Orienting Objects, Ph.D. thesis, Department of Computer
Science, Cornell University, Ithaca, NY, 1986.

[31] C. ’DNLAING AND C. K. YAP, A "retraction" method for planning the motion of a disc, J.
Algorithms, 6 (1986), pp. 104-111.

[32] J. O’ROURKE, Computational Geometry in C, Cambridge University Press, London, 1994.
[33] F. P. PREPARATA AND M. I. SHAMOS, Computational Geometry: An Introduction, Springer-

Verlag, New York, 1985.
[34] J. T. SCHWARTZ, M. SHAPII, AND J. HOPCROFT, eds., Planning, Geometry, and Complexity of

Robot Motion, Ablex Series in Artificial Intelligence, Ablex, Norwood, NJ, 1987.
[35] M. SHAPIP AND A. SCHOPR, On shortest paths in polyhedral spaces, SIAM J. Comput., 15

(1986), pp. 193-215.
[36] G. TOUSSAINT AND D. Avis, On a convex hull algorithm for polygons and its applications to

triangulation problems, Pattern Recognition, 15 (1982), pp. 23-29.

SIAM J. COMPUT.
Vol. 25, No. 3, pp. 600-625, June 1996

() 1996 Society for Industrial and Applied Mathematics
O06

ON-LINE ALGORITHMS FOR PATH SELECTION IN A
NONBLOCKING NETWORK*

SANJEEV ARORAt, F. T. LEIGHTON*, AND BRUCE M. MAGGS

Abstract. This paper presents the first optimal-time algorithms for path selection in an optimal-
size nonblocking network. In particular, we describe an N-input, N-output, nonblocking network
with O(N log N) bounded-degree nodes, and an algorithm that can satisfy any request for a connec-
tion or disconnection between an input and an output in O(log N) bit steps, even if many requests
are made at once. Viewed in a telephone switching context, the algorithm can put through any set
of calls among N parties in O(log N) bit steps, even if many calls are placed simultaneously. Parties
can hang up and call again whenever they like; every call is still put through O(log N) bit steps after
being placed. Viewed in a distributed memory machine context, our algorithm allows any processor
to access any idle block of memory within O(log N) bit steps, no matter what other connections have
been made previously or are being made simultaneously.

Key words, nonblocking network, multibutterfly network, multi-Bene network, routing algo-
rithm

AMS subject classifications. 68M10, 68Q22, 90B12, 94C10

1. Introduction.

1.1. Definitions. Nonblocking networks arise in a variety of communications
contexts. Common examples include telephone systems and network architectures for
parallel computers. In a typical application, there are 2N terminals (usually thought
of as N inputs and N outputs) interconnected by switches that can be set to link the
inputs to the outputs with node-disjoint paths according to a specified permutation.
(Switches are also called nodes.) In a nonblocking network, the terminals and nodes
are interconnected in such a way that any unused input-output pair can be connected
by a path through unused nodes, no matter what other paths exist at the time. The
6-terminal graph shown in Figure 1.1, with inputs Bob, Ted, and Pat and outputs
Vanna, Carol, and Alice, for example, is nonblocking because no matter which input-
output pairs are connected by paths, there is a node-disjoint path linking any unused
input-output pair. In particular, if Bob is talking to Alice and Ted is talking to Carol,
then Pat can still call Vanna.

The notion of a nonblocking network has several variations. The nonblocking
network in Figure 1.1 is an example of the most commonly studied type. This net-
work is called a strict-sense nonblocking connector, because no matter what paths are
established in the network, it is possible to establish a path from any unused input
to any unused output. A slightly weaker notion is that of a wide-sense nonblocking

Received by the editors October 2, 1991; accepted for publication (in revised form) October 26,
1994. This research was conducted while the first and third authors were affiliated with the Labo-
ratory for Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139. This
research was supported in part by Defense Advanced Research Projects Agency contracts N00014-
87-K-825 and N00014-89-J-1988, Air Force contract AFOSR-89-0271, and Army contract DAAL-03-
86-K-0171. A preliminary version of this paper appeared in Proc. 22nd Annual ACM Symposium
on Theory of Computing, 1990, pp. 149-158.

Department of Computer Science, Princeton University, Princeton, NJ 08544 (arora@
cs.princeton.edu).

Mathematics Department and Laboratory for Computer Science, Massachusetts Institute of
Technology, Cambrige, MA 02139 (ftl@math.mit.edu).

School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213 (bmm@
cs.cmu.edu).

6OO

PATH SELECTION IN A NONBLOCKING NETWORK 601

Bob Vanna

Ted Carol

Pat Alice

FIG. 1.1. A nonblocking network with three inputs and three outputs.

connector. A wide-sense nonblocking connector does not make the same guarantee as
a strict-sense nonblocking connector. A network is a wide-sense nonblocking connec-
tor if there is an algorithm for establishing paths in the network, one after another,
so that after each path is established, it is still possible to connect any unused input
to any unused output. Still weaker is the notion of a rearrangeable connector. A
rearrangeable connector is capable of realizing any one-one connection of inputs to
outputs with node-disjoint paths provided that all the connections to be made are
known in advance. A nonblocking or rearrangeable connector is a called a generalized
connector if it has the additional property that each input can be simultaneously
connected to an arbitrary set of outputs, provided that every output is connected to
just one input. Generalized connectors are useful for multiparty calling in a telephone
network as well as for broadcasting in a parallel machine.

1.2. Previous work. Nonblocking and rearrangeable networks have a rich and
lengthy history. See [30] for an excellent survey and [9, 10] for more comprehensive
descriptions of previous results. In 1950, Shannon [35] proved that any rearrange-
able or nonblocking connector with N-inputs and N-outputs must have Ft(N log N)
edges. Further work on lower bounds can be found in [4, 11, 32, 33]. In 1953, Clos
constructed a strict-sense nonblocking connector with O(N1+1/j) edges and depth j,
for fixed j. (The degree of the nodes is not bounded.) Bounded-depth nonblocking
networks have subsequently been studied extensively [8, 10, 24, 25, 29, 33]. in the
early 1960s, Beizer [5] and Beneg [6] independently discovered bounded-degree rear-
rangeable connectors with depth O(log N) and size O(Nlog N), and Waksman [38]
gave an elegant algorithm for determining how the nodes should be set in order to real-
ize any particular permutation. Ofman [26] followed with a generalized rearrangeable
connector of size O(N log N). Next, Cantor [7] discovered a bounded-degree O(log N)-
depth strict-sense nonblocking connector with O(N log2 N) edges. The existence of
a bounded-degree strict-sense nonblocking connector with size O(N log N) and depth
O(log N) was first proved by Bassalygo and Pinsker [3]. Although the Bassalygo and
Pinsker proof is not constructive, subsequent work on the explicit construction of
expanders [23] yielded a construction.

More recent work has focused on the construction of generalized nonblocking
connectors. In 1973, Pippenger [28] constructed a wide-sense generalized nonblocking
connector with O(Nlog2 N) edges. This result was later improved to O(NlogN)
edges by Feldman, Friedman, and Pippenger [10]. Recently, Turner suggested cascad-
ing two of the asymptotically larger Clos or Cantor networks as a more practical way

Throughout this paper log N denotes log2 N.

602 S. ARORA, F. T. LEIGHTON, AND B. M. MAGGS

to construct a generalized nonblocking connector [36]. This method requires that all
the parties in a multiparty call are known at the time that the call is placed.

Unfortunately, there has not been as much progress on the problem of setting
the nodes to realize the connection paths, indeed, several of the references cited
previously show that there exists a way of setting the nodes to realize the desired
paths, but are unable to provide any reasonable algorithms for actually finding the
right node settings. For example, no polynomial-time algorithm is known for finding
the paths in the wide-sense generalized nonblocking connector of [10]. There are a few
exceptions. On the naive nonblocking networks of size O(N2) (e.g., an N N mesh
of trees [15]), a simple greedy algorithm suffices to find the paths on-line in O(log N)
time. (An algorithm that finds the settings for the nodes is called a circuit-switching
algorithm. An algorithm that is performed by the nodes themselves using only local
information is called an on-line algorithm; an off-line algorithm is one that uses more
global information.) Also, Lin and Pippenger recently found polylogarithmic-time off-
line parallel algorithms for path selection in O(N log2 N)-size strict-sense nonblocking
connectors using one processor per request [22]. On any strict-sense nonblocking
connector, an on-line version of breadth-first search can be used to find a path from
an unused input to an unused output on-line. Unfortunately, this algorithm cannot
efficiently cope with simultaneous requests for connections. Nevertheless, no better
algorithm, either on-line or off-line, was previously known for any O(NlogN)-size
nonblocking network.

1.3. Models and conventions. The running times of the algorithms in this
paper are described in two models, the bit model and the word model. In the bit
model, each network node can be thought of as a finite automaton. In each bit step,
the node can receive a single bit of information along each of its incoming edges (of
which there are at most a constant number), change to a new state, and output a

single bit of information on each of its outgoing edges (of which there are at most a
constant number). In the word model, each edge in an N-node network can transmit
a word consisting of up to O(log N) bits in a single step.

To simplify the explanation of the algorithms and results in this paper, we have
adopted some conventions that may differ from the way that this material is treated
in the more applied literature. For example, we generally route paths in a node-
disjoint fashion. In practice, however, it may be desirable to route paths in an edge-
disjoint manner instead. Our definitions and results can also be applied in this setting,
as demonstrated in 5.3.3. Note that node-disjoint paths are automatically edge-
disjoint, and any algorithm for routing edge-disjoint paths on a degree-d network can
be converted into one for routing node-disjoint paths by replacing each node with a
d d complete bipartite graph.

1.4. Our results. In this paper, we describe an O(N log N)-node nonblocking
network for which each connection can be made on-line in O(log N) bit steps. The
path selection algorithm works even if many calls are made at once--every call still
gets through in O(log N) bit steps, no matter what calls were made previously and no
matter what calls are currently active, provided that no two inputs try to access the
same output at the same time. (If many inputs inadvertently try to access the same
output at the same time, all but one of the inputs will receive a busy signal. The
busy signals are also returned in O(log N) bit steps, but, at present, we require the
use of a sorting circuit [2, 20] to generate the busy signals. Alternatively, we could
merge the calling parties together, but this also requires the use of a sorting circuit.)
In all scenarios, the size of the network and the speed of the path-selection algorithm

PATH SELECTION IN A NONBLOCKING NETWORK 603

are asymptotically optimal.
In addition to providing the first optimal solution to the abstract telephone-

switching problem, our results significantly improve upon previously known algo-
rithms for bit-serial packet routing. Previously, O(logN)-bit-step algorithms for
packet routing were known only for the special case in which all packet paths are
created or destroyed at the same time, and even then only by resorting to the Ajtai-
KomlSs-Szemerdi (AKS) sorting circuit ([2]), or by using randomness on the hyper-
cube [1]. In many circuit-switched parallel machines, however, packets are of varying
lengths and packet paths are created and destroyed at arbitrary times, thereby re-
quiring that paths be routed in a nonblocking fashion--something that previously
discovered algorithms were not capable of doing. Even without worrying about the
nonblocking property, our results provide the first non-AKS O(log N)-bit-step algo-
rithms for bit-serial packet routing on a bounded-degree network. (Since this work
first appeared, Leighton and Plaxton have developed an O(log N)-bit-step randomized
sorting algorithm for the butterfly [20].)

1.5. Our approach. The networks that we use to obtain these results are con-
structed by combining expanders and Bene networks in much the same way that
expanders and butterflies are combined to form the multibutterfly networks described
by Upfal [37]. We refer to these networks as multi-Beneg networks. The nonblocking
networks of Bassalygo and Pinsker [3] are similar. The details of the construction are
provided in 2 of the paper.

The techniques in this paper can also be applied to bandwidth-limited switching
networks such as fat-trees [21]. These networks may be more useful in the context of
real telephone systems, where there are limitations on the number of calls based on
the proximity of the calls (e.g., it is unlikely that everyone on the East Coast will call
everyone on the West Coast at the same time).

The description and analysis of the path-selection algorithm is divided into three
sections, in 3, we prove that the multi-Beneg network is a strict-sense nonblocking
connector. A similar approach was used in [17] to show that the multibutterfly is
capable of routing in the presence of many faulty nodes. Indeed, we can think of cur-
rently used nodes as being faulty since they cannot be used to form new connections.
Similarly, the algorithms we describe for routing in nonblocking networks can easily
be extended to be highly tolerant of faults in the network, in 4, we describe an
O(log N)-bit-step algorithm for bit-serial routing in a multibutterfly. This algorithm
relies on an unshared-neighbor property possessed by all highly expanding graphs. By
implementing this algorithm on the multi-Bene network and combining it with the
methods of 3, we produce an algorithm that can handle many calls at the same time,
independent of what calls have been made previously and what calls are currently
connected.

In 5, we describe algorithms for handling multiparty calls, and situations where
many inputs try to reach the same output simultaneously. Some of these algorithms
rely on sorting circuits and are not as practical as those described in 4. We also show
how to remove the distinction between terminals and nonterminals.

2. The multi-Bene and multibutterfly networks. Our nonblocking net-
work is constructed from a Bene network in much the same way that a multibutter-
fly network [37] is constructed from a butterfly network. We start by describing the
butterfly, Bene, and multibutterfly networks.

An N-input butterfly has logN + 1 levels, each with N-nodes. An example is
shown in Figure 2.1. The Bene network is a (21ogN + 1)-level network consisting

604 S. ARORA, F. T. LEIGHTON, AND B. M. MAGGS

row

000

001

010

011

100

101

110

111

level

0 1 2 3

FIG. 2.1. An eight-input butterfly network.

level

-3 -2 -1 0 1 2 3

000 /
/001

011
rOW

100

101

110

111

FIG. 2.2. An eight-input Beneg network.

of back-to-back butterflies. The network in Figure 2.2 is a Beneg network. Although
Beneg networks are usually drawn with the long diagonal edges at the first and last
levels rather than in the middle (see, e.g., [16, Fig. 3-27]), the networks are isomorphic.

A multibutterfly is formed by gluing together butterflies in a somewhat unusual
way. In particular, given two N-input butterflies G1 and G2 and a collection of
permutations II @o,rl,... ,TrlogN), where rt" [0, 1] [0, 1], a two-

butterfly is formed by merging the node in row 2t / of level of G1 with the node

PATH SELECTION IN A NONBLOCKING NETWORK 605

FIG. 2.3. An eight-input two-butterfly network.

in row - + l(i) of level/ of G2 for all 0 <_ <_ 1, all 0 _< j _< 2l- 1, and all
0 <_ <: log N. The result is an N-input (log N + 1)-level graph in which each node
has four inputs and four outputs. Of the four output edges at a node, two are up
outputs and two are down outputs (with one up edge and one down edge coming from
each butterfly). For an example, see Figure 2.3. Multibutterflies (i.e., d-butterflies)
are composed from d butterflies in a similar fashion using d- 1 sets of permutations,
H(1),... ,II(d-l), where II() {), 0 _< <_ log g}, resulting in a (log N + 1)-level
network with 2d 2d nodes.

In a butterfly or multibutterfly, for each output v there is a distinct logical (up-
down) path from the inputs to v. In order to reach v from any input u, the path from
u to v must take an up-edge from level to level + 1 if the/th bit in the row number
of v is 0, and a down-edge if the bit is 1. (The bits are counted starting with the
most significant, which is in position 0.) Figure 2.4 shows the logical path from any
input to output 011. Let us use the term physical path to denote our usual notion
of a path through the network, i.e., a physical path consists of a sequence of nodes
w0, Wl,..., WlogN such that node w resides on level i of the network, and nodes w
and W+l are connected by an edge, for 0 _< < log N. In a butterfly network, the
logical path can be realized by only one physical path through the network. In a
multibutterfly, however, each step of the logical path can be taken on any one of d
edges. Hence, for any logical path there are many physical paths through the network.

The notion of up and down edges can be formalized in terms of splitters. More
jN to (J+2)Nprecisely, the edges from level to level l+ 1 in rows 2l -1 in a multibutterfly

form a splitter for all 0 _< < log N and 0 <_ j <_ 2 1. Each of the 2 splitters starting
Nat level has inputs and outputs. The outputs on level + 1 are naturally divided

Ninto 21 up outputs and 2(g+.i down outputs. By definition, all splitters on the same
level are isomorphic, and each input is connected to d up outputs and d down outputs

1) (d-1) and (1) (d-)according to the butterfly and the permutations ,..., ,, ,,t+,...,+
The most important characteristic of a multibutterfly is the set of permutations

606 S. ARORA, F. T. LEIGHTON, AND B. M. MAGGS

up down down

(R) @ 000

@ @ @ 101

@ @ @ 110

@ @ @ 111

FIG. 2.4. The logical up-down path from any input to output 011.

k_<oM

M

FIG. 2.5. A splitter with expansion property (a,).

II(1),..., II(d- 1) that prescribe the way in which the component butterflies are to be
merged. For example, if all the permutations are the identity map, then the result
is the dilated butterfly (i.e., a butterfly with d copies of each edge). We are most
interested in multibutterflies that have expansion properties. In particular, we say
that an M-input splitter has expansion property (a, fl) if every set of k _< aM inputs
is connected to at least flk up outputs and flk down outputs for/3 > 1. Similarly,
we say that a multibutterfly has expansion property (a,) if each of its component
splitters has expansion property (a,/3). For example, see Figure 2.5.

Although the constants a, fl, and d do not appear in the expressions for the

PATH SELECTION IN A NONBLOCKING NETWORK 607

FIG. 2.6. An eight-input two-multi-Beneg network.

running times of our algorithms, e.g., O(log N), as a practical matter they are crucial.
In general, the larger/ is, the fewer bit steps an algorithm will require. However,
since d _>/, a network with large must also have large d, and in practice it may
be difficult to build a node that can receive and transmit along all d of its edges
simultaneously if d is large. Furthermore, most of the algorithms require > d/2,
which (as far as we know) can only be achieved for small a. As we shall see, the
fraction of network nodes that are actually used by paths is at most l/a, so if a is
small, the network is not fully utilized.

If the permutations H(1),..., II(d-l) are chosen randomly, then with nonzero prob-
ability, the resulting d-butterfly has expansion property (a,/) for any d, a, and for
which 2a/ < 1 and

(2.1) d >/ + 1 + 3+
1 + ln2/

ln(2--)
This bound appears as Corollary 2.1 in [37]. A derivation can be found in [18].
Roughly speaking, the bound says that the expansion, /, can be almost as large as
d- 1, provided that a is small enough. Furthermore, for any a, can be made
arbitrarily close to 1/2a, by making d large. It is not known if/3 can be made close to
both d- 1 and 1/2a simultaneously. Constructions for splitters and multibutterflies
with good expansion properties are known, although the expansion properties are
generally not as good as those obtained from randomly generated graphs.

Like a multibutterfly, a multi-Bene network is formed from Beneg networks by
merging them together. A 2-multi-Bene network is shown in Figure 2.6. An N-input
multi-Bene network has 2 log N + 1 levels labeled -log N through log N. Levels 0
through log N form a multibutterfly, while levels -logN through 0 form the mirror
image of a multibutterfly.

As in the multibutterfly, the edges in levels 0 through log N are partitioned
into splitters. Between levels -logN and 0, however, the edges are partitioned into

608 S. ARORA, F. T. LEIGHTON, AND B. M. MAGGS

mergers. More precisely, the edges from level to level + 1 in rows j2t+gN+l to
(j+l)2t+g g+l--1 form a merger for all logN <_ < 0 and 0 <_ j <_ N/2t+lgN+--l.
Each of the N/2/+lg g+l mergers starting at level has 2/+lg N+l inputs and outputs.
The inputs on level are naturally divided into 2/+lg N up inputs and 2/+lg N down
inputs. All mergers on the same level are isomorphic, and each input is connected
to 2d outputs. There is a single, trivial, logical path from any input of a multi-Bene
network through the mergers on levels -log N through -1 to the single splitter on
level 0. (Any physical path will do.) From level 0 there is a single logical up-down
path through the splitters to any output on level log N. In both cases, the logical
path can be realized by many physical paths.

We say that an M-output merger has expansion property (a,) if every set of
k

_
cM inputs (up or down or any combination) is connected to at least 2k outputs,

> I. With nonzero probability, a random set of permutations yields a merger with
expansion property ((,/) for any d, c, and/ for which c I/2 and

(2.2) 2d > 2 + 1 + 23 + 1 + In2
ln(

This inequality can be derived by making a small number of substitutions in the
derivation of Inequality 2.1 found in [18]. We say that a multi-Bene network has
expansion property (a,/) if each of its component mergers and splitters has expansion
property (c,/). The multibutterflies and multi-Beneg networks considered throughout
this paper are assumed to have expansion property (c,).

It is worth noting that all the results in this paper hold for a broader class of
networks than multibutterflies and multi-Bene networks. In particular, each basic
butterfly component used to make a multibutterfly or multi-Beneg network can be
replaced by any Delta network. A Delta network is a regular network formed by
splitters like the butterfly, but for which the individual connections within each splitter
can be arbitrary [14].

3. A proof that the multi-Beneg network is nonblocking. In this section
we prove that the multi-Beneg network is a strict-sense nonblocking connector. As
a consequence, a simple algorithm like breadth-first search can be used to establish
a single path from any unused input to any unused output in O(log N) bit steps,
where N is the number of rows. Algorithms that handle simultaneous requests for
connections and multiparty calls are deferred to 4 and 5.

In order for the algorithm to succeed, the multi-Beneg network must be "lightly
loaded" by some fixed constant factor L, where we will choose L to be a power of
2. Thus, in an N-row multi-Bene network, we only make connections between the
NIL inputs and outputs in rows that are multiples of L. Since the other inputs and
outputs are not used, the first and last log L levels of the network can be removed, and
the NIL inputs and outputs can each be connected directly to their L descendants
and ancestors on levels log N / log L and log N log L, respectively.

The basic idea is to treat the nodes through which paths have already been
established as if they were faulty and to apply the fault propagation techniques from
[17] to the network. In particular, we define a node to be busy if there is a path
currently routing through it. We recursively define a node in the second half of the
network to be blocked if all of its up outputs or all of its down outputs are busy or
blocked. More precisely, nodes are declared to be blocked according to the following
rule. Working backwards from level log N log L- 1 to level 0, a node is declared
blocked if either all d of its up edges or all d of its down edges lead to busy or blocked

PATH SELECTION IN A NONBLOCKING NETWORK 609

nodes. From level -1 to level -logN + log L, a node is declared blocked if all 2d of
its outgoing edges lead to busy or blocked nodes. A node that is neither busy nor
blocked is said to be working.

The following pair of lemmas bound the fraction of input nodes that are blocked
in every splitter and merger.

LEMMA 3.1. For L > 1/2a(- 1), at most a 2a fraction of the inputs in any
splitter are declared to be blocked. Furthermore, at most an a fraction of the inputs
are blocked because of busy and blocked nodes from the upper outputs, and at most an
a fraction are blocked because of busy and blocked nodes from the lower outputs.

Proof. The proof is by induction on level number, starting at level log N- log L
and working backwards to level 0. The base case is trivial since there are no blocked
nodes on level log N- log L. Suppose the inputs of an M-input splitter contain more
than aM nodes that are blocked because of the upper (say) outputs. Consider the
set U of busy or blocked upper outputs. Since all of the edges out of a blocked input
lead to busy or blocked outputs, we can conclude that IUI _> aM. Since every path
passing through the upper outputs must lead to one of M/2L terminals, there can
be at most M/2L busy nodes among the upper outputs of the splitter. Furthermore,
by induction there are at most aM blocked nodes among the upper outputs. Thus,
IUI <_ aM + M/2L. For L > 1/2a(- 1) we have a contradiction. Hence, at most
an a fraction of the nodes are blocked, as claimed.

LEMMA 3.2. For L > 1/2a(- 1), at most a 2a fraction of the upper inputs and
a 2a fraction of the lower inputs in any merger are blocked.

Proof. The proof is like that of Lemma 3.1.
After the fault-propagation process, every working node in the first half of the

network has an output that leads to a working node, and every working node in
the second half has both an up output and a down output that lead to working
nodes. Furthermore, since at most a 2a fraction of the nodes in each merger on level
-logN + logL is blocked, and 2aL < L- 1 for L > 1/2a(- 1) and 2a < 1,
each of the NIL inputs has an edge to a working node on level log N + log L. As
consequence, we can establish a path through working nodes from any unused input
to any unused output in O(log N) bit steps using a simple greedy algorithm. Since
the declaration of blocked nodes takes just O(log N) bit steps, and since the greedy
routing algorithm is easily accomplished in O(log N) bit steps, the entire process takes
just O(log N) bit steps.

The preceding algorithm for establishing paths one after another in the multi-
Beneg network implies that it is a wide-sense nonblocking connector. The proofs
of Lemmas 3.1 and Lemmas 3.2, however, do not make any assumptions about the
strategy used to make previous connections between inputs and outputs. Indeed,
the only requirement is that there are at most M/L paths through each M-input
splitter or M-output merger, which holds for any path-selection strategy. Therefore,
no matter how the paths for the previous connections were found, there is still at
least one working node in each block at level -log N / log L, and as a consequence,
at least one path between any unused input and unused output. Thus the multi-Bene
network is also a strict-sense nonblocking connector. As such, it is not really necessary
to label the nodes as blocked or working; a simple on-line algorithm-like breadth-first
search is guaranteed to find a path. When simultaneous requests are dealt with in
4.4, however, proper labeling will be important.

4. Establishing many paths at once. In this section, we describe an on-line
algorithm for routing an arbitrary number of additional calls in O(log N) bit steps.

610 S. ARORA, F. T. LEIGHTON, AND B. M. MAGGS

As before, we assume for the time being that each input and each output is involved
in at most one two-party call. Extensions to the algorithm for handling multiparty
calls are described in 5. We also assume that paths are established between inputs
and outputs on rows congruent to 0 mod L in the multi-Bene network, where L is a
power of 2 and L _> 1/a. This will ensure that no splitter or merger is ever overloaded.

To simplify the exposition of the algorithm, we start by describing an on-line
algorithm for routing any initial set of paths in a multibutterfly (i.e., we don’t worry
about the nonblocking aspect of the problem for the time being). This comprises
the first known circuit-switching algorithm for the multibutterfly. (Previous routing
algorithms for the multibutterfly [17, 37] only worked for the store-and-forward model
of routing.) The existence of the circuit-switching algorithm provides another proof
that the multibutterfly is a rearrangeable connector. We conclude by modifying the
definitions of busy and blocked nodes from 3 and showing how to implement the
circuit-switching algorithm on a multi-Beneg network so that it works even in the
presence of previously established calls.

4.1. Unshared neighbors. Our circuit-switching algorithm requires the split-
ters in the multibutterfly to have a special "unshared-neighbors" property defined as
follows.

DEFINITION 4.1. An M-input splitter is said to have the (a, 5) unshared-neighbors
property if in every subset X of k

_
aM inputs, there are 5k nodes in X that have

an up-output neighbor that is not adjacent to any other node in X, and there are 5k
nodes in X that have a down-output neighbor that is not adjacent to any other node in
X (i.e., 5k nodes in X have an unshared up-neighbor, and 5k nodes have an unshared
down-neighbor).

LEMMA 4.2. Any splitter with the (a,) expansion property has the (a, 5) unshared-
neighbors property, where 5 2/d- 1, provided that > d/2.

Proof. Consider any set X of k < aM inputs in an M-input splitter. These
nodes have at least/k neighbors among the up (down) outputs. Let nl denote the
number of these neighbors adjacent to precisely one node of X, and let n2 denote the
number of neighbors adjacent to two or more nodes of X. Then n -t- n2 >_ k and
nl + 2n2 <_ dk. Solving for nl reveals that nl _> (2- d)k. Hence at least (2/d- 1)k
of the nodes in X are adjacent to an unshared neighbor. D

By (2.1), we know that randomly generated splitters have the (a,5) unshared-
neighbors property, where 5 approaches 1 as d gets large and a gets small. Explicit
constructions of such splitters are not known, however. Nevertheless, we will consider
only multibutterflies with the (a, 5) unshared-neighbors property for 5 > 0 in what
follows.

Remark. The (a,) expansion property (> d/2) is a sufficient condition for the
unshared-neighbors property, but by no means necessary. In fact, we can easily prove
the existence of random splitters that have a fairly strong (a, 5) unshared-neighbors
property for small degree. For such graphs, the routing algorithm we are about to
describe is more efficient in terms of hardware required. However, multibutterflies
with expansion properties will remain the object of our focus.

4.2. A level-by-level algorithm. Our first algorithm extends the paths from
level 0 to level log N by first extending all the paths from level 0 to level 1, then from
level 1 to level 2, and so on. As we shall see, extending the paths from one level to
the next can be done in O(log N) bit steps, so the total time is O(log2 N) bit steps.

In a multibutterfly with the (a, 5) unshared-neighbors property, it is relatively
easy to extend paths from one level to the next because paths at nodes with unshared

PATH SELECTION IN A NONBLOCKING NETWORK 611

neighbors can be extended without worrying about blocking any other paths that are
trying to reach the next level. The remaining paths can then be extended recursively.
In particular, all the paths can be extended from level to level + 1 (for any 1), by
performing a series of "steps," where each step consists of

1. every path that is waiting to be extended sends out a "proposal" to each of
its output (level + 1) neighbors in the desired direction (up or down),

2. every output node that receives precisely one proposal sends back its
acceptance to that proposal,

3. every path that receives an acceptance advances to one of its accepting out-
puts on level / 1.

Note that each step can be implemented in a constant number of bit steps.
Since the splitters connecting level to level + 1 have M N/2 inputs, and at

most M/2L paths must be extended to the upper (or lower) outputs, for L
the number of inputs containing these paths is at most aM. Thus, we can apply the
(a, 5) unshared-neighbors property to these nodes. As a consequence, in each step the
number of paths still remaining to be extended decreases by a (1 5) factor. After
log(N/L2t+l)/log(1/(1- 5))steps, no paths remain to be extended.

By using the path-extension algorithm just described to extend all of the paths
from level 0 to level 1, then all of the paths from level 1 to level 2, and so on, we can
construct all the paths in

log N N
L2t+- < 2--log log2

=0
log log

O(log2 N)

steps.

4.3. A faster algorithm. To construct the paths in O(log N) bit steps we mod-
ify the first algorithm as follows. Given a set of at most aM paths that need to be
extended at an M-input splitter, the algorithm does not wait O(log M) time for every
path to be extended before it begins the extension at the next level. Instead, it waits
only O(1) steps, in which time the number of unextended paths falls to a fraction p
of its original value. We will choose p to be less than lid. Now the path extension
process can start at the next level. The only danger here is that the p fraction of
paths left behind may find themselves blocked by the time they reach the next level,
and so we need to ensure that this won’t happen. Therefore, stalled paths send out
placeholders to all of their neighbors at the next level, and henceforth the neighbors
with placeholders participate in the path-extension process at the next level as if they
were paths. Thus, a placeholder not only reserves a spot that may be used by a path
at a future time, but also helps to chart out the path by continuing to extend ahead.
Since a placeholder doesn’t know which path will ultimately use it, a node holding
a placeholder must extend paths into both the upper and lower output portions of
its splitter. A placeholder that first extends a path into the upper output portion
of its splitter continues to attempt to extend a path into the lower portion, and vice
versa. We will call a path from an input of the network to an input of a splitter
in the network a real path if it contains no placeholders. The goal of the algorithm,
of course, is to extend real paths all the way through the network. Any path that
contains at least one placeholder is called a placeholder path.

Since each stalled path generates up to 2d placeholders at the next level, and these
placeholders might later become stalled themselves, there is a risk that the network
will become clogged with placeholders. In particular, if the fraction of inputs in a

612 S. ARORA, F. T. LEIGHTON, AND B. M. MAGGS

splitter that are trying to extend rises above (, the path-extension algorithm ceases
to work. Thus, in order to prevent placeholders from clogging the system, whenever a
stalled path, either real or a placeholder, gets extended into either the upper or lower
output portion of a splitter, it sends a cancellation signal to each of the nodes in
that portion of the splitter that are holding placeholders for it. When a placeholder
is replaced by a real path, one of the two directions (up or down) into which the
placeholder has been attempting to extend becomes unnecessary. If the placeholder
has already extended its path in that direction, a single cancellation is sent along the
edge that the path uses. Otherwise, a cancellation is sent to each of the d placeholding
neighbors in that direction. When a placeholding node gets cancellations from all of
the nodes that had requested it to hold their places, it ceases its attempts to extend.
It also sends cancellations to any nodes ahead of it that may be holding a place for it.
Note that a placeholding node that has received cancellations from all but one of the
nodes that had requested it to hold their places continues to try to extend into both
the upper and lower output portions of the splitter. As we shall see, this scheme of
cancellations prevents placeholders from getting too numerous.

The O(log N)-step algorithm for routing paths proceeds in phases. Each path
is restricted to extend forward by at most one level during each phase. We refer to
the first wave of paths and placeholders to arrive at a level as the wavefront. The
wavefront moves forward by one level during each phase. A phase consists of the
following three parts:

(i) C steps of passing cancellation signals. These cancellation signals travel at
the rate of one level per step.

(ii) T steps of extending paths from one level to the next. In this time, the
number of stalled (i.e., unextended) paths at each splitter drops by least a factor of
p, where p

_
(I -5)T.

(iii) one step of sending placeholders to all neighbors of paths in the wavefront
that were not extended during the preceding T steps.
Note that for constant T and C, each phase can be performed in O(I) bit steps. We
will assume that C >_ 2 so that cancellation signals have a chance to catch up with
the wavefront, and that d >_ 3.

The key to our analysis of the algorithm is to focus on the number of stalled paths
(corresponding to real paths or placeholders) at the inputs of each splitter. In phase
t of the algorithm, where the first phase is phase 0, the wavefront advances from level
t to level t + I. Let P denote the maximum fraction of inputs containing wavefront
paths (real or placeholder) in a level i splitter that wish to extend to the upper (or,
similarly, to the lower) outputs of a level + 1 splitter at the beginning of phase i, i.e.,
when the wavefront arrives at level i, and let S(i, t) denote the maximum fraction of
inputs that contain stalled paths that wish to extend to the upper (or, similarly, to
the lower) outputs of any splitter at level at the end of phase t. Note that S(i, t) 0
for t i, since there are no paths to extend at level before phase i. Also, note that

_<
The following lemmas will be useful in proving that every path is extended to

completion in logN phases provided that L _> i/c and p 1/14d.
LEMMA 4.3. If P <_ (then S(i, t) <_ pt-S(i, i) <_ pt+-p for t >_ i.

Proof. In each phase of the algorithm, the number of stalled paths at the inputs
drops by a factor of p, provided that the number of paths trying to extend is never
greater than an a fraction of the inputs of the splitter. Since the number of paths
reaching the inputs never increases after the wavefront arrives, this condition is always

PATH SELECTION IN A NONBLOCKING NETWORK 613

satisfied, v1

The following lemma bounds the size of the wavefront in terms of the number of
stalled paths behind it.

LEMMA 4.4.

Proof. The first term, 1/2L, is an upper bound on the fraction of inputs through
which real paths that wish to extend to the upper outputs (or, similarly, to the lower
outputs) will ever pass. The 2dS(i- 1,i- 1) term represents the fraction of inputs
that could hold placeholders generated by stalled paths at level i- 1 (the factor of 2
comes in because the number of inputs in a splitter at level i 1 is twice as many as
those in a level splitter). The 4dS(i- 2, i- 2) term (l 0, k 1) is an upper bound
on the fraction of inputs containing placeholders that were generated by paths stalled
at level i- 2 when the wavefront was extended to level i- 1 in phase i- 2. Next,
for C _> 2, the contribution of p!aceholders from level i 3 is 8dS(i 3, 2) (here

0, k 2), not 8dS(i 3, i 3), since paths that are stalled at level i 3 during
phase i- 3, but get through during phase i- 2, send cancellation signals to levels i- 2
and i 1 during the first part of phase 1. Hence, these paths do not contribute
placeholders to the wavefront when it is extended from level i- 1 to level i. The
contribution from level C 2 is 2C+2dS(i C 2, 3) (here 1, k 1), since
paths that are extended during the second part of phase 3 send cancellations that
reach level i 2 during the first part of phase i 2. These cancellations then reach
level i- 1 during the first part of phase i- 1. The rest of the terms in the summation
may be counted similarly. Although our summation seems to have infinitely many
terms, only finitely many of them are nonzero.

The next lemma, Lemma 4.5, presents a weaker bound on P. The difference
between this lemma and the previous one is that in Lemma 4.5 we assume that
cancellation signal must reach level rather than i- 1 before the start of the path-
extension part of phase 1 in order for it to have an effect on the size of the wave
propagating from level i- 1 to level i. The reason for this assumption is that we
will later speed up the algorithm by overlapping the cancellation-passing and path-
extension parts of each phase.

LEMMA 4.5.

1
Pi <_ + 2dS(i- l,i-1)

C

+
k--2

c C

+
/--1 k--1

Proof. The proof is similar to that of Lemma 4.4. [:1

The following lemma shows that for the right choices of L, p, d, and C, no splitter
ever receives too many paths (real or placeholder) that want to extend to the upper
outputs (and, similarly, to the lower outputs).

LEMMA 4.6. For L >_ l/a, p <_ 1/14d, d_>3, antiC>_3, P <_ a, forO <_ i <_
log(N/L).

614 S. ARORA, F. T. LEIGHTON, AND B. M. MAGGS

Proof. We prove by induction on that for c/14d, P <_ a, and S(i,i)
pPi <_ 7. For the base case, observe that Po <_ 1/2L, and S(0, 0) <_ PPo (by applying
Lemma 4.3 with 0 and t 0). Hence, S(0, 0) <_ /28d //2. For the inductive
step, we apply Lemma 4.3 to the recurrence of Lemma 4.5, which yields

c
1

Pi + 2d7 + 2kdpk-2
k=2

C

+ 2Ct+kdTp(c-)t+k-2
l=l k=l

1 4dT(1-(2p)C-)+ 2d +2L 1 2p
d2V+pC-(1 (2p)C)

1< + 2d7 + 4.2d + .bd.2L

Note that in the last inequality we have used the fact that d 3, C 3, and
p 1/14d. (We really only needed C 2, but the constants are better for C 3.)
Thus if 7 a/14d and L l/a, then P a. Also, by Lemma 4.3, S(i, i) pP and
if p 1/14d, we have S(i, i) a/14d , thereby establishing the induction.

From Lemma 4.6, it is clear that no splitter ever has more than an a fraction of
its inputs containing paths to be extended to the upper (or lower) outputs. Therefore
the path-extension algorithm is never swamped by placeholders and always works
planned at each level, cutting down the number of stalled paths by a factor of p during
each phase. Hence, log(aM)/log(l/p) phases after the wavefront arrives at a splitter
of size M, all paths are extended. Since the wavefront arrives at level i during phase
i- 1, the algorithm establishes all real paths to level log(N/L) (recall that the last
log L levels have been removed) by phase

max max i- 1 +
log C --O_i<log(N/L)

+ log 1

log oN log Z- 1 1 N
6’

-1 ,log--1max max + C +i 1
logo<i<iog(N/L) log p

since a path that is stalled at level i extends to level i+1 by phase i-l+log(aN/2)/log
(l/p) and its cancellation signals reach level log(N/L) (log(N/L)- i)/C phases later.
For C >_ 2 and p < 1/4, this expression takes on a maximum value of log(N/2L)- 1 +
log(2cL)/log(l/p) + 1/C. At first, this result seems too good to be true, but stalled
real paths catch up to the wavefront very quickly once they get through, and they get
through at a very high rate. Hence (for small enough p), all real paths get through
to the final level along with the wavefront!

Since the number of phases required is basically log(N/L), the overall time for the
algorithm depends mainly on the parameters C and T. By propagating the cancella-
tions at the same time that paths are extended, a single phase can be implemented in
max(C, 2T + 1) steps. As long as p < 1/14d, the algorithm will work for C _> 3. Since
< d- 1, and Lemma 4.2 gives us 5 2/d- 1, and we need p (1- 5)T < 1/14d,

T must be at least 2. In general, in order to make T small, we need 5 to be large.

PATH SELECTION IN A NONBLOCKING NETWORK 615

In order to achieve large 5, we need to be close to d, which requires a to be small
(and consequently L to be large) and d to be large. By using good splitters (5 1),
a small, d large, C 5, and T 2, and replacing each edge with a small constant
number of edges, we can obtain a (5 +)logN-step algorithm for routing all the
paths. Unfortunately, d and L need to be quite large to achieve this bound. For more
reasonable values of d (less than 10) and L (less than 150), we can achieve provable
routing times of about 100 log N. Fortunately, the algorithms appear to run faster in
simulations [19].

It is worth noting that each node needs to keep track of only a few bits of infor-
mation to make its decisions. This is because only the ith bit of the destination is
needed to make a switching decision at level i, and therefore a node at that level looks
at this bit, strips it off, and passes the rest of the destination address onward. The
path as a whole snakes forward through the network. If it ever gets blocked, the entire
snake halts behind it. The implementation details for this scheme are straightforward.
Previously, only the AKS sorting circuit was known to achieve this performance for
bounded-degree networks, but at a much greater cost in complexity and constant fac-
tors. Recently, Leighton and Plaxton have also developed a randomized algorithm for
sorting on the butterfly in O(log N) bit steps [20].

4.4. Routing many paths in a nonblocking fashion on a multi-Bene
network. It is not difficult to implement the circuit-switching algorithm just de-
scribed on a multi-Bene network. The main difference between routing through
a multi-Bene network and a multibutterfly network is that in the first half of the
multi-Bene network, a path at a merger input is free to extend to any of the 2d
neighboring outputs. As the following definition and lemma show, the mergers have
an unshared-neighbor property analogous to that of the splitters.

DEFINITION 4.7. An M-input merger is said to have the (a, 5) unshared-neighbor
property if in every subset X of k

_
aM inputs (either up or down or any combina-

tion), there are 5k nodes in X which have an output neighbor that is not adjacent to
any other node in X.

LEMMA 4.8. Any merger with the (a,) expansion property has the (a, 5) unshared-
neighbors property, where 23/d- 1, provided that > d/2.

Proof. The proof is essentially the same as that of Lemma 4.2.
In order to route around existing paths in a multi-Bene network, we combine the

circuit-switching algorithm with the kind of analysis used in 3. To do so, we need to
modify the definition of being blocked. A splitter input on level l, 0 <_ < log N-log L,
is blocked if more than 2 d- 1 of its d up (or down) neighbors on level + 1 are
busy or blocked. A merger input on level l, log N + log L _< < 0, is blocked if more
than 4/- 2d- 2 of its 2d neighbors on level + 1 are either busy or blocked. Any
node that is not blocked is considered to be working.

4.4.1. The subnetwork of working nodes. The following pair of lemmas
show that for / > (d / 1)/2, an unshared-neighbor property is preserved on the
working nodes.

LEMMA 4.9. For > (d + 1)/2, the working splitter inputs have an (a, l/d)
unshared-neighbor property.

Proof. In the proof of Lemma 4.2 we showed that every set X of k <_ aM
nodes in an M-input splitter has at least (2/- d)k neighbors in the upper and lower
outputs with only one neighbor in X. If X is a set of working switches, then at most
(2/3- d- 1)k of these unshared neighbors can be busy or blocked. Thus, at least k of
the unshared neighbors must be working.

616 S. ARORA, F. T. LEIGHTON, AND B. M. MAGGS

LEMMA 4.10. For > (d + 1)/2, the working merger inputs have an (a, l/d)
unshared-neighbor property.

Proof. The proof is similar to that of Lemma 4.9.
Of course, we must also check that the new blocking definition does not result in

any inputs of the multi-Bene network becoming blocked. This can be done with an
argument similar to that in Lemmas 3.1 and 3.2.

LEMMA 4.11. For > 2d/3 + 2/3 and L > 1/2a(3/- 2d- 2), less than a 2a

fraction of the inputs in any splitter are declared to be blocked. Furthermore, less than
an a fraction of the inputs are blocked because of busy and blocked nodes from the
upper outputs, and less than an a fraction are blocked because of the lower outputs.

Proof. The proof is by induction on level number, working backwards from level
log N log L to level 0. For the base case, observe that on level log N log L none of
the nodes are blocked. Now suppose that aM of the inputs of some M-input splitter
are blocked by upper outputs (say), and let IUI be the set of busy or blocked upper
outputs. Since the blocked inputs have at least aM neighbors among the upper
outputs, and at most 2d- 2/ + 1 edges out of each blocked node lead to working
nodes, IUI _> aM(- (2d- 2 + 1)) aM(3/- 2d- 1). By induction, however, the
number of blocked upper outputs is at most (M and thus IUI <_ aM / M/2L. For
L > 1/2a(3- 2d- 2), we have a contradiction.

LEMMA 4.12. For/ > 2d/3 + 2/3 and L > 1/2a(3- 2d- 2), at most a 2a

fraction of the up inputs and at most a 2a fraction of the down inputs in any merger
are declared blocked.

Proof. The proof is similar to that of Lemma 4.11.

4.4.2. Routing new paths. Once the working nodes have been identified, new
paths from the inputs to the outputs of the multi-Beneg network can be established
using an algorithm that is essentially the same as the circuit-switching algorithm for
multibutterflies described in 4.3. There are two main differences. First, in the multi-
Bene network, only working nodes are used. However, by Lemmas 4.9 and 4.10 the
working switches have an (a, l/d) unshared-neighbors property. Hence, we can run
the algorithm of 4.3 with 5 lid. Second, routing in the first half of the multi-
Bene network is actually easier than in the second half, which is a multibutterfly,
since there is no notion of up or down edges. The goal is simply to get each new path
from an input on level log N + log L to any working node on level 0. The algorithm
uses placeholders and cancellation signals in the first half in the same way that they
are used in the second half.

4.5. Processing incoming calls. Since the working nodes must be identified
before new paths can be routed, incoming calls are processed in batches. When a
new call originates at an input, it waits until the paths are established for the batch
that is currently being processed. When all of the calls in that batch have been
established, the working nodes are identified, and then the paths for the new batch
are established. Since identifying the working nodes and routing the new paths both
take at most O(log N) bit steps, the time to process each batch is O(log N) bit steps,
and no call waits for more than O(log N) bit steps before being established, including
the time waiting for the previous batch to finish.

5. Extensions.

5.1. Multiparty calls. If all of the parties in a multiparty call are known to
a caller at the start of the call, then it is possible to extend the algorithms in 3
and 4 to route the call from the caller to all of the parties. As a call advances from

PATH SELECTION IN A NONBLOCKING NETWORK 617

level 0 to level log N of the multi-Bene network, it simply creates branches where
necessary to reach the desired output terminals. The bit complexity of the algorithm
may increase, however, because more than O(log N) bits may be needed to specify
the set of outputs that the call must reach.

The situation becomes more complicated if parties to a multiparty call are to be
added after the call is already underway. One possible solution is to set up paths
in the network from the caller to the parties in the call that make multiple passes
through the network. To simplify the explanation, let us assume that the input in
row i and the output in row of the multi-Bene network are actually the same node,
for 0 <_ i _< N- 1. (Thus each input-output can be involved in at most one call.) A
multiparty call is established by constructing a binary tree whose root is the caller and
whose internal nodes and leaves are the parties in the call. Each node of the binary
tree is embedded at an input of the multi-Bene network, and each edge in the tree
from a parent to a child is implemented by routing a path through the multi-Bene
network from the input at which the parent is embedded to the output (which is also
an input) at which the child is embedded. To add a new party to the call, we add
a new node to the binary tree wherever its depth will be minimum. This ensures
that the depth of a tree with parties will be O(log 1). Since each edge of the binary
tree corresponds to a path of length log N in the network, the path from the root to
any other node in the tree has length at most O(log2 N) in the network. It’s easy to
see that a new party can be added in O(log2 N) bit steps, but with a little work the
time can be brought down to O(log N) bit steps. One problem with this scheme is
that the parties corresponding to internal nodes of the binary tree cannot hang up
without also disconnecting all of their descendants. Although this solution is not as
elegant as those proposed in [10] for wide-sense generalized nonblocking connectors,
no polynomial time-routing algorithms are known for those constructions.

5.2. Multiple calls to the same output. If many parties want to call the
same output terminal, then we have two options: merging the callers into a single
multiparty call, or giving busy signals to all but one of the callers.

In either case, the first thing to do is to sort the calls according to their destina-
tions. Unfortunately, no deterministic O(log N)-bit-step sorting algorithm is known
for the multibutterfly network at present, although O(log N) word- and bit-step ran-
domized algorithms are known for the butterfly [20, 34]. If a deterministic O(log N)-
bit-step algorithm is required, the multibutterfly could be augmented with a sorting
circuit such as the AKS sorting circuit [2]. The AKS sorting circuit will provide us
with a set of edge-disjoint paths from its inputs to its outputs. If node-disjoint paths
are desired, then each 2 2 comparator in the circuit can be replaced by a 2 2 com-
plete bipartite graph. Note that in neither case is the sorting circuit a nonblocking
network, since adding new calls at the inputs may alter the sorted order, thus disrupt-
ing existing paths. In the remainder of this section, we will use a sorting circuit either
in conjunction with a butterfly network to route calls in a rearrangeable fashion, or
in conjunction with a multibutterfly to route calls in a nonblocking fashion. In the
latter case, the sorting circuit is used only to help compute the routes that the calls
take, and not to route the calls themselves.

Once the calls have been sorted, a parallel prefix computation is applied to the
sorted list of calls. For each destination, one of the calls is marked as a winner, and
the others as losers. For a description of prefix operations, and how they can be
implemented in O(log N) bit steps on a complete binary tree (which is a subgraph of
the butterfly), see [16, 1.2].

618 S. ARORA, F. T. LEIGHTON, AND B. M. MAGGS

If it suffices to send a busy signal to all of the callers except one, then these
signals can be sent back to the losers along their paths through the sorting circuit,
and the winning path can be established (in a nonblocking fashion) in a multibutterfly
network.

If the calls are to be merged into a single call, then the next step is to label the
winners according to their positions in the sorted order, and to give each loser the
label of the winner for its destination. This is also prefix computation.

To route calls in a rearrangeable fashion, we identify the outputs of the sorting
circuit with the inputs of a butterfly network. Each call is routed greedily in the
butterfly network to the output in the row with the same number as the winner’s
index. This type of routing problem is called a packing problem. Surprisingly, only
calls with the same dest.ination will collide during the routing of any packing problem
[16, 3.4.3]. After this step, all of the calls to the same destination have been merged
into a single call. Since the calls remain sorted by destination, the problem of routing
them to their destinations is called a monotone routing problem. Any monotone
routing problem can be solved with a single pass through two back-to-back butterfly
networks without collisions [16, 3.4.3].

To route calls in a nonblocking fashion, we can either assume that all callers are
known at the time that a call is established or not. If all of the callers are known,
we can route the calls backwards through a multibutterfly from the shared output to
each of the inputs of the callers using the first scheme described in 5.1. Otherwise,
we can use the second scheme of 5.1 in reverse to route the calls using paths of length
O(log2 N).

5.3. Removing the distinction between terminals and nonterminals. In
this section we generalize the routing algorithm of 4 by removing the distinction
between nodes that are terminals and nodes that are not. The algorithm in this
section requires O(log N) word steps, not bit steps. Recall that in the word model,
each edge can transmit a word of O(log N) bits in a single step. The goal of the
algorithm is to establish a set of disjoint paths, each of which may start or end at any
node in the network. The following similar problem was studied by Peleg and UpfM

Given an expander graph, G, K source nodes al,..., aK in G, and
K sink nodes bl,..., b/(in G, where the sources and sinks are all
distinct (i.e., a aj and b bj for i : j, and a by for all i and
j), construct a path in G from each source a to the corresponding
sink b, so that no two paths share an edge.

Peleg and Upfal presented polylogarithmic-time algorithms for finding K edge-disjoint
paths in any n-node expander graph, provided that K <_ rtp, where p is a fixed constant
less one. In this section we show that if we are allowed to specify the network (but not
the locations of the sources and sinks) then it is possible to construct even more paths.
In particular, we describe an n-node bounded-degree network, R, and show how to
find K edge-disjoint paths in it in O(logn) time, provided that K <_ O(n/logn).
Furthermore, we show how to find node-disjoint paths between O(K) of the sources
and sinks.

5.3.1. The network. The network R consists of four parts, each of which con-
tains log N + 1 levels of N nodes. Each of the first three parts shares its last level
with the first level of the next part, so the total number of levels is 4 log N + 1, and
the total number of nodes in the network is n N(4 log N + 1).

PATH SELECTION IN A NONBLOCKING NETWORK 619

The first part is a set of log N + 1 levels labeled -2 log N through -log N. For
-2 log N _< < log N, the edges connecting level to + 1 form an N-input merger.
Hence, every set of k _< aN nodes on one level has at least 2k neighbors on the next
level, where a,/, and d are related as in (2.2).

The second part consists of a multibutterfly whose levels are labeled -logN
through 0. The multibutterfly has expansion property (a,), where a, , and d are
related as in (2.1).

The third and fourth parts are the mirror images of the first and second parts.
The levels of these parts are labeled 0 through 2 log N.

Although any node in R can be chosen to be a source or a sink, it would be more
convenient if all of the sources were to reside in the first part, and all the sinks in
the fourth. Thus, the node on level -i of the second part, i of the third part, and
2 log N-i of the fourth part each have an edge called a cross edge to the corresponding
node on level -2 log N + of the first part. Similarly, each node in the fourth part
has cross edges to the corresponding nodes in first, second, and third parts. If a node
in any part other than the first is chosen to be a source, then its path begins with its
cross edge to the first part. If a node in any part other than the fourth is chosen to
be a sink, then the path to it ends with a cross edge from the fourth part. At this
point, each node in the first part may represent up to four sources, and each node in
the fourth part may represent up to four sinks.

5.3.2. Constructing node-disjoint paths. If the paths are to be node-disjoint,
then each path must avoid the sources and sinks in the second and third parts as it
passes from the first part to the fourth part. To avoid these sources and sinks, we
declare them to be blocked. We then apply the technique of [17] for tolerating faults
in multibutterfly networks to the second and third parts, treating blocked nodes as
if they were faulty. The technique of [17] can be summarized as follows. First, any
splitter (and all nodes that can be reached from that splitter) that contains more than
a 2a(/- 1) fraction of blocked inputs is erased, meaning that its nodes cannot be used
for routing, where - d/4. Next, working backwards from the outputs to the
inputs, a node is declared to be blocked if more than d/4 of its up or down neighbors
at the next level are blocked (and not erased). (Note that it is not possible for all of
a node’s up and down neighbors to be erased unless that node is also erased.) Upon
reaching the inputs of the network, all the blocked nodes are erased. The switches
that are not erased are said to be working. The expansion property of the network of
working switches is reduced from to/.

The following lemmas bound the number of inputs (on levels -logN and log N)
and outputs (on level 0) that are erased in the second and third parts. Note that
Lemma 5.1 bounds the number of inputs that are erased, but are not themselves
blocked. (All the blocked inputs are erased.) Note also that since the two parts share
level 0, the number of erased nodes on that level may be as large as twice the bound
given in Lemma 5.2.

LEMMA 5.1. In addition to the (at most) K blocked inputs, at most K/(’- 1)
nonblocked inputs are erased in the second and third parts.

Proof. This lemma is essentially the same as Lemma 3.3 of [17].
LEMMA 5.2. At most K/2a(’- 1) outputs are erased in each of the second and

third parts.
Proof. This lemma is essentially the same as Lemma 3.1 of [17]. [:]

In both networks at least N-O(K) of the inputs and N-O(K) of the outputs are
left working, where K is the number of sources (and sinks). Suppose that K

_
,N,

620 S. ARORA, F. T. LEIGHTON, AND B. M. MAGGS

where y is some constant. By choosing to be small, we can ensure that at least K
of the nodes on level 0 are not erased in either the second or third parts. We call
these K nodes the rendezvous points. By making t (and hence d) large, we can also
ensure that the number of nodes on levels -logN and log N that are erased, but are
not themselves sources or sinks, is eK, where e can be made to be an arbitrarily small
constant.

The reconfiguration technique described in [17] requires off-line computation to
count the number of blocked inputs in each splitter. In another paper, Goldberg,
Maggs, and Plotkin [12] describe a technique for reconfiguring a multibutterfly on-
line in O(log N) word steps.

The next step is to mark some of the nodes in the first part as blocked. We begin
by declaring any node in the first part to be reserved if it is a neighbor of a source in
the second, third, or fourth part via a cross edge. Now, working backwards from level
-logN 1 to -2 log N, a node is declared blocked if at least d/2 of its 2d neighbors
at the next level are either sources, sinks, blocked, reserved, or erased. We call a node
that is not a source or a sink, and is not reserved, blocked, or erased, a working node.

Where did the d/2 bound on nonworking neighbors come from? In order to apply
the routing algorithm of 4.3, the subnetwork of working nodes must have an (a, 5)
unshared-neighbor property. Let/t be the largest value such that the subnetwork of
working nodes has an (a,/Y) expansion property (where (a,/) is the original expansion
property of the first part). To show that the subnetwork of working nodes has an (a, 5)
unique-neighbors property, we need/ > d/2. If every working node has at most d/2
nonworking neighbors, then the subnetwork of working nodes has expansion property
(a, -d/4). (Recall that we multiply the ’ parameter by 2 to get the actual expansion
in each merger.) Thus /’ > /- d/4. If > 3d/4, then ’ > d/2. By restricting
a working switch to have fewer nonworking neighbors, we could have reduced the
required expansion from 3d/4 down to nearly d/2. As the following lemma shows,
however, if a working switch can have d/2 nonworking neighbors, then we also need
> 3d/4 in order to ensure that there aren’t too many blocked nodes. If we were

to allow a working switch to have fewer (or more) than d/2 nonworking neighbors,
then one of the two " > 3d/4" lower bounds would increase, and the network would
require more expansion.

LEMMA 5.3. Let f denote the total number of nodes declared blocked in the first
part, let K <_ "yN denote the number of sources and sinks, and let eK denote the
number of nodes on level- log N that are not sources or sinks, but are erased. Then

2+, K.if (2 + e)7 < (2/ 3d/2 1)a, then f < 2-3d/2-1
Proof. First, suppose that the total number of blocked nodes in the first part is

at most aN. Then the f blocked nodes must have at least (2- 3d/2)f neighbors
that are either sources, sinks, blocked, reserved, or erased, since each blocked node
has at most 3d/2 neighbors that are working. Since there are a total of at most K
sources and reserved nodes in the first part, at most K sinks, and at most eK nodes
on level -log N that are erased, but are not sources or sinks, we have

f + 2K + K > (2 3d/2)f,

? K.which implies that f _< 2-3d/2-1
Otherwise, suppose that there are more than aN blocked nodes in the first part.

Let us rank the nodes according to the levels that they appear on (breaking ties within
a level arbitrarily), with the nodes on level log N- 1 having highest rank, and those on
level -2 log N the lowest. Since the aN blocked nodes with highest rank must have

PATH SELECTION IN A NONBLOCKING NETWORK 621

at least (2--3d/2)oN neighbors that are sources, sinks, blocked, reserved, or erased,
we have aN + 2K
(2- 34/2- 1).

An identical process is applied to the fourth part, with blocked nodes propagating
from level log N to level 2 log N, and a lemma analogous to Lemma 5.3 can be proven,
showing that there are at most ((2 +)/(2/ 3d/2 1))g blocked nodes in this part.

.Because each node in the first part may be reserved by one source in each of the
second, third, and fourth parts, it may not be possible for all the sources to establish
their paths. If several sources wish to begin their paths at the same node, then one
is locally and arbitrarily selected to do so, and the others give up. Since at most
four paths start at any node in the first section, at least K/4 of the sources are able
to begin their paths. Each source then sends a message to the corresponding sink.
A message first routes across the row of its source to level -logN (recall that in
every merger there is an edge from each input to the output in the same row), then
uses the multibutterfly store-and-forward packet-routing algorithm from [17, 37] to
route to the row of its sink on level 0, then routes across that row in the third and
fourth parts until it either reaches its sink or reaches the cross edge to its sink. The
entire routing can be performed in O(log N) word steps. Note that we can’t use the
circuit-switching algorithm of 4.3 here because there may be as many as log N sinks
in a single row. The K/4 or more sinks that receive messages then each pick one of
these messages (there are at most four), and send an acknowledgment to the source of
that message. At least K/16 sources receive acknowledgments, and these sources are
the ones that will establish paths. A source that doesn’t receive an acknowledgment
gives up on routing its path.

Some of the nodes at which the remaining sources and sinks wish to begin or end
their paths may have been declared blocked. None of these nodes will be used. By
making/ (and hence d) large, however, the number of blocked nodes in the first and
fourth parts, ((2 +)/(2- 3d/2- 1))K, can be made small relative to g/16. Thus,
we are left with O(K) source-sink pairs.

The paths from the sources and the paths from the sinks are routed independently
through the first two and last two parts, respectively. The path from a source a then
meets the path from the corresponding sink b at a rendezvous point r on level 0.

The rendezvous points are selected as follows. First, the sources route their paths
to distinct nodes on level log N in O(log N) time using the algorithm from 4 on the
working switches. Then the sources are numbered according to the order in which they
appear on that level using a parallel prefix computation. A parallel prefix computation
can be performed in O(log N) word (or even bit) steps on an N-leaf complete binary
tree, and hence also on a butterfly. For a proof, see [16, 1.2]. (Note that although
we are treating some of the nodes as if they were faulty, there are no actual faults in
the network, so nonworking nodes can assist in performing prefix computations.) The
rendezvous points are also numbered according to the order in which they appear on
level 0 using another prefix computation.

Next, using a packing operation, a packet representing the ith rendezvous point
r is routed from r to the node in the ith row of level 0. At the same time, a packet
representing the ith source a is routed from level log N, where a’s path has reached
so far, to the ith node of level 0. These two routings can be implemented in O(log N)
word (or bit) steps on a butterfly [16, 3.4.3].

Once the packets for a and r are paired up, a packet is sent back to a’s node
on level -logN informing it of the position of r on level 0. (This is an unpacking

622 S. ARORA, F. T. LEIGHTON, AND B. M. MAGGS

operation.) The path for source a is then extended from level -logN to level 0
using the algorithm from 4.3 on the working switches. Then a packet containing the
location of r is sent from a’s node on level -log N to the node on level 0 that is
in the same row that b lies on in the fourth part. This routing can be performed in
O(log N) word steps using the store-and-forward multibutterfly routing algorithm of
[17]. (We can’t use the circuit switching algorithm because there may be as many as
log N sinks in the same row.)

In O(log N) time, the packet works its way across the row from level 0 to b, which
lies somewhere between levels log N and 2 log N. (Note that although there may be
as many as log N b’s in the same row, the total time is still at most O(log N).)

Finally, a path is extended from b to any working node on level log N and from
there to r using the algorithm of 4.3 on the working switches.

5.3.3. Establishing edge-disjoint paths. It is easier to establish edge-disjoint
paths in R than node-disjoint paths. In particular, it is not necessary to apply the
technique of [17] for tolerating faults in multibutterflies to the second and third parts
of the network as we did in order to establish the node-disjoint paths. The main thing
that must be done is to modify the algorithm from 4 for locking down node-disjoint
paths in a multibutterfly so that it allows a constant number of edge-disjoint paths
to pass through each node. Let r be the maximum number of paths that may pass
through a node. In order to replace the unshared-neighbors protocol with one that
allows r paths to pass through a node, we define the following r-neighbors property
for splitters. Similar definitions hold for mergers, or for pairs of consecutive levels like
those in the first and fourth parts of R.

DEFINITION 5.4. An M-input splitter is said to have an (a, 5) r-neighbors prop-
erty if in every subset X of k <_ cM inputs, there are subsets Xu and XD of X such
that Xu >_ 5k and XD >_ 5k, and every node in Xu (XD) has at least r up-output
(down-output) neighbors, each of which has at most r neighbors in X.

The following lemma shows that a splitter with a sufficient expansion property
also has an r-neighbors property.

LEMMA 5.5. A splitter with an (a,) expansion property has an (a, 5) r-neighbors
property where

dr--+A/- r + 1r

d-r+1

Proof. The proof is similar to the proof of Lemma 4.2. Let X be a set of k <_ aM
inputs in an M-input splitter, let nr denote the number of up (down) outputs that
have at least one, but at most r, neighbors in X, and let n+ denote the number of
up (down) outputs that have more than r neighbors in X. Then nr + n+ _>/k, and
n + (r + 1)n+ <_ dk. Solving for n yields

Let 5k denote the number of nodes in X with at least r up-output (down-output)
neighbors, each of which has at most r neighbors in X. Then 5kd+(1-5)k(r-1) >_ n,
which implies that

d--+A/- r+ 1

d-r+1

PATH SELECTION IN A NONBLOCKING NETWORK 623

The algorithm for routing edge-disjoint paths in a multibutterfly is nearly identical
to the algorithm described in 4 for routing node-disjoint paths. First, each node that
has at least one path to extend in either the up (or down) direction sends a proposal
to each of its output neighbors in the up (down) direction. Then, every output node
that receives at most r proposals sends back acceptances to all of those proposals.
(Notice that this step limits the number of paths passing through a node to at most
r.) Finally, each node that receives enough acceptances to extend all of its paths does
so. In a network with an (a, 5) r-neighbors property, a constant fraction of the paths
on each level are extended at each step. Thus, the time to extend a set of N paths
from one level to the next is O(log N), and the total time to route a set of N paths
from the inputs to the outputs is O(log2 N). As in 4, this time can be improved to
O(log N) using placeholders and cancellation signals.

Note that for r v/-, only/ x/ expansion is required in order to have an
(a, 5) r-unshared-neighbors property, where a > 0 and 5 > 0. Since an algorithm for
finding edge-disjoint paths can be converted to an algorithm for finding node-disjoint
paths by replacing each degree-2d node with a 2d x 2d complete bipartite graph, the
algorithm of this section reduces the expansion required for finding either edge- or
node-disjoint paths from/ > d/2 to/ xfl. The difference is important because
explicit constructions of expander graphs are known for > V [13], but not for
/ > d/2. The algorithms for tolerating faults in [17] and the algorithms for routing
paths in a nonblocking fashion in this paper still seem to require > d/2. Recently,
however, Pippenger has shown how to perform all of these tasks using only expansion
/ > 1 [31].

In order to use this routing algorithm in network R, we must make one mod-
ification. The paths from the sources do not necessarily start on level -2 log N of
the first part. In fact as many as four paths may start at any node in the first part.
(Recall that sources in the second, third, and fourth parts start their paths in the
first part.) Thus, the routing algorithm must be modified so that a node in the first
part sends acceptances to the nodes at the previous level only if it receives at most
r 4 proposals. The impact on the performance of the algorithm will be negligible if
r is large relative to 4.

Acknowledgments. The authors thank Nick Pippenger for suggesting that a
nonblocking network might be constructed by treating busy switches as if they were
faulty, and Ron Greenberg and an anonymous referee for suggesting many improve-
ments to the paper.

REFERENCES

[1] W. A. AIELLO, F. T. LEIGHTON, B. M. MAGGS, AND M. NEWMAN, Fast algorithms for bit-serial
routing on a hypercube, Math. Systems Theory, 24 (1991), pp. 253-271.

[2] M. AJTAI, J. KOMLSS, AND E. SZEMERIDI, Sorting in c log n parallel steps, Combinatorica, 3
(1983), pp. 1-19.

[3] L. A. BASSALYGO AND M. S. PINSKER, Complexity of an optimum nonblocking switching net-
work without reconnections, Problems Inform. Transmission, 9 (1974), pp. 64-66.

[4] , Asymptotically optimal networks for generalized rearrangeable switching and generalized
switching without rearrangement, Problemy Peredachi Informatsii, 16 (1980), pp. 94-98.

[5] B. BEIZER, The analysis and synthesis of signal switching networks, in Proc. Symposium on
Mathematical Theory of Automata, Brooklyn Polytechnic Institute, Brooklyn, NY, 1962,
pp. 563-576.

[6] V. E. BENE, Optimal rearrangeable multistage connecting networks, Bell System Technical J.,
43 (1964), pp. 1641-1656.

624 S. ARORA, F. T. LEIGHTON, AND B. M. MAGGS

[7] D. G. CANTOR, On construction of non-blocking switching networks, in Proc. Symposium
on Computer Communication Networks and Teletraffic, Brooklyn Polytechnic Institute,
Brooklyn, NY, 1972, pp. 253-255.

[8] D. DOLEV, C. DWORK, N. PIPPENGER, AND A. WIDGERSON, Superconcentrators, generalizers
and generalized connectors with limited depth, in Proc. 15th Annual ACM Symposium on
Theory of Computing, Association for Computing Machinery, New York, 1983, pp. 42-51.

[9] P. FELDMAN, J. FRIEDMAN, AND N. PIPPENGER, Non-blocking networks, in Proc. 18th Annual
ACM Symposium on Theory of Computing, Association for Computing Machinery, New
York, 1986, pp. 247-254.

[10] , Wide-sense nonblocking networks, SIAM J. Discrete Math., 1 (1988), pp. 158-173.
[11] J. FRIEDMAN, A lower bound on strictly non-blocking networks, Combinatorica, 8 (1988),

pp. 185-188.
[12] A. V. GOLDBERG, B. M. MAGGS, AND S. A. PLOTKIN, A parallel algorithm for reconfiguring a

multibutterfly network with faulty switches, IEEE Trans. Comput., 43 (1994), pp. 321-326.
[13] N. KAHALE, Better expansion for Ramanujan graphs, in Proceedings of the 32nd Annual Sym-

posium on Foundations of Computer Science, IEEE Computer Society Press, Piscataway,
NJ, 1991, pp. 398-404.

[14] C. P. KRUSKAL AND M. SNIR, A unified theory of interconnection network structure, Theoret.
Comput. Sci., 48 (1986), pp. 75-94.

[15] F. W. LEIGHTON, Parallel computation using meshes of trees, in 1983 Workshop on Graph-
Theoretic Concepts in Computer Science, Trauner Verlag, Linz, 1984, pp. 200-218.

[16] , Introduction to Parallel Algorithms and Architectures: Arrays Trees Hypercubes,
Morgan Kaufmann, San Mateo, CA, 1992.

[17] F. T. LEIGHTON AND B. M. MAGGS, Fast algorithms for routing around faults in multibutterflies
and randomly-wired splitter networks, IEEE Trans. Comput., 41 (1992), pp. 578-587.

[18] W. LEIGHTON, C. E. LEISERSON, AND D. KRAVETS, Theory of parallel and VLSI computa-
tion, Research Seminar Series Report MIT/LCS/RSS 8, Laboratory for Computer Science,
Massachusetts Institute of Technology, Cambridge, MA, 1990.

[19] T. LEIGHTON, D. LISINSKI, AND B. MAGGS, Empirical evaluation of randomly-wired multistage
networks, in Proc. 1990 IEEE International Conference on Computer Design: VLSI in
Computers and Processors, IEEE Computer Society Press, Piscataway, NJ, 1990, pp. 380-
385.

[20] W. LEIGHTON AND G. PLAXTON, A (fairly) simple circuit that (usually) sorts, in Proc. 31st
Annual Symposium on Foundations of Computer Science, IEEE Computer Society Press,
Piscataway, NJ, 1990, pp. 264-274.

[21] C. E. LEISERSON, Fat-trees: Universal networks for hardware-efficient supercomputing, IEEE
Trans. Comput., C-34 (1985), pp. 892-901.

[22] G. LIN AND N. PIPPENGER, Parallel algorithms for routing in non-blocking networks, in Proc.
3rd Annual ACM Symposium on Parallel Algorithms and Architectures, Association for
Computing Machinery, New York, 1991, pp. 272-277.

[23] G. A. MARGULIS, Explicit constructions of concentrators, Problems Inform. Transmission, 9
(1973), pp. 325-332.

[24] G. M. MASSON AND B. W. JORDAN, JR., Generalized multi-stage connection networks, Net-
works, 2 (1972), pp. 191-209.

[25] D. NASSIMI AND S. SAHNI, Parallel permutation and sorting algorithms and a new generalized
connection network, J. Assoc. Comput. Mach., 29 (1982), pp. 642-667.

[26] Y. P. OFMAN, A universal automaton, Trans. Moscow Math. Soc., 14 (1965), pp. 186-199.
[27] D. PELEG AND E. UPFAL, Constructing disjoint paths on expander graphs, in Proc. 19th Annual

ACM Symposium on Theory of Computing, Association for Computing Machinery, New
York, 1987, pp. 264-273.

[28] N. PIPPENGER, The complexity theory of switching networks, Ph.D. thesis, Department of
Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cam-
bridge, MA, 1973.

[29] , On rearrangeable and nonblocking switching networks, J. Comput. System Sci., 17
(1978), pp. 145-162.

[30] , Telephone switching networks, in Proc. Symposia in Applied Mathematics, vol. 26,
American Mathematical Society, Providence, RI, 1982, pp. 101-133.

[31] , Self-routing superconcentrators, in Proc. 25th Annual ACM Symposium on the Theory
of Computing, Association for Computing Machinery, New York, 1993, pp. 355-361.

[32] N. PmPENGER AND L. G. VALIANT, Shifting graphs and their applications, J. Assoc. Comput.
Mach., 23 (1976), pp. 423-432.

[33] N. PIPPENGER AND n. C. YAO, Rearrangeable networks with limited depth, SIAM J. Algebraic

PATH SELECTION IN A NONBLOCKING NETWORK 625

Discrete Meth., 3 (1982), pp. 411-417.
[34] J. H. REIF AND L. G. VALIANT, A logarithmic time sort for linear size networks, J. Assoc.

Comput. Mach., 34 (1987), pp. 60-76.
[35] C. E. SHANNON, Memory requirements in a telephone exchange, Bell System Technical J., 29

(1950), pp. 343-349.
[36] J. S. TURNER, Practical wide-sense nonblocking generalized connectors, Technical Report

WUCS-88-29, Department of Computer Science, Washington University, St. Louis, MO,
1988.

[37] E. UPFAL, An O(log N) deterministic packet routing scheme, in Proc. 21st Annual ACM Sym-
posium on Theory of Computing, Association for Computing Machinery, New York, 1989,
pp. 241-250.

[38] A. WAKSMAN, A permutation network, J. Assoc. Comput. Mach., 15 (1968), pp. 159-163.

SIAM J. COMPUT.
Vol. 25, No. 3, pp. 626-647, June 1996

() 1996 Society for Industrial and Applied Mathematics
007

THE LINKAGE OF A GRAPH*

LEFTERIS M. KIROUSIS? AND DIMITRIS M. THILIKOS

Abstract. The linkage of a graph is defined to be the maximum min-degree of any of its
subgraphs. It is known that the linkage of a graph is equal to its width: for an arbitrary linear
ordering of the vertices of the graph, consider the maximum, with respect to any vertex v, of the
number of vertices connected with v and preceding it in the ordering; the width of the graph is
the minimum of these maxima over all possible linear orderings. Width has been used in artificial
intelligence in the context of constraint satisfaction problems (CSPs). A more general notion is
defined by considering not the number of vertices preceding and connected with v but rather the
least number of vertices preceding and connected with any cluster of at most j consecutive vertices
extending to the right up to v (j is a given integer). The graph parameter thus defined is called
j-width. No efficient algorithm was known for computing the j-width. In this paper, we introduce a
graph parameter depending on j that refers to the subgraphs of the graph and generalizes the notion
of linkage. We prove the rain-max theorem that this graph parameter, which we call j-linkage, is
equal to j-width, and we then give a polynomiM-time algorithm for computing it (for constant j).
We also find tight lower and upper bounds for the j-linkage (equivalently, the j-width) of graphs with
given numbers of vertices and edges. It is interesting to note that a lower bound for the width of a
graph had been found by ErdSs; as we show, however, that bound is not tight. Moreover, we prove
that our lower bound for width is also a tight lower bound for treewidth, pathwidth, and bandwidth,
graph parameters that may be arbitrarily larger than width. Finally, we show that computing the
j-linkage is a P-complete problem, whereas we prove that approximating it is a threshold problem:
it is in NC for approximation factors <: 1/(2j), and it is P-complete for approximation factors > 1/2.

Key words, width parameters of a graph, linkage of a graph, backtrack-free search, extremal
graph properties, algorithms in NC, P-complete problems

AMS subject classifications. 68Q15, 68Q20, 68Q22, 68Q25, 68R10, 05C35, 05C85

1. Introduction. Let G (V, E) be an undirected graph without multiple edges
or loops. Let n IV and e IE I.

The linkage of G is defined to be the maximum min-degree of any of the subgraphs
of G (the min-degree of a subgraph is the least degree of any of its vertices; the degree
of a vertex is taken relative to the subgraph).

The width of G is defined to be the the minimum, over ll linear orderings of the
vertices of G, of the maximum, with respect to any vertex v, of the number of vertices
connected with v and preceding it in the linear ordering. In [14], it was proved that the
width of a graph is equal to its linkage (see also [7]). The term linkage was introduced
by Freuder in [7]; however, the corresponding notion dates back to Szekeres and Wilf
[19] and Matula [12]. Using the aforementioned equality of the two parameters, it can
be proved that they can be computed in polynomial time.

ErdSs [6] proved that every graph G has a subgraph with min-degree at least
equal to the density [e/n of G. Therefore, the density is a lower bound for the
linkage (equivalently, width) of graphs with given numbers of edges and vertices.

Given a positive integer j, if in the definition of width we consider not the number
of vertices preceding and connected with v but rather the least number of vertices
preceding and connected with any cluster of at most j consecutive vertices extending

Received by the editors September 1, 1993; accepted for publication (in revised form) October
26, 1994. This research was partially supported by the European Union’s ESPRIT Basic Research
project ALCOM II (contract 7141).

Department of Computer Engineering and Informatics, Patras University, Rion, 265 00 Patras,
Greece; Computer Technology Institute, P.O. Box 1122, 261 10 Patras, Greece (kirousis@cti.gr).

Department of Computer Engineering and Informatics, Patras University, Rion, 265 00 Patras,
Greece; Computer Technology Institute, P.O. Box 1122, 261 10 Patras, Greece (sedthilkcti.gr).

626

THE LINKAGE OF A GRAPH 627

to the right up to v, we get a graph parameter known as j-width (see next section for
formal definitions). This notion is due to Freuder [8].

Freuder [7] related width to backtrack-free search for a solution of a constraint
satisfaction problem (CSP). Roughly, by Freuder’s result, when the level of local
consistency (strong consistency) of the constraint graph of a CSP exceeds its width,
there is a backtrack-free search for a globally consistent solution. Corresponding re-
sults that concern backtrack-bounded search hold in relation to j-width [8]. However,
the algorithm given by Freuder for computing the j-width has worst-case complexity
of the order of n! (for constant j). To our knowledge, no polynomial-time algorithm
for computing the j-width was known.

In this paper, we introduce a graph parameter that we call j-linkage. Given a
subgraph H (VH,EH) of G, consider all nonempty sets S C_ VH with cardinality
at most j and find the minimum, over all such subsets S, of the number of vertices
in VH S that are adjacent to vertices in S; we then find the maximum, over all
subgraphs H of G, of the corresponding minima. This maximum is by definition the
j-linkage of the graph (see next section for formal definitions). Notice that the linkage
of G is equal to its l-linkage. We prove the rain-max result that the j-width of a
graph is equal to its j-linkage. We also give a polynomial-time sequential algorithm
for computing the j-linkage when j is a fixed constant. We thus provide an efficient
way for computing the j-width.

Furthermore, we find a tight lower bound for the j-linkage of graphs with given
numbers of vertices and edges (for any j >_ 1). In contrast, we show that the afore-
mentioned lower bound by ErdSs (for j 1) is not tight. Moreover, we prove that
our lower bound for width is also a tight lower bound for treewidth, pathwidth and
bandwidth, graph parameters that may be arbitrarily larger than width. There is
extensive literature on lower bounds for these latter parameters [15-17, 20], but no
result referring to tightness was known. To obtain the lower bound for j-linkage, we
consider graphs that have the extremal property that their j-width increases by the
addition of even one arbitrary edge. We then find the maximum number of edges
that such an extremal graph may have, when its j-linkage and its number of ver-
rices is k and n, respectively. Call this maximum max-E(n,j, k). We prove that for
an arbitrary graph with e edges and n vertices, respectively, the least k for which
max-E(n,j, k) >_ e is the required lower bound for the j-linkage. We show that this
bound is tight by constructing the corresponding extremal graphs. We believe that
the method of using extremal graph properties to compute tight bounds is interesting
in itself.

Using a method similar to the one described above, we obtain a tight upper bound
for the j-linkage. It should be mentioned that one can find a nontight upper bound
with simpler computations. However, for certain values of j, the difference of this
upper bound from the tight one that we provide is O(el/2).

Finally, we study the parallel complexity of computing the j-linkage. For constant
j, we show that the problem of determining whether j-linkage is no more than k is
P-complete for a any fixed k >_ 2, whereas it is in NC for k _< 1. We also consider
the parallel complexity of approximating the j-linkage. We show that this problem
is of the threshold type" it is in NC for approximation factors < 1/(2j), and it is
P-complete for approximation factors > 1/2.

In summary" (1) we study the sequential and parallel complexity of computing the
j-width (alternatively, j-linkage), we resolve the question of efficiency in the sequential
case, and we prove positive and negative results for the parallel case; (2) we provide

628 LEFTERIS M. KIROUSIS AND DIMITRIS M. THILIKOS

optimal upper and lower estimates for the j-width that, when j 1, improve previous
results, and we give connections with other graph parameters.

2. Graph-theoretic properties and the elimination algorithm. In this
section, we first give formal definitions for the concepts we use, and we then prove that
the j-width of a graph is equal to its j-linkage. Finally, we give a polynomial-time
sequential algorithm for computing the j-linkage.

2.1. Definitions. Let be a layout of a graph G (V, E), i.e., a linear ordering
vl,..., Vn of its vertices. The width with respect to of a set S {v-k+l,..., v} of
k consecutive vertices (notationally widthz(S)) is defined to be the number of vertices
in the set {vl,..., v_k} adjacent to vertices in S (1 _< k _< <_ n).

Informally, the width of S with respect to is the number of vertices preceding S
and adjacent to elements of S.

Now, let j be an integer such that 1 _< j _< n.
The j-width of a vertex v with respect to is the least width of any set of at most

min(i,j) consecutive vertices extending to the right up to v, i.e.,

j-widthz(v) min{widtht(v_k+l,..., v)" k 1,..., min(i,j)}.

The j-width of G with respect to is defined to be the maximum of j-widtht(v)
over all vertices v of G.

Finally, the j-width of G (not dependent on a specific layout) is defined to be the
minimum of the j-widths of G with respect to any of the n! layouts of G.

The 1-width of G is simply called the width of G.
We now introduce the notion of the j-linkage of a graph. The related definitions

follow.
External degree of a nonempty set S of vertices of a subgraph H of G (notationally

ext-degreeH(S)) is the number of vertices of H that do not belong to S and are
adjacent to an element of S.

The j-min-degree of a subgraph H of G is the minimum ext-degreeH(S over all
sets S of vertices of H with 1 _< ISI _< j. Obviously, the 1-min-degree of a subgraph
is the least degree of its vertices.

The j-linkage of G is the maximum j-min-degree of any subgraph of G.
Obviously, the l-linkage of G is the maximum min-degree of any of its subgraphs.

The l-linkage of G is simply called the linkage of G.

2.2. j-width equals j-linkage.
THEOREM 2.1. For any graph G (V, E), the j-width of G is equal to its j-

linkage.
Proof. Let j-linkage(G) . We first show that j-width(G) _> . From the

definition of linkage, it follows that there is an induced subgraph H (VH, EH) of
G such that for any set S of vertices of VH with 1 _< ISI _< j, ext-degreeH(S _> .
Now, consider an arbitrary layout of G. Let v be the last vertex in this layout that
belongs to VH. We claim that the j-width of v with respect to is at least/k. Indeed,
let So be the intersection VH with an arbitrary set {V-k+l,..., v} of k consecutive
vertices extending to the right up to v, where k is an arbitrary integer less than or
equal to min(i,j). Obviously, So is a nonempty subset of VH of cardinality at most
j. Moreover, all vertices of VH So that are adjacent to vertices in So must belong
to {v,..., v_k} because v was chosen to be the last with respect to vertex of VH.
Therefore, because ext-degreeH(S0 _> , we get, as we claimed, that the j-width

THE LINKAGE OF A GRAPH 629

of v with respect to is at least A. Because was arbitrary, it follows that the
j-width(G) _> A j-linkage(G).

We will now show that j-width(G) _< A. From the definition of linkage, it also
follows that for any induced subgraph H (VH, EH) of G, there is a set S of vertices
of VH with 1 _< ISI _< j and ext-degreeH(S <_ A. In the next paragraph, we give a
construction of a layout of G such that for any vertex v of G, j-widtht(v) _< A. Once
such an is constructed, the required inequality easily follows.

The construction of will be given in a last-first fashion, i.e., we proceed from
defining the last vertices in towards defining the first elements in it. Because j-
linkage(G) and since G is a subgraph of itself, we get that j-min-degree(G) _<
A. Therefore, there exists a set So of vertices of G such that 1 _< IS01 _< j and
ext-degreec(S0 <_ A. We place the vertices of So (in any arbitrary order) as the
last vertices in the layout under construction. Notice that every subset of S0 is
adjacent with at most A vertices among the ones that will be later placed in the
layout. Therefore, any vertex in So has j-width with respect to the layout at most
A. We now consider the subgraph H induced by the set of vertices V- S0. Again
because j-min-degree(H) _< A, there must exist a subset $1 of vertices of H such that
1 _< ISll _< j and ext-degreeH(S1 _< A. As a next step towards defining l, we place
the elements of $1 (in any arbitrary order) to the left of the vertices of So. By the
same argument as above, any vertex in S must have j-width (with respect to the
layout under construction) at most A. Continuing recursively in the same way until
the vertices of G are exhausted, we obtain the required layout of G.

In the rest of the paper, we use the terms j-linkage and j-width interchangeably.

2.3. The elimination algorithm. In this subsection, we describe an algorithm
that given a k (0 <_ k <_ n-j- 1) finds the unique maximal vertex-induced subgraph of
G (V, E) with j-min-degree at least k + 1, in the case that there is such a subgraph;
otherwise it returns the empty set. The complexity of the algorithm, for fixed j, is
polynomial in n. This algorithm can be used to compute the j-linkage of a graph in
time polynomial in n. We call this algorithm the (k, j)-Elimination Algorithm or just
k-elimination when no confusion may arise. The graph that the algorithm returns on
input G will be denoted by G(k’j).

(k, j)-ELIMINATION ALGORITHM
do while S C_ V such that 1 _< ISI _< j and ext-degreec(S) _< k

begin
Let S be a set of vertices with 1 _< ISI _< j and ext-degreea(S) <_ k
V’=V-S
if V : 0 then G := the graph induced by V

else G 0
end

return G

THEOREM 2.2. The (k,j)-Elimination Algorithm finds a maximal vertex-induced
subgraph of G that has j-min-degree at least k + 1 in the case that there is such a
subgraph; otherwise, it returns the empty set. Moreover, such a maximal subgraph is

unique.

Proof. Suppose that the algorithm outputs a nonempty subgraph H (VH, EH).
Because VH does not contain any nonempty set S with ext-degreeH(S _< k, we have
that j-min-degree(H) > k. Now suppose, towards a contradiction, that there is a
proper supergraph R (VR, ER) of H, with j-min-degree(R) > k.

630 LEFTERIS M. KIROUSIS AND DIMITRIS M. THILIKOS

Let S be the first set of vertices containing vertices of R that is removed, according
to the algorithm, from he set of vertices of G (such a set exists because R is a proper
supergraph of H). Notice that by the definition of S, no vertex of R is removed before
the set S is discarded.

Notice now that because j-min-degree(R) > k, ext-degreeR(S V) > k. But
then it easily follows that the external degree of S with respect to any supergraph of
R whose vertices contain S is strictly greater than k. This contradicts the fact that
S is discarded by the algorithm at stage when all the vertices of R are still present.

To show the uniqueness of such a maximal subgraph, repeat the above rgument
taking R not to be proper supergraph of H but rather a graph with VR VH

It is easy to see that in order to compute the j-linkage of G, we have simply to find
the smallest k for which the k-elimination returns the empty graph. The complexity
of this algorithm is O(nY+2).

3. Extremal graph properties and applications in computing tight
bounds. In this section, we find tight lower and upper bounds for the j-linkage of
graphs with given numbers of vertices and edges.

3.1. Lower bound. To compute a lower bound for j-linkage, we consider the
graphs whose j-linkage increases by the addition of even one rbitrary edge. We then
find the maximum number of edges that such an extreml graph my have when its
j-linkage and its number of vertices are k and n, respectively (see lso [11] for a similar
result for the case j 1). Call this maximum max-E(n, j, k). Next, we prove that for
an arbitrary graph with e edges and n vertices, respectively, the unique k for which
mx-E(n,j,k- 1) <: e _< max-E(n, j, k) is the required lower bound for j-linkage.

LEMMA 3.1. Let G be a graph with j-linkage at most k. Suppose that G has the
property that any graph obtained from G by adding one more edge (on the same set

of vertices) has j-linkage equal to k + 1. Then the number of edges of G is at most

(1) mx-E(n,j,k) + (n- k)k -1 j2-([(n- k)/j] + ((n- k) mod j)

Moreover, for any n >_ 1, for any j 1,...,n and any k such that 0 <_ k <_ n- j,
there exists at least one graph with n vertices, max-E(n,j,k) edges, and j-linkage
equal to k and such that if one more edge is added to it (on the same set of vertices),
its j-linkage increases to k + 1.

Proof. To prove the above lemma, we use a technical result about extreme points.
TECHNICAL LEMMA. Given real numbers Z and D, among all sequences A1,

A2,..., A of real numbers such that
r is an arbitrary integer >_ 1,
AI+...+A=Z, and
Ai <__ D, for all i 1,...,r,

the maximum value that the quantity r=l A attains is [Z/DJ 02 + (Z- [Z/DJ 0)2.
This value is obtained for r [Z/D], Ai D (for all 1,..., IXJ), and (only
in case Z/D is not an integer) A[Z/D Z- Z/DJ D.

The Technical Lemma follows from the following claim applied for W Z/D and
y Ai/D (for notational convenience, we set {W} W- [WJ).

CLAIM. For any integer n > O, real number W >_ 0 and sequence of reals yi,

i 1,..., n, such that 0 <_ yi <_ 1, if Ein___l yi W, then i=ln Yi2 _< [WJ + {W}2.

THE LINKAGE OF A GRAPH 631

Proof. We use induction on n. For n 1, we can see that
if Yl 1, the claim holds because 12 [lj + {1}2;
if 0 Yl 1, the claim holds because y2 [Yl] + {yl}2.

Suppose that the proposition holds for n k. We are going to prove that it also
holds for n k + 1. So we have to prove that for n k + 1, any real number W > 0,
and any sequence Yi, 1, k + 1, such that 0 _< Yi _< 1, if A.i=IV’k+ Yi W, then

2 _< LwJ / {w}
x-k+l kIndeed, because _,=1 Y W, we have that]=1 Y W- yk+l. By applying

the induction hypothesis, we have that

k

E y2i <: LW Yk+IA + {W Yk+l}2.
i:1

Therefore,

(2)
k

Y + Yt+ <- W Yk+j + {W yk+}2 + Yk+"
i--1

We distinguish two cases:
1. Yk+l

_
{W} and

2. y+ > {W}.
In the first case, we have that

(a)
(4)

[W Yk+lJ [WJ, and therefore

{W Yk+l} {W} Yk+l.

From relations (2)-(4), we have that

EY/2 < LW + {W}2 +y+l 2{W}2yk+l +y2k+l
i--1

[WJ + {W} + 2yk+(yk+ {W})
_< LwA / {w}z.

In the second case, we have that

(5)
(6)

[W- Yk+J [WJ 1, and therefore

{W- yk+l} 1 + {W} Y+I.

From relations (2), (5), and (6), we have that

E y2 _< WJ 1 + 1 + {W}2 + Y+1 "[-" 2{W} 2yk+l 2{W}yk+ + Y+I
i=1

[WJ + {W} + 2yk+(Yk+ 1)- 2{W}(yk+ 1)
LWJ + {W}2 + 2(yk+ {W})(yk+ 1)

<_ [wJ + {w}
Therefore, the Claim holds for n k + 1. That proves the Claim and concludes the
proof of the Technical Lemma. [:l

We now proceed with the proof of Lemma 3.1.
Proof of Lemma 3.1. By hypothesis, we have that G satisfies the following two

properties:

632 LEFTERIS M. KIROUSIS AND DIMITRIS M. THILIKOS

1. j-linkage(G) k and
2. j-linkage(G) k + 1 where G is any graph obtained from G by adding one

more edge (on the same set of vertices).
Property 1 above implies that if we apply the k-elimination to G, all vertices of G will
be removed, whereas by property 2, the k-elimination does not remove all vertices
of a graph G obtained by adding to G at least one more edge (on the same set of
vertices).

Now suppose that the k-elimination is applied to G and let So,..., St be the sets
of vertices successively removed from V by the algorithm. Let V (i 1,..., l) be the
set of vertices of G remaining after the removal of S-1. For notational convenience,
let V0 be the initial set of vertices of G. Let also G be the graph induced by V. Let
q be the first step such that IVq+l <_ k + j (notice that then IVq+l > k).

Observe first that for all i 0,..., q, ext-degreea(S) k. Indeed, otherwise,
we could add one more edge to the graph G without increasing its j-linkage. What’s
more, observe that for the same reason all vertices of each S are connected with the
same set of exactly k vertices in V+. Moreover, again for the same reason, the graphs
induced by S (i 1,..., q) and Vq+l are cliques. Now, for notational convenience,
let IVq+l k + p, where 1 <_ p _< j. From the above observations, it follows that the
number of edges of G is

=0
2 2

Now observe that (2+p) (2) + ()4-pk. Again, for notational convenience, let
A ISI (for 0,...,q) and Aq+ p. We can easily see that A _< j (for
l<i<q+l) andthatV’q+lA=n-k.

So, finally,

By applying the Technical Lemma for Z n- k and D j, we obtain that the
quantity -q+" 2

z.=l A has maximum value [(n k)/jJ j2 + ((n k) mod j)2 Therefore,
we conclude that a graph with properties 1 and 2 has at most

(k2) 1 1
+ (n- k)k -(n- k) + (([(n- k)/jj)j2 + ((n- k) mod j)2)

edges. This completes the proof of the first statement of the lemma.
To prove the second statement of the lemma, given n, j, and k (n >_ 1, j 1,..., n,

0 <_ k <_ n-j), we construct a graph G with max-E(n, j, k) edges, n vertices, j-linkage

THE LINKAGE OF A GRAPH 633

FIG. 1. The construction of the second part of Lemma 3.1.

equal to k, and such that with one more edge the j-linkage of G becomes k+ 1. Towards
this, consider one clique with k vertices, [(n- k)/jJ cliques with j vertices each, and
one clique with (n k) rood j vertices. Connect all the vertices of the k-clique with
all the vertices of all other cliques. Let G be the graph thus constructed (see Fig. 1).
Observe that G has k+(n- j)/jJ j/((n-k) mod j) n vertices and max-E(n, j, k)
edges. Also, observe that there is no nonempty set S with at most j vertices and with
ext-degreeG(S < k. Moreover, a k-elimination discards all vertices of G. Therefore,
j-linkage(G) k. Also, it easy to see that if we add one more edge to G, then a
elimination returns a nonempty set. Therefore, we also proved the second statement
of the lemma. [:]

We now state the following two easy lemmas.
LEMMA 3.2. A graph G with j-linkage(G) <_ k has at most max-E(n, j, k) edges.
LEMMA 3.3. The function max-E(n,j, k) is strictly increasing with respect to k.

Proofs. The proofs of both the above lemmas are straightforward. Indeed, to
prove the first, proceed recursively as follows: as long as a new edge can be added
to G without increasing its j-linkage strictly above k, add such an edge. The graph
thus obtained has at most max-E(n,j, k) edges. For the second lemma, consider a
graph with max-E(n, j, k) edges. As long as a new edge can be added to this graph
without increasing its j-linkage strictly above k + 1, add such an edge; notice that the
resulting graph has strictly more edges than the original.

Now, given natural numbers n _> 1, j 1,..., n, and e such that max-E(n, j, O)

634 LEFTERIS M. KIROUSIS AND DIMITRIS M. THILIKOS

e <_ () let L(e, n, j) (or just L when no confusion may arise) be the unique integer
that satisfies the following relation:

max-E(n,j,L(e,n,j)- 1) < e <_ max-E(n, j, L(e, n, j)).

The uniqueness of the integer L(e,n,j) follows from Lemma 3.3. Moreover, for
completeness, we set L(e,n,j) 0, for any n >_ 1,j 1,...,n, and e such that
0 <_ e <_ max-E(n, j, 0).

THEOREM 3.4. L(e, n, j) is a lower bound for the j-linkage of graphs with e edges
and n vertices. Moreover, for arbitrary n and e such that n >_ 1 and 0 <_ e <_ (),
there is a graph G with e edges and n vertices such that j-linkage(G) L(e, n, j) (i.e.,
L(e, n, j) is a tight lower bound for the j-linkage).

Proof. We give the proof only if max-E(n,j, 0) < e < (). The case where
e <_ max-E(n,j, 0) is similar and easier. The fact that L(e, n, j) is a lower bound
follows easily from Lemma 3.2 and relation (7). In order to prove that L(e, n, j) is
also a tight bound, we construct, for given e, n, and j, a graph G with e edges, n
vertices, and j-linkage equal to L(e, n, j).

First, by applying the construction in the proof of the second statement of
Lemma 3.1 for k L-1, we obtain a graph--call it Hmsuch that j-linkage(H) L-1
and such that any graph obtained from H by adding one more edge (on the same set of
vertices) has j-linkage equal to L. By construction, the graph H has max-E(n, j, L- 1)
edges. Let d e- max-E(n,j,L- 1). From relations (1) and (7), we have that
1 _< d _< n- .L ((n- L) mod j). We will construct G by adding to H d new edges.
We distinguish the following two cases"

Case 1. (n-(L-1))modj=O.
Case 2. (n-(L-1))modj#O.

In the first case, among the j-cliques that were used to construct H, we take an

arbitrary one and connect one arbitrary vertex of it with d vertices of the remaining
j-cliques (these d vertices are again arbitrarily chosen). Such a selection of d vertices
is possible because (i) d <_ n- n- ((n- L)modj), (ii) (n- L)mod j j 1

(because (n- (n- 1))mod j 0), and (iii) the remaining j-cliques have exactly
n- (L- 1) -j n- L- (j 1) vertices. It is now easy to see that the graph G has
j-linkage equal to L.

In the second case (see Fig. 2), we construct G by connecting an arbitrary vertex
of the ((n- (L 1))mod j)-clique of H with d vertices chosen from the remaining
j-cliques of H. The number of vertices of the j-cliques of H are n- (L 1) ((n
(L- 1))mod j). The selection of d vertices is possible because (i) as we noticed
before, d <_ n n ((n L) mod j) and (ii) obviously, n L ((n L) mod j) <_
n- (L- 1) ((n- (L- 1)) mod j). Finally, it is again easy to see that the graph G
has j-linkage equal to L. [:]

Since max-E(n, j, L) is given by a closed formula, the number L(e, n, j) can be
efficiently computed. Moreover, as the following theorem shows, we can find an almost
closed formula for computing L(e, n, j). Indeed for j 1, the two bounds provided
by the theorem below lead to an exact value for L, whereas, if j is arbitrary, the
difference between the two bounds is O(j).

THEOREM 3.5..For any e, n, and j such that n >_ 1, 1 <_ j <_ n, and 0 < e <_ (),
we have that

>_ j + 1)

L(e,n,j) < 2n-j+2-V/(2n-j):+4n(j-1)-8e+j2-1

THE LINKAGE OF A GRAPH 635

J ’)) modj

FIG. 2. The construction of the second part of Theorem 3.4.

Proof. For notational convenience, define

Observe that

aL (n- L) mod j and

QL [(n L)/jJ j2 + ((n L) mod j)2

1
(n L) + -QL.(S) max-E(n, j, L) + (n L)L -Also observe that 0 _< aL

_
j 1. We now obtain

QL [(n L)/jJ j2 + a2L_
[(n L)/j] j2 + aLj

([(n L)/j] j + aL)j

(9) (n- n)j.

Moreover,

QL [(n L)/jJ j2 + a2L

636 LEFTERIS M. KIROUSIS AND DIMITRIS M. THILIKOS

(0)

(n L)j aLj + a2L
(n-- L)j + a2L aL(j 1) aL

1 1
(n L)j + a2L (TL(j 1) + (j 1) 2 (j 1) 2 (7L

1 1
(n- n)j + (aL _-(J 1)) 2 (j 1)2 aL

1>_ (n L)j -(j 1) 2 -crL

1>_ (n- L)j- (j- 1)2- (j- 1).

So by relations (7)-(9), the value L satisfies

(11)
l
(n_ n) + (n- n)j.e <_ + L(n- L)- - -Also, by relations (7), (8), and (10), the value L satisfies

(12)
L- 1/ 1

e >
2 + (L- l)(n- L + 1) (n- L + 1) +

I(n_L+I)j_ 1 1
g(j- 1)2- (j- 1).

From relation (11), by finding the roots of the corresponding second-order (in L)
equation, we have that L must satisfy

(13)

(4)

1_ (2n j X/(2n j) 2 / i(j) 8e) < L and
2
1

+ >
2

Similarly, from relation (12), we have that either

(15)

(16)

1()L< 2n-j+2-V/(2n-j)2+4n(j-1)-Se+j2-1 or

L > - (2n-j + 2+ V/(2n-j)2 +4n(j i’) Se+j2

Finally, from inequalities (13)-(16), we obtain that

1
L _> [2n-j v/(2n-j)2 + 4n(j 1)- 8e) and

< + v/(n) + 4(1) s +

This concludes the proof of the theorem.
The following corollary is now immediate.
COROLLARY 3.6. For a graph G with n vertices and e edges,

j-linkage(G) _> 1 (2n j V/(2n j)2"-4n(j- 1 8)

THE LINKAGE OF A GRAPH 637

For the case j 1, not only is the lower bound for the linkage of a graph given in
this paper greater than or equal to the lower bound given by Erdhs in [6] (this is an
immediate conclusion of the fact that we give a tight lower bound) but, moreover, as
the following proposition shows, when the number of edges exceeds a low threshold,
the inequality is proper.

PROPOSITION 3.7. Let LER(n, e) [e/n] Then L(e, n, 1) is strictly greater than
LER(e,n) for any e >_ max-E(n,l,i- 1)+ 1, where i= [(-1 + v/i+ 8n)/21.

Proof. Let [(-1 + v/l+8n)/2]. Also, let e be such that e > max-E(n, 1,
i- 1)+ 1. First, observe that

(7) Vk > i, max-E(n, 1, k) < (k- 1)n.

Now recall (see relation (7)) that L(e,n, 1) (L for short) is the unique integer for
which

(18) max-E(n, 1, L- 1) < e _< max-E(n, 1, L).

Also, max-E(n, 1, k) is a strictly increasing function of k and therefore its values de-
limit on the real line a succession of consecutive intervals. By relation (18), max-E(n, 1,
L- 1) and max-E(n, 1, L) are the two endpoints of the one among these intervals that
contains e.

On the other hand, it is trivial to see that LER(e, n) (LER for short) is the unique
integer for which

(19) (LER- 1)n < e _< LERn.

Also, kn is a strictly increasing function of k and therefore its values delimit on the
real line a succesion of consecutive intervals. By relation (19), (LER- 1)n and LERn
are the two endpoints of the one among these intervals that contains e.

By relation (17), for all k >_ i, the intervals delimited by the values of the function
max-E(n, 1, k) lie completely to the left of the intervals delimited by the corresponding
values of the function kn. Finally, for any e > max-E(n, 1, i 1), L(e, n, 1) > i.
Therefore, we conclude that Ve > max-E(n, 1, i- 1), LER(n, e) < L(e,n, 1) because
otherwise, e would have to belong to two disjoint intervals, l]

3.2. A lower bound for treewidth, pathwidth, and bandwidth. In this
subsection, we show that L(e, n, 1), which is equal to 1/2(2n- 1- V/(2n 1) 2 8e), is a
tight lower bound for treewidth, pathwidth, and bandwidth. (Recall that L(e, n, 1) is
a tight lower bound for width.) A proof that L(e, n, 1) is a lower bound for bandwidth
can be found in [15]. In [20], X. Van independently proved that L(e, n, 1) is a lower
bound for treewidth and pathwidth (see also [16]). However, in none of these papers
is it shown that L(e, n, 1) is a tight lower bound.

First, for completeness, we give some formal definitions (see also [4, 10, 17]).
DEFINITION 1. A tree-decomposition of G (V, E) is defined to be a pair ({Xi
I},T), where {Xi :i I} is a collection of subsets of V and T (I,F) is a

tree having the index set I as set of vertices, such that the following conditions are

satisfied:
1. Uie, Xi V.
2. g{u,w} e E, 2i e I u,w Xi.
3. gi, j, k E I if j is on a path in T from i to k, then Xi D Xk C_ Xj.

638 LEFTERIS M. KIROUSIS AND DIMITRIS M. THILIKOS

The treewidth of a tree-decomposition ({X i E I},T) is defined to be equal to
maxei IXI- 1. The treewidth of G is defined to be the minimum treewidth of any
tree-decomposition of G.

DEFINITION 2. A path-decomposition of G (V, E) is defined to be a class
{X 1,..., r} of subsets of V such that the following conditions are satisfied:

1 [.jr Xi Vi=1
2. V{u,w} E, i u,w X.
3. Vi, j,k, if l <_ <_ j <_ k < r, then Xi C Xk C_ Xj.

The pathwidth of a path-decomposition {Xi 1,..., r} is defined to be equal to
maxl<i<r IXil- 1. The pathwidth of G is defined to be the minimum pathwidth of
any path-decomposition of G.

DEFINITION 3. The bandwidth of a layout (Vl,...,vn) of G (V,E) is

defined to be equal to max{I/- Jl {vi, vj} e E}. The bandwidth of G, is defined to
be the minimum bandwidth of any layout of G.

Treewidth has many equivalent characterizations (see, e.g., [2, 4]). We are going
to use the one expressed in terms of elimination orderings of graphs [2]. An elimination
ordering of a graph G (V, E) is an ordering 7r (Vl,..., Vn) of the vertices of G.
The graphs generated during an elimination of the vertices of G according to r are
defined as follows: G1 G; Gi+ is equal to the graph obtained from Gi by deleting
the vertex vi and adding new edges (if necessary) so that all pairs of neighbors of vi in

Gi are adjacent in Gi+l. Obviously, (n+l is equal to the empty graph. The dimension

of vi with respect to 7r is defined to be the degree of vi in Gi. The dimension of r is
the maximum dimension of any of the vi’s. Finally, the elimination dimension of G
is the minimum dimension of any elimination ordering of G. The following result can
be found in [2].

THEOREM 3.8 (Arnborg [2]). The treewidth of a graph is equal to its elimination
dimension.

We now show the following.
THEOREM 3.9. The quantity L(e, n, 1) is a lower bound for the treewidth, path-

width, and bandwidth of a graph with e vertices and n edges. Moreover, for arbitrary n
and e, with n >_ 1 and 0 <_ e <_ (), there is a graph G with e edges and n vertices such
that its pathwidth, treewidth, and bandwidth are all equal to L(e, n, 1). (i.e., L(e, n, 1)
is a tight lower bound for the aforementioned parameters).

Proof. From the characterization of treewidth in terms of elimination orderings,
it is easy to see that linkage(G) <_ treewidth(G). Also, obviously, treewidth(G) _<
pathwidth (G). Finally, treewidth(G) <_ bandwidth (G) (see [3]). Therefore, L(e, n, 1)
is a lower bound of all three parameters, as the theorem requires.

In order to prove that L(e, n, 1) is also a tight lower bound, it suffices to construct,
for given e and n, a graph G with e edges and n vertices such that pathwidth(G)
treewidth(G) bandwidth(G) L(e, n, 1). First, we arrange n vertices on a layout

{Vl,...,vn} and connect two vertices v,vj (1 _< i,j <_ n) with an edge iff

-Jl <- L- 1 (this graph is described in [15]; see also [3, 17]). Call this graph H
and note that it has (LI) + (n- (L- 1))(L- 1) edges. The graph G is constructed
from H by adding to the latter the edges {Vl,VL+I},..., {Vd, VL+d}, where d e-

((LI) + (n- (L- 1))(L- 1)) (see Fig. 3). It is easy to see that the graph G has
linkage, treewidth, pathwidth, and bandwidth all equal to L(e, n, 1). This completes
the proof of the theorem, rl

Notice that for the cases of treewidth and pathwidth, the extremal graph con-
struction of Theorem 3.4 for the case j 1 is also sufficient to prove the tightness of

THE LINKAGE OF A GRAPH 639

v,, V
4

V
5

V
6

V
7

V
8

V
9 VIO

FIG. 3. The construction of Theorem 3.9 for n 10, e 27, and L 4.

the lower bound.

3.3. Upper bound. In this subsection, we derive a tight upper bound for the j-
linkage of graphs with given numbers of vertices and edges. In analogy to the previous
subsection, we consider the graphs whose j-linkage decreases by the deletion of even
one edge. We then consider the minimum number of edges that such a graph may
have, given its j-linkage and its number of edges. To proceed, define the following
function:

+ j)k/2 if 1 < k < n- j,
mimE(n, j, k) j if k 1,

0 ifk- 0.

LEMMA 3.10. let G be a graph with j-linkage at least k. Suppose that G has the
property that any graph obtained from G by deleting one of its edges has j-linkage
equal to k 1. Then the number of edges of G is at least mimE(n, j, k). Moreover,
for any n >_ 1, for any j 1,...,n and any k such that 0 < k <_ n- j, there exist
graphs with n vertices, mimE(n, j, k) edges, and j-linkage equal to k and such that if
we subtract one edge, the j-linkage decreases to k- 1.

Proof. Assume first that k > 1. By hypothesis, we have the following:
1. j-linkage(G) k;
2. j-linkage(G) k- 1, where G is any graph obtained from G by deleting

one edge.
Property 1 above implies that the (k- 1)-elimination cannot remove all vertices of G,
and property 2 implies that the (k- 1)-elimination removes all vertices of any graph
G obtained from G by removing an arbitrary edge.

Observe that the (k- 1)-elimination applied to G not only returns a nonempty
graph but, moreover, does not remove any nonisolated vertex of G (i.e., a vertex with
degree in G _> 1). Indeed, otherwise, the (k- 1)-elimination would also remove at
least one edgewsay {v, u}--of G and therefore this (k- 1)-elimination applied to
G- {u, v} would return a nonempty subgraphwa contradiction.

Let the number of nonisolated vertices in G be n. Since k >_ 1, n > 0. Observe
that a nonisolated vertex must have at least k incident edges (otherwise, it would be
removed by the (k- 1)-elimination). Therefore, the number of edges of G is _> n’k/2.

Now, observe that n _> k + j because if 0 < n < k + j, then nonisolated vertices
of G would be removed by the (k- 1)-elimination.

Therefore, from the last two facts, we have that

min-E(n, j, k) [(k + j)k/2

is a lower bound for e.

640 LEFTERIS M. KIROUSIS AND DIMITRIS M. THILIKOS

FIG. 4. The construction of Lemma 3.10 for j 2, k 4, and k 5.

Finally, it is easy to see that for k 1, a graph with the given properties should
have at least j min-E(n, j, 1) edges; the case k 0 is trivial since min-E(n, j, 0) 0.
This completes the prooof of the first statement of the lemma.

To show the second statement, given n _> 1, j 1,... n, and any 2 _< k

__
n- j,

we construct a graph with n vertices, min-E(n,j, k) edges, and j-linkage equal to k
and such that the j-linkage becomes k- 1 if one edge is deleted. For this construction,
consider k / j vertices with originally no edges connecting them. It is convenient to
think of these vertices as cyclically lying on the plane. Connect with an edge any pair
of these vertices whose cyclic distance is at most [k/2J. Also, only in the case where
k is odd, arbitrarily choose [(k + j)/2] successive vertices on the circle and connect
each of them with the vertex at clockwise distance [(k + j)/2] (see Fig. 4). Finally,
add to this graph n- k- j isolated vertices. It is easy to see that this graph satisfies
the requirements. For the case k 1, consider an arbitrary tree with j / 1 vertices
and add n- j 1 isolated vertices. This graph again satisfies the requirements. For
the case where k 0, consider a graph with no edges. [:]

The following two lemmas can be easily proved analogously to Lemmas 3.2 and 3.3,
respectively. We omit the proofs.

LEMMA 3.11. A graph G with j-linkage(G) >_ k has at least min-E(n,j,k) edges.
LEMMA 3.12. The function min-E(n,j,k) is strictly increasing with respect to k.
Given natural numbers n >_ 1, j 1,..., n, and e such that 0 _< e < mimE(n, j, n-

j), let U(e, n, j) (or just U when no confusion may arise) be the unique integer that
satisfies the following relation:

(20) min-E(n,j,U(e,n,j)) <_ e < min-E(n,j,U(e,n,j) + 1).

Notice that the uniqueness of U follows from Lemma 3.12. Moreover, for completeness,
we set U(e, n, j) n- j for any n >_ 1, j 1,...,n, and e such that min-E(n,j,
n-j)_<e_< ().

We now prove the following theorem.
THEOREM 3.13. The function U(e,n,j) is an upper bound for the j-linkage

of graphs with n vertices and e edges. Moreover, for arbitrary n and e such that
n >_ 1 and 0 <_ e <_ (), there is a graph G with e edges and n vertices such that
j-linkage(G) U(e, n, j) (i. e, U(e, n, j) is a tight upper bound for the j-linkage).

Proof. We give the proof only for 0 _< e < min-E(n, j, n- j). The case where
min-E(n,j,n- j) _< e _< () is similar and easier. The fact that U(e,n,j) is an

THE LINKAGE OF A GRAPH 641

upper bound follows easily from Lemma 3.11 and relation (20). In order to prove that
U(e, n, j) is a tight upper bound, if suffices to construct for given e, n, and j a graph
with e edges, n vertices, and j-linkage equal to U. We distinguish the following three
cases:

1. min-E(n, j, 0) 0 <_ e < j min-E(n, j, 1),
2. min-E(n, j, 1) j _< e < j + 2 min-E(n, j, 2),
3. min-E(n, j, 2) _< e < min-E(n, j, n j).

For the first case, we have only to notice that for any graph G with n vertices and e
edges, if e < j, then j-linkage(G) 0; thus the construction for this case is obvious..

For the second case, we can see that any tree with j + 1 vertices and j edges has
j-linkage equal to 1. Also, any circle with j + 1 vertices and j + 1 edges has j-linkage
equal to 1.

For the third case, by applying the second part of Lemma 3.10 for k U, we
obtain a graph--call it Hmwith min-E(n,j, U) edges such that j-linkage(H) U.
We will describe a way to add d e mimE(n, j, U) new edges to H so that the the
resulting graph has the required properties. Observe that by relation (20), 0 _< d <
mimE(n, j, U + 1) mimE(n, j, U). We first claim that also d < U + j. Indeed, we
have the following:

1 If j is odd, then min-E(n, j, U + 0, n, j) mimE(n, j, U) V /
2. If j is even, then

if U is odd, then mimE(n, j, U + 1) mimE(n, j, U) U + -2;if U is even then mimE(n, j, U + 1) mimE(n, j, U) U + 1 +
From the analysis above, we observe that in any case,

min-E(n, j, U + 1) min-E(n, j, U) _< U + j.

Now, from its construction, we see that H has at least one isolated vertex and U + j
nonisolated ones. We construct the graph G by connecting the isolated vertex of H
with d nonisolated vertices of it. This is possible since, as we showed above, d <: U+j.
It is now easy to see that the graph G has j-linkage equal to U. [:]

Since min-E(n,j, U) is given by a closed formula, U(e,n,j) can be efficiently
computed. Moreover, as the following theorem shows, we can find an almost closed
formula for computing U(e, n, j).

THEOREM 3.14. For any n >_ 1, j 1,...,n, j + 2 <_ e <_ (’),

U(e, n, j) > - [,-j + v/j2 -4
/

1 and

1<_ +

Proof. For notational convenience, we define

5j (U + j)U mod 2.

We first see that for e _> j + 2,

min-E(n, j, U) [(U + j)U/2] ! 1/2(U + j)U
(21)

We distinguish the following two cases:

ifSj -0,

ifSj 1.

642 LEFTERIS M. KIROUSIS AND DIMITRIS M. THILIKOS

1. j is odd. Then 5j 0.
2. j is even. Then

5j-l, ifUisodd;
5j 0, if U is even.

For the first case, we have from relations (20) and (21) that

1
(22) -1 (U + j)U _< e < (U + j + 1)(U + 1).

Now, from the inequalities in (22), by computing the roots of the second-order (in U)
equations, we obtain that

(a) u(,,)= (- + /;

For the second case, again by relations (20) and (21), we have that

1
(2a) (U + j)U _< < ((U + y +)(U +) +).

Now, as in Theorem 3.14, computing the roots corresponding the second-order equa-
tions (in U), we obtain that inequality (24) is satisfied for

1 Be) and(25) U(e,n,j) > (-j + @22+ 1

se)(:) v(,.,) (-j + ffy +
om relations (23), (25), and (26), we conclude that in all cases the requirement
holds.

The following corollary is now immediate.
COROLLARY 3.15. For a graph G with n vertices and e edges,

1 (_jj-linkage(G)

By easier calculations, it can be proved that min(2e/j, (2e) 1/2) is also an upper
bound for the j-linkage. However, when j O((2e)1/2), the difference of this bound
from the optimal one that we provide is O(e/2).

CONCLUSION. From the above results, we conclude that for a graph G with n
vertices and e >_ j + 2 edges, an estimation for the j-linkage(G)(equivalently, the
j-width(G)) is given by the following two inequalities:

(2n- j V/(2n "j)2T4’’(j 1) 8e) _< j-linkage(G),

/j+ s) >_[- (--j + J j-linkage(G).

The estimation from below is tight within an additive term O(j), whereas the estima-
tion from above is tight within an additive constant. (If e <_ j d- 1, j-linkage(G) is
equal to 0 or 1.)

THE LINKAGE OF A GRAPH 643

4. Parallel complexity and approximations. The problem of computing of
the j-linkage of a graph G can be formulated as a decision problem: Given a graph
G and an integer k, determine whether G(k’j) (the graph that the (k,j)-Elimination
Algorithm outputs on input G) is not empty. A stronger decision problem is" Given
a graph G, an integer k >_ 0 and a vertex u of G, determine whether u E G(k’j).

For j 1, these problems are examined by Anderson and Mayr in [1]. However
not all their proofs generalize to arbitrary j. A related problem, which exhibits a

threshold-type complexity, can be found in [9] (see also [18]).

4.1. An NC algorithm and P-completeness.
THEOREM 4.1. The problem of deciding whether u G(l’j) is in NC (with j as

part of the input).
Proof. We give an algorithm in NC that on input G returns G(I’):
Find all biconnected components of G. It is easy to see that all vertices of such

a component with strictly more than j + 1 vertices are contained in G(,i). So we
have to face the problem of which vertices in biconnected components with _< j + 1
vertices remain in G(1,j). To solve this problem, construct a new graph H that has
three groups of vertices: (i) one vertex for each biconnected component of G with
at most j + 1 vertices, (ii) one vertex for each articulation point of G that belongs
only to biconnected components of vertex cardinality at most j + 1, and (iii) as many
vertices as the vertices of G that belong to biconnected components with strictly more
than j + 1 vertex cardinality. Now, connect two vertices in group (iii) iff the they are
connected in G as well. Also connect a vertex in group (i) with a vertex in group (iii)
(respectively, group (ii)) iff the vertex of group (iii) (respectively, (ii)) corresponds
to an articulation point of the biconnected component represented by the vertex of
group (i).

In the graph thus constructed, recursively delete all vertices that are elements of
chains (a chain is defined to be a path of vertices that starts with a vertex of degree
1 and contains no vertex of degree strictly greater than 2). The recursion is repeated
until no chains appear in the current graph. Then reconstruct the part of G that
corresponds to the part of H that has remained. Since the creation of a new vertex of
degree 1 in the current H requires the removal of at least two chains, the number of
chains removed decreases by at least half at each phase of the recursion. Therefore,
it is not hard to see that this is an algorithm in NC that outputs G(’).

THEOREM 4.2. If j and k > 1 are fixed, it is P-complete for a graph G to
determine whether a given vertex u lies in G(k’j) or even to determine whether G(k,j)

is nonempty.
Proof. The proof of this result is a straightforward generalization of the corre-

sponding result in [1], where the P-completeness for j 1 is proved by a reduction
from the fanout-2 monotone circuit value problem. Therefore, we omit the proof;
however, for the sake of completeness, in Fig. 5 we give the modified gadgets for
arbitrary j (for the problem of determining whether G(’) is nonempty).

4.2. Parallel approximations: A threshold behavior. In this subsection,
we consider the problem of approximating the j-linkage of a graph G. An algorithm
with approximation factor a constant c :> 0 is one that on input G returns an integer

j-linkageap(G) such that

j-linkage(G) _> j-linkgeap (G) _> c(j-linkage(G)).

644 LEFTERIS M. KIROUSIS AND DIMITRIS M. THILIKOS

rou

The OR-gate gadget.

rl
out

rot

The AND-gate gadget.

FIG. 5. The gadgets of Theorem 4.2.

THEOREM 4.3. For any constant 0 < c < 1/(2j), for fixed j, the problem of
approximating the j-linkage of a graph G with an approximation factor equal to c is
in NC.

Proof. First, observe that Ve/(nj)] <_ L(e,n,j). Following Anderson and Mayr
in [1], we define a procedure Test(k) that returns either that the graph has no subgraph
of j-min-degree at least k or that the graph has j-linkage at least k. The procedure

THE LINKAGE OF A GRAPH 645

r.

2r.

pl.

P

r r 2 r 3 r 4
out out out out

A 4-expander.

P P P P

o o
The OR-gate gadget.

The AND-gate gadget.

FIO. 6. The gadgets of Theorem 4.4.

p2

deletes in parallel all sets of vertices S whose cardinality is at most j and whose
external degree with respect to the current graph G is strictly less than k until the
ratio of the vertices of G that are contained in at least one such set S becomes < e (e is
to be determined). This procedure is in NC. If it returns the empty graph, then G has
no subgraph of j-min-degree at least k. If the procedure returns a subgraph G with
n > 0 vertices, then the number of vertices with degree strictly less than k is at most

646 LEFTERIS M. KIROUSIS AND DIMITRIS M. THILIKOS

n’ so G’ has at least (!-...)n’k edges, and so it follows that j-linkage(G) > [le gl
We then apply the procedure Test(k) in parallel for k 0,..., n, and we thus find

a value k0 such that G has no subgraph with j-min-degree > k0 but it has a j-linkage
at least 1k0] So the j-linkage of the graph will be a value between [-ko]_jl- and

k0. The algorithm finally returns [jk0] as an aproximation value for the j-linkage.
Given any c < , choose a suitable e so that the value returned as an approximation
satisfies

j-linkage(G) _> j-linkngeap(G >_ c(j-linkage(G)).

This completes the proof. [:]

THEOREM 4.4. If P NC, then for any fixed j, it is not possible to approximate
the j-linkage(G) by a factor strictly greater than 1/2 in NC.

Proof. We follow the methodology used in the proof of the case where j 1. We
give a logspace transformation of an instance of the monotone circuit value problem
to a graph G such that G has j-linkage equal to k + 1 if the output of the circuit is
"false", whereas it has j-linkage equal to 2k if the output of the circuit is "true".

For the construction of the gadgets that simulate the circuit, we need an expander
that propagates the values of the circuit. This expander is shown in Fig. 6. The
k leftmost vertices r’n, r?n, rkn of this gadget are called the in-vertices of the
expander (in Fig. 6, k 2). The m top vertices 2 mrot, rot,..., rot are called the
out-vertices of the expander (we call such an expander an m-expander; m is chosen
as needed; for the first expander in Fig. 6, m 4). Observe that for large enough
m, any set S,]SI _< j, of vertices in an m-expander has external degree strictly more
than k.

The gadgets for OR-gates and AND-gates of the circuit are given in Fig. 6. Ob-
serve that in the AND-gate gadget, we use two copies of a k3 expander. The two
clusters of in-vertices of these expanders are the two clusters of vertices correspond-
ing to the input of the AND-gate. The vertices corresponding to the output of the
AND-gate are connected as in Fig. 6 with the out-vertices of the expanders. We then
identify the output clusters of each gate with the corresponding, according to the
circuit structure, input clusters of other gates.

Let now r be the number of clusters of vertices of G that correspond to gates
of the circuit that are not connected to previous gates, but originally have the value
"true" as input. We identify these r clusters of vertices of G (containing k vertices
each) with the kr out-vertices of a kr-expander. The in-vertices of this kr-expander
are identified with the vertices corresponding to the final output gate of the circuit.
This completes the construction of G.

Now it can be proved that if the circuit outputs the value "true", then j-linkage(G)
2k and if the circuit outputs the value "false", then j-linkage(G) k + 1. Indeed,

if the circuit outputs the value "true", then it is easy to see that a (2k, j)-elimination
removes all vertices of G, whereas a (2k-1, j)-elimination leaves a nonempty subgraph;
moreover, if the circuit outputs the value "false", then a (k + 1, j)-elimination removes
the vertices of G, whereas a (k,j)-elimination leaves a nonempty subgraph (because
the expander construction has a subgraph with j-min-degree equal to k + 1).

Acknowledgments. We thank the anonymous reviewers of previous drafts of
this paper for their comments, which helped in improving the presentation and in
correcting errors. In particular, we acknowledge a suggestion by a referee that sim-
plified the proof of of Lemma 3.1. We also thank Paul G. Spirakis. He showed

THE LINKAGE OF A GRAPH 647

us thatmcontrary to a common assumption--approximations need not be inherently
iterative. They may well be done in parallel.

REFERENCES

[1] R. ANDERSON AND E. MAYR, Parallelism and greedy algorithms, Adv. Comput. Res., 4 (1987)
pp. 17-38; see also A P-complete problem and approximations to it, Tech. Report, Depart-
ment of Computer Science, Stanford University, Stanford, CA, 1984.

[2] S. ARNBORG, E]flcient algorithms for combinatorial problems on graphs with bounded decom-
posability: A survey, BIT, 25 (1985), pp. 2-33.

[3] H. L. BODLAENDER, Classes of graphs with bounded treewidth, Tech. Report RUU-CS-86-22,
Department of Computer Science, Utrecht University, Utrecht, The Netherlands, 1986.

[4] , A tourist guide through treewidth, Acta Cybernet. 11 (1993), pp. 1-23.
[5] R. DECHTER, Directional resolution: The Davis-Putnam procedure, revised, working notes,

AAAI Spring Symposioum on AI and NP-Hard Problems, Stanford University, Stanford,
CA, 1993, pp. 29-35.

[6] P. ERDSS, On the structure of linear graphs, Israel J. Math., 1 (1963), pp. 156-160.
[7] E. C. FREUDER, A sufficient condition for backtrack-free search, J. Assoc. Comput. Mach., 29

(gse), ,,. e4-3e.
[8] , A su.Ocient condition for backtrack-bounded search, J. Assoc. Comput. Mach., 32

[9] L. KIROUSIS, M. SERNA, AND P. SPIRAKIS, The parallel complexity of the subgraph connectivity
problem, SIAM J. Comput., 22 (1993), pp. 573-586.

[10] J. VAN LEEUWEN, Graph algorithms, in Handbook of Theoretical Computer Science, J. van
Leeuwen, ed., Elsevier, New York, 1990, pp. 525-631.

[11] D. R. LICK AND A. T. WHITE, k-Degenerate graphs, Canad. J. Math., 22 (1970), pp. 1082-1096.
[12] D. W. MATULA, A rain-max theorem for graphs with application to graph coloring, SIAM

Review, 10 (1968), pp. 481-482.
[13] A. MACKWORTH, Constraint satisfaction, in Encyclopedia of Artificial Inteligence, S. C.

Shapiro, ed., John Wiley, New York, 1992, pp. 276-285.
[14] D. W. MATULA, G. MARBLE, AND J. D. ISAACSON, Graph coloring algorithms, in Graph Theory

and Computing, Academic Press, New York, 1972, pp. 109-122.
[15] Z. MILLER, Graph Layouts, in Applications of Discrete Mathematics, J. G. Michaels and K. H.

Rozen, eds., McGraw-Hill, New York, 1991, pp. 365-393.
[16] S. RAMACHANDRAMURTHI, A lower bound for treewidth and its consequences, in Proc. 20th In-

ternational Workshop on Graph-Theoretic Concepts in Computer Science, Springer-Verlag,
Berlin, New York, Heidelberg, 1994, pp. 14-25.

[17] J. B. ShXn, Dynamic programming algorithms for recognizing small-bandwidth graphs in poly-
nomial time, SIAM J. Algebraic Discrete Meth., 1 (1980), pp. 363-369.

[18] M. SERNA AND P. SPIRAKIS, The approximability of problems complete for P, in Proc. Interna-
tional Symposium on Optimal Algorithms, Springer-Verlag, Berlin, New York, Heidelberg,
1989, pp. 193-204.

[19] G. SZEKERES AND H. S. WILF, An inequality for the chromatic number of a graph, J. Combin.
Theory, 4 (1968), pp. 1-3.

[20] X. YAN, A relative approximation algorithm for computing the pathwidth, Master’s thesis,
Department of Computer Science, Washington State University, Pullman, WA, 1989.

SIAM J. COMPUT.
Vol. 25, No. 3, pp. 648-662, June 1996

1996 Society for Industrial and Applied Mathematics
008

AN ALGORITHM FOR LOCATING NONOVERLAPPING REGIONS
OF MAXIMUM ALIGNMENT SCORE*

SAMPATH K. KANNANt AND EUGENE W. MYERS$

Abstract. In this paper, we present an O(N2 log2 N) algorithm for finding the two nonoverlap-
ping substrings of a given string of length N which have the highest-scoring alignment between them.
This significantly improves the previously best-known bound of O(N3) for the worst-case complexity
of this problem. One of the central ideas in the design of this algorithm is that of partitioning a
matrix into pieces in such a way that all submatrices of interest for this problem can be put together
as the union of very few of these pieces. Other ideas include the use of candidate lists, an application
of the ideas of Apostolico et al. [SIAM J. Coraput., 19 (1990), pp. 968-988] to our problem domain,
and divide-and-conquer techniques.

Key words, sequence alignment, efficient algorithms, repeated regions

AMS subject classifications. 68P05, 68Q20, 68Q25, 92B08, 92B99

1. Introduction. Let A ala2...aN be a sequence of length N, and let A..q]
denote the substring apap/l...aq of A. The problem we consider is that of finding
the score of the best alignment between two substrings A..q] and A[r..s] under the
the generalized Levenshtein model of alignment [6, 11], which permits substitutions,
insertions, and deletions of arbitrary score. This problem is a formalization of the
problem, encountered by molecular biologists, of automatically detecting repeated
regions in DNA and protein sequences. This problem has recently been considered by
Miller [8]. When there is no restriction that the regions be nonoverlapping, he points
out that the problem can be solved in O(N2) time by a straightforward modification
of the algorithm of Smith and Waterman [10] that finds the highest-scoring local
alignment between two sequences. Miller then goes on to consider the restriction that
the regions be nonoverlapping and presents a worst-case O(N3) algorithm which runs
in O(N2) in practice. His method involves the use of the candidate-list paradigm,
which we review briefly in 2 since we use some of these ideas in our algorithm. Miller
calls nonoverlapping regions twins, and as his result indicates, this constraint appears
to make the problem much harder. For the rest of the paper, we consider only the
problem of finding the best-scoring twins.

There is a related problem where the goal is to find nonoverlapping regions which
are exact repeats. This problem has been dealt with before and turns out to be
of significantly lower complexity than the problem of finding the best-scoring twins.
When the exactly repeating regions are required to be adjacent or tandem, i.e., when
the goal is to find the longest substring of A of the form ww, Main and Lorentz
[7] provide an O(N log N) algorithm. If gaps are allowed between exactly repeating
substrings, the problem becomes even simpler and can be handled in O(N) time by
first creating a suffix tree and then computing the largest and smallest indices (of
suffixes) which go through each internal node in post order. The path to the deepest

Received by the editors February 4, 1994; accepted for publication (in revised form) November
8, 1994.

Department of Computer and Information Science, University of Pennsylvania, Philadelphia,
PA 19104 (kannan@central.cis.upenn.edu). The research of this author was supported in part by
NSF grant CCR-9108969.

Department of Computer Science, University of Arizona, Tucson, AZ 85721 (genecs.
arizona.edu). The research of this author was supported in part by NLM grant LM-04960 and NSF
grant CCR-9002351.

648

NONOVERLAPPING REGIONS OF MAXIMUM ALIGNMENT SCORE 649

internal node whose smallest and largest index suffixes are sufficiently far apart gives
us the desired repeated substring.

In a development parallel to ours, Landau and Schmidt [5] have extended the algo-
rithm of Main and Lorentz to find approximate tandem repeats with K-or-less differ-
ences, a thresholded variation of the problem considered here restricted to the simple
Levenshtein measure of similarity (i.e., unit-cost insertion, deletion, and substitu-
tion). Under these stronger conditions, they were able to develop an O(NKlogNlogK)
threshold-sensitive algorithm. It is interesting to note that their algorithm provides a
bridge between the O(NlogN) exact algorithm of Main and Lorentz (where K 0)
and our unthresholded O(N21og2N) algorithm (where K N) for generalized Leven-
shtein measures. While the results for exact matching might suggest that approximate
tandem repeats would be harder to find than twins, we will show that our algorithm
can easily be modified to report only tandem repeats as a special case.

The rest of the paper is organized as follows. In 2, we define some concepts
and review the results that are used in the construction of our algorithms. In 3, we
present a relatively simple algorithm for the problem of finding twins which runs in
time O(N2’51og’5 N). This algorithm already incorporates some of the ideas used in
the more complex algorithm and so serves as a useful preliminary exercise. In 4, we
present an algorithm which achieves a running time of O(N21og2 N) which is within
a polylog factor of being optimal. In 5, we consider the problem of finding the best
twins under the condition that the best twins are of size no more than O(N1-) for
arbitrarily small values of e. For this problem, we present an algorithm which runs in
time O(N2). In 6, we describe open problems mainly concerned with improving the
space complexity of our algorithm.

2. Preliminaries. Throughout the paper, we wish to think about the problem
in terms of finding paths in a weighted edit graph [9] and performing the computation
over the associated dynamic programming matrix [11]. The edit graph for sequence A
versus itself consists of a lower-triangular matrix of vertices (i, j) for 0 <_ j <_ i _< N
with up to three edges directed into (i, j)" a substitution edge from (i- 1, j 1)
weighted 5(a, aj); an insertion edge from (i- 1, j) weighted 5(a, e); and a deletion
edge from (i, j-l) weighted 5(e, aj). Edges from nonexistent vertices and substitution
edges on the main diagonal are not present. The scoring scheme 5 may be chosen
arbitrarily but in most application contexts is such that edge weights are negatively
biased and only the substitution of similar symbols are given positive score. As
illustrated in Figure 1, any path from vertex (p, r) to (q, s) models an alignment
between A / 1..q] and Air / 1..s], and the weight of the path is the score of the
alignment. The correspondence is isomorphic, and so it suffices to think in terms
of finding high-scoring paths in the edit graph. Limiting the graph to the lower-
triangular part simply eliminates local alignments that cannot be twins, because any
path crossing the main diagonal aligns overlapping regions.

The Smith-Waterman algorithm for local alignments applied to the edit graph
for A reduces to evaluating the following fundamental recurrence for C(i, j), the cost
of the best path to (i, j) from some predecessor in the graph, in lexicographical order
of and j"

C(i- 1, j 1)+ i(ai, aj)
C(i 1, j) / i(ai,Forj

_
i C(i, j) max C(i, j -1) / i(e,

0

ifi>j>0,
if/>0,
ifj >0,
always.

650 SAMPATH K. KANNAN AND EUGENE W. MYERS

(0

Alignment:

o)

c b ab c
"",,, c c b a c

c b a b cj c c b a c

First Part J

(N,N)

S
eP
ca
o

d

First Part

FIG. 1. Edit-graph illustrations.

Graph for A [I.. i]

A[i/l..N]

%on- twin

The terms qualified by an if clause are present only if the condition is true. The
score of the best substring alignment is given by maxj< {C(i, j)}. Because the
edit graph on A involves just the lower-triangular part of the underlying dynamic
programming matrix, the trivial answer of aligning A with itself is precluded.

However, while the above finds the best-scoring path in the edit graph, it does not
necessarily align nonoverlapping substrings. Figure 1 illustrates that if a path starts
at (i, j) and ends at (x, y), then it models a twin only if y <_ i, i.e., it ends in a column
whose index is not greater than that of the row it starts in. Alternatively, a path is
a twin if there exists an i such that the path lies entirely in the rectangular subgraph
delimited by row and column i, in which case we say the twins are separated by i.
This observation leads to the obvious O(N3) algorithm for the twins problem: For
each 6 [1, N- 1], run the Smith-Waterman algorithm for A[1..i] versus A[i + 1..N],
and record the best answer over all possible separators i.

Miller [8] obtained an algorithm for finding twins that is more efficient in practice
by computing C(i, j, k), the best path to (i, j) from row k for each value of k _< i.

For j < k <_ i C(i, j, k)
C(i- 1, j 1, k) + 6(a,
C(i- 1, j, k)+ 5(a, e)max
C(i, j 1, k) + 6(e, aj)
0

if i > j > 0 and i > k,
if i > 0 and > k,
if j > 0 and >_ k,
ifi=k.

Given these quantities, the best twin ending at (i, j) is simply maxj<k C(i, j, k).
Of course, computing the above directly still takes O(N3) time, but Miller made
the further observation that if C(i, j, k) >_ C(i, j, h) and k _> h, then there is no
need to compute C(i, j, h) because the other term can participate in any maximum
twin that the former does. We say that k dominates h at (i, j). Miller levers this
observation by keeping at (i, j) a list of candidates (k, c) in increasing order of k such
that c C(i, j, k) and k is not dominated by any other row at (i, j) (which implies
that the list is also in decreasing order of c). In practice, the number of rows not
dominated at a vertex appears to be constant, and when this is true, computing a
candidate list from the candidate lists of its immediate predecessors takes constant

NONOVERLAPPING REGIONS OF MAXIMUM ALIGNMENT SCORE 651

time. Thus Miller observes O(N2) behavior in practice, although it is possible that
each candidate list could have as many as t(N) elements in it, and so take O(N3) in
the worst case.

Note that finding tandem or adjacent twins is simply a matter of examining just
the entries C(i, j, j) (i.e., the best tandem twin ending at (i, j)) in the formulation
above. So Miller’s algorithm immediately solves the tandem variation as a special
case. Since our algorithms effectively perform the same computation as Miller’s, it
will follow that both our simple and penultimate algorithms solve the tandem variation
within the same complexities as they solve the basic twins problem.

We also make extensive use of the results of Apostolico et al. [1]. Although their
paper is concerned with the design of a parallel algorithm for string matching, some
of the techniques in it carry over to the sequential domain. Specifically, for any m n
rectangular subgraph E of an edit graph where m _< n, Apostolico et al. [1] show that
the problem of computing the shortest distances between every one of the n + m + 1
vertices on the left or top boundary of E to every one of the n /m + 1 vertices on the
right or bottom boundary of E can be done in O((m+ n)21og n) time. We will refer to
the resulting (n + m + 1) (n + m + 1) table of distances between pairs of boundary
vertices of E by DISTE. Another result from this paper will also be relevant to us.
This is an "incremental" version of the previous result and states that given a square,
m m edit graph E that is decomposed into four m/2 m/2 subgraphs A, B, C, and
D by bisecting vertical and horizontal lines, DISTE can be computed from DISTA,
DISTs, DISTc, and DISTD in O(m2) time. Unfortunately, it is beyond the scope
of this paper to explain the ingenious algorithms of Apostolico et al. that are based on
a two-tiered development. However, we note that the procedure Propagate described
later in this paper is essentially a small variation on the first tier of their design. We
highly recommend that interested readers refer to this fundamental result.

3. A simple O(N251og’bN) algorithm. The candidate-list technique of Mil-
ler does not give us a better-than-O(N3) algorithm because each list can get as large
as gt(N). In this section, we present an algorithm which achieves a better worst-case
running time by eliminating the need for candidate lists with more than b elements
in them, where we will choose b as a function of N later. Consider partitioning the
interval [0, N] into N/b panels, [0, b], [b, 2b],..., IN-b, N], with the partition indices
b, 2b, 3b,..., N- b. Consider the following first phase:

1. For each partition index b, 2b,...,N- b, run the Smith-Waterman

algorithm on A[1..i] versus A[i + 1..N].
The step above detects every twin that is separated by one of the partition indices.

Thus the only twins not captured are those where the first part ends and the second
part begins within one of the panels. The second phase of our algorithm processes
each panel in search of such panel twins. The outer loop of the second phase is as
follows:

2. For each panel [j, i] [0, b], [b, 2b],..., IN-b, Y], do the following four
steps"

Consider a panel twin of [j, i]. Figure 2 shows the path of such a twin which
must begin at a vertex between rows j and i and which must end at a vertex between

Here m and n refer to the length of the sides and not the number of vertices in them, which are
1 and n + 1, respectively.

652 SAMPATH K. KANNAN AND EUGENE W. MYERS

’panel twln"

j i j l

FIG. 2. Panel processing for the simple algorithm.

columns j and i. Thus it suffices to compute for all vertices (x, y) between columns
j and i, the best paths originating from vertices between rows y and min(i, x). That
is, maXy<_z<_min(i,x) C(x, y, z) is the cost of the best panel twin ending at (x, y).
Moreover, the maximum involves at most b/ 1 candidates, one from each row between
j and i. To begin the processing of the panel, consider the following:

2.1. For each vertex on boundaries A and B shown in Figure 2, find
the best paths to them that originate in rows j through using Miller’s

recurrence.

Rigorously stated, this step computes C(x, y, z) for x 6 [j, i], y E [0, j], and
z E [j, x] in lexicographical order and retains the computed quantities at vertices
(x, y) such that x or y j in candidate arrays indexed by z. Now the crux
of the problem is to compute the best paths originating in rows j through to the
vertices on boundary C shown in Figure 2. Using Miller’s recurrence and computing
all the necessary intermediate quantities in the rectangular subgraph, E(i, j), whose
upper right corner is vertex (i, j), would require O(N2b) time, which is too costly.
This is circumvented by the next two steps as follows:

2.2. Compute M DISTE(i,j) with the algorithm of Apostolico et al.

The table M of distances between pairs of points bounding E(i, j) is used to
efficiently "propagate" the candidate arrays on boundary A to boundary C. The
basic observation is that C(x, j, z) max0_<y_<y C(i, y, z)+ M[(i, y)][(x, j)] for all
x 6 [i, N] and z 6 [j, i]. That is, a best path from row z to (x, j) must pass through
row and so is decomposable into (1) a best path to some vertex (i, y) on this row,
followed by (2) a best path from (i, y) to (x, j). With this preliminary, the next step
is as follows:

2.3. For each vertex on boundary C shown in Figure 2, efficiently com-
pute the best paths originating in rows j through i by propagating the candi-
date lists from boundary A by consulting table M.

If the maximum embodying propagation were computed directly for each boundary-

NONOVERLAPPING REGIONS OF MAXIMUM ALIGNMENT SCORE 653

C vertex, we would again take too much time. Fortunately, for a fixed originating
row z, it is possible to compute C(x, j, z) for all (x, j) on boundary C in O(log N)
amortized time per vertex by the procedure Propagate given below.

Note that the pseudocode below assumes pass-by-reference semantics and that
the index ranges of Propagate’s formal arguments are correlated with the matrix
slices passed to it as actual arguments. Further note that C(i, O..j, z) is passed
to I[1..n] but that C(N..i, j,z) is passed to O[1..m]. The indices must decrease in
the later actual argument because Propagate’s divide-and-conquer strategy implicitly
requires that the vertices on the boundary of E(i, j) be ordered so that paths from
the input boundaries (upper and left) to the output boundaries (lower and right)
cross when their start and finish points are inverted with respect to this order. As
the increasing input-boundary order, we use up the left side and then across the top
to the right, and as the increasing output-boundary order, we use across the bottom
to the right and then up the right side. For example, for E(i, j) the increasing input-
boundary order is (N, 0), (N- 1, 0),..., (i + 1, 0), (i, 0), (i, 1),..., (i, j 1), (i, j),
and the increasing output-boundary order is (N, 0), (N, 1),..., (N, j- 1), (N, j),
(N- 1, j),..., (i + 1, j), (i, j). Our simple algorithm only requires propagation from
the top part of the input boundary to the right part of the output boundary, so the
call to Propagate only passes the appropriate sections of the matrices and distance
table M in the appropriate order. Later, in 4, we will use Propagate for propagation
across the entirity of each boundary and the issue of boundary vertex orders will again
be important.

Propagate(I[1..n], D[1..n][1..m], O[1..m])
if m > 0 then

{ 2]J

+ }
Determine 2 maximizing the above.
Propagate(IEl..2], D[1..2][1..p- 1], O[1..p- 1])
Propagate(I[2..n], D[2..n][p + 1..m], O[p + 1..m])

forz E [j,i]do
Propagate(C(i, 0..j, z), M[(i, O..j)][(N..i, j)], C(N..i, j, z))

A call to Propagate correctly sets O[p] -- maxl<x<n I[x] + D[x][p] for every p e
[1, m] by the same observation used by Apostolico et al. [1]. Namely, if O[p] is
maximized for index 2, then the value of O[q] for some q < p must be maximized for
an index between i and 2, because otherwise the shortest paths through the subgraph
of D used by p and q cross and this leads to an easy contradiction of optimality.
Similarly, the value of O[q] for some q > p must be maximized for an index between
2 and n. By choosing p as the bisecting index and recursively solving for the points
on the left and right, we achieve an efficient divide-and-conquer procedure, as proven
later in Theorem 1.

2.4. Given the candidate arrays for vertices on column j, find the candidate

arrays for every vertex between column j and i, and record the best-scoring
panel twin ending at each.

This last step is easily accomplished using Miller’s recurrence. Rigorously stated,

654 SAMPATH K. KANNAN AND EUGENE W. MYERS

we compute C(x, y, z) for all vertices (x, y) between columns j and and all z E
[y, min(i, x)]. Simultaneously, we determine the cost, maxy<_z_<min(i,x){C(x, y, z)},
of the best panel twin ending at each (x, y).

Note that steps 2.2 and 2.3 are not needed for panels [0, b] and IN-b, N] because
the region E(i, j) degenerates to a line. During the execution of phase 1 and each
execution of step 2.4, the algorithm keeps a record of the best scoring twin so far. We
state this as a final phase:

3. Output the score o the best tin ound over all the stages.

Although the problem is to output just the score of the best twin, note that the
algorithm actually computes the best-scoring twin to every vertex in the edit graph
of A and so can produce more than one twin if desired. Further note that if all that
is desired is to examine just adjacent or tandem twins, then it suffices in step 2.4 to
take the maximum over just the entries C(x, y, y).

THEOREM 1. The algorithm above computes twins in O(N2"51og’5 N) time and
O(N) space.

Proof. Phase 1 of the algorithm takes O(N3/b) time since it involves solving
N/b problems each taking time O(N). In phase 2, we perform the minor steps N/b
times. Steps 2.1 and 2.4 are similar, involving the computation of candidate arrays in
rectangles whose sizes are less than N x b. Since the candidate arrays have up to b
elements in them, this takes O(Nb) for each pair of rectangles or a total of O(Nb)
time over all panels. Computing a distance table M in step 2.2 takes O(N log N)
time for a total of O(N log N/b) time over all panels.

It remains to analyze the complexity of step 2.3. If T(n, m) is the time for a
call to Propagate, then it satisfies the recurrence T(n, m) <_ T(nl, (m- 1)/2)+ T(n2,
(m-1)/2)+O(n) for any nl and n such that nl +n n+ 1 and boundary condition
T(n, 1) O(n). An easy induction shows that T(n, m) is O(n log rn + rn). Thus
each invocation of Propagate in step 2.3 takes O(N log N) time for a total time in the
step of O(Nb log N). Over the entire algorithm, the time spent is then O(N log N).

The overall complexity of the algorithm is determined by choosing b to equalize the
O(Nb) time spent in steps 2.1 and 2.4 and the O(N log N/b) time spent in step 2.2.
This is achieved when b v N log N and gives a running time of O(N’ log’ N).
For the space complexity, note that at worst one DIST table needs to be maintained
at any given point in the algorithm.

4. An improved algorithm. In essence, the algorithm above is designed around
computing panel twins where the size of panels is N1/. One hopes that an O(N7/ poly-
log N) algorithm is possible using panels of size N1/3 and, if so, one can get a pro-
gression of decreasing times by choosing panels of size N1/K, ultimately yielding an

O(N polylog N) algorithm for K log N. We are indeed able to pull off such a
progression, but doing so requires several refinements. First, we have to abandon
computing distance tables from scratch for each panel problem. Instead, in a prepro-
cessing step, we produce a mesh of carefully chosen distance tables that permit us
to subsequently propagate candidate lists through critical subgraphs in O(N log N)
time. Second, for a basic block size of N1/K, we must proceed in K phases, where in
the Jth phase the panels are of size NJ/I. In the Jth phase, we find the twins that
are in a given NJ/K panel but not in any N(J-1)/K subpanel.

To get a more intuitive feel and motivation for what follows, let us consider the
development of an algorithm based on multiples of N1/3. Suppose we tried our simple
two-level algorithm from the previous section with N/ panels each of size N1/3.

NONOVERLAPPING REGIONS OF MAXIMUM ALIGNMENT SCORE 655

In this case, we would run into two problems. Performing N2/3 Smith-Waterman
computations at the outer level (step 1) would take O(Ns/3) total time, and in the
inner level we would have to compute N2/3 distance tables (step 2.2) for O(NS/31ogN)
total time. On the other hand, if we tried N1/3 panels each of size N2/3, the two
previously problematic facets would involve only O(NT/31ogN) total time, which is
an improvement over the simple algorithm, but now there would be N2/3 candidates
to propagate in each lower-level problem, giving rise to a component (steps 2.1 and
2.4) that takes O(Ns/3) total time. The solution is to go to a three-level scheme: at
the outer level, we perform N1/3 Smith-Waterman computations to capture all twins
that are not in any N2/3-panel; at the next level, we iterate over the N1/3 panels of
size N2/3 tO capture all twins that are in an N2/3-panel but not in any N1/3-panel;
and at the lowest level, we iterate over the N2/3 panels of size N1/3 to captures all
twins that lie within them. The complexity of the middle level seems at first to still be
problematic, as there can be N2/3 candidates in an N2/3-panel. However, since N1
twins will be captured by the lowest level, we need not consider every possible start for
a twin at this level but simply the best one in each N1/3 panel, reducing the number of
"pseudocandidates" for this level to N1/3. This in effect reduces the total complexity
to 0(N7/3), ignoring for the moment the time for building distance tables. Indeed
this scheme generalizes to an arbitrary number of levels. In a K-level scheme, the
outer level captures all twins not within any N(g-1)/K-panel, the next level captures
all twins within an N(K-)/K-panel but not within a nested N(K-2)/K-panel, and so
on down to a bottom level that captures all twins within an N1/K-panel. At level
J < K, where we capture all twins in an NJ/K-panel, we need only process the N1/K

pseudocandidates that record the best path starting in a nested N(J-)/K-panel, as
twins within a panel of that size will be found by the next lower level.

The K-level scheme thus leads to an algorithm requiring O(KN2+1/K) time, ig-
noring the time needed to propagate the O(N2) pseudocandidates through various
regions via distance tables. This is the most difficult obstacle to overcome: we cannot
afford to build even the N(K-1)/K distance tables needed for just the lowest level. In-
stead, we take the O(N) set of all rectangular regions of the edit graph that candidates
need to be propagated across, conceptually construct a quad-tree decomposition (see
[3] for a description of quad-trees) of these regions, and then build a distance table for
each region corresponding to a vertex in the quad-tree decomposition. This permits
us to propagate candidates across a region by propagating them through a logarithmic
number of precomputed distance tables that partition the region. Moreover, the set
of all necessary tables can be efficiently precomputed and stored in O(N2 log N) time
and space. We thus find a good tradeotf in the time for propagation against the time
for constructing distance tables.

With this preamble, we will begin the description of the algorithm. Section 4.1
describes the mesh of distance tables needed to efficiently propagate candidates at
every level of the algorithm. Then 4.2 describes the K-level decomposition of the
problem and the algorithm based on it. Finally, 4.3 caps the treatment with an
analysis of time and space complexity. Throughout, we will assume that b N1/K is
the basic block size for some K > 2 that will be chosen in the final subsection when
the competing complexity terms are fully understood. For simplicity, we assume that
b is a power of 2 and consequently that N is a power of 2 as well.

4.1. Preprocessing and propagation technique. The preprocessing step con-
sists of computing distance tables for a collection of subproblems. Term an edit-graph
vertex (i, j) critical if it meets the following conditions: (1) and j are multiples of

656 SAMPATH K. KANNAN AND EUGENE W. MYERS

b and (2) 0 < j < < N. For each critical (i, j), we will compute and associate a
number of distance tables. Let D(p, i, j) denote the distance table DISTE(p, ,j) for
the square subgraph E(p, i, j) consisting of vertices (x, y) such that x E [i, i +p] and
y [j-p, j]. In terms of the edit graph, E(p, i, j) is a p p square whose upper right
corner is the vertex (i, j). We say E(p, i, j) is cornered at (i, j). The distance tables
to be associated with a given critical vertex correspond to a doubling progression of
square subgraphs cornered at the vertex. Specifically, the list of distance tables built
for critical vertex (i, j) is D(b, i, j), 0(25, i, j), D(4b, i, j),... ,D(2Xb, i, j), where
2Xb is the largest power of 2 times the block size that divides both i and j. Let
maxp(i, j) 2b. Note that because vertices for which i j are not critical, the
largest subgraph for which a distance table is built has N/4 + 1 vertices on each side,
i.e., maxp(i, j) <_ N/4. The left half of Figure 3 illustrates the mesh of tables just
described. Our preprocessing algorithm is simply the following:

for p -- b, 2b, 4b,..., N/4 do
fori - 2p, 3p, 4p,..., N-pdo

forj -- p, 2p, 3p,..., i-pdo
{ maxp(i, j) -p

ifp b then
Compute D(p, i, j) de novo using the algorithm in [1]

else
Compute D(p, i, j) by fusing the four tables D(p/2, i, j),
D(p/2, + p/2, j), D(p/2, i, j -p/2), and D(p/2, + p/2, j -p/2)
using the algorithm in [1]

In a given iteration of the outer loop, observe that O((N/p) 2 tables are built,
and since p doubles with each iteration, O((N/b)2 tables are built over the entire
algorithm. For the iteration where p b, each distance table takes O(b2 log b) time
to build and occupies O(b2) space for upper bounds of O(N2 log N) time and O(N2)
space for the iteration. Since fusing 4 p/2 p/2 tables only takes time O(p2), the
time spent in every iteration other than the first is bounded by O(N2) time and space.
There are O(log N) iterations of the outer loop, for a grand total of O(N2 log N) time
and space for the preprocessing step.

The mesh of O((N/b) distance tables computed in the preprocessing step have
been chosen so that rectangular subgraphs of the edit graph relevant to our algorithm
can be partitioned into O(N) mesh squares for which tables have already been com-
puted. For a critical vertex (i, j), as in 3 let E(i, j), the critical subgraph cornered at
(i, j), be the rectangular subgraph consisting of all vertices (x, y) such that x e [i, N]
and y [0, j]. Suppose 2 is the largest power of 2 dividing i/b and 2z is the largest
power of 2 dividing jib. Let mp= maxp(i, j) 2min(x’Z)b. The subgraph E(i, j)
can be partitioned into mesh squares in the following greedy way:

Case 1: x < z. In this case, E(i, j) is partitioned into (a) the row of rap mp mesh
squares E(mp, i, rap), E(mp, i, 2rap), E(mp, i, 3rap),..., E(mp, i, j) along the top
boundary of E(i, j) and (b) the partition of E(i + rap, j) obtained by recursively
applying this procedure (unless i + mp N, in which case we are done). Note that
maxp(i + rap, j) must be 2mp or greater in this case, and so the recursive partitioning
of E(i / mp, j) will involve squares of at least twice the size.

Case 2: x > z. The situation is symmetric and E(i, j) is partitioned into (a) the
recursive partitioning of E(i, j rap) if j > mp and (b) the column of mp mp

NONOVERLAPPING REGIONS OF MAXIMUM ALIGNMENT SCORE 657

b- table
2b table
4b-table

maxp=b
..{....... Partitioning

maxp:4b

"1 maxp;2b

FIG. 3. Mesh partitioning for preprocessing step.

mesh squares E(mp, i, j), E(mp, i+mp, j), E(mp, i+2mp, j),... ,E(mp, N-rap, j)
along the right boundary of E(i, j). Again note that maxp(i, j rap) must be 2rap
or greater in this case, and so the recursive partitioning of E(i, j -mp) will involve
squares of at least twice the size.

Case 3: x z. Here one "peels" off both a column and row of mp mp squares
along the top and right boundaries of E(i, j) and then recursively partitions E(i +
rap, j rap) if it is nonempty. Once again, maxp(i + rap, j rap) must be 2rap or
greater.

Figure 3 illustrates the partitioning for a particular critical corner. Note that in all
cases the partition is into subgraphs cornered at critical vertices and so the distance
tables for all the squares constituting the partition of E(i, j) have been computed
in the preprocessing step as part of the mesh. Note that the nonrecursive part of
the partitioning process employs at most O(N/mp) mp mp squares, with a total
perimeter of O(N) over all squares. Since mp at least doubles with each level of
recursion, it follows that the E(i, j) is partitioned into at most O(N/mp) mp mp
squares, O(N/2mp) 2rap x 2rap squares, O(N/4mp) 4rap 4rap squares,..., and
O(1) N/4 N/4 squares. Therefore, E(i, j) is in general partitioned into at most
O(N/maxp(i, j)) mesh squares, whose total perimeter sum is at most O(Nlog N).
This characteristic of the partitioning is important since the running time of a step
in the ensuing algorithm is directly proportional to it.

Having now described how to partition the subgraphs E(i, j), we next show how to
propagate candidate-list information from the left and top boundaries of E(i, j) to its
right and bottom boundaries. For the ensuing algorithm, it will only be necessary, as in
the simple algorithm of 3, to propagate candidates from the top boundary to the right
boundary, but in the recursive process below we need to solve the more general left
and top boundary to right and bottom boundary propagation problem. Recall from
3 that the subprocedure Propagate(I[1..n], D[1..n][1..m], O[1..m]) that propagates a
vector I through a distance table D to produce the vector O. Propagation through
E(i, j) is accomplished by propagating candidates through the mesh partition using
Propagate to propagate candidates through each mesh square. Recall also that in

658 SAMPATH K. KANNAN AND EUGENE W. MYERS

general the procedure Propagate takes input values along the left and top boundaries
and produces output values along the bottom and right boundaries of a rectangular
subgraph. In the Mesh_propagate procedure described below, we will sometimes have
separate vectors representing the values at the left boundary and the values at the
top boundary. When we want to make a call to Propagate, we will combine these
vectors using a "concatenate" operator denoted by ".". Similarly, when we want to
separately name the values at the bottom and right boundaries, we will also use the
concatenate operator and specify two separate output arguments.

Mesh_propagate(L[i..N], T[0..j], R[i..N], B[0..j])
{ vector X[mp + 1], Y[N + 1]
mp- maxp(i, j)
ifj mpandmp maxp(i,j-mp) then

{ R[i..i + mp] L[i..i + mp]
for k -- mp, 2mp, 3rap, j do

{ +
Propagate(X[mp..1] T[k- mp..k], D(mp, i, k), V[k- mp..k- 1].

R[i +
+

if < N mp then Mesh_propagate(n[i + mp..N], Y[0..j], R[i + mp..g], B)

else
{ if j >mp then Mesh_propagate(L, T[O..j- mp], Y[i..N], B[O..j- mp])

B[j mp..j] T[j mp..j]
fork-i, i + mp, + 2mp, N- mp do

{ X[O..mp] - B[j mp..j]
Propagate(Y[k + mp..k] X[1..mp], D(mp, k, j), B[j mp..j 1].
R[k + mp..k])

B[j] R[k + mp]

The procedure Mesh_propagate propagates the values across E(i, j), where the
formal parameters are as follows. Vector L[i..N] contains the input values on the
left boundary vertices (i..N, 0) (denoting the sequence (i, 0), (i + 1, 0),..., (N, 0)).
Vector T[0..j] contains the input values on the top boundary vertices (i, O..j), R[i..N]
receives the propagated output values on the right boundary vertices (i..N, j), and
B[0..j] receives the output values along the bottom boundary (N, 0..j). Note that
the input and output vectors redundantly cover the upper left and lower right corner
vertices, i.e., L[i] =_ T[0] and R[N] =_ B[j]. Mesh_propagate propagates the input
vectors through the mesh using the recursive decomposition above. For example, if
Case 1 is true for (i, j), then the procedure begins by propagating T and L[i..i + mp]
through the row of mp mp mesh squares to a temporary vector Y[0..j] along the
lower output boundary and R[i..i+mp] along the right boundary. Another temporary
vector X is used to chain together the propagations through each mesh square via
calls to Propagate. Note that as in 3, great care is taken to feed to Propagate the
relevant portions of input and output vectors in the relevant order so as to observe the

NONOVERLAPPING REGIONS OF MAXIMUM ALIGNMENT SCORE 659

ordering requirement for distance-table boundary vertices. Once propagation through
the row of mesh squares is accomplished, the task is completed by recursively mesh
propagating L[i + mp..N] and Y to B and R[i + mp..N]. Case 2 is also similarly
reflected in the pseudocode of Mesh_propagate, and Case 3 is effectively handled by
first applying Case 1 and then noting that the recursive call will immediately apply
Case 2.

Recall that a call to Propagate with an n n problem takes O(n log n) time.
Because the mesh partition for E(i, j) contains at most O(N/mp) mp x mp mesh
squares, it then follows that at most O(N log rap) O(N log N) time is spent prop-
agating through mesh squares of this size. Moreover, square size doubles with each
recursion, so there are a maximum of O(log (N/maxp(i, j)) O(log N) square sizes
in the partition of E(i, j). Thus the total time spent in Mesh_propagate is bounded
above by O(N log2 N).

4.2. The K-phase algorithm. Recall that the basic block size b is N/K, where
K is yet to be chosen. For J [1, K], let the N/bJ intervals [0, bJ], [bJ, 2bJ],
[2bJ, 3bJ],..., IN- bJ, N] constitute the set of J-panels. A J-panel twin is a panel
twin for some J-panel but not for any of the (J- 1)-panels within it. Our K-phase
algorithm proceeds through phases J K, K- 1,..., 1, where in phase J all J-
panel twins are found. Note that the simple algorithm of 3 is a specialization of this
approach with K 2" Step 1 found the 2-panel twins of the sole 2-panel [0, N] and
step 2 found the 1-panel twins. Note that the general algorithm succeeds in finding
every twin, as a twin must be a J-panel twin for some j [1, K].

Finding the K-panel twins is an easy generalization of step 1 of the algorithm of
3. Namely, for each partition index i bg-1 2bK-1 N- bK-,..., run the Smith-
Waterman algorithm on A[1..i] versus A[i + 1..N]. For phase J < K, the algorithm
mimics steps 2.1 through 2.4 of the simple algorithm with two significant modifica-
tions. First, step 2.2 is no longer required, as the mesh is computed earlier, and step
2.3 uses Mesh_propagate instead of the simpler Propagate. The second modification
is in the nature of the C-values used in the phase. Since the goal of phase J is to
find J-panel twins and no (J- 1)-panel twins, one need only keep track of the best
path that starts in a given (J- 1)-panel. That is, to know if a path is a J-panel twin
of a given J-panel, it suffices to only know which of its b (J- 1)-subpanels the path
starts in. To this end, we introduce the quantity CJ(i, j, k), the best path to (i, j)
that begins in the kth (j- 1)-panel of [0, N], i.e., starts at some vertex between rows
kbJ-1 and (k + 1)bJ-1. Note that for J 1, the definition of CJ coincides with
that of C. The recurrence of 2 is easily modified to describe the computation of CJ

below.
For j <: i and k e [[j/bg-, [i/bJ-iJ],

CJ(i, j, k) max

CJ(i- 1, j- 1, k) + 5(ai, aj)
CJ(i- 1, j, k) + f(ai, e)
cg(i, j- 1, k) + 5(, aj)
0

if > j > 0 and > kbJ--,
if > 0 and > kb-1

if j > 0 and > kbJ-

if kbJ- <. i <_ (k + 1)bJ-.

With the introduction of CJ, the entire computation of phase J < K can now
be described succinctly as follows.

Phase J:
For each J-panel [j, i] E [0, bJ], [bJ, 2b], [2bJ, 3b],..., IN- bJ, N]"

660 SAMPATH K. KANNAN AND EUGENE W. MYERS

Step J.1. For x e [j,i],y e [0, j], and z e [j/bg-1

CJ(x, y, z).
Ix/bJ-Ill, compute

Step J.2. For z e [j/bJ-, i/bg-], Mesh_propagate((-oc,-c,..., }, CJ(i, O..j, z),
Cg(i..N, j, z), (-c,-c,...,

StepJ.3. For y e [j, i], x e [y, N], and z e [[y/bJ-, [min(i, x)/bJ-J],
compute CJ(x, y, z) and keep track of the maximum J-panel twin found.

Each quantity CJ(x, y, z) is called a panel-twin candidate. Note that no more
than b + 1 such candidates are computed at any vertex (x, y) in any phase J < K.
During the execution of the phases, the best twin of any type is recorded and this
twin is reported upon completion of all the phases.

4.3. Running-time analysis and space refinement. We can now state and
prove the following running-time bound on our algorithm.

THEOREM 2. The above algorithm computes the optimal pair of twins in time

O(N2 log2 N).
Proof. We will consider the total running time for each activity of the algorithm.

First, we have already argued that the preprocessing stage takes time O(N2 log N).
Phase K of the algorithm invokes the O(N2) Smith-Waterman algorithm b times
for a total of O(bN2) time. Now consider any other phase J < K. Steps J.1
and J.3 compute O(b) panel-twin candidates at each vertex in rectangles of size
less than N bJ for a total of O(bJ+lN) time. Each mesh propagation in Step
J.2 takes O(Nlog2 N), as analyzed in 4.1, and is repeated for each of the O(b)
panel-twin candidates at the top boundary for a total of O(bN log2 N) for the step.
The total number of panels processed in phase J is N/bJ, giving a total time for
phase g of O(N2 (b + log2 N/bJ-i)). Summing over all phases gives a grand to-
tal for the algorithm of O(KbN2 + N2 log2 N) time as the log2 N/bJ- term tele-
scopes. Choosing K log N makes b N1/K 2 and gives us the bound
O(N log N). Note that the dominant term comes from the cost of propagation
through the mesh. [:]

In a conference version of this paper [4], the authors asked if the space complexity
of the algorithm could be reduced from O(NlogN). This was subsequently answered
affirmatively by Benson [2], who gave an O(N2)-space algorithm with the same time
complexity as ours. While his result uses a distinctive line of attack, we thought that
the real essence of the improvement involved abandoning precomputing the entire
mesh of distance matrices and instead computing components of the mesh "on the
fly" as necessary.

Indeed, we now see that the following simple modification to our algorithm gives
us O(N2) space. Instead of proceeding recursively phase by phase, proceed instead
iteratively in increasing order of l-panels [j, i], also processing any J-panels, for J > 1,
that begin at j.

Recall that the basic block size, b is 2. Formally, consider the following outermost
structure:

forj - 0, b, 2b,..., N-bdo
for p - 2Jb 2J+l s.t. p divides j in order of J do

Perform Steps J.1, J.2, and J.3 on panel [j,j + p],

where no preprocessing is undertaken. For a given j, we will need the set of distances
matrices that partition E(j + b, j). Observe that within this partition, we have the

NONOVERLAPPING REGIONS OF MAXIMUM ALIGNMENT SCORE 661

partitions for E(j + p, j) for each of the p that will be processed for a given choice
of j. So in order to do mesh propagation in Step Y.2 of the outline above, it suffices
to deliver the mesh partition of E(j + b, j) as we iterate through progressive values
of j in the outer loop. Suppose we have the partition for E(j, j b). To obtain the
one for E(j + b, j), discard every distance matrix in the former and not the latter
partition and build every distance matrix in the latter but not in the former. We can
afford to build a new p p matrix "on the fly" using the less efficient O(p210gp) de
novo algorithm of Apostolico et al. [1]. At any moment, the space required during
this process is easily seen to be O(N2). The final fact required is to observe that a
given distance table DIST(p, k, h) is a part of the partition of E(j +b, j) exactly when
either (a) j+b_< k andh <_j < h+por (b) h<_j andk-p<j+b<_ k. Thus
a given distance table of the mesh will be "demanded" and subsequently discarded
at most twice. There are O((N/p)2) tables of size p p all together and O(logN)
choices of p for a total time to build the tables "on the fly" of O(N210g2N). Note
that whereas before we took O(N210gN) time and space in the preprocessing, we now
take O(N210g2N) time to build tables in order to use only O(N2) space.

5. Finding short twins efficiently. In this section, we describe a very simple
algorithm to find twins efficiently if we know that the length of the twins is no more
than N1-C for arbitrarily small . Let L N1-C and consider the following recur-
sive approach. Explicitly solve the problem of finding twins between A[1..N/2] and
A[N/2+ 1..N]. Recursively solve the subproblems of finding twins within A[1..N/2+L]
and A[N/2- L..N] until the length of the string in the subproblem is no more than
3L. For subproblems of this size, solve them by using the algorithm of the previous
section in time O(L2-). Letting T(n) be the time to find optimal twins in a string
of length n, we get the following recurrence:

T(n) O(n2) + 2T(L + n/2)

with initial condition T(3L) O(L-). Solving this recurrence reveals that T(N)
O(N2).

This algorithm can be simplified somewhat if it is known that the twins sought
are of size no more than L N2/3-e, in which case the algorithm of 3 is sufficient
to handle the base-case problems while still giving a time bound of O(N2). Finally, if
it is known that the twins are not of size more than O(/-), then the base cases can
simply be handled by the brute-force cubic algorithm (or by Miller’s improvement of
this algorithm) while still giving an overall running time of O(N2).

6. Conclusions and open problems. A practical method for detecting re-
peated regions in DNA and protein sequences needs to find multiple (possibly more
than two) nonoverlapping regions of maximum alignment score. Since the algorithm
presented in the paper finds the best twins ending at each point in the edit graph, it is
a relatively simple bookkeeping matter to identify and report more than two regions
that have high pairwise alignment scores.

The algorithm presented in this paper is perhaps close to optimal in time com-
plexity, but there is the vexing factor of log2 N as opposed to log N. Perhaps some
modification of the algorithm would make this improvement. One important con-
cern is also the space complexity of the algorithm. Can this be brought down from
O(N2 log N) to O(N2) or even less?

The property exploited by the procedures Propagate and Mesh_Propagate is that
optimal scoring paths do not cross. This property no longer holds when the scoring

662 SAMPATH K. KANNAN AND EUGENE W. MYERS

scheme is generalized further to allow affine or concave gap costs. Thus for these
generalized scoring schemes, it is still open whether there is an algorithm that achieves
a running time close to the running time of the algorithm in the paper.

REFERENCES

[1] A. APOSTOLICO, M. J. ATALLAH, L. L. LARMORE, AND S. MCFADDIN, Efficient parallel algo-
rithms for string editing and related problems, SIAM J. Comput., 19 (1990), pp. 968-988.

[2] (. BENSON, A space efficient algorithm for finding the best nonoverlapping alignment score, in
Proc. 5th Symposium on Combinatorial Pattern Matching, Lecture Notes in Comput. Sci.
807, Springer-Verlag, Berlin, New York, Heidelberg, 1994, pp. 1-14.

[3] R. A. FINKEL AND J. L. BENTLEY, Quad-trees: A data structure for retrieval on composite key,
Acta Inform., 4 (1974), pp. 1-9.

[4] S. KANNAN AND E. MYERS, An algorithm for locating nonoverlapping regions of maximum
alignment score, in Proc. 4th Symposium on Combinatorial Pattern Matching, Lecture
Notes in Comput. Sci. 648, Springer-Verlag, Berlin, New York, Heidelberg, 1993, pp. 74-
86.

[5] (. M. LANDAU AND J. P. SCHMIDT, An algorithm for approximate tandem repeats, in Proc.
4th Symposium on Combinatorial Pattern Matching, Lecture Notes in Comput. Sci. 648,
Springer-Verlag, Berlin, New York, Heidelberg, 1993, pp. 120-133.

[6] V. I. LEVENSHTEIN, Binary codes of correcting deletions, insertions and reversals, Soviet Phys.
Dokl., 10 (1966), p. 707.

[7] M. G. MAIN AND R. J. LORENTZ, An O(n log n) algorithm for finding all repetitions in a string,
J. Algorithms, 5 (1984), pp. 422-432.

[8] W. MILLER, An algorithm for locating a repeated region, private communication.
[9] E. W. MYERS, An O(ND) difference algorithm and its variants, Algorithmica, 1 (1986),

pp. 251-266.
[10] T. F. SMITH AND M. S. WATERMAN, Identification of common molecular sequences, J. Molecular

Biol., 147 (1981), pp. 195-197.
[11] R. A. WAGNER AND M. J. FISCHER, The string-to-string correction problem, J. Assoc. Comput.

Mach., 21 (1974), pp. 168-173.

SIAM J. COMPUT.
Vol. 25, No. 3, pp. 663-696, June 1996

() 1996 Society for Industrial and Applied Mathematics
0O9

FULL ABSTRACTION AND THE CONTEXT LEMMA*

TREVOR JIMt AND ALBERT R. MEYER$

Abstract. It is impossible to add a combinator to PCF to achieve full abstraction for models
such as Berry’s stable domains in a way analogous to the addition of the "parallel-or" combinator that
achieves full abstraction for the familiar complete partial order (cpo) model. In particular, we define
a general notion of rewriting system of the kind used for evaluating simply typed/k-terms in Scott’s
PCF. Any simply typed A-calculus with such a "PCF-like" rewriting semantics is shown necessarily to
satisfy Milner’s Context Lemma. A simple argument demonstrates that any denotational semantics
that is adequate for PCF, and in which certain simple Boolean functionMs exist, cannot be fully
abstract for any extension of PCF satisfying the Context Lemma. An immediate corollary is that
stable domains cannot be fully abstract for any extension of PCF definable by PCF-like rules.

Key words, stable functions, full abstraction, Context Lemma, PCF, standardization

AMS subject classifications. 03B40, 68N15, 68Q40, 68Q50, 68Q55

1. Introduction. A paradigmatic example of a functional programming lan-
guage is PCF, Scott’s simply typed A-calculus for recursive functions on the inte-
gers [35]. Many categories of denotational meaning are known to adequately reflect
the computational behavior of PCF in a precise technical sense, namely, a PCF term
evaluates to the numeral n_ iff it means the integer n. But typically there are pairs of
terms with distinct meanings that nevertheless are computationally indistinguishable
in PCF. For example, with the semantics based on complete partial orders (cpos),
PCF must be extended with a "parallel-or" combinator in order to express enough
computations to be fully abstract, i.e., semantical distinctions and computational dis-
tinctions between terms coincide [32, 31].

The problem of giving a semantical description of a fully abstract model of un-
extended PCF remained open for nearly fifteen years (cf. [28, 9, 29, 37]); it has
only recently been solved [3, 21]. During that time, efforts to construct spaces of
"sequential" functions corresponding to those definable in the original PCF without
parallelism led to the discovery of a number of new domains suitable for denotational
semantics. Although none are fully abstract for PCF, one motivation for the develop-
ment of spaces such as the stable functions, bistable functions, sequential algorithms
[6, 5, 9, 8, 16], and most recently the strongly stable functions [14], was that they
captured various aspects of sequentiality and so seemed "closer" to full abstraction
for unextended PCF than the popular cpo model.

The stable function model in particular has a simple definition and attractive
category-theoretic properties. Its only apparent technical peculiarity is that stable
domains of functions are not partially ordered pointwise; in general, the stable order-
ing strictly refines the pointwise ordering. Nevertheless, just as for the cpo model, the
elements of stable domains of type a - T are actually total functions from elements of
type a to elements of type T. Likewise, there is a natural notion of finite and effective

Received by the editors December 30, 1991; accpeted for publication (in revised form) November
25, 1994.

Laboratory for Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139
(trevor@theory.lcs.mit.edu). The research of this author was supported by ARO grant DAAL03-89-
G-0071.

Laboratory for Computer Science, Cambridge, Massachusetts Institute of Technology, MA 02139
(meyer@theory.lcs.mit.edu). The research of this author was supported by ONR grant N00014-89-J-
1988 and NSF grant 8819761-CCR.

663

664 TREVOR JIM AND ALBERT R. MEYER

elements of stable domains, and these domains yield an adequate least fixed-point
model for PCF. Further, they form a cartesian closed category with solutions for
domain equations [6]. This category was also independently discovered and used in
constructing a model of polymorphic A-calculus [17]. So the stable domains seem to
offer a setting for a theory for higher-order recursive computation with many of the
attractions of the cpo category.

However, one important result about cpos is not known for stable domains,
namely, full abstraction with respect to some extension of PCF analogous to the
parallel-or extension which Plotkin and Sazonov provided for the cpo model. What
might a symbolic-evaluator for an extended PCF look like if it was well matched
fully abstract--with the stable model? We conclude that such an evaluator will have
to be unusuM looking: it cannot be specified by the kind of term-rewriting-based
evaluation rules known for PCF and its extensions.

The significance of this negative result hinges heavily on how drastic we judge it
to go beyond the scope of PCF-like rules. It is of course possible that some operational
behavior that we declare to be non-PCF-like, in our technical sense, will nevertheless
offer a useful extension of PCF for which stable domains are fully abstract. For
example, Bloom [11] provides such an extension for complete lattice models, though he
goes on to criticize the rather complex algorithmic specification of the combinators in
his extension. (The general benefits of structured approaches to operational semantics
and connections to full abstraction are discussed in [27, 12].)

To illustrate the generality of our notion of PCF-like rules, we note that the
standard extensions of PCF by parallel-or and existential combinators are easily seen
to be PCF-like. For example, we can define an evaluator for Plotkin’s constant [31]
while remaining within a term-rewriting discipline, as follows. Let p o be an
"integer predicate" variable, and use the rules

p --, cond (pn) tt t,
p -- cond (p) t ff.

The resulting PCF-like language no longer has a confluent rewriting system, though
it remains single valued, viz., every term rewrites to at most one numeral. In general,
our PCF-like rules need not even be single valued.

A substantial technical contribution of this paper is a simple, modest restric-
tion on the format of rewrite rules which is sufficient to guarantee Milner’s Context
Lemma [28] for languages defined by such rules. Informally, this "Approximation"
Context Lemma requires that if two phrases M and N of the same syntactic func-
tional type yield visibly distinct computational outcomes when used in some language
context, then there are actual parameters of appropriate argument type such that M
and N, each simply applied to these arguments, yield visibly distinct computational
outcomes. This property, more perspicuously dubbed operational extensionality by
Bloom [10, 11], has been identified by many authors as technically significant in pro-
gram semantics [38, 30, 25, 1, 19, 2, 36]. The key to the proof of the Context Lemma
is a new Standard Reduction Theorem 4.4 for PCF-like rewrite systems.

Our work borrows much from Bloom [10, 11]. The second author raised the
question of whether there is a "reasonable" extension of PCF that would yield a
fully abstract evaluator for lattice models [33, 34]. In answering this question, Bloom
emphasized how the Context Lemma and full abstraction were incompatible with
single-valued evMuators for the lattice model. He also characterized general class of
consistent rewrite rules that ensured the soundness of the Context Lemma. However,

FULL ABSTRACTION AND THE CONTEXT LEMMA 665

in order to encompass the computational behavior of the combinator, Bloom needed
to develop an auxiliary notion of "observation calculi."

Our PCF-like rules are, in an appropriate sense, as powerful as Bloom’s observa-
tional calculi, and strictly subsume the class of consistent rules. In particular, consis-
tent rules are necessarily confluent and hence single valued; as Bloom remarks [10],
introducing a join combinator with simple multiple-valued rewrite rules yields a
PCF extension both fully abstract for the lattice model and also satisfying the Con-
text Lemma. Our wish to simplify Bloom’s criteria while dealing with nonconfluent
rewriting systems forced us, instead, to a rather elaborate theory of standard reduc-
tions.

As an aside, we also point out that it is questionable whether the (bi)stable and
similar domains are closer to full abstraction for PCF. In particular, although some
operationally valid equations that fail in the cpo model do hold, for example, in the
stable model, we note in Corollary 3.3 that the converse also happens: some equations
that hold in the cpo model fail in the stable model. The cpo, stable, and likewise the
bistable models thus offer information about the operational behavior of PCF terms
that is not apparently comparable, and it is hard to see how to judge which is a more
accurate model.

The outline of our argument is as follows. In 2, we formulate the key concepts
of observational approximation, adequacy, and full abstraction in a general setting.
Then in 3, Theorem 3.2, we give a short proof that any denotational semantics that
is adequate for PCF and in which a certain simple Boolean functional exists cannot
be fully abstract for extensions of PCF satisfying the Context Lemma. The Boolean
functional is obviously not continuous in Scott’s sense, but it is stably continuous
and so does appear in the stable model. We also formulate a Comparability Context
Lemma which applies to the bistable domains. Section 4 gives our general notion of
term rewriting systems of the kind used for symbolic evaluation of PCF terms. Then
in 5, we show that any such system defines an observational approximation relation
that must satisfy the Context Lemma [28]. An immediate corollary is Theorem 5.5,
which states that there is no extension of PCF defined by PCF-like rewriting rules
for which the stable domain semantics is fully abstract. We state but do not prove a
similar result for the bistable domains.

2. Adequacy and full abstraction. Concepts concerning program behavior,
such as observational congruence, adequacy, and full abstraction, can usefully be
defined in a general setting consisting of the following:

a set , called a language, whose elements, M, N,..., are called terms;
partial operators C[.] on terms called contexts; and
a set (9, called a notion of observation, whose elements are predicates on
terms called observations. When an observation is true of a term, the term
is said to yield the observation.

We will work with languages whose operational behavior is specified by (possibly
nondeterministic) symbolic evaluation of terms, so we further assume a binary rela-
tion, "evaluates to," on terms. For such languages, (gew captures the familiar notion
of observing the final output of an evaluation:

(-eval { "evaluates to O" [O is an output term}.

Here the output terms are those terms regarded as observable "output values." These
typically include the ground constants (integers, truth values,...); A-abstractions and
finite lists of output values might also be included.

666 TREVOR JIM AND ALBERT R. MEYER

There are other notions of observation based on evaluation. For instance, Olazy
consists of the single predicate true of exactly those terms whose evaluation can ter-
minate. And notions of observation can be based on semantics of terms, e.g.,

(0in ("has the meaning of O" O is an output term}.

In this paper, however, we will be mainly concerned with
Any notion of observation induces a preordering on terms called observational

approximation. Intuitively, one term approximates another if, according to the chosen
notion of observation, the approximated term exhibits at least as much observable
behavior when used in any program as the approximating term.

DEFINITION 2.1. Let be a language with a notion of observation (. A term M
observationally approximates a term N, written M _obs N, if for all contexts C[.],
whenever C[M] is a term yielding an observation from (, then C[N] is a term yielding
it as well. M and N are observationally congruent, written M ----obs N, iffM obs N
and N ___obs M.

Observational approximation provides precise meaning for questions such as "Does
my code meet a specification?" or "Will my new implementation of a module change
the behavior of the program?"

In languages like PCF with applicative syntax and a suitable notion of closed
terms, analysis of observational approximation can be simplified by appealing to
Context Lemma.

DEFINITION 2.2. Let be a language with a notion of observation (. We
say a term M applicatively approximates a term N, written M ___app N, iff for all
vectors of closed terms, P, whenever MP is a term yielding an observation, NP is a
term yielding it as well. The Approximation Context Lemma holds if for all closed
terms M and N,

M_,,N if M_osN.

A fundamental result of Milner [28] is that under (eva| with numerals taken as the
output terms, PCF itself, as well as its extension with parallel-or, satisfies the Approx-
imation Context Lemma. We will see later that the Approximation Context Lemma
holds for all languages defined in a "PCF-like" operational discipline, including, of
course, PCF and its familiar extensions.

One method for proving observational approximations is by developing an abstract
meaning, M, of a term M that is adequate to determine its observations.

DEFINITION 2.3. A meaning function for a language is a function . from
terms M to values [M] in some set, partially ordered by a relation _. A meaning
function is compositional iff for all terms M and N and contexts C[.], ifM

_
[N

and VIM] is a term, then GIN] is a term and C[M] C[N]].
A meaning function is adequate2 for a notion of observation 0 iff for all terms

M and N and all observations obs E O,

(M
_
N and obs(M)) implies obs(g).

In particular when O is Oeval Bloom [10] calls this "operational extensionality" while Milner [28]
uses simply "the Context Lemma." We use the more descriptive "Approximation Context Lemma"
because we will later consider Context Lemmas that are not based on approximation.

2 As with the Context Lemma, we might more descriptively call this "approximation adequate";
but we will use only the version of adequacy based on approximation and call it simply adequacy for
brevity.

FULL ABSTRACTION AND THE CONTEXT LEMMA 667

Adequacy and compositionMity guarantee that the meanings accurately predict
observational approximation.

LEMMA 2.4. A compositional meaning function . is adequate for a notion of
observation iff for all terms M and N,

M
_
N] implies M _obs N.

The ordering on adequate meanings may be strictly finer than observational ap-
proximation. In the ideal situation, known as full abstraction, the two orderings
coincide.

DEFINITION 2.5. Let . be a meaning function for a language with a notion of
observation (9. We say .] is approximation fully abstract3 iffor all terms M and N,

IM
_
N] iff M _obs N.

It is equationally fully abstract if for all M and N,

[M] IN] iff M=obs N.

Approximation full abstraction trivially implies adequacy for compositional mean-
ing functions. Assuming that each output term evaluates to itself, it follows immedi-
ately that if i.] is adequate for Oeval and O]

_
M, then M evaluates to O, for any

output term O. If, in addition, the meaning function is sound for the evaluator, we
easily obtain a familiar (cf. [27]) alternate characterization of adequacy.

DEFINITION 2.6. A meaning function . is sound for an "evaluates to" relation

if for all terms M and N,

M evaluates to N implies [M] N].
LEMMA 2.7. A sound, compositional meaning function . is adequate for Oeval

0] M iff M evaluates to O,

for all terms M and output terms O.
This paper focuses specifically on the language PCF and its extensions. The

precise (usual) definitions of PCF syntax and semantics appear in Appendix A, and
we provide only a quick review here.

PCF is a simply typed/k-calculus with Boolean and natural number ground types,
numerals n_ for n _> 0, Boolean constants tt and ff, and simple arithmetic, recursion,
and conditional operators. The evaluation relation -- of the language is given by
term-rewriting rules.

DEFINITION 2.8. An extension of PCF is a simply typed language together with a
set of rewrite rules, such that the types, typed constants, and rewrite rules of the ex-
tension include those of PCF. The extension is conservative ifffor all PCF terms M,
and all terms N in the extension,

M --extended N iff M --PCF N.

Observational congruence, adequacy, etc. for PCF and its extensions will be de-
fined with respect to (gevl, where we take the rewriting relation - as the "evaluates
to" relation, and the output terms are the ground constants tt, ff, and n_ for n >_ 0.

The results of the next section, which examines full abstraction for models of
extensions of PCF, require that we prove facts about the meanings of terms while

3 Stoughton [37] calls this "inequationally fully abstract."

668 TREVOR JIM AND ALBERT R. MEYER

knowing very little about the extensions or the models. We will only have adequacy,
conservativity, and a few other assumptions to work with. The following lemma shows
that this gives us enough to reason about the unextended terms of the language.

LEMMA 2.9. If a model is adequate for a conservative extension of PCF, then it
is also adequate for PCF.

Proof. Suppose a model . is adequate for a conservative extension of PCF,
and M]

_
N] for some PCF terms M and N. All models are compositional, so

[C[M]]

_
IC[i]] for any PCF context C[.]. So for any ground PCF constant c, if

C[M] "extended C, then C[N] -extended C by adequacy. And then by conservativity,
if C[M] ---PCF C, then C[N] PCF c. Hence, M [-PCF N [:]- --obs

We will further require that our models be sound, and that the ground types o
and be interpreted as the fiat cpos {tt, ff}+/- and {0,1,...}+/-, with the standard
interpretation of tt, ff, and the numerals n_n_. Such models will be called models
with Booleans (though they are indeed also models with integers). Two models with
Booleans of particular interest are the cpo model C.] and the stable model S.]. Both
models are adequate but not fully abstract for PCF.

The additional information about the ground types of models with Booleans is in
fact enough to determine the meanings of ground PCF terms.

LEMMA 2.10. The meaning of any closed PCF term of ground type is the same
in all models with Booleans that are adequate for PCF.

Proof. Let M be a closed PCF term of type o (the case M is similar). In PCF,
exactly one of the following holds: (1) M -PCF tt; (2) M -PCF ff; or (3) neither
(1) nor (2) holds. And by Lemma 2.7, M --PCF t iff M tt]] tt for any model
with Booleans [. adequate for PCF. Similarly, cases (2) and (3) imply M ff and
M] _[_ respectively.

Thus we can use any particular adequate model with Booleans, like the familiar
cpo model, to discover the meaning of ground PCF terms for arbitrary adequate
models with Booleans. We have less to say about terms of higher type. But the
following notions are useful.

DEFINITION 2.11. Let - be a first-order type, that is, a type of the form al ----* an, where aj is a ground type for 1 <_ j <_ n. Let . for 1, 2 be type frames
such that

_
on [aJl equals _2 on aj]2, and let fi E -. Then f pointwise

approximates f2, written f __pnt f2, iff for all dj

f (d)... (d) f2(dl)...
It follows immediately from Lemma 2.10 that the functions that are the meanings

of a PCF term of first-order type agree pointwise in all models with Booleans that
are adequate for PCF. So we can use the meaning of a first-order PCF term in some
particular model to reason about its meaning in any adequate model with Booleans.

However, pointwise equality is not quite the same as equality of functions. For ex-
ample, consider the conditional constant condo o --+ o -- o --, o. Now Scondo ----pnt
C[condo]. But the stable domain does not contain parallel-or, so the stable and
cpo meanings of o o o are different. Thus, $condo] = Ccondo since the two
functions have different codomains.

Nevertheless, it follows immediately from the definitions that pointwise approxi-
mation has the following useful property.

LEMMA 2.12. Let . be a model with Booleans that is adequate for PCF, and let
M and N be closed PCF terms of first-order type. Then

M] _pnt N] implies M _app N.

FULL ABSTRACTION AND THE CONTEXT LEMMA 669

3. Failures of full abstraction. Our first theorem hinges on the presence of
certain simple functionals over the Booleans.

DEFINITION 3.1. Let True be the constant tt function on the fiat Booleans, and
True! be the strict constant tt function. A true-separator is a function f satisfying

f True) tt,

f Tr e . I].

THEOREM 3.2. Let . be a model with Booleans that is adequate for some conser-
vative extension of PCF satisfying the Approximation Context Lemma. If . contains
a true-separator, it is not equationally fully abstract.

Proof. Define the terms

def
True x.tt,

def
True! Ax.cond x tt tt.

By the definition of a model with Booleans, True True. And by Lemma 2.10,
colld ----pat C[COD.d], SO by definition of model with Booleans, we have True!
True!. Then True! ---app True by Lemmas 2.9 and 2.12. So by the Approximation
Context Lemma, True! _obs True.

We conclude that there is no term P defining a true-separator; otherwise True!
and True yield distinct observations in the context (P [.]), contradicting the fact that
True! --obs True.

However, we can define a true-separator detector, D, as follows:

def
D --- x.cond (x True) (cond (x True !) o tt) o,

where t is the divergent term (Yo(AZ.Z)). By Lemma 2.10, o gto A., and
so

tt if f is a true-separator,D(/) 2_ otherwise.

Now Ax. is the constant _[_ function, so D Ax.], since they differ exactly
on arguments that are true-separators. But since true-separators are not definable by
terms, D and Ax.O are applicatively congruent. Then by the Approximation Context
Lemma, they are observationMly congruent, contradicting equational full abstrac-
tion.

COROLLARY 3.3. If a stable function model with Booleans is adequate for a
conservative extension of PCF that satisfies the Approximation Context Lemma, then
the model is not equationally fully abstract.

Proof. Every stable function model with Booleans contains a true-separator
truesep, defined as follows:

tt if g True,
if g True!,
otherwise.

COROLLARY 3.4.
those valid in the cpo model.

Proof. Just note that CD gx.t, but $D ,x..
The PCF equations valid in the stable model do not include

670 TREVOR JIM AND ALBERT R. MEYER

Our proof of Corollary 3.3 of course takes advantage of the notable fact that
the stable ordering of functions differs from the pointwise ordering, e.g., the pair of
functions True and True! are ordered pointwise but are stable-incomparable. In fact,
the first few lines of the proof of Theorem 3.2 already show that inequational full
abstraction is incompatible with the Approximation Context Lemma for any model
in which True and True! are incomparable; the rest of the proof justifies the stronger
conclusion that equational full abstraction fails as well.

We remark that the authors of [14] have informed us that their strongly stable
models are adequate models with Booleans for PCF and that truesep is strongly
stable, so Theorem 3.3 and Corollary 3.4 hold for strongly stable models.

Berry realized that altering the pointwise ordering of functions caused difficulties,
and he proposed from the start an additional bistable model which combines stability
with the pointwise ordering. Since the counterexample of Corollary 3.3 relies on the
nonpointwise stable ordering, it does not apply to the bistable model.

There is, however, an interesting counterexample to the full abstraction of the
bistable model that provides a starting point for extending our results. The coun-
terexample, noted in [16], has its roots in the fundamental motivation behind stable
models, viz., to eliminate elements like parallel-or. Consider the following definition.

DEFINITION 3.5. Let lot be the or-function that is strict in its left argument,
and rot be the or-function that is strict in its right argument. An or-separator is a

function f satisfying

f(lor) tt,
g.

The cpo model contains a parallel-or function which bounds the left- and right-
strict or-functions, and thus, by monotonicity, cannot contain an or-separator. Since
the cpo model is adequate for PCF, an or-separator is not definable in PCF. On the
other hand, the stable and bistable models do not contain parallel-or, and in fact,
both contain or-separators.

Thus in extending the results to the bistable model, one might try to use an
or-separator in the role played by the true-separator in the stable case. Since neither
lot nor rot applicatively approximates the other, an argument based on the Approx-
imation Context Lemma will not work; but a similar argument based on a notion of
observational comparability does apply.

DEFINITION 3.6. Let be a language with a notion of observation (9. Terms M
and N are directly comparable provided the set of observations yielded by M is setwise
comparable to that yielded by N. The terms are observationally comparable, written
M r’obs N, if for all contexts C[.], the terms C[M] and C[N] are directly compara-
ble. They are applicatively comparable, written M pp N, if for all vectors P of
closed terms, MP and NP are directly comparable. with 0 is said to satisfy the
Comparability Context Lemma if for all closed terms M and N,

M app N iff M obs N.

THEOREM 3.7. Let . be a model with Booleans that is adequate for some con-
servative extension of PCF satisfying the Comparability and Approximation Context
Lemmas. If . contains an or-separator, it is not equationally fully abstract.

Proof. Consider the terms

def
lor Axy.cond x tt (cond y tt

FULL ABSTRACTION AND THE CONTEXT LEMMA 671

def
ror xy.cond y tt (cond x ttff).

By Lemmas 2.9, 2.10, and 2.12, we have :[or] --lot, ror rot, and :[or app
rot. So by the Comparability Context Lemma, :[or Hobs rot.

We conclude that there is no term P defining an or-separator; otherwise, :[or

and rot yield distinct observations in the context (P [.]), contradicting the fact that
lor "obs ror.

However, we can define an or-separator detector as follows:

def
D Ax.cond (x lor) (cond (x ror) a tt) a.

By Lemma 2.10,

if f is an or-separator,
otherwise.

Now D] # Ax., since they differ exactly on arguments that are or-separators.
But since or-separators are not definable by terms, D and [Ax.f are applicatively
congruent. Then by the Approximation Context Lemma, they are observationally
congruent, contradicting equational full abstraction. []

COROLLARY 3.8. If a bistable model with Booleans is adequate for a conserva-
tire extension of PCF that satisfies the Comparability and Approximation Context
Lemmas, then the model is not equationally fully abstract.

Proof. Every bistable model with Booleans contains an or-separator orsep, defined
as follows:

tt ifg=lor,
orsep(g) ff if g rot,

1 otherwise.

COROLLARY 3.9 (see [23]). The PCF equations valid in the bistable model do
not include those valid in the cpo model.

Proof. Just note that C[D CAx.Q, but 13D BAx.f, where B. is the
bistable model of [6]. []

The PCF-like languages, defined in the next section, do not satisfy the Compa-
rability Context Lemma. In fact, an or-separator constant can defined through the
following PCF-like rules:

orsep(f) -- cond (f ct fo)(cond (f fftt) (cond (f ff ff)tt t) t) o,
orsep(f) cond (f t tt) (cond (ftt ff) (cond (f ff ff) ff gt) flo) Fro.

Thus we will have to restrict the class of rules we consider if we wish to apply The-
orem 3.7. The consistent rules of Bloom [11] are an important, natural candidate
for the restricted class. We do not know whether the Comparability Context Lemma
holds for them. However, we can prove that an or-separator is not definable in con-
sistent systems by a method involving a notion of comparability based on logical
relations, as we indicate at the end of the next section.

4. PCF-like rewrite systems. Symbolic evaluators for PCF terms are often
presented as term-rewriting systems. In this section, we give the basic definitions
for such systems, and give our criteria for calling such a system "PCF-like." Our
evaluator for PCF is given in Appendix A.

672 TREVOR JIM AND ALBERT R. MEYER

A rewrite rule is a pair r of terms of the same type, such that the free
variables of the right-hand side r are included in those of the left-hand side 1. We
write M N if for some subterm A of M, A --. A is an instance of the rule
and N is obtained from M by replacing A with A. We will omit A or as convenient.

Since all of our languages are simply typed A-calculi, we will always include
reduction in the rewrite rules of the language. Additionally, we may specify some
set O of 5-rules defining the behavior of the constants. Together, O and define
the rewriting relation ---o, on the language :. We omit O and when they can be
recovered from context.

The 5-rules of PCF have a particularly simple form.
DEFINITION 4.1. A linear ground 5-rule is a rewrite rule of the form

5mlm2""mn

where each mi is either a ground constant ci or a variable xi. The variables xi must
be distinct. A PCF-like rewrite system is a language , together with a set 0 of linear
ground 5-rules on the constants of ,.

Note that this definition of "PCF-like" is meant to be generous. In particular,
although the system for pure, unextended PCF is both single valued--every term
reduces to at most one constant--and confluent, PCF-like systems in general may be
multiple valued and nonconfluent.

An interesting example of a multiple-valued PCF-like system arises in [10]. There,
Bloom defines an extension of PCF that is both fully abstract and denotationally
universal for the lattice model of PCF. The key to the construction amounts to the
addition of operators -[- o and join o -, o -- o with rules

joinxy -- x,
joinxy -- y,

joinnl n2 ---l- -- n,
n_& = n2,
n>0.

Plotkin [31] extended parallel PCF by an existential operator, (e o) o,
to achieve a language that is fully abstract and denotationally universal for the cpo
model. There, is defined by the deductive rules

pn_ -- tt pt -- ff
2p -- tt 2p --+ ff

where is the reflexive transitive closure of . Because he wanted to be able to
specify constants like , Bloom [11] introduced observation calculi as definition of
"PCF-like" deductive rules.

But note that if we give up confluence, it is possible to define n constant
while remaining in a term-rewriting discipline,a One such definition ws given in the
introduction; we provide here a second implementation, which uses the parallel-or
combinator pot.

p o (pO) ((x.p(ux))),
p cond (p) tt

This kind of rewriting is more straightforward, but actually as powerful as the deduc-
tive discipline.

The question of whether 3 can be defined in a confluent term-rewriting discipline remains open.

FULL ABSTRACTION AND THE CONTEXT LEMMA 673

Since PCF-like systems are not confluent in general, we will not be able to use
confluence in our proof of the Context Lemma. Instead we will rely on a Standard-
ization Theorem, which states that if a term M rewrites to a term N, then there is
a "standard" reduction from M to N. Thus we only need consider these standard
reductions in our proof.

Typically, the standard reductions are a class of reductions with a particularly
nice structure. For instance, in the pure, typed A-calculus, a standard reduction is
one in which redexes are contracted from left to right.

The definition of standard reductions in PCF-like rewrite systems is more compli-
cated because they admit the upwards creation of redexes, cf. [20]. However, there is
a simple inductive characterization of those standard reductions that end at a ground
constant. This will be sufficient to follow the proof of the Context Lemma given in
the next section, so we defer the general definition of standard reductions and the
proof of the Standardization Theorem to Appendix C.

Before defining the standard reductions to ground constants, we introduce some
useful notation. Consider the set of indices

{ i m is a constant c in rule 5r5 P }.

These indices identify what we call the critical arguments of , since the rule 0 applies
to a term 5Q iff Q ci for in the set. For expository purposes it will be convenient
to separate the critical and noncritical arguments of a constant 5 (relative to some
linear ground 5-rule 0).

NOTATION 4.2. Let 5r5 -- P be a linear ground 5-rule with j critical arguments
and k noncritical arguments. Then for vectors A =_ A1..’ Aj and B BI... Bk, we
let

(0(,) def

where Q is the interleaving of A and B such that the Ai’s appear at the critical indices

of Q. We drop the subscript 0 when it can be recovered from context.
Note that we do not require that iQ be an instance of r; we will want to use

the i(., .) notation on terms that we anticipate becoming 0-redexes over the course of
a reduction.

In this notation, we write linear ground 5-rules as

0" i(5’,) P

or even

O: i(8’, Z) -. P(Z)

when we wish to make the dependence of P on Z explicit.
DEFINITION 4.3. The standard reductions to ground constants in a PCF-like

rewrite system are defined inductively as follows. We will write M --"8 c for a standard
reduction of a term M to a ground constant c.

If c is a ground constant, then the O-step reduction c --, c is standard.
If M1, M2,..., Mn are terms, and c is a ground constant, then a reduction

M. :=

"-s C

is standard.

674 TREVOR JIM AND ALBERT R. MEYER

If C1, C2,..., Cn, D, E are terms and c, cl, c2,..., cn are ground constants,
then a reduction of the following form is standard:

-- O<ClC2 Cn,

-’ C

where for 1

_
<_ n, the subreduction r consists of a standard reduction

from the subterm Ci to the ground constant
THEOREM 4.4 (Standardization). For any PCF-like rewrite system, if M -- N,

then there is a standard reduction M --s N.
Note that if we require our rules to be nonoverlapping, then they are a special

case of orthogonal rewrite systems, for which both confluence and standardization
have been known for some time [20]. Similarly, confluence and standardization have
been known for the systems of Bloom [11], which restrict our systems by allowing
only so-called consistent overlaps at the root. However, it is not clear whether
can be defined in such systems, and we certainly lose the ability to define interesting
nonconfluent systems, such as PCF extended with join.

5. The Context Lemma. Once standardization is known, the Context Lemma
can be proved by a straightforward adaptation of Bloom’s proof for his observation
calculi [11]. First, we recall the following basic facts about substitutions.

LEMMA 5.1 (Substitution Lemma). If x i y and y ff FV(L), then

MIx L][y := NIx L]] _= M[y := .Nl[x L].
LEMMA 5.2. If x . FV(P), then

Pig :=/[x "= M]] --(PIg’=/])[x M].
The Context Lemma will follow immediately from this next result.
LEMMA 5.3. Suppose C is a ground term, c is a ground constant, M and N are

closed terms of the same type, and M _app N. If C[x := M]
C.

Proof. By Standardization, C[x "= M] 8 c. We show C[x :- N] - c by
induction on the length of the reduction C[x :- M] - c.

1. The only reduction C[x M] s c of length zero is c c. Then one of the
following holds:
(a) C _= c. Then clearly C[x N] =_ c -- c.

(b) C =- x and M =_ c. Here C[x N] -- c because M _app g.
For the induction, we consider subcases on the form of C.

2. C =_ (AyC1)C2... Cn. Assume x f y (the case x __= y is similar). Since M is
closed, we have

C[x := M]-= (,y(Cl[X MI))C2[x "= M]... Cn[x "= M].
Then the reduction C[x := M] - c is of the form

C[x M] =_ (/y(Cl[x :-- M]))C.[x := MI" .C[x := M]
(Cl[x := M])[y := C2[x M]] C3[x := M]-.. Ca Ix := M]

"-8 Co

FULL ABSTRACTION AND THE CONTEXT LEMMA 675

By the Substitution Lemma,

(Cl[x ’= M])[y "= C2[x := M]] = (Cl[y := C2])[x := M],
so our reduction can be rewritten

C[x "= M] =_ ((AyC1)C2... Cn)Ix := M]
-+/3 ((Cl[y := C2])C3’’ .Cn)[X := M]
--s C.

Now by/3-reduction, the fact that N is closed, and the Substitution Lemma,

c[.= N] ((C1)C ...C)[x := N]
-+/3 ((Cl[y := C2])C3." .C,)[x := N].

And by induction,

((c[:= c])c.., c.)[:= N] + .
Thus we have a reduction C[x := N] c as desired.

3. C =_ 5C’"Cn. Then the reduction C[x := M] s c must contract the
head 5 by some rule " 50(d, y- -+ P(7) (where each d is a ground constant).
Accordingly, we rewrite C as

c=_6o(,)P.
Then the reduction C[x := M] s c is of the form

C[x := M] =- 5o([x := M],ff[x := M])[x "= M]
5o(d-’, if, Ix := M])ff[x := M]

-+o P(E[x "= M])F[x := M]
"’s C

where each D[x := M] s d in turn. By Lemma 5.2,

P(ff[x := M]) P(/)[x := M],
so the reduction can be rewritten

C[x "= M] (6o(],J)ff)[x "= M]

o (P()ff)[x "= M]
"-’8 Co

Again by Lemma 5.2,

P(ff,[x "= N])ff[x ’= N] _= (P(ff.)ff)[x := g].

And by induction, (P(/)ff)[x "= N] + c, and Di[x := N] + d. Thus we
have found a reduction

C[x := N] _= (6o<,/>ff)[x := g]
+ (6o<d/>ff)[x := N]
-+o (P(ff))[x "= N]

C.

676 TREVOR JIM AND ALBERT R. MEYER

4. C xCI’" Cn. Then consider the term

C! def=-- MC1...Cn.
Note that C[x :-- M] _= C’[x "= M], so C’[x "= M] 48 c. Moreover, C’ must
be of a form considered in the two previous cases, and so by the previous
argument we conclude C[x := N] c. Now consider the applicative context

def
Ct’[’] [,]Cl[x :- NI’" C=[x := N].

Since C"[M]
_

C’[x := N], we have C"[M] - c. Finally, M ___app. N implies
C"[N] c; and

C"[N] =_ NCI[:= N]... C [x := N]
=- C[x "= N],

so C[x := N] -- c.
Note that we need not consider the case C =_ yC... C, where y x, since then
C[x := M] can never reduce to a ground constant.

THEOREM 5.4 (Approximation Context Lemma). In any PCF-like rewrite sys-
tern,

M __.obs N iff M --_a,pp N

for all closed terms M and N.
Proof.
(==) Trivial.
() It is sufficient to show the following: for all ground contexts C[.] and ground

constants c, if C[M] - c, then C[N] -- c.
Remember that the action of placing a term into the "holes" of a context differs

from substitution only in that free variables of the term can be captured. But M
and N are closed, with no free variables to capture; so for any context C[.],

C[M] =_ (C[x])[x’= M],
and C[N] =_ (C[x])[x’= N],

where x is a fresh variable. So by Lemma 5.3, if C[M] c, then C[N] c as
well.

From Corollary 3.3, we now immediately have the following.
THEOREM 5.5. Every stable function model with Booleans that is adequate for a

conservative extension of PCF defined by PCF-like rewrite rules is not equationally
fully abstract.

We remark that a simple sufficient condition to ensure that an extension of PCF
by PCF-like rules is conservative is that 5-rules whose left-hand sides involve no new
(non-PCF) constants must be exactly the rules of PCF.

Because we are unable to prove a Comparability Context Lemma for consistent
PCF-like rewrite rules, Corollary 3.8 cannot be applied. Nevertheless, our analysis of
comparability can be extended to show the following.

THEOREM 5.6. Every bistable model with Booleans that is adequate for a conser-
vative extension of PCF defined by consistent PCF-like rewrite rules is not equation-
ally fully abstract.

FULL ABSTRACTION AND THE CONTEXT LEMMA 677

tt, ff o
n

succ, pred ---c
zero? --+o

condo o--o--o--o

cond O--L--L--

Ya

for each integer n >_ 0

for each type

Fic. 1. Constants of PCF.

6. Conclusions and future work. We have extended the metatheory of term-
rewriting semantics for simply typed A-calculi and have shown that certain denota-
tional models, in particular those based on stable and strongly stable domains, cannot
be fully abstract for such operational semantics. Our proof exploits the lack of order-
extensionality in these domains.

We conjecture that our methods and results will extend to untyped versions of
PCF-like languages. Extensions to lazy and call-by-vMue languages also seem plau-
sible, though with more difficulties, since higher-order terms now yield observations
and the notion of lazy model is more technical.

The category of sequential algorithms [7] is technically not a model in our sense,
but is like the stable model in that it is a Cartesian Closed Category with partially
ordered function objects that are not pointwise ordered. We believe that with some
minor modifications our results will apply to it as well.

Although we are able to show the failures of some order-extensional models, like
the bistable models, the extensional embedding methods of [13] offer a more sophis-
ticated way to restore order-extensionality which, for example, guarantees that the
theory of the extensionally embedded models includes that of cpo’s. We do not know
whether these models can avoid the kind of failure of full abstraction that we have
identified.

Finally, the work of Cartwright, Curien, and Felleisen raises some interesting is-
sues [15]. They extend PCF with a higher-order operator, catch, that distinguishes
functions based on their sequential evaluation: when applied to a functional expres-
sion, catch returns the index of the argument that the expression would evaluate first,
if it were applied. This is enough, for example, to distinguish True and True!, since
True! uses its (sole) argument first, while True does not use its argument at all.

The resulting language is fully abstract with an extension of the sequential al-
gorithms model; however, it does not satisfy the Context Lemma (we still have
True! _app True, but no longer True! _obs True). But by further adding "errors" to
the language and model, they recover the Context Lemma and retain full abstraction.

There are two reasons that this does not contradict our results. First, although
extensional, their language is not defined by PCF-like rules; whether it can be defined
by such rules is an interesting open question. Second, extensionality is only achieved
by adding "error" elements to the ground types of the model, and thus their model
does not meet our technical definition of "model with Booleans."

Appendix A. PCF. Because we will work with both PCF and its extensions,
we give the general definitions for simply typed A-calculi. A language is parameterized
by its ground types and typed constants; for instance, PCF’s ground types are the
Booleans o and the numerals , and its constants are listed in Figure 1.

678 TREVOR JIM AND ALBERT R. MEYER

cond tt x y --+ x

cond ff x y y

zero? 0 -+ tt

zero? n + 1 -* ff

succ n --+ n + 1

pred 0 --, O_

predn + 1 -+ n

Y f ---+ f(Y f)

FIG. 2. Rewrite rules for PCF.

The set of types of the language is the least set containing the ground types and
(a --+ 7) for types a and 7. The set of first-order types is the least set containing the
ground types and (a -- -) for ground types a and first-order types -.

The typed terms of the language are defined inductively:
A constant is a term of type a.
A variable x is a term of type a.
If M is a term of type (a - 7) and N is a term of type
term of type -.
If M is a term of type 7, then (AxM) is a term of type (a --. 7).

We omit types and parentheses whenever possible, adopting the standard conven-
tions of association: application associates to the left and "" associates to the right.
We will use M, N, P,... to denote arbitrary terms; x, y, z,... to denote arbitrary vari-
ables; and a, 7,-,... to denote arbitrary types. 5 will always denote a constant, and
c will always be a ground constant. The binary relation symbol =_ denotes syntactic
equality.

Free and bound variables are defined as usual, and we consider terms that are
identical modulo a change of bound variables to be syntactically identical. A term is
closed if it has no free variables; otherwise it is open. A program is a closed term of
ground type.

A substitution is a type-respecting mapping of variables to terms. Substitutions
are extended to terms as usual (taking care to avoid capture of free variables), and are
written postfix, so that Mp is the application of the substitution p to the term M. We
call Mp an instance of M. If Xl,... Xn and/ N1,..., Nn, then [i := A] is the
substitution that maps each x to N (simultaneously) and is the identity otherwise.
A special case is Ix :- N], so that Mix := N] is the result of substituting N for x in
M. Sometimes we write M M(2), with the intent that M(A) _-- M[2 :=

A context C[.] is a term with some "holes." C[M] denotes the result of putting
M into the holes of C[.], which may cause free variables of M to become bound. We
say C[.] is a program context for M if C[M] is a closed term of ground type.

The interpreter of the language is defined via a rewrite system; any set of 5-rules,
together with the classical rule (/), induces the one-step reduction relation --+. The
relation is the reflexive transitive closure of --+. Figure 2 gives the 5-rules for PCF.

FULL ABSTRACTION AND THE CONTEXT LEMMA 679

Appendix B. Simply typed models. Here we develop the general framework
for function-based models of simply typed/k-calculi.

A type frame {a]} is collection of sets indexed by type such that a - T is a
set of functions from a to T. The sets a are called domains, and the elements
of each a are called meanings or values of type a.

Since our discussion focuses on issues of adequacy and full abstraction, we also
require the following:

there is a partial order

associated with each domain a];

the functions of a - are monotone with respect to the orderings

and

; and
the relation __o_. refines the pointwise relation on functions f, g E a -],
i.e.,

f

_
g implies f(d) g(d) for all d

The last two conditions say that function application is monotone in both arguments;
this implies that models, defined below, are compositional.

An environment is a type-respecting mapping from variables to values. If p is an
environment, then the environment p[x d] is p with the value of x updated to d:

d if y-x,p[x’=d](y)- p(y) otherwise.

An interpretation is a type-respecting mapping from constants to values. For a
given type frame {a]]} and interpretation :Y, we can try to define a model, .], that
is a mapping from each term to a meaning with respect to an environment, satisfying
the following conditions:

(1)
(e)
(a)
(4)

[x]p:
[(MN)]p

([ikxM]p)(d) [M]p[x := d].

Implicit in condition (4)is the requirement that the function defined to be (AxMp)
must be an element in an element of the type frame. In other words, a model is a
type frame that is closed under lambda-definability. Such closure certainly does not
hold for all type frames (cf. [26]).

The meaning of a closed term is the same in any environment:

Mp Mp’

for all closed M and arbitrary p and p/. Therefore, we sometimes write M for the
meaning of a closed term M, omitting the environment.

B.1. Continuity. We give the standard definitions for cpos and continuous
functions, then define the cpo model of PCF.

A partial order or poset is a set D together with a binary relation __K that is
reflexive, transitive, and antisymmetric. We will refer to the partial order {D,
as just D. A subset X c_ D is directed if every finite subset of X has an upper
bound in X. A partial order D is a complete partial order or cpo if it has a least
element -I-D and every directed subset X c_ D has a least upper bound LX. We omit

680 TREVOR JIM AND ALBERT It. MEYEIt

the subscript D in -[-D when it can be recovered from context. For any set X we
define the cpo X+/-, with elements X t2 (-l-x}, ordered x

_
y iff x y or x -l-x.

A function f D --, E between posets is monotone if f(x) E_E f(y) whenever
x E_D y. We say f is continuous if it is monotone and f(kJX) kJf(X) for every
directed X C D.

The set D -% E of continuous functions from cpo D to cpo E is a cpo under the
pointwise order _p, defined as follows:

f_pg iff f(x)_Eg(x) for allxED.

If D is a cpo and f" D D is continuous, then f has a least fixed point fix(f).
The function fix itself is continuous, which will allow us to interpret the recursion
operator Y.

Now we define the cpo model C.] of PCF, based on continuous functions and
cpos. First we construct a type frame with ground domains Co] {tt, ff}+/- and
(3]] {0, 1, 2,...}+/-, and higher-order domains Ca --. T Ca] -c (T]. The cpo
model of PCF is then the model C.] associated with {Ca]} and the standard inter-
pretation: the ground constants are interpreted in the obvious way; the constants Ya
are interpreted as least fixed-point operators; and the interpretation of the remaining
function constants is determined by the condition that the rewrite rules of Figure 2
be valid as equations.

THEOREM B.1 (elotkin [31], Sazonov [32]). The cpo model C.] is adequate but
not fully abstract for PCF.

B.2. Stability. If D is a partial order and X c D, then X is bounded or
consistent if there is an element y E D such that x y for all x X. If elements
x and y are consistent, we will write x T y. We say D is bounded complete if every
bounded subset X c_ D has a least upper bound tAX.

An element a D is compact if, for every directed X c D with a

__
tAX, there

is some x X such that a

_
x. We define KD, the kernel of D, to be the set

of compact elements of D. The cpo D is algebraic if, for every x D, the set
x {a E KD a

_
x} is directed and tA x x.

The greatest lower bound of a set X is denoted VIX. A cpo is distributive if
x N (y kl z) (x V y) tA (x z) whenever y and z are consistent. An algebraic cpo D
has property I if $a is finite for each a KD. A dI-domain is a distributive, bounded
complete cpo that has property I.

A continuous function f between dI-domains is stable if whenever x T y, we have
that f(x y) f(x) N f(y). We let D --*8 E be the set of stable functions between
dI-domains D and E. As noted in [6], D 48 E ordered pointwise is not a dI-domain;
accordingly, we define the stable ordering _s:

f _s g iff f(x) f(y) g(x) whenever x

_
y.

If D and E are dI-domains, then D --.8 E is a dI-domain under the stable order.
It must be noted that the stable order is quite different from the pointwise order.

For instance, consider the monotone Boolean functions, listed in Figure 3. These func-
tions are both continuous and stable, and so they are elements of both the continuous
and stable type frames. However, the stable ordering of o - o (Figure 5) is different
from its pointwise ordering (Figure 4). In particular, consider True, the constant tt
function, and True!, the strict constant tt function. Although True! _p True, we
have True! =s True, since A_ _s tt but

True!(_k) _1_ : tt= (True!(tt)V1 True(_l_)).

FULL ABSTRACTION AND THE CONTEXT LEMMA 681

(It is this that permits the existence of the function truesep that was needed in
Corollary 3.3.)

Nevertheless, a stable model $.] of PCF, based on dI-domains and stable func-
tions, can be defined in much the same way as the cpo model. The ground domains
S[o and S] of the stable type frame are identical to the ground domains of the cpo
model. At higher types, however, we use stable functions: $ia -- -] Sa] --*s T.
Then we let .] be the model associated with the stable type frame and the (stable)
standard interpretation (cf. the interpretation of the cpo model).

THEOREM B.2 (Berry [6]). The stable model S. is adequate but not fully ab-
stract for PCF.

Appendix C. Standard reductions in PCF-like rewrite systems.

C.1. Preliminaries. This appendix gives a full definition of standard reductions
and proof of the Standardization Theorem. In this section, we sketch out some of the
basic terminology of rewriting systems. Section C.2 introduces descendants, which
allow us to trace subterms from step to step in a reduction. In C.3, we show that
a very weak form of confluence holds for PCF-like systems; this property will be
essential in proving the Standardization Theorem. Section C.4 introduces labelled
rewrite systems and proves that they are strongly normalizing. The labelled systems
will be used in the proof of Standardization. The standard reductions are defined
in C.5, and Standardization is proved in C.6. The proof is a variation of Klop’s
proof for the pure A-calculus [24] and involves a rewriting system on reductions. The
system successively rewrites nonstandard reduction paths to "more standard" paths;
Standardization is proved by showing that the system is strongly normalizing, and
that normal forms are standard reductions.

Our presentation of the machinery used to state and prove Standardization is
necessarily brief. Much of the material is covered in more depth in standard references
[4, 24]. Throughout, we will work with a PCF-like rewrite system given by a language,, and set, O, of linear ground 5-rules.

We assume that the reader is familiar with the following terminology. The nota-
tion M c N denotes that M is a subterm of N. A subterm may appear several times
in a term; multiple occurrences of a subterm can be distinguished by their paths, which
specify the exact position of a subterm inside the term. When we speak of a subterm
M C N we implicitly mean a particular occurrence of M in N; the disambiguating
paths are omitted.

Note that M N iff there is an instance A - A of a rule such that A C M,
and N is obtained from M by replacing A with A. We will write M N in this
case, and we call A a (7)-redex and A its (7)-contractum.

A reduction (path) r is a sequence

i

We will use r, -,... to refer to reduction paths. Two reductions are coinitial if they
start in the same term and cofinal if they end in the same term.

C.2. Descendants. Consider some possible effects of a reduction M - N on a
subterm A c M:

A could be erased, as in (Ax.y)A -- y.
A could be copied to some instances in N, as in (Ax.Sxx)A
A could be left untouched and in its original position, as in A((/kx.x)y) -- Ay.

682 TREVOR JIM AND ALBERT R. MEYER

Function tt ff 2.

True tt tt tt
False ff ff
True! tt tt 2.
False! ff ff 2.
Id tt ff 2.
Not ff tt 2.
tt tt) tt 2. 2.
tt=ff ff 2. 2.

(fftt) 2. tt

Bot

FIG. 3. Boolean functions.

True False

Id True! False! Not

tt::tt) (ff::ff) ff=tt) tt::ff)

Bot

FIG. 4. Pointwise ordering of o o.

True

Id True! False! Not

tt=tt) ff=ff) (ff=tt) tt=]

Bot

False

FIG. 5. Stable ordering of o o.

FULL ABSTRACTION AND THE CONTEXT LEMMA 683

The contracted redex might occur within A, transforming it into a syntacti-
cally different subterm in the same position.

In order to define and prove standardization, we will need to speak precisely about
these cases, so we introduce descendants, which let us track a subterm throughout a
reduction. We will not define descendants in their full generality, but only for certain
subterms of interest. Our definition is equivalent to the standard definition [24] on
those subterms.

Descendants are introduced via an annotated rewrite system derived from L:
and O, in which some A’s and 5’s are marked with a ,. Thus we define the lan-
guage L:,, whose symbols are those of L:, with the addition of A,, and 5, for each
constant 5 of L:. The terms of L:, are defined inductively:

A constant 5 or 5, is a term of type a.
A variable x is a term of type a.
If M is a term of type (a - T) and N is a term of type a, then (MN) is a
term of type r.
If M is a term of type r, then ()xM) and (),xM) are terms of type

The erasure IMI E . of M E L:, is obtained from M by leaving out the ,’s. Substitu-
tion for the language is defined in the obvious way (with A,’s binding variables just
as A’s). The rules of the new system include/3 and the rule scheme/5,:

/3,: (),xM)N Mix := N].

Similarly, the &rules O, of the system are derived from the rules O.
of O,

If0is arule

then O, contains all rules of the form 0’ and 0,:

O’: + P($),
0," ----, P(e),

where g’ is any vector of L:, ground constants such that Ig’[g.
There is a strong connection between the systems. Any ,-reduction path

projects to a O-reduction path [al:

I11 I1 IM I --, i-al

Conversely, for ny M , and O-reduction pth :]M ..., there is unique

li of a to a O,-reduction path a’ M + such that a {a’[.
We will be interested in tracing subterms of the form (Ax.M1)M2 or 5M1 M

throughout a reduction; that is, -redexes and possible 5-redexes. Accordingly, we
introduce the following terminology. A subterm (x.M1)M2 or 5M1... Mn of M is
called a predescendant ofM. IfY is a set of predescendants ofM , we write (M, Y)
for the , term derived from M by marking the head or 5 of each predescendant
in with a ,.

DEFINITION C.1. Suppose M N is a O-reduction path.

684 TREVOR JIM AND ALBERT R. MEYER

(i) If A is a predescendant of M, its set of descendants in N relative to r,
written (A/er), is defined as follows.
Let M’ =- (M, {A}) and lift r to er’ M’ -- -- N’. If A (AxM1)M2
(rasp., A =_ 5M... M), then (A/a) d= , where J: is the unique set of
subterms of N of the form (AxM)M (rasp., 5M... Mn), such that N’ =_

(N, .T).
(ii) If J: is a set of predescendants of M, its descendants F/er are defined

’/t de_____f U{ A/O" [z e " }.

(iii) A C M is an ancestor of A’ C N if A’ A/o’.
For a given reduction M -+ M2 -- M3 -+ "., we will sometimes speak of

descendants and ancestors for subterms of terms Mi and Mj, where i and j are any
indices such that j >_ i. We do not specify the reduction from Mi to Mj, as it can be
recovered from context.

NOTE C.2.
(i) If M N, then A has no descendants in N.

(ii) If MAe N, where A 5(, 1, then no ci has a descendant in N.
We mention that the following important property holds for our PCF-like systems,

since it does not hold for all rewrite systems [24].
NOTE C.3. If/k M and M --. N, then descendants of A in N are disjoint.

Disjointness of descendants does not extend to -, as we indicate here:

(.(x.x))(z.,)- (x.(z.,z))(z.,z)- (x.,x)(z.,z)- 6,(z.6,z).

DEFINITION 6.4. Suppose M is a term in a reduction r,

A3
er" M -4 M2 -. M3 -- "’.

(i) We say A C M is ()-contracted (in er) if for some j >_ i, Aj is a descendant
of A and 7j 7.

(ii) We say A C M is active (in er) /f there is a A’ C A that is contracted in
Sometimes it will be useful to specify set of subterms of some term M, nd

consider reductions from M in which only those subterms re contracted. Such re-
ductions re called developments. Because we work with systems in which a subterm
can contract by more than one rule, our definition of developments extends the stan-
dard definition by specifying a rule for each redex contracted in a development.

DEFINITION C.5. Suppose the following: er is a reduction from M to N; is a
set of subterms of M; and H is a mapping that takes each A :F to a rule

(i) We call era development of from M by II, written er (M,’) N, if
each redex A contracted in er is a descendant of some A , and A is
contracted by rule

(ii) We say a development r is a complete development, written a (M, :F) N
cpl

When H is evident from context, we will omit mention of it.
NOTE C.6. If is a set of n disjoint redexes of M, then clearly all complete

developments of : from M are of length n and are cofinal.

FULL ABSTRACTION AND THE CONTEXT LEMMA 685

C.3. Properties related to confluence. Note C.6 is a special case of a much
stronger theorem, the Finite Developments Theorem. We will not need to prove the
Finite Developments Theorem in its full generality; this section proves a weaker result
that will be sufficient for our application.

DEFINITION C.7. We say two -redexes ZXl and A2 overlap if either
(i) they share the same head , or
(ii) one ZXi appears as a critical argument of the other.

Note that in case (ii), the Xi must be a ground constant.
Often, rewrite systems are constrained to avoid overlapping redexes; such systems

are guaranteed to be confluent. Because we allow overlapping rules, our systems are
not confluent in general. However, they do satisfy the following much weaker property,
which will be essential in our proof of standardization.

LEMMA 6.8. Suppose er Mo M and er2 Mo M2, where zX1 and/X2 do
not overlap. Then complete developments of/X2/er from M and ZX/er2 from M2
are finite and cofinal.

Proof. For each of the various cases on the relative positions of A1 and X2 in Mo,
we find a term M3 that is the final term of every complete development of/kl/a2 and

M2 ,, M3

1. A and A2 are disjoint. Then Mo, M, and M2 can be written

where A and A are the respective contractums of Ai and A2. Now denning

def
M3 ...A...A...,

we see that the only complete development of A2/erl is M1 - M3, and the

only complete development of A1/cr2 is M2 - M3, as desired.
2. A1 c A2. Then there is a unique descendant A[of A2 in M1, and we consider

three subcases.
(a) A2 (Ax.... A1...)N. Then we can write Mo, M1, and M2 as

M0 --" ((Ax.... A1...)N)...,
M1 ((Ax.... A...)N)...,
M2 ’" ((’" Al’")[x := N])...,

where /X is the contractum of A1, and /k -_- (Ax.... A...)N. If we
take

def
M3 ((... A1...)[x "= N])...,

686 TREVOR JIM AND ALBERT R. MEYER

then the only complete development of A2/0.1 is M1 _v_Z M3. Further-
more, substitutivity holds for PCF-like rewrite systems; that is,

A’
M’[x := N]M A M’ == MIx N]

where A is A with any free occurrences of x replaced by N. Thus the
only complete development of A1/0"2 is M. - M3.

(b) A2 -= (Ax.N)(... AI...). Then Mo, M1, and M2 can be written

Mo ((Ax.N)(... AI" ")) ’’’,

M ((Ax.N)(... A ...)) ..,
M2 (Nix := (... AI...)]) .’,

where A is the contractum of A, and A =_ (Ax.N)(.-. A...). Defin-
ing

def
M =_ (Nix (... ...)])...,

we see that the only complete development of
Furthermore, descendants of A in M are disjoint, and any contraction

A1 A1of them in turn is a reduction M. --+ Ms.
(C) "/2 (0(’’’,’’" (’’" Al"" ")’" "}. Then we write M0, M1, and M as

M0 (0(... ,... (... ...)...}) .,
MI ((o(""",""" (""/k...)...}) ...,
M _--... (o(... (... X...)...)) ...,

where A is the contractum of A1, and A o(’","" ("" A...)...).
Defining

M e_f... (0("" (’"’")’"))"’,

we see that the only complete development of A/0.1 is M1 A-0 M3.
And just as in case 2(b), the descendants of A1 in M: are disjoint, so

by contracting them in turn we find a reduction M2 - Ms.
3. A2 C A1. This case is handled exactly as case 2.

C.4. A labelled X-calculus. For any PCF-like rewrite system, there is a cor-
responding labelled PCF-like system that is strongly normalizing. The labelling tech-
nique has led to some of the simplest proofs for many syntactic properties, and we
will use it in our proof of standardization. This section introduces labelled calculi and
proves that they are strongly normalizing.

The labelled system is similar to the system that we introduced earlier to define
descendants. However, the systems are also different in important ways, since they
are intended for different purposes. In the labelled system, we will mark 5’s with
nonnegative integers instead of .’s, and we will not need to mark A’s. Furthermore,
we do not allow unmarked 5’s. The reasons for this will become apparent in what
follows.

For any PCF-like language ;, the language L; is just the PCF-like language with
constants for each constant 5 of L; and each n N.

FULL ABSTRACTION AND THE CONTEXT LEMMA 687

NOTATION C.9.
(i) IfM E N, then IMI is the term derived from M by erasing the labels on

the constants.
(iN) If M , then Mn N is the term derived from M by labelling each

constant with n.
The 5-rules ON of the labelled calculus are defined as follows. If 0 is a rule of O,

0" 5<, Z> P(2),

then ON contains all rules of the form ON"

where 5’t is a vector of LN ground constants such that 15’tl- 5’. Note that there is no
rule for any 0.

The projection I1 of a ON-reduction path is defined in the obvious way. And
any finite O-reduction can be lifted to a ON-reduction wt such that w -Iwtl (e.g.,
label each constant in the first term of by the length of).

DEFINITION C.10. A term M is strongly normalizable (SN) /f all reductions
starting at M are finite.

THEOREM C. 11 (Strong Normalization). Every N term is strongly normalizable.
The rest of this section lays out the proof of strong normalization. We use

straightforward extension of the method of [18].
DEFINITION C.12. The notion of strong computability (SC) of a term is defined

by induction as follows:
(i) A term of ground type is SC iff it is SN.
(iN) A term M(-) is SC iff, for every SC term N, the term (MN) is SC.
NOTE C.13. By Definition C.12(ii), a term M is SC iff, for all vectors J of

SC terms driving M to ground type, the term MN is SC. And by Definition C.12(i),
such an MN is SC iff it is SN.

DEFINITION C.14. An atom is a variable or a constant 5n with no rule.
LEMMA C. 15.
(i) If a is an atom and 1 is a vector of SN terms, then the term af is SC.
(iN) Every SC term M is SN.
Proof. This is a proof by induction on the type of aN and M.
1. Basis" aN and M have groun type.

(i) Since each Ni is SN, aN must be SN, and therefore SC by Definition
C.12(i).

(iN) This follows by Definition C.12(i).
2. Induction: aN and M have type a --. T.

(i) Let P be SC. By the induction hypothesis (iN), P is SN. Then by
induction, the term (alP) is SC. Therefore, so is a/ by Definition
C.12(ii).

(iN) Let x be a variable not occurring in M. By the induction hypothesis (i),
x is SC. Then (Mx) is SC, and therefore SN by induction. But any
subterm of an SN term is SN, so M is SN as well.

LEMMA C.16. If N is SC and Mix N] is SC, then so is (xM)N.
Proof. Let P P1,..., Pn be a vector of SC terms driving M to ground type.

Since Mix "= N] is SC, the term

(5) (Mix N])/6

688 TREVOR JIM AND ALBERT R. MEYER

is SN by Note C.13. The lemma follows from Note C.13 if we can prove that

(6) (AxM)Nfi
is SN.

Now since (5) is SN, all of its subterms are SN, including Mix :--- N],/. Fur-
thermore, by hypothesis and the preceding lemma, N is SN. Therefore, an infinite
reduction from (6) cannot consist entirely of contractions in M, N, P1,..., Pn. So an
infinite reduction of (6) must have the form

(AxM)NP1. Pn + (AxM’)N’P Pn
M’[x "= N’IP;... Pn

(where M - M, etc.) From the reductions M M’ and N Nt, we have

MIx "= N] M’[x := N’]
Then we can construct an infinite reduction from (5) as follows:

Mix "= NIP1... Pn M’[x "= N’]P; P

But this contradicts the fact that (5) is SN. Therefore there is no infinite reduction
from (6); it must be SN.

LEMMA C.17. Consider a constant and a vector N of SC terms driving to
ground type. If for each rule

O" 6o(g,) Po(Z),

where (52 5o(J1,-h2)J3, we have that

(7)

is SC, then N is SC.
Proof. We must show that 6N is SN. Since the N are SC, by Lemma C.15 they

are SN. Therefore, any infinite reduction from 6N must look like

where N1 -+ 5’, N2 -- N2, etc.
from (7) as follows:

-.,!

P0(h2)h3-+ Po(N2)N3

But as (7) is SC, by Lemma C.15 it is SN, a contradiction.
SN.

Po(N

But then we can construct an infinite reduction

Therefore, 5N is

LEMMA C. 18. For any term M and substitution p =_ ["= 1], where each Ni is
SC, the term Mp is SC.

Proof. The proof is by induction on the lexicographic ordering of (m, M), where
m is the maximum 5-index appearing in M.

FULL ABSTRACTION AND THE CONTEXT LEMMA 689

1. M is a variable x. Then Mp is N and the result follows.
2. M is an atom distinct from Xl,...,Xn. Then Mp =_ M which is SC by
Lemma C.15. Note that this includes all constants 50.

3. M -_- 5,+1. Then Mp 5,+1. Thus it is sufficient to show that for any
vector P of SC terms driving 5m+l to ground type, the term 5,+1 is SC.
Consider any rule 0 on 5,+1:

By construction of the labelled calculus, no constants in P are labelled with
an index greater than m. Thus we can apply the induction hypothesis to P.
If we rewrite (m+lJ as (m+l(N-*l’ 2’} ’ -’N3, by induction P(N2 is SC. Then

by the definition of SC, the term P(N2)N3 is SC. Therefore, by Lemma C.17,
5row is SC.

4. M AyM. Then Mp Ay(Mp), neglecting changes in bound variables.
To show that Mp is SC we must show that for all SC terms N, the term
(Mp)N is SC. But (Mp)N (Ay(Mp))N, and

(Mp)[y := N]---- Ml[Xl :-- N1] [Xn :-- Nnl[Y :-- N],

which is SC by induction. Therefore (Ay(Mp))N is SC by Lemma C.16.
5. M =_ MIM2. Then Mp-- (Mlp)(M2p), and Mp and M2p are SC by induc-

tion. Therefore, Mp is SC by Definition C.12(ii). D
Proof of Theorem C.11 (Strong Normalization). By Lemma C.18, every term M

is SC (just let be empty). Then by Lemma C.15, M is strongly normalizing. D

C.5. Standard reductions. Our definition of standard reductions is similar to
that of [20], with a few important differences. The "linear ground" restriction imposed
on our systems gives us a particularly simple class of rewrite rules, and this simplicity
carries over to the definition of standard reductions. On the other hand, the systems
of [20] do not include A-abstraction and forbid overlapping rewrite rules, which we
allow.

Overlapping rules do not add much complication to the definition of standard
reductions, but they are more of an obstacle in the proof of standardization. Over-
lapping systems are not confluent in general, so we cannot use confluence and related
properties in our proof. This is offset by the fact that we consider only typed systems.

The standard reductions of [20] are based on "outside-in" reductions. Informally,
outside-in reductions are reductions in which no subterm of a term reduces before the
term itself contracts unless the subterm reduces outside-in and contributes towards
making the term a redex. For example, consider the PCF reduction

cond (zero? 0) M N -+ cond tt M N
--+M.

The reduction is standard even though the term cond (zero? 0) M N contracts after
its subterm (zero? 0), because it is the contraction of (zero? 0) that turns the cond
term into a redex.

There is a natural way of testing whether or not a reduction is outside-in: first,
identify "outermost" subterms that contract; each of these identifies subterms that
must reduce before the outer subterm itself contracts. By iterating the process, we can

690 TREVOR JIM AND ALBERT R. MEYER

identify a subterm or subterms that must reduce before any others, if the reduction
is to be outside-in. This idea is the basis of our definition of standard reductions.

For each term in a reduction, we identify a principal redex, and call a reduction
standard if the redex contracted at each step is the principal redex. For the pure
A-calculus, the principal redex for some M will simply be the leftmost redex of M
contracted in the reduction.

For systems with constants, we must allow reductions to take place in the critical
arguments of some 5-terms. To find the principal redex, then, we start by considering
the leftmost contracted subterm; if it is a 5-term, we then consider critical arguments
in which contractions take place, etc. Eventually, consideration of these preprincipal
subterms leads to the principal redex.

DEFINITION C.19. Let M be a term in a reduction path

A3er. MI -4 M2 - M3 --
The subterms ofM that are preprincipM in r are defined inductively:

(i) If A is the leftmost subterm of M contracted in r, then A is preprincipal
in

(ii) If 5o(A, B} is preprincipal and O-contracted in er, and A is the leftmost con-
tracted subterm of A, then A is preprincipal in

We write ppa(A) if A is preprincipal in .
This next lemma is essential in showing an important property of the preprincipal

subterms" they are linearly ordered by C (see the following note).
LEMMA C.20. Let M be a term in a reduction path

er MI A_ M2

_
M3 _-, ...,

and let A be a preprincipal subterm of M. If A Ai, then A is not contained in A,
and has a unique, preprincipal descendant A C M+I.

Proof. This is a proof by induction on how pp,(A).
(i) pp,(A) because A is the leftmost contracted subterm of M. Clearly A does

not contain A, else A would not be leftmost. So either A C A, or A is
disjoint and to the right of A. In either case, A has a unique descendant
in Mi+l. Furthermore, the contraction of A can only introduce terms inside
of or to the right of At, and so A must be the leftmost contracted subterm
of M+I. Thus pp(A’).

(ii) pp,(A) because Mi contains a preprincipal, 0-contracted subterm,
where A is the leftmost subterm of A contracted in a.
Now A 5o(A, B}, or else by Note C.2(ii), A would have no descendant in
Mi+l, contradicting the fact that it is contracted in
Then by induction, Ai does not contain 50(,/}. So either Ai is in , is
in B, or is entirely disjoint_.. If Ai is in A, it cannot contain A because A is
leftmost. And if Ai is in B or is disjoint, it clearly does not contain A.
Again by induction, 5o(,} has a unique, preprincipal descendant, which
must be of the form 5o(t, ’). And since A is not contained in A, A must
have unique descendant A that is the leftmost contracted subterm of
And therefore pp,(At).

NOTE C.21.
(i) By Lemma C.20, every preprincipal subterm contracts exactly once in er. Thus

the 0 and A of Definition C.19(ii) are unique.

FULL ABSTRACTION AND THE CONTEXT LEMMA 691

(ii) By (i), we conclude that if A1 and A2 are distinct, preprincipal subterms of
Mi, then either A1 C A2 or A2 C

DEFINITION C.22. Suppose r is a reduction path,

A3a.M

(i) We define the principal redex pr(M) to be the innermost preprincipal sub-
term of Mi. By Note C.21(ii), this is well defined.

(ii) We say er is a standard reduction if for all i, Ai pr(Mi).
In Definition 4.3, we gave a simple definition of "standard reductions to ground

constants." The standard reductions we define here are much more general: they
apply to reductions between arbitrary terms, and even to infinite reductions.

It is not immediately obvious that the general definition we give here is equiva-
lent to our earlier definition in those cases where the earlier definition applies. This
equivalence is established by the next two lemmas.

LEMMA C.23. Suppose r C[M1]- C[M2] A__ A_-- C[Mn] is a
standard reduction, Ai c Mi for 1 <_ < n, C[.] is a context with a single hole, and

A
no subterm of Mn contracts in er. Then the reduction r’’ M1 - M2 --* Mn
is a standard reduction.

Proof. Suppose A C M. Since no subterm of M contracts in r, we have

(8) A contracts in a iff A contracts in r’.

We now show that if A is preprincipal in r, then A is preprincipal in r’ by
induction on the definition of preprincipal.

A is the leftmost subterm of C[M] contracted in a. Then A is the leftmost
subterm of M contracted in r. And then by (8), A is the leftmost subterm
of M contracted in er’, so A is preprincipal in
A is the leftmost subterm of contracted in er, where A’ 5o(,} is
preprincipal in r.
If A’ c M, then by induction, A’ is preprincipal in a’. And by (8), A is the
leftmost subterm of . contracted in
Otherwise, M is properly contained by A’. Then we must have M C Aj for
some Aj E A. So A is the leftmost subterm of M contracted in er. And then
by (8), A is the leftmost subterm of M contracted in er’, so A is preprincipal
in a’.

Finally, we show that if A is principal in er, then A is principal in r’. This is
sufficient to show that r’ is standard.

By way of contradiction assume A is principal in a but not in r’. We have
already shown that A is preprincipal in r’, so it must be that A is not the innermost
preprincipal subterm of M in a’. Then A must be of the form 50(,/}, and there
must be a leftmost subterm A’ of A contracted in r’. Then by (8), A’ is the leftmost
subterm of A contracted in or. But then A’ would be preprincipal in a, contradicting
that A is principal in a.

In the following lemma, we abbreviate "standard reduction to ground constant"
by SRTGC.

LEMMA C.24. If r M --s c, then r is an SRT(C.

Proof. By induction on the length of r.
If lerl 0, then r must be of the form c - c, which is an SRT(C.

If let] > 0, consider cases on the structure of M:

692 TREVOR JIM AND ALBERT R. MEYER

M =_ (AxM1)M21. Because 0- ends in a ground constant, we know (AxM1)M2
must be contracted in 0-. Therefore it is the principal subterm of M, and 0-

must be of the form (AxM1)M21 -+ (MI[x := M2])- -+8 c. By induction
the reduction (Ml[x := M2])N 8 c is an SRTGC, SO 0- is an SRTGC.

M =_ 5N. Since 0- ends in c, we know the head 5 must be contracted.
That is, 5./ must be of the form 50(,/3)/, where A _= tio(,I3) is the
leftmost subterm of M contracted (by) in 0-. By the definition of standard
reductions, the only subterms that contract before A in er are contained in
C, and moreover reduction in C proceeds from left to right. Therefore, 0- is

0-1"
0-2

0-n

of the form

-+ 5o(clc2 Cn, D>E

--,o

(derived from i in the obviousBy Lemma C.23, the reductions a Ci ci
is an SRTGC andway) are standard reductions. Then by induction, each ai

therefore a is an SRTGC.
M- xN. No such term can reduce to a ground constant, so we do not need
to consider this case.

The following theorem is the main result of this appendix.
THEOREM C.25 (Standardization). IfM N is a finite reduction in a PCF-like

rewrite system, then there is a standard reduction from M to N.

C.6. Path-reduction. This section gives our proof of Standardization. It is
based on a proof in [24] for the pure A-calculus, which introduced a sort of meta-
reduction: a reduction relation on reduction paths. This path-reduction rewrites non-
standard reductions into "more standard" reductions. The following results motivate
the definition of path-reduction.

LEMMA C.26. Let be a reduction path,

a" M M2 M3 ...,
and let A pra(M). If A A, then A has a unique descendant A c M+, and
A’ pr(M+).

Proof. Lemma C.20 proves uniqueness. To show A’ pra(M+), by the defini-
tion of pr and Lemma C.20 it suffices to note the following: if A1 c A2 C M have
unique descendants A,A c M’, where M + M’, then

COROLLARY C.27. Suppose is a reduction path,

A2 An-1a’MM...
Then is standard i there is no j such that is the descendant of pra(M_l).

The corollary suggests a possible way to trans%rm a nonstandard reduction into
a standard reduction: successively "swap" the contraction of a principal redex with
the contraction of a nonprincipal redex at the previous step. If we reach a reduction
in which each principal redex contracts as soon as it becomes principal, we will have
%und a standard reduction.

FULL ABSTRACTION AND THE CONTEXT LEMMA 693

DEFINITION C.28. Suppose er is a nonstandard reduction, that is, there is some j
such that

where Aj is the descendant of A} pra (My_i). The subpath

/kj--1
M +I

is called the path-redex at step j. Note that A} and Aj_I do not overlap, and further-
Therefore, by Lemma C.8,more, by Lemma C.26, Aj is the unique descendant of Aj.

we can find a sequence

My-1 Mj ---+ ...-- My+l,

where the Aj_ are the descendants of Aj-1. Such a sequence is called a path-

contractum. Finally, we define path-reduction: a - (r if r’ is obtained from er by
path

replacing the path-redex at step j by a corresponding path-contractum. We will drop
the index j when convenient.

Clearly, path-reduction preserves initial and final terms, and any path-reduction
normal form is a standard reduction. Moreover, the next two lemmas show that
path-reduction is strongly normalizing.

LEMMA C.29. Suppose er er, where
path

Then for i j, the following hold:
(i) If A c Mi is not contracted in r, then it is not contracted in
(ii) If A C M is contracted in er and ppa(A), then A is contracted in r’.
(iii) If A C Mi is preprincipal in er, then it is preprincipal in r.
(iv) pra(M) pra,(Mi).
Proof.
(i) Just note that path-reduction only permutes the order of contraction of sub-

terms; it does not introduce new contractions.
(ii) It is clear that if A contracts in er and does not contract in er, then A is

either Aj_I or one of its ancestors. Thus we only need consider Aj_I.
If Ay-1 does not contract in r, then it must be contained in A}. But A} is
the principal redex of My-i, that is, the innermost preprincipal subterm of
My-1. So if Ay_ is not contracted in er, it is not preprincipal in

(iii) We use induction on how ppa(A).
1. pp,(A) because A is the leftmost contracted subterm of M. By (ii), A

is contracted in er, and by (i), it is the leftmost contracted subterm of
Mi in a. Therefore pp,(A).

2. pp,(A) because ppa(50(,//), and A is the leftmost contracted subterm
of . By induction, pp,(50(,/}), and by (i) and (ii), A is the leftmost
subterm of A contracted in er. Therefore pp, (A).

(iv) This follows from (i), (iii), and the definition of pra.

694 TREVOR JIM AND ALBERT R. MEYER

LEMMA C.30. If r is a finite reduction, then there is no infinite path-reduction
starting from r.

Proof. Consider a path-reduction

’O’i -- 2 ---+ 0"3 --+ "’’.
path path path

It is not hard to see that the reduction could have been carried out in the labelled
andis a labelled reduction such that Irl r, o’i+1,system; that is, if

path

,and 2such that I+11-- +1then there is a labelled reduction +i +1.path

andThus we can find labelled reductions ,,,... such that II ,
path path path

begins with theAnd because labelled reduction is strongly normalizing and each
same N term, each r is finite.

Furthermore, the path-reduction can be thought of as constructing a tree of terms,
with each path from root to leaf corresponding to a reduction r. Each contracted

path-redex introduces a branching in the tree. For example, if r a+l, then the
path

root-to-leaf path corresponding to r+l is obtained by branching off of the root-to-leaf
path of r at depth j- 1. The situation is depicted in the following figure, where the
root of the tree is displayed at the left and the leaves are displayed at the right:

By Lemma C.29(iv), the tree is a binary tree, and we have just seen that there
is no infinite path from the root. Then by KSnig’s Lemma, the tree is finite, so the
number of different reductions given by the tree must be finite. D

Proof of Theorem C.25 (Standardization). If r M - N is a finite reduction in
a PCF-like system, we can obtain a standard reduction from M to N just by finding
a path-reduction normal form of r. D

The following results are included for completeness.
LEMMA C.31. Path-reduction is confluent.
Proof. Suppose r ri and r rj, where i j. We show that there is a

path path

r’ such that ri -- r’ and rj r’ Thus the reflexive closure of path-reduction
path path

satisfies the diamond property, and therefore path-reduction is confluent (cf. [4, Lem.
3.2.2]).

First, note that if Ji- j

_
2, then the path-redexes at steps i and j are disjoint.

In this case, we may contract the redexes in any order and reach a common r’.
Finally, we show li- j[_> 2. By way of contradiction, assume that j + 1.

Then M-I -- M - Mi - Mi+l is a subpath of r. But by the definition of
path-redex, A must be the principal redex of M and Ai must be the descendent of
the principal redex of Mj. This is impossible because A has no descendants in Mi
(cf. Note C.2(i)). [:!

COROLLARY C.32. Path-reduction normal forms are unique.

FULL ABSTRACTION AND THE CONTEXT LEMMA 695

Acknowledgments. We are grateful to G. Berry, B. Bloom, P.-L. Curien, J.-J.
Lvy, G. D. Plotkin, and Scott Smith for helpful discussions. The comments of a
referee motivated some technical improvements.

REFERENCES

[1] S. ABIAMSKY, The lazy lambda calculus, in Research Topics in Functional Programming, D. L.
Turner, ed., Addison-Wesley, Reading, MA, 1989.

[2] Domain theory in logical form, Ann. Pure Appl. Logic, 51 (1991), pp. 1-77.
[3] S. ABPAMSKY, P. MALACARIA, AND R. JAGADEESAN, Full abstraction for PCF, in Theoreti-

cal Aspects of Computer Software, M. Hagiya and J. C. Mitchell, eds., Lecture Notes in
Comput. Sci. 789, Springer-Verlag, Berlin, New York, Heidelberg, 1994, pp. 1-15.

[4] g. P. BARENDREGT, The Lambda Calculus: Its Syntax and Semantics, Studies in Logic and
the Foundations of Mathematics, vol. 103, 2nd ed., North-Holland, Amsterdam, 1984.

[5] G. BEIPY, Sdquentialitd de l’ealuation formelle des lambda-expressions, in Program Trans-
formations, 3tme Colloque International sur la Programmation, B. Robinet, ed., 1978,
pp. 67-80.

[6] , Stable models of typed lambda-calculi, in Automata, Languages, and Programming: 5th
Colloquium, G. Ausiello and C. BShm, eds., Lecture Notes in Comput. Sci. 62, Springer-
Verlag, Berlin, New York, Heidelberg, pp. 72-89.

[7] (. BERRY AND P.-L. CURIEN, Sequential algorithms on concrete data structures, Theoret.
Comput. Sci., 20 (1982), pp. 265-321.

[8] , Theory and practice of sequential algorithms: The ternel of the programming language
CDS, in Algebraic Methods in Semantics, M. Nivat and J. C. Reynolds, eds., Cambridge
University Press, Cambridge, UK, 1985, pp. 35-87.

[9] G. BERRY, P.-L. CURIEN, AND J.-J. LvY, Full abstraction for sequential languages: The
state of the art, in Algebraic Methods in Semantics, M. Nivat and J. C. Reynolds, eds.,
Cambridge University Press, Cambridge, UK, 1985, pp. 89-132.

[10] B. BLOOM, Can LCF be topped? Flat lattice models of typed lambda calculus (preliminary
report), in 3rd Annual Symposium on Logic in Computer Science [22], IEEE Press, Piscat-
away, NJ, 1988, pp. 282-295.

[11] , Can LCF be topped?: Flat lattice models of typed -calculus, Inform. and Comput., 87
(1990), pp. 263-300.

[12] B. BLOOM, S. ISTRAIL, AND A. R. MEYER, Bisimulation can’t be traced, J. Assoc. Comput.
Mach., 42 (1995), pp. 232-268.

[13] A. BUCCIAPELLI AND T. EHPHAPD, Extensional embedding of a strongly stable model of PCF,
in Automata, Languages, and Programming: 18th Colloquium, Lecture Notes in Comput.
Sci. 510, Springer-Verlag, Berlin, New York, Heidelberg, 1991.

[14] , Sequentiality in an extensional framework, Inform. and Comput., 110 (1994), pp. 265-
296.

[15] R. CARTWRIGHT, P.-L. CURIEN, AND M. FELLEISEN, Fully abstract semantics for observably
sequential languages, Inform. and Comput., 111 (1994).

[16] P.-L. CURIEN, Categorical Combinators, Sequential Algorithms and Functional Programming,
2nd ed., Birkhiuser, Basel, Boston, 1993.

[17] J.-Y. GIRARD, The system F of variable types, fifteen years later, Theoret. Comput. Sci., 45
(1986), pp. 152-192.

[18] J. R. HINDLEY AND J. P. SELDIN, Introduction to Combinators and A-calculus, London Math.
Soc. Student Texts, vol. 1, Cambridge University Press, Cambridge, UK, 1986.

[19] D. J. HOWE, Equality in lazy computation systems, in Proc. 4th Annual Symposium on Logic
in Computer Science, IEEE Press, Piscataway, NJ, 1989, pp. 198-203.

[20] (. HUET AND J.-J. LIVY, Computations in nonambiguous term rewriting systems, Tech. Report
359, INRIA, Rocquencourt, France, 1979.

[21] J. HYLAND AND C.-H. ONG, Pi-calculus, dialogue games and PCF, in Conference Record of
FPCA ’95: Conference on Functional Programming Languages and Computer Architecture,
Association for Computing Machinery, New York, 1995, pp. 96-107.

[22] 3rd Annual Symposium on Logic in Computer Science, IEEE Press, Piscataway, NJ, 1988.
[23] T. jIM AND A. R. MEYER, Communication in the TYPES electronic forum, June 17, 1989.
[24] J. W. KLOP, Combinatory reduction systems, Tract 127, Mathematisch Centrum, Amsterdam,

1980.
[25] I. MASON AND C. TALCOTT, Programming, transforming, and proving with function abstrac-

tions and memories, in Automata, Languages, and Programming: 16th International Col-

696 TREVOR JIM AND ALBERT R. MEYER

loquium, G. Ausiello, M. Dezani-Ciancaglini, and S. R. D. Rocca, eds., Lecture Notes in
Comput. Sci. 372, Springer-Verlag, Berlin, New York, Heidelberg, 1989.

[26] A. R. MEYEP, What is a model of the lambda calculus7., Inform. and Control, 52 (1982), pp. 87-
122.

[27] -------, Semantical paradigms: Notes for an invited lecture, with two appendices by Stavros
Cosmadakis, in 3rd Annual Symposium on Logic in Computer Science [22], IEEE Press,
Piscataway, NJ, pp. 236-253.

[28] R. MLNEI, Fully abstract models of the typed lambda calculus, Theoret. Comput. Sci., 4 (1977),
pp. 1-22.

[29] K. MULMULEY, Full Abstraction and Semantic Equivalence, ACM Doctoral Dissertation Award,
1986, MIT Press, 1987.

[30] C.-H. L. ONG, The lazy lambda calculus: An investigation into the foundations of functional
programming, Ph.D. thesis, Imperial College, University of London, London, 1988.

[31] G. D. PLOTKIN, LCF considered as a programming language, Theoret. Comput. Sci., 5 (1977),
pp. 223-256.

[32] V. SAZONOV, Expressibility of functions in D. Scott’s LCF language, Algebra Logika, 15
(1976), pp. 308-330 (in Russian).

[33] D. S. SCOTT, Continuous lattices, in Toposes, Algebraic Geometry, and Logic, F. W. Lawvere,
ed., Lecture Notes in Math. 274, Springer-Verlag, Berlin, New York, Heidelberg, 1972,
pp. 97-136.

[34] Data types as lattices, SIAM J. Comput., 5 (1976), pp. 522-587.
[35] , A type theoretical alternative to CUCH, ISWIM, OWHY, Theoret. Comput. Sci., 121

(993), pp. a-a40.
[36] S. SMITH, From operational to denotational semantics, in Mathematical Foundations of Pro-

gramming Semantics, Lecture Notes in Comput. Sci., Springer-Verlag, Berlin, New York,
Heidelberg, 1992, pp. 54-76.

[37] A. STOUGHTON, Fully Abstract Models of Progamming Languages, Research Notes in The-
oretical Computer Science, Pitman/Wiley, Boston, New York, 1988; revision of Ph.D.
thesis, Report CST-40-86, Department of Computer Science, University of Edinburgh,
Edinburgh, 1986.

[38] C. TALCOTT, Programming and proving with function and control abstractions, Tech. Report
STAN-CS-89-1288, Stanford University, Stanford, CA, 1988.

SIAM J. COMPUT.
Vol. 25, No. 4, pp. 697-708, August 1996

() 1996 Society for Industrial and Applied Mathematics
001

COMPUTING SOLUTIONS UNIQUELY COLLAPSES THE POLYNOMIAL
HIERARCHY*

LANE A. HEMASPAANDRAt, ASHISH V. NAIKt, MITSUNORI OGIHARA, AND ALAN L. SELMAN

Abstract. Is there anNPfunction that, when given a satisfiable formula as input, outputs one satisfying assignment
uniquely? That is, can a nondeterministic function cull just one satisfying assignment from a possibly exponentially
large collection of assignments? We show that if there is such a nondeterministic function, then the polynomial
hierarchy collapses to ZPPNl’ (and thus, in particular, to NPtq’). Because the existence of such a function is known
to be equivalent to the statement "every NP function has an NP refinement with unique outputs," our result provides
the strongest evidence yet that NP functions cannot be refined.

We prove our result via a result of independent interest. We say that a set A is NPSV-selective (NPMV-selective)
if there is a 2-ary partial NP function with unique values (a 2-ary partial NP function) that decides which of its inputs
(if any) is "more likely" to belong to A; this is a nondeterministic analog of the recursion-theoretic notion of the
semirecursive sets and the extant complexity-theoretic notion of P-selectivity. Our hierarchy-collapse result follows
by combining the easy observation that every set in NP is NPMV-selective with the following result: If A E NP is
NPSV-selective, then A E (NPf’I coNP)/poly. Relatedly, we prove that if A 6 NP is NPSV-selective, then A is Low2.

We prove that the polynomial hierarchy collapses even further, namely to NP, if all coNP sets are NPMV-selective.
This follows from a more general result we prove: Every self-reducible NPMV-selective set is in NP.

Key words, computational complexity, semidecision algorithms, nonuniform complexity, lowness

AMS subject classifications. 68Q15, 68Q10, 03D10, 03D15

1. Introduction. Valiant and Vazirani’s [42] result that, in their words, "NP is as easy as
detecting unique solutions," has rightly been the focus ofgreat attention. Theirbreakthrough--
a proof that every NP setprobabilistically reduces to "detecting unique solutions" (technically,
reduces to every solution to the promise problem (1SAT, SAT))mis one of the dual pillars on
which Toda’s [40] PH c_ PPP paper rests, as do later papers extending Toda’s result [41] and
studying the complexity of function inversion [43, 1].

Selman ([38]; see also 12]) raised a related question that may be equally compelling, since
he showed that a resolution would provide insight into the invertibility of honest polynomial-
time functions and into the relationship between single-valued and multivalued functions. He
asked whether the following hypothesis is true.

HYPOTHESIS 1.1. There is a single-valued NP function f such that for each formula
F SAT, f(F) is a satisfying assignment of F.

Clearly, Hypothesis 1.1 is true if NP coNP. However, since both Fenner et al. [12]
and Selman [38] suspected that Hypothesis 1.1 fails, perhaps a more interesting issue is that
of the evidential weight in that direction. In fact, little is currently known to indicate that
Hypothesis 1.1 fails. The totality of current evidence seems to be the fact that Hypothesis 1.1
fails relative to a random oracle [33] and the result of Selman [38] that if Hypothesis 1.1 holds,

*Received by the editors May 24, 1994; accepted for publication (in revised form) November 18, 1994.
Department of Computer Science, University of Rochester, Rochester, NY 14627. The research of this author

was supported in part by NSF grants CCR-8957604, INT-9116781/JSPS-ENG-207, and CCR-9322513. This research
was done in part while this author was visiting the University of Electro-Communications, Tokyo, Japan, and the
Tokyo Institute of Technology, Tokyo, Japan.

tDepartment of Computer Science, State University of New York at Buffalo, Buffalo, NY 14260. Current
address: Department of Computer Science, University of Chicago, Chicago, IL 60637. The research of this author
was supported in part by NSF grant CCR-9002292.

Department of Computer Science, University of Rochester, Rochester, NY 14627. The research of this au-
thor was supported in part by NSF grants CCR-9002292 and INT-9116781/JSPS-ENG-207. This work was done
in part while visiting SUNY-Buffalo and while this author was at the University of Electro-Communications, Tokyo,
Japan.

Department of Computer Science, State University of New York at Buffalo, Buffalo, NY 14260. The research
of this author was supported in part by NSF grants CCR-9002292, INT-9123551, and CCR-9400229.

697

698 L.A. HEMASPAANDRA, A. V. NAIK, M. OGIHARA, AND A. L. SELMAN

then there are two disjoint NP-Turing-complete sets such that every set that separates them is
NP-hard.

Since Hypothesis 1.1 is implied by NP coNP, one might hope that Hypothesis 1.1
also implies a collapse of the polynomial hierarchy. The main result of this paper provides
strong evidence that Hypothesis 1.1 fails: Hypothesis 1.1 implies that the polynomial hierarchy
collapses to ZPPN’ (and thus, in particular, to its second level, NprI). Equivalently, if all honest
polynomial-time-computable functions are NPSV-invertible, then the polynomial hierarchy
collapses to ZPPrqP.

We obtain our result from a surprising and seemingly little-related direction: selectivity.
Selectivity is a notion of generalized membership testing; selective sets have functions that
choose which of any two input elements is the "more likely" to be in the set. Sets selective
with respect to recursive selector functions were introduced by Jockush [20] and are called
the semirecursive sets. Sets selective with respect to deterministic polynomial-time selector
functions were introduced by Selman [36] and are called the P-selective sets; sets selective
with respect to single-valued total NP functions were introduced and studied by Hemaspaandra
et al. 19]. Recently, there has been a surge of interest in selective sets, and advances have
catalyzed further advances (see the survey [9]).

in this paper, we extend the notion of selectivity, in the natural way, to functions that
may be partial and/or multivalued. Important function classes of these sorts are the single-
valued partial NP functions (NPSV), the multivalued partial NP functions (NPMV), and the
multivalued total NP functions (NPMVt). Although it is easily observed that all NP sets are
NPMV-selective, we will prove the following result.

(**) If all NP sets are NPSV-selective, then the polynomial hierarchy col-
lapses to ZPPrqP.

It follows easily that Hypothesis 1.1 implies this same collapse.
Result (,,) is proven via the following result, which is of interest in its own right.

(1) The NPSV-selective sets in NP are in (NP coNP)/poly.
(NP coNP)/poly is the class of sets (see 14]) accepted, aidedby a small amount of"advice,"
by machines that robustly behave as NP [’] coNP machines. We also prove the following
related result.

(2) The NPSV-selective sets in NP are Low2.
That is, for each such set A, NPNPA NP’. Though NPSV functions lack totality, the proofs
of (1) and (2) show that we can nonetheless get the effect of totality in the cases that count--in
particular, the definition of selectivity forces the functions to be defined whenever at least
one input is in the fixed selective set. This will allow us to establish that the NPSV-selective
sets in NP have lowness and advice class results just as strong as those shown by [19] for
the NPSVt-selective sets in NP. This advance is important because results about NPSVt-
selective sets offer no help in discrediting Hypothesis 1.1 but results about NPSV-selective
sets do.

For coNP (and thus all higher levels of the polynomial hierarchy), an even stronger
consequence can be obtained: All coNP sets are NPMV-selective if and only if NP coNP.
This result itself is a corollary of a more general result we prove: Every self-reducible NPMV-
selective set is in NE This contrasts with Buhrman, van Helden, and Torenvliet’s result [8] that
self-reducible P-selective sets are in P and with the result announced in 18] that self-reducible

NPMVt-selective sets are in NP A coNP.

2. Definitions. Our alphabet will be E {0, 1 }. Let our pairing function (...) be any
"multi-arity onto," polynomial-time computable, polynomial-time invertible function (that
is, the ranges of different arities are disjoint, and the union over all arities covers E*; see,
e.g., 16]).

UNIQUE SOLUTIONS COLLAPSE THE POLYNOMIAL HIERARCHY 699

For each partial, multivalued function f, set-f (x) denotes the set of values of f on input
x. If f (x) is undefined, then set-f (x) 0. We will also use this notation for partial single-
valued functions to avoid ambiguity regarding equality tests between potentially undefined
values. For any two partial, multivalued functions f and g, we say that f is a refinement of g
if, for all x, it holds that

1. f (x) is defined if and only if g (x) is defined, and
2. set-f (x) c_ set-g (x).
We extend notions of selectivity [36, 19] to multivalued and/or partial functions.
DEFINITION 2.1. Let ,C be any class offunctions (possibly multivalued andpartial).

A set A is UC-selective ifthere is afunction f f’C such thatfor every x and y, it holds that

set-f (x, y) c_ {x, y}, and
if{x, y} a 0, then set-f (x, y) 5 93 and set-f (x, y) c_. A.

By UC-sel we denote the class ofsets that are f’C-selective.
We will be interested, in particular, in the following classes of functions.
DEFINITION 2.2 (see [6]).

1. NPMV is the class ofpartial, multivaluedfunctions f for which there is a nondeter-
ministic polynomial-time machine N such thatfor every x, it holds that
(a) f (x) is defined ifand only ifN(x) has at least one accepting computationpath,

and
(b) for every y, y set-f (x) ifand only if there is an accepting computation path

ofN(x) that outputs y.
2. NPMVt is the class of total, multivaluedfunctions in NPMV.
3. NPSV is the class ofpartial, single-valuedfunctions in NPMV.
4. NPSVt is the class of total, single-valuedfunctions in NPMV.

Hypothesis 1.1 says that there is a partial function f in NPSV such that for every formula
F in SAT, f(F) is a satisfying assignment for F. It is trivial to observe that there is an NPMV
function that finds all satisfying assignments of an input formula. Thus the true complexity
issue here is not that of the complexity of finding satisfying assignments but is rather that
of the complexity of thinning down to one the satisfying assignment set. Hypothesis 1.1 is
equivalent to the assertion that all NPMV functions have refinements in NPSV (see [38]; see
also Proposition 3.1 in 3). We observe (Proposition 3.1) that Hypothesis 1.1 holds if and
only if SAT is NPSV-selective.

Karp and Lipton introduced the following notion of being computable in a class supple-
mented by a small amount of extra information.

DEFINITION 2.3 (see [21]). For any class ofsets C, C/poly denotes the class ofsets L for
which there exist a set A C and a polynomially length-boundedfunction h * --+ * such
thatfor every x, it holds that

x L ifand only if (x, h(01xl)) a.
We will be particularly interested in the advice classes NP/poly, coNP/poly, and

(NP coNP)/poly. It is notknown whetherNP/poly coNP/poly (NP coNP)/poly,
though Fenner et al. 11] have constructed an oracle relative to which the classes differ (see
also the structural results of 14]).

Next we define lowness and extended lowness.
DEFINITION 2.4.

L p p1. [34] For eachk > 1, defineLow {L 6NP Eft’ E }, where the E are
the E levels of the polynomial hierarchy [30, 39].

L S2, P’ SAT(gL2. [27, 4] For each k > 2, define ExtendedLowg {L Eft’ "g-1 }. For

each k > 3, define ExtendedLow(R) {LIP(E’-)[O(lgn)] c__
The [O(log n)] indicates that at most O(log n) queries are made to the oracle.

700 L.A. HEMASPAANDRA, A. V. NAIK, M. OGIHARA, AND A. L. SELMAN

Hemaspaandra et al. [19] noted the following lowness and nonuniform class results for
NPSVt-sel: NPSVt-sel c_ (NP coNP)/poly, NPSVt-sel NP C_Low2, and NPSVt-sel c_
ExtendedLowO3.

Finally, we define "promise problems" [10] corresponding to selectivity. Informally, a
solution to the promise problem PP-A [37, 28] will--if the promise is met such that exactly
one of x and y is in A--contain (x, y) exactly if x A.

DEFINITION 2.5 (see [37]; see also [28]). Given any set A, we say that a set B is a solution
to PP-A iffor every (x, y) such that exactly one ofx and y is in A, (x, y) B ifand only if
xA.

3. Unique solutions collapse the polynomial hierarchy. We first note a connection
between refinements ofNPMV functions, NPSV-selectivity, and inversion ofpolynomial-time-
functions. As is standard, we say a total polynomial-time-computable function f is honest if
there is a polynomial q such that, for all x, q(lf (x)]) >_]xl. If f is a (possibly non-one-to-one,
possibly non-onto) total polynomial-time computable function, we say that f is C-invertible
if there is a single-valued function g in C such that (x) [(x ’ range(f) = g(x) unde)
and (x 6 range(f) == f(g(x)) x)] (see [2, 15, 43, 38] for a detailed discussion of
invertibility). Observe that f is C-invertible if and only if the partial multivalued function f-1
has a single-valued refinement in C. NP2V is the class of all NPMV functions f such that
(’v’x) 11 set-f (x) II _< 2].

PROPOSITION 3.1 (see also [38]). Thefollowing are equivalent:
1. Hypothesis 1.1 holds.
2. All NPMVfunctions have NPSV refinements.
3. All NP2Vfunctions have NPSV refinements.
4. SAT is NPSV-selective.
5. All NP sets are NPSV-selective.
6. All honest FPfunctions are NPSV-invertible.

Proof. The reader may easily observe that every set in NP is NP2V-selective. Note also
that any NPSV refinement of an NPMV-selector for a set is itself an NPSV-selector for the set.
Thus part 3 implies part 5. Clearly, part 5 implies part 4, and part 2 implies part 3. Part 4 implies
part 1 since an NPSV function f’ that is an NPSV-selector for SAT could be used to create the
function f from the statement of Hypothesis 1.1 as follows. Let f be the function that (a) on
an input formula F simulates f’ applied to the top node of F’s 2-disjunctive-self-reduction
tree--and then each path of (the simulation of) f that gets an output simulates f applied to
2-disjunctive-self-reduction of the output node, and so on--and (b) at any thusly reached leaf
of the self-reduction tree checks that the leaf is a satisfying assignment and outputs it if it is.
Finally, Selman [38] has noted that parts 1, 2, and 6 are equivalent; part 6 is equivalent by
combining [38, Exercise 5] with the comment in the last paragraph of [38, 1.2]. [q

Naik, Regan, Royer, and Selman (in a work in preparation) have noted that this behavior
applies not just to the classes mentioned here but to any class having certain nice closure
properties.

Our hierarchy result will follow easily from our study of the lowness and circuit prop-
erties of the new selectivity classes we’ve mentionedmthe NPSV-selective sets, the NPMV-
selective sets, and the NPMVt-selective sets. We now turn to this study, emphasizing the
NPSV-selective sets. Clearly, NPMV-sel (and thus NPSV-sel) is contained in NP/poly and
NPMVt-sel is contained in NP/poly coNP/poly via the use of a standard divide-and-
conquer approach to find an appropriate advice set, similar to the approach in Ko’s proof [22]
that the P-selective sets are in P/poly (see also the proofs of Theorems 3.2 and 3.7). We con-
clude, via the extended lowness of NP/poly ["] coNP/poly (Theorem 3.4) and the lowness of
NP/poly coNP/poly ["] NP coNP/poly ["] NP [44], that NPMVt-sel is ExtendedLow3
and that NPMVt-sel NP is Low3. We now turn towards our main result.

UNIQUE SOLUTIONS COLLAPSE THE POLYNOMIAL HIERARCHY 701

THEOREM 3.2. NPS-sel ["] NP
_

(NP coNP)/poly.
In the introduction, we mentioned that the key result of our proofs is the achievement,

even with the partial functions, of the effect of totality. In the proof of Theorem 3.2, it is easy
to put one’s finger on the exact part of the construction that achieves thismour decision to
require the advice string to encode certificates. This decision allows what would otherwise
be an NP/poly coNP/poly containment to become an (NP coNP)/poly containment,
since the fact that the advice contains certificates allows an NP coNP machine to verify
whether or not the strings purported to be from the set in fact are from the set, and this itself
allows the machine to be robustly NP (’] coNP-like, that is, NP ["] coNP-like for all possible
advice strings, even incorrect ones.

ProofofTheorem 3.2. Let A 6 NP be NPSV-selective, with selector function f 6 NPSV.
Without loss of generality, we assume f satisfies (Vx, y)[set-f(x, y) set-f (y, x)], since
if it doesn’t, we can replace it with f-new(a, b) f(min(a, b), max(a, b)). It is trivial to
create an appropriate advice string at lengths n for which I[A-<nll 0, so we assume this
is done tacitly at such lengths and consider below only the IA <-n -76 0 case. Recall that

set-f (x) {y Y is a value of f (x)}. Let p be a monotone nondecreasing polynomial and
B be a set in P witnessing that A NP so that for every x, x 6 A if and only if for some
y 6]p(Ixl), (x, y) 6 B. Let w be a string of the form (On, S, T), where S and T encode finite
sets. We call w an advice string for n if (i) II T II _< II S II _< n / 1, (ii) S

_
E-<n, (iii)

T

_
E-<P(n, and (iv) for every y 6 S, there is some z 6 T such that (y, z) 6 B, that is, y 6 A

is certified by z. Moreover, w is called a good advice string for n if it holds that

(*) (X a<n)[x A ::> (By S)[set-f (x, y) {x}]].

For every n, a good advice string for n exists. As in the case of Ko’s proof that the
P-selective sets are in P/poly [22], we may repeatedly choose to add to S some element of
A-<n that loses to at least half the elements that both are not yet in S and do not yet beat some
element in S, where "x loses to y" means that set-f (x, y) {y}. Since I[E-<n 11 < 2n+l,
S will have at most n + 1 elements. After constructing S, for each y 6 S, we pick up one
certificate and construct T.

Clearly, the set of all advice strings is in P. Moreover, the set of all good advice strings
is in coNP. As w (0n, S, T) being an advice string guarantees that S A, set-f (x, y) is
defined for any x X-<n and y S. So w (0n, S, T) is a good advice string for n if and
only if

w is an advice string and (Vx 6 a<-n)[x A v (By S)[y x v y set-f (x, y)]].

Clearly, this is a coNP-predicate since, in particular, testing y set-f (x, y) can be done via
one universal quantification. However, note that if w is an advice string for n, then for every
x 6 _<n and y S, set-f (x, y) {y} # {x}. So if w (On, S, T) is a good advice string
for n, then

(*) (Vx E<-n)[x a (Zly S)[set-f (x, y) {x}]].

Now define

A’ {(x, (0Ixl, S, T)) (0Ixl, S, T) is an advice string for Ix and

(:ty S)[set-f (x, y)= {x}]}.

Note that A 6 NP coNP. The containment in NP is immediate. The containment in coNP
follows from the fact that, as long as (0Ixl S, T) is an advice string for Ix I, S

_
A guarantees

that set-f (x, y) is either {x} or {y} for any y 6 S.

702 L.A. HEMASPAANDRA, A. V. NAIK, M. OGIHARA, AND A. L. SELMAN

Now for each n, define h (0n) to be the smallest good advice string for n in lexicographic
order. Then by (,), for every x, x 6 A if and only if (x, h(01xl)) 6 A’. This proves that
A 6 (NP coNP)/poly.

Theorem 3.3 follows from essentially the same proof as that of Theorem 3.2.
THEOREM 3.3. NPSV-sel

_
NP/poly coNP/poly.

This result reflects a more general behavior. We denote {(x, Y) y set-f(x)} by
graph(f). Let ,T’C be any function class (possibly partial, possibly multivalued). Let C be any
class that has the property that for each f in ,TC it holds that graph(f) C. Then

’C-sel

(Rt,(C))/poly.

In particular, the polynomial advice represents advice strings found by divide and conquer,
and the disjunctive queries determine, via the graph of the selector function, the action of the
selector function on the input paired with each string in the advice set, and, additionally, the
disjunctive reducer checks whether the input is one of the advice strings. The reducer accepts
exactly when the input is either one of the advice strings or an output of the selector function
when that function is run on the input paired with one of the advice strings (see the proofs
of Theorems 3.2 above and 3.7 below). Theorem 3.3 is a specific case of this more general
claim. The polynomial time-bound on the disjunctive reduction in the general claim can be
replaced by a logspace bound if the pairing function used (in the definition of advice classes)
is logspace invertible.

K6bler [23] has shown that (NP coNP)/poly is ExtendedLow(R)3. An interesting ques-
tion left open by K6bler’s paper is whether (NP/poly) (coNP/poly) is extended low. We
resolve this issue by showing that it is. It is an interesting open issue whether our result can be
strengthened via the techniques of Gavald and K6bler 13, 23] to an ExtendedLow(R)3 result;
we conjecture that it can. In any case, in terms of the standard levels of extended lowness
ExtendedLowl, ExtendedLow2, ExtendedLow3 mour ExtendedLow3 result is optimal,
since Allender and Hemaspaandra [3] have noted that even P/poly is not in ExtendedLow2.
We defer the proof of Theorem 3.4 to the end of this section.

THEOREM 3.4. (NP/poly) (coNP/poly) is ExtendedLow3.
From Theorems 3.3 and 3.4, we immediately obtain the following corollary.
COROLLARY 3.5. The NPSV-selective sets are ExtendedLow3.
What can be said about the lowness of the NPSV-selective sets in NP? Theorem 3.3 and

K6bler’s "(NP coNP)/poly NP is Low(3" result imply a Low(3 result. However, as
the next corollary states, the NPSV-selective sets in NP are, in fact, Low2. Informally, the
reason for this improvement is that NPSV-selective sets have selector functions that, while
perhaps partial, are sharply constrained. In particular, these functions are only partially partial.
They are forced to be total whenever either of the inputs is in the given set, and, as we did also
in the proof of Theorem 3.2, we exploit this conditional totality in our Lowg. proof below.

LEMMA 3.6 (see [28]). IfA is in Ei
p and B is a solution ofPP-a, then E_ co. EiP_B

THEOREM 3.7. IfA NPSV-sel NP, then PP-A has a solution L that is Low2.
Corollary 3.8 follows immediately from Theorem 3.7 via Lemma 3.6.
COROLLARY 3.8. NPSV-sel NP c_ Low2.
ProofofTheorem 3.7. Let A 6 NPSV-sel N NP, with selector function f 6 NPSV. As in

the proof of Theorem 3.2, define the notion of advice strings and good advice strings. Define

A {(x, y) lset-f(x, y) {x} andx 6 A}.

Clearly," is a solution of PP-A and is in NP. It suffices to show that E;’A"
_
E. Let

to (0n, S, T) be a good advice string for n. Then for every x

x A == (By S)[set-f(x, y) {x}].

So for every x, y 6 E

UNIQUE SOLUTIONS COLLAPSE THE POLYNOMIAL HIERARCHY 703

(x, y) CA = x A v set-f (x, y) :fi {x}

== x A v (x A/x set-f (x, y) 5/: (x})

: (Vz S)[set-f (x, z) :/: {x}] v (x a /x set-f (x, y) :/: {x})

= (z S)[set-f (x, z) {z}] v (x a /x set-f (x, y) {y}).

Define T {(x, y, (0n, S, T)) Ixl, lyl n, w (0, S, T) is an advice string for n, and
either (z S) [set-f (x, z) {z}] or x A/x set-f (x, y) {y}}. Then T 6 NP, and for
every good advice string to (On, S, T) and x, y of length at most n, (x, y) CA if and only if
(x,y,w) T.

Now let C 6 E,A" and let N and N2 be NP machines such that C L(N, L(N,)).
There is a polynomial q such that for every x and every possible query y of N on x, if N2 on
y queries (u, v), then lul, Ivl _< q(Ixl). Define D to be the set of all (y, (0m, S, T)) such that

w (0m, S, T) is an advice string for m and
there is an accepting computation path zr of N2 on y such that for every query (u,
along path

lul, Ivl <_ m,
if the answer to the query is affirmative, then (u, v) cA, and
if the answer to the query is negative, then (u, v, w) 6 T.

Since both A and T are in NP, D 6 NP. Furthermore, if y is a query of N on x, then for
every good advice string w for q(lxl), N2A" on y accepts if and only if (y, w) 6 D.

Now define E to be the set of all (x, w) such that w is an advice string for q(lxl) and N1
on x accepts if its query y is answered affirmatively if and only if y 6 D. Since D is in NP,
E 6 . Furthermore, for every x and good advice string w for q(lxl), (x, w) 6 E if and
only if x 6 C. Therefore, for every x, x 6 C if and only if there is a good advice string w
for q (Ix I) such that (x, w) 6 E. As described in the proof of Theorem 3.2, the set of all good
advice strings is in coNP. Thus C E. This proves the theorem.

Note that every NP set is NPMV-selective. Is this also true for NPSV-selectivity? We
have the following result.

THEOREM 3.9. IfNP c_ NPSV-sel, then ZPPNP PH.
Proof This is a corollary of Theorem 3.2, since, extending Karp and Lipton [21], K6bler

and Watanabe have proven that if NP c_C_ (NP coNP)/poly = ZPPNP PH [24].
Note that we could immediately conclude from Corollary 3.8 the slightly weaker result

that if NP

_
NPSV-sel, then NPNP PH.

From Proposition 3.1 and Theorem 3.9, we have our main result, and a related result.
COROLLARY 3.10. IfHypothesis 1.1 is true then ZPPNP PH.
COROLLARY 3.11. Ifall honest FPfunctions are NPSV-invertible then ZPPNP PH.
Hypothesis 1.1 seems somewhat akin to the statement UP NP in the sense that both

speak ofreducing a multiplicity (respectively, ofvalues and ofcertificates) to a unity. However,
NP might be equal to UP because of the existence of some strange machine that accepts SAT
uniquely and has nothing to do with finding satisfying assignments; on the other hand, there
may exist a machine that outputs satisfying assignments uniquely but "ambiguously"along
more than one computation path. Indeed, it remains an open question whether either of
UP NP and Hypothesis 1.1 implies the other. It also remains an open question whether
Corollary 3.10 remains true if the hypothesis is changed to UP NP; indeed, it is not even
known whether UP NP implies that the polynomial hierarchy collapses at any level. It is
easily seen, as noted by Buhrman, Kadin, and Thierauf [7], that SAT has an NPSV refinement
if and only if it has (in a certain model for oracle access to partial functions) an FPNPSV[1]

refinement, and thus Corollary 3.10 speaks to that case.
We conclude this section with the deferred proof of Theorem 3.4.

704 L.A. HEMASPAANDRA, A. V. NAIK, M. OGIHARA, AND A. L. SELMAN

Proofof Theorem 3.4 Let H E (NP/poly) (coNP/poly). Let B E NPNPNP" (let’s say,
L(N)

NPNPsAT*-for convenience, B L(N(N2))). We will show that B
Let S ($2) be an NP (coNP) set certifying H 6 NP/poly (H 6 coNP/poly). Let p(.)

be a polynomial bounding the size of the correct advice sequences for each. Let q(.) be a
polynomial composing the polynomial running times of N, N2, and N3.

Recall that our pairing function (...) is some nice, "multi-arity onto" pairing function. On
NpNPsAT*Hinput x our base NP machine of our machine nondeterministically guesses strings

rl rq(ixl), and sl Sq(ixl), satisfying, for each i,]ri] < p(i) and]si] < p(i). Via a
single call to NPSATH, the base machine checks whether rl rq(ixl) is a good advice set
for helping S. In particular, we make one query, (x, r rq(ixl)), to the NPSATH set

E’ ((x, rl rz)[z q([x[) and

(gi 1 < < z) [Iril p(i)] and (By "lyl q(lxl)) [y H == (y, rlyl) . S1]},

and if the answer is "no;’ we know the "r" advice collection is good. Similarly, with one
question to an NPSATH set E" (defined analogously), we determine whether the "s" advice
collection is good for helping $2.

Note that when given the correct advice strings, an NP machine can strongly (in the sense
of Long [26] and Selman [35]) check whether x E H or x H by nondeterministically
guessing which is true, checking an x H guess via checking whether (x, rlx I) S, and
checking an x H guess via checking whether (x, Slxl) S2.

Our simulation of B L(N(N)(N)) in NPNPsAv*" proceeds as follows (for simplicity,
we will call our base machine N4). N4 guesses and checks good advice sets as already

...L(Nff)described. N4 now simulates N1, except each time N asks a query y to Lily2), N4 asks
the query (y, (rl rq(ixl)), (s Sq(ixl))) to an NPsATon set E’", which itself will satisfy
E’" L(NS5AT@H) for a machine N5 to be defined. (Since we have only one NPsATn oracle,
the actual set we will use is E E’ @ E" @ E".) N5 on input (y, (r rt), (sl st))
simulates Na on input y, except every time N2 asks a query z to L(N3) on input y, N5 asks the
query (z, (r rt), (s st)) to the NP set G (since SAT is NP-complete, we implicitly
convert the query to an appropriate query to SAT):

G {(z, (r rt), (Sl st)) if we simulate N3 (z), replacing each
call to H (say "w 6 H?")by nondeterministically checking whether
(to, rlwl) S1 (in which case we proceed along the path certifying (w, rlxl)
as of w 6 H) and (separately, nondeterministically) whether (w, Slwl)

_
52

(in which case we proceed as if to

_
H), we have an accepting path of our

simulated N3}. Note: If any of the w are such that wl > t, we act as if

Siw rlw , since in actual runs this case will not occur.
We make no claim that G 6 NP coNP. In fact, with "bad" advice as inputs, the simulation
defining G will be quite chaotic: a query "w 6 H?" might be treated as being answered
both "yes" and "no" or neither "yes" nor "no." However, when given good advice sets, the
machine will in fact correctly simulate Nff (z): each query to of N3(z) will be answered either
"yes" or "no," will not be answered both "yes" and "no," and will be answered correctly.
That is, G’s simulation of H is an example of strong computation when the advice is correct.

Crucially, for every query actually asked of G during an actual run of our NPe’*"*L(Ng
algorithm, the advice will be correct (and thus the strong computation going on within G will
be correct). Recall that this behavior, in which every actual access to an oracle maintains a
certain nice property of the oracle computation (such as computing strongly), though some
queries that are never asked might taint the property, is known as "guarded" access. We

UNIQUE SOLUTIONS COLLAPSE THE POLYNOMIAL HIERARCHY 705

NpNpSATHhave now given an simulation of an arbitrary set B NPNPNPH for arbitrary H
(NP/poly) (coNP/poly).

4. NPM-selectivity versus self-reducibility. Buhrman, van Helden, and Torenvliet [8]
showed that if a self-reducible set is P-selective, then it is in P, and Hemaspaandra et al. 18]
proved that if a self-reducible set is NPMVt-selective, then it is in NP N coNP. We prove,
as Theorem 4.3 below, a similar result for self-reducible NPMV-selective sets and apply this
result to PSPACE and the levels of the polynomial hierarchy.

The standard definition of self-reducibility that is used in most contemporary research in
complexity theory was given by Meyer and Paterson [29].

DEFINITION 4.1. A polynomial time computable partial order < on E* is OK if and
only if

1. each strictly decreasing chain is finite and there is a polynomial p such that every
finite <-decreasing chain is shorter than p ofthe length ofits maximum element, and

2. for all x, y E*, x < y implies that Ixl _< P(lYl).
DEFINITION 4.2. A set L is self-reducible if there is an OKpartial order < and a deter-

ministic polynomial time-bounded machine M such that M accepts L with oracle L and, on
any input x, M asks its oracle only about words strictly less than x in the OKpartial order
<. If the self-reduction of the query machine M infact is also a polynomial-time disjunctive
(conjunctive) truth-table reduction, then L is disjunctive (conjunctive) self-reducible.

Note in particular that unless otherwise specified, we use self-reducible to mean Turing
self-reducible.

THEOREM 4.3. IfA is self-reducible and NPMV-selective, then A NP.
Proof. First, we need to introduce some notation. Let B be a set and S be a finite set.

Let be a total order over S such that for every x, y 6 S, x

y == (x 6 B =, y 6 B).

Then for each x, y 6 S, define x -= y if there exist some wl Wm S such that (i) both x
and y appear in Wl win, (ii) Wm Wl, and (iii) for every i, 1 < < m 1, wi wi+,

and definex >- yifx y andx y. Callx S minimal if for every y 6 S, either
x y or x >- y. Note that x y implies x 6 B if and only if y 6 B, and therefore, for
any minimal x, x 6 B implies S

B. Also note that finding all minimal elements in S is

equivalent to dividing a "directed clique" (i.e., a clique in which each edge is directed) into its
fully connected components and finding the (necessarily unique) component from which no
other component is reachable. So, after knowing whether x y or y

x for each x, y S,

finding all minimal elements can be done in time polynomial in],xeS Ix l.
Let A be self-reducible via a machine M and an OK partial order < as in Definition 4.2.

Let .1_ be a fixed element in A and, without loss of generality, assume for every x 6 E* other
than _1_ that _1_ < x. Let A be NPMV-selective with selector function f 6 NPMV. Consider
the nondeterministic Turing machine N defined, on input x, by the following algorithm.

(1) Nondeterministically guess one computation path of M on x together with oracle
answers and put into $1 (S0) all the queries for which affirmative (negative) answers
are guessed.
If M on x along the guessed path rejects, then reject x.

(2) For each y So and z S1 kl {x}, nondeterministically verify that z set-f (y, z).
If the verification is not successful for some y, z, then reject x.

(3) For each y, z 6 S1, nondeterministically compute f(y, z) and define y z if

f (y, z) z and z y if f(y, z) y.
If for some y and z, computing f(y, z) is not successful, then reject x.

(4) If S 0, then output _1_. Otherwise, output lexicographically the smallest minimal
string in S.

706 L.A. HEMASPAANDRA, A. V. NAIK, M. OGIHARA, AND A. L. SELMAN

It is easy to see that N is polynomial-time bounded. We claim the following:
For every x ’ A, if N on x outputs y, then y < x and y A.
For every x 6 A,

N on x has an output in A and
every output y of N on x satisfies (y 2-) v (y < x).

This is seen as follows. Suppose that x ’ A and N on x outputs w at step (4). Since N must
choose an accepting computation path of M on x, either So A or $1 A. However, the
former is not the case because, since the verifications in step (2) are all successful, So having
an element in A implies x A, yielding a contradiction. So the latter is the case. Since w is
minimal in $1, w 6 A implies S

_
A. So w cannot be in A. Hence the first claim holds.

On the other hand, suppose that x 6 A. The machine N can guess the "correct" accepting
computation path of M on x for which So c__ A and S1

_
A. After guessing the path, N can

reach step (4) because for every y 6 So and z S, set-f (y, z) {z}, and for every y, z 6 S,
set-f (y, z) (= 0. After entering step (4), N will choose its output from {_1_} U S, which is a
subset of A. So N will output a string in A. Hence the second claim holds.

Now consider a machine D that, on input x, starting with w x, executes the following
algorithm.

(I)
(II)

Simulate N on w.
If N rejects, then reject. If N outputs ,1_, then accept. Otherwise, set w to the output
of N and go back to (I)

By the definition of self-reducibility, step (I) is repeated at most polynomially many times,
and thus D is polynomial-time bounded. By the above two claims, if x A, then D never
obtains ,1, as the output of N, and if x 6 A, for some computation path, D obtains _1_ as the
output of N. So D accepts x if and only if x A. This establishes that A NP. [3

Note that from the well-known fact that every disjunctive self-reducible set is in NP
and from the fact that every set in NP is NPMV-selective, it follows that every disjunctive
self-reducible set is NPMV-selective. Theorem 4.3 yields, for example, the following con-
sequences, keeping in mind the fact that PSPACE and each Eft have self-reducible complete
sets. Note that the k > 2 below cannot be improved to k > 1 unless PH NP.

COROLLARY 4.4.
1. PSPACE

_
NPSV-sel ifand only ifPSPACE c_C_ NPMV-sel ifand only ifPSPACE

NP.
2. For any k > 2, E c_ NPSV-sel if and only if E c_ NPMV-sel if and only if
PH NP.

3. coNP

_
NPMV-sel ifand only ifNP coNP.

5. Conclusion and open questions. This paper has studied the complexity ofcomputing
a single satisfying assignment of an input satisfiable formula. Previously, it was (trivially)
known that satisfying assignments could be found by polynomial-time functions if and only if
P NP. It was also (trivially) known that an assignment could be found via a polynomial-time
machine using an NP oracle (and it was known, not trivially, that finding the lexicographically
largest assignment was the hardest of all problems solvable in that class [25]).

But what about function classes between FP and FpNP? In this paper, we proved that the
NPSV functions are unlikely to have the power to find satisfying assignments; they can do
so only if the polynomial hierarchy collapses to ZPPNP. There remains an important function
class intermediate in power between the NPSV functions (shown in this paper to be unlikely
to have the power of finding satisfying assignments) and the functions computable via Turing
access to an NP oracle (which clearly can find satisfying assignments). This class is the
class of (partial) functions computable viaparallel (that is, truth-table) access to an NP oracle.

UNIQUE SOLUTIONS COLLAPSE THE POLYNOMIAL HIERARCHY 707

Clearly, NPSV is a subset ofthis class (cf. [38]). The key open issue is distilled in the following
hypothesis (see [43, 1, 17, 31, 38] for background and discussion).

HYPOTHESIS 5.1. Every NPMVfunction has a (single-valued) refinement in FPP.
The above can be equivalently phrased as: There is a partial function f computable by

a polynomial-time Turing machine making parallel queries to NP such that for each formula
F 6 SAT, f(F) is a satisfying assignment of F. Does Hypothesis 5.1 imply a collapse of
the polynomial hierarchy? It seems that such a result would require techniques substantially
different from those of this paper. In particular, our result that "NPMV has NPSV refinements
only if ZPPNP PH" itself relativizes. However, any relativizable proof of "Hypothesis 5.1
implies a collapse of the polynomial hierarchy" would immediately imply--due to the result
of Watanabe and Toda [43] that Hypothesis 5.1 holds relative to a random oracle--that the
polynomial hierarchy collapses relative to a random oracle. Furthermore, if the polynomial
hierarchy collapses relative to a random oracle, then the polynomial hierarchy collapses (see
[5]; see also [32]). The main result of the present paper does not similarly imply that the
polynomial hierarchy collapses relative to a random oracle, since Hypothesis 1.1 is known to
fail relative to a random oracle [33].

Acknowledgments. The authors would like to thank S. Biswas, H. Buhrman, L. Fortnow,
Y. Han, E. Hemaspaandra, and M. Zimand for many helpful comments and suggestions.

REFERENCES

K. ABRAHAMSOn, M. FELLOWS, AnD C. Wmson, Parallel self-reducibility, in Proc. 4th International Conference
on Computing and Information, IEEE Computer Society Press, Los Alamitos, CA, 1992, pp. 67-70.

[2] E. ALEnOER, Invertiblefunctions, Ph.D. thesis, Georgia Institute of Technology, Atlanta, 1985.
[3] E. At.EnDER AnD L. HEMACHAnORA, Lowerboundsfor the low hierarchy, J. Assoc. Comput. Mach., 39 (1992),

pp. 234-251.
[4] J. BALCAZAR, R. BOOK, AnD U. ScI-I0nInG, Sparse sets, lowness and highness, SIAM J. Comput., 15 (1986),

pp. 739-746.
[5] R. BOOK, On collapsing the polynomial-time hierarchy, Inform. Process. Lett., 52 (1994), pp. 235-237.
[6] R. BOOK, T. LONG, AnD A. SLMAN, Quantitative relativizations of complexity classes, SIAM J. Comput.,

13 (1984), pp. 461-487.
[7] H. BUHRMAN, J. KADIN, AND T. THERAUF, Onfunctions computable with nonadaptive queries to NP, in Proc.

9th Structure in Complexity Theory Conference, IEEE Computer Society Press, Los Alamitos, CA, 1994,
pp. 43-52.

[8] H. BUHMAN, P. VAN HELDEN, AnD L. TOEnVLIET, P-selective self-reducible sets: A new characterization ofP,
in Proc. 8th Structure in Complexity Theory Conference, IEEE Computer Society Press, Los Alamitos,
CA, 1993, pp. 44-51.

[9] D. DENNY-BROWN, Y. HAN, L. HEMASPAANDRA, AND L. TORENVLIET, Semi-membership algorithms: Some
recent advances, SIGACT News, 25 (1994), pp. 12-23.

10] S. EVEN AND Y. YACOBI, Cryptocomplexity and NP-completeness, in Proc. 7th International Colloquium on
Automata, Languages, and Programming, Lecture Notes in Comput. Sci., Springer-Verlag, Berlin, New
York, Heidelberg, 1980, pp. 195-207.

11] S. FENNER, L. FORTNOW, S. KURTZ, AND L. LI, Art oracle builder’s toolkit, in Proc. 8th Structure in Complexity
Theory Conference, IEEE Computer Society Press, Los Alamitos, CA, 1993, pp. 120-131.

[12] S. FENNER, S. HOMER, M. OGIWARA, AND A. SELMAN, O?/ using oracles that compute values, in Proc. 10th
Annual Symposium on Theoretical Aspects of Computer Science, Lecture Notes in Comput. Sci. 665,
Springer-Verlag, Berlin, New York, Heidelberg, 1993, pp. 398-407.

13] R. GAVALDA, Bounding the complexity ofadvicefunctions, in Proc. 7th Structure in Complexity Theory Con-
ference, IEEE Computer Society Press, Los Alamitos, CA, 1992, pp. 249-254.

14] R. GAVALDA AND J. BALCAZAR, Strong and robustly strongpolynomial time reducibilities to sparse sets, Theoret.
Comput. Sci., 88 (1991), pp. 1-14.

[15] J. GROLLMANN AND A. SELMAN, Complexity measures for public-key cryptosystems, SIAM J. Comput.,
17 (1988), pp. 309-335.

[16] Y. HArt, L. HEMASPAANDRA, AND T. THIERAUF, Threshold computation and cryptographic security, in Proc. 4th
International Symposium on Algorithms and Computation, Lecture Notes in Comput. Sci. 762, Springer-
Verlag, Berlin, New York, Heidelberg, 1993, pp. 230-239.

708 L.A. HEMASPAANDRA, A. V. NAIK, M. OGIHARA, AND A. L. SELMAN

17] E. HEMASPAANDRA, A. NAIK, M. OGIWARA, AND A. SELMAN, P-selective sets, and reducing search to decision
vs. self-reducibility, Tech. report 93-21, Department of Computer Science, State University of New York
at Buffalo, Buffalo, NY, 1993.

18] L. HEMASPAANDRA, A. HOENE, A. NAIK, M. OGIWARA, A. SELMAN, Z. THIERAUF, AND J. WANG, Selectivity: Re-
ductions, nondeterminism, andfunction classes, Tech. report TR-469, Department of Computer Science,
University of Rochester, Rochester, NY, 1993.

19] L. HEMASPAANDRA, A. HOENE, M. OGIWARA, A. SELMAN, T. TnlERAUF, AND J. WANG, Selectivity, in Proc. 5th
International Conference on Computing and Information, IEEE Computer Society Press, Los Alamitos,
CA, 1993, pp. 55-59.

[20] C. JOCKUSCH, Semirecursive sets andpositive reducibility, Trans. Amer. Math. Soc., 131 (1968), pp. 420-436.
[21] R. KARP AND R. LIPTON, Some connections between nonuniform and uniform complexity classes, in Proc. 12th

ACM Symposium on Theory of Computing, Association for Computing Machinery, New York, 1980,
pp. 302-309; an extended version has also appeared as Turing machines that take advice, Enseign. Math.,
28 (1982), pp. 191-209.

[22] K. Ko, On self-reducibility and weak P-selectivity, J. Comput. System Sci., 26 (1983), pp. 209-221.
[23] J. KOBLER, Locating P/poly optimally in the extended low hierarchy, Theoret. Comput. Sci., 134 (1994),

pp. 263-285.
[24] J. KOBLER AND O. WATANABE, New collapse consequences ofNP having small circuits, Tech. report 94-11,

Institut ftir Informatik, Universitit Ulm, Ulm, Germany, 1994.
[25] M. KRENTEL, The complexity ofoptimization problems, J. Comput. System Sci., 36 (1988), pp. 490-509.
[26] T. LONG, Strong nondeterministic polynomial-time reducibilities, Theoret. Comput. Sci., 21 (1982), pp. 1-25.
[27] T. LONG AND M. SHEU, A refinement of the low and high hierarchies, Tech. report OSU-CISRC-2/91-TR6,

Department of Computer Science, Ohio State University, Columbus, OH, 1991.
[28] L. LONGPRt AND A. SELMAN, Hard promise problems and nonuniform complexity, Theoret. Comput. Sci.,

115 (1993), pp. 277-290.
[29] A. MYnR ND M. PnTngSON, With whatfrequency are apparently intractable problems difficult?, Tech. report

MIT/LCSfrM- 126, Laboratory forComputer Science, Massachusetts Institute ofTechnology, Cambridge,
MA, 1979.

[30] A.M AND L. SwoCIMnYng, The equivalence problem for regular expressions with squaring requires
exponential space, in Proc. 13th IEEE Symposium on Switching and Automata Theory, IEEE Press,
Piscataway, NJ, 1972, pp. 125-129.

[31 A. NnlK, M. OGIWAgA, aND A. SELMAN, P-selective sets, and reducing search to decision vs. self-reducibility,
in Proc. 8th Structure in Complexity Theory Conference, IEEE Computer Society Press, Los Alamitos,
CA, 1993, pp. 52-64.

[32] N. NISAN AND A. WIGDERSON, Hardness vs. randomness, J. Comput. System Sci., 49 (1994), pp. 149-167.
[33] J. ROYER, personal communication, Aug. 1993.
[34] U. SCHONING, A low and a high hierarchy within NP, J. Comput. System Sci., 27 (1983), pp. 14-28.
[35] A. SELMAN, Polynomial time enumeration reducibility, SIAM J. Comput., 7 (1978), pp. 440-457.
[36] , P-selective sets, tally languages, and the behavior ofpolynomial time reducibilities on NP, Math.

Systems Theory, 13 (1979), pp. 55-65.
[37] ,Promise problems completefor complexity classes, Inform. Comput., 78 (1988), pp. 87-98.
[38] ,A taxonomy ofcomplexity classes offunctions, J. Comput. System Sci., 48 (1994), pp. 357-381.
[39] L. STOCKMEYER, The polynomial-time hierarchy, Theoret. Comput. Sci., 3 (1977), pp. 1-22.
[40] S. TODA, PP is as hard as the polynomial-time hierarchy, SIAM J. Comput., 20 (1991), pp. 865-877.
[41] S. TODA AND M. OGIWARA, Counting classes are at least as hard as the polynomial-time hierarchy, SIAM J.

Comput., 21 (1992), pp. 316-328.
[42] L. VALIANT AND V. VAZIRANI, NP is as easy as detecting unique solutions, Theoret. Comput. Sci., 47 (1986),

pp. 85-93.
[43] O. WATANABE AND S, TODA, Structural analysis ofthe complexity ofinversefunctions, Math., Systems Theory,

26 (1993), pp. 203-214.
[44] C. YAP, Some consequences ofnon-uniform conditions on uniform classes, Theoret. Comput. Sci., 26 (1983),

pp. 287-300,

SIAM J. COMPUT.
Vol. 25, No. 4, pp. 709-739, August 1996

() 1996 Society for Industrial and Applied Mathematics
002

A METHOD OF CONSTRUCTING SELECTION NETWORKS
WITH O(log n) DEPTH*

S. JIMBO AND A. MARUOKA

Abstract. A classifier with n inputs is a comparator network that classifies a set of n values into two classes
with the same number of values in such a way that each value in one class is at least as large as all of those in the
other. Based on the utilization of expanders, Pippenger constructed classifiers with n inputs whose size is asymptotic
to 2n log n. In the same spirit, we obtain a relatively simple method of constructing classifiers of depth O (log n).
Consequently, for an arbitrary constant C > 3/log 3 1.8927 we construct classifiers of depth O(logn) and
of size at most Cn log n + O(n).

Key words, comparator network, selection network, classifier, expander

AMS subject classifications. 68Q22, 94C10

1. Introduction. A classifier with n inputs is a comparator network (see Knuth [5]) that
classifies a set of n values into two classes with the same number of values in such a way that
each value in one class is at least as large as all of those in the other class, whereas an n-sorter is
a comparator network that sorts n values into order. Since an n-sorter is obviously a classifier
with n inputs, the existence of n-sorters of size O(n logn) and depth O(logn), given in [1]
and [2], immediately implies the existence of classifiers of the same size and depth. It seems
that the main concern in 1 and [2] is to prove just the existence of n-sorters of size O (n log n)
and depth O (log n), so the construction of the sorters is of some intricacy, and the constant
factors in the depth and size bound are enormous. As a result of further efforts to improve
the previous construction, it is shown in [6] that there is a family of sorting networks of depth
smaller than 6100 loge n, but the numerical constant in the size bound has not been brought
below 1000. Since classifiers do not do as much as sorters, it is natural to ask whether we
can obtain much simpler construction of classifiers with smaller constant factors. Based on
the same fundamental idealnamely the utilization of expanders--as their sorters, Pippenger
[7] constructed classifiers with size asymptotic to 2n loge n and O (loge n) depth. Although
he noticed without giving any explicit construction that his construction could be modified
to provide a bound of O(log n) for depth, he also mentioned that his method does not seem
well suited to optimize the depth. In the same spirit, we investigate the efficient construction
of classifiers, obtaining relatively simple classifiers of depth O (log n). In consequence, for
arbitrary C > 3/loge 3 1.8927 we can construct a family of classifiers of depth
O(log n) and of size at most Cn loge n + O(n), which improves Pippenger’s construction by
the constant factor in size and at the same time by order in depth.

Unlike the recursive construction due to Pippenger, our classifier is constructed by con-
necting O (log n) modules called layers in cascade and then removing unnecessary submodules
of layers called compressors. Although the depth of some of the layers is f2 (log n), it turns
out that each layer contributes only a constant amount to the depth in the total construction,
so that after all the depth of the classifier becomes O (log n).

We employ asymmetric expanders as basic components to construct various modules,
which in turn work as building blocks to construct the layers. This is contrasts with the
construction, due to Pippenger, based on symmetric expanders, where an expander is called
symmetric if the number of its left vertices is equal to that of its right vertices and asymmetric
otherwise. Allowing various types of expanders helps us to obtain suitable modules and hence
to get more efficient classifiers.

*Received by the editors April 30, 1993; accepted for publication (in revised form) November 28, 1994.
Graduate School of Information Sciences, Tohoku University, Sendai 980-77, Japan (jimbo, maruoka@

ecei.tohoku.ac.jp).

709

710 S. JIMBO AND A. MARUOKA

il

FIG. 1. Representation ofa comparator network.

O1

02

o3

04

In 2, we give, together with some basic lemmas used frequently later, definitions of
comparator subnetworks, called a compressor and an extractor, both of which are constructed
from expanders. In 3, after giving a definition of a layer, we define a comparator network,
denoted .Afn, consisting of modules such as compressors, extractors, and sorters. In 4, we
analyze the behavior of the comparator network ./V"n and verify that the comparator network
works as a classifier. We also establish a bound of Cn log2 n + O (n) on the size ofthe classifier
and a bound of O (log n) on its depth, where C is any constant greater than 3/log2 3. Finally,
in 5, we present conclusions mentioning some generalizations of the result obtained in the
present paper.

2. Preliminaries. As in Knuth [5], a comparator network is given as a network illustrated
in Fig. 1.

Each comparator is represented by a vertical connection with an arrow between two
horizontal lines called registers. Input values enter at the left and move along the registers.
Each comparator causes an interchange of its inputs if necessary, so that the larger value
appears on the register on the head side of the comparator after passing the comparator. For a
comparator in a comparator network, we call the register on the head side of the comparator
the head register and the register on the tail side of the comparator the tail register.

Let N be a comparator network. The size of N, denoted by size(N), is the number of
comparators belonging to N. The depth of N, denoted by depth(N), is the maximum number
of comparators on a path from an input terminal of N to an output terminal of N which passes
along the registers, from the left to the right, and comparators.

When we consider a comparator network N, we always take a one-to-one correspon-
dence PN from the registers of N onto the set {1, 2, n}, where n is the number of the
registers of N. We may later identify a register r of N with an integer PN (r) if it causes no
confusion.

DEFINITION 2.1 (a classifier). Let n be an even positive integer. Let S be a totally ordered
set. A classifier is a comparator network with n registers and n/2 designated output terminals
such that each value appearing on the designated output terminals is at most as large as any
value appearing on the remaining output terminalsfor any input in Sn.

By a method similar to the proof ofthe zero-one principle (in [5]), the following statement
can be proved: If, when given n binary values, arbitrarily on its input terminals, a comparator
network always selects (as the values on k designated output terminals) the smallest k values
among the n binary values, then, it will always select the smallest k values among arbitrary n
values in an arbitrary totally ordered set S. Hence, without loss of generality, we assume that
the input set to classifiers is {0, 1 }n rather than Sn.

For x in {0, 1 }n, #1x denotes the number of x’s components equal to 1 and #0x denotes
the number of x’s components equal to 0. Note that any Boolean function implemented by a
comparator network is monotone in the sense described as follows’ Let x and x be vectors
in {0, 1 }n, and let y and y’ denote the outputs of N corresponding to x and x, respectively;
then x _< x’ implies y _< y’, where (al an) <_ (bl bn) means that a < b
an- <_ bn- and an _< b.

CONSTRUCTING SELECTION NETWORKS 711

DEFINITION 2.2 (an expander). Let 0 < ot <_ 1 and > 1. Let G (A, B, E) be a
bipartite graph with left vertex set A, right vertex set B and edge set E. G is an (o,)-
expander if l{y B l(3x X)((x, y) E)}[>_/lXl holds for every subset X

_
A with

IXl _< lAI.
DEFINITION 2.3 (a compressor). Let n and m be positive integers and let ot and be

real numbers with O < ot < and 13 > 1. Let x (xl,x2 Xn+m) be an input to
a comparator network with n + rn registers, and let y (yl, y2,..., Yn+m) denote the
output corresponding to x. An (n, m, , /)-compressor of type 1 is a comparator net-

work with n + rn registers such that if x is in {0, 1}n+m and #1x <_ [(/ + l) koenJ], then
#1 (yl, y2 Yn) <- #1 (Yn+l, Yn+2 Yn+m). An (n, m, or, #)-compressor of type 0
is a comparator network with n + rn registers such that if x is in {0, 1}"+m and #ox <

[(/3 + 1) LomJ], then fl#0(Ym+l, Ym+2,..., Yn+m) <_ #o(Yl, Y2 Ym). The registers
1, 2,..., n ofan (n, m, or, #)-compressor of type and the registers 1, 2 m ofan (n, m,
or, #)-compressor of type 0 are called upper registers. The registers n + 1, n + 2 n + m
ofan (n, m, or, 13)-compressor of type 1 and the registers m + 1, m + 2 n + m ofan (n,
m, or, #).compressor oftype 0 are called lower registers.

DEFINITION 2.4 (an extractor). Let n andm bepositive integers, and let 7’ be a real number
with 0 <_ , <_ 1. An (n, m, ,)-extractor is a comparator network N with n + 2m registers such
thatfor every x (xl Xn+2m in {0, 1}n+2m, #1X <__ n + rn implies #1 (Yl Ym) < ?’m
and #ox <_ n + m implies #O(Yn+m+l Yn+2m) < gm, where (Yl Yn+2m) is the output
ofN corresponding to x. The registers 1, 2 m, the registers rn + 1, rn + 2 n + rn
and the registers n + rn + 1, n + rn + 2 n + 2m ofan (n, m, ?’)-extractor are called upper
registers, middle registers, and lower registers, respectively.

It is easy to see that an (n, m, c,/3)-compressor of type 1 becomes an (n, m, or, /)-
compressor of type 0 by interchanging register and register n + m, register 2 and register
n + rn 1, and so on, and keeping the direction of each comparator.

PROPOSITION 2.5 (see [1], [2]). Assume that there exists an (or,)-expander with n left
vertices and m right vertices. Let s denote the number ofedges and k the maximum degree of
a vertex of the expander. Then there exist (n, m, or, t)-compressors of types both 1 and 0 of
size at most s and ofdepth at most k.

Proof We only prove the existence ofan (n, m, or,/3)-compressor oftype 1. The existence
of an (n, m, or,/3)-compressor of type 0 is proved in a similar way.

Let G (U, V, E) denote the (or,/3)-expander, where U {Ul Un is the set of the
left vertices of G, V {vl Vm is the set of the right vertices of G, and E

_
U x V is

the set of the edges of G. Since the maximum degree of G is k, we can color the edges of
the expander with k colors in such a way that no two adjacent edges have the same color. Let
C1, C2 Ck denote the k colors. From G along with the coloring above, we can construct
a comparator network N that satisfies the following properties"

1. N has n + rn registers.
2. There is a one-to-one correspondence p from the edges of the expander onto the

comparators of N. For every (ui, vj) in E, p((ui, vj)) is a comparator which connects the
register and the register n + j, and the head register of P((Ui, Vj)) is greater than the tail
register of p((ui, vj)).

3. Let a and b be comparators incident to the same register. Let and j be indices of
colors such that Ci and Cj are the colors of p-1 (a) and p-1 (b), respectively. If a is between
an input terminal and b on the register, then < j holds.
It is clear that size(N) s and depth(N) k. The fact that N is an (n, m, t, l)-compressor
of type 1 is proved as follows.

Let x (Xl, x2 X+m) be an input to N, and let y (Yl, Y2 Yn+m) de-
note the output of N corresponding to x. Assume that #1x #1y _<

712 S. JIMBO AND A. MARUOKA

and/3#1(yl, y2 yn) > #1(yn+l, Yn+2 Yn+m). Let I {ui U Yi 1} and
J {Vj V Yj+n }. In the case where III < otn, the number of the right vertices of G
which are adjacent to a left vertex in I is at least/3[I[> [J[by the assumption. In the case
where [II > oen, the number of the right vertices of G which are adjacent to a left vertex in
I is at least [/Ln]] > IJI because [J[
In both cases, therefore, there exists an edge (u., v) in E such that u. is in I and v is not
in J. Hence there exists a comparator c of N which connects register/x and register v. Since
register/z is the tail register of any comparator incident to the register, a value on register
never changes from 0 to 1 by passing a comparator. Therefore, the fact that the output of N
on register/z is 1 (i.e., u. 6 I) implies that any value on register/z is 1, and hence the output
of comparator c on register/z is 1. Similarly, the output of comparator c on register v is O.
These facts contradict the fact that c is a comparator.

Proposition 2.6 below is obtained by modifying Bassalygo’s lemma (in [4]) and hence its
proof. Although Proposition 2.6 is almost the same as Bassalygo’s lemma in appearance, the
former is stronger than the latter in some sense. This is because our definition of expanders
is stronger than Bassalygo’s in [4]. To prove Proposition 2.6, we followed the argument due
to Bassalygo [4], correcting some careless calculation and adding calculations concerning
ceiling and floor. The proof of the statement is given in the appendix.

PROPOSITION 2.6. For any positive integers q and p, any positive real numbers
(0 < ot < p/lq < 1), and a sufficiently large integer n (n >_ no(a, , p, q)), there exists an
(c,)-expander with qn left vertices and pn right vertices such that the number of edges is
less than or equal to spqn, the maximum degree of the left vertices is less than or equal to

sp, and the maximum degree of the right vertices is less than or equal to sq, where s is any
integer greater than

max { H(ot) + (p/q)H(otq/p)
pH ot o#3qH p/flq

p(1 +/3) ot/3(p + q)/.
!p(p cq)

In the expression above, H(x) is defined to be -x log x (1 x) log(1 x)for 0 < x < 1.
Lemmas 2.7 and 2.8 below are obtained directly from Proposition 2.6.
LEMMA 2.7. Let k >_ 2 and m > 1 be integers. For every e > 0 with m(k 1) > 1,

there exist an integer no > 0 and a real number ot with 0 < ot < 1 such thatfor all positive
integers n > no and <_ mn, there exists an (mnot/ l, k 1 e)-expander with left vertices
and n right vertices such that the degree of every left vertex is at most k and the degree of
every right vertex is at most mk.

Proof Let p 1, q m,/3 k 1 e, and s k. Since

H(ot) + (p/q)H(oo3q/p)
lim max
-o pH(ot) otqH(p/flq) p(l+/3)-ot/3(p+q)} 1+/3

p(p otq) p

there exists a real number ot such that

p 1

flq m(k- 1 e)
<1

and

H(ot) + (p/q)H(cflq/p)
s k > max

pH(oe) otflqH(p/flq)
p(1 + 13) otfl(p + q)

/p(p otflq)

CONSTRUCTING SELECTION NETWORKS 713

Note that x/H(x) -- 0 (x --+ 0)and, for every c > 0, H(cx)/H(x) -- c (x --+ 0). By
Proposition 2.6, therefore, there exists a positive integer no such that, for any integer n > no,
there exists an (ot, k 1 e)-expander G (U, V, E) with mn left vertices and n right
vertices such that the degree of every left vertex is at most k and the degree of every right
vertex is at most mk. Let U’ c_ U be an arbitrary subset of left vertices of G with IU’l I.
By the definition of expanders, the induced subgraph G’ (U’, V, E’) of G is an (mnot/l,
k 1 e)-expander with left vertices and n right vertices such that the degree of every left
vertex is at most k and the degree of every right vertex is at most mk. [3

LEMMA 2.8. Let ot and fl be real numbers with 0 < ot < 1/fl < 1. There exist positive
integers mo and k such that for all positive integers m > mo and n < m, there exists an

(mot/n, fl)-expander with n left vertices and m right vertices such that the maximum degree
of its vertices is at most k.

Proof Let p q 1 and

pH(ot) otflqH(p/flq) p(p otflq)

Then by Proposition 2.6, there exists a positive integer m0 such that, for any integer m > m0,

there exists an (ot, fl)-expander G (U, V, E) with m left vertices and m right vertices such
that the maximum degree of its vertices is at most k. Let U’ c__ U be an arbitrary subset
of left vertices of G with IU’l n. By the definition of expanders, the induced subgraph
G (U’, V, E’) of G is an (mot/n, fl)-expander with n left vertices and m right vertices such
that the maximum degree of its vertex is at most k. q

LEMMA 2.9. For every 0 < 0 < 1, every integer k > 3, and every 0 < e <
k 2, there exist a positive integer na (0, k, e) and a real number ota (0, k, e) with 0 <
ota (O, k, 13) < such that, for all n and m with n > ha(O, k, e) and m >_ On, there exist an

(n, m, ota(O, k, e), k- 1 e)-compressor of type 1 and an (n, m, ota(O, k, e), k- 1 e)-
compressor oftype 0 such that those depths are both at most 0-1] k and those sizes are both at

most kn.
Proof Since m > On implies n < 0-1] m, Lemma 2.9 follows from Proposition 2.5

and Lemma 2.7. [3

LEMMA 2.10. For every 0 < y < 1 and every 0 < 3 < 1/2, there exist positive integers
n(y, 3) and k(v, 3) such that for all positive integers m and n with n > n(v, 3) and
m > 3(m + n), there exists an (n, m, ,)-extractor ofdepth at most k(v, 3) and size at most

k(y, 3)m.
Proof Let/3 - and ot 2-aa Then 0 < ot < 1// < holds. By Lemma 2.82(1-3y)

there exist positive integers m0 and k such that, for all positive integers n and m with n + m >

m0, there exists an (ot(m / n)/m,/3)-expander with m left vertices and m + n right vertices
such that the maximum degree of its vertex is at most k. Let n(,, 3) and k(,, 3) be
max{(1 3)m0], r2(1-Y)q}zv2, and 2k, respectively. It is easy to see that 3(m + n) _< m
and n > n(v, 3) imply m + n >_ m0. Thus by Proposition 2.5, for all positive integers
m and n with 3(m + n) _< m and n > n(?’, 3), there exist an (m, m + n, ot(m + n)/m,
/3)-compressor of type 1, say N1, and an (m, m + n, ot(m + n)/m,/3)-compressor of type
0, say No, such that size(N1) < kin, size(N0) <_ kin, depth(N) < k, and depth(N0) _< k.
Let N denote the comparator network constructed by joining each output terminal of N
to the input terminal of No of the same register number. Thus depth(N) < k(v, 3) and
size(N) < k (?,, 3)m.

It will be proved that N is an (n, m, v)-extractor. Let x (x Xn+2m) be a vector
in {0, 1}n+2m, which is an input to N. Let y (y Yn+2m) denote the output of N
corresponding to x and z (z Zn+2m) the output of No corresponding to y. That is, z is

714 S. JIMBO AND A. MARUOKA

the output of N corresponding to x. Then the following inequality holds.

(fi + 1) ot(m + n)
rn

>__ (/3 + 1) ((m + n)ot 1)

=m+n+
y

(m +n)
2(1 -3y) 6?’

>_m+n+
6y

n(?’,)
2(1 6y) 39/

_> m + n +
2(1 6y) \ 62y2 6y

m + n.

First, assume that #ix < m + n. Since N1 is an (m, rn + n, a(m + n)/m, fl)-compressor of
type 1, #1 (YI Ym) <_ #1 (Ym+l Yn+2m). Since #ix #1Y _< m + n,

m+n m
#1 (Yl Ym) < < ym

+/ (1 + fl)6

holds. Since the tail register of each comparator of N incident to a register among rn
belongs to 1 rn }, we have

#1(Zl Zm) < #I(Yl Ym) < ym.

Next, assume that #0x #0y < m + n. Since No is an (m, rn + n, c(m +n)/m, fl)-compressor
of type 0, #O(Zm+n+l Zn+2m) < #o(Zl Zm+n). We therefore have

#O(Zm+n+l Zn+2rn)
m+n m

< =ym.
+ (+)

Note that all the compressors and extractors constructed by Lemmas 2.9 and 2.10 are all
of constant depth.

In the following sections, we construct the classifiers by connecting modules, such as
compressors and extractors, repeatedly in cascade. To verify that the comparator network
obtained in this way works as a classifier, we need to show that the error in the networks tends
to decrease. Assuming some input vector is fed to the input terminals, we consider as the error
the number of values appearing in the wrong output terminals. The next two lemmas indicate
that, under certain conditions about the connection of comparators, the network’s ability to
decrease the error can be expressed in terms of that of the modules which constitute the whole
network.

LEMMA 2.11. Let N be a comparator network with n registers. Let i, j, and k be integers
with 1 <_ < j < k < n + 1. Let a and c be real constants with a > 0 and 0 <_ c <_ 1.
Assume that N satisfies thefollowing conditions:

1. There is no comparator that connects a register in 1, 2 1 and a register in
{i, + 1 n} and there is no comparator that connects a register in 1, 2 k 1 and
a register in {k, k + 1 n}.

2. Let N’ denote the comparator subnetwork of N composed of registers i, + 1,
k 1 and the associated comparators of N. For every z in {0, 1 }k-i, #1z < a implies

(Z)) < C#1 (Ui (z) (N (z) Nk_N_I(Z)) c#1z, where (z))#1 (Ni (Z), Nj_
denotes the output of N’ corresponding to input z.

CONSTRUCTING SELECTION NETWORKS 715

Let u > 0 and v > u be real numbers with IvJ lul < a. Let x (Xl x,) in {0, 1}n
with #1(Xl xi-1) < u and #1 (xl Xk-1) < v. Let y (Yl Yn) denote the output

ofN corresponding to input x. Then

#1 (yl, Y2 Yj-1) < u + c(v u).

Proof. Note that condition implies that

#1 (Xl, x2 xi-1) #1 (yl, y2 yi-1),

#1 (xi, Xi+l Xk-1) #1 (Yi Yi+l Yc-1),

#1 (Xk, Xk+l, Xn) #1 (Y, Y+I Yn).

and

Let w #1 (xi, Xi+l Xk-1) #1 (Yi, Yi+l Yk-1), AU U LuJ, and Av v LvJ.
Then, since0 <_ c < 1, wehave(1-c)Au+cAv >_ O. Since [u] +c(lvJ- [uJ)
u + c(v u) ((1 c)Au + car) <_ u + c(v u), it suffices to show that

#1 (yl, Y2 Yj-1) LuJ + c(LvJ LuJ).

There are two cases to consider.
Case l. w> [vl luJ.
Since #1(Xl, x2 xk-1) < V and #1 (xl, x2 x-l) is an integer,

(1) #1 (Yl, Y2 Yi-1) #1 (Xl, X2 Xk-1) W lwJ to.

Since w #1 (Xi, Xi+l,..., Xk-1) LVI ku/, we are able to take x’ (x,..., xk_l)’ such
that #1 (x X_) IV] /U] and (xi,.. x,_) >_ (x,.. ,y’x_). Let (Yi ,- 1)
denote the output of N’ corresponding to input (x x_1). Then by the fact that a >

Lv/-/u/ #(x xk_l), condition 2, and the monotonicity of N’, we have

#1 (Yj Yk-1) > #1 (Yj, Yk-1) >--- (1- c)(LvJ Lu/),

which implies

(2) #1 (Yi, Yi+l Yj-1) <_ W (1 C)(lVl Lul).

Thus by expressions (1) and (2), we have

#1 (Yl, Y2 Yj-1) <-- (LvJ w) + w (1 -c)(LvJ Lu/)

LuI + c(Lv] Lu/).

Case 2. w < LvJ- LuJ.
Since #1 (xl, x2, xi-1) <_ u and #1 (xl, x2, xi-1) is an integer, we have

(3) #1 (Yl, Y2,..., Yi-1) #1 (Xl, X2, Xi-1) <_ LuJ.

On the other hand, by condition 2 and the inequality a > Iv] luJ > w, we have

(4) #1 (Yi, Yi+l Yj-1) <_ cw <_ c(kvJ LuJ).

Thus by expressions (3) and (4), we have

#I (Yl, Y2 Yj-1) LuJ + c([.vJ kuJ).

716 S. JIMBO AND A. MARUOKA

The next lemma is the same as the previous one except that the condition bounding the
number of l’s in an output vector is given in a different way from the condition in the previous
lemma.

LEMMA 2.12. Let N be a comparator network with n registers. Let i, j, and k be integers
with 1 < < j < k <_ n + 1. Let a > 0 and c’ > 0 be some constants. Let a and c’ be real
constants with a > 0 and c’ > O. Assume that N satisfies thefollowing conditions:

1. There is no comparator that connects a register in 1, 2 1 and a register in
{i, + 1,..., n} and there is no comparator that connects a register in 1, 2 k 1 and
a register in {k, k + 1 n}.

2. Let N denote the comparator subnetwork ofN composed of registers i, + 1
k and the associated comparators of N. For every z in {0, 1}k-i, #lZ a implies
#1(N(z), Nj_I(Z)) < c’, where (N(z) N_I(z)) denotes the output of U’ corre-
sponding to input z.
Let u > 0 and v > u be real numbers with [v] [uJ < a. Let x (xl xn) be a vector
in {0, 1}n with #1 (xl xi-1) < u and #1 (xl x-l) < v. Let y (Yl Yn) denote
the output ofN corresponding to input x. Then

#1 (Yl, Y2 Yj-1) <_ u + c’.

3. Construction of classifiers. In this section, we give the complete structure of our
classifiers. Before describing the structure in detail, we need to give some definitions and
notations.

For simplicity, the input size of our classifier, denoted n, is assumed to be even. We take
arbitrarily real constants ec, Oc, and 3c and integer constant kc satisfying

2 (1 + /1
(5) 0<ec, O < Oc < 1, 0<6c < and kc >_ + ec.

Roughly speaking, our classifier is constructed, as is shown later in Fig. 3, by connecting
O (log n) comparator networks, called layers, and removing unnecessary comparators from
the layers.

As illustrated in Fig. 2, a typical layer is composed of compressors and an extractor put
in the center of the layer. The submodule in the center of the layer put at the rightmost part is
taken to be a sorter rather than an extractor.

In order to precisely specify these compressors, an extractor, and a sorter in a layer, we
need to define sets of registers, which are called sections. Each section is denoted Xn(i),
Y,(i), or Z(i). Based on sections defined in Definition 3.1, the modules in a layer, such as
compressors, an extractor, and a sorter, will be defined in Definition 3.8.

DEFINITION 3.1. For a positive integer i, Xn(i) denotes the set {(n/2)(1 0-1) +
1, (n/2)(1-0ic-1)]+2,..., (n/2)(1-O)}andY(i)denotestheset{n+l-x Ix Xn(i)}.
If[(n/2)(1-o-l)q (n/2)(1-O)q, thenX,(i)-- Yn(i)= 0. Foranintegeri > O, Zn(i)

set {1 n} \ (_J= Xn(j)denotes the U Uj--1 Y,(J))"
We need to define some more constants which are determined by the constants Sc, Oc,

3c, and kc mentioned above. In the following lemmas, we state conditions concerning the
constants. These conditions will be used later.

The compressors in layers are constructed using Lemma 2.9. Constants kc and Sc cor-
respond to k and s in the lemma, respectively. So kcn gives the upper bound on the size of
the compressors except the outermost ones in a layer, whereas kc Sc represents the
performance parameter of the same compressors. In the case of the outermost compressor in
a layer, we take kD (described in Definition 3.8) to correspond to parameter k in Lemma 2.9.

CONSTRUCTING SELECTION NETWORKS 717

Input

Xn(1)

Y
Xn(2)

Output

Xn (j 2) Cn (j 2)

Xn(j- 1) Cn(j- 1)

Zn(j)

[
En (j)

Yn(- 1) Cn,(j 1)
I-’-I_

Y. (j 2) c(j 2)

T
Yn(2)

Yn(1)

FIG. 2. Structure oflayer Ln (j).

So in the case of the outermost compressors, kDn and ko ec give the upper bound on
the size and the performance parameter, respectively.

718 S. JIMBO AND A. MARUOKA

DEFINITION 3.2. Constants dc, kz), ?’c, Fo, F1, and jmax(n) are given as

dc=
6c l+kc_ec

Ocotc Ocotc dcotc
FC Fo F12(kc-ec)’ 4 2

jmax (n) max { 2n--log2((i+/-Oc))
log2(1/Oc

where nmax max{nA(Oc/2, kc, ec), nA(Oc/2, k9, ec), n(Fc, (1 Oc)/(1 + 20c))}, and
Otc min{ota (0c/2, kc, ec) Ola (0c/2, kD, ec)}.

LEMMA 3.3. Thefollowing statements all hold:

(6) 1 < dcSc < dc,

2dc
<1,(7)

kc ec

and

(8)
dc i=1 i=0

for any positive integer j.

Proof. This lemma can be proved by straightforward calculation.
LEMMA 3.4. Thefollowing statements all hold:

(9) 2 < kz) ec,

(10) kz) < kc,

and

1 (2dC +l)<c"(11)
kD Sc kc Sc

Proof. This lemma can be proved by straightforward calculation. S
The constant Fc, corresponding to ?, in Lemma 2.10, gives the performance parameter of

an extractor in a layer, which is constructed by using the lemma.
LEMMA 3.5. Thefollowing statement holds:

(12) kc ec
Fc F0.

2

Proof. This lemma can be proved by straightforward calculation.
LEMMA 3.6. Thefollowing statements all hold:

(13) (Oc/2)lXn(j)l <_ IXn(j +)1 for j 1 jmax(n)- 1,

(14) IXn(j + 1)l < IXn(j)l for j jmax(n)- 1,

CONSTRUCTING SELECTION NETWORKS 719

(15)

(16)

Oc
1"-t- 20 (IX(j)l-t-IZ,(j)l) _< for j 1 jmax (n),

IXn(j) 0 Zn(j) L) Y,(j)I >- n(yc, (1 -Oc)/(1 + 20c)) > 1

for j 1 jmax (n),

(17) IXn(j)l >_ nA(Oc/2, kc, sc) > 1 for j 1,..., jmax(n),

(18)

and

(19)

[Xn(j)[_> na(Oc/2, kD, eC) >_ 1 for j jmax(n),

IXn(j)[> 2/cc > 2 for j 1 jmax(n).

Proof. This lemma can be proved by direct calculation. Cq

Note that, because of ceilings appearing in Definition 3.1, the definition for X(i) does
not directly imply inequalities (13)-(15) in the previous lemma, especially when [Xn(i)[is
small.

Moreover, we can verify the following lemma by observing constraint (5), Definition 3.2,
and the previous four lemmas.

LEMMA 3.7. Thefollowing statements holdfor the constants:

(20) Fo < F1,

(21) dcPolX(i)l <_ I’llXn(i q- 1)1 for 1 jmax(n)- 1,

(22) ?’c/ac < 1-’0,

2
(23)

kc ec

(24)

and

(25)

+ UIIX,(j)I <_ 2clX(j)l- 2 for j 1 jmax(n),

jmax (n) O (log n),

IXn(jmax(n)) Zn(jmax(n)) Yn(jmax(n))] IZn(jmax(n) 1)l 0(1).

We are now ready to specify how to construct a layer, illustrated in Fig. 2, using modules
such as compressors, an extractor, and a sorter.

DEFINITION 3.8. Cn (1) isan(lXn(1)l, IX,(2)I, OeA(Oc/2, kn, ec), kn-l-ec)-compressor
of type that crosses the registers in Xn (1) 0 Xn (2).

Cn(1) is a (IY(1)I, IYn(2)], OIA(Oc/2, kD, 8C), kD ec)-compressor of type 0 that
crosses the registers in Yn (1) U Y (2).

For 2 jmax(n) 1, Cn(i) is an ([Xn(i)[, [Xn(i -F 1)], Ota(Oc/2, kc, SC), kc
1 ec)-compressor of type 1 that crosses the registers in X(i) t2 Xn(i + 1).

For 2, jmax (n) 1, oCn(1)isa([Yn(i)[, [Yn(i+l)[,Oa(Oc/2, kc, ec),kc-l-ec)-
compressor oftype 0 that crosses the registers in Yn(i) U Yn(i + 1).

For 1 jmax(n) 1, En(i) is a (]Zn(i)],]X(i)], gc)-extractor that crosses the
registers in X(i) kJ Zn(i) U Yn(i).

720 S. JIMBO AND A. MARUOKA

En(jmax(n)) isan (IXn(jmx(n))l + IZ,(jmax(n))l + IYn(jmax(n))l)-sorterthatcrossesthe
registers in Xn (jmax (n)) U Zn (jmax (n)) Yn (jmax (n)).

As shown in inequalities (16)-(18), jmax(n) is taken to be small enough to make the sizes
of Xn(i), Yn(i), and Zn(i) large for 1,..., jmax(n) so that C(i) and C(i) constructed
according to Lemma 2.9 work as compressors for 2 jmax(n) and En(i) constructed
according to Lemma 2.10 works as an extractor for 1 jmax(n) 1. Moreover, as
shown in (25), jmax(n) is also taken to be large enough to make the sizes of Xn(jmax(n)),
Yn (jmax (n)), and Zn (jmax (n)) less than some constant not depending on n.

LEMMA 3.9. There exist Cn(1) Cln(jmax(n))- 1, Cn(1) Cn(jmax(n))- 1, and
En(1) En(jmax(n)) such that thefollowing hold:

size (Cn(1)) <_ kolXn(1)l, size (Cn(1)) _< kolX(1)l,

depth(Cn(1)) < [2ko/Oc], and depth(C(1)) < [2ko/Oc];

for j 2 jmax(n) 1,

size (C (j)) < kclX, (j)l, size (Cn (j)) < kclX, (j)l,

depth(Cn(j)) < [2kc/Ocq, and depth (C(j)) < [2kc/Oc];

for j 1 jmax(n),

size (En (j)) O(IXn(j)l) and depth(E(j))= O(1).

Proof. The lemma easily follows from Lemma 3.6, 2.9, and 2.10. [3

For comparator networks M and N with the same number--say mmof registers, M o N
denotes the comparator network with rn registers obtained by joining the th output terminal
of M to the ith input terminal of N for each 1, 2, m.

DEFINITION 3.10. Let n be an even positive integer For j 1, 2 jmax(n), the layer
ofrank j with n registers, denoted by Ln(j), is defined asfollows: Ln(1) En(1);for j > 2,

0 (Cn(1) o Cn(1)).Ln (j) En (j) o (Cn (j 1) o Cn (j 1)) o o

The structure of layer Ln (j) is illustrated in Fig. 2. We note here that there are generally
many expressions describing the same comparator network. For example, layer En(j) o

o (C(1)oCn(Cn(j 1) o Cn(J 1)) o... o (1)) in the definition above can also be written as
En(j) o Cn(j 1) o...o Cnl(1) o Cn(j 1) o...o Cn0(1).

We are now ready to describe the comparator networks which we intend to be classifiers.
DEFINITION 3.11. Given an even positive integer n, we define comparator network N"n

with n input terminals asfollows:
1. For a positive integer j and a nonnegative integer k, we define g(j,k) as

d-lg(1, 0), where g(1, 0) r01x()l. In addition, G(j, k) denotes =1 g(i, k).
2. For a positive integer k, we define jk asfollows: ifjmax(n) 1, then jk jmax(n)

1; else ifg(jmax(n) 1, k 1) < I’olXn(jmax(n 1)1, then j jmax(n); else fi min{j 6

{1 jmax(n) 1} g(j, k 1) > I’olXn(j)]}. In addition, we define jo to be 1. Let L
denote Ln(jk).

3. For a nonnegative integer k, N denotes Lo o L1 o o Lk.
4. Let k be a nonnegative integer. We define/max(k) as follows: if G(1, k) > 1, then

/max(k) 0; otherwise/max(k) max{/ {1, 2, j} G(i, k) < 1}. Moreover, we define
0L asfollows: if tmax(k) < 1, then L L; otherwise L En(j) o (Cln (jk 1) o Cn (J

1)) o...o (Cn (/max(k)) o Cn (imax(k))). Intuitively, L is defined to be the comparator network
obtained by removing Cn (1) Cln(imax(k) 1), Cn(1) and Cn(imax(k) 1)from Lk.
We call Lk as well as L a layer.

CONSTRUCTING SELECTION NETWORKS 721

X2
X3

.7-77 7 -,.. -..
-S,? 7-,-

II II II II II II I! I I
II II !1 II II
I! II !1 II
II II II
II !1

Xn-2
Xn-1
Xn

Each framed rectangle represents a compressor, whereas each black rectangle
represents an extractor or a sorter. The binary values on the registers pass from
the left to the right.

Yl
Y2
Y3

Yn--2
Yn-1
Yn

FIG. 3. A sketch ofclassifierN"n.

5. For a nonnegative integer k, N denotes Lo o U o...o L.
6. The expression kmax(n) denotes min{k 6 N ljk jmax(n) and G(jmax(n), k) < 1 }.
7. The expression N"n denotes Nmax(n.

Fig. 3 shows a sketch ofN"n.
As is illustrated in Fig. 3, the classifier given by Definition 3.11 is the comparator network

with n input terminals on which labels X Xn are put and n output terminals on which
labels yl Yn are put. To construct the classifier, we first connect kmax -!- 1 layers in
cascade to obtain Lo o L1 o o Lkm,x and then remove unnecessary compressors to obtain
L’o o L’ o o Zkm,x which is a classifier, denoted by N"n. Typically, layer Lk looks like the
network given in Fig. 2 with j replaced by j. So layer L has 2(j 1) compressors. By the
definition of j, it is clear that 1 < jk < jmax(n). Moreover, by (6), (14), and the definition
of function g, it will be shown that j < jk-1 + 1 for any positive integer k (Lemma 4.2).
So the number of compressors in a layer increases by at most 2 as the index k of layer Lk

increases by 1. Integer jmax(n) gives the maximum integer among jl < < Jkmax(n), that is,
Jkmax(n)

Before giving the proof thatN" defined above works as a classifier, we describe the rough
idea behind the definition. Let Bn denote {x 6 {0, 1 }" #0x #1x(= n/2)}. By an argument
similar to the proof of the zero-one principle for sorting networks in Knuth [5], we can derive
that if a comparator networkwsay Nmwith n registers sorts any vector in Bn, then N works
as a classifier for any totally ordered input set. In what follows, we therefore confine input
vectors toN" to Bn. Since a vector in B is assumed to be given as input to N", it is natural to
consider l’s appearing in registers 1, n/2} and O’s appearing in registers {n/2+ 1 n}
at the output terminals ofN"n to be error or impurity. For S c_ 1 n }, let ((xl x,) S)
denote (xsl XSm), where S {sl Sm} and sl < < Sm. The key parameter in the
argument for verifying that .]’n is a classifier is the error vector of a comparator network N
which, as its component, gives the maximum number of the possible errors in each region of
the output terminals of N, such as =1 Xn (j) or U=I Yn (J) when N receives an arbitrary
input vector in Bn as input.

722 S. JIMBO AND A. MARUOKA

DEFINITION 3.12. Let N be a comparator network. For jmax(n), let Error (N)
denote

max [max# (N(x)xeB,) (UX’(J) max#o N(x)
j=l XBn

_J Yn(j)
j=l

Vector (Error (N) Errorjmax(n) (N)) is called the error vector of N.
It can be easily seen that since the module in the center of the rightmost layer of .A/"n is

the sorter working on Xn(jmax(n)) ID Zn(jmax(n)) 1,3 Yn(jmax(n)), it follows that if there exists
no impurity in Wj=l[[jmax(n) (Xn(j) (-J Yn(j)) at the output terminals of A/"n, then there exists no
impurity in any register at the output terminals, i.e., A/"n works as a classifier for all of the
input vectors in Bn. So in order to verify that A/" works as a classifier, it suffices to show that
the jmax(n)th component of the error vector of .A/"n is 0.

For real-valued vectors x (xl Xl) and y (Yl Ym), we write x < y
if > m and xi < Yi for each 1 m. It will be shown that for each k
1,..., kmax(n), (G(1, k), G(2, k) G(jk, k)) is an upper bound on the error vector of
Nk (= L0 o L1 o L) under the relation < for vectors mentioned above, i.e., for each
k 1 kmax(n) and each 1 jg, inequalities maxxBn #1 (N(x) = X(j)) <

G(i, k) and maxxeB, #o(N(x) j=l Yn(j)) < G(i, k) hold. So G(i, k) can be regarded
as the number of errors that we allow to appear in the regions j=l X(j) or j=l Y(J)
at the output terminals of Nk. On the other hand, by the definition of kmax(n), we have
G(Jkmax(n), kmax(n)) G(jmax(n), kmax(n)) < 1. Thus we can prove that the jrnax(n)th com-
ponent of the error vector of Nkmax(rt)(--- Hr/) is zero.

The fact that (G(1, k), G(2, k) G(jk, k)) is an upper bound on the error vector of
N L0 L1 Lg for k 1 kmax(n) will be proved by induction on k. Roughly
speaking, this fact will be verified by showing that whenever a layer is connected to the
right side of the comparator network, the performance of the network is improved by the
factor of 3c < 1 with respect to the error vector. To make the statement precise, we
need to introduce condition A and property B described in Definition 3.13 below. Setting
j j, let G1 G(1, k 1) Gj G(j, k 1). As the induction hypothesis, we
assume that (G Gj-1) is an upper bound on the error vector of Nk-1. Furthermore, we
can see that (G1 Gj) satisfies condition A in Definition 3.13. Then we can show that
3c G Gj G 1, k) G(j k) is an upperbound on the error vector ofNk-10L (j)
(Lemma 4.8). Thus it is concluded that L,,(j) has the property of improving the error vector
by the factor of 3c. We call this property B[j]. Once it is proved that (G(1, k) G(jk, k))
is an upper bound on the error vector of N for k 1 kmax (n), it can be shown that N
behaves exactly the same way as N for k 1 kmax(n) (Lemma 4.9). This is because N
is obtained from N by removing unnecessary compressors. Recall that compressor C (i) in
layer L, which works on X,(i) U Xn(i + 1), is unnecessary if G(i + 1, k) < 1 holds, i.e.,
there exists no impurity in Xn (1) U... U X (i + 1) at the output terminal of Lk, and similarly
for Cn (i).

The precise definitions for condition A and property B[j] are given as follows.
DEFINITION 3.13. Let (G1 Gj) be a vector whose components are nonnegative real

numbers. Vector (GI Gj) is said to satisfy condition A if the following three conditions
are satisfied:

A1. If j > 2, then G2 G1 dcG1 and, for any 2 j 1, Gi+l Gi
dc(Gi Gi-1).

A2. G1 < I"ll Xn (1)1 when j 1, and Gj Gj_l < 1Xn (j)l otherwise.
A3. j--jmax(n), or ifj-- 1, then G1 > 1-’olXn(1)l; otherwise Gj Gj_ > FolXn(j)l.

CONSTRUCTING SELECTION NETWORKS 723

Let j be apositive integer not greater than jmax (n). Comparator network L is said to have
property B[j] ifthefollowing conditions are satisfied: If(G1, Gj satisfies condition Aand

ifj or (G1 Gj_I) is an upper bound on the error vector of N, then 3c(G1 Gj)
is an upper bound on the error vector ofN o L.

Before closing this section, we discuss briefly the size and the depth of Afn. To estimate
the depth of our classifier Afn, we first notice that any module inN"n, such as a compressor, an
extractor, or a sorter, has constant depth. Then we verify that any path from an input terminal to
an output terminal in A/" passes at most O(kmax(n) nc jmax(n)) modules. Finally, by showing
that jmax(n) O(logn) and kmax(n) O(logn) (Lemma 4.12 in the next section), we
conclude that the depth ofAf is O(log n).

To estimate the size of Af we notice that the same module may appear repeatedly in
different layers. For example, compressor C(i) working on X(i) U X(i + 1) may appear
in several layers. It turns out that the size of the compressors dominates the size of Afn. We
shall show that any kind of compressor appears in at most log2 n/log2 (1/3c) distinct layers
in A/"n. So, by setting constants ec, Oc, 3c, and kc suitably, we can show that the total size of
our classifier is Cn log2 n + O(n) for any constant C greater than 3/log2 3 (Theorem 4.14 in
the next section).

4. Analysis of cornparator network A/"n. In this section, we shall analyze the behavior
of comparator network Af and give a strict proof of the fact that A/" is a classifier for every
even positive integer n. Then we shall evaluate the size and depth of the classifier, proving
the main result (Theorem 4.14).

LEMMA 4.1. For any positive integers j and k, condition g(j, k 1) > F01X(j)I is
equivalent to condition j < j.

Proof It follows from the definition offunction g and fact (14) that g (x, k- 1) F01X (x)l
is strictly monotone increasing with respect to x on the set ofpositive integers. Thus the lemma
follows. q

(26)

and

(27)

LEMMA 4.2.

For any nonnegative integer k, 1 < j < jmax(n),

for any positive integer k, j < j_ + 1.

Proof. Statement (26) is obvious by the definition of j. We shall show that statement (27)
holds.

First, assume thatk 1. Then we haveg(1, k- 1) g(1,0) F01X,(1)I. By
Lemma 4.1, we have j < 1, which verifies that jk < 2 jk_ + 1. Next, assume that
k > 2. By the definition of j_, we have g(j_, k 2) > 1-’0lXn(j-l)l. By inequalities
(6) in Lemma 3.3 and (14) in Lemma 3.6, we have g(j_ + 1, k 1) dc3cg(j-l, k
2) > g(jk-, k 2) > I’olX(jk-)l >_ FoIX(j_ + 1)1. Thus by Lemma 4.1, we have
jk < jk- + 1. This completes the proof of the lemma. [3

LEMMA 4.3. For any integer k with < k < kmax(n), (G(1, k- 1), G(2, k- 1)
G(jk, k 1)) satisfies condition A.

Proof Let k be an integer in kmax (n) }. By the definitions of G and jk, it is obvious
that (G(1, k 1), G(2, k 1) G(jk, k 1)) satisfies conditions A1 and A3. We shall
show that (G(1, k 1), G(2, k 1) G(j, k 1)) also satisfies condition A2, that is,

g(jk, k- 1) < IlXn(j)l.

First, assume that j 1. Then, since I-’0 < and g (1, k 1) 3-g(1, 0) < g (1, 0)
by definition, we have g(j,k- 1) g(1, k- 1) < g(1, 0) 1701X(1)l < llXn(1)l-

724 S. JIMBO AND A. MARUOKA

1-’11Xn (jk)l. Next, assume that jk > 1. Then, by the definition of j, we have dcg(j
1,k- 1) < dcI’olXn(jg- 1)[. Moreover, g(j,k- 1) dcg(jk- 1, k- 1) follows
from the definition of function g, dcFolXn(j 1)1 < (2dc/Oc)IolX(j)l follows from
fact (13) in Lemma 3.6, and, finally, (2dc/Oc)IolXn(j)l 1-’l]X(jk)] follows from the
definitions of 1-’0 and F’l. Thus we have g(jk, k- 1) < I1]Xn(j)l, completing the proofofthe
lemma.

In the following lemmas, N denotes a comparator network, typically a subnetwork con-
sisting of modules in the left part of A/"n.

LEMMA 4.4. The inequality

Errorl(En(1)) < ’clXn(1)]

holds. Moreover, for any a > 0 and any integer j with 2 < j < jmax(n), if Errorj-1 (N) < a,
then

Errorj N o En (j < a + yc Xn (j

holds.
Proof By the definition of E (1) and the definition of extractors, the inequality

Errorl(En(1)) < ’clX(1)l

immediately follows.
Assume that Errorj-1 (N) < a. We shall show that

Error N En (j < a + Yc Xn (j

holds. Let x be a vector in Bn. Since Errorj-1 (N) < a, we have

and

#1(N(x) X,(1) ... J Xn(j 1)) < a

#o(N(x) Yn(1) U... U Yn(j 1)) < a.

It is easy to see that the latter implies

1
#1 (N(x) Xn(1) U... U X(j) U Zn(j) U Yn(j)) <_ -lZ(j 1)1 4- a,

whereas the former implies

1
#o(N(x) Yn(1) U... Yn(j) t2 Zn(j) LJ Xn(j)) < -]Zn(j 1)] + a.

Moreover, since (1/2)IZ (j 1)1 is an integer, we have

-[Zn(j 1)l / a Lal -lZn(j 1)l lZ(j)l 4-]X(j)l <]Zn(j)]-+-Ix(j)l.

If j jmax (n), then En (j) is a sorter. Applying Lemma 2.12 to the sorter, we have

#I(En(j)(N(x)) Xn(1) ’’" Xn(j)) < a < a + ?’clX(j)l

and

#o(En(j)(N(x)) Yn(1) U-.. t2 Yn(j)) < a < a + ’clXn(j)l,

CONSTRUCTING SELECTION NETWORKS 725

which imply Errorj (N o En(j)) < a + YclXn(j)l. Otherwise, E(j) is a (IZ,(j)I, IXn(j)[,
?’c)-extractor. Applying Lemma 2.12 to the extractor, we have

#, (En(j)(N(x)) Xn(1) 0... 0 Xn(j)) < a + ycIXn(j)I

and

#o(En(j)(N(x)) Yn(1) 0... 0 Yn(j)) <_ a + YclXn(j)l,

which imply Errorj (N o E,(j)) < a + YclX(j)[, completing the proof of the lemma.
The following two lemmas easily follow from Lemma 2.11 and the definition of a com-

pressor.
LEMMA 4.5. For any b > O, any c > O, and any integer j with 2 < j < jrnax(n) 1, if

ErrorJ-l(N) < b, ErrorJ+l(N) < c, and c b < [(kc 8c)[aclXn(j)lJ], then

c-b
Error (N o Cn (j) o C (j)) < b +

kc Sc

holds.
LEMMA 4.(5. For any d >_ O, ifError2(N) < d < f(k sc)LclX(1)lJ, then

d
Error (N o Cn o Cn)) _<

kD SC

holds.
LEMMA 4.7. For each j jmax(n), Ln(j) has property B[j].
Proof It follows from Lemma 4.4, (22), and condition A3 that Ln (1) has property B[1].

In the rest of this proof, assume that j > 2. Let G (G Gj) be a vector of nonnegative
real numbers that satisfies condition A. Assume that (G Gj_) is an upper bound on the
error vector of N. Let Mj denote En (j). Moreover, for an integer with 1 < < j 1, let

Mi denote the subnetwork of Ln(j) consisting of Cn (i) C (j 1), C(i) Cn(j 1)
0 (Cln(i) oCnand E(j), that is, Mi En(j) o (Cln(j 1) o Cn(J 1)) o.. o 0(i)). Notice that

Mi exactly crosses registers in Xn(i) 0 Zn(i) 0 Yn(i).
Now, by induction on i, we shall show that

2
(28) Error (N o Mi) <_ (Gi Gi-1) + Gi-1

kc sc
holds for each 2 j. First, we show that inequality (28) holds for j, which is the
induction basis.

By the assumption, applying Lemma 4.4 to Mj E (j) yields

Error (N o Mj) <_ YclXn (j)[+ Gj_ I.

Moreover, by condition A3, we have Gj Gj-1 >_ FoIXn(j)]. Therefore, it follows from
inequality (12) that

Errorj N o Mj <_ Yc Xn (j + Gj_

kc 8C
F0lXn(j)] + Gj-1

2

kc-sc
(Gj Gj-I) + Gj-I.

Thus, expression (28) holds for j > 2.

726 S. JIMBO AND A. MARUOKA

Next, let r be an integer with 2 < r _< j and assume that expression (28) holds for r.
By inequality (6), condition A2, facts (23) and (14), and the fact that kc ec > 2, which
follows from the constraint kc > (2 (1 + /1 6c)/6c) + ec in (5), we have

[2
(ar ar-1) "Jr- Gr-lJ6c

kc ec
(Gr Gr-1) nt- Gr-1 LGr-2J]
(Gr Gr-1) -Jr- (Gr-1 Gr-2) -]-- lJ

8C 1) j-}- "C (Gr Gr-1) + 1

2

8C
+ -c (Gj Gj_) + I

(29) <[(2

kc sc
+ ralX(j)l +

<_ L2clX(j)l- lJ

<_ LcclX(j)l + LclX(j)lJJ

2 LaclX(j)lJ

< 2 LcclX.(r 1)lJ

< F(kc ec) LaclX.(r 1)lJl.

On the other hand, by the induction hypothesis, we have

2
Error (N o Mr) <_ (Gr Gr-1) -]- Gr-1.

kc ec
Moreover, since Mr does not cross any register in Xn (1) U... U Xn (r 2) and Error (N) _< Gi
for each 1 j 1, we have

Errorr-2(N o Mr) Errorr-2(N) _< Gr-2.
Since inequality (29) holds, we have, by Lemma 4.5,

0Errorr-1 (N o Mr o Cln (r 1) o C (r 1))

2

Errorr-1 (N o Mr_l) <_ kc-ec (Gr Gr-1) nt- Gr-1 Gr-2
kc Sc

Hence it follows from inequality (7) that
2

Errorr-1 (N o Mr-l) <_ kc-sc (Gr Gr-1) -1- Gr-1 Gr-2
-1- Gr-2

kc Sc

2tic (Gr-1 Gr-2) -]- (Gr-1 Gr-2)kc -sc

kc Sc

2
< (Gr-1 Gr-2) q- Gr-2.
kc-ec

-1- Gr-2.

-Jr- Gr-2

CONSTRUCTING SELECTION NETWORKS 727

Therefore, expression (28) holds for r 1. Thus we have shown that expression (28)
holds for each 2, j. Moreover, by inequality (7) and fact (8), the following inequality
holds for each 2 j. In the rest of this proof, let Go denote 0.

Error (N o Mi <
kC EC

2

kc ec

(Gi -Gi-1)+Gi-1

i-1

(Gi Gi-1) -!- Z(Gj Gj-1)
j=l

2 (Gi Gi-1) -Jr- (Gi Gi-1)
1

kc ec h=

(Gi Gi-1)
kc 8c -c

h=l

(c(Gi Gi-1)
h=0

C (Gj Gj-1) cGi.
j=l

Now we shall show that Eorl(N o M) Eor(N o L(j)) 8cG. Since expres-
sion (28) holds for 2 and G G dcG, we have

(30) Eor(N o M2) < (G2 G1) + G1 + 1 G1.
kc-ec kc-ec

Moreover, by condition A1, condition A2, and fact (14), we have G G Gj Gj_
FIlX(j)I rlx(2)l. By fact (23) and inequality (9), we have

2
(31) Eor(N o M) (G G) + G

kc ec

(2 -+- (G2 G1)
kc cc -c

< + I’lXn(2)l
kc Sc

< 2cclX(2)1- 2 < 2oeclX(1)l- 2

< 2LuclX(1)l/

< f(kD cc)LoclX(1)lJ-I.
By (30), (31), Lemma 4.6, and (11), we have

0Error (N o M2 o C (1) o Cn (1)) Error (N o M1)

1 (2dc +I) GkD--SC \kc-,c

< 3cG.

728 S. JIMBO AND A. MARUOKA

Thus we have shown that Errori(N o Ln(j)) < Errori(N o Mi) < 3cGi holds for each
1,..., j, that is, 3c(G1 Gj) is an upper bound on the error vector of N o Ln(j).

Note that any component of the error vector does not increase after attaching a comparator
network. [3

LEMMA 4.8. For each k 0 kmax(n), (G(1, k) G(j, k)) is an upper bound on
the error vector ofN.

Proof We shall prove the lemma by induction on k.
First, we shall prove the basis. By inequality (22), we have ’c < 1-’0. Since No Ln (1)

En(1) is a (]Zn(1)l, IXn(1)l, Vc)-extractor or a sorting network, we have #1(N0(x) Xn(1)) <

yc]Xn(1)] < 1-’0lXn(1)l and #0(N0(x) Yn(1)) < yclXn(1)l < F01Sn(1)l for any x in Bn.
Therefore, (G (1, 0)) (G (j0, 0)) is an upper bound on the error vector of No.

Next, we shall prove the induction step. Let k be a positive integer. Assume that (G (1, k
1) G(j-I, k 1)) is an upper bound on the error vector of N-I. It follows from
fact (27) in Lemma 4.2 that (G(1, k 1) G(j 1, k 1)) is an upper bound on the
error vector of N-I. Since Lemma 4.3 implies that (G(1, k 1) G(j, k 1)) satisfies
condition A and Lemma 4.7 implies that L Ln(j) has property B[j], it follows that
3c(G(1, k 1) G(j, k 1)) (G(1, k) G(jk, k)) is an upper bound on the error
vector of Nk-1 o L Nk, completing the proof of the lemma. [3

LEMMA 4.9. For any integer k with 1 < k < kmax(n) and any x in Bn, N(x) N(x).
Proof. The proof is by induction on k. By definition, it is clear that No N. Let

k be a positive integer less than or equal to kmax(n), and let x be an arbitrary vector in Bn.
Assume that N_ (x) Nk_l(x). If Lk Lk, then we have Nk(x) Lk(N_I(x))
L’(N_(x)) N(x). Assume that L L, and hence /max(n) > 2. By the definition
of/max(k), any compressor in Lk but not in L does not intersect any register in Zn(imax(k)).
Moreover, since (G(1, k), G(2, k) G(jk, k)) is an upper bound on the error vector of Nk,
all of the impurities in the output terminals of Nk appear in Zn(imax(k)) by the definition of
/max (k). We therefore have

(32) (Zk(gk_l(X)) Zn(imax(k))) (L(N_l(x)) Zn(imax(k)))

(L(N_l(X)) Zn(imax(k))),

(33) Xn(i) L(N_ (x))
i=1

/max(k))U Xn(i)
i=1

/max(k))U Xn(i)
i=1

and

(34)

(0, 0 0),

U Yn(i) L(N_I(x))
i=l

/max (k) \

.J Y,(i))i=1

/max (k) \

[.3 Yn(i))i=1

(1, 1,..., 1).

CONSTRUCTING SELECTION NETWORKS 729

By equations (32)-(34), we have Nk(x) (Nk-, o Lk)(X) Lk(Nk-l(X)) L(N_,(x))
(N_ o Lk)(X N;(x). This completes the proof of the lemma.

LEMMA 4.10. For any even positive integer n, JV"n is a classifier.
Proof. Let x be an arbitrary vector in Bn. It follows from Lemmas 4.8 and 4.9 that

jmax (n)Ijmax(n)Xn(i)) 0 and #o(A/’n(x) k.)i=l Y,(i)) 0, andwe obtain #,(A/’n(x) i=1
hence #1 (A/"n (x) Z, (jmax (n))) #0 (A/"n (x) Zn (jmax (n))). Moreover, since the module
En(jmax(n)) at the center of the rightmost layer is a sorting network, (A/’n(x) Zn(jmax(n)))
is sorted. We therefore conclude that vector A/TM (x) is sorted, completing the proof of the
lemma.

LEMMA 4.11. kmax (n) O (log n).
Proof Since 0 < g(1,0) F01X(1)I-- (Ocotc/4)lXn(1)] < n/2 and jrnax(n)

O (log n), there exist constants s > 0 and > 0 such that

jmax(n)

G(jmax(rt), 0) g(1, 0) Z d-I < Snt"
i=1

Let r denote [log,/ac(Snt / min{1, dcacFolXn(jmax(n) 1)l})], and hence a < 1/sn and

arc < dcacFolXn(jmax(n)- 1)l/snt. Since FolXn(jmax(n)- 1)1 O(1), we have r

O(logn). Moreover, we have

1
G(jmax(n), r) arcG(jrnax(n), O) < sn 1

sn

and

G(jmax(n)- 1, r- 1)= a-’
jmax (n) jmax (n)

g(i,O)=d’arc-’ Z g(i,O)
i=1 i=2

1 dcacFo]Xn(jmax(n)- 1)l nt< aC G(jmax(n) O) < s
dcac dcac sn

FolXn(jmax(n)- 1)l.

By the definition of kmax(n), we have kmax(n) < r O(log n), completing the proof of the
lemma.

LEMMA 4.12. depth(A/") O (log n).
Proof. By definition, the modules in A/"n are clearly of constant depth. Furthermore, by

(25) in Lemma 3.7, all of the sorters in j’n are of constant depth. So to estimate the depth
of A/"n, it suffices to count the maximum number of modules, i.e., compressors, extractors,
and sorters, that appear on a path from an input terminal of j’n to an output terminal. To do
so, we assign an integer to each module in j’n as the level. For a module in the kth layer
Ln (jk), an integer is assigned as the level as follows" En (jk) is assigned 2k and both Cl(j)
and C(j) are assigned 2k + jk j, where k 0, 1,..., kmax and j 1, 2 jk 1.
Since jk < jmax(n) for k 0 kmax(n), the level of any module in jn is not greater than

2kmax (n) -at- jmax (n) 1. On the other hand, it can be easily seen that if a module of level is
connected to a module of level l’, then l’ > + 1. So if a path from an input terminal to an
output terminal in Nkmax(n crosses rn modules, then

m < 2kmax(n) + jmax(n).

Since jmax(n) O(1ogn) by Lemma 24, and kmax(n) O(logn) by Lemma 4.11, we have
rn O (log n), completing the lemma. [3

730 S. JIMBO AND A. MARUOKA

LEMMA 4.13. For any positive real numbers ec, Oc < 1, and 6c < and any integer kc
with kc > 2(1+v/-3c)

__
eC,c

size(iV"n) < F(ec, Oc, 6c, kc)n log2 n + O(n),

where

F(ec, Oc, 6c, kc)
(1 Oc)kD + Ockc

log2(1/gc)

Proof Let sl(k, n) denote the total size of the compressors in L. Let s2(k, n) and
s3(k, n) be defined as follows: s2(k, n) size(En(j)) if j < jmax(n) 1, and s2(k, n) 0
otherwise; s3(k, n) size(En(j)) if j jmax(n), and s3(k, n) 0 otherwise. Note that
if j < jmax(n) 1, then En (j) is some extractor and En (jmax(n)) is some sorting network.
Clearly,

(35)
kmax (n)

size(N"n) (sl (k, n) + s2(k, n) + s3(k, n))
k=0

holds. Since max0<k<km,x(n)s3(k, n) O(1) follows from equation (25) in Lemma 3.7 and
kmax (n) O (log n) holds by Lemma 4.11, we have

(36)
kmax(n)

Z s3(k, n) O(logn).
k=0

Let h denote the constant [log2(2dc/Oc)/log2(1/6c)], so that 3hc(2dc/Oc < 1. We shall
show that

(37) for k 1 jmax(n) 1, jk+h > jk + 1

holds. Let k be a positive integer less than jmax (n). By the definitions of jk and function g and
by fact (13) in Lemma 3.6, we have g(jk, k 1) dcg(jk 1, k 1) < dcFolXn(jk 1)l <
(2dc/Oc)FolXn(jk)l for jk > 2. On the other hand, by the definitions of the constant dc and
function g and by constraint (5), we also have g(1, k 1) 6c-lg(1, 0) < F01Xn(1)I <
(2dc/Oc)IolXn(1)l. We therefore have g(j, k 1) < (2d/Oc)I’olXn(j)l for any k. By
the definition of h, we obtain g(jk, k + h 1) 6hcg(jk, k 1) < 3(2dc/Oc)r’olX(j)l <_
FolXn(jk)l. Thus we conclude by Lemma 4.1 that statement (37) holds.

It follows from (37) that for each nonnegative integer j less than jmax(n), the number of
positive integers k with jk j is less than or equal to h + 1. Note that jk jk+ jk+h
occurs only when k 0. Since En(j) is contained in Ln(i) exactly when j, and since
there exists a constant C such that size(En (j)) < C IXn (j)l for j 1 jmax (n) 1, we
have

(38)
kmax (n) jmax(n)--I

k=0 j=l

C(h + 1)lX(j)l O(n).

Let j be a positive integer less than jmax(n). Assume that L contains both Cl(j) and
0C (j), and hence k > 1. It is obvious that j + 1 <_ j, and hence G(j + 1, k) < G(j, k). Since

(G(1, k 1), G(2, k 1), G(j, k 1)) satisfies condition A2 because of Lemma 4.3,
we have g(j, k 1) _< I’ Xn (j)l. It therefore follows that for any positive integer less
than or equal to j, g(i, k- 1) < g(j, k- 1) < r’llXn(j)l < 1-’lXn(i)l. We therefore have

--, + j+lG(j + 1 k) 3c z..,i=l g(i, k- 1) < 3c1-’ i=1 INn(i)] < (3cI’/2)n (Scdcotc/4)n
((1 + /1 3c)/4)oecn < n. On the other hand, since if G(j + 1, k) < then L contains

CONSTRUCTING SELECTION NETWORKS 731

neither C(j) nor C(j) by item 4 in Definition 3.11, we have G(j + 1, k) > 1. Thus we
have < G(j + 1, k) < n. Let kl and k2 be nonnegative integers. Since G(j + 1, k + 1)
6cG(j + 1, k)for every nonnegative integer k, if G(j + 1, kl) < n and k2 >_ kl -+-logl/c n,
then G(j + 1, k2) < 1. It therefore follows that the number of nonnegative integers k such
that _< G(j + 1, k) < n is less than + logl/c n 1 + (log2 n log(1/6c)). The number
of nonnegative integers k such that L contains both C (j) and Cn (j) is therefore less than
1 + (log2 n/log2(1/3c) for each j 1, 2 jmax(n) 1.

Since size(C(l)) size(C(1)) < ko[Xn(1)l and size(C(j)) size(C(j)) <

kclXn (j)l for each j 2 jmax (n) 1 by Lemma 3.9, we have

kmax (n)

s (/, n)
k=0

<_ (1 + lg2(1/6c)lg2rt) (kD(IXn(1)l -t- lYn(1)’) q-kc(rt ’Xn(l)’]Yn(1)]))"

Since k < kc and IX,(1)[[Yn(1)l > (n/2)(1 Oc), we have

kmax(n) n log2 n(39) sl (k, n) <
k=0 log2(1/6C)

((1 Oc)kD + Ockc) + kcn.

Thus the lemma follows from expressions (35), (36), (38) and (39). [3

THEOREM 4.14. For every C > 3/log2 3 1.8927 there exists afamily ofclassifiers
with an even number of input terminals such that its depth is 0 (log n) and its size is at most
Cn log2 n + O(n), where n is the number ofinput terminals.

Proof Take the constant ec so that 0 < ec < 1. Take Oc, 3c, and kc as

1c
3 2ec’

kc + Sc + Sc >
Scc sc 3c

and

C

for constant ec. Condition (5) clearly holds. Then we have 3 + [ecJ 3. Moreover, since

kc ec > 2dc/ec3c, we have

1 2dc + ec <_ + ec-c l+kc_ec c

c +2ec [3-2ec+2ec] =3.

By the definition of ko, we have ko 3. It follows from log2(1/3c) logz(3 2ec),
Ockc ec, and ko 3 that

F(ec, Oc, 3c, kc) < 3+ec
log2 (3 2ec)

Since 3+ec 3
log2(3_2ec) -< C. [3

(ec - 0), we can take ec > 0 so that F(ec, Oc,3c, kc)

732 S. JIMBO AND A. MARUOKA

Finally, we note that no matter how we choose the constants ec, Oc, 3c, and kc, the
constant factor 3/log2 3 in the upper bound of Theorem 4.14 cannot be improved as long as
we follow the argument in the present paper. To verify the statement, it suffices to show that
kD/log2(1/c) > 3/log2 3 holds for any ec, Oc, c, and kc because F(ec, Oc, 6c, kc)
((1- Oc)kl + Ockc)/log2(1/6c) > kD/log2(1/3c). By k9 >_ 1/3c, ko > 3, and the fact
that x/log2 x takes the minimum value 3/log2 3 in the range of x in which x is an integer
greater than or equal to 3, we have ko/log2(1/6c > 3/log2 3. The fact that ko > 1/6c and
kD > 3 is obtained immediately from the definition of ko.

5. Concluding remarks. In this paper, we investigate a method of constructing a clas-
sifier in a relatively simple way and obtain the result that, for any constant C greater than
3/log2 3, there exists a family of classifiers with n inputs and n outputs such that the size
and depth of the classifiers are bounded from above by Cn log2 n + O(n) and O(logn),
respectively.

We have tried to obtain as good a constant in the size complexity as possible at the cost
of the constant in the depth complexity. In order to obtain an upper bound on the depth in the
form Cl log2 n + o(log n) with some coefficient c explicitly given, we would seem to have
to do a much more complicated analysis in the proof of Proposition 2.6 in the appendix. As
to making the size complexity more precise, we could possibly obtain the upper bound of
the size complexity in the form Cn log2 n + c2n + o(n) by analyzing in more detail the size
complexity of the extractors used in the classifiers. We note that both of the coefficients, Cl
and c2, grow to infinity as C tends to 3/log2 3.

If, generalizing the notion of a classifier, one wishes to classify n values into the smallest
values and the n largest values, this can be accomplished by modifying the definition of
an extractor, as shown in the following definition, and imitating the construction of classifiers
given in the present paper, provided that f2 (n). All of the ratios m to m2 of the extractors
used in the generalized classifier are taken to be nearly equal to the ratio to n t.

DEFINITION. Let n, m 1, and m2 be positive integers and ?, be a real number with 0 <_ V <-
1. An (n, m, m2, /)-extractor is a comparator network N with n +m +m2 registers such that

for every x (x Xn+m+m2) in {0, l}n+m+m2, #iX < n -{-m2 implies#(yl Yml) <-
,m and#ox <_ n+ml implies#o(Yn+ml+ Yn+m+m2) <- vm2, where (y Yn+m+m2)
is the output ofN corresponding to x.

The upper bound on the size of a family of the generalized classifiers constructed in this
way is given by C’n log2 n + O(n) for some C’ > 3/log2 3. This situation, in which we
cannot make C’ smaller than or equal to 3/log2 3, is the same as the case where n/2. In
other words, as long as we imitate the construction of classifiers given in the present paper, the
coefficient of n log2 n in any upper bounds on the size of the generalized classifiers remains
the same no matter what value takes. This is mainly because the total size of extractors in a
comparator network is O (n) and the shape of a compressor does not depend on t.

Alekseev [3] gave lower bounds of (n t) [log2 (t + 1)] on the size ofcomparator networks
which classify n values into the smallest values and the n largest values. Those lower
bounds are estimated to be n log2 n O (n log log n) when takes the value n/log2 n. So
at present there remains a gap between the coefficients in the lower bounds and those in the
upper bounds for the size of classifiers.

Appendix: Proof of Proposition 2.6. In the beginning of the proof, as we mentioned
previously, we mainly follow Bassalygo’s example [4]. The adjacency matrix of a bipartite
graph with n left vertices and m right vertices is defined as an n m matrix whose (i, j)-
component is equal to the number of edges directed from the ith left vertex to the jth right
vertex. It is not hard to see that an (or,])-expander with n left vertices and m right vertices
corresponds to a matrix that does not contain any k (m [/k] + l) null submatrix, where
k= 1,2 LonJ.

CONSTRUCTING SELECTION NETWORKS 733

Let Epqn denote the set of pqn pqn matrices of O’s and l’s, containing exactly one
1 in each column and in each row. The number of such matrices is (pqn)!. We consider
ordered sums of s such matrices. We take the order of choice of the terms of the sums into
consideration. Notice that the s matrices are not necessary different from each other. The
number of such sums is ((pqn)!)s. Let B be that sum, whose value is a matrix of dimension
pqn pqn, and let bhl denote the (h, /)-component of the value of B. Let M(B) denote the
qn pn matrix whose (i, j)-component, denoted by mij, is given by

Z bhl.
h=-i (mod qn)
l=-j (mod pn)

Sum B will be called poor if M(B) contains a k (pn [kq + 1) null submatrix for some
integer k with < k < Iotqnl. Since the number of matrices in Epqn that have a fixed
pk q(pn [k] + 1) null submatrix is equal to

q(pn- rk-I + 1)
(q(pn- [k-1 + 1))!. (pqn- q(pn- [k- + 1))!

(pqn pk) (q [k- q)
(q [k-I pk q)

the number ofpoor sums with a fixed k (pn [/k + 1) null submatrix in the corresponding
qn pn matrices is given by

((Pqn-pk)’(q[k--q)’)(q F/kl pk q)!

The number of different k x (pn [/3kl + 1) submatrices of a qn x pn matrix is (qn) (Fkpq_l).
Consequently, the number of poor sums does not exceed

= [k 1 (q [k pk q)

The statement that this quantity is less than the number of all sums is equivalent to the inequality

(40) (n) ([kn 1)((q[k]-q)/ (p;:))S < l"
= pk

So if this inequality holds, then there exists a good, i.e., not poor, sum which, as we can readily
see, coesponds to the adjacency matrix of an (, fl)-expander with qn inputs and pn outputs.
The number of edges of this expander is spqn, where s can be taken to be any integer for
which inequality (40) is satisfied. The rest of the proof will prove inequality (40).

Let A (fl, p, q, n, s, k) denote

Fixing k and s, A(fl, p, q, n, s, k) can be represented by a rational expression g(n)/f(n) such
that f(n) is a polynomial of degree spk, g(n) is a polynomial of degree k + [ilk] 1, and
the highest-degree terms of f(n) and g(n) are both positive. The following inequalities are
assumptions of the proposition:

P(41) 0 < < < 1,q

734 S. JIMBO AND A. MARUOKA

(42)

and

(43)

S
H(or) 4- (p/q)H(otq/p)
pH(ot) otfiqH(p/fiq)

S >.
p(1 +/3) otfi(p + q)

p(p otq)

It follows from inequalities (41) and (43) that

p(1 4- fi) otfi(p 4- q)
p(p otq)

p + p p
p(p aq)

Hence we have

p 4- pfl qotfl2 qotfl 1 4- fl
p(p otflq) p

1+(44) s >
P

We therefore have spk > k + fik > k + [ilk] 1, which implies g(n)/f (n) -+ +0 (n -+
+cx). Thus for any e > 0 and any integer k > 1, we can take an integer n (/3, p, q, s, e, k) > 0
such that

(45) for any integer n > n (/3, p, q, s, e, k), A(fi, p, q, n, s, k) < e.

Let k0(fi, p, q, s) denote max{L2q/(q p)J 4- 1, [2/(sp 1 fi)]}. Notice that since
sp 1 -/3 > 0 follows from inequality (44) and/3q p > 0 follows from inequality (41),
k0 is always defined. Let us define

A (fi, p, q, n, s) max A (fi, p, q, n, s, k)
k=l,2 ko-1

and

max
A2(o/, , p, q, I/l, S) k=ko,ko+l [_otqnJ

Then we have

A (fl, p, q, n, s, k) if qn > ko,

0 otherwise.

(46)
LoeqnJ

E A(, p, q, n, s, k) <_ koA ([3, p, q, n, s) + otqnA2(ot, [3, p, q, n, s).
k=l

Letting n2(fl, p, q, s) max nl(fl, p, q, s, 1/2k0, k), it follows from (45) that
<k<k0

1
(47) for every integer n > n2(fl, p, q, s), koA (, p, q, n, s) <

2

Moreover, we shall find two integers n5 and n7 depending on or,/3, p, q, and s such that,

(48) for any integer n with n > ns(ot,/3, p, q, s) and k with ko < k < min{otqn, pn/2},

1
A(t3, p,q,n,s,k) <

2otqn

CONSTRUCTING SELECTION NETWORKS 735

and

(49) for any integer n with n > nT(a, fl, p, q, s) and k with pn/2fl < k <_ aqn,

A(fl, p,q,n,s,k) <
2aqn

In the following two paragraphs, we shall show that if we find n5 and nT, then we can
conclude the proposition.

Since k0 < k < min{aqn, pn/2fl} or pn/2 < k < aqn holds for any integer k with

ko < k < aqn,

for any integer n with n > max{ns, n7} and k with ko < k < aqn,
1

A(I, p, q, n, s, k) < ;
2aqn

hence

(5O) for any integer n with n > max{ns, n7},
1

aqnA2(a, fl, p, q, n, s) <
2

Consequently, letting

[{ H(a) + (p/q)H(aflq/p) p(l + fl) -[(p+q)]J +So max
pH(a) -aflqH(p/flq) p(p-aflq)

and

no(a, fl, p, q) max {n:z(fl, p, q, so), ns(a, fl, p, q, so), n7(a,/, p, q, so)},

by facts (46), (47), and (50), we have the fact that

for every integer n > no(a, fl, p, q),
Loqn. A(, p,q,n, so, k) < 1.
k=l

Letn and k be integers suchthatn > no(a, fl, p, q)and <_ k <_ aqn. Sinceq[flkq-q <
pqn follows from inequality (41), we have

(q[fikq q)/ <1.

Thus, since A(fl, p, q, n, s, k) is monotone decreasing with respect to s, we conclude that
_l.otqnJ A(fl p q n s, k) < lmi.e., inequality (40)mholds for any integer s > so and n >k=l
no(a, fl, p, q) provided that there exist n5 and n7 satisfying conditions (48) and (49).

Now, let k be a positive integer. We assume that ko < k < aqn in order to find n5 and
n7. It is not hard to see that the following four inequalities hold:

(51) 1 <k< laqnJ <qn-1,

(52) 1 < Fkl 1 _< pn- 1,

(53) 1 < pk <_ p LaqnJ < pqn- 1, and

736 S. jIMBO AND A. MARUOKA

(54) 1 <pk<q[flkq-q-1.

Inequality (54) is derived from the definition of k0. We have k > k0 > 2q ! (flq p) > 0 by
definition. We therefore have qk > pk + 2q > pk + q + 1, and hence pk < q [flk] q 1.
Moreover, we have the following fact by Stirling’s formula:

(55) for every integer n > 2 and k with 1 < k < n 1,

n

3 k(n k)
exp (nil ())< ()<-k(n-k)exp(nH(nk--))

<exp(nH(nk--))
We therefore have

()S((q[flk]-q)(pqn-pk))s/2

((n)A(fl, p, q, n, s, k) <
(q [flk] q pk) pqn

exp qnH

(56) +pnH([k]pn-1)
+s(q([kl -1)H(q([k 1))-pqnH(pk

pqn

Notice that k/qn, ([flkq 1)/pn and pk/q([flkq 1) are all greater than 0 and less than 1.
That follows from inequalities (51), (52), and (54). On the other hand, since

holds for any z with 0 < z < 1,

d H(z) log(1 z)
<0

dz z z2

(57) H(z)/z is strictly monotone decreasing over the interval 0 < z < 1.

We therefore have

(58) q (Fflkl 1) H (q ([flk] 1)
< flqkH

Since q/k < q/k0 holds by the assumption and q/ko <_ (fiq p)/2 holds by the definition
of k0, we have

(59)
(q Vflkl q) (pqn pk) flqk q

<
(q [flkl q pk) pqn flqk q pk

flq (q / k)
(flq p) (q/ k)

flq (q/ko) flq (flq p)/2
(flq p) (q/ko) (flq p) (flq p)/2

By inequalities (56), (58), and (59), we have

flq + p

flq-p

(60)
()s(flq+p)S/2exp ((q-)qnH + pnH ([flk] 1)A (fl, p, q, n, s, k) <

flq p pn

p k
q-s (flqkH (-) -pqnH (-)))

CONSTRUCTING SELECTION NETWORKS 737

In what follows, x, C1, C2, and F will denote

k

C1 (/3, p, q, s) log
/3q p

C2(fl, p, q, s) sflqZH - and

F(z) q(1 sp)H(z) + pH(qz/p) + C2(/, p, q, s)z,

respectively. The domain of F(z) is the interval 0 < z < oe. It follows from the equation
d2 H(z) -] thatdz"--r ZOz

d2 q (p2s p(1 +/3) (pqs p q)z)
F(z)
dz2 z(1 z)(p qz)

We have sp > 1 +/3 and p </3q by inequalities (44) and (41), respectively. These inequalities
imply spq p q > (1 +/3)q -/3q q 0. Moreover, the inequalities p2s p(1 +)
(pqs p q)/3ot > 0 and p -/3qot > 0 follow from inequalities (43) and (41), respectively.

dThe inequality F(z) > 0 therefore holds for any z with 0 < z < or. Hence we have the
fact that

(61) for any closed interval [a, b] _c [0, or] and any z with a < z < b,

F(z) < max{F(a), F(b)}.

It follows from fact (61), F (0) 0, and F (or) < 0 that

(62) F(z) < 0 for any z with

The inequality F(ot) q(1 sp)H(a) + pH(qot/p) + saq2H(p/q) < 0 follows from
inequality (42).

First, we shall find ns. Assume that k < pn/213 in addition to the assumption that
ko < k <_ otqn. That is, assume that ko <_ k <_ min{pn/2t3, cqn}. Since H(z) is strictly
monotone increasing over the interval 0 < z < 1/2 and ([/3kq 1)/pn < k/pn < 1/2 by
the assumption, we have

)
By inequality (60) and by the definitions of x, C1, and F, we have

(63) nA(6, p,q,n,s,k) < exp(nF(x) + logn -Jr-Cl(fl, p,q,s)).

Sinceif0 < p/213q < athenF(p/21q) < 0,foranye > 0, we can take n3 (ot, /3, p,q,s,e) >
0 such that,

(64) for every integer n > n3,

exp (nF (min {or, p/2q}) + logn + Cl(/, p,q,s)) < e.

738 S. JIMBO AND A. MARUOKA

Now we shall find an upper bound on nF(ko/qn). It follows from fact (57) and inequality
(41) that

(65)
F(z) H(z) H((q/p)z)

q(1 sp) + q + C2(fl, p, q, s)
z z (q/p)z

n(z)
< q(1 //3 sp) + C2(/, p, q, s)

Z

holds for any z with 0 < z < or. Moreover, it follows from the equation

1-z 1 1(1)(-z)/zH(z)
-logz+log--log-+log 1+

z z 1 -z z (1 -z)/z

that

(66) 0 < log
1 H(z) 1
< < 1 + log-

Z Z Z
for any z with 0 < z < 1.

By inequality (44), we have

(67) 1 +/3 sp < O.

It follows from fact (66), expression (65), and inequality (67) that

F(z) 1
(68) < q(1 +/3 sp) log + C2(fl, p, q, s)

z Z

If ko/qn < or, then we have

for any z with 0 < z <

nF(k_nn) --kF(k/qn)ko/qn qn ko
< ko (1 + 13 sp) log -7- + C2 (/3, p, q, s)

q

ko(1 +/3 sp) logn + C3(/3, p, q, s),

where

q ko
C3(/3, p, q, s) k0(1 +/3 sp) log 7- + --Cz(/3, p, q, s).

q

Since k0(1 //3 sp) < -2 follows from the definition of k0, for any e > 0 we can take
n4 (or, fl, p, q, s, e) > 0 such that,

(69) for every integer n > n4,

ko/qn < ot and exp (nF (ko/qn) + log n + C1 (/, p, q, s)) < e.

Thus, letting ns(ot,/, p, q, s) max{n3(ot,/, p, q, s, 1/2cq), n4(ot, fl, p, q, s, 1/2cq)},
statement (48) follows from fact (61) and inequalities (63), (64), and (69).

Next, we shall find n7. Assume that pn/2 < k in addition to the assumption that
ko < k < otqn. That is, assume that pn/2 < k < otqn. It follows from inequality (60) and
the definition of F that

nA(, p, q, n, s, k)

<exp(nF(x)+logn+Cl(13, p,q,s)+pn(H([k -1)pn -

CONSTRUCTING SELECTION NETWORKS 739

It is easy to see that H (z d) < H(z) + H(d) for any 0 < z < 1 and 0 < d < z. Moreover,
since pn > 2 follows from inequality (52), H(z) is strictly monotone increasing over the
interval 0 < z _< 1/pn. We therefore have

< pnH
pn

<_ pnH
pn

It follows from fact (66) that pnH(1/pn) < + log p + log n. We therefore have

nA(, p,q,n,s,k) < exp(nF(x) + 21ogn --C4(fl, p,q,s)),

where C4 (fl, p, q, s) 1 + log p + C1 (/3, p, q, s). Moreover, by fact (61) and the fact that
p/213q < x k/qn < or, which follows from the assumption that pn/2 < k < otqn, we
have

(70) nA(,p,q,n,s,k) < exp(nmax{F(p/2q),F(ot)}+21ogn+C4(6, p,q,s)).

On the other hand, since it follows from fact (62) that max{F(p/2q), F(ot)} < 0, for any
e > 0 we can take n6(ot, fl, p, q, s, e) > 0 such that,

(71) for every integer n > n6,

exp(nmax{F(p/2q), F(c)} + 21ogn + C4(fl, p,q,s)) < e.

Thus, letting n7(ot,/3, p, q, s) n6(ot,/3, p, q, s, 1/2otq), statement (49) follows from in-
equality (70) and fact (71).

Thus, we have found both n5 and n7, concluding the proposition.

Acknowledgments. Wewould like to thankthe anonymous referee for the careful reading
of the manuscript and helpful comments.

REFERENCES

M. AJTAI, J. KOMLOS, AND E. SZEMERIDI,An O (n log n) sorting network, in Proc. 15th AnnualACM Symposium
on Theory of Computing, Association for Computing Machinery, New York, (1983), pp. 1-9.

[2] ., Sorting in c logn parallel steps, Combinatorica, 3 (1983), pp. 1-19.
[3] V.E. ALEKSEEV, St;rting algorithms with minimum memory, Kibernetica, 5 (1969), pp. 99-103.
[4] L. A. BASSALYGO, Asymptotically optimal switching circuits, Problemy Peredachi Informatsii, 17 (1981),

pp. 206-211 (in Russian); English translation in Problems Inform. Transmission.
[5] D.E. KNUTH, The Art of Computer Programming: Sorting and Searching, vol. 3, Addison-Wesley, Reading,

MA, 1973.
[6] M. S. PATERSON, Improved sorting networks with O(logn) depth, Algorithmica, 5 (1990), pp. 75-92.
[7] N. PIPPENGER, Selection networks, SIAM J. Comput., 20 (1991), pp. 878-887.

SIAM J. COMPUT.
Vol. 25, No. 4, pp. 740-774, August 1996

1996 Society for Industrial and Applied Mathematics
003

ANALYSIS OF BACKOFF PROTOCOLS FOR MULTIPLE ACCESS CHANNELS*
JOHAN H/STADt, TOM LEIGHTONt, AND BRIAN ROGOFF

Abstract. In this paper, we analyze the stochastic behavior of backoff protocols for multiple access channels
such as the Ethernet. In particular, we prove that binary exponential backoff is unstable if the arrival rate of new
messages at each station is - for any) > 1/2 and the number of stations N is sufficiently large. For small N, we

prove that) _>)0 + implies instability, where)0 .567. More importantly, we also prove that any superlinear
polynomial backoff protocol (e.g., quadratic backoff) is stable for any set of arrival rates that sum to less than one and
any number of stations. The results significantly extend the previous work in the area and provide the first examples
of acknowledgment-based protocols known to be stable for a nonnegligible overall arrival rate distributed over an

arbitrarily large number of stations. The results also disprove a popular assumption that exponential backoff is the
best choice among acknowledgment-based protocols for systems with large overall arrival rates. Finally, we prove
that any linear or sublinear backoff protocol is unstable if the arrival rate at each station is for any fixed) and
sufficiently large N.

Key words. Ethernet, backoff protocols, Markov chains, stochastic stability

AMS subject classifications. 60J10, 68M10, 90B 12

1. Introduction. Multiple access channels provide a simple and efficient means of com-
munication in distributed systems. A typical example is the Ethernet [7], a local-area network
where the channel consists of a tree made out of coaxial cable. When a station wants to
send a message to one or more stations on the Ethernet, the sending station simply broadcasts
the message throughout the entire system. Everyone, including the intended stations, then
receives the message provided that there was no interference from other stations trying to send
messages at the same time.

In order to reduce the chance of interference, stations check to make sure that the channel
is clear before attempting to transmit a message. At first glance, it might seem that this
precaution eliminates the possibility of a collision since the probability that two stations try
to send at exactly the same instant in time is virtually zero. Unfortunately, collisions can
still occur, since there is a nonnegligible delay between the time when a station begins to
transmit and the other stations detect the transmission. Hence, if two or more stations attempt
to transmit within this window of time, a collision will occur.

In the case of a collision, none of the messages is sent. Instead, the collision is detected
and the messages are queued at their respective stations for retransmission at some point in the
future. Of course, it would not make sense to retransmit right away since this would immedi-
ately result in another collision. Rather, packets are retransmitted according to a protocol that
is often probabilistic in nature. For example, messages in an Ethernet are retransmitted again
after T steps, where T is selected randomly from 1, 2, 3 2min(10’b) and b is the number
of times the station has tried to send the packet but failed. This is one of a class of protocols
generally referred to as exponential backoff.

The success of a protocol can be measured in several ways. For example, we might be
interested in the average waiting time Wave incurred by a message before it is successfully

*Received by the editors July 9, 1992; accepted for publication (in revised form) December 2, 1994. The research
of this author was supported by Air Force Contract AFOSR-86-0078, Army Contract DAAL-03-86-K-0171, an NSF
Presidential Young Investigator Award with matching funds from IBM, Xerox, and AT&T Bell Labs, and an IBM
Postdoctoral Fellowship.

Mathematics Department and Laboratory of Computer Science, Massachusetts Institute of Technology, Cam-
bridge, MA 02139. Current address: Department of Numerical Analysis and Computing Science (NADA), Royal
Institute of Technology (KTH), S-100 44 Stockholm, Sweden (johanh@nada.kth.se).

tMathematics Department and Laboratory of Computer Science, Massachusetts Institute of Technology, Cam-
bridge, MA 02139 (ftl@math.mit.edu).

740

ANALYSIS OF BACKOFF PROTOCOLS 741

transmitted. Alternatively, we might consider the average number of waiting messages over
time Lave to be a better measure. Actually, these measurements are closely related. In fact,
Lave & Wave with probability one, where) is the overall arrival rate of messages into the
system over time [12].

For a protocol to be useful, it is crucial that Ex[Lave] and Ex[Wave] be small. In particular,
we will want Ex[Lave] and Ex[Wave] to be finite. Note that this is a stronger condition than
insisting only that Lave and Wave be finite with probability one. For example, consider the
situation when Wave 2 with probability 2-i for 1, 2, 3

Another measure of system performance that is often of interest to statisticians is the
expected time Ex[Tret] for the system to return to the start state (i.e., the state where all queues
are empty). Of course, we will want this time to be as small as possible, and, in particular, we
will want it to be finite.

Protocols for which Ex[Lave], Ex[Wave], and Ex[Tret] are finite are said to be stable.
Protocols for which all the measures diverge are said to be it unstable. Note that it is conceivable
that there are protocols that are neither stable nor unstable as we have defined the terms here,
since it might be that case that Ex[Tret] is finite but Ex[Wave] diverges for some protocol.
However, all of the protocols considered in this paper are shown to be either entirely stable or
entirely unstable in the sense defined above. In fact, the only reason we use these somewhat
nonstandard definitions is that we want to encompass as many of the conflicting definitions of
stability and instability in the literature as possible with our methods.

The throughput rate (i.e., the average rate of successful transmissions) is not a dominant
concern. This is because the throughput rate is guaranteed to equal the arrival rate with
probability one if the protocol is stable, but not vice-versa. As an example, consider a one-
station system in which the sole station transmits with probability one if it has a message and
in which the station receives a pair of new messages at each step with probability 7. It is not
difficult to show that with probability one, both the arrival and throughput rates for this system
are one but that Lave and Wave diverge over time.

The development and analysis of transmission protocols that minimize average waiting
time has been the subject of a great deal ofwork 1-7, 9-17]. We summarize some ofthis work
in 2. Of greatest concern in this paper is the work on acknowledgment-based protocols. An
acknowledgment-basedprotocol is one for which each station’s transmission protocol is based
only on its own history of successes and failures. In particular, the station is not assumed to
have any knowledge of other stations’ successes or failures or even of the number of stations
in the system N.

Our present work is focused on a subset of acknowledgment-based protocols known as
backoff protocols. A backoffprotocol is one for which each station containing a message
transmits with probability f(bi), where f is a predetermined function and bi (the backoff
counter at station i) is the number ofpast consecutive failures by station i. After each successful
transmission, bi is reset to zero. After each failure, bi is augmented by one. The value of bi
is left unchanged if no transmission is attempted.

Previous work has mostly centered on binary exponential backoff(for which f(b) 2-b),
although other schemes such as linear backoff (for which f(b)) and constant backoff
(for which f (b) is simply a constant) have also been considered. Unfortunately, most of this
work has been experimental and/or has depended on simplifying assumptions (e.g., that N
is infinite) that render the consequences of any analysis less meaningful. Exceptions include
some work on constant backoff (which serves as the basis for the Aloha protocol, but which
is inherently unstable for fixed backoff and sufficiently large N) [13, 17], and the work of
Goodman, Greenberg, Madras, and March [2], who proved that for any N, there is a U for
which exponential backoff has finite Ex[Tret] provided that the arrivals at station are Bernoulli

742 JOHAN H/STAD, TOM LEIGHTON, AND BRIAN ROGOFF

distributed with mean i for 1 < < N, where) -/U=l i ’’. Unfortunately, .’ tends
to zero as N increases and the question concerning stability for nonvanishing . and large N
remained open. In the case when N 2, Goodman et al. also proved that exponential backoff

and .z >0.has finite Ex[Tret] if)1 and 2 are at most 0.15 and infinite Ex[Tret] if)1 > g
In this paper, we redirect the focus from exponential backoff to other protocols. Among

z forl < < Nandother things, we show that exponential backoffis unstable whenever .i >_ g
and N is sufficiently large. The result is not very surprising) > 0.567 + 4@-2 or when) > g

given the existing experimental data, but it does establish formal limits on the usefulness of
exponential backoff. We also prove a much stronger and more important result concerning
the stability of polynomial backoff protocols. In particular, we prove that if the arrivals at
station are Bernoulli distributed with rate i then f(b) (b + 1)-6 backoff is stable for any
constant c > 1, any N and any {i / /N=I)i < 1}. In terms of stability, the result is the
strongest possible since any protocol is unstable if the overall arrival rate) is one or larger.
The result also provides the first example of an acknowledgment-based protocol known to
be stable for nonvanishing) and large N and proves that polynomial backoff protocols are
superior to exponential backoff when) is large.

The constraint that ot be greater than one is crucial to the stability of polynomial backoff.
In fact, we also prove that for any ot < 1, f (b) (b + 1)-6 backoff is unstable for any evenly
distributed arrival rate) and sufficiently large N.

Once a protocol has been found to be stable, the next step is to determine the precise
values of Ex[Lave] and Ex[Wave]. In particular, it is interesting to analyze the dependence of
Ex[Lave] and Ex[Wave] on) and N. Unfortunately, our current best estimates for these values
are fairly weak. Whereas we do prove that Ex[Lave] and Ex[Wave] must grow polynomially
as a function of N for almost any backoff protocol, we only upper bound this growth by an
exponential function of N.

Quantifying the nature of an instability can also be of interest, particularly if the protocol
is to be implemented in practice. In the cases of exponential backoff with high arrival rates
and linear or sublinear backoff with large numbers of stations, we show that Ex[Lave] grows
linearly over time, the worst possible scenario.

As a crucial aid in guiding our research, we performed computer simulations of several
backoff protocols for various arrival rates and numbers of stations. Some of the data obtained
can be found in 7. This data does suggest that quadratic backoff is a very competitive
algorithm in practice. Linear backoff seems better if the number of stations is small or the
load is minimal. Exponential backoff seems better only when the queues are massive.

The remainder of the paper is divided as follows. In 2, we describe the models for
communication protocols more formally, introduce some further notation, and comment on
the relevance of past research to our current work. In 3, we prove that polynomial backoff
is stable for any arrival rate less than 1. In 4, we examine the dependence of Lave and Wave
on . and N. The instability of exponential backoff protocols is established in 5. In 6, we
show that linear and sublinear backoff protocols are unstable for any fixed arrival rate and
sufficiently large N. Section 7 contains some experimental data, and we conclude with some
remarks and topics for research in 8.

2. Preliminaries.

2.1. Our model. In this paper, we follow the model of backoff protocols adopted in [2].
In this model, time is partitioned into equal-length intervals called steps. At the beginning of
each step, a new message arrives at station with probability/.i for 1 < < N, where N is the
number of stations in the system. The arrival of new messages is assumed to be independent
over time and among stations. The overall arrival rate is defined to be) /N=)i. Arriving

ANALYSIS OF BACKOFF PROTOCOLS 743

messages are added to the end of the queues located at each station. No limit is placed on the
size of the queues, and if the system is unstable, they could become arbitrarily long over time.

The backoff protocol is governed by a function f(x) defined in advance. At each step,
the th station attempts a transmission if it has a nonempty queue (allowing for the arrival
of a new packet at the beginning of the step) with probability f (bi), where bi is the value
of the backoff counter at station i. For any set of bi’s, these probabilities are assumed to be
independent over time and among stations. The backoff counters are initially zero. The th
counter is augmented by one whenever the th station attempts to transmit but fails due to a
collision. The ith counter is reset to zero whenever the ith station transmits successfully. If the
th station does not attempt to transmit, then the backoff counter is not changed. Confirmation
of a collision or a successful transmission takes place during the same step in which the
transmission was attempted. In addition, the message lengths are assumed to be smaller than
the duration of a step.

The two important measures of efficiency are the average number of messages queued
in the system at the end of each step Lave and the average number of steps that each message
must wait before it is sent Wave. Since Lave) Wave with probability 1, we will henceforth
express our results in terms of Lave.

2.2. Relevance of the model to reality. Our mathematical model differs from reality
(e.g., the Ethernet) in several respects. We summarize these differences and their significance
in the following paragraphs.

2.2.1. Upper bound on backoff counter. In the Ethernet, the backoff counter is never
allowed to exceed a specified value bmax, whereas in the mathematical model, it is allowed
to become arbitrarily large. One mathematical problem with placing an upper bound on the
backoff counter is that any such protocol becomes unstable for any fixed) and large enough
N. The reason is that for very large N, the system will eventually reach a state where almost
every station has many messages queued. Once this happens, then with nonzero probability,
the channel will become dominated by collisions and the throughput will be forever reduced
to a trickle. The situation is less clear if the bound bmax is allowed to depend on N, but
then individual stations would need to be informed about the number of other stations in the
system. Of course, it might well be that reasonable upper bounds on N could be assumed
in the computation of a bound bmax in practice. Research into such protocols for bounded N
might prove to be interesting mathematically as well as useful in practice. For example, see
[13, 17] and the references they contain for a discussion of constant backoff protocols.

2.2.2. Termination of undelivered messages. In the Ethernet, messages are discarded
if they are not delivered within a specified amount of time. In our model, messages are never
discarded and might be held in queue for an arbitrary amount of time. Discarding messages
assures stability in the sense that Ex[Lave] is guaranteed to be finite, but only at the expense of
discarding a nonzero fraction of the messages in systems that become unstable if discarding
is not allowed.

2.2.3. Distribution of arrivals. In real systems, the distribution of arrivals may not be
Bernoulli and may not be independent among stations. However, the Bernoulli and inde-
pendence assumptions seem as reasonable as any others that are capable of being analyzed.
Moreover, our analysis extends to several other natural distributions and can even be extended
to systems where there is dependence among stations. For example, both stability and in-
stability results hold for systems where at most two packets enter the entire system during a
single step.

744 JOHAN H*STAD, TOM LEIGHTON, AND BRIAN ROGOFF

2.2.4. Selection of waiting time before attempted retransmission. In the Ethernet, the
ith station attempts to rebroadcast steps after the last attempt, where is selected uniformly
from 1, 2, 3 2bi }. In our model, we retransmit at each step with probability 2-be The
two methods for computing retransmission times are quite similar, but the former is easier to
implement in practice (since it requires fewer random bits) and the latter is easier to analyze
(since it is memoryless). It would seem unlikely that the stability results would differ for the
two methods, but we have not proved this.

2.2.5. Message length. In reality, message lengths are much longer than the window
during which conflicts can arise and be detected. Moreover, message lengths may vary from
message to message. In the Ethernet, all messages are restricted to have the same length, and
this length is a reasonably large multiple of the window of time used for conflict resolution.
This difference between the Ethernet and our model is not as great as it might seem at first,
however. The reason is that we can model a system where transmissions are long (but with
uniform length) with a system where transmissions have zero length by simply compressing
time to squeeze out transmission times altogether. This does not affect the conflict resolution
process (which lies at the heart of stability analysis). Rather, we need only adjust the message
arrival rates so that there are proportionately fewer arrivals in steps following nontransmissions.
Although we will not go through the details here, it is not difficult to extend our stability
results to hold for such a modified arrival process. Our instability results are also meaningful
in systems with large message lengths, but require some changes. The reason is that we
only know how to prove instability in a message-length-M model for arrival rate) if the

z Hence, sincecorresponding message-length-one model is unstable for arrival rate
our instability results for exponential backoffhold only for arrival rates exceeding 0.5, they only
imply instability for arrival rates approaching one as M increases. Our linear and sublinear
backoff results apply to any constant arrival rates and hence give the same results for any
fixed M.

2.2.6. Synchronization. In real systems, time is not partitioned into discrete "windows"
because there is no synchronization. In the Ethernet, a station that wants to transmit simply
does so when and if the channel is clear locally. Nevertheless, it can be argued that our
synchronous model accurately represents an asynchronous system to within a factor of two
in window size [6]. Hence this assumption should not have a significant impact on stability
analysis.

2.2.7. The bottom line. Whereas our model differs from reality in several notable re-
spects, the differences are not all as important as they first seem. Moreover, the model is the
most realistic among those that have been formally studied in the literature. In summary, the
real contribution of this work is the development of formal techniques for analyzing com-
munication protocols in multiple access channels, and the observation that protocols such as
quadratic backoff may be superior to currently used protocols such as exponential backoff
when the number of stations and/or the overall arrival rate is large.

2.3. Other models and results. Most of the work on protocols for communication in
multiple access channels has focused on models for which the number of stations N is infinite
[1, 3, 5, 9, 10, 14, 16]. The attraction for study of infinite models is clear. On the one
hand, the analysis is simpler since with probability one, no two packets will ever arrive at the
same station, and thus the disposition of packets is effectively independent of the station that
transmits them (e.g., each message has its own backoff counter and is never contained in a
queue with something else). On the other hand, there is the argument that the behavior of a
protocol in an infinite model is reflective of its behavior in a real system with a large number
of stations.

ANALYSIS OF BACKOFF PROTOCOLS 745

It has been our experience, however, that infinite model results often have fairly limited
relevance to finite systems even when the number of stations is very large. Indeed, the reason
is precisely that queuing plays a major role in any finite system (even one with large N)
but is nonexistent in the infinite model. As a striking example, we note that Kelly proved
in [5] that any polynomial backoff scheme is unstable in the infinite model. More recently,
Aldous 1 extended this result to show that exponential backoff is also unstable in the infinite
model. Whereas the complete disposition of exponential backoff in a finite model still remains
unclear, we show that polynomial backoff is stable for any finite number of stations. Hence,
the behavior of backoff protocols in infinite models can be misleading.

The study of infinite models has some implications for our paper, however. For example,
the techniques used to prove the instability of backoff protocols in the infinite model can be
used to prove that Ex[Lave] grows at least as a polynomial function of N in the finite model.
More generally, it appears that a protocol is unstable in an infinite model if and only if the
value of Ex[Lave] grows as a function of N in the corresponding finite model. In fact, we
follow this strategy in proving lower bounds for Ex[Lave] in 4.

There has also been a great deal ofworkon models that require the use ofmore information
when computing transmission probabilities. Some models use knowledge of the number of
stations or try to approximate the number of stations that wish to transmit by analyzing the
past history of the channel activity. Still others try to resolve conflicts among transmitting
stations by using a playoff-type system to eventually choose a winner. Such schemes tend to
be very stable for input rates up to a fixed threshold (e.g.,) but unstable for larger input rates.
For examples of such models and their analysis see [4, 9, 16] and the references they contain.

As a final note, we point out that many protocols can be made stable for any fixed N and
) < 1 by simply allowing a transmitting station to empty its queue before allowing anyone else
to start. Whereas such an approach may be necessary as a last ditch effort, it is not considered
desirable since it allows a single station to dominate the system for a very long time, and
since there must be a nontransmission step following the emptying of every queue. The latter
constraint is particularly damaging in practice since if the protocol is working well, most
queues will be very short, and hence the resulting frequency of nontransmissions is forced
to be large (which means the protocol isn’t working well after all). In particular, for large
), we must have Ex[Lave] >_ 2 (N) for such schemes. Although we prove an even greater
asymptotic lower bound on Ex[Lave] for polynomial backoff, backoff protocols perform much
better experimentally and are much simpler to implement. In fact, there is some reason to
believe that polynomial backoff schemes perform like queue-emptying protocols during the
rare times when they get into trouble (indeed, this possible behavior is the basis for our proof
of stability), and otherwise behave similarly, but without the need for forced nontransmission
steps.

2.4. Markov chains and their analysis. The performance of almost any protocol can be
expressed in terms of the behavior of an associated Markov chain. For backoff protocols with
a finite number of stations, we associate every possible configuration of backoff counters and
queues (b, q) {(bl bN, ql qN) bi >_ O, qi >_ 0 for 1 < < N} with a unique
state of the Markov chain. The initial state (or origin or zero) is identified with (0 0). The
associated infinite Markov chain is time invariant (the transition probabilities do not change
with time), irreducible (every state is reachable from every other state) and aperiodic (the
probability of being in any state at time is positive if is sufficiently large). We will below
discuss some properties of Markov chains. For a more detailed discussion, we refer to [8].

A Markov chain is said to be positive recurrent if the expected time to return to zero
Ex[Tret] is finite. It is said to be transient if the probability of returning to zero is less than
one. Transience is a stronger condition than not being positively recurrent since any transient

746 JOHAN H,STAD, TOM LEIGHTON, AND BRIAN ROGOFF

chain is clearly not positive recurrent, but not vice-versa. For example, an unbiased random
walk is neither positive recurrent nor transient. We will also be interested in a third property,
namely, whether the expected queue size Ex[Lave] over time is finite.

In the literature, a system is often said to be stable if it is positive recurrent. In prac-
tical situations, stability more naturally corresponds to the situation when Ex[Lave] is finite.
Hence, we adopt a hybrid definition of stability in this paper. In particular, we say that a
protocol is stable if it satisfies both conditions, and that it is unstable if it satisfies neither.
Although there are hypothetical examples of systems that satisfy either condition but not both,
the protocols we study either satisfy both or neither. Hence we will be able to classify pro-
tocols as stable in the strongest possible sense or unstable in an equally strong sense. Of
course, there is also the possibility of the initial state being transient within the domain of
instability. In fact, we conjecture that our instability results can be extended to prove the
initial states is transient, although our techniques do not appear sufficient to prove such an
extension.

The predominant method for analyzing the behavior of an infinite Markov chain is by
means of a potential (or Lyapanov) function. In our case, a potential function is a map from
(Z+)2N to Z+ such that the origin is mapped to zero and the other states are mapped to
positive integers. Often, the potential function is directly tied to the measure of concern (e.g.,
the number of messages held in queues). For example, we will use potential functions of the
form

N N

cl Z qi -+" E f bi)-c2 -+- c3
i=1 i=1

for some constants c > 0, C2 > 1, and c3.
The key step in proving that a protocol is unstable is to find a potential function for which

the expected change in potential is at least 6 for any state, where 6 is a fixed positive constant.
This, of course, implies that the expected value of the potential function after steps is at least
3t. By itself, this is not enough to imply instability. For example, consider the simple chain
where state moves to state max(/- 1, 0) with probability and to state + 1 with probability- and for which the potential of state is e2i 1 This chain is positive recurrent but the
4
expected change in potential is always at least 1.

If the potential function is natural enough, however, then such an argument can be used
to prove instability. For example, we will use a potential function of the form

N N

POT(q,b) CEq nt- E f(bi)-1

i=1 i=l

for exponential backoff. If this potential function grows linearly with time, one can prove that
Ex[Lave] diverges and that the system is unstable. We will prove this formally in 5.

The key step in proving that a protocol is stable is to find a potential function for which
the expected change in potential is at most -3 for all but a finite number of states, where 6 is
a positive constant. Once such a potential function is found for c2 > 1, it can then be shown
that the associated chain is positive recurrent. To prove that Ex[Lave] is finite one has to study
the expected change in P OT2. We will establish this connection in 3.

Unfortunately, it is not clear how to find such a potential function for polynomial backoff
protocols. In fact, we suspect that there is no such potential function which increases mono-
tonically with the qi’s and the bi’s. Hence, we must follow a somewhat more complicated
approach to prove that polynomial backoff is stable.

In particular, we find a potential function for which there is a constant-depth tree of
descendent states (not necessarily all of the same depth) emerging from each state for which

ANALYSIS OF BACKOFF PROTOCOLS 747

the expected change in potential computed over these states is at most -&. In other words,
the potential might be expected to increase in the first few steps but must decrease overall
after some larger (but constant) number of steps. Such an argument is still sufficient to prove
stability since the performance of such a chain is equivalent (up to constant factors) to the
performance of a chain where each tree of descendent states is replaced by direct transitions
from the root to the leaves with the appropriate probabilities. The latter chain is then shown
to be positive recurrent and stable by the usual approach.

3. Stability of polynomial backoff. In this section, we show that polynomial backoff is
stable under the most general assumptions. In particular, we prove the following theorem.

THEOREM 3.1. Let f(x) (x + 1) -c for any ot > 1. Then, for any number ofstations N
and any set ofarrival probabilities)1, iU that sum to) < 1, the backoffprotocol defined
by f (x) is stable.

The overall strategy of the proof is along the lines described in 2.4. In particular, we
define the potential function

N N

P 0T (q, b) qi + Z(hi "1- 1)+ N,
i=1 i=1

where qi is the length of the th queue, bi is the value of the ith backoff counter, and q and b
are the corresponding vectors. We show that for every state with sufficiently large potential
P O T, there is a constant-depth tree of descendent states over which the expected decrease in
P OT2 is at least & P OT for some fixed constant 3 > 0. By a tree of descendant states, we
mean the following. Starting at a state q0, b0, we follow the system step by step. We observe
the system and at each time we decide whether to halt the system or to let it run for another
timestep. We always halt the system within a finite number of steps. The total set of halted
states naturally forms the leaves of a tree and the maximal number of steps we observe the
system is the depth of the tree. Standard theorems establishing convergence (see [8]) do not
seem to apply to this situation, and hence to prove Theorem 3.1, we need the following lemma.

LEMMA 3.2. Suppose that there are constants , d, and V such thatfor any state (q, b)
which havepotential P 0T (q, b) > V, there is a tree with depth at most d ofdescendent states
over which the expected decrease in P 0T2 is at least P 0T (q, b). Let TretV denote the time
at which the system returns to potential V or less (If P 0T (q, b) < V, then TretV 0). Then
there is another constant c depending only on , d, and V for which

Ex[L(t)l(q,b)=(q,b)1 <_cPOT2(q,b),

where L(t) denotes the number ofitems in the system (i.e., total queue length) at time t.

Proof We will prove the lemma by induction on time, but we have to be careful since

TretV might be infinite a priori. To overcome the subtleties inherent in dealing with large values
of TretV, we define a modified system that is terminated after T steps. In particular, at time T,
the system automatically returns to the origin and remains there forever. We then examine

min(etV)E(q, b, T) Ex L(t)[(q0, b0) (q, b)
k t=0

and proceed by induction on time. For T < 0, we formally define E(q, b, T) 0. Our
induction hypothesis is

E (q, b, T) < cP OT2 (q, b)

for all values of q, b, and T.

748 JOHAN H,STAD, TOM LEIGHTON, AND BRIAN ROGOFF

Provided that c > 1, the hypothesis is true for T 1, since L(0) < POT(q, b) and
L(1) 0. In addition, the hypothesis is also true if P OT(q, b) < V by definition, since then
TretV 0. We next assume that

E (q, b, T’) < ce OT2 (q, b)

for all T’ < T and any q and b and consider the case when the system is terminated at time T.
Let the ith leaf of the tree of descendent states appear with probability p, have potential

POT/, and be at depth di. Also let Li denote the sum of L(t) over di steps taken to reach the
ith leaf. Since at most one item be broadcast at any step and L(t) < POT(qt, bt), we can
deduce L (t j) < P OT(qt, bt) + j and hence

di di (di + 1)

j=o
2

Thus we can conclude that

E(POT, T) <_ pi(Li + E(POTi, T -di))

(di(di+l))<_ Pi. (di + 1)POTi +
2 +cPOTi2

d(d + 1)
<_ + + POri2

By the assumption of the lemma, we know that

Pi P 0 Tie <_ P 0T (q, b) ; P 0T (q, b).

A standard convexity argument can be used to show that this implies that

piPOTi < POT.

Hence,

d(d + 1) T2E(q, b, T) _< (d + 1) P OT (q, b) + + cP O (q, b) caP OT (q, b).
2

d+ d+ we can then conclude that E (q, b, T) < cPOT2(q,b) whichBy choosing c _> -T- + 2,v
concludes the induction.

We have now proved that

IminetV) 1Ex L(t)[(qO, bo) (q, b) < cPOT2(q, b)
L t--0

for any T, where the constant c does not depend on T. Assume for the purposes ofcontradiction
that

IrretV
Ex L(t)l (qO, b0) (q, b) > cPOT2(q, b)

t=0

for some state (q, b). Then there would be a finite T for which

IminetV) 1Ex L(t)l (q0, b0) (q, b) > cPOT2(q, b),
L t=0

ANALYSIS OF BACKOFF PROTOCOLS 749

which is a contradiction. Hence

Ex[L(t),t_t=o

(q’ b)- (q’b)l<-cPOT2(q’b)’
as claimed. 71

Next we have the following result.
LEMMA 3.3. Any system that satisfies the hypothesis ofLemma 3.2 andfor which states

with potential less than V can only move to states ofpotential at most O(V) is stable.
Proof. We use Theorem 14.0.1 of [8]. Let us state this theorem in our vocabulary.
THEOREM (Theorem 14.0.1 from [8]). Given a Markov chain on a denumerable set which

is irreducible and aperiodic and letting f > 1 be a function on its statespace, the following
conditions are equivalent:

(i) The chain is positive recurrent with invariantprobability measure rr and the expected
value for f with respect to rr is finite.

(ii) There exist a finite set C ofstates such that

sup Ex[f(qt, bt), (q,b)- (q,b)l < cx3,
(q,b)6C

where Tretc > 0 is the time neededfor the chain to return to C after step O.
Lemma 3.3 follows from this theorem. We denote f as the total queue length and C as

the set of states with potential at most V. Then condition (ii) follows from Lemma 3.2, and
the conclusion of Lemma 3.3 is then given by (i). 71

For polynomial backoff protocols with constant N and oe, the potential of the system can
increase by at most a constant factor at each step. Hence the condition of Lemma 3.3 that
states with potential less than V can only move to states with potential O(V) is easily seen to
hold. Polynomial backoff protocols also satisfy the conditions of Lemma 3.2, although this
is much harder to verify. In fact, the bulk of this section will be devoted to establishing the
hypothesis ofLemma 3.2. The analysis is divided into four cases depending on the magnitude
of the transmitting probabilities associated with the state. To this end, let us define

)i if bi 0 and qi O,

Pi 1 if bi 0 and qi > O,
(bi "at- 1)- if bi > 0

to be the probability that the th station attempts a transmission. The four cases are then

(I) Vi bi <_ B,
(II) i bi >_ B and Vi Pi < 1,

(IIi) i bi >_ B, i Pi 1, and there exists another with Pi >_ , and

(IV) :i bi > B, :ti Pi 1, and for all other i, Pi <_ .
The values of B and M are constants to be defined later. Throughout, we will assume that
P OT (q, b) > V, where V is another large constant to be determined later.

In what follows, it will be convenient to let Q- (Q-) denote the expected increase (de-
crease) in the potential due to changes in the length of the th queue. We define B/+ and

B/- analogously, and we let Q+ y/u=l Q+, and define Q- B+ and B- analogously. We
use Ex[X] denote the expected value of random variable X and A(P) to denote the amount
change in the quantity P. For example, the expected change in potential will be written as
Ex[A(P OT)]. Lastly, we refer to the ith station as Si. All these quantities are dependent on

750 JOHAN H*STAD, TOM LEIGHTON, AND BRIAN ROGOFF

the present state (q, b) but due to readability considerations, we will not make this dependence
explicit.

We analyze the cases in order of their difficulty. Case I is by far the most difficult and is
saved for last. We start with Case II.

Case II. Without loss of generality, we can assume that i pi < 1, b > B and bi <_ bl
for/> 1.

We consider a single step of the system and analyze A(P O T2). By definition,

Ex[A(POT2)] Ex[A(P 0T2)1S1 succeeds]Pr[S1 succeeds]

+ Ex[A(P OT2)[S1 does not succeed]Pr[S1 does not succeed].

When S1 succeeds, the potential decreases by at least

1)+1/2(bl+l)+-N> (bl+l
if B >_ 10N. This in turn corresponds to a decrease in magnitude for P OT2 of at least

1)2oe+ 1)+(b+I)+1/2POT (bl+ >-2-(b+ POT

(b + 1)+/2 by definition.sincePOT> g
The probability of S1 succeeding is at least

N

(bl + 1) -u H(1- Pi) >_ (1-))2-N(bl + 1)-.
i=2

Thus the first term in the expression for Ex[A (P O T2)] is at most

(1))2-N(bl + 1)1/2POT.
2

To estimate the second term, we use A Q+ < N, A Q- > 0, and AB- > 0 to obtain

Ex[A(P O T2)] S1 does not succeed]Pr[S1 does not succeed]

< Ex[A(P O T2)I S1 does not succeed]

< Ex[(POT + N + AB+)2] POT2

< N2 + 2N. POT + 2(POT + N)Ex[AB+] + Ex[(AB+)2],

where AB+ is conditional upon the fact that S does not succeed. Note that this does not
mean that $1 tried and failed, since SI probably did not even try. In any event, if is not difficult
to verify that Ex(AB+) < N and Ex((AB+)2) < N(b + 1)u-1 + N2. Plugging in and
summing, we find that the second term is at most

4N2 + 4N. POT + N(bl -Jr- 1)-1.

Combining the two terms with the inequality POT > (bl + 1)- then gives

Ex[A(POT2) _< 4N2+4N.POT+N(b+I)O_ 1
--(1--))2-N(b+l) POT < -aPOT

provided that 3 < 1, P OT > N, and

ANALYSIS OF BACKOFF PROTOCOLS 751

CBN222NB>
(1)2

for some constant cB independent of N and
Case III. We assume bl > B, P2 1, pj > , j 7 2, and bi <_ bl for > 1.
We will proceed as in Case II, except that here we analyze the expected change in P OT2

over two steps instead of one. The most desirable scenario is when station j crashes with
station 2 in the first step while no station with bi > N attempts, and station 1 is the only
station to transmit at the second step. Call this event E. Then

Ex[A(P OT2)] Ex[A(P OT2)IE]Pr[E] + Ex[A(P OT2)IE]Pr[--,E].

The decrease in potential when E happens is at least

)=+1/2(bl+l)a+1/2-M-Na+ >-(bl+l
-2

provided B >_ max(M, N2). The probability of E is at least

1 1 N

-PJ (bl + 1) I-I(1
i=2

where p is the value of pi after the first step as prescribed above. Reasoning as in Case II,
1(1-)v)(bl 4- 1) 1/2 2-NPOTwe can then conclude that the first term is at most -We have the same estimates for the second term as in Case II and this gives the desired

conclusion provided that

CBN2M222N
(1)2

for some constant CB independent of N and L.
Case IV. We assume pl 1; ’v’i > 1 pi <_ -.
In the last two cases, we can simplify the analysis for Ex[A (P O T2)] by finding bounds

on Ex[AP OT] and Ex[(AP OT)2] for some tree of descendent states. In particular, a simple
calculation reveals that

Ex[A(P OT2)] 2P OT. Ex[AP OT] 4- Ex[(AP OT)2]

for any set of descendent states, and hence we can prove that Ex[A(P O T2)] <_ -8POT
by showing that Ex[APOT] < -8 and Ex[(A POT)2] < P O T. We start by bounding
Ex[AP O T]. In this case, we need only consider one step of the system. Proceeding as in
Cases II and III, we find that Q-)vi,

(QT> 1- >1 m’

/ O() if/= 1,
B/+ ! O(M-1/(20) if > 1,

and B/- 0. Hence

N
Ex[AP OT] <_ L- 1 + + O(NM-1/(20) <_ -8

752 JOHAN H/STAD, TOM LEIGHTON, AND BRIAN ROGOFF

provided that) < 1, 6 < 1_.._., and

CMN2M>
(1)2ot

for some constant CM independent of N and L.
To finish the argument, we estimate Ex[(AP OT)z] as follows:

Ex[(AP OT)2] < 4Ex[(A Q+)21 + 4Ex[(A Q-)21 + 4Ex[(AB+)2] _at. 4Ex[(AB-)2]

<4N2+4+O(-+NM1-1/)
<3POT

for P OT > V where V > N2M and cv is a constant that is independent of N and ..
Case I. i bi <_ B.
We will proceed as in Case IV. In particular, the bulk of the proof is devoted to showing

that Ex[APOT] < -3. Afterwards, we observe that Ex[(APOT)2] < 3POT.
By making V large enough (the exact value will be determined later) and noting that

v (B + 1)+1/2 and bN < B without loss ofif POT > V, we can assume that qu > -generality. In other words, the Nth queue is very large and accounts for a good proportion of
the overall potential.

The key to the proof is to show that with some not-too-small probability, the Nth station
effectively dominates the channel for a very long time, thereby substantially reducing its
massive queue and dramatically lowering the overall potential function. In particular, we show
that there is a not-too-small probability that SN is always the sole next station to broadcast
after any collision. This is the hard part of the argument. Once this is done, we finish up by
showing that there aren’t too many collisions over time and that not too many packets arrive
over time. Of course, we must be sure to check that things can’t get too bad if the Nth station
ever does lose control.

To prove that we have a small probability of the Nth station staying in control, we will
first study what happens to a system of N 1 stations when we assume that all transmissions
fail. This is essentially the situation when the Nth station never loses control.

LEMMA 3.4. Consider an isolated system where a single station advances from level
to + 1 with probability - and otherwise remains at level i. Suppose the initial level of
the station is between S and B. Then with probability exceeding 1 O(2-c), the station
reaches level b (for any b > S) within time 6cb+1, and the station movesfrom level b to b + 1

after time b+1/4e+1 for any b > 2B.
Proof Without loss of generality, we assume that the station starts at level S for the first

part of the proof and that it starts at level B for the second part. To avoid duplication of effort
in the proof, we will use R to denote either S or B.

We start by computing the probability Pr[b, t] that the transition from b to b + 1 is made
at step t. This probability is precisely

Pr[b, t]
tR+...+tb=t--r,

tj>_o
’I

(1 _j-)tjj-,),
where r b + 1 R and tj denotes the number of steps that started and ended with the station
in level j for R < j _< b. Using the inequality 1 x <_ e-x and simplifying, we find that

ANALYSIS OF BACKOFF PROTOCOLS 753

b

j=R jot tR+’"+tb=t-r,
t >_o

b b tj > HenceSince ..j=R tj r and tj > 0 for R < j < b, it is clear that .’-j=R 7;

Pr[b, t] < e-() 1
tR +’"+tb=t--r,

tj>_O

b !U et/b‘"
<

bubeuR_u et/b‘" rr bur et/b‘" rr

ThenIn order to bound the behavior of this function, it is most useful to let fl b-;Tr"

U+ el
Pr[b, t] < e

For large or small constant values of/3, the preceding expression is very small. In particular,
for 13 < 1/2eu+1,

el/b‘")Pr[b, t] < <
2el/2e‘’+l 2r,

assuming bu > 2eu+, which will always be true since b > R. There are at most bUr/2eu+
values of < bUr/2eu+. Hence, the probability that we progress from b to b + before step
bUr/2eu+! < bu+/2eu+ is at most

bur bU+12R (bU+12R)2e--f2 <
2eU+12b

< O
2b

and thus with R B, b > 2B, we have established the second part of the lemma.
For fl > 6or, the bound is at most

] e6u 2r.

This is small for r > V. For smaller r, we need to observe that fl t/bUr > / for
6cbu+l b > S, and r < .v/, and in this case we use the bound

r eu+lel fl < e-c4Pr[b, tl < [eft
for some constant c. Moreover, the bound forms a geometric series for fl > 6ct. Thus the
probability that the transition from b to b 4- 1 is made after step 6cbUr is at most O(2-cv’)
for r < V/-, and for r > ,/-d, we have the bound

(burOt) (bu+12R)O 2r.. < o
2b

754 JOHAN H/STAD, TOM LEIGHTON, AND BRIAN ROGOFF

Summing over b again gives a geometric series, and for r > #, we get the total estimate

and the first part of the lemma is also established.
Lemma 3.4 can be immediately extended to hold for N- isolated stations simultaneously

by simply adding the failure probabilities. In other words, the result holds for N stations

simultaneously with probability exceeding O(N2-CV).
Having established how the rest ofthe system behaves ifthe Nth station remains in control,

we next look at the chances that the Nth station does maintain control.
LEMMA 3.5. Suppose SN collides with another station at time T and backs offto bN 1.

Then the probability that SN will transmit successfully before any other station attempts a
transmission is at least 2 YNi_l pi.

Proof Let W I-IN-1i= (1 Pi) be the probability that none of the first N 1 stations
try to send on a given step. Then the probability that the Nth station continues to maintain
control after the collision is at least

2-cW + (1 2-)2-W2 + (1 2-’)22-W3 +...

2-W W
-(1 2-)W 2a (2 1)W

Replacing W with 1 e, we observe that the probability of maintaining control is at least

> 1 2ce.
1 + e(2- 1)

Hence the probability of not regaining control at the next transmission is at most

since

N-1

2e 2(1 W) < 2 Pi,
i=1

N-1 N-1

W= H(1- pi)> 1-pi,
i=1 i=1

and the lemma follows.
We now use Lemmas 3.4 and 3.5 to prove that SN has a not-too-small probability of

remaining in control for a very long time. The basic idea is that SN keeps successfully
transmitting until a collision occurs, whereupon it regains control before anyone else attempts
to transmit. We will consider two kinds of collisions. The first involves collisions with stations
that have backoff counters of size S or larger, and the second involves a collision with stations
that have backoff counters of size less than S. There is also the possibility of both kinds of
collisions happening simultaneously, but we will rig things so that this does not happen. By
this we mean that the good set of events in which SN remains in control this will not happen.

Collisions of the first kind are nice because the behavior of stations with backoff counters
of size S or larger is governed by Lemma 3.4. Collisions of the second kind are nice because
there are not very many of them, provided that we never allow the first N 1 stations to
transmit successfully. In what follows, we consider sequences of events for which the Nth
station always maintains control by directly blocking transmissions for other stations. We will

ANALYSIS OF BACKOFF PROTOCOLS 755

show that no matter what times are chosen for the attempted transmissions of stations with
small backoff counters, there is a not-too-small probability that everything works as we hope.

To start things off, we consider the probability that SN succeeds in the first or second
step. For this to happen, we need SN to broadcast at the first step to block anybody else
from succeeding. We also keep anyone else from broadcasting at the second step so that
SN can succeed and establish control. This sequence of events happens with probability at
least

f2(B-6(B -I- 1)-6(1 L)2-N).

Henceforth, we will consider only sequences that started in this fashion and thus have bN 0
at step 3.

Next define ere to be the set of times (excluding steps 1 and 2) that one of the first
N 1 stations would have made an attempt to transmit with backoff counter less than S
if all its previous transmissions would have failed. Our argument will allow any possible
configurations of or, observe only that by definition that Icr[< (N 1)S. We partition
into k < (N 1)S maximal intervals 11, I2 I of configuration steps, and we define Ti
to be the step following Ii for 1 < _< k. By definition, T/ %, for __< < k. Lastly, set

or’ =cr U{Ti[1 _< _< k}.
’, we will require that SN attempts a transmission and that each sta-At each step of

tion with backoff counter S or larger does not attempt a transmission. This will ensure that
stations with small backoff counters never succeed and that S regains control after a col-
lision with any such station. Provided that the Nth station otherwise retains control (i.e.,
that bu _< 1 before each Ii), the probability that these forced moves actually take place is at
least

1
(2N S) !-6 (1- 8-6)2N2S > -(2NS)!-6

2

provided that S > (4N2) --l. The (2NS)!- factor is a gross underestimate on the probability
that SN transmits at all the desired times (which could all be bunched together in one large
interval), and the (1 S-6)2N2s factor accounts for the probability that the stations with large
backoff counters do not attempt to transmit at all the desired times.

The preceding analysis accounts for collisions with stations that have small backoff coun-
ters. To account for stations that have large backoff counters, we apply Lemmas 3.4 and
3.5. In particular, we let Et denote the event "At time t, SN collides with another station,
backs off to bN and does not regain control by being the next station to send". If
SN loses control Et must happen for some t. We need only analyze what happens outside

o, so SN will only compete with stations with large backoff counters. By Lemma 3.5, we
have

Pr[Et] < 26 (bi(t) + 1)-6 < 26 (N 1) (bi(t) + 1) -26,
\bi > S bi >_ S

where the second inequality follows by Cauchy-Schwartz inequality.
’. To bound this probability, we will assume thatWe next need to sum Pr[Et] over cry

the conclusion of Lemma 3.4 holds at time but not necessarily at any future time so as to
avoid conditioning of the probabilities. We also have to be careful to note that the value of
bi(t) depends on when Si first had a backoff counter of size S, but otherwise is governed by
Lemma 3.4. Combining these observations gives

756 JOHAN H,,STAD, TOM LEIGHTON, AND BRIAN ROGOFF

Pr[Et] < 2’(N 1) (bi(t 2f_ 1) -2t

cr, .r, bi S

N-1

Z 2(U 1) (bi(t) + 1)-2

i=1 ta,bi(t)S

2(N-1) max S,
t=l

2(N_ 1)2
6S+1

$2 +
=6s+

< cN2S1-

assuming that the conclusion of Lemma 3.4 holds.
Although we still have many details to check, we are essentially done with the hard pa

of the analysis. In what follows, we consider descendent states with depth at most U + 2N S,
where U + 2NS qN. In paaicular, we are interested in sequences of descendent states for
which the following conditions hold:

(1) every backoff counter is at most O(U/+I);
(2) SN successfully broadcasts for all but O(NU/+ log U + NS) steps;
(3) the number of new messages aiving overall in the first T steps is at most T +

2NS + U/2 log U for all T U; and
(4) SN gains control in the first two steps and maintains control thereafter (i.e., the

conditions described in the previous discussion are satisfied).
We first note that if all ofthese conditions hold for U steps, then we will have experienced a

tremendous decrease in the potential function. This is because at least U- O(NU/+ log U)
messages are successfully transmitted, at most U + U/2 log U + 2N2S aive, and each
backoffcounter adds at most O (U +/2/+) to the potential. Hence the decrease in potential
is at least

(1-X)U-O NU + U log U + NS

((-)U- O NU

which is large for large U.
We next note that the probability that all of these conditions hold for U steps is not too

small. This follows naturally form the proceeding analysis and Lemmas 3.4 and 3.5. In
paicular, the probability of gaining control in the beginning is

Given that S gains control by the method described at the beginning and that b at
steps before Ii (1 k), the probability of having things go as planned for steps in
is ((2N S)[-). Given that things have gone well at the beginning and during the previous
steps of g, the probability of not violating Lemma 3.4 nor having S otherwise lose control
is at least

O(N2- + NS-).
The first term comes from Lemma 3.4 and the second comes from Lemma 3.5 and the above
calculation. Thus we have calculated the probability of (4) holding. The probability of

ANALYSIS OF BACKOFF PROTOCOLS 757

violating the first condition is O (2-cU1/2+1) by Lemma 3.4. If the first condition is satisfied
and SN remains in control, we know that there are at most O(NU1/+1) + NS) collisions in
the U steps. The time for the SN to try to send again after each collision is at most a log U with
probability 1 O((NU1/(+1) (1 2-a)alg u). This is very small for a 2+1. Since the next
attempted transmission will always be successful with probability O(N2/S’-1), we can
conclude that the Nth station successfully transmits on all but O((NU1/(+1) + NS)log U)
steps with probability 1 O(N2/S-1 + -). Hence with this probability, condition (2) is

satisfied. The last condition is easily verified to hold with probability O (-) by standard
arguments.

Putting all the probabilities together, we find that all desired conditions hold with proba-
bility exceeding

ff2(B-2(1-))2-N (2NS)!-) (1- O (N2-CJ- + N2SI-a + -))
> (B-2(1))2-N(2NS)!-)

for U > cvN and S >_ csNZ-.
Note that we have multiplied probabilities of success instead of adding probabilities of

failure at two crucial points of the analysis. The first place we do this is at the beginning,
when we force SN to gain control right away. Since later probabilities are conditioned upon
this happening, multiplication of success probabilities for the first two steps and later steps
is appropriate. The second place we multiply success probabilities is when we combine the
probabilities that things work well during a with the probability that things work well outside

a. Although these probabilities are not completely independent, the dependence is minimal
and works in our favor. This is formally argued as follows.

Let Pi,t and p* be random numbers drawn uniformly and independently from [0, 1] fori,t
1 < < N and 3 < < U + 2NS. The value of p* will be compared with)i" to decide it,i,t
the ith station gets a new packet at time t, and Pi,t will bc compared with bi (t) to decide if
the ith station tries to transmit at the tth step. Note that the values of bi (t) depend on previous
values of pi,t and p* for various i’s and t’s but that the p-values are mutually independent.i,t

For each Si examine the values of Pi,t and p* for 3 < < U + 2NS to determine thei,t

steps (if any) at which Si would try to transmit with backoff counter less than S under the
assumption (not the knowledge) that all attempts are blocked. Accumulating these values for

Note that the selection of steps that1 < < N 1, determine the time steps contained in
are in crt is independent of values of pi,t and p*i,t for such that N or Si has a backoff
counter of size S or larger at step under the assumption that all previous attempts have been
blocked. Moreover, the remainder of this argument will not depend in any way on what steps
were selected for

We now analyze the probability that ioi,t and p.* and,,t are as we would hope for
such that N or Si has a large backoff counter. In particular, we want SN to try to broadcast

and we do not want stations with a large backoff counter to try to transmitfor all 6 r,
at any step 6 o’. As argued before, the p-values satisfy these demands with probability
f2 ((2N S)!-), provided only that bN < 1 at the beginning of each Ii, 1 < < k. In addition,

and SN is thwarted from broadcasting for atwe can have at most N2 S new arrivals during r,
most NS steps during these times.

and such that N or Si has aWe next consider the loi,t and P*i,t values for
large backoff counter. To simplify the argument, we first consider the behavior of the system

did not exist. In this scenario, we can apply Lemmas 3.4 and 3.5 and the analysisas if
Nthat followed to conclude that with probability 1 O(N2-cJ + N2 S1- -+- -), the values

for Pi,t and Pi*,t make the system perform exactly as desired. In other words, the values of the

758 JOHAN H/STAD, TOM LEIGHTON, AND BRIAN ROGOFF

large backoff counters are regulated by Lemma 3.4, SN never loses control, new packets do
not arrive too fast, etc. Note that we add the probabilities of failure in this context since the
various modes of failure in the isolated system might be dependent. Also note that stations
with small backoff counters are guaranteed not to attempt a transmission during these steps
by the definition of

and ’ are independent, we can concludeSince the values of Pi,t and Pi*,t for or
that all of the above constraints on the p-values are satisfied with probability

f2((2NS),-) (1- O tN2-C’/-t- N2SI- + -))
Of course, we still must show what values of pi,t and P[,t that satisfy these constraints actually

inwith steps not inproduce the desired sequence of events when we interleave steps in
the correct order. Once this is accomplished, we are done since we will have shown that with
probability exceeding

f2((2NS),-) (1- O (N2-C’/ + N2SI- + -))
the system behaves as claimed.

The proof that the real system behaves well if the Pi,t and p.* values satisfy the proceedingt,t

constraints proceeds by induction over t. The base case 2 was already established. We
then consider what happens at some time >_ 3, assuming that previous moves in the real
system were essentially identical to moves of the corresponding steps of the isolated systems.
If 6 r,’ then we can be assured that bN _< 1 before the interval Ii that contains and thus that
SN broadcasts and that stations with big backoff counters do not broadcast. Hence stations with
small backoff counters are blocked and their behavior continues to agree with the assumptions

as describing when stations with smallHence the definition ofthat were used to define r.
backoff counters attempt to broadcast remains valid. This is precisely what we want to have

’, the system behaves exactly as it does in the scenario when we ignoredhappen. For (
has no effect on any of the large backoff counters and becausebecause the activity in

stations with small backoff counters are guaranteed not to try anything by the definition of

r. The only possible difference is that bN could be lowered from 1 to 0 by including some
steps of rv. The only effect of making bN 0, however, is to start SN broadcasting sooner.
By these constraints, we know that SN will be the next station to transmit anyway, so starting
off sooner only increases the number of successful transmissions without otherwise changing
that state of the system. Hence the behavior of the combined system is virtually identical to its
behavior during r and outside r when considered in isolation, provided that the constraints
on the p values are satisfied.

The formal justification that events go well with the claimed probability is now complete.
All that remains is to bound the possible increase in the potential function should any of these
conditions fail. Note that no matter what the reason for failure, all the conditions held in the
previous step by assumption. Hence the most we could have added to the potential function
because ofthe counters is O(NU(a+I/2)/(+I)). Similarly, the most we could add (net) because
of the queues is O(U1/2 log U + NU1/+1 log U). Hence, the worst increase we could suffer
is O(NU(t+l/2)/(t+l)).

Putting everything together, we find that there is a tree of descendent states with depth at
most U for which the expected decrease in potential is at least

f2(B-Za(1))2-N(2NS)!-) (1))U 0 NU-ZZr- 0 NU--;-

or+l/2)> (B-2a(1 k)2u2-N(2NS)!-’) 0 NU---4-c

ANALYSIS OF BACKOFF PROTOCOLS 759

By selecting

u (cu2NNB2(2NS)!)-/)2

for some constant cu independent of N and), we get Ex[A P O T] <_ -6.
To complete the proof of Theorem 3.1, we need only observe that Ex[(AP OT)2] does

not cause any problems since all the APOTs are of order U, and if we choose V f2 (U3),
we are done.

Remark. Let us just point out that there is no problem in determining our constants. The
reason is that our conditions can be summarized as follows"

M > f (Z, N),
B > f2(), N, M),
S > f3(), N),
U >f4(L,N,B,S),
V > fs(U, B).

Here j are the explicit functions given in the proof.

4. Lower bounds on Ex[La,,e]. The analysis presented in 3 reveals that Ex[Lave] is
at most P ((1))-1) 2Q(N), where P and Q are polynomial functions. We do not know
whether or not the dependence on N can be made polynomial. The main difficulty in proving
a polynomial upper bound in N by extending our methods lies in analyzing the probability
that a station will grab control of the channel and empty its queue.

We can prove nontrivial lower bounds on Ex[Lave], however. In particular, in this section,
we show that for a wide range of backoff functions the expected number of nonempty queues
over time is linear in the number of stations. For many backoff functions, this fact will imply
that Ex[Lave] grows superlinearly in N.

z of getting a message at each timeslot.We will assume that all stations have probability
This is a reasonable assumption since if the arriving messages are very unevenly distributed
among the stations, the system would in reality be a system with fewer than N stations. On
the other hand, small deviations from this assumption can be handled.

Let us start by giving an outline of the ideas of this section. The basic tool will be to
establish a connection between our finite model and the infinite model briefly discussed in

2.3. We will not prove that the models behave in the same way but rather that the proofs of
instability in the infinite model extend to give lower bounds in our finite model. Before we
can make this precise, however, we need a more formal definition of the infinite model.

In the infinite model, there is a countably infinite number of stations and no station ever
gets two messages. The total number of messages that arrive to the system at a given time
is assumed to be Poisson distributed with mean). Each station behaves exactly in the same
way as in the finite model. Since there are never two messages in any station, it is convenient
to talk of the system as if each message had its own backoff counter. We next review some
results for the infinite model.

Assume for the moment that the system is continuously externally jammed (i.e., that
no transmissions are successful) and that a message arrives at time 1. Define h(x) to be
the probability that an attempt is made to transmit this message at time x. For example,
Ex[h(x)] (R)(x-/(+)) if f (b) (b + 1)-. Let

H())- Z -t-) h(x) e-ZE=, h(x)

t=l x=l

760 JOHAN H/,STAD, TOM LEIGHTON, AND BRIAN ROGOFF

We will say that a backoff function has property Hz if there exist)’ such that) >)’ and
H(U) is finite. Using this notation, we have the following theorem due to Kelly [5].

THEOREM (Kelly [5]). Consider the infinite model and any backofffunction satisfying
property Hz. Then the expected number ofsuccessful transmissions up to time T is bounded
by a constant independent of T when the arrival rate is .

It is not too difficult to check that essentially any function which grows slower than
any exponential function has property Hz for any) > 0. In particular, this is true for any
polynomial backofffunction. The previous theorem does not apply to f(b) 2-b for) < In 2,
however. In this case, we need to rely on the following almost equally strong theorem.

THEOREM (Aldous]). Consider the infinite model and f(b) 2-b,) < In 2. Thenfor
the expected number ofsuccessful transmissions up to time T is o(Ta).any a > i-,

It will help to provide a brief outline for the proofs of these theorems. Let the mass m(t) of
the system at time be definedbym (t) i f(hi). A fact which underlies most ofthe analysis
is that the probability of a successful transmission is bounded above by () + m(t))e1-mt). An
easy calculation shows that this is true in both the finite and infinite models.

Using this fact, we can now give the idea behind the proofs. Within constant expected
time, due to many messages arriving within a short time interval, the mass will exceed K for
some large given constant K. Once this happens, the probability of success is small and the
messages that arrive to the system are not successfully transmitted, which implies that the
mass increases even more, and so on.

To get a connection between the infinite and finite models, we will forget any message
that is not an active message (i.e., first in its queue).

When we disregard messages which are not active, the finite model behaves in a similar
way to the infinite model as long as the number of stations with empty queues remains at least
cN. The only differences are

(1) after a successful transmission, an additional new active message might appear in the
finite model, due to the fact that the station in question has a queue of length 2 or
more, and

(2) the distribution of the number of arriving active messages is not constant over time
in the finite model (it depends on the number of stations with empty queues) and is
not Poisson (it is a sum of binomials instead).

Although these differences are substantial, for the most part they tend to just make the
behavior of the finite system worse than its infinite counterpart as long as Xe(t) (N),
where Xe(t) is the number of empty queues in the finite system at time t. In particular, we can
establish the following key property.

LEMMA 4.1. Suppose that Xe(t) >_ cN in an N-station system with arrival rates i, -.
Then there a constants KZ,c and d,c such that within expected time Kx,c, there is a point in
time to such that m(to) > d,c such thatfor every t,

m(to + t) _> { dz,c logtl for f(b) 2-b,

dz,ct for f(b) b-u,
or Xe(to + S) < cNfor some s [1, t]

Proof sketch. Let us first take care of the case f(b) 2-b. Lemma 4.1 describes the
mechanism that Aldous 1 uses in his proof. We will not repeat the proofhere butjust describe
how to take care of the differences. Aldous uses two key lemmas, one which states that there
are not too many successful transmissions (Lemma 3) and one which states that there are many
new arrivals (Lemma 4). In our situation, the proof of his Lemma 3 goes through virtually
without change. To prove the equivalent ofLemma 4, one needs to take care of the differences
described above. Difference (1) only helps us since it provides extra arrivals. To take care

ANALYSIS OF BACKOFF PROTOCOLS 761

of difference (2), observe that what is needed is an estimate that much fewer messages arrive
than expected. By our assumption on the number of empty queues and the arrival rates, the
expected number of arriving messages is high and the probability of getting only a fraction

7which is g of the expected value is exponentially small. We conclude that the bounds also
hold in our case.

The case f(b) b- is easier and can be taken care of in two ways, either by imitating
Aldous’s prooforby extending Kelly’s proofto show that the expected number oftransmissions
before Xe(t) <_ cN is a constant. The differences in the two models are taken care of in a
similar way.

Define

1 T

Xe(Z) " Xe(t)
t=l

to be the average number of empty queues over time. We use Lemma 4.1 to bound Ex[Xe(T)].
THEOREM 4.2. Let f(b) b or f(b) 2-b. Then for any c > O, E(Xe(T)) <

cN + o(N) for T > dc,zN.
Proof Let c’ c We know by Lemma 4 1 that if Xe(t) > c’N, then within constant

expected time the system will reach a state with m(t) > -101ogc) and remain this way
c)until Xe(t) < c’N. Once the mass is this large, successes happen with probability _<

Since a message arrives in an empty queue with probability at least c), the number of empty
queues will constitute a biased random walk. Furthermore, the probability of not going into
a high-mass situation within time is bounded by 2-ki for some k > 0. This implies that if
Xe(O) <_ c’N, then for any > 0, Pr[xe(t) > c’N + i] < 2TM again with k > 0. If, on the
other hand, xe(O) > c’N, the probability that Xe(t) remains greater than c’N for time dN for
some large d is less than 2e-a’N. This follows since with probability e-d’N, the system will
enter the state prescribed by Lemma 4.1 before time 7N and the probability that the biased

random walks stays above Xe(t) >_ c’N is e-d’N. From then on, the previous case applies. In
either case, we know that for any > dN, the probability that Xe(t) >_ cN is < e-d’N, and
this proves the theorem.

Having established that, on the average, we have a linear number of nonempty queues,
we now look at the length of these queues.

LEMMA 4.3. If the system is stable and f (b) 2- or f(b) b-u, then for sufficiently
large N, afraction cz ofthe time Xe(t) < and m(t) < Rz.

Proof. To have a stable system with total arrival rate), the probability of success has to
be > at least a fraction 7 of the time. This implies that m(t) < R at least 7 of the time,

where R is a constant depending on). Furthermore, whenever Xe(t) > 2____, by Lemma 4.1
within constant expected time m(t) will exceed R and stay that way for time at least cN. Thus

c and the lemmathe fraction of the time for which m(t) < R and Xe(t) >_ 2_ is bounded by N,
follows.

LEMMA 4.4. If f (b) (b + 1)-, ot > 1, then a fraction cz of the time there are
f2(N(+1/) messages in the queues.

Proof. We know by Theorem 3.1 that the system is stable and thus every state S of
the system has a probability Pr(S) associated which is the relative frequency with which the
system is in state S. We know that

Z Pr(S) > cz.
S,mS<_,xeS<_

For any state in the above sum there are (N) queues whose backoff counters are at least

dzN. Define station to be unusual if .b+I/4N(ot + 1) > qi and bi > dzN, where dz

762 JOHAN HSTAD, TOM LEIGHTON, AND BRIAN ROGOFF

is a constant to be determined. Say that any point in time is unusual if at least ,/- of the
stations are unusual. Using Lemma 3.4, it follows that the fraction of unusual points in time
is exponentially small. Thus the states S which are not unusual and have m(S) _< R and
xe(S) <_ have total probability > c’ for N > Nz. But any such state has (N) stations
each with f2 (N1/) long queues, and the lemma follows.]

Lemma 4.4 immediately implies the following lower bound on Ex[Lave].
+1

THEOREM 4.5. If f (b) (b + 1)-, then Ex[Lave] >_ f2 (N--z-).
For quadratic backoff, this means that Ex[Lave] > f2 (N).

5. Instability of exponential backoff. In this section, we prove instability results for
binary exponential backoff. We will prove two results; one which is exact and the other
asymptotic. Let us start by stating the exact result.

THEOREM 5.1. Suppose binary exponential backoff is used and the arrival rate at every
station is -, where > ,o + and ,o " 0.567 is the solution to)o e-. Then the
system is unstable.

To prove the result, we use the potential function

N N

i=1 i=1

The best choice for C will turn out to be 2N 1.
For any state in the system, we will show that the potential function is expected to increase

by at least a fixed amount (independent of the state) during the subsequent transition. This
will enable us to prove Theorem 5.1.

The proof requires the use of the following simple lemma.
LEMMA 5.2. IfO <_ ei <_ 1 for 1 < <_ m, then

m

i=1 i=1

and
m m

I-I(1 + ei) >_ 2ei.
i=1 i=1

Proof The first inequality is obvious from expansion of the product and the nonnegativity
of the ei’s. The second inequality follows from the observation that

rn rn rn

H(l+-i)--2.i >H(1--ei)>_O
i=1 i=1 i=1

since 15 1 for 1 _< _< m. S
In the proof, we let M denote the number of stations with a nonzero backoff counter.

Without loss of generality, we can assume that bl bt 7 0 and bt+l bN 0, where
0 < M < N. Note that if bi 5 O, then qi 7& 0 since there must be some message that failed
in its most recent attempt to transmit. In addition, the queues in all but one of the stations
M + 1 N must be zero. This is because any station with bi 0 and qi 7 0 must have
successfully transmitted during the last step. Hence we divide our analysis into two cases,
depending on whether or not q/+ 0.

Case I. b bt 0; b/+, ..., bv 0; qt+ qN 0; 0 < M < N.
We start with some additional notation. As in 3, we let

2 bi for 1 _< _< M,
Pi=

i forM + 1 <i _<N

ANALYSIS OF BACKOFF PROTOCOLS 763

z is the probabilitybe the probability that the th station attempts to transmit, where ,i
that a new message arrives at the ith station. Let

N

T H(1 Pi)
i=1

be the probability that none of the N stations attempts to transmit a message. In addition, the
probability that none of 1 1, / 1 N} try to transmit is T/(1 Pi).

We also define

N N
Pi e H(1 + i) and S--- Z 6i(5i

pi i=1 i=1

Note that 1 + i is 1/(1 Pi), so RT 1. Also note that 0 < 5 1 for 1 < < N since
z forN > 2.bi >_ 1 for 1 _< < M and i

We let Q/+, Q-, B/+, and B/- denote the same quantities as in 3, and since expectations
sum, we have

N N N N

U, + S, +

i=1 i=1 i=1 i=1

It is easily seen that Q/+ C for 1 _< _< N. Since the ith station transmits successfully
with probability Ti, we can also easily conclude that Q- CTi for 1 < < N. Since the
ith station crashes with probability (1 T/(1 Pi))Pi, the value of B/+ is

T) 2-’i 2bi 1 T (1 -k- i)1
1 2-’i

for 1 _< _< M, and

for M + 1 < < N. Finally, we note that

T
B- (2bi 1) T

1 2-be

for 1 _< _< M and that B/- 0 otherwise.
Summing these values over 1 _< < N, we find that

N

Ex[APOT]=C,k-CTS+M-MT-TS+ ,ki MT
i=M+I

N

C. + M + i, T[(C + 1)S + 2M].
i=M+I

Hence Ex[AP OT] > 6 if and only if

R C-6+M+ i " (C+ 1)S+2M.
i=M+I

764 JOHAN HSTAD, TOM LEIGHTON, AND BRIAN ROGOFF

Substituting C 2N 1 and)v > 1/2 + d + F, we need only check that

R(N + M) > 2NS + 2M

in order to verify that Ex[AP OT] > 8 for any 8 > 0. This inequality easily follows from
Lemma 5.2 since if S > 1, we use the facts that R _> 2S and R > 2, and if S _< 1, we use the
facts thatR> l+SandN>M.

Case II. b bM O; bM+ bN O; qM+ =/: O; qM+2 qN = O; 0 < M <
N.

In this case, we are guaranteed that station M + 1 will attempt a transmission. The
probability that it is successful is

M N

W=H(1-2-b’) H (1-
i=l i=M+2

The analysis for the Qi’s and Bi’s is similar to Case I. In particular, Q+ C.i

CW fori=M+l,
Q- 0 otherwise,

1 forl_<i_<M,

B-= 1-W fori M+ 1,

)i forM+2 < <N,

and B/- 0 for 1 < _< N. Summing these values, we find that

N

Ex[APOT] C) CW + M + 1 W + i.
i=M+2

Thus Ex[APOT] > 8 if and only if

N

C) + M + I +)i >_ (C + I)W + 8.
i=M+2

This is just a calculation and we defer it to the appendix.
Having established that we have an expected increase in potential each step let us see how

we can use that to establish Theorem 5.1. There are general conditions under which increase
in potential implies instability (see, for instance, [14]). However, to verify these conditions
require a fair amount of additional work and we believe that a direct proof is more illuminating.

Let us first prove that the expected waiting time is infinite over time.
LEMMA 5.3. At time T the expected waiting time for a newly arrived message is 8T for

some positive constant 8.
A message that arrives at Si has expected waiting time at least qi + 2bi, the reason being

that the expected time before the first message in the queue is sent is 2b’ and then at most
one message can be sent per time step. The probability of an arriving message arriving at &
is at least if we assume that the expected number of arrivals per time step is less than 1
(otherwise the theorem is trivial). Thus the expected waiting time is at least

) N

il(qi.= -t- 2b’) >_ POT.

Since the expected value of the potential is 2 (T) we are done.

ANALYSIS OF BACKOFF PROTOCOLS 765

Thus we have established that the expected waiting time and hence the expected queue
size gets arbitrarily large as time goes by. Let us proceed to prove that the recurrence time is
infinite.

Suppose we start at state where all queues are empty. We want to prove that the expected
time to return to this state is infinite. We know that in time T the expected potential is ST.
As an extension of this, we first establish that for some constants c and d, it is true that with
probability at least c the potential is at least dT. The essential lemma towards establishing
this is as follows.

LEMMA 5.4. For any b > [log T], theprobability that the th backoffcounter has reached
b in time T is bounded by 2-(b-[lg2

Proof. There must have been b [log T] increases in the backoff counter after it reached
[log T]. There are

T) Tb- [log T]

b- [logT] (b- [logT])!

possible ways to choose the time slots where these increases could happen. For any fixed
choice of these time slots, the probability that the backoff counter would increase at these time
slots is at most

b-1

2-i _< T-(b-[’log Tq)2-(b-[log T])

/=[’log T]

Multiplying out the lemma follows.
Next we prove the following result.
LEMMA 5.5. With probability at least c the potential at time T is at least dT.
Proof. Let S denote a state of the system and consider the following claim.
CLAIM. There is a constant D such that

Pr[SIPOT(S) < -T.
S, POT(S)>DT

Before establishing the claim, let us see how the lemma follows. Since E(P OT(S)) >
T, the claim implies that

Z Pr[S]POT(S) > -T.
S, POT(S)<DT

8TBut this clearly implies that Pr[P OT(S) >_ "T >- --B"
Thus we only have to establish the claim. Suppose D > 4N2. Since no queue can be

longer than T, the contribution from the queues to the potential is bounded by 2NeT. Thus
or for some Using that in thisfor the potential to exceed DT, it is necessary that 2bi >_ TV

case the contribution to the potential from the queue lengths is bounded by the contribution
from the backoff counters, we get the estimate

N

Pr[S]POT(S) < N 2N2bpr[bl- b]
i=1 S,bi(S)>bj(S),jTi, b= [log .]Dr

< 2N2 2b-(o-rlgr) < 4rN2 2i-() < -r
b= [log DT

Tff i= flog

forD> Da. 13

766 JOHAN H/STAD, TOM LEIGHTON, AND BRIAN ROGOFF

Now we are ready for the final part of the proof of Theorem 5.1. From Lemma 5.5 it
follows that with probability at least the potential reaches at least dT before it returns to 0.
Observe that the expected time to return from potential P to potential 0 is at least -. This
follows from looking at the largest backoff counter or the longest queue. Using this we get

Ex(return time) > Ex (Maximum potential before return)
2N

1 cd

--/1 Pr[Max pot > i] >
2N

iPr[Maxpot =i]=i= i=
2Ni

However this last sum diverges and we have proved Theorem 5.1.
Using the results from 4, we strengthen Theorem 5.1 slightly in an asymptotic sense.
THEOREM 5.6. Suppose binary exponential backoff is used and the arrival rate at every

station is -, where) _> c, where c > . Then the expected recurrence time is infinite for
N>Nc.

Proof Since the proof of Theorem 5.6 is almost identical to that of Theorem 5.1, we will
only point out the modifications needed.

We will be working with the same potential function and will again show that the potential
is expected to increase. However, in this case, we are sometimes forced to consider more than
one step of the system to obtain the desired increase. We use the same cases as in the proof
of Theorem 5.1. Observe first that in Case I, we only needed ;k >_ 4- 4- to obtain the
expected increase. Since C > N, this bound is < c for N > N and 3 < 1.

To handle Case II will require some work. We get two subcases depending on the number
of stations with empty queues. Lemma 5.7 takes care of the first case.

LEMMA 5.7. For c > 7’ there is a constant do 0 < dc < 1, such that if < dcN queues
are nonempty, the expected increase in potential is > 3.

Proof We know by the analysis in Case II of Theorem 5.1 that the expected decrease if
M stations have empty queues is given by

g(M)=2N)+(M+I) 1- -2N 1-
To prove that g(M) is positive in the claimed interval, we proceed as before by establishing
that g(N) > O, g(dcN) > 0, and (32/3M2)g(M) < 0. Since the first and last condition was
taken care of in the proof of Theorem 5.1, we need only to establish the second condition. It
is easy to see that g(dN) > 0 for sufficiently large N and) c if and only if

ff, (dc, c) 2c + dc 2e-c(1-dc) > O.

But since (dc, c) is a continuous function in c and dc and (1, c) > 0, the lemma
follows.

To take care of the case of many empty queues, we have the following result.
1.LEMMA 5.8. Let >_ c > , then there is a constant Kc such that if xe(t) > dcN, then

the expected change in potential over the next Kc steps is >

Proof. By the previous analysis, the expected change in potential in a step is bounded from
below by -hN for some constant h > 0. Let K’ min(), where K is a constant such

that if xe(t) > (1- dc)N, then the probability that m(t + to) > 5 fort0 K"
Such a constant exist for sufficiently large N by Lemma 4.1 applied with c (1 dc)/2.
Consider the system over the next K steps. Observe that if m(t 4- to) > 5, then the expected

)2N. This follows since the probability of a successfulincrease in potential is at least (c

ANALYSIS OF BACKOFF PROTOCOLS 767

and the the contribution from the backoff counters is expected to increase.transmission is <
Let Ai be the expected change in potential in potential at time + i. Then

K K’ K

EAi E Ai-’- E Ai
i=l i=l i=K+l

>_NK
8

(K- K’) c- 2W-hN--(K- K’)

NK
16

This concludes the proof of Lemma 5.8. [

Using Lemmas 5.7 and 5.8, we know that the expected increase of potential over T steps
is >_ 6T for some constant 6. We go from large expected potential to infinite recurrence time
as was done in Theorem 5.1 and this completes the proof of Theorem 5.6. [3

6. Instability of linear and sublinear baekoff. In this section, we study linear and
sublinear backoff, and the goal of the current section is to prove the following theorem.

THEOREM 6.1. If f(b) (1 + b)-, 0 < < 1, is used as a backofffunction, then for
any) > 0 and N > N, the system is unstable.

As before, we derive our result by using a potential function. In this case, we use

N N

POT N Eqi E(bi ql_ 1)o+’.
i=l i=l

We will first analyze the expected change in one or two steps. We do this by establishing
a series of lemmas, and we start by giving some facts which are needed in several places. Let
s be the number of nonempty queues. Let Psuc denote the probability of success. Then

)N-sesuc-- 1- E(l+bi)- H (1-(bj-t-1)-)
i-1 j<s,ij

+ 1- (1-(bj+l)
j--1

As in previous sections, we need the expected change in the two components of P O T.
Observe that B+ corresponds to the increase in P OT and hence the decrease of Yf=l b/2. By
straightforward analysis, we have

Q+ NS,

Q-= PsucN5,

B+ 1 (1 q--bi)-U((bi-k- 1)+1
i=1

-1) II (1-(l+bj)-),
j<_s,isj

B- (1 + bi)- H (1 (1 + bj) ((bi -t- 2)’+1 (bi -t- 1)’+1)
i=l j<s,isj

H (1 (1 + bj)-)g - j<s

768 JOHAN H/STAD, TOM LEIGHTON, AND BRIAN ROGOFF

fact.
B- will not play any significant role in the analysis, and the reason for this is the following

Fact 1. B- < 4N.
This follows from

B- (1 + bi)- H (1 (1 + bj)-’ ((bi q- 2)’*+1 (bi q- 1)’*+)
i=1 jSs,igj

(N s)
1- 1- ..(1 (l+bj)+ N

js

(N-s)Z(1 + bi)-a((bi + 2)+1 (bi + 1)+1) + < 4s + N s < 4N
i=1

N

using ((x + 1)+1 x+l)/xt (o -4c- 1)(x + 1)/x < (or + 1)2’* _< 4. The first inequality
follows from taking the maximal value of the derivative and the last follows from ot _< 1.

Let us next take care of the easy case of estimating the change in potential.
z then ZXPOT > N3/2for N > Nz.LEMMA 6.2. If Psuc < 7’

Proof. We have

APOT > Q+- Q- B- > I.N N -4N > 5N
forN > Nx.]

In the future, let ca be an arbitrary constant whose values depends on L. We will assume
that the value of ca may change from line to line, and thus 2ca < ca is a valid inequality. We are
now considering Psuc > 7,a and observe that this implies that

_
(bi -at- 1)-+(N s) - _< Ka,

where Ka is a constant close to log)v. Next we have the following result.
a then APOT > CaS2 N -4N.LEMMA 6.3. If bi > Ofor 1 < < s and Psuc _> 7’

Proof The main contribution to the increase of the potential this time will come from
B+

1-[+
bi)i=1 <_s,isj

> ca
(1 i)or -> CaS

2

i=1

a < Ka and the secondThe first inequality comes from i=l(bi -I- 1)-a q- (N s)
inequality follows from H61der’s inequality since

sb b 1 (b/2)(1)2-
i=1 (bi + l) (bi + } (bi + }

<
i=1 i=1 (1 + bi)a i=1 (1 q- bi)

and again using that the last sum is bounded. The lemma now follows since Q- < N- and
B- < 4N. 1

Finally, we must take care of the case when bl 0 and Psuc > 7"
a then P0 Ttwo stepsLEMMA 6.4. If bl 0 and bi > 0 for 2 <_ < s and Psuc > 7’

cas2 2N 8N.

ANALYSIS OF BACKOFF PROTOCOLS 769

Proof The increase will come from B+ in the case when a collision appears at step 1.
The probability of collision at step 1 is

)LIN-s1- 1- H(1-(l+bi)-)
i=2

II>_ 1 (1 (1 + bi)-t) >_. Cx (1 + bi)
i=2 i=1

since Y=2(1 + bi)-a <_ Kz.
If we have a collision at step 1, then by the proof of Lemma 6.3 at step 2, B+ >_

=1 cxb/(bi + 1). The value of b might have increased, but since b/(bi + 1) is increasing
in bi, this would only make the inequality stronger. Thus the total expected increase in B over
the two steps is at least

cx (1 + bi)-u cz >
i=1 i=1 (1 + bi) 4

Here we used the calculation from the proof of Lemma 6.3. By the same estimates for Q-
and B- as in the proof of Lemma 6.3, the lemma follows. [3

Finally, we will combine these results and with the aid of the results of 5 obtain the
instability of inverse backoff.

LEMMA 6.5. Let the system be atany state at time t. Then E P 0T (t + P 0T (t) >
CzN5/2 for sufficiently large N.

Proof Observe that by the previous lemmas, whenever s > cN3/4, the expected increase
per timestep in the potential is f2 (N3/2). To prove the lemma, we need only establish that with
high probability, s > cN3/4 during most of the interval. We have two cases. Remember that
s N xe(t).

Case 1. Xe(t) < 4____. Since at most one queue can become empty at each timeslot, the
number of nonempty queues remains large during the entire interval.

Case 2. Xe(t) >_ 4___. By Lemma 4.1, it follows that for any r > N4/5, Pr[xe(t + r) >

N _< O (N-4/5), the reason being that to have many empty queues, either there has been
many successful transmissions or not too many messages have arrived. The probability of the
first event is small by Lemma 4.1 and the second probability is easily seen to be exponentially
small. Using this, we get

E POT t+- -POT(t) >_ &POT(t+r)
r=l

N

23

>_ N x (-N) + APOT(t +r) >_ -NI +cN -cN-N >_ cxN,
r=N5

and the lemma follows. [3

Having established that the potential is expected to increase, we now prove Theorem
6.1. Observe first that to prove that the expected queue size becomes unbounded over time is
trivial since the total queue size is always at least P 0TIN3/2. We establish infinite expected
recurrence time in the same way as in 5. To make the same argument go through, we only
have to establish the lemma below.

770 JOHAN H/STAD, TOM LEIGHTON, AND BRIAN ROGOFF

TABLE
Observed valuesfor Lave after 10 million iterations oflinear backoff.

N, L 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

2 0,02 0.12 0.44 1.4 5.5 24 97
5 0.03 0.24 1.1 9.0 1.3.105 6.4.105 1.1.106
10 0.04 0.29 1.9 2.8.105 7.8.105 1.3.106 1.8.106
30 0.04 0.35 4.4.105 9.3.105 1.4.106 1.9.106 2.4.106
100 0.04 3.7.105 9.2-105 1.4.106 1.9.106 2.4.106 2.9.106
300 0.04 6.8.105 1.2.106 1.7.106 2.2.106 2.7.106 3.2.106

420
1.6.106
2.3.106
2.9.106
3.4.106
3.7.106

TABLE 2
Observed valuesfor Lave after 10 million iterations ofquadratic backoff.

N, L 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

2 0.04 0.31 1.4 6.5 26 79 230 810
5 0.06 0.51 3.1 26 160 610 1800 5800
10 0.07 0.55 3.6 51 840 19000 1.3.105 3.8.105
30 0.07 0.55 3.6 470 3.8.105 8.7.105 1.4.106 1.9.106
100 0.07 0.52 3.5 3.4.105 8.4.105 1.3.106 1.8.106 2.3.106
300 0.07 0.53 3.5 7.0.105 1.2.106 1.7.106 2.2.106 2.7.106

LEMMA 6.6. Assume that N > N then there are constants c and d such thatfor each
T, the probability that the potential at time T is at least dT is boundedfrom below by c.

Proof. The expected potential at time T is 6 T. On the other hand,

POT < N qi < NT.
Thus Pr[POT >] >_ T/2N5/2. U

Now the same argument as in 5 completes the proof of Theorem 6.1. [3

Remark. Observe that in the proof of instability in the case of f(i) 2-i, we added
a function depending on the backoff counters to the potential, while in the case of f(i)
(i + 1) -1, we subtracted a function. This reflects a basic fact, namely that in the exponential
case, we back off too far, while in the inverse case, we back off too little.

7. Experimental results. We have simulated several backoffprotocols for several differ-
ent values of N and L and with different initial conditions. The experiments were done rather
for exploratory reasons rather than scientific investigation (with careful design and analysis
of the experiments, use of strong pseudorandom number generators, etc.). In Tables 1-3, we
present some of the results when the system starts with all empty queues. The values presented
are for Lave as computed over 10 million steps of the system. Each station was assumed to

where) varied between 0.1 and 0.8 and N varied between 2 and 300. Wehave arrival rate ,
emphasize that we have only done one experiment for each set of parameter values and we
have not done any careful analysis of the data. Thus we leave it to the reader to interpret the
data in any way. We also encourage the reader to design a careful experiment to evaluate the
various protocols in practice. We think this would be of great interest.

8. Remarks, A natural question is for what backoff functions can we prove Theorem
3.1. We believe that it can be extended to any natural backoff function f(x) for which

f(x)dx < x
=1

ANALYSIS OF BACKOFF PROTOCOLS 771

TABLE 3
Observed valuesfor Lave after 10 million iterations ofexponential backoff.

N,) 0.1 0,2 0.3 0.4 0.5 0.6 0.7 0.8

2 0.15 0.62 3.3 460
5 0.17 0.99 180 98000
10 0.17 0.99 96 1.4.105
30 0.17 1.0 1200 1.4.105
100 0.17 .95 610 1.8.105
300 0.17 0.80 120 1.9.105

2.3 105
5.1 105
3.5 105
4.9 105
5.1 105
5.6 105

6.4 105
7.1 105
7.6 105
8.3 105
9.3 105
1.0 106

1.1 106
1.2 106
1.2 106
1.3 106
1.4 106
1.5 106

1.6 106
1.7 106
1,7 106
1.8 106
1.9 106
1.9 106

and

d
d---[f(x)-I < < f(x)-1.

Note that integrating the second condition implies

x

f(x)-1 < < f(b) -1.
=1

The first condition is necessary for proving that some station can dominate the channel for a
long interval without ever losing control. Note that this condition is not satisfied for linear
backoff but is satisfied for more rapid backoff protocols. The second condition is neces-
sary to argue that the expected benefit from decreasing a large backoff counter outweighs
the expected damage from backing off the counter further. It is also necessary to insure that
the other counters aren’t backing off too far when one station is dominating the channel.
Note that this condition is not satisfied for exponential backoff but is satisfied for proto-
cols that backoff less swiftly. A candidate for a potential function to use in such a sta-
bility result would be to pick a function g(x) which grows faster than f(x) -1 but slower
than

and then use a potential which is roughly_
qi + g (bi).

i=1 i=1

Based on our analysis, it would appear that the most popular and well-studied protocols
are precisely the wrong protocols. The good protocols, it would seem, are the protocols in
between.

Although we have made substantial progress in analyzing the performance of backoff
protocols for communication in multiple access channels, we also leave several open questions.
Most importantly, it would be nice to determine the behavior ofEx[Lave] as a function ofN and
1) for polynomial backoff protocols. In particular, it would appear that the upper bounds
are most in need of improvement. Once this is done, it might then be possible to decide which
polynomial backoff protocol is best (i.e., which minimizes Ex[Lave] for a particular) and
N).

It would also be nice to completely determine the range of stability for exponential backoff.

772 JOHAN H,STAD, TOM LEIGHTON, AND BRIAN ROGOFF

Appendix. We do the calculation omitted in 5.
We need to prove that

N

C)+M+I+ i>_(C+l)W+3,
i=M+2

where quantities are as defined in the beginning of 5. Now we must make use of the fact that

i>" for all i. Setting C 2N 1, it then suffices to prove that

(2N- 1)) + M + +
(N- M- 1).

N

)L)N-M-1>_2N

For . >)0 + 4-2, where)0 e-z 0.567, the preceding inequality holds for any
sufficiently small constant 3 > 0. To prove this, it is sufficient to show that g(M) > 0 for
0 < M < N- 1 and) > .0 + 4-2, where

g(M) (2N- 1). + M + 1 +
(N MN- 1);k

2N [1 " "x)u-m-1
=2N+(M+I) 1- -2N 1-

We can then choose 3 to be the minimum of g(M) over 0 <_ M <_ N 1.
We can show that g(M) is always positive by proving that g(0) > 0 and g(N 1) > 0,

and that (d2/dM2)g(M) < 0 for 0 _< M _< N 1. The only difficult part is showing that
g(0) > 0, so we save it for last

We start by showing that g(N 1) > 0. This is easy since

g(N 1) 2N) + N k 2N Z(2N 1) N

is positive provided that

N 1
.+_

2N 2 4N 2

32
We next show that g(M) < 0 for 0 < M < N 1. This is also easy since

3M

)L N-M-1

--g(M) (1- -) +2Nln(1-) (l)
and

32 2 , N-M-1

3M2g(M)---2N(ln(1--)) (1-)
Lastly, we must prove that g (0) > 0. The argument here is a bit trickier because we must

be careful when bounding the (1 -)g-1 term in the expression for

g(0)--2N)+l--

ANALYSIS OF BACKOFF PROTOCOLS 773

We start by observing that

and thus that

;k2 X2 .3)3L+ + --ffr 3---r + 3-N=e

X(2-.) .2 (3-2X))3 (4-3X)---t-’q- 6N
q-

12N3--e

<e

_()_r+4--e

<)-4N-2 e- 4N-2 1 4N-2

since 4N-2 >)0 and e-’ < ,k’ for all)’ >)o, and e < for 0 _< x < 1. Hence

g(0) > 2N) + 2N. > 0.
N

Acknowledgments. We are deeply indebted to Albert Greenberg for putting us straight
with respect to the various definitions of stability. His comments saved us from potentially
serious errors in the argument. We also want to thank Richard Koch for many discussions
and suggestions and Richard Ladner, Robert Maier, Ron Rivest, Wojciech Szpankowski, and
John Tsitsiklis for their helpful comments and references. We are also grateful to one of the
referees for pointing us to the book [8].

REFERENCES

[1] D. J. ALDOUS, Ultimate instability of exponential backoff protocol for acknowledgement based transmis-
sion control of random access communication channels, IEEE Trans. Inform. Theory, IT-33 (1987),
pp. 219-223.

[2] J. GOODMAN, A. GREENBERG, N. MADRAS, AND P. MARCH, On the stability of the Ethernet, in Proc. 17th
ACM Symposium on Theory of Computing, Association for Computing Machinery, New York, 1985,
pp. 379-387.

[3] B. HAJEK AND T. VAN LOON, Decentralized dynamic control ofa multiaccess broadcast channel, IEEE Trans.
Automat. Control, AC-27 (1982), pp. 559-569.

[4] IEEE Trans. Inform. Theory, IT-31 (1985).
[5] F. R KELLEY, Stochastic models ofcomputer communications systems, J. Roy. Statist. Soc. Ser. B, 47 (1985),

pp. 379-395.
[6] R. LADNER, personal communication, 1986.
[7] R. METCALF AND D. BOGGS, Ethernet: Distributed packet switching for local computer networks, Comm.

Assoc. Comput. Mach., 19 (1976), pp. 395-404.
[8] S. R MYN AND R. L. TWEEDIE, Markov Chains and Stochastic Stability, Springer-Verlag, London, 1993.

774 JOHAN HSTAD, TOM LEIGHTON, AND BRIAN ROGOFF

[9] R. RIVEST, Network control by Bayesian broadcast, IEEE Trans. Inform. Theory, IT-33 (1987), pp. 323-328.
10] W. ROSErqIrtANTZ, Some theorems on the instability ofthe exponential backoffprotocol, in Proc. 10th Interna-

tional Symposium on Computer Performance, E. Gelenke, ed., Elsevier, Amsterdam, 1984.
11 J. SHOCH AND J. Hu’r’, Measured performance ofan Ethernet local network, Comm. Assoc. Comput. Mach.,

23 (1980), pp. 711-721.
[12] S. STIDHAM, The lastword on the L LW, Oper. Res., 22 (1974), pp. 417--421.
[13] W. SZ’ANKOWSK, Stability conditions for multidimensional queuing systems with applications, Oper. Res.,

36 (1988), pp. 944-957.
14] W. SZPANKOWSKI AND V. REGO, Some theorems on instability with applications to multiaccess protocols, Oper.

Res., 36 (1988), pp. 958-966.
[15] A. TANErqBAJM, Network protocols, Comput. Surveys, 13 (1981), pp. 453-489.
[16] J. TsrrsIIS, Analysis of a multiaccess control scheme, IEEE Trans. Automat. Control, AC-32 (1987),

pp. 1017-1020.
[17] B. TSYBAIOV ArI V. MIIIJAILOV, Ergodicity of a slotted Aloha system, Problems Inform. Transmission,

15 (1980) (translated version), pp. 301-312.

SIAM J. COMPUT.
Vol. 25, No. 4, pp. 775-796, August 1996

() 1996 Society for Industrial and Applied Mathematics
004

NEW TECHNIQUES FOR EXACT AND APPROXIMATE DYNAMIC
CLOSEST-POINT PROBLEMS*
SANJIV KAPOOR AND MICHIEL SMID

Abstract. Let S be a set of n points in 11{9. It is shown that a range tree can be used to find an L-nearest
neighbor in S of any query point in O ((log n)z)-I log log n) time. This data structure has size O (n(log n)-1) and an
amortized update time of O ((log n) z)-I log log n). This result is used to solve the (1 +)-approximate L2-nearest-
neighbor problem within the same bounds (up to a constant factor that depends on and D). In this problem, for
any query point p, a point q 6 S is computed such that the euclidean distance between p and q is at most (1 / e)
times the euclidean distance between p and its true nearest neighbor. This is the first dynamic data structure for this
problem having close to linear size and polylogarithmic query and update times.

New dynamic data structures are given that maintain a closest pair of S. For D > 3, a structure of size
O(n) is presented with amortized update time O((log n)D-1 log log n). The constant factor in this space (resp. time

bound) is of the form O(D) (resp. 20(02)). For D 2 and any nonnegative integer constant k, structures of size
O(n logn/(loglogn)) (resp. O(n)) are presented that have an amortized update time of O(logn loglogn) (resp.
O ((log n) (log log n))). Previously, no deterministic linear size data structure having polylogarithmic update time
was known for this problem.

Key words, proximity, dynamic data structures, point location, approximation

AMS subject classification. 68U05

1. Introduction. Closest-point problems are among the basic problems in computational
geometry. In such problems, a set S of n points in D-dimensional space is given and we have
to store it in a data structure such that a point in S nearest to a query point can be computed
efficiently, or we have to compute a closest pair in S or, for each point in S, another point
in S that is closest to it. These problems are known as the nearest-neighbor problem, the
closest-pair problem, and the all-nearest-neighbors problem, respectively. In the dynamic
version of these problems, the set S is changed by insertions and deletions of points.

It is assumed that the dimension D > 2 is a constant independent ofn. Moreover, distances
are measured in the Lt-metric, where < < cx is a fixed real number. In this metric, the
distance dr(p, q) between the points p and q is defined as dt(p, q) (iD= IPi qilt) lit if
1 < < CX, and for e it is defined as d(p, q) maxl<i<z) IPi qil.

The planar version of the nearest-neighbor problem can be solved optimally, i.e., with
O(logn) query time using O(n) space, by means of Voronoi diagrams. (See [15].) In
higher dimensions, however, the situation is much worse. The best results known are due to
Clarkson [7] and Arya et al. 1]. In [7], a randomized data structure is given that finds a nearest
neighbor of a query point in O(logn) expected time. This structure has size O(nF/2]+),
where 3 is an arbitrarily small positive constant. In], the problem is solved with an expected
query time of O(n1-1/[(D+l)/2] (log n) 0(1)) using O(n log log n) space.

It seems that in higher dimensions, it is impossible to obtain polylogarithmic query time
using O(n(logn)1) space. Moreover, even in the planar case, there is no dynamic data
structure known that has polylogarithmic query and update times and that uses 0 (n (log n)0(1
space.

*Received by the editors November 19, 1993; accepted for publication (in revised form) December 3, 1994.
Department of Computer Science, Indian Institute of Technology, Hauz Khas, New Delhi 110016, India

(skapoor@cse.iitd.ernet.in). The research on this work began when this author visited the Max-Planck-Institut ftir
Informatik.

Max-Planck-Institut ftir Informatik, Im Stadtwald, D-66123 Saarbrticken, Germany (michiel@mpi-sb.mpg.de).
The research of this author was supported by ESPRIT Basic Research Actions Program contract 7141 (project
ALCOM II).

775

776 S. KAPOOR AND M. SMID

TABt
Deterministic data structures for the dynamic closest-pair problem. In the last two lines, k is an arbitrary

nonnegative integer constant. All bounds are "big-oh" with constantfactors that depend on the dimension D and, in
the last two lines, on D and k. The update times are either worst-case (w) or amortized (a).

mode dimension update time space reference

insertions D >2 logn (w) n [17,18]
deletions D >__2 ilog n)t (a) n0og n)-i [23]
dynamic D > 2 log n (w) n [16, 20]
dynamic D > 2 (log n)D log log n (a) n(log n)o [22]
dynamic D > 3 (logn)D-i loglogn (a) n this paper
dynamic 2 10g nloglogn !a) n.logn/(loglogn)k thi.s..paper
dynamic 2 (log n) / (log log n) (a) n this paper

Therefore, it is natural to ask whether the approximate nearest-neighbor problem allows
more efficient solutions. Let e > 0. A point q 6 S is called a (1 + e)-approximate neighbor
of a point p 6]R if dr(p, q) < (1 + e)dt(p, p*), where p* 6 S is the true nearest-neighbor
of p.

This approximate neighbor problem was considered in Bern [5] and Arya et al. [1, 2].
In the latter paper, the problem is solved optimally: They give a deterministic data structure
of size O(n) that can find a (1 + e)-approximate neighbor in O(log n) time, for any positive
constant e. At this moment, however, no dynamic data structures are known for this problem.

In this paper, we first show that for the L-metric, the nearest-neighbor problem can be
solved efficiently. To be more precise, we show that the range tree (see [12, 14, 15, 25]) can
be used to solve this problem. As a result, we solve the L-neighbor problem with a query
time of O ((log n)o- log log n) and an amortized update time of O (log n)D- log log n) using
O (n(log n)D-l) space. For the static version of this problem, the query time is O ((log n)D-l)
and the space bound is O(n(log n)-2).

Using this result, we give a data structure that solves the approximate L2-neighbor prob-
lem, for any positive constant e, within the same complexity bounds. (The constant factors
depend on D and e.)

We also consider the dynamic closest-pair problem. Note that the static version has been
solved already for a long time. Several algorithms are known that compute a closest pair in
O(n log n) time, which is optimal. (See [4, 10, 15, 19].) The dynamic version, however, has
been investigated only recently. In Table 1, we give an overview of the currently best-known
data structures for maintaining a closest pair under insertions and/or deletions of points. For
an up-to-date survey, we refer the reader to Schwarz’s Ph.D. Thesis 17].

Note that all data structures of Table are deterministic and can be implemented in the
algebraic computation tree model. If we add randomization to this model, then there is a data
structure of size O(n) that maintains a closest pair in O((log n)2) expected time per update.
(See Golin et al. [9].)

In this paper, we give new deterministic data structures for the dynamic closest-pair prob-
lem. These structures are based on our solution to the Loo-neighbor problem, data structures
for maintaining boxes of constant overlap, and a new transformation. Given any dynamic
closest-pair data structure having more than linear size, this transformation produces another
dynamic closest-pair structure that uses less space. The complexity bounds of the new struc-
tures are shown in the last three lines ofTable 1. The results ofthe last two lines are obtained by
applying the transformation repeatedly. Note that we obtain the first linear-size deterministic
data structure that maintains a closest pair in polylogarithmic time.

Finally, we consider the all-nearest-neighbors problem. Again, in the planar case, the
problem can be solved using Voronoi diagrams. For the D-dimensional case, Vaidya [24] has

EXACT AND APPROXIMATE CLOSEST-POINT PROBLEMS 777

given an optimal O (n log n)-time algorithm that computes the Lt-neighbor for each point of S.
No nontrivial solutions seem to be known for maintaining each point’s nearest neighbor. One of
our data structures (not the ones mentioned in Table 1) for maintaining the closest pair basically
maintains the L-neighbor of each point in S. As a result, we get a data structure of size
O (n(log n)D-l) that maintains for each point in S its L-neighbor in O ((log n)D-I log log n)
amortized time per update.

We want to remark here that all our algorithms use classical and well-understood data
structures, such as range trees, segment trees, and skewer trees. Moreover, we apply the
well-known technique of fractional cascading [6, 14] several times.

The rest of this paper is organized as follows. In 2, we recall the definition of a range
tree. This data structure is used in 3 to solve the L-neighbor problem. In 4, we give the
data structure for solving the approximate Lz-nearest neighbor problem.

Our first data structure for maintaining the closest pair stores a dynamically changing set
of boxes that are of constant overlap, i.e., there is a constant c such that each box contains the
centers of at most c boxes in its interior. We have to maintain such boxes under insertions
and deletions such that for any query point p 6 IR, we can find all boxes that contain p.
In 5, we give two data structures for this problem. The first one is based on segment trees.
(See [13, 15].) Therefore, its size is superlinear. We also give a linear-size solution that
has a slightly worse update time in the planar case. This solution is based on skewer trees.
(See [8, 21].)

In 6, we use the results obtained to give a new data structure that maintains the closest
pair in a point set. This structure has size O(n(log n)-) and an amortized update time
of O((log n)D-1 log log n). It immediately gives the dynamic data structure for the all-L-
nearest-neighbors problem. In 7, we give the transformation that reduces the size ofa dynamic
closest-pair structure. Applying this transformation repeatedly to the structure of 6 gives the
new results mentioned in Table 1. Some concluding remarks are given in 8.

2. Range trees. In this section, we recall the definition of a range tree. See [12, 13,
15, 25]. The coordinates of a point p in are denoted by Pi, < < D. Moreover, we
denote by p’ the point (p2 po) in -. If S is a set of points in Jo, then we define
S {ff p 6 S}. We note that S is to be considered as a multiset, i.e., elements may occur
more than once.

The range tree. Let S be a set of n points in. A D-dimensional range tree for the set
S is defined as follows. For D 1, it is a balanced binary search tree, storing the elements of
S in sorted order in its leaves.

For D > 1, it consists of a balanced binary search tree, called the main tree, storing
the points of S in its leaves, sorted by their first coordinates. For each internal node v of
this main tree, let So be the set of points that are stored in its subtree. Node v contains a
pointer to the rightmost leaf in its subtree and (a pointer to) an associated structure, which is
a (D 1)-dimensional range tree for the set S’o.

Hence, a two-dimensional range tree for a set S consists of a binary tree, storing the points
of S in its leaves sorted by their x-coordinates. Each internal node v of this tree contains a
pointer to the rightmost leaf in its subtree and (a pointer to) a binary tree that stores the points
of So in its leaves sorted by their y-coordinates.

Let p be any point in IR. Consider the set {r 6 S rl > Pl }, i.e., the set of all points in
S having a first coordinate that is at least equal to p’s first coordinate. Using the range tree,
we can decompose this set into 0 (log n) canonical subsets"

Initialize M := 0. Starting in the root of the main tree, search for the leftmost leaf storing
a point whose first coordinate is at least equal to pl. During this search, each time we move
from a node v to its left son, add the right son of v to the set M. Let v be the leaf in which

778 S. KAPOOR AND M. SMID

this search ends. If the point stored in this leaf has a first coordinate that is at least equal to

Pl, then add v to the set M.
LEMMA 1. The set M ofnodes of the main tree that is computed by the given algorithm

satisfies

{r E S’rl > pl} U Sv.
vEM

Moreover, M is computed in O(logn) time.
Range trees can be maintained under insertions and deletions of points such that each

binary tree that is part of the structure has a height logarithmic in the number of its leaves.
The update algorithms use dynamic fractional cascading. For details, we refer the reader to
Mehlhorn and Niher 14]. In the following theorem, we state the complexity of the range tree.

THEOREM 1. A D-dimensional range tree, where D > 2, for a set of n points has
O(n(logn)D-I) size and can be maintained in O((logn)z-I loglogn) amortized time per
insertion and deletion.

3. The Lc-neighbor problem. Recall the following notations. For any point p
(pl, P2 po) 6 I, we denote by p’ the point (P2 Po) in Iz-. If S is a set
of points in ID, then S’ {p’ p 6 S}. Finally, if v is a node of the main tree of a range tree
storing a set S, then So denotes the set of points that are stored in the subtree of v.

Let S be a set of n points in Iz. We want to store this set into a data structure such that
for any query point p E Iz, we can find a point in S having minimal L-distance to p. Such
a point is called an Lc-neighbor of p in S.

Let q be an L-neighbor of p in the set {s 6 S Sl > p}. We call q a right-L-neighbor
of p in S. Similarly, a point r is called a left-Lc-neighbor of p in S if it is an L-neighbor of
p in the set {s 6 S s < pl}. In order to guarantee that both neighbors always exist, we add
the 2D artificial points (al ao), where all ai are zero except for one which is either
or -c, to the set S. Note that none of these points can be Lc-neighbor of any query point.

The data structure that solves the Lc-neighbor problem is just a D-dimensional range
tree storing the points of S and the artificial points. In Figure 1, our recursive algorithm is
given that finds an L-neighbor of any query point in.

We prove the correctness of this query algorithm. It is clear that the algorithm is correct
in the one-dimensional case. So let D > 2 and assume that the algorithm is correct for smaller
values of D. The following lemma turns out to be useful.

LEMMA 2. Let p and let q be its right-L-neighbor in S. Let w be any node in the
main tree ofthe range tree such that q Sw and p has afirst coordinate that is at most equal
to thefirst coordinate ofany point in Sw. Let r be the point of S that is stored in the rightmost
leaf of w’s subtree. Finally, let

N "= I{x 6 So’lpj -xjl < IP- rl, 2 < j < D}I.

IfN O, then q’ is an L-neighbor of p’ in the (D 1)-dimensional set S.
Proof. The proof is by contradiction. So let s be a point in So such that s’ is an L-

neighbor of p’ in the set S and assume that d(p’, s’) < d(p’, q’). Let 3 := IPl rl [.
Since q and s are elements of So, we have [pl q[_< 3 and IPl sl < 3. Since

N 0, there is a j, 2 < j _< D, such that Pj qjl > 3. Therefore, d(p, q) d(p’, q’).
Similarly, there is a k, 2 _< k _< D, such that P sl > 3 and hence d(p, s) d(p’, s’).
This implies that d(p, s) < d(p, q), i.e., q is not a right-L-neighbor of p in S. This is a
contradiction. [3

EXACT AND APPROXIMATE CLOSEST-POINT PROBLEMS 779

ALGORITHM NEIGHBOR(p, S, D) (* returns an Lo-neighbor of p in S *)
begin
1. Assume D 1.

qZ ’= maximal element in the one-dimensional range tree that is less than p;
q := minimal element in the one-dimensional range tree that is at least

equal to p;
if [p q[_< IP q[then return q else return qZ fi;

2. Assume D > 2.
2a. Compute a right-L-neighbor:

Stage 1. Compute the set M of nodes of the main tree, see Lemma 1.
Number these nodes Vl, vg. Vm, m [M[, where vi is closer to
the root than vi-, 2 < < m.

Stage 2. (* one of the sets S contains a right-Lo-neighbor of p *)
C := ; := 1; stop := false;
while < rn and stop false
do x’ "= Neighbor(p’, S’i, D 1);

r := the point stored in the rightmost leaf of the subtree of vi;

if d(p’, x’) > Ipl rxl
then C "= C t3 {x};i ’= +
else v "= vi stop := true
fi

od;
if stop false
then qg "= a point of C having minimal Lo-distance to p;

goto 2b
fi;

Stage 3. (* the set C t3 Sv contains a right-Lo-neighbor of p *)
while v is not a leaf
do w := left son of v;

x’ "= Neighbor(p’, So, D 1);
r := the point stored in the rightmost leaf of the subtree of w;
if do(p’, x’) > IP rll
then C "= C U {x}; v "= right son of v
else v := to

fi
od;
qe := a point of C t3 So having minimal Lo-distance to p;

2b. Compute a left-Lo-neighbor:
In a completely symmetric way, compute a left-Lo-neighbor qZ of p;

2c. if do(p, q g) <__ do(p, q) then return q g else return q fi
end

FIG. 1. Finding an L-neighbor.

We analyze part 2a of the algorithm. As we will see, this part computes a right-Lo-
neighbor of p. Consider the nodes Vl, Vm that are computed in Stage 1. We know that

m

{r E S’rl > Pl} U S1)i"
i=1

Hence one of the sets S) contains a right-Lo-neighbor of p.

780 S. KAPOOR AND M. SMID

Note that each point in SVi_I has a first coordinate that is at most equal to the first coordinate
of any point in Soi, 2 _< < m.

LEMMA 3. If the variable stop has value false after the while-loop of Stage 2 has been
completed, then the set C contains a right-L-neighbor ofp in S.

Proof. Let i, _< < m, be an index such that the set Soi contains a right-L-neighbor
q of p. We consider what happens during the th iteration of the while-loop. Let x and r be
the points that are selected in this iteration. Since d(p’, x’) > IPl rl l, it is clear that the
value of the integer

N := I{Y Soi "IPj -Yjl < IPl- rll, 2 < j < D}I

is zero. Then Lemma 2 implies that q’ is an L-neighbor of p’ in S’oi. Hence d(p’, x’)
dc(p’, q’). Since d(p’, x’) d(p, x) and d(p’, q’) d(p, q), it follows that
d(p, x) d(p, q). This proves that x is a right-L-neighbor of p. Since x is added
to C during this iteration, the proof is completed. q

LEMMA 4. If the variable stop has value true after the while-loop of Stage 2 has been
completed, then the set C t2 So contains a right-L-neighbor ofp in S.

Proof. Consider the integer such that during the th iteration of the while-loop, the
variable stop is set to the value true. Then v vi.

We distinguish two cases. First let j > / 1 and assume that the set Soj contains a right-
L-neighbor q of p in S. Consider what happens during the th iteration of the while-loop.
Let x and r be the points that are selected during this iteration. Moreover, let 8 := IPl rl I.
Since [Pl xl[_< 8 and d(p’, x’) _.< 8, we have d(p, x) _< 8. Since q Soj, we have

d(p,q) > ql-pl > rl-pl =8.

This implies that d(p, x) < d(p, q). Hence, x is also a right-L-neighbor of p. Since
x 6 So, the claim of the lemma follows.

Next, let < j < and assume that the set Soj contains a right-L-neighbor of p in S. If
j i, then we are done. If j < i, then in the same way as in the proof ofLemma 3, it follows
that such a neighbor is added to C during the jth iteration of the while loop. This completes
the proof. [3

LEMMA 5. During the while-loop ofStage 3, the set C U So contains a right-L-neighbor
ofpinS.

Proof. The previous lemma implies that the claim holds before the while-loop is entered.
Consider an iteration and assume that C U So contains a right-L-neighbor of p. (We consider
C as it is at the beginning of this iteration.) Let x and r be the points that are selected during
this iteration. Moreover, let Wl (resp. Wr) be the left (resp. right) son of v.

First assume that d(p’, x’) > IPl rll. We have to show that C U {x} U Swr contains
a right-L-neighbor of p. Since the set C U Swl t..l Swr contains a right-L-neighbor of p,
we only have to consider the case where the set Sw contains such a neighbor. In this case, it
follows in the same way as in the proof of Lemma 3 that point x is a right-L-neighbor of p.
Since this point is added to C during this iteration, the claim follows.

It remains to consider the case where d(p’, x’) < IPl rl 1. Now we have to show that
the set C Swl contains a right-L-neighbor of p. Assume that Swr contains such a neighbor.
As in the proof of the previous lemma, it follows that x is also a right-L-neighbor of p.
However, x is an element of Sw. This completes the proof. [3

Lemmas 3 and 5 imply that point qR which is computed in part 2a is a right-L-neighbor
of p in S. Similarly, point qL computed in part 2b is a left-L-neighbor of p. This proves that
the point that is returned in part 2c is an L-neighbor ofp. Hence algorithm Neighbor(p, S, D)
is correct.

LEMMA 6. For D > 2, the running time of algorithm Neighbor(p, S, D) is bounded by
O((logn)-l).

EXACT AND APPROXIMATE CLOSEST-POINT PROBLEMS 781

Proof Let Q(n, D) denote the running time on a set of n points in ID. It is clear that
Q(n, 1)= O(logn). Let D > 2. Consider part 2a. Stage 1 takes O(logn)time. The while-
loop in Stage 2 takes time O(Q(n, D- 1) log n). Ifstop false after this loop, then O(IC[)
O(log n) time is needed to select the point q R. Hence Stage 2 takes time O(Q(n, D- 1) log n).
Stage 3 takes the same amount of time. Part 2b can be analyzed in the same way. Clearly, part
2e takes only constant time. This proves that Q(n, D) = O(Q (n, D 1) log n), implying
that Q(n, D) O((logn)D).

Now consider the planar case. The algorithm follows a path in the main tree and locates
the y-coordinate of the query point in the associated structure--a binary search tree--of some
of the nodes on this path. It is well known that layering or fractional cascading (see [6, 15])
can be applied to improve the query time from O((log n)2) to O(log n), i.e., Q(n, 2)
O (log n). As a result, the query time for the D-dimensional case, where D > 2, is improved
to O((logn)D-1).

Hence, we have a data structure for the L-neighbor problem that has a query time of
0 ((log n)-) and that uses 0 (n (log n)-) space. We can improve the space bound by
noting that the planar version can be solved by means of the L-Voronoi diagram. (See
Lee [11].) That is, the planar L-neighbor problem has a solution with a query time of
0 (log n) using only 0 (n) space. As a result, the D-dimensional problem can be solved with
a query time of O((log n)D-l) using O(n(log n)-) space.

Until now, we have only considered the static version ofthe problem. We saw in Theorem 1
that range trees can be maintained under insertions and deletions of points. Therefore, our
solution that is based on the range tree can be used only for the dynamic problem. Because
of dynamic fractional cascading, the query time increases by a factor of O (log log n). This
proves the following result.

THEOREM 2. Let S be a set of n points in D. There exists a data structure of size
O(n(logn)o-2) that, given a query point p D, finds an Lo-neighbor of p in S in
O((logn)D-l) time.

For the dynamic version oftheproblem, there is a structure ofsize 0 (n (log n)D-l) having
O ((log n)D-1 log log n) query time and O ((log n)D-1 log log n) amortized update time.

Remark. Let c be a positive integer. The range tree can also be used to compute the c
L-neighbors of a query point. The algorithm is basically the same. If c is a constant, the
query time remains the same as in the above theorem.

4. The approximate L2-neighbor problem. We mentioned in the introduction that the
L2-nearest-neighbor problem is hard to solve exactly. Therefore, it is natural to consider a
weaker version of the problem.

Let S be a set of n points in D and let > 0 be a fixed constant. For any point
p D, we denote by p* its L2-neighbor in S, i.e., p* is a point of S such that d2(p, p*)
min(d2(p, q):q S). A point q S is called a (1 +)-approxirnate L2-neighbor of p if
d2(p, q) < (1 +)d2(p, p*).

We want to store the set S in a data structure such that for any query point p 6 IRD, we
can find a (1 +)-approximate L2-neighbor of it.

Let p IRD and let q be an L-neighbor of p in S. Let 6 := do(p, p*) and consider
the D-dimensional axes-parallel box centered at p having sides of length 28. Clearly, q lies
inside or on the boundary of this box. Therefore, d2(p, q) < /-. 8. Since 8 do(p, p*) <

d2(p, p*), we infer that dz(p, q) < /. d2(p, p*), i.e., q is a --approximate L2-neighbor
of p.

This shows that we can solve the /--approximate Lz-neighbor problem using the results
of the previous section.

We extend this solution. First note that the Lo-metfic depends on the coordinate system:
If we rotate the (XY)-system, then the Lo-metric changes. The L2-metfic, however, is

782 S. KAPOOR AND M. SMID

invariant under such rotations. We store the set S in a constant number of range trees, where
each range tree stores the points according to its own coordinate system. Then, given p, we
use the range trees to compute Loo-neighbors in all coordinate systems. As we will see, one
of these Lo-neighbors is a (1 + e)-approximate L2-neighbor of p.

Let (.T’i) be a family oforthonormal coordinate systems all sharing the same origin. The co-
ordinates of any point x in the system /are denoted by Xil, xi2 XiD. Moreover, di,oo(., .)
denotes the Lo-distance function in /. Assume that for any point x in D-dimensional space,
there is an index such that for all 1 < j < D,

() 0 Xij XiD (1 + :)xij

i.e., in /all coordinates of x are nonnegative and almost equal. Note that the family (/) is
independent of the set S.

In Yao [26], it is shown how such a family consisting of O((c/e)-1) coordinate systems
can be constructed. (Here c is a constant.) In the planar case, such a family is easily obtained:
Let0 < < r/4 be such that tan- /(2 +). For0 < < 2zr/, let Xi (resp. Yi)be the
directed line that makes an angle of with the positive X-axis (resp. Y-axis). Then /is
the (Xi Yi)-coordinate system.

To prove that (1) holds for this family, let x be any point in the plane and let ?, be the
angle that the line segment between the origin and x makes with the positive X-axis.

First, assume that zr/4 _< g < 2zr. Let := L(F zr/4)/J and let Fi be the angle
between 2 and the positive X/-axis. Then gi g and this angle lies in between zr/4
and zr/4 + b. Therefore, the coordinates xil and xi2 of x in .F/satisfy

Xi2/Xil --tan Fi >_ tan zr/4-

and

1 + tan
Xi2/Xil tan Fi < tan(rr/4 +) 1 + e.

tan

If 0 < F < r/4, then we take "= l(7zr/4 + F)/J. In this case, Fi 2r i. + and this
angle lies in between zr/4 and rr/4 + b. This proves that xi2/x lies in between 1 and 1 + e.

Hence, the family (.T/) satisfies the assumptions made in (1). Moreover, the number of
coordinate systems is at most

2zr 2r
1 1 + 0(1/).

arctan e/(2 + e)

The data structurefor approximate L2-neighbor queries. For each index i, let Si denote
the set of points in S with coordinates in the system 9c/. The data structure consists of a
collection of range trees; the ith range tree stores the set Si.

Finding an approximate L2-neighbor. Let p 6 D be a query point. For each index i,
use the ith range tree to find an L-neighbor q(i) of p in Si. Report an Lc-neighbor that has
minimal L2-distance to p.

LEMMA 7. The query algorithm reports a (1 + e)-approximate L2-neighbor of p.
Proof. Consider an exact L2-neighbor p* of p. Let be an index such that the coordinates

of p* p in 9c/satisfy

* * *) l<j<D.0 <_ Pij- Pij <-- PiD- PiD <-- (1 -2)(Pij- Pij

Let q be the point that is reported by the algorithm. Since dz(p, q) <_ d2(p, q(i)), it suffices
to prove that dz(p, q(i)) < (1 -+-)dz(p, p*).

EXACT AND APPROXIMATE CLOSEST-POINT PROBLEMS 783

Let B be the D-dimensional box centered at p with sides of length 2di,(p, p*) that are
parallel to the axes of /. Since q(i) is an L-neighbor of p in Si, this point must lie inside
or on the boundary of B. It follows that

dz(p, q(i)) <_ v/-. di,(p, p*).

Note that di,(p, p*) PiD Pi19" Moreover,

2 PiD PiD D p.)2.(d2(p, p.))2 (Pij Pij) > (di (p
1+ (1+)2

,
j=l "=

Hence

dz(p, q(i)) < . di (p, p*) <
1 +

d2(p, p*) (1 +)dz(p, p*).

This proves the lemma.
Hence we have solved the (1 +)-approximate Lz-neighbor problem. The complexity of

our solution follows immediately from Theorem 2. We have proved the following theorem.
THEOREM 3. Let S be a set of n points in o and let be a positive constant. There

exists a dam structure of size O(n(logn)-2) that, given a que point p o, finds a

(1 +)-approximate L2-neighbor ofp in S in O((logn)-) time.
For the dynamic version of the problem, there is a data structure with a que time of

O((log n)- log log n) and an amortized update time of O((log n)- log log n) that uses
space 0 (n (log n)-).

In all complexi bounds, the constant factor is proportional to (c/)- for some

fixed c.

5. The containment problem for boxes of constant overlap. A box is a D-dimensional
axes-parallel cube, i.e., it is of the form

[a a + 6] [a2 a2 +] x x [aD ao + 6],

for real numbers a, a2 ao and 3 > 0. The center of this box is the point (a + /2, a2

/2 ao + /2).
Let S be a set ofn boxes ino that are of constant overlap, i.e., there is an integer constant

co--possibly depending on the dimensionsuch that each box B of S contains the centers
of at most co boxes in its interior. (Here we also count the center of B itself. Note that many
boxes may have their centers on the boundary of B.)

We want to store these boxes in a data structure such that for any query point p
we can find all boxes that contain p. Note that we distinguish between "being contained in a
box" and "being contained in the interior of a box." The following lemma shows that a point
p can be contained in only a constant number of boxes.

LEMMA 8. Any point p o is contained in at most 2+2co boxes of S.
Proof The proof is by induction on D. So let D 1. Assume w.l.o.g, that p 0. Let

S+ be the set of all boxes of S whose centers are positive. Let b, b2 bm be the centers
of the boxes in S+ that contain p. Assume w.l.o.g, that b max{b/ m}. The
interior of the box that has b as its center contains all centers bi, 1 m. Hence the
constant-overlap property implies that m c, i.e., point p is contained in at most c boxes
of S+.

By a symmetric argument, point p is contained in at most c boxes of S whose centers are
negative. It remains to consider the boxes that have p as their centers. The constant-overlap
property directly implies that there are at most c such boxes.

784 S. KAPOOR AND M. SMID

This proves that there are at most 3cl boxes in the entire set S that contain p.
Now let D > 2 and assume the lemma holds for dimension D 1. Again, we assume

w.l.o.g, that p is the origin. Let S+ be the set of all boxes of S whose centers have positive
coordinates. We will show that there are at most CD boxes in S+ that contain p.

Let bl, b2 bm be the centers of the boxes in S+ that contain p. Assume w.l.o.g, that

8 :--d(p, b) max{do(p, bi) 1 <_ < m}.

Let B be the box of S+ having b as its center. We claim that d(bl, bi) < 8 for 1 <_ < m.
Indeed, let < j < D. The jth coordinate bij of hi satisfies 0 < bij <_ 8. As a result,
]blj bij] < 8. This proves the claim.

Since B contains p, it has sides of length at least 28. Therefore, since each center bi
has L-distance less than 8 to bl, these centers are contained in the interior of B. Then the
constant-overlap property implies that m <_

This proves that p is contained in at most CD boxes of S+. By a symmetric argument, p is
contained in at most CD boxes of S that have their centers in a fixed D-dimensional quadrant.
Hence p is contained in at most 2DcD boxes whose centers have nonzero coordinates.

Let So be the set of all boxes in S whose centers have zero as their first coordinate.
Consider the set S of (D 1)-dimensional boxes obtained from So by deleting from each
box its first coordinates. The constant-overlap property for So implies that the boxes of
are also of constant overlap, with constant cD. Hence by the induction hypothesis, point
P’ (P:z PD) is contained in at most 21+(D-1)2CD boxes of S. These boxes of S
correspond exactly to the boxes of So that contain p.

Hence at most 21+(D-)CD boxes of So contain p. It follows from a symmetric argument
that for each < < D, point p is contained in at most 21+(D-l)cD boxes whose centers
have zero as their ith coordinate.

To summarize, we have shown that there are at most

2DcD + D 21+(D-1)D < 21+DD
boxes of S that contain p. This completes the proof. [3

In the 5.1 and 5.2, we shall give two solutions for the box-containment problem.

5.1. A solution based on segment trees. We start with the one-dimensional case. Let
S be a set of n intervals [aj bj], 1 < j < n, that are of constant overlap with constant c.

The one-dimensional structure. We store the intervals in the leaves of a balanced binary
search tree T, sorted by their right endpoints. The leaves of this tree are threaded in a doubly
linked list.

The query algorithm. Let p 6 IR be a query element. Search in T for the leftmost leaf
containing a right endpoint that is at least equal to p. Starting in this leaf, walk along the
leaves to the right and report all intervals encountered that contain p. Stop walking as soon
as 4c intervals have been reported or when c intervals have been encountered that do not
contain p.

LEMMA 9. The above data structure solves the one-dimensional containment problem in
a set ofn intervals ofconstant overlap in O(n) space with a query time of O(log n). Intervals
can be inserted and deleted in 0 (log n) time.

Proof The complexity bounds are clear; we only have to prove that the query algorithm
is correct. Clearly, all intervals that are reported contain p. It remains to show that all intervals
containing p are reported.

EXACT AND APPROXIMATE CLOSEST-POINT PROBLEMS 785

Let v be the leaf of T in which the search for p ends. The algorithm starts in v and walks
to the right. First note that all leaves to the left of v store intervals that do not contain p.
We know from Lemma 8 that there are at most 4c intervals that contain p. Hence, after 4c
intervals have been reported, the algorithm can stop. Now assume that in leaf w, we encounter
the cth interval that does not contain p. All c encountered intervals that do not contain p lie
completely to the right of p. If there is a leaf to the right of w whose interval contains p, then
this interval contains these c intervals. By the constant-overlap property, such a leaf cannot
exist. This proves that the algorithm can stop in leaf w, i.e., if it has encountered c intervals
that do not contain p. [3

We next consider the D-dimensional case, where D > 2. Let S be a set of n boxes in
IRt) that are of constant overlap with constant CD. The data structure is a segment tree for the
intervals of the first coordinates of the boxes. (See [13, 15].) The nodes of this tree contain
appropriate associated structures.

If B B1 x B2 x x Bt) is a box in IRt), then B denotes the box B2 x x Bt) in
Rt)-l. Similarly, S denotes the set {B’ B E S}. Recall that we use a similar notation for
points.

The D-dimensional structurefor D > 2. Let a < a2 < < am, where m < 2n, be the
sorted sequence of all distinct endpoints of the intervals of the first coordinates of the boxes
in S. We store the elementary intervals

(-x" al), [al al], (al a2), [a2 "a2] (am-1 am), [am am], (am

in this order in the leaves of a balanced binary search tree, called the main tree. Each node
v of this tree has associated with it an interval Iv that is the union of the elementary intervals
of the leaves in the subtree of v. Let So be the set of all boxes B B1 x B2 x x Bt) in
S such that B1 spans the interval associated with v but does not span the interval associated
with its father node, i.e., Iv c_ B1 and If(o) B1, where f(v) is the father of v.

Each node v of the main tree contains (a pointer to) an associated structure for the set So:
Partition this set into Sot, Soc, and Svr, consisting of those boxes of So whose centers lie to the
left of the "vertical" slab Iv x Ro-1, in or on the boundary of this slab, and to the right of this
slab, respectively.

The associated structure of v consists of three (D 1)-dimensional structures for the sets

Stol, Stoc, and Stor, that are defined recursively.
Remark. The interval Iv may be open, half-open, or closed. Therefore, the boundary of

the slab Iv x IRt)-I does not necessarily belong to this slab.

The query algorithm. Let p (Pl, p2 pt)) E IRt) be a query point. Search in the
main tree for the elementary interval that contains Pl. For each node v on the search path,
recursively perform a (D 1)-dimensional query with the point pt in the three structures that
are stored with v.

At the last level of the recursion, a one-dimensional query is performed in a binary search
tree. In this tree, the algorithm stops if it has reported 21+D2cD boxes of S that contain p or if
it has encountered CD boxes of S that do not contain p. (If in this tree CD boxes that do not
contain p have been encountered, then the algorithm only stops at this level of the recursion.
If, on the other hand, an overall 21+D2cD boxes that contain p have been reported, then the
entire query algorithm stops.)

The correctness proof of this algorithm uses the following lemma.
LEMMA 10. Let x and y be real numbers, let p IRt), and let i, 1 < < D 1,

be an integer such that x < Pi < Y. Let A [a a + ot] x x laD at) + or] and

786 S. KAPOOR AND M. SMID

B [bl bl +] [bD bD +] be two boxes such that ai <_ x, ai + Ot >_ y, bi <_ x,
bi + fl :> y, bD > PD, and bD + <_ aD + C. Finally, assume that p is contained in A. Then

1. aD < bD + ill2 < aD -l-Or,
2. ifone of thefollowing three conditions holds:

(a) x <_ ai + ot/2 <_ y and x < bi + t3/2 <_ y,
(b) ai + ot/2 < x and bi + ill2 < x,
(c) ai + ot/2 > y and bi + 13/2 > y,

then ai < bi + fi/2 < ai + .
Proof. The right inequality of the first assertion follows easily: bD + 13/2 < bD + <_

aD +. Since p is contained in A, we have aD < PD. Therefore, aD <_ PD < bD < bD + 13/2.
This proves 1.

Before we prove 2, observe that bD +/3 < aD + < bD + c. It follows that/3 < or.
Assume that case 2(a) applies, i.e., x <_ ai / /2 < y and x < bi + /2 < y. Since

bi +/3/2 < y < ai + c and bi +/3/2 >_ x > ai, we only have to show that ai =/= bi +/3/2 and
bi + /2 5 ai +

Assumethatai bi+fl/2. Thenx ai bi-+-fl/2. First, notethatot/2 < y-ai y-x.
Since/3/2 bi + fl (bi +/3/2) > y (bi +/3/2) y x, we infer that ot <_/3. This is a
contradiction, and hence ai < bi +/3/2.

Next, assume that bi + ill2 ai + ol. Then y bi + ill2 ai -k- ot and, in a similar
way, we can prove that ot _</3. Therefore, bi + ill2 < ai

Next, consider case 2(b), i.e., assume that ai + /2 < x and bi / /2 < x. Since

bi -1-- ill2 < x <_ y < ai -+- or, we only have to show that ai < bi + ill2. We prove this
by contradiction. So assume that ai > bi q- ill2. Then or/2 ai -+- ot/2 ai < x ai
x (bi +/3/2) x bi fl/2. Since bi + >_ y > x, we get x bi < . Therefore,
c/2 < x bi fl/2 < fl -/3/2 -//2, i.e., ot </3. This is a contradiction, and hence we
have proved that ai < bi + ill2.

Case 2(c) can be treated in the same way as case 2(b).
LEMMA 11. The query algorithm is correct.

Proof. It is well known that the set of all boxes B B1 x x BD such that p 6 B
is exactly the union of all sets So, where v is a node on the search path to p. Hence we only
have to consider the nodes on this search path.

Let v be a node on the path to pl. We know that pl is contained in the first interval of
each box of S. Hence we have to find all boxes in S whose last D 1 intervals contain
(P2 PD). We claim that the recursive queries in the three structures stored with v find
these boxes. By Lemma 8, there are at most 21+DcD boxes that contain p. Hence, at the last
level of the recursion, the query algorithm can stop as soon as it has reported this many boxes.
It remains to prove that, at the last level, the query algorithm can stop if it has encountered co
boxes that do not contain p.

Consider such a last level. That is, let vl, v2 VD-1 be nodes such that
1. 1)1 1)

2. vi is a node of the main tree of one of the three structures that are stored with vi-
3. vi lies on the search path to Pi.

The algorithm makes one-dimensional queries with po in the three structuresbinary search
treesmthat are stored with vO_l.

Consider one such query. The algorithm searches for PD. Let r be the leaf in which
this search ends. Starting in r, the algorithm walks along the leaves to the right. During this
walk, it encounters boxes that do or do not contain p. Assume that in leaf s, the cDth box is
encountered that does not contain p. We have to show that the algorithm can stop in s. That
is, we must show that all leaves to the right of s store boxes that do not contain p.

EXACT AND APPROXIMATE CLOSEST-POINT PROBLEMS 787

Assume this is not the case. Then there is a box

A [al al -+-
that is stored in a leaf to the right of s and that contains p. Let

B (j) [bjl"bjl + flj] [bjz’bj2 + flj] ... [bjo "bjo + flj], 1 < j < co,

be the encountered boxes between r and s that do not contain p. We shall prove that A contains
the centers of all these boxes in its interior. This will be a contradiction.

Let 1 < j < co. Since the leaf of A lies to the right of the leaf of B(j), we know that
bjD -[- flj <_ aD -+-Ot.

Let 1 < < D 1 and let x < y be the boundary points of the interval Ivi. Then
x < Pi < Y because Pi Ivi. Moreover, we know that I is contained in the th interval
of A and B (j), i.e., ai < x, ai + o > y, bji <_ x and bji + fij > y. Finally, since the leaf
of B (j) is equal to leaf r or lies to the right of it, we know that PD <_ bjD t_ j. Since B (j)

does not contain p, this implies that bjD > PD. (Note that the ith interval of B (j) contains Pi,

1 _<i _< D-1.)
The definition of our data structure implies that the th coordinates of the centers of A

and B (j) are either both on the boundary or contained in I or both are less than x, or both
are larger than y. Therefore, all requirements of Lemma 10 are satisfied, and we conclude
that ai < bji + tj /2 < ai +

Since was arbitrary between and D 1, and since Lemma 10 also implies that
ao < bjo + flj/2 < ao +or, we have proved that the center of Bj) is contained in the interior
of A. This completes the proof.

We analyze the complexity of the D-dimensional structure. Let M(n, D) denote the
size of the data structure. It is well known that the first interval of a box in S is stored in
the associated structure of O(logn) nodes of the main tree. This implies that M(n, D)
O(M(n, D 1) logn). Since M(n, 1) O(n), we get M(n, D) O(n(logn)-l). Using
presorting, the structure can be built in O (n(log n)-1) time.

Let Q(n, D) denote the query time. Then Q(n, 1) O(logn). The query algorithm
performs (D 1)-dimensional queries in each of the O (log n) nodes on the search path. As a
result, the query time satisfies Q (n, D) O Q(n, D 1) log n), which solves to O ((log n)o).
By applying fractional cascading (see [6]) in the two-dimensional case, we decrease Q(n, 2)
to O (log n). This improves the query time to Q (n, D) O ((log n)o-) for D > 2.

By applying standard techniques, the data structure can be adapted to handle insertions
and deletions of boxes. (See [13, 14].) Because of dynamic fractional cascading, the query
time increases by a factor of O (log log n), whereas the size only increases by a constant factor.
The amortized update time is O ((log n)o- log log n).

We summarize our result.
THEOREM 4. Let S be a set of n boxes in o of constant overlap. There exists a data

structure ofsize 0 (n (log n) 19- such thatfor anypoint p o, we canfind all boxes ofS that
contain p in 0 ((log n)o-) time. This static data structure can be built in 0 (n (log n)o-)
time.

For the dynamic version of the problem, the query time is O((logn)- log logn) and
the size of the structure is O(n(logn)-). Boxes can be inserted and deleted in
O ((log n)- log log n) amortized time.

5.2. A solution based on skewer trees. In this section, we give a linear-space solu-
tion to the box-containment problem. This solution is based on skewer trees, introduced by
Edelsbrunner et al. [8]. (See also Smid [21] for a dynamic version of this data structure.)

788 S. KAPOOR AND M. SMID

Let S be a set of n boxes in N that are of constant overlap with constant co. For D 1,
the data structure is the same as in the previous subsection.

The D-dimensional structure for D > 2. If S is empty, then the data structure is also
empty. Assume that S is nonempty. Let ?’ be the median of the set

{(al+bl)/2"[al"bl] [a: b:z] ... [ao bo] S},

and let e be the largest element that is less than g in the set of all elements al, (al + bl)/2,
and bl, where [al b] x [ao bo] ranges over S. Let ’l := ’ /2 and let cr be the
hyperplane in N with equation x

Let S<, So, and S> be the set of boxes [a bl] [ao bo] in S such that b < Yl,

a < yl _< b, and g < al, respectively. The D-dimensional data structure for the set S is an
augmented binary search tree--called the main tree--having the following form:

1. The root contains the hyperplane
2. The root contains pointers to its left and right sons, which are D-dimensional struc-

tures for the sets S< and S>, respectively.
3. The root contains (a pointer to) an associated structure for the set So: Partition this

set into Sol and Sor, consisting of those boxes in So whose centers lie to the left of
the hyperplane cr and to the right of or, respectively.
The associated structure of the root consists of two (D 1)-dimensional structures
for the sets Stol and StOr

Remark. By our choice of , the hyperplane cr does not contain the center of any box
in S. Moreover, each of the sets S< and S> has size at most n/2. The set So may have size
n. The height of the data structure is defined as the height of its main tree. It follows that the
structure has height O(log n).

The query algorithm. Let p (p, p2 po) 6 N be a query point. Let cr Xl
g be the hyperplane stored in the root of the main tree. Recursively perform a (D 1)-
dimensional query with the point p’ in the two structures that are stored with the root.

If Pl < g (resp. Pl > ’), then recursively perform a D-dimensional query with p in the
left (resp. right) subtree of the root, unless this subtree is empty, in which case the algorithm
stops.

At the last level of the recursion, a one-dimensional query is performed in a binary search
tree. In this tree, the algorithm stops if it has reported 21+2co boxes of S that contain p,
or if it has encountered co boxes of S whose last intervals do not contain po, or if it has
encountered 21+D2co boxes of S that do not contain p but whose last intervals contain po.

The correctness proof is similar to the that of 5.1. Again, we start with a technical lemma.
LEMMA 12. Let p N and let cri xi ?’i, 1 < < D 1, be hyperplanes in N. Let

A [a a +] x x [ao ao + ot] and B [b bl + t] x x [bo bo + t3] be two
boxes such that bo > Po and bo + < ao + or. Assume that p is contained in A. Finally,
assume that ai + ot/2 < ’i < ai + ot and bi + 16/2 < ’i < bi -+- fl for all 1 < < D 1.

Then ai < bi + ill2 < ai -}-Ot for all 1 < < D.
Proof. We start with D. It follows directly that bo +/3/2 < bo + <_ ao + or. Since

p is contained in A, we have ao < po. Therefore, ao < po < bo < bo + t3/2.
Let 1 < < D 1. Then bi + ill2 < ’i <_ ai + or. It remains to show that ai < bi -at- ill2.

Assumethatbi+13/2 <_ ai. Then,/3/2 bi+t3-(bi+/2) > Vi-(bi+/2) > ’i-ai > or
i.e.,/3 > or. But since bo +/ < ao + ot < bo + or, we also have/ < or. This is a contra-
diction. [3

LEMMA 13. The query algorithm is correct.

Proof. It is clear that the algorithm branches correctly. Hence we only have to consider
the last level of the recursion. Since there are at most 21+D2co boxes that contain p, the

EXACT AND APPROXIMATE CLOSEST-POINT PROBLEMS 789

algorithm can stop as soon as it has reported this many boxes. It remains to prove that, at the
last level, the query algorithm can stop if it has encountered CD boxes whose last intervals do
not contain PD or if it has encountered 21+D2cD boxes that do not contain p but whose last
intervals contain PD.

Consider such a last level. That is, let vl, v2 VD-1 be nodes such that
1. Vl is a node of the main tree,
2. vi is a node of the main tree of one of the two structures that are stored with vi-1,

3. vi lies on the search path to Pi.
Let o" Xi Yi be the hyperplane that is stored with vi, 1 < < D 1.

The algorithm makes one-dimensional queries with PD in the two structuresmbinary
treesmthat are stored with VD-1. Consider one such query. The algorithm searches for PD.
Let r be the leaf in which this search ends. Starting in r, the algorithm walks along the leaves
to the right. Assume that in leaf s, the cDth box is encountered whose last interval does not
contain PD, or the (21+D2cD)th box is encountered that does not contain p but whose last
interval contains PD. We will prove that all leaves to the right of s store boxes that do not
contain p.

Assume this is not the case. Then there is a box

A [al "al + or] [a2"a2 + or] [a9 "ao +

that is stored in a leaf to the right of s and that contains p. Let

B (j) [bjl "bjl q-- 1 x [bj2"bj2 --1- 1 x [bjD "biD q-

be the encountered boxes between r and s that do not contain p.
The definition of our data structure implies that for each 1 < < D 1, the centers of A

and the B(J)’s lie on the same side of the hyperplane cri. Moreover, these boxes intersect (i.

We assume w.l.o.g, that for all 1 < < D 1, ai q- oil2 < ’i <-- ai --k or, and for all j and all
1 <i <D-l, bji+j/2<Vi <_bji+j.

There are two possible cases. First, assume that the last intervals of c9 boxes B (j) do not
contain Po. Consider such a box B (j). Since the leaf of this box is equal to leaf r or lies to
the right of it, we must have pD <_ bjo / j. Hence po < bjo. Also, since the leaf of A
lies to the right of the leaf of B (j), we have biD q- j <_ aD + a. Hence all requirements of
Lemma 12 are satisfied. We conclude that the center of B (j) is contained in the interior of A.
This proves that the interior of A contains more than CD centers, namely its own center and
the centers of CD boxes B (j). This is a contradiction.

The second case is where 2+D2cD boxes B (j) do not contain p but their last intervals
contain Pp. We claim that the point q (1, V2 /D-1, PD) is contained in A and in all
these B(J)’s. To prove this, first note that aD < PD < aD + a because A contains p. Consider
any of these boxes B(j). By our assumption, bjD < PD < bjD / j. Our assumptions also
imply that ai <_ ’i < ai q- ot and bji <_ i <_ bji + j for all < < D 1. Hence there are

more than 21+D2cD boxes that contain q. This contradicts Lemma 8. V1

The complexity analysis is similar to that of 5.1. Since the main tree has height O (log n),
the query time is boundedby O ((log n)D). In the planar case, we can apply fractional cascading
to improve the query time to O (log n). Then the query time for the D-dimensional case is
improved to O((log n)D-). It is easy to see that the data structure has size O(n) and that it
can be built in O(n log n) time. (See [8] for details.)

We can adapt the data structure such that it can also handle insertions and deletions of
boxes. Since the algorithms and their running times are exactly the same as in [21], we refer
the reader to that paper for the details. Because of dynamic fractional cascading, the query

790 S. KAPOOR AND M. SMID

time increases by a factor of O (log log n), whereas the size only increases by a constant factor.
The amortized update time is O ((log n)2 log log n).

We summarize our results.
THEOREM 5. Let S be a set of n boxes in D of constant overlap. There exists a data

structure ofsize O(n) such thatfor any point p]R, we canfind all boxes of S that contain
p in 0 ((log n)/-1) time. This static data structure can be built in 0 (n log n) time.

For the dynamic version of the problem, the query time is O((log n)-1 log log n) and
the size of the structure is O(n). Boxes can be inserted and deleted in amortized time
O ((log n)2 log log n).

6. Maintaining the closest pair. In this section, we apply the results obtained so far to
maintain a closest pair of a point set under insertions and deletions. Let S be a set of n points
in] and let I _< < c be a real number. We denote the Lt-distance between any two points
p and q in] by d(p, q). The pair P, Q S is called a closest pair of S if

d(P, Q) min{d(p, q)" p, q 6 S, p q}.

We introduce the following notations. For any point p 6 D, box(p) denotes the smallest
box centered at p that contains at least (2D + 2)D points of S \ {p}. In other words, the
side length of box(p) is twice the L-distance between p and its (1 + (2D + 2)D)th (resp.
(2D + 2)Oth) L-neighbor, if p 6 S (resp. p S).

Let N(p) be the set of points of S \ {p} that are contained in the interior of box(p). Note
that N(p) has size less than (2D + 2). In fact, N(p) may even be empty.

Our data structure is based on the following lemma.
LEMMA 14. The set {(p, q) p S, q N(p)} contains a closest pair of S.
Proof. Let (P, Q) be a closest pair of S. We have to show that Q 6 N(P). Assume this

is not the case. Let ; be the side length of box(P). Since Q lies outside or on the boundary
of this box, we have d(P, Q) >_ 8/2.

Partition box(P) into (2D + 2)z subboxes with sides of length 3/(2D + 2). Since box(P)
contains at least 1 + (2D + 2) points of S, one of these subboxes contains at least two points.
These two points have distance at most D .3/(2D +2) < 8/2, which is a contradiction because
(P, Q) is a closest pair of S.

The set {box(p) p S} is of constant overlap: each box contains the centers of at most
(2D + 2)z boxes in its interior. These centers are precisely the points of N(p) U {p}. This
fact and the above lemma suggest the following data structure.

The closest-pair data structure.
1. The points of S are stored in a range tree.
2. The distances ofthe multiset {d(p, q) p S, q N(p)} are stored in a heap. With

each distance, we store the corresponding pair of points. (Note that both d (p, q) and
d(q, p) may occur in the heap.)

3. The points of S are stored in a dictionary. With each point p, we store a list containing
the elements of N(p). For convenience, we also call this list N (p). With each point
q in N(p), we store a pointer to the occurrence of d(p, q) in the heap.

4. The set {box(p) p S} is stored in the dynamic data structure of Theorem 4. This
structure is called the box tree.

It follows from Lemma 14 that the pair of points that is stored with the minimal element
of the heap is a closest pair of S. The update algorithms are rather straightforward.

The insertion algorithm. Let p]Rz be the point to be inserted. Assume w.l.o.g, that
pCS.

1. Using the range tree, find the (2D + 2)z Lo-neighbors of p in S. The point among
these neighbors that has maximal Lo-distance to p determines box(p). The neigh-
bors that are contained in the interior of box(p) form the list N (p).

EXACT AND APPROXIMATE CLOSEST-POINT PROBLEMS 791

2. Insert p into the range tree and insert the distances d(p, q), q E N(p) into the heap.
Then, insert pmtogether with the list N(p)minto the dictionary. With each point q
in N(p), store a pointer to d(p, q) in the heap. Finally, insert box(p) into the box tree.

3. Using the box tree, find all boxes that contain p. For each reported element box(q),
q p, that contains p in its interior, do the following:
(a) Search in the dictionary for q. Insert p into N(q), insert d(q, p) into the heap,

and store with p a pointer to d(q, p).
(b) If N(q) has size less than (2D + 2)/9, then the insertion algorithm is completed.

Otherwise, if N(q) has size (2D + 2)/9, let rl r be all points in N(q) that
have maximal L-distance to q. For each 1 < < l, delete ri from N(q)
and delete d(q, ri) from the heap. Finally, delete box(q) from the box tree and
insert the box centered at q that has rl on its boundary as the new box(q).

The deletion algorithm. Let p E S be the point to be deleted.
1. Delete p from the range tree. Search for p in the dictionary. For each point q in

N(p), delete the distance d(p, q) from the heap. Then delete p and N(p) from the
dictionary. Finally, delete box(p) from the box tree.

2. Using the box tree, find all boxes that contain p. For each reported element box(q),
do the following:
(a) If p lies in the interior of box(q), then search in the dictionary for q, delete p

from N(q), and delete d(q, p) from the heap.
(b) Using the range tree, find the 1 + (2D + 2)/9 L-neighbors of q. Let box0(q)

be the smallest box centered at q that contains these neighbors. If box(q)
box0(q), then the deletion algorithm is completed.

(c) Otherwise, ifbox(q) 7 box0(q), let r r be all points that are contained in
the interior ofbox0(q) but that do not belong to N(q) U {q}. For each < < l,
insert ri into N(q), insert d(q, ri) into the heap, and store with ri a pointer to
d(q, ri). Finally, delete box(q) from the box tree and insert box0(q), which is
the new box(q).

It is easy to verify that these update algorithms correctly maintain the closest-pair data
structure. During these algorithms, we perform a constant number of query and update
operations in the range tree, the box tree, the heap, and the dictionary. Therefore, by
Theorems 2 and 4, the amortized update time of the entire data structure is bounded by
O ((log n)/9-1 log log n). We have proved the following result.

THEOREM 6. Let S be a set ofn points in IR and let 1 < < oc. There exists a data struc-

ture ofsize O (n(log n)-1) that maintains an Lt-closest pair of S in O ((log n)/9-1 log log n)
amortized timeper insertion and deletion. The constantfactor in the space (resp. update time)
bound is of theform O(D)/9 (resp. 2(/92).

Consider our data structure again. The box box(p) that is associated with point p contains
an L-neighbor of p in S \ {p}. Therefore, the data structure can easily be adapted such that
it maintains for each point in S its L-neighbor.

COROLLARY 1. Let S be a set of n points in IR/9. There exists a data structure of size
O(n(logn)/9-) that maintains an L-neighbor of each point in S. This data structure has
an amortized update time of O ((log n)/9- log log n).

7. A transformation for reducing the space complexity. The closest-pair data structure
of 6 uses more than linear space. This raises the question of whether the same update time
can be obtained using only linear space. In this section, we show that for D _> 3, this is indeed
possible. For D 2, we will obtain a family of closest-pair data structures.

Note that we have a linear-space solution for maintaining the set {box(p) p 6 S}.
(See Theorem 5.) For the L-neighbor problem, however, no linear-space solution that

792 s. KAPOOR AND M. SMID

has polylogarithmic query and update times is known. Hence, in order to reduce the space
complexity, we should avoid using the range tree.

We will give a transformation that, given any dynamic closest-pair data structure having
more than linear size, produces another dynamic closest-pair structure that uses less space.

The transformed data structure is composed on two sets A and B that partition S. The
set B is contained in a dynamic data structure. To reduce space, B is a subset of the entire set
and contains points involved in o(n) updates only.

Let DS be a data structure that maintains a closest pair in a set of n points in Rz un-
der insertions and deletions. Let S(n) and U(n) denote the size and update times of DS,
respectively. The update time may be worst-case or amortized. We assume that S(n) and
U(n) are nondecreasing and smooth in the sense that S((R)(n)) (R)(S(n)) and U((R)(n))
(R) (U (n)). Finally, let f (n) be a nondecreasing smooth integer function such that 1 < f(n) <
n/2.

Let S

_
IRz be the current set of points. The cardinality of S is denoted by n. Our

transformed data structure will be completely rebuilt after a sufficiently long sequence of
updates. Let So be the set of points at the moment of the most recent rebuilding and let no be
its size at that moment.

As in the previous section, for each p e IRz, box(p) denotes the smallest box centered at
p that contains at least (2D + 2)z points of S \ {p}. The set of all points of S \ {p} that are in
the interior of this box is denoted by N(p). If p e So, then box0(p) denotes the smallest box
centered at p that contains at least (2D / 2) z) points of So \ {p}.

The transformed closest-pair data structure.
1. The set S is partitioned into sets A and B such that A

_
{p S p So/x box(p)

_
box0(p)}.

2. The distances of the multiset {d(p, q) p A, q N(p)} are stored in a heap.
With each distance, we store the corresponding pair of points.

3. The boxes of the set {box0(p) p So} are stored in a list called the box list. With
each element box0(p) in this list, we store a bit that has value true if and only if
p A. Moreover, if p A, we store with box0(p) the box box(p).

4. The boxes of the set {box0(p) p So} are stored in the static data structure of
Theorem 5. This structure is called the box tree. With each box in this structure, we
store a pointer to its occurrence in the box list.

5. The points of S are stored in a dictionary. With each point p, we store a bit that
indicates whether p belongs to A or B. If p A, then we store with p
(a) a pointer to the occurrence of box0(p) in the box list, and
(b) a list containing the elements of N(p). For convenience, we also call this list

N(p). With each point q in N(p), we store a pointer to the occurrence of
d(p, q) in the heap.

6. The set B is stored in the dynamic data structure DS. This structure is called the
B-structure.

First we prove that this data structure indeed enables us to find a closest pair of the current
set S in O (1) time.

LEMMA 15. Let be the minimal distance stored in the heap and let (’ be the distance of
a closest pair in B. Then, min(8, 3’) is the distance ofa closest pair in the set S.

Proof. Let (P, Q) be a closest pair in S. We distinguish two cases.
Case 1. At least one of P and Q is contained in A.
Assume w.l.o.g, that P A. Since box(P) contains at least 1 + (2D + 2)z points of

S, it follows in the same way as in the proof of Lemma 14 that Q is contained in the interior
of this box. Hence Q N(P) and, therefore, the distance d(P, Q) is stored in the heap.
Clearly, the heap contains only distances of the current set S. Therefore, d(P, Q).

EXACT AND APPROXIMATE CLOSEST-POINT PROBLEMS 793

Moreover, since d(P, Q) is the minimal distance in S, we have d(P, Q) < 3’. This proves
that d(P, Q) min(3, 3’).

Case 2. Both P and Q are contained in B.
Since d(P, Q) is the minimal distance in S and since the heap only stores distances

between points of the current set S, we have 3’ d(P, Q) and d(P, Q) < 3. Therefore,
d(P, Q) min(, ’). 12

Initialization. At the moment of initialization, S So A and B 0. Using Vaidya’s
algorithm [24], compute for each point p in S its 1 / (2D / 2) L-neighbors. The point
among these neighbors that has maximal L-distance to p determines box(p) box0(p).
The neighbors (except p itself) that are contained in the interior of this box form the list N(p).
It is clear how the rest of the data structure can be built. Note that each element box0(p) in
the box list has a bit with value true.

Now we can give the update algorithms. If a point p of So is deleted, it may be inserted
again during some later update operation. If this happens, p is assumed to be a new point, i.e.,
it is assumed that p does not belong to So again. In this way, an inserted point always belongs
to B.

The insertion algorithm. Let p 6]o be the point to be inserted. Assume w.l.o.g, that
pCS.

1. Insert p into the dictionary and store with p a bit that says that p belongs to B. Then
insert p into the B-structure.

2. Using the box tree, find all boxes that contain p. For each reported element box0(q),
follow the pointer to its occurrence in the box list. If the bit of box0(q) has value
true, then check if p is contained in the interiorof box(q). If so, do the following"
(a) Search in the dictionary for q. Insert p into N(q), insert d(q, p) into the heap,

and store with p a pointer to d(q, p).
(b) If N(q) has size less than (2D / 2), then the insertion algorithm is completed.

Otherwise, let rl rt be all points of N(q) that are at maximal L-distance
from q. For each 1 < < l, delete ri from N(q) and delete d(q, ri) from the
heap. Finally, replace box(q)mwhich is stored with box0 (q) in the box listmby
the box centered at q that has rl on its boundary; this is the new box(q).

It is easy to verify that this algorithm correctly maintains the data structure. Note that
since A c_ {p 6 S p 6 So/x box(p)

_
box0(p)}, all boxes box(q), q 6 A, that contain p

are found in step 2.

The deletion algorithm. Let p 6 S be the point to be deleted.
1. Search for p in the dictionary. If p 6 B, then delete p from this dictionary and from

the B-structure.
Otherwise, if p 6 A, follow the pointer to box0(p) in the box list and set its bit to

false. Moreover, for each point q in N(p), delete the distance d(p, q) from the heap.
Then delete p from the dictionary.

2. Using the box tree, find all boxes that contain p. For each reported element box0 (q),
follow the pointer to its occurrence in the box list. If the bit of box0(q) has value
true, then check if p is contained in box(q). If so, do the following:
Set the bit of box0(q) to false. Search in the dictionary for q. For each point r in
N(q), delete d(q, r) from the heap. Then delete the pointer from q to box0(q), delete
the list N(q), and store with q a bit saying that it belongs to B. Finally, insert q into
the B-structure.

This concludes the description of the update algorithms. In order to guarantee a good
space bound, we occasionally rebuild the data structure as follows.

794 S. KAPOOR AND M. SMID

Rebuild. Recall that no is the size of S at the moment we initialize the structure. After

f (no) updates have been performed, we discard the entire structure and initialize a new data
structure for the current S.

We analyze the complexity ofthe transformed data structure. First, note that the initial and
current sizes no andn are proportional: Since f(no) <_ no we have n <_ no+ f(no) < 3n0/2
and n > no- f(no) > no/2.

The total size of the heap, the box list, the box tree, and the dictionary is bounded by
O(n + no) O(n). Consider the B-structure. Initially, this structure is empty. With each
insertion, we insert one point into it, whereas with each deletion, at most a constant number of
points are inserted. (See Lemma 8 for the constant. Note that cz) (2D + 2)D.) Therefore,
the B-structure stores O(f(no)) O(f(n)) points and it has size O(S(f(n))).

During each update operation, we perform a constant number of queries and updates in
the various parts of the structure. Therefore, by Theorem 5, O ((log n) z)- + U(f (n))) time
is spent per update, in case the data structure is not rebuilt.

Consider the initialization. We can compute each point’s 1 / (2D + 2) z) L-neighbors
in O(no log no) time. (See [24].) By Theorem 5, the static box tree can also be built in
O (no log no) time. It is clear that the rest of the data structure can be built within these time
bounds. Hence the entire initialization takes O(no log no) time. Since we do not rebuild during
the next f(no) updates, the initialization adds

o(nlgn)-’O((nlgn)/f(n))f(no)
to the overall amortized update time. This proves the following result.

THEOREM 7. Let DS be any data structure for the dynamic closest-pair problem. Let
S(n) and U(n) denote the size and update time ofDS, respectively. Let 1 <_ f (n) < n/2 be a
nondecreasing integerfunction. Assume that S(n), U (n), and f(n) are smooth.

We can transform DS into another data structure for the dynamic closest-pair problem;
it has

1. size O(n + S(f (n))), and
2. an amortized update time of O((logn)-1 + U(f(n)) + (n logn)/f (n)).

COROLLARY 2. Let S be a set ofn points in IRz), D > 3, and let 1 <_ < oc. There exists
a data structure ofsize O(n) that maintains an Lt-closestpair of S in O ((log n)-1 log log n)
amortized time per insertion and deletion.

Proof We apply Theorem 7 twice. Let DS be the data structure of Theorem 6, i.e.,
S(n) O(n(logn)z)-) and U(n) O((logn)- loglogn). Moreover, let f(n) n/
((log n)D-2 log log n). Then Theorem 7 gives a closest-pair structure DS’ of size S’(n)
O (n log n/ log log n) that has U’(n) O ((log n) z)- log log n) amortized update time. Ap-
plying Theorem 7 to DS’ with f’(n) n loglogn/logn proves the corollary. [3

COROLLARY 3. Let S be a set of n points in the plane and let 1 <_ < (x. For any
nonnegative integer constant k, there exists a data structure

1. of size O(n logn/(loglogn)) that maintains an Lt-closest pair of S at a cost of
O (log n log log n) amortized time per insertion and deletion,

2. ofsize O(n) that maintains an L-closestpair ofS in O ((log n)2/(log log n)) amor-

tized time per insertion and deletion.

Proof. The proof is by induction on k. For k 0, the result claimed in follows
from Theorem 6. Let k > 0 and let DS be a closest-pair data structure that has size
S(n) O(n logn/(loglogn)) and update time U(n) O(logn loglogn). Applying The-
orem 7 with f(n) n(loglogn)/logn gives a closest-pair structure of size O(n) that has
O ((log n)2/ (log log n)k) amortized update time.

EXACT AND APPROXIMATE CLOSEST-POINT PROBLEMS 795

On the other hand, applying Theorem 7 to DS with f(n) n log logn gives a
closest-pair structure of size O(nlogn/(loglogn)+l) with an amortized update time of
O (log n log log n). [3

8. Concluding remarks. We have given new techniques for solving the dynamic ap-
proximate nearest-neighbor problem and the dynamic closest-pair problem. Note that for the
static version of the first problem, an optimal solution--with logarithmic query time and linear
size--is known. (See [2].) It would be interesting to solve the dynamic problem within the
same complexity bounds and with a logarithmic update time.

For the dynamic closest-pair problem, we obtained several new results. We first gave a
data structure that improved the best structures that were known. Then we applied a general
transformation to improve this solution even further. Note that if we apply this transformation
several times, as we did, then we maintain a hierarchy of data structures similar to the loga-
rithmic method for decomposable searching problems. (See [3].) It would be interesting to
know if the ideas of this transformation can be applied to other problems. Finally, we leave
as an open problem to decide whether there is an O (n)-space data structure that maintains the
closest pair in O (log n) time per insertion and deletion.

REFERENCES

[1] S. ARYA AND D. M. MOUNT, Approximate nearest neighbor queries in fixed dimensions, in Proc. 4th An-
nual ACM-SIAM Symposium on Discrete Algorithms, Society for Industrial and Applied Mathematics,
Philadelphia, 1993, pp. 271-280.

[2] S. ARYA, D. M. MOUNT, N. S. NETANYAHU, R. SILVERMAN, AND A. Wu, An optimal algorithm for approxi-
mate nearest neighbor searching, in Proc. 5th Annual ACM-SIAM Symposium on Discrete Algorithms,
Society for Industrial and Applied Mathematics, Philadelphia, 1994, pp. 573-582.

[3] J.L. BENTIE, Decomposable searching problems, Inform. Process. Lett., 8 (1979), pp. 244-251.
[4] J. L. BENTIEY AND M. I. SHAMOS, Divide-and-conquer in multidimensional space, in Proc. 8th Annual

ACM Symposium on Theory of Computing, Association for Computing Machinery, New York, 1976,
pp. 220-230.

[5] M. BRN, Approximate closest-point queries in high dimensions, Inform. Process. Lett., 45 (1993), pp. 95-99.
[6] B. CHAZELLE AND L. J. GUIBAS, Fractional cascading I: A data structuring technique, Algorithmica, (1986),

pp. 133-162.
[7] K.L. CLARKSON, A randomized algorithmfor closest-point queries, SIAM J. Comput., 17 (1988), pp. 830-847.
[8] H. EDELS3RUNNEr, G. HAING, AND D. HIL3ET, Rectangularpoint location in d dimensions with applications,

Comput. J., 29 (1986), pp. 76-82.
[9] M. GOLIN, R. RAMAN, C. SCHWAP,Z, AND M. SMID, Randomized data structures for the dynamic closest-pair

problem, in Proc. 4th Annual ACM-SIAM Symposium on Discrete Algorithms, Society for Industrial
and Applied Mathematics, Philadelphia, 1993, pp. 301-310.

10] ., Simple randomized algorithmsfor closest pair problems, Nordic J. Comput., 2 (1995), pp. 3-27.
[11] D. T. L, Two-dimensional Voronoi diagrams in the Lp-metric, J. Assoc. Comput. Mach., 27 (1980),

pp. 604-618.
[12] G. S. LuKr, A data structure for orthogonal range queries, in Proc. 19th Annual IEEE Symposium on

Foundations of Computer Science, IEEE Press, Piscataway, NJ, 1978, pp. 28-34.
[13] K. MEHLHOrtN, Data Structures and Algorithms, Volume 3: Multi-Dimensional Searching and Computational

Geometry, Springer-Verlag, Berlin, 1984.
[14] K. MIJLIJON AND S. NXIJr, Dynamicfractional cascading, Algorithmica, 5 (1990), pp. 215-241.
[15] E P. PREPARATA AND M. I. SHAMOS, Computational Geometry: An Introduction, Springer-Verlag, New

York, 1985.
[16] J.S. SALOW, Enumerating interdistances in space, Internat. J. Comput. Geom. Appl., 2 (1992), pp. 49-59.
17] C. SCHWAZ, Data structures and algorithmsfor the dynamic closest pair problem, Ph.D. thesis, Department

of Computer Science, Universitit des Saarlandes, Saarbrticken, Germany, 1993.
18] C. SCHWArtZ, M. SMID, AND J. SNOYINK, An optimal algorithmfor the on-line closest pairproblem, Algorith-

mica, 12 (1994), pp. 18-29.
[19] M.I. SJAMOS AND D. HOEY, Closest-point problems, in Proc. 16th Annual IEEE Symposium on Foundations

of Computer Science, IEEE Press, Piscataway, NJ, 1975, pp. 151-162.
[20] M. SMID, Maintaining the minimal distance ofa point set in less than linear time, Algorithms Review, 2 (1991),

pp. 33-44.

796 S. KAPOOR AND M. SMID

[21 M. SMID, Dynamic rectangularpoint location, with an application to the closestpairproblem, Inform. Comput.,
116 (1995), pp. 1-9.

[22] ., Maintaining the minimal distance of a point set in polylogarithmic time, Discrete Comput. Geom.,
7 (1992), pp. 415-431.

[23] K.J. SuPOWIT, New techniques for some dynamic closest-point andfarthest-point problems, in Proc. 1st An-
nual ACM-SIAM Symposium on Discrete Algorithms, Society for Industrial and Applied Mathematics,
Philadelphia, 1990, pp. 84-90.

[24] P. M. VAIDYA, An O(n logn) algorithm for the all-nearest-neighbors problem, Discrete Comput. Geom.,
4 (1989), pp. 101-115.

[25] D.E. WILLARD AND G. S. LUEKER, Adding range restriction capability to dynamic data structures, J. Assoc.
Comput. Mach., 32 (1985), pp. 597-617.

[26] A.C. YAO, On constructing minimum spanning trees in k-dimensional spaces and related problems, SIAM J.
Comput., 11 (1982), pp. 721-736.

SIAM J. COMPUT.
Vol. 25, No. 4, pp. 797-827, August 1996

() 1996 Society for Industrial and Applied Mathematics
005

EFFICIENT PARALLEL ALGORITHMS FOR CHORDAL GRAPHS*

PHILIP N. KLEINt

Abstract. We give the first efficient parallel algorithms for recognizing chordal graphs, finding a maximum
clique and a maximum independent set in a chordal graph, finding an optimal coloring of a chordal graph, finding a
breadth-first search tree and a depth-first search tree ofa chordal graph, recognizing interval graphs, and testing interval
graphs for isomorphism. The key to our results is an efficient parallel algorithm for finding a perfect elimination
ordering.

Key words, parallel algorithms, chordal graphs, interval graphs, PQ-tree, perfect elimination ordering

AMS subject classifications. 68Q20, 68R10, 68Q22, 68Q25

1. Introduction. Chordal graphs are graphs in which every cycle of length > 3 has a
chord, an edge between nonconsecutive nodes of the cycle. Chordal graphs have application
in Gaussian elimination [39] and databases [4] and have been the object of much algorithmic
study since the work of Fulkerson and Gross in 1965 [17].

Chordal graphs are an important subclass of the class of perfect graphs [5], [23], which
are graphs in which the maximum clique size equals the chromatic number for every induced
subgraph. No polynomial-time algorithm for recognizing perfect graphs is known. In contrast,
chordal graphs can be recognized in linear time.

1.1. Our results. In this paper, we give the first efficient parallel algorithms for a host of
chordal-graph problems. Our deterministic algorithms take O (log2 n) time and use only n +m
processors of a concurrent-read concurrent-write parallel random-access machine (CRCW
PRAM) for n-node, m-edge graphs. Moreover, using randomized techniques [19], [33], [38],
we can achieve the same time bound with only (n +m)! log n processors. Thus our algorithms
are nearly optimal in their use of parallelism, in contrast to the previous parallel algorithms
that required about n3 processors to achieve the same time bound. The chordal graph problems
we solve are as follows:

1. recognizing chordal graphs,
2. finding all maximal cliques in a chordal graph (and, in particular, finding a maximum-

weight clique),
3. finding a maximum independent set (and a minimum clique cover) in a chordal graph,
4. finding an optimal coloring of a chordal graph,
5. finding a depth-first search tree of a chordal graph,
6. finding a breadth-first search tree of a chordal graph.
Chordal graphs include as a subclass interval graphs, the intersection graphs of intervals

of the real line. Thus our algorithms for problems 2-6 above may be applied to interval
graphs. But we can also solve two additional interval-graph problems. Namely, in O(log2 n)
time using n + m processors, we can

recognize interval graphs and find interval representations and
test isomorphism between interval graphs.

*Received by the editors June 12, 1989; accepted for publication (in revised form) December 6, 1994. A
preliminary version of this paper appeared in Proc. 1988 Symposium on the Foundations of Computer Science,
pp. 150-161 [28], and in technical report TR-426, Laboratory for Computer Science, Massachusetts Institute of
Technology, 1988. The research described in this paper is part of the author’s Ph.D. thesis at MIT. This research was
supported by a fellowship from the Center for Intelligent Control Systems, with additional support from Air Force
Contract AFOSR-86-0078, a PYI awarded to David Shmoys with matching support from IBM and Sun Microsystems,
and ONR grant N00014-08-K-0243 at Harvard University.

Department of Computer Science, Brown University, Box 1910, Providence, R102912.

797

798 PHILIP N. KLEIN

The isomorphism algorithm requires the CRCW PRAM to be of type "priority" (higher-
numbered processors win in case of write conflicts). It makes use of an efficient parallel
algorithm for tree isomorphism.

1.2. Other parallel algorithms. In a previous work, Naor, Naor, and Schiffer [34] gave
parallel algorithms for chordal-graph problems 1-4. Their algorithm for problem 1 used
O(n2m) processors. They also gave an algorithm for problem 2 that required O(n5+) pro-
cessors to achieve O(log2 n) time and O(n4) processors to achieve O(log n) time. They
showed how, subsequent to the solution of problem 2, problems 3 and 4 could be solved in
O (log2 n) additional time using O (n2) processors. Thus they identified problem 2 as a bottle-
neck in analyzing chordal graphs. Subsequent research (independent of and concurrent with
our work) by Dahlhaus and Karpinski [12], [13] and Ho and Lee [24] reduced the processor
bound for problem 2 to O(n4) and O(n3), respectively; because of the algorithms of [34],
these processor bounds then apply also to problems 3 and 4. The algorithm of Ho and Lee
required only O (log n) time.

A parallel algorithm for finding a depth-first search tree in an arbitrary graph was given
by Aggarwal and Anderson [2]. Their algorithm is randomized and uses O(nM(n)) proces-
sors. A parallel algorithm for breadth-first search in an arbitrary graph that uses M(n)
processors was given by Gazit and Miller [20] that uses M(n) processors. Depth-first and
breadth-first algorithms specifically for chordal graphs have not previously appeared in the
literature.

To our knowledge, no previous NC algorithm was known for interval-graph isomorphism.
Recognition of interval graphs was previously shown to be in NC by Kozen, Vazirani, and
Vazirani [30], but no specific time or processor bound was given. Novick [37] has given
an O(log n)-time, n3-processor CRCW algorithm for recognizing interval graphs. He has
also claimed [36] an algorithm with the same bounds for constructing a PQ-tree representing
a given interval graph. He observed [35] that this latter task is the first step in Lueker and
Booth’s interval-graph isomorphism algorithm and suggested that the remaining steps might be
parallelizable. Savage and Wloka [41 have given an efficient parallel algorithm for optimum
coloring of interval graphs. Their algorithm takes O (log n) time using n processors of an
exclusive-read exclusive-write (EREW) PRAM, assuming that the interval representation of
the graph has been provided.

1.3. Background. The key to our algorithmic results is our use of theperfect elimination
ordering (PEO) of a graph, a node ordering that exists if and only if the graph is chordal.
Fulkerson and Gross [17] discovered the PEO and used it to find all the maximal cliques of a
chordal graph. Rose [39] has related the PEO to the process ofGaussian elimination in a sparse
symmetric positive definite linear system. Rose, Tarjan, and Lueker [40] gave a linear-time
algorithm for finding a PEO in a chordal graph using the notion of lexicographic breadth-first
search. This yields a linear-time sequential algorithm for recognizing chordal graphs (problem
1). Once a PEO for a graph is known, algorithms due to Gavril [18] for problems 2-4 can
be implemented in linear time. Thus the PEO has emerged as the key technique in sequential
algorithms for chordal graphs, and its study has yielded important algorithmic ideas in the
sequential realm.

Researchers in parallel algorithms, however, have largely abandoned use of the PEO--
largely because finding a PEO in parallel seemed so difficult. The existence ofanNC algorithm
for finding a PEO algorithm was left open by Edenbrandt [15], [16] and by Chandrasekharan

Here M(n) denotes the time required to multiply two n x n matrices. The best bound known, due to Coppersmith
and Winograd [11], is O(n2376).

EFFICIENT PARALLEL ALGORITHMS FOR CHORDAL GRAPHS 799

and Iyengar [7] and resolved by Naor, Naor, and Schiffer [34] and independently by Dahlhaus
and Karpinski [12], [13]. However, the PEO algorithms of [34] and [12] required at least n4

processors (subsequently improved to n3 by Ho and Lee [24], [25]). In fact, it is suggested
in [34] that for parallel algorithms the PEO may be less useful than the representation of a
chordal graph as the intersection graph of subtrees of a tree. The results of this paper suggest
otherwise.

We describe a new parallel algorithm for finding a PEO. Our algorithm takes O (log2 n)
time and uses only a linear number of processors of a CRCW PRAM. In fact, we can achieve
the same time bound using only O ((n + m) log n) processors of a randomized PRAM. Thus
our PEO algorithm is nearly optimal. The algorithm relies on a new understanding of the
combinatorial nature of PEOs. The algorithm in turn forms the basis for our other efficient
parallel algorithms for chordal and interval graphs.

Our algorithm for finding a PEO actually solves the following problem: given a labeling
of the nodes of a graph with numbers (a numbering), the algorithm finds a PEO consistent with
the partial order defined by the numbering or determines that no such consistent PEO exists. It
accomplishes this by iteratively refining the numbering until each number is assigned to only
one node. Our methods ensure that only O(log n) refinements suffice. Once the numbering
is one to one, it is easy to check whether it defines a PEO, as we observe in 4.2.

Most of our algorithms for solving optimization problems on a chordal graph rely on
a tree derived from the PEO, the elimination tree. We show that breaking up the tree by
removing a vertex corresponds to breaking up the graph by removing a clique. We use
this observation to give a divide-and-conquer algorithm for optimum coloring. In order
to find a maximum independent set and a minimum clique cover of the graph, we apply
terminal-branch elimination, a technique of Naor, Naor, and Schiffer [34], to the elimination
tree. We believe the elimination tree may also prove useful in other parallel chordal-graph
algorithms.

The interval-graph algorithms rely on a parallel algorithm, MREDUCE, for manipulating
the PQ-data structure of Booth and Lueker [6]. This algorithm is described in 3.

1.4. Graph notation. Let G be an undirected graph. We use V(G) to denote the set of
nodes of G. Let H be a subgraph of G or a set of nodes of G. We use G[H] to denote the
subgraph of G induced by the nodes of H. We use G H to denote the subgraph obtained
from G by deleting the nodes of H. We use]HI to denote the number of nodes in H. Unless
otherwise stated, n and m denote the number of nodes and number of edges, respectively, in
the graph G.

2. The PEO algorithm. The most algorithmically useful characterization of chordal
graphs, the PEO, was discovered by Fulkerson and Gross [17] in 1965. Dirac had proved in
[14] that every chordal graph has a simplicial node, a node whose neighbors form a clique.
Fulkerson and Gross observed that since every induced subgraph of a chordal graph is also
chordal, deletion of a vertex and its incident edges results in a chordal graph. They proposed an
"elimination" process: repeatedly find a simplicial node and delete it until all nodes have been
deleted or no remaining node is simplicial. It follows from Dirac’s theorem that the process
deletes every node of a chordal graph; in fact, Fulkerson and Gross showed conversely that a
graph is chordal if the process deletes every node. Thus the elimination process constitutes
an algorithm for recognition of chordal graphs. The order in which nodes are deleted is called
a PEO.

2.1. An overview of the PEO algorithm. We define a PEO of a graph G to be a one-
to-one numbering 1) 1)n of the nodes of G such that for each (i n), the

800 PHILIP N. KLEIN

higher-numbered neighbors of vi form a clique. We also represent a PEO as a sequence of
nodes cr)1 Vn.

THEOREM 2.1 (Fulkerson and Gross). A graph G has a PEO if and only if G is
chordal.

In order to give a parallel algorithm for finding a PEO of a chordal graph G, we generalize
the notion to numberings that are not one to one. Let $ be a numbering of the nodes of G
(a function mapping nodes to numbers). We use G$ to denote the graph G with each node v
labeled by its number $(v). We shall use the metaphor ofwealth in connection with numberings
$; for example, if $(v) > $(w), we shall say v is "richer" than w. The classes of G$ are the
subgraphs induced on sets of equal-numbered nodes. The class-components of G$ are the
connected components of the classes of G$.

Let $ and be two numberings of the nodes of G. We say $ is consistent with (and
is a refinement of$) if $(v) < $(w) implies (v) < (w) for all nodes v and to. We say is
a refinement of G$ if we wish to emphasize the graph for which is a numbering. Note that
each class-component ofG is a subgraph of some class-component of G$.

We call 4 a partial numbering if 4 assigns numbers to some of the nodes of G, and is
undefined for others; a numbering is trivially a partial numbering. For the numbering $ and
the partial numbering 4, the refinement of$ by 4 is defined to be the numbering $4 in which 4
is used to break ties in $. That is, $(v) < $4(w) if either

$(v) < $(w) or
$(v) $(w), 4(v) and 4(w) are defined, and 4(v) < 4(w).

Typically, 4 will be a numbering of some class-component C of G$ and hence only a partial
numbering of G$. In this case, we speak of obtaining $4 from $ as stratifying the class-
component C of G$, or as well-stratifying C if, in addition, each class-component of G$

4contains at most g[C[nodes of C.
We want to know when a numbering $ is consistent with some PEO. To this end, we

introduce the notion of a backward path in G$: namely, a simple path whose endpoints
are strictly richer than all its internal nodes.2 We say a numbering $ of G is valid if every
backward path in G$ has adjacent endpoints. The following lemmas are immediate from the
definitions.

LEMMA 2.2. For a graph G, if a valid numbering $ of G is also one to one, then $ is a
PEO of a.

LEMMA 2.3. Let $ be a valid numbering of a graph G. For any class-component C of
G$, the richer neighbors ofCform a clique.

We assume for the remainder of this section that G is a connected chordal graph. Our
algorithm for finding a PEO in G, which appears in Figure 1, consists of a sequence of
O (log n) stages. In each stage, the algorithm modifies the numbering $ by well-stratifying
every nonsingleton class-component C while preserving the validity of $, using a proce-
dure STRATIFY(G$, C). In each stage, the size of the largest class-component goes down

4by a factor of 7" Hence after at most logs/4 n stages, the current numbering is one to
one and the algorithm terminates, outputting the current numbering, which is a PEO by
Lemma 2.2.

We shall show in 2.2 that the procedure STRATIFY(G$, C) can be implemented to run
in O(log k) time using k processors, where k is the number of edges that have at least one
endpoint in C. Consequently, executing step R4 of ITERATED REFINEMENT for all class-
components in parallel requires O(log m) time using O(m) processors. Since the number of
stages is O (log n), the total time required by ITERATED REFINEMENT is O (logz n). Using the

2The notion is a generalization of one appearing in Lemma 4 of [40].

EFFICIENT PARALLEL ALGORITHMS FOR CHORDAL GRAPHS 801

R1
R2
R3
R4

ITERATED REFINEMENT
To initialize, let $ be the trivial numbering assigning 0 to every node of G.
While $ is not one to one,

For each nonsingleton class-component C of G$ in parallel:
call STRATIFY(G$, C).

FIG. 1. The ITERATED REFINEMENT algorithmforfinding a PEO.

$1
nodes

$5 $10
nodes nodes

FIG. 2. To obtain a uniform path, delete the nodes ofbackward subpaths.

randomized connectivity algorithm of Gazit [19], we can reduce the processor bound by a
factor of log n without increasing the time bound.

As an aside, we note that the initial numbering can be any valid numbering $ of G, e.g.,
the trivial numbering assigning the same number to all nodes; the algorithm’s output will then
be a PEO consistent with $. This observation leads to the following theorem, which is not
needed for our algorithm, but which justifies our initial definition of validity.

BACKWARD-PATH THEOREM. For a chordal graph G, a numbering $ ofG is valid ifand
only if it is consistent with some PEO of G.

Proof. The "only if" direction will follow from the correctness of the algorithm. To prove
the other direction, suppose cr is a PEO of G consistent with $. We need to show that every
backward path in G$ has adjacent endpoints. For the two endpoints x and y of any backward
path, let P be the shortest backward path with these two endpoints. If P consists of the single
edge {x, y }, we are done, so assume that P has intemal nodes. Let u be the internal node with
the minimum r-number. Then the neighbors of u in P have higher a-number, so they are
adjacent by definition of a perfect ordering. Thus there is a shorter backward path connecting
x and y, a contradiction. [3

We return to the algorithm. The key to the efficiency of the procedure STRATIFY(G$, C)
is that it need only consider the graph induced by C and its richer neighbors in G$, as we shall
show presently.

We say that a path in G$ is weakly backward if its endpoints are at least as rich as its
internal nodes. When we wish to emphasize that a path P is backward, as opposed to only
weakly backward, we shall say P is strictly backward. If is a refinement of $, a path P that
is weakly backward in Gz is also weakly backward in G$. If P is strictly backward in G but
not strictly backward in G$, then at least one of the endpoints of P has the same S-number as
one of the internal nodes of P. We say a path in G is uniform (with respect to a numbering $)
if every internal node has the same S-number as the poorer of the two endpoints.

LEMMA 2.4. Suppose $ is a valid numbering ofthe graph G. For each weakly backward
path P in G$, there is a uniform weakly backwardpath P’ in G$ with the same endpoints such
that V(P’) c_ V(P).

Proof. The proof is illustrated in Figure 2. Let Vl... Vk be the nodes of a weakly
backward path P, and let be the S-number of its poorer endpoint. Suppose vi... vj is a

802 PHILIP N. KLEIN

maximal subpath consisting of nodes poorer than t. Then l)i_ l)j+l is a backward path in
G$, so its endpoints vi-1 and vj+l are adjacent by the validity of $. We can therefore replace
the subpath vi_ l)j+l with the edge {Vi_l, vj+l }, obtaining a backward path P1 with the
same endpoints as P but with fewer nodes poorer than t. Note that every node in P is a node
of P. Continuing this process yields a path with the same endpoints and with no nodes poorer
than and consisting of a subset of the nodes of P. [3

The following lemma shows that STRATIFY(G$, C) need only consider C and the higher-
numbered neighbors of C. Fix the graph G$. For a class-component C, let C denote the
subgraph of G$ induced by C and its higher-numbered neighbors in G$.

REFINEMENT LEMMA. Suppose $ is a valid numbering ofa graph G. Let q be a numbering
of a class-com_..ponent C of G$. Then the refinement of G$ by q is valid if and only if the
refinement of C$ by q is valid.

Proof. Let $q be the refinement of G$ by q, and let) be the refinement of C$ by q.
Assume that $ is a valid numbe.ring of G. If $q is also a valid numbering of G, then) is a
valid numbering of C because.Cz is a node-induced subgraph of G$. Conversely, suppose
that) is a valid numbering of C. For each backward path P in G$, we must show that P’s
endpoints x and y are adjacent. Since P is weakly backward in G$, there exists a uniform path
P’ in G$ with endpoints x and y, where V(P’) c__ V(P). Since V(P’)

_
V(P), the path P’ is

still backward with respect to $q. If P’ has no internal nodes, x and y are adjacent. Suppose
P’ has internal nodes; they all have the same S-number as the lower-numbered endpoint x
by definition of uniformity. Since P is strictly backward with respect to $q, it follows that
the internal nodes have a lower q-number than x. Hence the internal nodes and x must all lie
in C because q is defined only on C. Then the other endpoint y is a neighbor of a node of
C and hence is either in C itself or is a higher-numbered neighbor of C. In the first case, y
has a higher q-number than the internal nodes because P’ is strictly backward. In the second
case, y has a higher-number than the internal nodes. In either case, we conclude that P’ is
a backward path in C. By the validity of), x and y are adjacent. [3

The Refinement Lemma imp.plies that to validly stratify a class-component C in G$, we
need only validly stratify it in C$. In fact, we observe next that all the class-components of
G$ may be thus stratified simultaneously and independently. To see this, let C Ck be
the class-components of Gs, ordered in some arbitrary way consistent with $. We show that
stratifying the class-components in order is equivalent to stratifying them all at once, as far as
validity is concerned.

For 1 k,J.et qi be a numbering of C such that the refinement of Ci$ by qi yields
a valid numbering of C Let $0 $, anda.for 1 k, let $i be the refinement of $i- by
qi. The numbering that $i- i.nduces on C is isomorphic to that induced by $ (the same order
relations hold), so refining C $i-, by qi is valid. It then follows via the Refinement Lemma
that $i is valid. We conclude that $k is a valid refinement of $. We can obtain $k directly by
using qi to stratify C for all class-components C in parallel. This is how steps R3 and R4 of
ITERATED REFINEMENT are carried out. The algorithm STRATIFY(G$, Ci) for stratifying C is
given in 2.2.

2.2. Valid well-stratification. Before we give the algorithm for valid well-stratification,
we give some results used in proving the correctness of the algorithm. We start with a lemma
of Dirac [14].

LEMMA 2.5 (Dirac). If S is a minimal set ofnodes whose removal separates a connected
chordal graph into exactly two connected components, then S is a clique.

COROLLARY 2.6. In a chordal graph, the common neighbors of two nonadjacent nodes
form a (possibly empty) clique.

EFFICIENT PARALLEL ALGORITHMS FOR CHORDAL GRAPHS 803

Proof. In the induced subgraph consisting of the two nonadjacent nodes x and y and their
common neighbors, the common neighbors form a minimal separator between x and y. q

COROLLARY 2.7. Let H be a connected subgraph of a chordal graph G. Then the
numbering is valid, where assigns 1 to H and neighbors ofH and 0 to all other nodes.

Proof. Let P be a backward path in G, and let C be the component of the 0-numbered
nodes that contains the internal nodes of P. Let D be the set of 1-numbered neighbors of
nodes in C. In the subgraph induced on C U D U H, the nodes of D form a minimal separator
between C and H, so D is a clique. The endpoints of P are in D, so they are adjacent. [3

LEMMA 2.8. Let K be a clique in a chordal graph G. Then the numbering is valid,
where assigns 1 to K and those nodes adjacent to all of K and 0 to all other nodes.

Proof. This is a proof by induction on KI. The base case, in which KI 1, follows
from Corollary 2.7. Suppose KI > 1, and let v be a node of K. Let A consist of the nodes of
K {v} and the nodes adjacent to all of K {v}. Let ot be the numbering assigning 1 to A
and 0 to other nodes. By the inductive hypothesis, ot is valid. Because K is a clique, v is in A.
Let/3 be the numbering of A that assigns 2 to v and its neighbors and 1 to other nodes of A.
By Corollary 2.7,/3 is a valid numbering of A. Let 9/be the refinement of ot by/3. The nodes
of A have no richer neighbors in G, so by the Refinement Lemma, 9/is a valid numbering
of G. But 9/is a refinement of the numbering 6 defined in the statement of the lemma, so 3 is
also valid. This completes the inductive step. [3

LEMMA 2.9. Let ot be any valid numbering ofa graph G, and let K be a clique contained in
the highest-numbered class ofG. Suppose the numbering 9/ is obtainedfrom ot by increasing
the numbers ofnodes of K. Then 9/is valid.

Proof The only backward paths introduced have endpoints in the clique K. q

LEMMA 2.10. Let $ be a valid numbering ofa graph G. Suppose C is a class-component
of G$, and all nodes in C have the same richer neighbors in G$. Let be a valid numbering
of C. Then the refinement of G$ by is valid.

Proof. By the Refinement Lemma, we need only show that the refinement) of C$ by
preserves validity. Assume $ is valid, so the nodes of C not in C form a clique by Lemma
2.3. Let P be a backward path in Cz with endpoints x and y. We must show that x and y are
adjacent. If both endpoints are in C, they are already adjacent by the validity of . If neither
is in C, they belong to a clique and hence are adjacent. Suppose therefore that x is in C and y
is not. Since P is a backward path and an endpoint lies in C, all the internal nodes of P must
also lie in C. Hence y is a richer neighbor of C in C$. Since all nodes in C have the same
richer neighbors, it follows that y is a neighbor of x. [3

The procedure STRATIFY (G$, C) appears in Figure 3. If C is a nonsingleton class-
component of Gs, the procedure increases the numbers of some of the nodes of C, resulting
in a valid refinement of G$ in which C has been well-stratified. The procedure takes O(log k)
time using O (k) processors, where k is the number of edges of G with at least one endpoint in
C. To achieve this processor bound, the procedure first identifies these edges by inspecting the
adjacency lists of nodes in C and subsequently never examines any other edges of G. While
inspecting the adjacency lists, the procedure also identifies the set B of richer neighbors of C
in G$. The procedure uses the fact that if $ is a valid numbering of G, then the set of nodes B
form a clique by Lemma 2.3. The procedure assumes the existence of edges between nodes in
B without ever checking for their presence. Specifically, in computing connected components
of a graph involving nodes of B, the procedure uses the algorithm of Shiloach and Vishkin
[43], suitably modified to take into account the fact that any two nodes of B are adjacent.

Depending on the nodes in B, the procedure STRATIFY(G$, C) calls one of three subpro-
cedures, in which most of the work is done. In each procedure, we make use ofparallel prefix

804 PHILIP N. KLEIN

Procedure STRATIFY(G$, C).
S For each node v in C, identify those edges connecting v to another node in C, and those

edges connecting v to a richer node.
$2 Let B be the set of richer neighbors of C.
$3 If B is empty, call NONE(G$, C, 1), and end.
$4 Let be 1/21C1 times the difference between $(C) and the number assigned to the next

higher class:
2$5 If every node in B has at least g]C] neighbors in C, call HIGHDEGREE(G$, C, B,), and

end.
$6 Ifthere arenodesin B with fewer than -g lCl neighbors in C, callLoWDEGREE(G$, C, B,).

FIG. 3. The main procedureforfinding a valid well-stratification.

computation, due to Ladner and Fischer [31]. In particular, the subprocedures increase the
numbers assigned to some of the nodes of C. We must make certain that these numbers are
not increased too much. The new numbers to be assigned to nodes of C must all be less than
numbers currently assigned to nodes richer than C; otherwise, the resulting numbering would
not be a refinement of the old numbering. Therefore, in each procedure, we let denote a
number small enough that the numbers of nodes of G richer than C exceed the numbers of
nodes of C by at least IC]. This choice of allows us to increase the numbers of C by up to

ICle and still end up with a refinement of the old numbering. We find this convention useful
in presenting the algorithms; however, see Implementation Note 1.

We now show that STRATIFY(G$, C) succeeds in finding a valid refinement that well-
stratifies C. We shall refer to the nodes of C as crimson nodes and the nodes of B as blue
nodes. We consider three cases, corresponding to the three procedures.

Case I. There are no blue nodes. In this case, procedure NONE(G$, C,) shown in
Figure 4 is called. The procedure first identifies the set D of high-degree nodes" D {v
C v has >]C] neighbors in C}. The procedure then branches according to the following
subcases.

4Subcase (1). Some component H of C D has size > g [C [. In this case, the procedure
uses the spanning tree T of H to choose a connected subgraph H of H such that the set A
consisting of H’ and its neighbors includes between n/5 and 4n/5 nodes. Then the numbers
assigned to nodes of A are increased, resulting in a well-stratification of C. The validity of
the numbering follows from Lemma 2.7.

4Subcase (2). Each component of C D has size at most g lCI, and D is a clique. In
this case, we increase the numbers assigned to nodes of D, placing each node of D in its own
class. The components of the remaining nodes of C are small, so we have well-stratified C.
The validity of the numbering follows from Lemma 2.9.

Subcase (3). D is not a clique. In this case, we choose two nonadjacent nodes x and y in
2]C] nodes of C are not neighbors of x, and so at least]C] neighbors of y areD. At most g

also neighbors of x. We increase the numbers of these common neighbors of x and y, putting
each in its own class. The numbering is valid by Lemmas 2.6 and 2.9.

Case II. Each blue node is adjacent to at least CI crimson nodes. In this case, the
procedure HIGHDEGREE(G$, C, B,) of Figure 5 is called. The procedure arbitrarily orders
the blue nodes: B {vl v}. For 1 _< j _< k, let Fj be the set of nodes v such that
v is adjacent to all the nodes Vl vj. Then] is chosen to be the maximum j such that
Fj contains at least]C]/5 crimson nodes. The numbers of nodes in F are then increased by

4. The validity of the resulting numbering follows from Lemmas 2.8 and 2.9. At most
nodes of C do not have their numbers increased. However, the set F may be quite large. We
consider two subcases.

EFFICIENT PARALLEL ALGORITHMS FOR CHORDAL GRAPHS 805

Procedure NONE(G$, C, e).
N1
N2
N3

N4
N5

N6

N7

N8
N9
N10
Nll
N12
N13
N14
N15
N16

CI neighbors in C}.Let D {v C v has > g
Find a spanning forest of C D.

4If some component H of C D has at least N ICI
nodes,

Let T be the spanning tree of H.
Arrange the nodes of H in some order consistent with their distance in T from the root:
l) 1)k.

For _< j _< k, let Aj denote the set consisting of Vl vj and neighbors of these
nodes in C.
Using parallel prefix computation,

4choose] max{j IAjI _< lCI}.
Increase the numbers of nodes in A] by e.

Otherwise,
If D is a clique,
Let Vl vk be the nodes of D.
For _< _< k, add e to l)i’S number.

Otherwise,
Let x and y be two nonadjacent nodes of D.
Let Vl vk be their common neighbors.
For < < k, add e to vi’s number.

FIG. 4. The subprocedure used to well-stratify C ifC has no richer neighbors.

Procedure HIGHDEGREE(G$, C, B, e).
(Each node of B has at least ICI neighbors in C.)
H1 Arbitrarily order the nodes of B: Vl vg.
H2 for _< j _< k, let Fj denote the set of nodes of C

adjacent to all of the nodes
H3 Using parallel prefix computation,

11CI}.choose j max{j FI >_
H4 Increase the numbers of nodes in F] by
H5 Let C’ be the largest component of G[F].
H6 If } k, then call NONE(Gs, C’,).

FIG. 5. The procedure HIGHDEGREE used to stratify C in case every richer neighbor ofC has high degree in C.

Subcase (1).] < k. In this case, by choice of], the set of crimson nodes adjacent to
all the nodes Vl V]+l is less than ICI/5. Since there are at most 5

3- ICI crimson nodes not
adjacent to vj+l, it follows that the number of nodes adjacent to all the nodes Vl vj is less

4than CI + 3 Cl c I, Thus C has been well-stratified in this case.
Subcase (2). } k. In this case, every node in F] is adjacent to every blue node. The

procedure finds the largest component C’ of G[F] and calls NONE(G$, C’, e), which stratifies
C’ as if C’ had no richer neighbors. The validity of the resulting numbering of C follows from

4Lemma 2.10 and the Refinement Lemma. Since C’ is well-stratified and IC C’I < lCI, c
is well-stratified.

Case III. Neither Case I nor Case II holds. In this case, the procedure LOWDEG-
REE(G$, C, B, e) in Figure 6 is called. The procedure defines D to be the set of nodes in
C U B having more than CI crimson neighbors. The procedure then finds a spanning tree
T of the (unique) component H of G[(C B) D] containing blue nodes and roots T at a
blue node. The nodes of T are arranged in some order consistent with their distance from the
root: Vl Vk. For 1 _< j < k, let Aj be the set consisting of Vl vj and neighbors of

806 PHILIP N. KLEIN

Procedure LOWDEGREE(G$, C, B, e).
(There exists a node in B having fewer than g [C[neighbors in C.)
L1 Let D {v 6 C U B v has > g [C[neighbors in C}.
L2 Let H be the connected component of G[C U B D]

containing nodes of B.
L3 Find a spanning tree T of H, rooted at a node

of B.
L4 Arrange the nodes of T in some order consistent with their distance in T from the root:

1)1, l)k.

L5 For <_ j <_ k, let Aj denote the set consisting of

vl vj and neighbors of these nodes in C.
L6 Using parallel prefix computation,

choose] max{j IA CI _< ICI}.
L7 Increase the numbers of nodes in A) C3 C by e.
L8 Let C’ be the largest component of C A).

IC then call STRATIFY(aS, C’).L9 If [C’I >

FIG. 6. The procedure LoWDEGP.EE used to stratify C in case some richer neighbor ofC has low degree in C.

4these nodes in C. Then] is chosen to be the maximum j such that Aj includes at most g lCI
crimson nodes.

Next, the numbers of nodes in A) are increased in step L7. To see that the resulting
numbering is valid, first consider the intermediate numbering in which all nodes in Aj have the
same number, a numberhigher than that assigned to the nodes in C-A). Since H v v)
is connected, the intermediate numbering is valid by Lemma 2.7. To obtain the numbering
produced in step L7 from the intermediate numbering, we need only increase the numbers
of some blue nodes. The blue nodes form a clique lying in A, so the validity of the final
numbering follows from Lemma 2.9.

4The set A f3 C of nodes whose numbers have increased has size at most g cI. However,
the set C A) of nodes whose numbers have not increased may be quite large. The procedure
finds the largest component C’ ofC-Ay and proceeds according to the following two subcases.

4Subcase (1).]Ct] _< glC]. In this case, we are done; C has been well-stratified.
4Subcase (2). [C’[> NICI. First, we observe that in this case,] k. To see this, suppose

] < k. Then the number of crimson nodes among {vl v+ and neighbors is more than
4g[CI. Since V+l is adjacent to at most glCI crimson nodes, it follows that the number of

4 3nodes whose numbers have increased is more than g CI N CI N C I, which contradicts
4the fact that

Since] k, every crimson node in T and every crimson neighbor of T has had its number
increased. Therefore, C’ contains no nodes of T and no neighbors of T. Every node in D has
more than Cl crimson neighbors, and all but at most [C[of the crimson nodes are in C’ so

2every node in D has more than g [C] crimson neighbors in C’. Thus every richer neighbor of C’
2is adjacent to at least g CI nodes of C. This shows that the recursive call to STRATIFY in step

L9 results in a call to HIGHDEGREE and not in a call to LOWDEGREE. Thus no further recursive
calls occur. The recursive call well-stratifies C’ and hence C as well, since [C C’[<_ g cl.
The validity of the resulting numbering follows from the Refinement Lemma.

Implementation Note 1. We have described the procedures ITERATED REFINEMENT and
STRATIFY as if real numbers were used to number the nodes. In implementing the algorithm,
however, it is desirable to use integers to number the nodes. The simple approach is to multiply
all numbers by n at the beginning of each stage and then renumber by sorting at the end of
each stage. A more efficient approach is to intially allocate 4 logs/4 n bits for each node label,

EFFICIENT PARALLEL ALGORITHMS FOR CHORDAL GRAPHS 807

four bits per stage of ITERATED REFINEMENT. For the ith stage, we use the 4(i 1) + 1st
through the 4ith most significant bits. In Case I, Subcases (1) and (2), the procedure needs
more bits; the procedure must assign a different number to each node of a clique. For each
of these nodes, however, we can afford to use all the remaining bits because each such node
ends up in its own class and hence needs no further labeling in subsequent stages.

Implementation Note 2. In step N7 of procedure NONE, we ordered the nodes vl vk
of a spanning tree T and chose] maximum such that {Vl v) and neighbors comprise at

4most g ICI nodes. Here we provide more details for implementing that step; the techniques are
also applicable to step H3 ofprocedure HIGHDEGREE and to step L6 ofprocedure LOWDEGREE.
For each node v 7 va in C, let earliest-nbr(v) be the minimum such that v is adjacent to

vi or undefined if v has no neighbors among vl vk. Let earliest-nbr(vl) 1. For each
node vi in T, earliest-nbr-(vi) is the set of neighbors of vi in that are not neighbors of
any lower-numbered node. Let f(vi) learliest-nbr-(vi)l, and let g(g) Y=a f(vi) for
g 1 k. Then g (g) is the number of nodes comprised by v ve and their neighbors
in C. The function g(.) can be computed from f(.) by a parallel prefix computation, after

4which is chosen as large as possible such that g(]) <_ [C[.
Implementation Note 3. In step L2 of procedure LOWDEGREE, we computed the con-

nected components of an induced subgraph of G containing nodes of C and nodes of B. We
want to implement this step in such a way that the actual edges between nodes of B are not
involved. To carry out the connected-components computation (and to find spanning trees
of the components), we use the connectivity algorithm of [43], suitably modified to take into
account our assumption that every two blue nodes are adjacent: we start by constructing a tree
containing all the blue nodes in H D and another tree containing all the blue nodes in D.
We then execute the algorithm of [43], using these artificial edges of these trees as surrogates
for the set of edges between nodes in B. Thus the number of processors required is no more
than the sum of [C U B I, the number of edges in C, and an additional term of BI 1 for the
artificial edges.

This completes the description of the algorithm STRATIFY for valid well-stratification of
a class-component. At most one recursive call is made, as we have shown. The time for
the algorithm is dominated by the time to compute connected components and find spanning
trees, which is O(log [C U B[) using the algorithm of [43]; as shown in Implementation Note
3, we need only IC t2 B] + IE(C)I -t- IBI processors, a number of processors bounded by
at most twice the number of edges with at least one endpoint in C. We thus obtain the follow-
ing theorem.

THEOREM 2.11. Suppose $ is a valid numbering ofa chordal graph G and C is a class-
component of G$. Valid well-stratification of C can be done in O(logk) time using O(k)
processors ofa CRCWPRAM, where k is the number ofedges with at least one endpoint in C.
Hence, a PEO ofthe chordal graph G can befound in O(log2 n) time using O(m) processors.

Using our algorithm for valid well-stratification in the procedure ITERATED REFINEMENT,
we can therefore find a PEO of a graph G in O (log2 n) time using O (n + m) processors.

3. PQ-trees. In this section, we review the PQ-tree data structure developed by Booth and
Lueker [6]. This data structure is useful in recognition and isomorphism-testing of interval
graphs, problems we address in 4. In 3.1, we introduce a parallel PQ-tree-processing
algorithm that arises in parallel algorithms for interval graph recognition and isomorphism-
testing (4).

A PQ-tree is a data structure developed by Booth and Lueker [6] for representing large
sets of orderings of a ground set S. A PQ-tree T over the ground set S is a rooted tree whose
leaves are the elements of S; every internal node is designated either a P-node or a Q-node and
has at least two children. Hence T has at most 2n nodes. The children of each internal

808 PHILIP N. KLEIN

node are ordered from left to right. These orderings induce a left-to-right ordering on the
leaves of the tree; the sequence of leaves is called the frontier of the tree T and is denoted
fr(r).

Let us say an automorphism of a PQ-tree T is legal if for every internal node v,
if v is a Q-node then the automorphism either reverses the order of v’s children or
leaves the order unchanged, and
if v is a P-node then the automorphism arbitrarily permutes the order of v’s children.

The set of orderings of the ground set represented by a PQ-tree T is defined as

L(T) {fr(T’) T’ is obtained from T by a legal automorphism}.

Consider, for example, a PQ-tree tree consisting of a P-node root whose children are all the
leaves. This PQ-tree represents the set of all orderings of the ground set S and is therefore
called the universal PQ-tree for S. Note that for any PQ-tree T, the automorphism that reverses
the order of children of every node is legal, so if ; is in L(T) then the reverse of . is also in
L(T).

A special null PQ-tree is defined to represent the empty set of orderings.
Let A be a subset of S. An ordering) of the elements of S is said to satisfy A if the

elements of A form a consecutive subsequence of). For the PQ-tree T, let (T, A) [)
L(T) . satisfies A}.

Booth and Lueker give an algorithm REDUCE(T, A) that transforms T into a PQ-tree T’
such that L(T’) (T, A). We call this reducing T with respect to the set A. In this context,
we call A a reduction set. Note that reduction can yield the null tree. The algorithm of Booth
and Lueker takes O([A[) time. Each PQ-tree for a ground set S can be obtained from the
universl PQ-tree by a series of reductions. Moreover, given any nonnull PQ-tree, it is easy
to read off one of the orderings represented, namely the frontier of the tree. Klein and Reif
[29] gave an algorithm MDREDUCE(T, {A1 Ak}) that reduces T with respect to all the
nonempty sets Ai simultaneously in the case where the sets Ai are all pairwise disjoint. The
algorithm MDREDUCE runs in O (log n) time using n processors, where n is the size of the
ground set of T. The case where the reduction sets are not disjoint was handled in [29], but
the algorithm required O (kn) processors and O (log k log2 n) time

In 3.1, we give a parallel reduction algorithm that handles nondisjoint reduction sets
and requires only a linear number of processors. More specifically, the algorithm MREDUCE
reduces a PQ-tree T with respect to nonempty subsets A1 Ak in time O (log n (log n +
log m)) time using n + rn processors, where m i Ai. A preliminary version of this
algorithm was given in [27].

3.1. PQ-tree nondisjoint reduction. The reduction algorithm uses a divide-and-conquer
strategy in which recursive calls are made to different parts of the tree in parallel. At each level
of recursion, a constant number of calls are made to a subroutine for reduction with respect to
disjoint sets. These calls serve two purposes. The purpose of one call is to separate out parts
of the tree from each other so that the algorithm can recur on them in parallel. Some of the the
reduction sets Ai are relevant to two parts of the tree and thus to two recursive calls; such a set
gives rise to two subsets, one for each call. Dividing Ai into two subsets and reducing the parts
of the tree with respect to these subsets, however, does not completely solve the problem. One
must introduce some additional constraints, effectively "gluing" the subsets together insofar
as they constrain the PQ-tree. Thus the purpose of two other calls to the subroutine for disjoint
reduction is to reduce the tree with respect to two special "gluing" sets that are derived from
the original reduction sets Ai.

EFFICIENT PARALLEL ALGORITHMS FOR CHORDAL GRAPHS 809

We first give Lemmas 3.1 and 3.2, which describe some simple properties of orderings.
We next give a procedure GLUE which derives two sets from reduction sets Ai. The key
property of these gluing sets is described in Lemma 3.3. Next, in Lemma 3.4, we show that
reducing with respect to the sets Ai is equivalent to reducing with respect to subsets of these
sets that lie in different parts of the tree (and also reducing with respect to the gluing sets). A
key subroutine, SUBREDUCE, is then presented that is based on Lemma 3.4. The main algorithm
of this section, MREDUCE, is mutually recursive with SUBREDUCE.

LEMMA 3.1. Suppose k satisfies A and B. Then
intersection property") satisfies A A B;
union property" if A 71 B 7/: (3, then satisfies A t2 B;
difference property: ifA B, then) satisfies A B.

LEMMA 3.2. Suppose) satisfies sets B and C, and the leftmost symbol ofB in) coincides
with the leftmost symbol ofC in ,k. Then either B c_ C or C c_ B.

Proof. Write) (1(2 where 1 is the leftmost symbol of B in) and the leftmost
symbol of C in). Then the subsequence of elements of B in) is el lBI and the subse-
quence of elements of C is el... elcl. Thus if IBI < ICI then B c_ C and if]CI < IBI then
CCB. [3

We say two sets A and B have a nontrivial intersection if the sets A B, A B, and
B A are all nonempty.

The procedure to construct the gluing sets is as follows.

GLUE(E, {A A}).
Let 4 be the collection of sets in {A A} that have a nontrivial intersection
with E.
If 4 is empty, return the pair (0, 0).
Let Ap be a set in 4 that minimizes lAp f’) El.
Let Aq be a set in 4 that minimizes]Aq E I. subject to the constraint Aq FIE D_
Ap FI E.
Let D Ap f-) Aq.
Let ,A be the collection of sets Ai in 4 such that Ai FI E Ap f) E.
If 4’ is empty then return (D, 0).
Let Ar be a set in 4’ that minimizes JAr C El.
Let As be a set in 4’ that minimizes]As EI subject to the constraint As fE D_ Ar (E.
Let F Ar f"l As.
Return (D, F).

The sets are represented by a bipartite graph. Each ground-set element and each set Ai
is a vertex. There is an edge between the ground-set element x and the set Ai if x Ai. To
determine which sets Ai have a nontrivial intersection with E, we first mark the ground-set
elements that belong to E. Then we determine, for each set Ai, how many marked elements
Ai is adjacent to in the bipartite graph. If the number is bigger than zero but smaller than
]Ai[and smaller than ILl, then Ai has a nontrivial intersection with E. The other steps of the
algorithm GLUE can be implemented in a similar way, using a constant number of marking
and counting operations and finding the minimum among k numbers.

Let n denote the size of the ground set and let m =]Ai]. Then the size of the
bipartite graph is O(n + m), and each such operation can be done in O(log(n / m)) time
using (n + m)/log(n + m) processors. Thus GLUE(E, {A1 A}) takes O(log(n + m))
time using (n + m)/log(n + m) processors.

The proof of the following lemma is somewhat technical and can be skipped on a first
reading.

810 PHILIP N. KLEIN

LEMMA 3.3. Suppose there exists some ordering satisfying E, A1 Ak. Let (D, F)
GLUE(E, {A1 A,}). For k, if Ai has a nontrivial intersection with E, then
either D c_C_ Ai or F cc_ Ai.

Proof. Let r be the ordering satisfying E, A1 Ak. Let us write

O" ...0/lel...(720/2...,

where 0/1 is the last symbol before the elements of E, 0/2 is the first symbol after the elements
of E, and el and e2 are, respectively, the first and last symbols of E in or.

Suppose t is nonempty. In this case, D Ap fq Aq. Since Ap contains at least one
element of E and at least one symbol not in E, it contains two adjacent symbols, one in E and
one not in E. Thus either 0/1, el E Ap or 0/2, e2 E Ap. Assume without loss of generality that
0/1, el Ap (else replace cr with the reverse of o’). Since Aq N E D__ Ap (’1 E, we have el 6 Aq.
Since Aq also contains at least one symbol not in E, either 0/1 6 Aq or 0/2 6 Aq. Since Aq is
satisfied by or, if 0/2 were in Aq then all of E would also be in Aq, contradicting the fact that
Aq has a nontrivial intersection with E. Thus 0/1 E Aq. We conclude that if D is defined then
0/1, el D.

Furthermore, since 0/1 is the rightmost symbol in cr ofboth Ap E and Aq E, by applying
Lemma 3.2 to the reverse of r, we infer that either Aq E

_
Ap E or Ap E C Aq E.

The second inclusion would imply lAp E[< [Aq El, which would contradict the choice
of Aq. Thus we have Aq E c_ Ap E. By choice of Aq, we have Ap E c__ Aq E. We
conclude that (Aq E) t (At, E) Aq Ap, which in turn is D.

Suppose A’ is also nonempty, so F A A,. An analogous argument shows that either
0/1, el F or 0/2, e2 F. Assume for a contradiction that the former holds. Then e is the
leffmost symbol in cr of Ap C E and ofA f E. Hence by Lemma 3.2, either Ap E c_ Ar E
or Ar E C Ap C E. The first inclusion would violate the choice of At. The second inclusion
would imply IAr E[< lap C El, which would violate the choice of Ap. This proves that if
F is defined then 0/2, e2 F.

To complete the proof, suppose Ai has a nontrivial intersection with E. We must show
that either D

_
A or F

_
A.

Since ,4 is nonempty (it certainly contains A), D Ap N Aq. Since o" satisfies Ai, which
contains some symbols in E and some not in E, either 0/1, el E Ai or 0/2, e2 Ai.

Case I. 0/1, el A. Then el is the first symbol in r of both A E and Ap E. By
Lemma 3.2, therefore, either Ap E _c A E or A C Ap E. The second inclusion
would imply [Ai E[< lAp El, contradicting the choice of Ap. Hence we have
Ap E

_
A N E. Also, 0/1 is the last symbol in o- of both Ai E and Aq E.

By applying Lem.ma 3.2 to the reverse of , we infer that either Aq E c_ Ai E
or A E C Aq E. The second inclusion would imply [A El < [Aq El,
contradicting the choice of Aq. Hence we have Aq E c_ Ai E. We infer
(Aq E) (Ap E) c_ (Ai E) (A E). Thus D

_
A.

Case II. 2, 2 A. Since el A E, we have Ai E Ap E. Therefore, ,4’ is
nonempty, so F Ar f As. By essentially the same argument as in Case I, F

_
Ai.

Thus the claim is proved.
The following lemma is the basis for our reduction algorithm.
LEMMA 3.4. Let E, A1 Ak be subsets of the ground set of T. Suppose them exists

some ordering satisfying all these sets. Let (D, F) GLUE(E, {A1 Ac}). Then an

ordering) satisfies these sets ifand only if the following conditions hold:
1.) satisfies E;
2.) satisfies E A for all i;
3.) satisfies Ai for all i, where

EFFICIENT PARALLEL ALGORITHMS FOR CHORDAL GRAPHS 811

b c

FIG. 7. A PQ-tree is depicted. The P-nodes are indicated by circles, and the Q-nodes by rectangles. The ground
set is {a, b, c, d, e, f}, and thefrontier is b a f d c e.

[Ai E if Ai and E have a nontrivial intersection,
Ai--

Ai otherwise;

4.) satisfies D and F.
Proof First, we prove the "only if" direction. Suppose) satisfies A1 Ak, E. Then

condition 1 follows trivially. Furthermore, condition 2 follows from the intersection property
ofLemma 3.1 and condition 3 follows from the difference property. If D is nonempty, it is the
intersection of two sets Ap and Aq that are satisfied by); hence by the intersection property,
D is itself satisfied by). Similarly, F is satisfied by). Thus condition 4 holds.

Now we prove the "if" direction. Suppose conditions 1-4 hold of). Clearly,) satisfies
E. We show that) satisfies Ai (i 1 k).

By condition 2,) satisfies Ai. E. By condition 3, we have that) satisfies Ai. if Ai has
a trivial intersection with E then Ai Ai,so we are done. Assume therefore that Ai and E
have a nontrivial intersection. In this case, Ai is Ai E. By condition 4, D and F are satisfied
by). By Lemma 3.3 either D c_ Ai or F c_ Ai. In the first case, since Ai E and Ai f’) E
both intersect D, it follows from the intersection property of Lemma 3.1 that satisfies the
union (Ai E) CJ D t3 (Ai f-) E), which is just Ai. In the case where F c__ Ai, the proof is
analogous.

DEFINITION 3.5. For a node v of a PQ-tree T, leavesT(v) denotes the set ofpendant
leaves of v, i.e., leaves of T having v as ancestor. Let lcaT(A) denote the least common
ancestor in T of the leaves belonging to A. Suppose that v ICaT(A) has children vl vs
in order. We say A is contiguous in T if

v is a Q-node, andfor some consecutive subsequence Vp... Vq of the children of v,
a Up<i<_q leaves(vi), or
v is a P-node or a leaf and A leaves(v).

For example, in Figure 7, the set {a, f, d} is contiguous. Also, the set {a, f, d, c} is
contiguous, as is the set {c, e}. The set {f, d, c} is not contiguous, nor is {b, c}.

The significance of contiguity is as follows. Lueker and Booth (see [32]; see also Lemma
2.1 of [29]) prove that if every ordering in L(T) satisfies some set E then E is contiguous in
T.

Suppose that E is indeed contiguous in T. The E-pertinent subtree of T with respect to
E is the subtree consisting of lCaT(E) and those children of lcaT(E) whose descendents are
in E. Note that the E-pertinent subtree is a PQ-tree over the ground set E. We denote this
tree by TIE.

For a set A, define

AiNE ifAifqEs/:E,
Ai [E 0 if Ai CI E E.

812 PHILIP N. KLEIN

Remark 3.6. Suppose we modify the tree T by reducing its E-pertinent subtree with
respect to a subset of E. It follows directly from the PQ-tree definitions that the result is the
same as if we had reduced the whole tree T with respect to this subset. (if the reduction of
the E-pertinent subtree yields the null tree, then we replace T with the null tree.)

The above observation suggest that our algorithm might profitably operate in parallel on
smaller disjoint subtrees of a PQ-tree T. It is also useful to operate on a tree obtained by
deleting a subtree from T.

Let *E denote lcar(E). Let T/E denote the subtree of T obtained by omitting all the
proper descendants of v that are ancestors of elements of E. Then To is a PQ-tree whose
ground set is S E t2 {,E }. For a set A, define

Ai E U {*e}
Ai /E

Ai E
if Ai DD_ E,
otherwise.

Remark 3.7. Suppose that either A E or A (3 E 0. It follows from Lemma 2.18
of [29] that if we reduce T/E with respect to A/E, the effect on T is the same as if we had
reduced T with respect to A. (Again, if the reduction of T!E yields the null tree, then we
replace T with the null tree.)

Based on the above observations, we give a subroutine SUBREDUCE used in our algo-
rithm MREDUCE for nondisjoint reduction. The subroutine SUBREDUCE and the main routine
MREDUCE are mutually recursive. SUBREDUCE is designed in accordance with Lemma 3.4.

SUBREDUCE(T, E, {A1 Ak}).
1. Reduce T with respect to E using MDREDUCE.
2. Let (D, F) := GLUE(E, {A1 Ak}).
3. If D is well defined, reduce T with respect to D using MDREDUCE.
4. If F is well defined, reduce T with respect to F using MDREDUCE.
5. In parallel, make the following recursive calls to MREDUCE:
(a) Modify T by calling MREDUCE(TIE, {AIIE AIE}).
(b) Modify T by calling MREDUCE(T/E, {A1/E A/E}).

6. Check that in the frontier of the resulting tree T, each reduction set Ai is consecutive.
If so, retum T. If not, return the null tree.

Each step of SUBREDUCE except for the recursive calls takes O(log(n + m)) time using
n + m processors.

We now prove that the effect of SUBREDUCE(T, E, {A1 A/}) is to reduce T with
respect to E, A1 A. Step reduces T with respect to E and Ap. Steps 3 and 4 reduce
T with respect to the sets D and F. Let us assume inductively that the calls to MREDUCE
correctly reduce the PQ-trees TIE and T/E with respect to the given reduction sets.

In step 5(a), TIE is reduced with respect to the sets AilE. Since these sets are subsets of
E, as discussed in Remark 3.6, this has the effect of reducing T with respect to the same sets.
If Ai E - E, then AiIE Aif) E. Thus in this case, the effect is to reduce T with respect
to Aif’) E. If Ai (q E E, then Ai E 0, so the reduction has no effect but reducing T
with respect to E has no effect either, since T was already reduced with respect to E in step 1.
Thus in either case, the effect is that of reducing T with respect to Ai 0 E.

In step 5(b), T/E is reduced with respect to the sets Ai/E defined immediately before
Remark 3.7. If Ai has a nontrivial intersection with E, then certainly Ai . E, SO Ai/E
Ai E. If Ai has a trivial intersection with E, then one of the following three cases must
hold: Ai

_
E, Ai D__ E, and Ai f) E 0. In the first case, Ai/E , so reducing T/E

EFFICIENT PARALLEL ALGORITHMS FOR CHORDAL GRAPHS 813

with respect to Ai/E has no effect. In the second and third cases, by Remark 3.6, the effect
of reducing TIE by Ai/E is to reduce T with respect to Ai.

Thus, in general, the effect is to reduce T with respect to the set Ai defined in condition 3
of Lemma 3.4. It follows by that lemma that if there exists an ordering L(T) satisfying
E, A1 A, then the effect of the entire call is to reduce T with respect to these reduction
sets. Thus if there exists such an ordering, the resulting PQ-tree represents all such orderings.
Moreover, in this case, the frontier of that PQ-tree is one such ordering, so the resulting PQ-tree
is returned. Conversely, if no such ordering exists, the frontier of the PQ-tree will certainly
not be such an ordering. This shows the correctness of the procedure SUBREDUCE.

The algorithm MREDUCE uses the subroutine SUBREDUCE in conjuction with a technique
for choosing E, the second argument to SUBREDUCE, SO that it consists of roughly half the
elements of the ground set of T. This choice ensures that the recursion depth of MREDUCE is
logarithmic.

Before giving the algorithm, we discuss the notion of the intersection graph ofa collection
of sets. Let .T" be a family of subsets A1, A of S. The intersection graph of .T" is a graph
whose nodes are the sets Ai and where two sets are considered adjacent if they intersect. In
the present context, the significance of the intersection graph is given by the following easy
corollary to the union property of of Lemma 3.1.

COROLLARY 3.8. Suppose an ordering ,k of S satisfies the sets A1,..., A, and the
intersection graph ofthese sets is connected. Then) satisfies their union I,.J Ai.

Implementation Note 4. Note that the intersection graph of .T may have a number of
edges greatly exceeding the sum of the cardinalities of the sets in .T. Therefore, to efficiently
compute the connected components of the intersection graph, we construct an auxiliary bi-
partite graph as described in connection with the procedure GLUE. The auxiliary graph has
node-set f" t2 S, and there is an edge between a set in f" and an element of S if the element
belongs to the set. Two sets in f" are in the same connected component of the intersection
graph if they are in the same component of the auxiliary graph. Moreover, a spanning for-
est of .T" can easily be obtained from a spanning forest of the auxiliary graph. Note that
the number of edges in the auxiliary graph is just the sum of the cardinalities of the sets in. Thus, by using a standard connectivity algorithm [19, 43] on the auxiliary graph, we
can obtain the connected components and spanning forest of the intersection graph of .T in
time O(log I.T u S[) using I.T" U SI processors (or I U SI/log I.T" U SI processors using
randomization).

We finally give the algorithm for multiple nondisjoint reduction.

MREDUCE(T, {A1 Ak}).
1. Purge the collection of input sets Ai of empty sets. If no sets remain, return.
2. Let n be the size of the ground set of T. If n < 4, carry out the reductions one by

one.
3. Otherwise, let .A be the family of (nonempty) sets Ai. Let S consist of the sets Ai

such that IAil < n/2. We call such sets "small." Let/2 be the remaining, "large," sets
in 4. Find the connected components of the intersection graph of A, find a spanning
forest of the intersection graph of $, and find the intersection of the large sets.

4. Proceed according to the following four cases"

Case I. The intersection graph of 4 is disconnected. In this case, let C Cr be the
connected components of 4. For 1,..., r, let Ei be the union of sets in
the connected component Ci. Call MDREDUCE to reduce T with respect to the
disjoint sets E Er. Next, for each 1 r in parallel, recursively call
MREDUCE(TIEi, Ci).

814 PHILIP N. KLEIN

Case II. The union of sets in some connected component of has cardinality at least n/4.
In this case, from the small sets making up this large connected component, select
a subset whose union has cardinality between n/4 and 3n/4. (See Implementation
Note 5.) Let E be this union, and call SUBREDUCE(T, E, {A1, Ak}).

Case III. The cardinality ofthe intersection ofthe large sets is at most 3n/4. In this case, from
the large sets choose a subset of the large sets whose intersection has cardinality
between n/4 and 3n/4. (See Implementation Note 6.) Let E be this intersection,
and call SUBREDUCE(T, E, {A1 Ak}).

Case IV. The other cases do not hold. In this case, let E be the intersection of the large sets,
and call SUBREDUCE(T, E, {A A}).

Implementation Note 5. In this note, we address the problem arising in Case II, selecting
some of the sets making up a component of size at least n/4. Each of these sets has size at most

n/2, and our goal is that the union of the sets chosen has cardinality between n/4 and 3n/4. A
spanning tree of the component has been computed in step 3. For each of the sets comprising
the component, compute the distance in the spanning tree from the root. These distances can
be obtained using the Euler-tour technique [44]. Sort the sets according to distance, and let
B Bs be the sorted sequence. Observe that any initial subsequence B Bi of this

is connected. Let/" be the minimum such that the union ’i-1 Bj hassequence cardinality
> n/4. Since each set is small, it follows that the cardinality of the union is no more than
3n/4.

Implementation Note 6. In this note, we address the problem arising in Case III, selecting
a subset of the large sets. Our goal is that the intersection of the selected subset of sets has
cardinality between n/4 and 3n/4. Order the large sets arbitrarily, and let/" be the maximum
such that the intersection of the first sets has cardinality at least n/4. Since each set has

size at least n/2, the intersection of the first/" has at most n/2 elements not appearing in the
intersection of the first/" + 1 sets. The latter intersection has cardinality less than n/4, so the
intersection of the first/" sets has cardinality less than 3n/4.

First, we address the correctness of the procedure MREDUCE.
LEMMA 3.9. The PQ-tree r’ returned by MREDUCE(T, {A A,}) satisfies

L(T’) {) L(T)) satisfies A1 Ak}.

Proof. Let us assume inductively that the calls to SUBREDUCE in cases II, III, and IV
correctly carry out the reductions of T with respect to E, A A. To verify the correctness
of the call to MREDUCE in Cases II-IV, therefore, we must only check that in fact reducing T
with respect to these sets is equivalent to reducing T with respect to the sets A1 A. That
is, we must prove the assertion that any ordering satisfying A1 Ak also satisfies E.

In Case II, since E is the union of a connected subcollection of the collection of reduction
sets Ai, the truth of the assertion follows from the union property of Lemma 3.1. In Cases III
and IV, since E is the intersection of some of the Ai’s, the truth of the assertion follows from
the intersection property of Lemma 3.1.

Next we address the correctness in Case I. For each component Ci of the intersection
graph of A, we let Ei be the union of sets in Ci. By the union property of Lemma 3.1, any
ordering satisfying A1 A also satisfies the sets E1 Er. Hence reducing T with
respect to A A is equivalent to first reducing T with respect to E Er and then
reducing with respect to A A. Furthermore, by Remark 3.6, reducing with respect to
A A is equivalent to the reductions carried out in Case I, namely reducing each subtree
T IEi with respect to the family Ci of sets whose union is Ei. We assume inductively that the
these reductions are correctly carried out by the recursive calls to MREDUCE. This argument
proves the correctness of MREDUCE in Case I.

EFFICIENT PARALLEL ALGORITHMS FOR CHORDAL GRAPHS 815

Now we analyze the time and processor requirements of MREDUCE.
THEOREM 3.10. Consider an invocation MREDUCE(T, A Ak }). Let n be the size of

T’s ground set, and let m i IAil. The number of levels of recursion is O(logn). At each
level the sum of sizes of all ground elements in all PQ-trees is 0 (n) and the sum of sizes of
all reduction sets is O(m).

We analyze the algorithm by considering the tree R of recursive calls to MREDUCE. The
root of R is the initial invocation of the procedure, and the other vertices of R are all the
subsequent recursive invocations. The children of an invocation v are the invocations called
by v or by an invocation of SUBREDUCE called by v. Let T (v) denote the PQ-tree to which the
invocation v is applied. Let n(v) denote the size of the ground set of T(v). Let p(v) denote
the parent of v in R.

The proofofTheorem 3.10 consists ofthree parts. In Lemma 3.11, we bound the recursion
depth. In Lemma 3.12, we show that, at any level of recursion, the sum of sizes of all ground
sets is O (n). In Lemma 3.13, we show that at every level of recursion the sum of sizes of all
reduction sets is O (m).

LEMMA 3.11 (bounding the recursion depth). The depth of recursion is 0 (log n), where
n is the size of the ground set of the initial input PQ-tree.

Proof. Say a vertex v is smaller than a vertex w if n(v) < 3n(w)/4 + 1. Consider a
vertex w. If w is a Case II or Case III invocation, the choice of E in these cases is such that
n(w)/4 < IEI _< 3n(w)/4. The children of w in these cases involve the PQ-trees TIE and

T/E. The ground set of TIE is E, so it has size at most 3n(w)/4. The ground set of T/E
is the ground set of T minus the set E, together with the element ,E, so it has size at most

3n(w)/4 + 1.
Suppose to is a Case IV invocation. The children of w involve the PQ-trees TIE and

T/E. In this case, E is the intersection of the large sets. Since Case III does not hold, the
cardinality of E is larger than 3n(w)/4. Hence the ground set of T/E has size at most n(w)/4.
Thus the corresponding child is smaller than to. Consider the other child u. Its ground set
is E, and its reduction sets are the sets Ai A E that are strictly contained in E. Since E is
the intersection of the large sets, only small sets Ai have the property that Aif-) E is strictly
contained within E. It follows that the connected components of the reduction sets of u are
contained within the connected components of the small sets of to. Since Case II does not

hold, each of these connected components has size at most n(to)/2. Thus u is either a Case I
invocation, in which case all its children are smaller than to, or the reduction sets of u form a
single connected component, in which case u is a Case II invocation.

Summarizing, if w is Case II or III, then its children are all smaller than it, and if w is
Case IV, then its grandchildren are all smaller than it. Finally, if to is a Case I invocation,
none of its children is a Case I invocation, so its great-grandchildren are all smaller than it.
We infer that the number of levels of recursion is O (log n).

LEMMA 3.12 (bounding the sum of sizes of ground sets). For any level ofrecursion, the
sum of sizes of ground sets of all PQ-trees being recursed on is O(n), where n is the size of
the ground set of the initial input PQ-tree.

Proof We show that the ground sets of all PQ-trees at a given level of recursion are
disjoint and that all but n of the elements are in the ground set of the initial input PQ-tree.

For any vertex to that is Case I, the ground sets of the children of to are disjoint subsets
of the ground-set of to. Hence no new ground-set elements are introduced by a Case I vertex.
Each vertex to that is Case II, III, or IV has two children, one working on T(to)lE and one

working on T (to) /E. The ground set of the first child is E, a subset of the ground set of T (to),
and that of the second is the ground set of T minus the set E, together with a new element ,E.

816 PHILIP N. KLEIN

We see that every vertex’s children have disjoint ground sets. It follows by induction on
j that the ground sets of all PQ-trees at level j of the recursion tree R are disjoint.

We have also seen that each vertex introduces at most one new ground set element and
that only vertices with two children introduce such new elements. Furthermore, each vertex
has a nonempty ground set. Let R’ denote the recursion tree R truncated at some level j. Let
s be the number of ground-set elements at that level that do not belong to the ground set of
the initial input PQ-tree. Then the total number of ground set elements is n + s. Since each
PQ-tree has a nonempty ground set and the ground sets of the leaves of R’ are all disjoint, the
number of leaves of R’ is at most n + s. Hence the number of internal vertices having two
or more children is at most (n + s)/2. The number of new ground elements is at most the
number of internal vertices having two or more children, so s < (n + s)/2. It follows that
s<n.

LEMMA 3.13 (bounding the sum of sizes of all reduction sets). At any level of recursion,
the sum ofsizes ofall reduction sets is 0 (m), where m is the sum ofsizes of reduction sets in
the initial invocation ofMREDUCE.

Proof. We analyze the way reduction sets for one level of recursion are transformed by
SUBREDUCE into reduction sets at the next level of recursion. There is a forest that represents
this process. The vertices of the forest are pairs (invocation, reduction set). Consider one
invocation u MREDUCE(T, {Aa A}). Depending on which case arises during this
invocation, each reduction set Ai gives rise to one or two reduction sets in child invocations.
In Case I, each reduction set Ai gives rise to one reduction set, namely Ai, in some child
invocation v. In this case, the only child of (u, Ai) is (v, Ai). In Cases II-IV, each reduction
set Ai gives rise to two, Ai E and Ai/E. In these cases, the children of (u, Ai) are the pairs
(v, AilE) and (w, Ai/E), where v and w are the appropriate children of the invocation u.
Note that the reduction set Ai gives rise to disjoint reduction sets. Moreover, in Cases II-IV,
a new element (*e) may be included in Ai/E. Thus each vertex introduces at most one new
element, and only vertices with two children introduce such new elements.

The remainder of the proof is similar to that of Lemma 3.12. Let Q’ be the forest Q
truncated at some recursion level j. We focus on the reduction sets in the leaves of Q’. Let
s be the number of occurences in the leaf reduction sets of elements not belonging to the
reduction sets of the original invocation. Then the sum of sizes of all the leaf reduction sets
is m + s. Since empty reduction sets are discarded, we may assume that every leaf of Q’ has
a nonempty reduction set. Thus the number of leaves is at most m + s. Hence the number of
internal vertices with two children is at most (m / s)/2. As in the proof of Lemma 3.12, it
follows that s < m.

This completes the proofofTheorem 3.10. Since each level ofMREDUCE takes O (log(n+
m)) time and the recursion depth is O(log n), the total time required is O(log n log(n + m))
using O (n + m) processors.

4. Applications. In this section, we show how having a PEO for a chordal graph enables
one to solve many problems efficiently in parallel. The key to our efficient algorithms is
our use of the elimination tree. The elimination tree is a structure introduced by [42] in the
context of sparse Gaussian elimination but implicit in the work of others, including [40]. In
4.1, we show that the elimination tree determined by a PEO of a chordal graph has useful
separation properties. Most of the chordal-graph algorithms described in this chapter rely on
the elimination tree.

4.1. The elimination tree determined by a PEO. Let $ be a one-to-one numbering of
the nodes of the connected graph G. As in 2, we shall say v is richer than u and u is poorer
than v if the number assigned to v is higher than that assigned to u. We define the elimination
tree T (G$) of G$ as follows. For every node v except the highest numbered, v’s parent p(v)

EFFICIENT PARALLEL ALGORITHMS FOR CHORDAL GRAPHS 817

FIG. 8. The existence ofa cross-edge e connecting u and v implies the existence ofa cross-edge e connecting
w and v.

FIG. 9. When the node v and its richer neighbors are removed, the subtrees rooted at children of v become
separatedfrom each other andfrom the remainder ofthe graph.

is defined to be the poorest neighbor of v that is richer than v. The tree T (G$) can easily be
constructed from G$ in O(log n) time using (n / m)/log n processors.

Since parents are richer than their children, there are no directed cycles in T(G$). Since
each vertex (except the richest) has exactly one parent, T (G$) is in fact a tree. Recall that a
PEO of a chordal graph is a numbering of the nodes of the graph such that for each node v, the
richer neighbors of v form a clique. Define a cross-edge to be an edge of G such that neither
endpoint is an ancestor of the other in T(Gs). If there are no cross-edges, we call T (Gs) a
depth-first search tree. If $ is a PEO, the existence of a cross-edge between the node u and
a poorer node v implies the existence of a cross-edge between u and the parent of v; using
induction on the distance in the tree between endpoints of an edge, we can prove the following
lemma.

LEMMA 4.1. Let G be a chordal graph. If$ is aPEO ofG, then T (G$) has no cross-edges.
Proof. Let u and v be two nodes; we show that there is no cross-edge between u and v

by induction on the length of the path in T(Gs) connecting u and v. If this length is 1, v is
the parent of u or vice versa, so an edge between them is not a cross-edge. Therefore, assume
the length is greater than 1.

Suppose e is an edge between u and v. Assume without loss of generality that v is richer
than u. Let w be the parent of u; by choice of parent, w is richer than u but poorer than v. See
Figure 8. Using e, we can form a backward path through u with one endpoint w and the other
v, proving via the Backward-Path Theorem the existence of an edge e’ between w and v. By
the inductive hypothesis, e’ is not a cross-edge, so v must be an ancestor of w in T (G$). This
shows that e is not a cross-edge. [3

We next show T(G$) has desirable separation properties. For a node v, let Tv(G$) denote
the subtree of T(G$) rooted at v. As illustrated in Figure 9, removing v and its richer neighbors
separates the subtrees rooted at children of v from the remainder of the graph.

818 PHILIP N. KLEIN

LEMMA 4.2. Let $ be a PEO of G. Let v be a node of G with children vl,..., v in
T(G$). Let K be the clique of G consisting of v and its richer neighbors. Then G[Tvi (G$)]
is a connected component ofG K, for 1 k.

Proof To see that G TI) (G$) is connected in G, note that edges in TUi (G$) are edges in
G, and hence Tvi (G$) is a spanning tree of G[To (G$)]. None of the nodes in T; (G$) are in
K, so G[To (G$) remains connected when K is removed from G.

Suppose there is an edge between a node v’ in T (G$) and a node w not in K U To (G$).
The edge cannot be a cross-edge in T (Gs), so w must be an ancestor of v’; since w is not in
To, (G$), it must be an ancestor of v as well. Using the edge, we can construct a backward
path from w through v’ and up the tree T (G$) to v. By the Backward-Path Theorem, w must
be adjacent to v, so w belongs to K, a contradiction.

As a corollary to Lemma 4.2, we can show that a chordal graph has a clique whose removal
breaks the graph into pieces of at most half the size. (This fact was first shown in [21].) Let
the node v of Lemma 4.2 be the lowest node in the elimination tree having more than n/2
descendents. Then every component G[To (G$)] has at most n/2 nodes, but together these
components comprise at least n/2 nodes. Hence the clique consisting of v together with its
richer neighbors forms a separating clique. We use this idea below in our algorithm for finding
an optimal coloring.

4.2. Recognition. A recognition algorithm for chordal graphs follows easily from the
PEO algorithm. When the PEO algorithm produces a total ordering $ of G, the correctness of
the algorithm implies that if G is chordal then $ is a PEO; of course, if $ is a PEO, then G is
chordal. It therefore suffices to check whether $ is a PEO. We can parallelize a technique used
in [40]. Each node v sends to its parent p(v) in T(G$) a list of v’s richer neighbors (excluding
p(v)). Then each node w sorts the elements of all the lists it received, together with w’s own
adjacency list, and verifies that it is a neighbor of every node on every list it received.

CLAIM. The numbering $ is a PEO ifand only ifno verification step fails.
Proof Suppose $ is a PEO. Then for every node v, the richer neighbors of v form a

clique. In particular, the parent of v is adjacent to all v’s other richer neighbors. Thus every
verification step succeeds.

Suppose no verification step fails. We claim that for each node v, the richer neighbors of
v form a clique. The proof is reverse induction on the depth d of v in the tree T(Gs). The
claim is trivial for d 0, because the root has no richer neighbors. Suppose the claim holds
for d, and let v be a node at depth d + 1. By the inductive hypothesis, p(v) and its richer
neighbors form a clique K. By the success of p(v)’s verification step, every richer neighbor
of v is a neighbor of p(v) and hence lies in K. This proves the induction step.]

The claim shows that we can determine whether a given ordering is a PEO of G. The time
for carrying out verification is O (log n) using n + m processors. For subsequent applications,
assume that the numbering $ is a PEO of the chordal graph G.

4.3. Maximum-weight clique. Fulkerson and Gross observed that every maximal clique
S of G is of the form

{v} U {richer neighbors of v}.

To see this, we need only let v be the poorest node of S. It follows that the maximal cliques of
G can be determined from $. Suppose each node is assigned a nonnegative weight. As Gavril
observed, any maximum-weight clique is maximal, so a maximum-weight cliques may easily
be determined from $.

4.4. Depth-first and breadth-first search trees. We showed in 4.1 that the elimination
tree determined by a PEO $ is a depth-first search tree. To obtain a breadth-first search tree

EFFICIENT PARALLEL ALGORITHMS FOR CHORDAL GRAPHS 8 19

of G, we construct a tree similar to the elimination tree by choosing the parent of each node
v (except the richest node) to be the richest neighbor of v. Let T be the resulting tree, rooted
at the richest node, which we shall denote by r. Our proof that T is a breadth-first search tree
relies on two claims.

CLAIM 4.3. For each node v, the shortestpathfrom v to r in G is monotonically increasing
in wealth.

Proof. Any subpath whose internal nodes are poorer than its endpoints can be replaced
by a direct edge between the endpoints, by the validity of $.

For the second claim, let d(v) denote the length of the shortest path in G from v to r.
CLAIM 4.4. If w is a descendent of v in the elimination tree, then d(w) > d(v).
Proof The proof is by reverse induction on the wealth of w. The basis, in which

to r, is trivial. Otherwise, let w’ be the second node on a shortest path in G from w to
r, so d(to) + d(to’). By Claim 4.3, to’ is richer than to and hence an ancestor of to in
the elimination tree by Lemma 4.1. If w’ is a descendent of v in the elimination tree, then
d(w’) > d(v) by the inductive hypothesis. If w’ is an ancestor of v, then there is a backward
path from v back along tree edges to to and then forward to w’, proving by validity of $ that
v is adjacent to w’ in G and hence that d(v) < 1 + d(w’). 71

For each node v r, let p(v) be the richest neighbor of v in G. Any other neighbor to of
v is a descendent of p(v), so d(w) > d(p(v)) by Claim 4.4. It follows that p(v) is the second
node in a shortest path in G from v to the richest node of G. Thus the tree defined by p(.) is
a breadth-first search tree.

4.5. Maximum independent set. Gavril showed that a maximum independent set 2"
of the chordal graph G is obtained by the greedy maximal-independent-set algorithm when
applied to nodes in order of the PEO $ Vl vn. His algorithm proceeds as follows. First,
put Vl into 2", and delete Vl and its neighbors. Next, put the poorest remaining node in 2", and
so forth. Once 2" has been found, the family of cliques ofthe form {x td {richer neighbors of x
for x E 2 is a clique cover (a set of cliques whose union contains all the nodes). Because any
independent set has size at most that of any clique cover, it follows that the above procedure
has identified a maximum independent set and a minimum clique cover.

We want to simulate Gavril’s sequential greedy algorithm in parallel. First, suppose that
the elimination tree T (G$) is a path with leaf x. In this case, we give a simple algorithm PMIS
for simulating Gavril’s algorithm. For each node v, let b[v] be the lowest ancestor of v in
T (G$) that is not adjacent to v in G (or v if no such ancestor exists).

CLAIM 4.5. The greedy independent set consists ofx, b[x], b[b[x]], and so on.
This set can be determined quickly in parallel using standard pointer-jumping techniques.

The implementation shown in Figure 10 requires O (log n) time, m processors, and O (m log n)
space; the use of more sophisticated techniques (e.g., [3], [10]) achieves the same time bound
using only m/log n processors and O (m) space.

Proof. Suppose we put x into 2" and delete the neighbors of x. The node b[x] is by
definition the poorest undeleted node. Moreover, we assert that for each undeleted node v,
b[v] is undeleted. If b[v] were a neighbor of x, then there would be a backward path from b[v]
back to x and then up the tree to v; thus v would be adjacent to b[v] by the Backward-Path
Theorem, contradicting the definition of b[v]. This argument proves the assertion. The claim
follows by induction on the length of the elimination path.

To generalize this procedure to the case in which T(G$) is a tree, we use an idea of Naor,
Naor, and Schiffer: eliminating terminal branches. A terminal branch of a tree is a maximal
path of degree-two nodes ending in a leaf. Naor, Naor, and Schiffer observe that deletion of
all terminal branches of a tree yields a new tree with half as many leaves. Therefore, O (log n)

820 PHILIP N. KLEIN

P1

P2
P3

P4

PMIS
For each node v, let b0[v] denote the lowest ancestor of v that is not adjacent to v (or else
v).

For stages k 0 [logn] 1, for each node v, let bk+l[V] :----- bk[b[v]].
Mark the leaf x as being in the independent set.

For stages k [log n] 1, [log n] 2 0, for each marked node v, mark b[v].

FIG. 10. A simple implementation of the algorithm PMIS for finding a maximum independent set when the
elimination tree is a path.

FIG. 11. To splice a node out ofa tree, remove the node and reattach the node’s children to its parent.

iterations of terminal branch elimination suffice to eliminate the entire tree. They apply this
idea to the clique tree ofa chordal graph, a tree representing the structure ofintersections among
maximal cliques, in order to obtain a parallel algorithm for finding a maximal independent set.
However, even assuming the clique tree is given, they prove only that the number ofprocessors
required is O (n2). By applying the idea to the elimination tree, we obtain a simpler algorithm
requiring only m/log n processors.

Before giving the algorithm, we introduce a bit of tree surgery, called splicing. To splice
a node v out of a tree T is to remove the node and reattach any children of v to v’s parent
in T, as illustrated in Figure 11. If a set of nodes are to be spliced from a tree, the resulting
tree does not depend on the order in which the nodes are spliced out. In fact, they can all be
spliced out at once; for each node v to be spliced out, the children of v are reattached to the
lowest ancestor of v that is not spliced out.

We now describe the algorithm MIS, shown in Figure 12, for constructing a maximum
independent set in a chordal graph G. The algorithm maintains a set , the independent set
under construction, and a tree T, obtained from the elimination tree T (Gs) by splicing out
nodes. We prove by induction that the following invariant holds before and after each iteration
of the algorithm.

Invariant.
(1) Z is an independent set.
(2) Every neighbor of a node of Z is in fact a richer neighbor of some node of
(3) T is obtained from T(G$) by splicing out the nodes of Z and their neighbors.

The algorithm terminates when T is empty, at which point Z is an independent set such that
every node of G is either in/ or a richer neighbor of some node in Z. Thus, as in Gavril’s
algorithm, the family of cliques of the form {x} U {richer neighbors of x} for x is a
minimum clique cover, and 2 is a maximum independent set.

Initially, Z 0 and T T(G$), so the invariant holds trivially. Suppose the invariant
holds through the first k iterations of the algorithm, and consider the k + 1 st iteration. For each

EFFICIENT PARALLEL ALGORITHMS FOR CHORDAL GRAPHS 821

M1
M2
M3

M4
M5

MIS
To initialize, let Z 0 and let T T (G$).
While T is not empty,
Use the algorithm PMIS to find the greedy maximum independent set 27B ofthe subgraph
induced on each terminal branch/3 of T.
Add the nodes .J/ Z/ to 27.
Splice out of T the nodes

..J6(27t tO {neighbors of

FIG. 12. The algorithm MIS to construct a maximum independent set in the chordal graph G.

terminal branch/3, the algorithm finds a maximum independent set 2- of the subgraph induced
on B, using PMIS as a subroutine. If two nodes of T lie in different terminal branches, neither
is an ancestor of the other in T(G$), and hence the two nodes are not adjacent, by Lemma 4.1.
Thus J 2-t is an independent set in G, where the union is over all terminal branches of T.
Moreover, T contains no neighbors of 2" (by part (3) of the invariant), so 2" U (t 2") is an
independent set of G. Thus when the nodes t 2"t are added to 2" in step M4, part (1) of the
invariant remains true.

To show that part (2) remains true, we must prove that every node w that is newly a
neighbor of a node in 2" is in fact a richer neighbor of a node in 2". Our simulation PMIS of
Gavril’s algorithm on terminal branches/3 guarantees this property when w lies on a terminal
branch. Suppose, therefore, that w does not lie on a terminal branch, and let v 6 2" be a
neighbor of w. By Lemma 4.1, v is either a descendent or an ancestor of w in T (Gs). The
set 2" consists only of nodes in terminal branches of T and descendents of such nodes. Hence
v must be a descendent of w and also a poorer neighbor.

In the last step of an iteration of the algorithm, we splice out of T all nodes newly added
to 2" and their neighbors. This step ensures that part (3) holds at the end of the iteration.

Having proved that the invariant continues to hold, we now consider the implementation
of the algorithm MIS. In step M3, the algorithm must identify the nodes lying in terminal
branches of T. An application of the Euler-tree technique [44] suffices to determine, for each
node v of T, the number of leaf descendents of v. The nodes for which this number is 1
are the nodes in terminal branches. Next, the algorithm must find a maximum independent
set in each terminal branch. For each node v in T, b0[v] is assigned the lowest ancestor
w of v in T that is not a neighbor of v, if w lies in a terminal branch. Otherwise, b0[v]
is assigned v. As in PMIS, a pointer-jumping technique is then used to mark the nodes
x, b0[x], bo[bo[x]], and so on, for all leaves x of T. The marked nodes are added to 2" in
step M4.

To implement the splicing in step M5, we again use a pointer-jumping technique; for each
node v, we compute the lowest ancestor of v in T that is not to be spliced out. Each step can
be implemented in O (log n) time using m/log n processors and O (m) space. Each iteration
removes all nodes in terminal branches and hence reduces the number of leaves in T by a
factor of two; consequently, [log n] + iterations suffice, for a total of O(log2 n) time.

4.6. Optimal coloring. Gavril showed that applying the greedy coloring algorithm to the
nodes of G in reverse order of $ yields an optimal coloring. Our basic approach to coloring
the graph in parallel is as follows: choose a clique K such that the components H1 Hs of
G[G K] are all "small," recursively color each subgraph G[Hi U K], repair the colorings
by making them consistent on the nodes of K, and merge the repaired colorings.

Naor, Naor, and Schiffer use essentially this approach in their coloring algorithm. Their
algorithm, however, uses n processors even if all maximal cliques are provided. One apparent

822 PHILIP N. KLEIN

COLOR G, K0).
Input: Connected graph G containing a clique K0, such that every node of K0 has a neighbor in
G- K0.
Output: Optimal coloring of G.
C1 If G K0 consists of a single node v, then G is a clique; assign the first IV(G)[colors to

its nodes, and end.
C2 Break G K0 into subgraphs H0 Hs such that

each subgraph has size at most half that of G K0"
H1 Hs are distinct components of G K0 H0; and
for _< < s, the neighborhood of Hi in G Hi is a clique Ki.

C3 For 0 s in parallel,
call COLOR(H/, Ki), where Hi G[Hi tA Ki], to get an optimal coloring ci of Hi.

C4 For s in parallel, modify the coloring ci to be consistent with Co on the nodes
V (Ki) they have in common.

C5 Merge the colorings to obtain a coloring of G.

FIG. 13. The recursive algorithm CoIoRforfinding an optimal coloring ofa chordal graph G.

difficulty is that the subgraphs on which the algorithm recurs are not disjoint--they share the
nodes in K--so we cannot hope to make do with only one processor per edge.

In coping with this difficulty, we use the same idea that made our PEO algorithm efficient.
Given the knowledge that K is a clique, we need not inspect the edges between nodes of K
during the recursive calls. We recursively solve the following problem: given a chordal graph
G and a clique K0 contained in G, find an optimal coloring of G. We solve this problem in
O(log log [G K0[) time using processors, where is the number of edges with at least
one endpoint in G K0, or using t/log processors of a randomized PRAM. The algorithm,
COLOR(G, K0), is shown in Figure 13. There are + log [G K0l levels of recursion. We
shall show that each level can be implemented in O(log t) time. To find a coloring in the
original graph G, we call COLOR(G, 0).

Step C4, in which we modify the colorings to be consistent, can be implemented using
a parallel prefix computation. We shall give more details later. The idea in implementing
step C2, in which we divide up the graph, is as follows. We inductively assume we have
an elimination tree T (Gs) in which the nodes of K0 are the richest nodes. Using the Euler-
tour technique [44], choose the lowest node in T (G$) that has more than p/2 descendents,
where p }G K0]. Let Vl,..., Us be the children of in T(G$); then each subtree

Tvi (G$) has at most p/2 nodes. We let K be the clique {} U {richer neighbors of } and
let Hi G[Tv (G$)]. By Lemma 4.2, the subgraphs H1, Hs are connected components
of G K. The neighborhood of each Hi in G Hi is contained in the clique K and is
therefore itself a clique Ki. Let H0 G K0 =1 Hi. By choice of , H0 has at most
p/2 nodes.

We shall inductively ensure that for 0 s,
(I) ci is an optimal coloring of G[Hi U Ki];

(II) the maximum color used by ci equals the number of colors used; and
(III) the coloring ci assigns the first [Ki[colors to the nodes of Ki.

These conditions are easy to establish at the base of the recursion, step C1. Condition (III)
is automatically preserved in going from one level of recursion to the next higher level: the
colors assigned by c to the nodes of K0 are exactly those assigned by co. Assume (I), (II), and
(III) hold for co, G. We must ensure that (I) and (II) hold for the coloring c of G that we
construct. Namely, we must color G with colors through x, where x is the minimum number

EFFICIENT PARALLEL ALGORITHMS FOR CHORDAL GRAPHS 823

of colors needed to color G. We shall, in fact, construct a coloring c of G with maximum
color equal to

(1) max{number of colors used by Ci 0 s}.

Since C is an optimal coloring ofthe subgraph G[Hi U Ki] of G, the value given by (1) is
clearly a lower bound on x. Thus by achieving this lower bound, we ensure that our coloring
c of G is optimal.

The colors c assigns to nodes of H0 U K0 are exactly the colors co assigns to these nodes.
Therefore, for any node v E H0 U K0, the color assigned to v is no more than the value of (1).
It remains to determine the colors c assigns to nodes of Hi, for 1 s.

Let xi be the number of colors used by ci. The colors 1 through Kil are assigned by
ci to the nodes of Ki. The nodes of Hi are asigned colors Kil -t- through xi. For each q,
gil-t- < q < Xi, let

Ai[q] "= I{c0(v) < q v V(Ki)}I.

(The values Ai [’] can be computed using a parallel prefix computation.) For each node v Hi,
define

C(l)) Ci(V --IKil-t- Ai[ci(l))].

Thus the colors of nodes of Hi are remapped to colors starting at 1, with gaps only for colors
already assigned to nodes of Ki. This assignment ensures that, for any node v Hi, colors 1
through c(v) all appear in the coloring c induced by c on Hi. Since c can be obtained from
ci by merely permuting colors, it follows that c(v) is no more than the value of (1). We have
completed the proof of correctness of the algorithm.

The only nontrivial computation in implementing step C4 is computing the Ai [q values.
For each 1 < < s, we identify the colors c assigns to nodes of Ki and then perform a parallel
prefix computation of length xi < Hi I. The total work is proportional to Yi Kil + Hi I.

Let ti be the number of edges that either lie in Hi or connect Hi to Ki. Since Hi is
connected, the number of nodes in Hi is at most one more than the number of edges in Hi.
Since every node in Ki is a neighbor of some node in Hi, the number of nodes in Ki is at
most the number of edges connecting Hi to Ki. Thus Hi Kil < ti nt- 1, so the total work
is proportional to Zi ti, which is just the number of edges that either lie within G K0 or
connect G K0 to G.

Assume inductively that O (log ti log Hi I) time and O (ti / log ti) processors are sufficient
to recursively color G[Hi U Ki]. Then O(t/log t) processors are sufficient to recursively
color all the subgraphs G[Hi Ki] in O(log t(log(IG K01) 1)) time and to combine the
colorings in O(log t) time, for a total of O(log log IG K01) time.

4.7. PQ-tree intersection. We can also test two leaf-labelled PQ-trees for isomorphism.
The idea is to use Edmonds’ tree-isomorphism algorithm (see 1]), which proceeds in stages
from the leaves to the roots, level by level. In general, the number of levels may be large,
so we instead apply Edmonds’ algorithm to decomposition trees for the original PQ-trees.
The decomposition tree of a tree T is formed by breaking T into subtrees of half the size by
removing the edges from a node v to its children, recursively finding decomposition trees of
the subtrees, and hanging the recursive decomposition trees from a common root. By labeling
the decomposition tree during its construction, one can ensure that it uniquely represents T
up to isomorphism. The decomposition trees for n-leaf PQ-trees have O(logn) levels, so

824 PHILIP N. KLEIN

O(log n) stages of Edmonds’ algorithm suffice. Each stage involves sorting strings, which
can be done in O(log n) time on a "priority" type CRCW PRAM using Cole’s algorithm [9],
for a total time bound of O (log2 n). To achieve this time bound, (n + t) / log n processors are
sufficient, where is the sum of the lengths of the leaf labels.

4.8. Interval graphs. The algorithm of Booth and Lueker for recognition of interval
graphs is as follows: Find a PEO of the input graph G; if there is none, the graph is certainly
not an interval graph. Otherwise, we can obtain all the maximal cliques (there are at most
n; see 4.3). For each node v, let Av be the set of maximal cliques containing v. It can be
shown [17] that v IAvl O(m / n). Let T be the universal PQ-tree whose ground set is
the set of maximal cliques. Reduce T with respect to the sets Ao. If the resulting PQ-tree Ta
is the null tree, then it follows from a theorem of Gilmore and Hoffman [22] that G is not an
interval graph. Otherwise, an ordering represented by T yields a representation of G as an
intersection of intervals.

Since we have given efficient parallel algorithms for finding a PEO and for PQ-tree mul-
tiple (nondisjoint) reduction, the above algorithm is parallelizable; each step takes O(log2 n)
time using O (n / m) processors.

Booth and Lueker showed (see [32]; also see [8]) that if the PQ-tree T6 derived from G is
augmented with some labels depending on the graph, isomorphic interval graphs correspond
to isomorphic labeled PQ-trees. Booth and Lueker then showed that such labeled PQ-trees
could be tested for isomorphism in linear time, proving that interval-graph isomorphism testing
could be done in linear time. We show that this approach can be parallelized.

Let T6 be the PQ-tree for an interval graph G. We augment T6 with labels as follows:
Each leaf x of T corresponds to a maximal clique Cx; we create a label for x by sorting the
degrees of the nodes in Cx. The sum of the lengths of the strings labeling T is just the sum of
the sizes of the maximal cliques, which is O (n + rn). The labels can be found in O (log n) time
using O(n / m) processors by means of small-integer sorting. It follows from Theorem of
[32] and the proof of Lemma 3.1 of [8] that the resulting labeled PQ-tree uniquely represents
the interval graph G up to isomorphism.

The number of nodes in the augmented PQ-tree is O (m / n), and the augmentation can
easily be carried out in parallel. It remains to show how such augmented PQ-trees may be
tested for isomorphism in O (log2 n) time using m / n processors. To achieve this time bound,
we require a powerful model of parallel computation, the "priority" CRCW PRAM. Multiple
processors are permitted to write to the same location in the same time step; the value stored
in the location is the value written by the lowest-numbered processor.

The standard (sequential) approach to tree isomorphism (see [1], [26]) and the approach
used in [32] is to process the two trees from the leaves up, essentially canonicalizing subtrees
at each successive level by sorting. The problem with a direct parallelization of this approach
is that there may be too many levels. Therefore, our approach is to test isomorphisms not
of the original trees but of their decomposition trees, which are guaranteed to have only a
logarithmic number of levels.

In constructing a decomposition tree for an augmented PQ-tree, we must for the recursion
construct decomposition trees for slightly more general trees: trees that are obtained from
augmented PQ-trees by deleting some subtrees and assigning numbers to some (resulting)
leaves. Let T be such a modified PQ-tree. Note that, for example, T may contain P-nodes and
Q-nodes that have no children. The leaves of the decomposition tree for T will correspond to
the nodes of T.

EFFICIENT PARALLEL ALGORITHMS FOR CHORDAL GRAPHS 825

We form T’s decomposition tree 79j(T) as follows: if T consists of a single node x, then
79j (T) also consists of a single vertex v. The vertex v is labeled with P, Q, L, or D, depending
on whether x is a P-node, a Q-node, a leaf, or a degree node in the original augmented PQ-tree.
Moreover, if x was numbered, then v is labeled with the same number.

Suppose T contains at least two nodes. There is a unique node in T that is the lowest
node of T that has more than n/2 descendents (including itself). The choice of is invariant
under automorphisms of T. Moreover, : is not a leaf. Removal of the edges joining : to its
children disconnects T into subtrees each having at most n/2 nodes. Let these subtrees be
To T, where To is the subtree containing , and T1 T are ordered just as their roots
are ordered as children of in T. Modify To by assigning the number of nodes of T to the
leaf . Then 79(T) is defined to be the tree obtained from D(T0) D(T) by introducing
a new vertex v to be the parent of the roots v0 v of these k 4- 1 decomposition trees, in
this order. The vertex v is labelled with P, Q, L, or D as before.

The assignment of integers to leaves of the modified PQ-trees and to leaves of the decom-
position trees makes it possible to uniquely reconstruct a PQ-tree T from its decomposition
tree D(T), while at the same time establishing the correspondence between the nodes of T
and the leaves of 79(T). Let v be the root of 79(T). Recursively reconstruct the modified
PQ-trees whose decomposition trees are rooted at the children of v in D(T). Let To T
be the resulting PQ-trees in order. There is a unique leaf in To labeled with the integer

i ok] T/I. To construct T, let the roots of T1 Tk be the children of in order, and
remove the label from }. It follows that two decomposition trees are isomorphic if and only
if their decomposition trees are isomorphic.

It remains to describe how to test decomposition trees for isomorphism. The approach
used is essentially the standard approach, but we must take care to respect the P, Q, L, D
labels, the integer labels assigned during augmentation, the integer labels assigned during
decomposition, and the order of children of Q-nodes. It follows from the construction of the
decomposition trees that only leaves have integer labels.

The isomorphism algorithm proceeds top to bottom, from the leaves of the decomposition
trees to their roots. The height of a vertex in a tree is defined to be the maximum distance
down the tree to a leaf. We initialize by assigning a string to each leaf (height-0 vertex) of
each tree. The string combines all the labels of the leaf.

For the general step of the algorithm, we are given an assignment of strings to the height-h
vertices of the trees. We sort these strings, eliminate duplicates, and assign to each string the
ordinal number of the string in the set of strings. If the multiset of strings associated with
height-h vertices of one tree does not match the corresponding multiset of the other tree, we
terminate the algorithm because the trees are not isomorphic. We also terminate the algorithm
if one tree has height-(h 4- 1) vertices and the other does not.

Otherwise, if neither tree has height-(h 4- 1) vertices, we conclude that the trees are
isomorphic, and if both do, we next assign strings to these vertices as follows: let v be a
height-(h 4- 1) vertex. It follows from the construction of the decomposition tree that v
corresponds to an internal node of the original augmented PQ-tree and is therefore labeled
with P, Q, or L. If v is labeled with P or L, we form its string as follows: the first element of
the string is either P or L, whichever is appropriate. The second element of the string is the
integer assigned to v first child. The remaining elements are obtained by sorting the collection
of integers assigned to its remaining children. If v is labeled with Q, we proceed somewhat
differently. As before, the first element of v’s string is the label Q, and the second element is
the integer assigned to v’s first child. To determine the remainder of the string, we consider

826 PHILIP N. KLEIN

two sequences, one consisting of the integers assigned to the remaining children of v in order,
the second being the reverse of the first. The remainder of v’s string is whichever of these two
sequences is lexicographically less.

It is a simple induction to see that two height-h vertices receive the same string or same
integer if and only if the subtrees rooted at these vertices are isomorphic. This shows that the
isomorphism algorithm is correct.

There are _< 1 + log levels in the decomposition trees for t-node trees. Therefore,
the above algorithm has O(log t) stages, where O(n + m). In each stage, the most
difficult step is sorting strings. The sum of the lengths of the strings is O(t) in each stage.
Therefore, we can assign a processor to each symbol of each string. To compare two strings,
processors associated with corresponding symbols communicate to compare their symbols.
Using the powerful concurrent-write capability, the processors associated with the two strings
can determine in constant time the minimum index at which the strings differ, and hence
which string comes first in lexicographic order. Using a logarithmic-time comparison sort
[9], the strings can then be sorted in O(log t) time using O(t) processors. Hence t-node tree
isomorphism can be tested in O(log2 t) time using processors.

Acknowledgments. Many thanks to David Shmoys, who advised the thesis based in part
on this research. Thanks also to others with whom I discussed this research, including Dina
Kravets, Tom Leighton, Charles Leiserson, George Lueker, Mark Novick, James Park, John
Reif, Cliff Stein, and Joel Wein.

REFERENCES

A. AI4O, J. HOPCROFT, AND J. ULLMAN, The Design and Analysis of Computer Algorithms, Addison-Wesley,
Reading, MA, 1974.

[2] A. AGGARWAL AND R. ANDERSON, A random NC algorithm for depth first search, Combinatorica, 8 (1988),
pp. 1-12.

[3] R.J. ANDERSON AND G. L. MILLER, A simple randomized parallel algorithmfor list-ranking, Inform. Process.
Lett., 33 (1990), p. 33.

[4] C. BEERI, R. FAGIN, D. MAIER, AND M. YANNAKAKIS, On the desirability ofacyclic database schemes, J. Assoc.
Comput. Mach., 30 (1983), pp. 479-513.

[5] C. BERGE, Graphs and Hypergraphs, North-Holland, Amsterdam, 1973.
[6] K.S. BOOTH AND G. S. LUEKER, Testingfor the consecutive ones property, interval graphs, and graphplanarity

using PQ-tree algorithms, J. Comput. System Sci., 13 (1976), pp. 335-379.
[7] N, CHANDRASEKHARAN AND S. S. IYENGAR,NCalgorithmsfor recognizing chordalgraphs andk-trees, Technical

report 86-020, Department of Computer Science, Louisiana State University, Baton Rouge, LA, (1986).
[8] C.J. COLBOURN AND K. S. BOOTH, Linear time automorphism algorithmsfor trees, interval graphs, andplanar

graphs, SIAM J. Comput., 10 (1981), pp. 203-225.
[9] R. COLE, Parallel merge sort, SIAM J. Comput., 17 (1988), pp. 770-785.
10] R. COLE AND U. VISHKIN, Approximate parallel scheduling, part I: The basic technique with applications to

optimal parallel list ranking in logarithmic time, SIAM J. Comput., 17 (1988), pp. 128-142.
[11] D. COPPERSMITH AND S. WINOGRAD, Matrix multiplication via arithmetic progressions, SIAM J. Comput.,

11 (1982), pp. 472-492.
12] E. DAHLHAUS AND M. KARPINSKI, The matchingproblemfor strongly chordal graphs is in NC, Technical report

855-CS, Institut ftir Informatik, Universitit Bonn, Bonn, Germany, 1986.
13] ------, Fastparallel computation ofperfect and strongly perfect elimination schemes, Technical report 8519-

CS, Institut ftir Informatik, Universitit Bonn, Bonn, Germany, 1987.
[14] G.A. DIRAC, On rigid circuit graphs, Abh. Math. Sem. Univ. Hamburg, 25 (1961), pp. 71-76.
[15] A. EDENBRANDT, Combinatorial problems in matrix computation, TR-85-695 (Ph.D. thesis), Department of

Computer Science, Cornel1 University, Ithaca, NY, 1985.
[16] ,Chordal graph recognition is in NC, Inform. Process. Lett., 24 (1987), pp. 239-241.
17] D. FULKERSON AND O. GROSS, Incidence matrices and interval graphs, Pacific J. Math., 15 (1965), pp. 835-855.
18] E GAVRIL, Algorithmsfor minimum coloring, maximum clique, minimum covering by cliques, and maximum

independent set ofa chordal graph, SIAM J. Comput., (1972), pp. 180-187.

EFFICIENT PARALLEL ALGORITHMS FOR CHORDAL GRAPHS 827

19] H. GAZIT, An optimal randomized parallel algorithm forfinding connected components in a graph, SIAM J.
Comput., 20 (1991), pp. 1046-1067.

[20] H. GAZIT AND G. L. MILLER, An improved parallel algorithm that computes the BFS numbering ofa directed
graph, Inform. Process. Lett., 28 (1988), pp. 61-65.

[21] J.R. GIL3ERT, D. J. ROSE, AND A. EDENBRANDT, A separator theoremfor chordal graphs, SIAM J. Algebraic
Discrete Meth., 5 (1984), pp. 306-313.

[22] R (2. GmMORE AND A. J. HOFFMAN, A characterization ofcomparability graphs and ofinterval graphs, Canad.
J. Math., 16 (1964), pp. 539-548.

[23] M. (2. GOIUMBIC, Algorithmic Graph Theory and Perfect Graphs, Academic Press, New York, 1980.
[24] C.-W. Ho AND R. C. T. LEE, Efficientparallel algorithmsforfinding maximal cliques, clique trees, andminimum

coloring on chordal graphs, Inform. Process. Lett., 28 (1988), pp. 301-309.
[25] Counting clique trees and computing perfect elimination schemes in parallel, Inform. Process. Lett.,

31 (1989), pp. 61-68.
[26] J. Holcovr AND J. WONG, Linear time algorithm for isomorphism ofplanar graphs, in Proc. 6th Annual

ACM Symposium on Theory of Computing Association for Computing Machinery, New York, 1974,
pp. 172-184.

[27] R N. KIEN, Efficient parallel algorithms for planar, chordal, and interval graphs, TR-426 (Ph.D. thesis),
Laboratory for Computer Science, Massachusetts Institute of Technology, Cambridge, MA, 1988.

[28] Efficientparallel algorithmsfor chordal graphs, in Proc. 29th Symposium on Foundations ofComputer
Science, IEEE Computer Society Press, Los Alamitos, CA, 1989, pp. 150-161.

[29] R N. KtEN AND J. H. REIF, An efficient parallel algorithm for planarity, J. Comput. System Sci., 37 (1988),
pp. 190-246.

[30] O. KOZEN, U. VAZIRANI, AND g. VAZIRANI, NC algorithms for comparability graphs,and testing for unique
perfect matching, in Proc. 5th Symposium Foundations of Software Technology and Theoretical Computer
Science, Lecture Notes in Comput. Sci. 206, Springer-Verlag, New York, 1985, pp. 496-503.

[31] R. E. LADNER AND M. J. FISCHER, Parallel Prefix Computation, J. Assoc. Comput. Mach., 27 (1980),
pp. 831-838.

[32] G. S. LUEKEr AND K. S. BOOTH, A linear time algorithm for deciding interval graph isomorphism, J. Assoc.
Comput. Mach., 26 (1979), pp. 183-195.

[33] G. L. MtIEl AND J. H. REIF, Parallel tree contraction and its application, in Proc. 26th Foundations of
Computer Science, IEEE Computer Society Press, Los Alamitos, CA, 1985, pp. 478-489.

[34] J. NAOR, M. NAOR, AND A. A. SCHJi.FFER, Fast parallel algorithms for chordal graphs, SIAM J. Comput.,
18 (1989), pp. 327-349.

[35] M.B. Nowc, personal communication, 1987.
[36] ,personal communication, 1988.
[37] Logarithmic time parallel algorithms for recognizing comparability and interval graphs, Technical

report TR89-1015, Department of Computer Science, Cornell University, Ithaca, NY, 1989.
[38] J. H. REeF AND S. RAJASEKARAN, Optimal and sublogarithmic time randomized parallel sorting algorithms,

SIAM J. Comput., 18 (1989), pp. 594-607.
[39] D.J. RosE, Triangulated graphs and the elimination process, J. Math. Anal. Appl., 32 (1970), pp. 597-609.
[40] D.J. ROSE, R. E. TARJAN, AND G. S. LUEKER, Algorithmic aspects of vertex elimination on graphs, SIAM J.

Comput., 5 (1976), pp. 266-283.
[41] J. E. SAVAGE AND M. G. WLOKA, A parallel algorithm for channel routing, in Graph-Theoretic Concepts in

Computer Science, J. van Leeuwen, ed., Lecture Notes in Comput. Sci. 344, Springer-Verlag, New York,
1988, pp. 288-301.

[42] R. SCmEmER, A new implementation ofsparse Gaussian elimination, ACM Trans. Math. Software, 8 (1982),
pp. 256-276.

[43] Y. SHmOACI AND U. VSI-IN, An 0 (log n) parallel connectivity algorithm, J. Algorithms, 3 (1982), pp. 57-67.
[44] R.E. TARJAN AND U. VISHKIN, Finding biconnected components and computing treefunctions in logarithmic

parallel time, SIAM J. Comput., 14 (1975), pp. 862-874.

SIAM J. COMPUT.
Vol. 25, No. 4, pp. 828-861, August 1996

() 1996 Society for Industrial and Applied Mathematics
006

THE SUBLOGARITHMIC ALTERNATING SPACE WORLD*
MACIEJ LIKIEWICZ AND RJDIGER REISCHUK

Abstract. This paper tries to fully characterize the properties and relationships of space classes defined by Turing
machines (TMs) that use less than logarithmic space--be they deterministic, nondeterministic, or alternating (DTMs,
NTMs, or ATMs). We provide several examples of specific languages and show that such machines are unable to

accept these languages. The basic proof method is a nontrivial extension of the - n+n! technique to alternating
TMs.

Let llog denote the logarithmic function log iterated twice, and let E Space(S) and 1-I Space(S) be the com-
plexity classes defined by S-space-bounded ATMs that alternate at most k times and start in an existential (resp.,
universal) state. Our first result shows that for each k > 1, the sets

ElSpace(llog) \ FllSpace(o(log)) and

FI Space(llog) \ Space(o(log))

are both not empty. This implies that for each S f2 (llog) fq o(log), the classes

ElSpace(S) C E2Space(S) C E3Space(S) C

C ESpace(S) C El+lSpace(S) C

form an infinite hierarchy. Furthermore, this separation is extended to space classes defined by ATMs with a noncon-
stant alternation bound A provided that the product A S grows sublogarithmically.

These lower bounds can also be used to show that basic closure properties do not hold for such classes. We obtain
that for any S 2 (llog) o(log) and all k > 1, ESpace(S) and 1-I Space(S) are not closed under complementation
and concatenation. Moreover, ESpace(S) is not closed under intersection and FI Space(S) is not closed under
union.

It is also shown that ATMs recognizing bounded languages can always be guaranteed to halt. For the class of
Z-bounded languages with Z < exp S, we obtain the equality co-Ed:Space(S) Fl Space(S).

Finally, for sublogarithmic bounded ATMs, we give a separation between the weak and strong space measure
and prove a logarithmic lower space bound for the recognition of nonregular context-free languages.

Key words, space complexity, sublogarithmic complexity bounds, alternating Turing machines, halting compu-
tations, complementation of languages, complexity hierarchies, closure properties, context-free languages, bounded
languages

AMS subject classifications. 68Q05, 68Q10, 68Q25, 68Q45

1. Introduction. It is well known that if a deterministic or nondeterministic Turing ma-
chine (DTM or NTM, respectively) uses less than llog space, then the machine can recog-
nize only regular languages; it is also well known that there exist nonregular languages in
D Space(llog). Therefore, let SrJBLOG := f2 (llog) fq o(log) denote the set of all nontrivial
sublogarithmic space bounds, where llog abbreviates the twice-iterated logarithmic function
n - /log log nl. On the other hand, the logarithm seems to be the most dramatic bound for
space complexity since most techniques used in space complexity investigations only work
for bounds above this threshold. There are several important results for such space classes
known (for a general overview, see, for example, 18]), and it is an open question if they also
hold for space bounds between llog and log. One of the most exciting problems of this type
is whether the closure under complement for NTMs

NSpace(S) co-NSpace(S),

*Received by the editors July 22, 1993; accepted for publication (in revised form) December 19, 1994. Most of
this research was performed while both authors were working at the Technische Hochschule Darmstadt, Darmstadt,
Germany. Some of this research was performed at the International Computer Science Institute, Berkeley, CA.

Instytut Informatyki, Uniwersytet Wroctawski, Przesmyckiego 20, 51-151 Wroctaw, Poland (liskiewi@ii.uni.
wroc.pl). The research of this author was supported by the Alexander-von-Humboldt-Stiftung and KBN grant
211979101.

Institut ftir Theoretische Informatik, Medizinische Universitit zu Ltibeck, Wallstrage 40, 23560 Ltibeck,
Germany (reischuk@informatik.mu-luebeck.de).

828

THE SUBLOGARITHMIC ALTERNATING SPACE WORLD 829

shown by Immerman and Szel6pcsenyi [13], [22], remains valid for sublogarithmic space
bounds. Ifthis equality were not valid for a function S e SUBLOG then obviously DSpace(S) C
NSpace(S).

A special situation holds for bounded languages containing only strings of a certain block
structure.

DEFINITION 1. Let Z 1 I be afunction. Then a language L c_ {0, 1 }* is Z-bounded
if each X L contains at most z(IXI) zeros. L is bounded if it is Z-bounded for some
constantfunction Z.

Recently Alt, Geffert, and Mehlhorn [2] and, independently, Szepietowski [23] have
proved that for the class of Z-bounded languages, where Z is a constant or a small growing
function, the closure under complement holds, which means that in this case NSpace(S)
co-NSpace(S), even for sublogarithmic bounds. Still, we conjecture that, in general, the
above result does not hold. Towards this, we will prove in this paper that ESpace(S) is not
closed under complementation for any S e SUBLOG and all k > 1.

Recall that for k > 1, the class ESpace(S) is defined as all languages that can be
accepted by alternating S-space-bounded TMs making at most k 1 alternations and starting
in an existential state. 1"I Space(S) denotes the set of languages accepted by the same kind of
machines, except that they start in a universal state. By definition, E1 Space(S) NSpace(S).
We will also consider alternating TMs (ATMs) with a nonconstant bound A for the number of
alternations. In this case, the notations EA Space(S) and Ila Space(S) are used.

By standard techniques, it follows from Immerman and Szel6pcsenyi’s theorem that for
S e f2 (log) and for all k > 1,

El Space(S) ESpace(S) HSpace(S).

Note that these techniques do not work for sublogarithmic space bounds. Recently, Chang
et al. [7] have shown that there is a language in Fl2Space(llog) that does not belong to
NSpace(o(log)). Clearly, this proves that for space bounds S in SUBLOG, the alternating
S-space hierarchy does not collapse to the first level and that

EiSpace(S) C l-I2Space(S).

It was left as an open problem whether the whole alternating hierarchy for sublogarithmic
space is strict (see [5], [9], [10], [14]). Here we will prove that the problem has a positive
answer.

We develop techniques to investigate properties of sublogarithmic computations and then
generalize them to an inductive proof that the separation of the ESpace(S) and Ilk Space(S)
classes holds for all levels k. The base case is the existence of a language that sepa-
rates H2Space(llog) from E2Space(o(log)). Its complement separates Z,2Space(llog) from
II2 Space(o(log)).

Inductively, we will construct a sequence of languages Lzg and Ln and prove that Lz
can be recognized by a ETM with llog n space, but not by any FITM that is o(log)-space
bounded. The corresponding claim interchanging E and I-I holds for Lri. For this purpose,
for infinitely many n, we will explicitly pinpoint a pair of strings, one string in Lr and the
other one in LI, and show that any sublogarithmic space-bounded EkTM or 1-ITM will
make an error on at least one of these strings. Thus we obtain the following result.

THEOREM 1. For all k > 1, thefollowing hold:

EgSpace(llog) \ 1-ISpace(o(log)) 0 and

IISpace(llog) \ EkSpace(o(log)) 0.

lln [25, p. 419], it is incorrectly cited that DSpace(S) C NSpace(S) for S 6 SUBLOG. Thus the problem if
DSpace(S) NSpace(S) is still open for any S e S2 (llog) (see Remark 6.1 in [17]).

830 M. LISKIEWICZ AND R. REISCHUK

This result gives a complete and best possible separation for the sublogarithmic space
world, except for the first level k 1. It is left open whether also E1 Space(S) FI Space(S)
for S e SUBI,OG. The current techniques do not seem to be applicable to this case.

This separation implies that the sublogarithmic space hierarchy is an infinite one, contrary
to the case for logarithmic or larger space bounds.

COROLLARY 1. For any S 6 SUBLOG and all k > 1, thefollowing hold:

ESpace(S) C E+lSpace(S),

FlSpace(S) C Fl+ Space(S).

The existence of this strict hierarchy has been shown independently by von Braunmtihl et al.
[6]. Geffert 11 has announced similar results. (For a chronology of events, see [24].)

Furthermore, we can generalize the separation to machines with an unbounded number
of alternations.

DEFINITION 2. A function A N -+ N is computable in space S if there exists a DTM
thatfor all inputs of the form 1 writes down the binary representation of A(n) on an extra

output tape using no more than S(n) work space. A is approximable from below in space S if
there exists afunction A’ that is computable in space S with A’(n) <_ A(n) for all n N and
A’(n) A(n) for infinitely many n N.

The class of bounds that are approximable from below in space llog contains functions
of logarithmic and double-logarithmic growth and also polynomials of such functions. The
iterated logarithm log* belongs to this class as well. In 3, we will discuss a specific example
of logarithmic growth.

THEOREM 2. For anypair offunctions S SUBLOG and A with A > 1 and A S o(log),
where A is approximablefrom below in space S, the following hold:

EASpace(S) \ FIASpace(S) 0,

FIA Space(S) \ EA Space(S) 5 0.

COROLLARY 2. For any S and A as in Theorem 2, the following hold:

A Space(S) C]A+I Space(S),
[IA Space(S) C I’IA+I Space(S).

Thus for space bounds S e f2 (llog) and approximable functions A, for example, one
obtains the following relations:

log1. er ESpace(S) C Elog* Space(S) if S 6 ot.).
2. a Space(S) C Na+lSpace(S) for A, S 60(log/Z-e),
3. For k 6 N, let

4SE := AAlterSpace(llog, llog).

Then for any k, AS c AS+ holds.
Note that for logarithmic bounds the corresponding question is still open, i.e., for any k,

it is unknown whether

AAlter Space(logk, log) C AAlter Space(log+, log).

It is well known that for any function S the complexity class E Space(S) is closed under
union and intersection (see, e.g., [25]). However, it is still an open problem whether for
S G SUBLOG the class E Space(S) is closed under complementation. More generally, for

THE SUBLOGARITHMIC ALTERNATING SPACE WORLD 831

arbitrary k the classes E Space(S) are closed under union, and symmetrically the I-I Space(S)
are closed under intersection. In 14], we have developed a technique that shows that for S e
SUBLOG and k 2, 3, E Space(S) and lq Space(S) are not closed under complementation.
Furthermore, ESpace(S) is not closed under intersection and [I Space(S) is not closed
under union. Combining these ideas with the separation results above, we get the same
closure properties for all levels.

THEOREM 3. For any S e SUBLOG and all k > 1, Ek Space(S) and I-I Space(S) are
not closed under complementation and concatenation. Moreover, ESpace(S) is not closed
under intersection and I-I Space(S) is not closed under union.

Note that nonclosure under complementation for E and lq classes is not trivially equiva-
lent to Theorem 1, which says that sublogarithmic ZSpace and lq Space are distinct. Sublog-
arithmic space-bounded machines do not have a counter, which could detect an infinite path of
computation. It is an interesting open problem whether Fl Space(S) co-ZSpace(S) for
k 1, 2 (see the discussion in [14]). Here we obtain the following partial solution gener-
alizing Sipser’s result on halting space-bound computation for sublogarithimic space-bounded
deterministic TMs [19]: For bounded languages it can be shown that there exist equivalent
ATMs that always halt. This implies the following result.

THEOREM 4. Let S SUBLOG be a space bound and Z be a function computable in
space S with Z < exp S. Thenfor all k > 1 and every Z-bounded language L c_ {0, 1}*, the
following holds:

L ESpace(S) == L FI Space(S).

Observe that for S > log the function Z can grow linearly and then Z does not put any
restriction on the structure of the strings in L. Thus this theorem gives a smooth approximation
of the fact that for at least logarithmic space bounds, E and FI are complementary for
arbitrary languages. We conjecture that the computability of Z is needed in the claim above.
Furthermore, there are some indications that the theorem might not be true generally for bounds
Z much larger than exp S.

Finally, we prove a logarithmic lower space bound for the recognition of context-free
languages by ATMs. We will show that the deterministic context-free language L# :--
ln01m n :/: m} does not belong to ASpace(o(log)). It is interesting to note that this

language--but not its complement--can be recognized even by a deterministic machine in
weak space llog.

DEFINITION 3. We say that anATMM is (strongly) S-space bounded ifon every input X it
only enters configurations that use at most S(IXl> space. M is weakly S-space bounded iffor
every input X that is accepted it has an accepting computation tree all ofwhose configurations
use at most S(IXI) space. DSpace(S) denotes the class of languages accepted by S-space-
bounded DTMs and weakDSpace(S) denotes the languages accepted by weakly S-space-
bounded DTMs. A corresponding notation is usedfor NTMs and ATMs.

In this paper, we consider only the more natural strong requirement for space complexity.
For at least logarithmic space bounds, the two conditions do not make a difference, while in
the sublogarithmic case, they obviously do. When studying the closure under complement of
a language L and alternating hierarchies built on it, the weak measure is not appropriate. This
is because for strings in L a machine for L may use arbitrarily much space, while a machine
for L would be required to be bounded. The example above shows that with respect to the
weak measure already for DTM weakD Space(llog) contains languages that do not belong to
co-weakDSpace(o(log)).

In [7], Chang et al. stated as an open problem whether weak and strong sublogarithmic
space-bounded ATMs have the same power. Obviously, our lower space bound for recognizing
L# by ATMs proves the following result.

832 M. LIKIEWICZ AND R. REISCHUK

THEOREM 5. weakDSpace(llog) \ ASpace(o(log)) k 0.
As consequences, we obtain the following corollaries.
COROLLARY 3. For any k > and each S SrJBLOG,

Ek Space(S) C weakEk Space(S) and

YlkSpace(S) C weakYlSpace(S).

COROLLARY 4. For each S SUBLOG,

ASpace(S) C weakASpace(S).

We next generalize the specific lower bound above to arbitrary deterministic context-
free languages, which also improves a result for NTMs shown by Alt, Mehlhorn, and Gef-
fert [2]. Before stating the result we need the following definition (see [20] and [12]). A
language L is called strictly nonregular if one can find strings u, v, w, x, and y such that
L f {u}[v}*{w}{x}*[y} is context free but nonregular.

THEOREM 6. Let L be a nonregular deterministic context-free language, a strictly non-
regular language, or a nonregular context-free bounded language. Then

U EkSpace(o(log)).L
ken

Furthermore, for ATMs without any bound on the number of alternations, it is not possible
that L and L both belong to ASpace(o(log)).

This paper is organized as follows. In the next section, the necessary technical tools for
sublogarithmic space-bounded ATMs will be developed. In 3, we will define a sequence of
pairs of languages indexed by the level number k to prove the sublogarithmic space hierarchy.
We then investigate closure properties of sublogarithmic space classes. Section 5 is devoted
to the lower space bounds for context-flee languages. The paper concludes with a discussion
of the most interesting open problems for sublogarithmic space classes remaining.

Preliminary versions of most of these results have been presented in 14] and 15].

2. Properties of sublogarithmic space-bounded ATMs. The TM model we consider
is equipped with a two-way read-only input tape and a single read-write work tape. Moreover
the input word is stored on the input tape between end markers $.

DEFINITION 4. A memory state ofa TM M is an ordered triple ot (q, u, i), where q is
a state ofM, u a string over the work tape alphabet, and a position in u (the locaton of the
work-tape head). A configuration ofM on an input X is a pair (or, j) consisting ofa memory
state ot and a position j, with 0 < j <_ IXI + 1, ofthe input head. j 0 or j IXI + 1 means
that this head scans the left (resp., right) end marker For a memory state (q, u, i), let
I1 denote the length ofthe memory inscription u.

We may assume that for a successor (or’, j’) of a configuration (or, j), I’1 _> I1 always
holds. The state set of an ATM is partioned into subsets of existential, universal, accepting,
and rejecting states. We say that a configuration ((q, u, i), j) is existential (resp., universal,
accepting, or rejecting) if q has the corresponding mode. All accepting and rejecting config-
urations C are assumed to be terminating, i.e., there are no more configurations that can be
reached from C.

DEFINITION 5. Let

(or, i) *M,X (fl, J)

denote the property that the ATM M with X on its input tape has a computation path C
(or, i), C2 Ct (fl, j).

(a,i) DM,X (fl, j)

THE SUBLOGARITHMIC ALTERNATING SPACE WORLD 833

denotes the same fact, but with the following restriction: >_ 2 and the mode of the con-
figurations C2 Ct-1 is the same as that of C1 (i.e., if C1 is existential, then all Cl for

2 1 are existential; otherwise, they are all universal).

aCCM (Or, i, X)

denotes the predicate that says that M starting in configuration (or, i) with X on its input tape
accepts (i.e., has an accepting subtree), and on each computation path of that tree, it makes
at most k- 1 alternations. Let

SpaceM (or, i, X)

denote the maximum space used in configurations that M can reach on input X starting
in configuration (or, i) and SpaceM(X) "= Spacet(o, 0, X), where (or0, 0) is the initial
configuration ofM. Similarly, let

Altert(ot, i, X)

denote the maximum number ofalternations that M can make on input X starting in configu-
ration (or, i) and AlterM(X) := AlterM(oto, O, X).

2.1. Inputs ofa periodic structure. In this section, some properties ofTM computations
for binary inputs of the form Z1WW... WZ2 will be described. Let M be an ATM. Then for
any integer b > 0, we define

flb :"- #{0/ ot is a memory state of M with Icl _< b}.

The following two lemmas characterize "short" computations, i.e., computations restricted to
substrings WW... W. The first one is a generalization of a result in [16].

LEMMA 1. Assume that

X Zl Z2,

where ZI, W, Z2 are arbitrary binary strings and n E N. Moreover, let b be an integer and
(or, i) and (, j) be configurations with Iotl _< 1/31 < b and IZI < i, j < IZ wnl. Then the
following holds:

If M can go from (or, i) to (, j) without any alternation and without moving the
input head out of the substring Wn, then M can also do so such that the head never
moves /1 IWl or morepositions to the left ofmin(i, j) nor to the right ofmax(i, j).

Proof We only sketch the main idea. Assume < j and denote by imin and jmax the
furthest position to the left (resp., right) of the input head in the computation path of M that
starts in (or, i) and ends in (/3, j). Let M go from (or, i) to (/3, j), moving the input head

.M2 WI or more positions to the right of j, i.e., jmax j > Ad w I, By the pigeonhole
principle, there exist two positions jl and j2, with j < j < j2 < jmax, and two memory
states or’ and or" such that (or’, jl) and (or’, j2) are the last configurations of the computation
path from (oe, i) to a configuration in which M was at the position jmax. Similarly, (or", jl)
and (or", j2) are the first configurations of the computation from the position jmax to (/3, j).
Then, removing the computation paths from (or’, j) to (oe’, j2) and from (or", j2) to (or", jl),
we obtain a computation that starts in (or, i) and ends in (fl, j) with the head never moving
more than distance jmax (j2 jl) < jmax to the right of position j. l

LEMMA 2. Let li jl > JM (JMb + 1). IWI. Assume that M can gofrom configuration
(or, i) to configuration (fl, j)

without alternating and without leaving the region between the input positions() and j.

834 M. LISKIEWICZ AND R. REISCHUK

Then
there exists an integer c [1..A4b] such that for all d [1..A/[b] there is a

computation path satisfying (#$) which starts in configuration (x, i) and ends in
(/3, j d. sgn(j i). c. [WI), where sgn(z) := z/Izl’,
moreover, there also exists a computation path satisfying (0$) that starts in
(or, + d. sgn(j i). c.]WI) and ends in (t3, j).

Proof In the following, we will only discuss the case < j when considering the
computation from configuration (t, i) to (/, j). Let li j] >_ .A/[b2(.jb at- 1) IWl.

Define the function h(p) "= + p IW] for integers p > 0 and let := A/lb2. Partition
integers in [1...M] into the intervals ILl, R1], [L2, R2] [Lt, Rt] of equal length .Mb
with boundaries

Ls := (s 1)(.A/[b + 1) + 1,

Rs := Ls + .Mb.

For s 6 1..t], consider all input positions h(p) with p [Ls, R,] and the last configuration of
M (before (/, j)) that visits position h(p). Among these A/lb + 1 configurations, there must
exist a pair with positions ps < qs [Ls, Rs] and identical memory states ors. configuration

Let (9/1, il) i,j (?’2, i2) denote the same property as (?’1, il) M,X (?’2, i2), but with the
restriction that M going from (?’1, il) to (?’2, i2) does not move the head to the left of nor to
the right of j. Then we can write

(or, i) i,j (0/1, h(p)) i,j (0/1, h(ql))

(or2, h(p2)) i,j (or2, h(q2))

(ott, h(pt)) i,j (ott, h(qt)) i,j (1, j).

Since there are pairs (ps, q) and the difference between any pair is at most Adb, by
the pigeonhole principle there exists an integer c e [1...24b] and t/3/lb Adb pairs
(Psi, qsl), (Ps2, qs2) with identical difference c, which means that qe ps c for g
1, 2 A//b. Define 6’ := c. WI.

Let d be an arbitrary integer in [1..3Ab] and define ot := ote and ie := h(p). Then we
obtain

(or, i) i,j (O/tl i) i,j (O/tl il + 6’) i,j
(ot, i2) i,j (Ol;, i2 -+- 6’) i,j

(ot, id) i,j (Oftd, id + 6’) i,j (0/+1, id+l) "= (fl, j).

The input X contains a sequence of identical blocks W between the positions and j. For any
g 6 [1... d], M starting in (ot, ie + 6’) reaches (ot+, ie+) without moving the head to the
left of ie + 6’. Therefore M making the same sequence of moves reaches (ot+l, ie+ 6’)
when starting in (c, ie + (1)6’). Thus we obtain

(or, i) i,j (O/tl il) i,j
(ot, i2 6’) i,j

(c’d, id (d 1)6’) i,j (i, j d6’),

which proves that (or, i) i,j (i, j 6) for 6 :-- d.c. Wl. In a similar way, one can show that
there exsists a computation path that starts in configuration (o, + 6) and ends in (fl, j).

THE SUBLOGARITHMIC ALTERNATING SPACE WORLD 835

In the following, M will always denote an arbitrary ATM and S a space bound in o(log).
Depending on M and S, we choose a constant .A/’t,s >_ 28 such that for all n >_ A/’t,s

and

(J(n) .ql_ 1)2 < n

1
S(n) < log n 2.

Remark. In this section, all claims following hold for any integer n > A/’a4,s.
In [8], Geffert has shown that for sublogarithmic space-bounded computations for any

natural number e the behavior of a nondeterministic TM on input 1n+ent is exactly the same
as on 1n. The proof is based on the so-called "n + n + n! technique" developed by Stearns,
Hartmanis, and Lewis in [21]. We will show that a corresponding property holds for ATMs
and for all inputs of the form

X Z Wn Z2 and Y Z1 Wn+en! Z2,

where Z1, Z2, and W are arbitrary binary strings and e 6 N.
Since in the following we will often compare computations on such an input X and a

pumped version Y, let us introduce a special notation for positions within these strings. If is
a position within X outside the pumped region Wn, that means for the example above, either
in Z or in Z2; then " denotes the corresponding position within Y. Thus

, .=/i if < [Zll,
/ IYI- Ixl if >]zwnl.

The main technical tools for the analysis of sublogarithmic space-bounded ATMs are stated
in the following lemmas. Here, X and Y denote strings as defined above and M is an arbitrary
ATM. Note that n is now not necessarily identical to the length of the input X. Actually, X will
in general be much larger than n. However, by a repeated application of the following impli-
cations, we can show that any machine M still obeys a sublogarithmic bound with respect to n.

LEMMA 3 (pumping). Let ot and be memory states with Il _< I/1 _< S(n), thenfor any
i, j 6 [0 IZl] [IZWl / 1 IXI / 1], the following hold:

1. (or, i) M,X (/3, j) : (or, ’) t,Y (/3, f),
2. (or, i) D*M,X (/3 j) =::> (C) a4,r’ (/3,]).
In the analysis below we will use the pumping lemma (Lemma 3) in the following more

general form.
LEMMA 4. Let n andm be integers with ./V’M, s <_ m _< (n + 1)2 and let ot and be memory

states with [otl

_
1/31 _< S(m). Thenfor any i, j [0 [ZI[] U [[z1wn[-k- 1 IX[/ 1],

properties 1 and 2 above hold.
These claims can be proven using the method developed in [8] and the fact thatj6S(m) < n.

2.2. Space and alternation bounds.
LEMMA 5 (small space bound).

SpaceM(X) <_ S(n) =: SpaceM(Y) Space(X).

Proof Let SpaceM(X) < S(n). Assume, tothecontrary, that SpaceM(Y) 5 SpaceM(X).
We will show that SpaceM(Y) > Spaceu(X) cannot occur. A similar contradiction can be
obtained for the case SpaceM(Y) < SpaceM(X).

Assume that SpaceM(Y) > SpaceM(X). Hence for Y, there exists a computation
path C that starts in the initial configuration (ix0, 0) and ends in a configuration (c, j) with

836 M. LIgKIEWICZ AND R. REISCHUK

I1 SpaceM(X) such that from (or, f) M can reach a configuration (fl, f’) with I1
SpaceM(X) + in one step:

(0, 0) * (f) ; (3, f’)M,Y

If j fulfills the condition j < [ZI[or j > [Z1 Wn[of the pumping lemma, then one can
conclude immediately that

(or0, 0) t,x (or, j) ,x (fl, J’)"

Otherwise, using a similar pumping argument, one can show that M on input X can reach a

configuration (or,) in which the input head is located on Wn and reads the same symbol as in
(or, j). Thus it can also get to memory state fi in one more step. We get a contradiction since
1/31 > SpaceM(X). [3

LEMMA 6 (small alternation bound).

SpaceM(X) <_ S(n) and AlterM(X) < exp S(n) AlterM(Y) AlterM(X).

Proof. Let be an integer with 6 {I Z I, Z Wnl + and let ot be a memory state with

SpaceM(ot, i, X) < S(n) and AlterM(, i, X) < exp S(n).

Assume that k is an arbitrary positive integer and let

3k := k..Mb2. (AAb 4- 1). IWl,

where b "= S(n). We first show that for the input Y, the following claim holds.
CLAIM 1. Let M starting in (c,) alternate k times and never move the input head

beyond Wn+en!. Then there exists a computation ofM with k 1 alternations that also starts
in (,), but in which the input head is never movedfarther than positions to the right of
if[IZll (resp., to the left of if [Z wn+en! 4- 1).

Proof. We prove this claim for " IZal. The case ’ IZ1W/entl 4- 1 can be treated
similarly. Let us note first that for integers k such that > n 4- n !, the claim holds trivially.
Therefore, in the proof below, we consider only k with < n 4- n !.

Let i’ be the smallest integer such that M starting in (or, ’) makes k 1 alternations with
the head never moving to the left of nor to the right of i’. Assume, to the contrary, that
i’ > 4- 6k. Therefore, by the pigeonhole principle, there is an interval [L, R] with

+ 3A. IWl _< t < R < i’ and R t >_ 2M2b (JMb + 1). IWl,

and a computation path C of k 1 alternations such that M with the head position in [L, R]
does not alternate.

Let C’ be a subsequence of configurations of C of the maximal length such that all con-
figurations of C’ have the head position greater or equal to L and there is a configuration in
C with the head position i’. Note that the first configuration of C’ equals (OtL, L) for some
memory state OiL. Moreover, there is a configuration in C’ with the head position R. Let
(otR, R) denote the first such configuration.

Below we show how to cut and paste C to obtain a computation path of the same number
of alternations but with the head never reaching the position i’. This yields a contradiction to
the assumption that > 4- k.

Let us first consider that C is a tail of C. By Lemma 2, there exists a constant c with
1 c Jb such that M starting in (OIL, L) reaches (otR, R -c. IWI) with the head positions
in [L, R]. If, additionally, M starting in (OtR, R c. IWI) makes the same sequence of moves

THE SUBLOGARITHMIC ALTERNATING SPACE WORLD 837

as in C’ when started in (otn, R), then we obtain a computation for M with the same number
of alternations as in C’ but with the head never moving to the right of i’ c Wl.

Now assume that C’ is not a tail of C. Then the last configuration of C’ has a form
Let (ot R) be the last configuration in C’ with the head(ot, L) for some memory state otL.

position R. By Lemma 2, there exist constants cl and ca with 1 < Cl, c2 < Adb such that M
starting in (oiL, L) reaches (an, R ClC2 IWl) and starting in (OtR, R ClC2 IWl) reaches
(c, L). It is obvious that M, starting in (OtR, R -cc2. IWl) and making the same sequence of
moves as between (otR, R) and (ot, R) in C’, reaches (OtR, R-cc2. IWl). Hence we obtain a
computation path ofthe same number of alternations as in C’ that also starts and ends in (oiL, L)
and (ot, L), respectively, but with the head never moving to the right of i’ C c2. Wl. [3

Note that by Claim and the assumption that Alteru(a, i, X) <_ exp S(n), it follows that
if M with Y on the input tape starts in (c, i) and makes k 1 alternations with the head never
moved beyond Wn+en!, then k 1 < exp S(n). To see this, assume the opposite. Then by
Claim 1, M starting in (or, ’) makes k 1 exp S(n) + 1 alternations such that the head is
never moved farther than 6k positions from ’. By the assumption that n > Nu, s, we conclude

3k=(2S(n)-t-2).J/t2b.(.A/Ib+l).lWI < 21/21gn.(.M+l).lWI < nl/2"n/2"lWI =n. IWI,

which means that M can make the same computation on X. We obtain a contradiction since
AlterM(, i, X) < exp S(n). Hence our lemma follows from Claim 1 and from the following
claim.

CLAIM 2. For k 1 < exp S(n) and for any memory state fl and any integer j
{IZl, IZ Wnl + 1}, thefollowing holds:

M starting in (or, i) with X on the input tape reaches (, j) with k 1
alternations iff M starting in (,) with the input Y reaches (, f) with
k- alternations.

Proof. We prove the claim for IZ11 and j ZWn + 1. In the other cases, a similar
proof can be used.

Assume that on input X, M reaches (/3, j) from (or, i), making k 1 alternations. Since

k _< exp S(n) -4- < LV/-J/2,

there exist nonnegative integers n, n2, and n3, with

(i) n + n2 q-. n3 n and [J _< n2 _< n,

such that M alternates only on the prefix Z1 Wnl and on the suffix Wn3 Z2 but not on Wn2. By
Lemma 4, for

i’, j’ [0... IZ Wnll] kJ [IZl Wnl+n21 -1- 1... IXl + 1]

and m’ "= n, n’ := n2, and ’ := en(n 1)... (n2 -4- 1),

for any configurations (or’, i’) and (fl’, j’) that are reachable by M on the computation path
between (or, i) and (fl, j). Using this property, we can easily obtain a path with (k 1)
alternations for input Y that starts in (or, i) and ends in (/3, j).

On the other hand, if for integers n l, n2, and n3 fulfilling (i) there is a computation path
for M on Y which starts in (or, i) and ends in (fl, f) and such that M does not alternate with the
head position in [IZ Wn’ I+ 1... IZ1 wn’+nz+e’nz![], then, applying Lemma 4 in the same way
as above, one can construct a computation path for the input X which starts and ends in (or, i)

838 M. LIgKIEWICZ AND R. REISCHUK

and (/3, j), respectively, and has the same number of alternations. Therefore, to complete the
proof, we have to show that there exists such a computation path for Y if we assume that M
started in (0/, ’) reaches (fl,), making k alternations.

Let rn be the largest integer such that for some n 1, n3 6 N, with n + m + n3 n + en !,
there is a computation path C between (0/, ’) and (fl,]) of k 1 alternations such that M
alternates only on the prefix Z1Wnl and suffix Wn3 Z2. Assume to the contrary that

m < L,/-J + e’L,v/-J !,

where ’ := f.n(n 1)... (Lv/-ffJ + 1). Then in either Wnl or Wrt3 there exists a substring of
the form Wm’, with m’ > 2Lc/-ffJ, such that M does not alternate on Wm’ either. W.l.o.g. let

and " Below itWm’ be a substring of W3 Then W3 W3Wm’Wl’13 for some integers n n3
is shown that C can be cut and pasted such that in the new computation path obtained M does
not alternate when the input head visits Wm+ This yields a contradiction to the maximality
ofm.

Let us define the following head-position bounds:

L1 "= IZlWn’l,

L2 := IZ1Wn’+m+n3],

R1 L1 -+-[wml ’at- 1,

R2 "= L2 + wLI + 1.

Note that from the assumption that m’ _> 2 L/-I it follows that

(ii) wn+g.nR2 -t-IwLI

IZ "1-

Let C’ be a subsequence of computations of C which starts and ends with the head position in
{L1, R2}. We claim that C’ can be modified to the computation path of the same number of
alternations, which starts and ends in the same configurations as C’ and such that M does not
alternate with the head positions in ILl, R1 + IWl]. Only the case when C’ starts and ends
with the head position L1 and R2, respectively, will be described.

Let (0/1, L1) be the first configuration of C’ and (fi2, R2) the last. Moreover, let
be the first configuration in C with the head position R1 and let (0/2, L2) be the last one with
the head position L2. Using a similar counting argument as in the proof of Lemma 2, one can
show that

cl [1/b] t d [1 b] (0/1, L1) M,Y (/1, R1 + cldlWl).

Moreover, by Lemma 2, we have

C2 [l Jb], ’ d 6 [1 Adb], (0/2, L:z + cadlWI) 4,r (, R:).

Therefore, for 6 "= clc21Wl, the following hold:

(0/1, LI) M,Y (11, R1 +
(0/2, L2 + 6) M,Y (/2, R2).

By (ii), M, making the same moves as in C’ between (/31, R1) and (0/2, L), reaches (0/2, L2 q-6)
when started in (/31, R1 -t- 6). Hence there is a computation path that starts in (0/1, L 1) ends
in (2, R:) of the same number of alternations as C’ such that M does not alternate with the
head position in [L1, R2 -+-]W]]. This completes the proof of Claim 2 and Lemma 6. 3

THE SUBLOGARITHMIC ALTERNATING SPACE WORLD 839

2.3. Fooling ATMs by pumping the input.
LEMMA 7 (1-alternation). For any configuration (or, i) with

_< IZll or > IZ1 Wn] and
SpaceM(a, i, X) < S(n) and SpaceM(a, , Y) < S(n) thefollowing hold:

accZ(ot, i, X) aCCZM(a, , Y) if (, i) is existential, and

accZM (c, , Y) === aCCZM (, i, X) for universal (, i).

Proof. Assume that (or, i) fulfills both conditions above. First, let this configuration be
existential and let acct(ot, i, X) be satisfied. Then there exists a universal configuration (or,
if M does not alternate, a final accepting configuration) (fl0, h) with 0 _< h _< [XI + 1 such
that

(A) (or, i) M,X (i0, h), and
(B) each computation path C on input X that starts in (fi0, h) is finite. In addition, along

each such C, M does not alternate, and the final configuration of C is accepting.
We divide the string X according to h into three parts. Let n "= Ln/2J. Define h "= [Z wn’[
ifh < [Z1 Wn’[andhl "= [Zx[otherwise. Lethe := hi + [wn’[.qt_ 1. Now let U denote the
prefixofXoflengthhl,i.e.,U "-Z W’ ifhl IZ W’I andU := Z otherwise. Moreover,
let V denote the suffix of X oflength IXI/ l-h2, i.e., ifhl IZ1 W"’I then V "= Wn-2’ Z2;
else V := W-n’ Z2 (note that V can be an empty word). Then, X U Wn’ V.

For such a partition of X, the head of M in memory state (/30, h) is located on string $U
if h < IZ1 Wn’l and on string V$ otherwise. Let a := (n’ + 1)(n’ + 2)... n and let g’ := Ca.
We will show that M, started in (or, i) with X’ U Wn’+e’n’! V on its input tape, accepts,
making at most one alternation. This proves the lemma since

X U wn’+e’n’!v Z Wn+e’n’! Z2 Zl Wn+en! Z2 Y.

Since A/’M,S < n < (n’ + 1)2 from Lemma 4 (for n "= n and m := n) and by property (A), it
follows that

(, [) ,x, (30,),

where t "= h if h < [Z W’[and t "= h + t’n’! otherwise. Our lemma follows from this
property and from the fact that

aCClM(fl0, , X’)

holds. Below we prove that this predicate is true.
Assume, to the contrary, that aCCM(fl0, , X’) does not hold. We can distinguish two

cases:
(a) (/30, t) M,X’ (fi, t) for some rejecting or existential configuration (fl, t), or

(b) M starting in (flo,/t) performs an infinite universal computation on X’.
From Lemma 4, it follows that the memory state fl is reachable on X, too. We get a contra-
diction since by condition (B) it must hold that if M reaches a nonuniversal memory state on
X then it should be accepting. Therefore, case (a) cannot occur. Below we will prove that
case (b) cannot occur either. More precisely, we will show that if (b) holds then there exists
an infinite universal computation path for input X which starts in (flo, t) and also yields a
contradiction to (B).

Let C be an infinite universal computation path for input X that starts in (flo, t). From
C we will construct an infinite computation path for input X that also starts in (flo, t). Let t2
denote the index of the first symbol of the string V$ on the input tape with input X, i.e., let

hh2 := h2 / We’’ I. Three cases have to be distinguished.

840 M. LIKIEWICZ AND R. REISCHUK

h
Wn’+e’n’! V

Fro. 1.

j=hl

FIG. 2.

Case 1. The boundary between the prefix U and the string Wn’+e’n’! or the boundary
between the string Wn’+e’n’! and the suffix V is crossed infinitely often in C (see Figure 1).

Let the boundary between the prefix U and the string Wn’+e’n’! be crossed infinitely many
times. Then there exists a memory state/3 such that the configuration (/3, h) occurs in C at
least twice. From Lemma 4, we conclude that

(/0, /’/) M,X (i, h) and (/3, hi) M,X (/, hi).

Therefore, we obtain that M, starting in (/3o, t), makes an infinite universal loop on X. The
subcase when the boundary between the string Wn’+e’n’! and the suffix V is crossed infinitely
many times in C is similar to this case.

Case 2. There is an initial part C of C and an infinite rest C2 of C such that in C2, M scans
only the input to the left of h or to the right of t2 (see Figure 2).

Let (/3, j) for j h or j t2 be the last configuration of C. From Lemma 4, we have
that (, j) is reachable from (/30 t) on X as well. Let C’ denote a computation path from
(/30, h) to (/3, j) for input X. Then C’C2 is an infinite computation path for X.

Case 3. There is an initial part C of C and an infinite rest C2 of C such that in C2, M scans
only the string Wn’+e’n’! (see Figure 3).

Let (/3, j) for j h or j 2 be the last configuration of C1. W.l.o.g. assume that
j h. Since C2 is infinite, there exists h < d < h2 and a memory state , such that
(?,, d) occurs on C2 at least twice. By assumption, all memory states on the computation path
between the two instances of (,, d) use at most S(n) space. Lemma 1 implies that there exists
a computation path Z) such that 79 starts and ends in (,, d) and the input head is never moved

2farther than 3/[S(n)" Wl positions to the left or right of d. Let C2 denote the part of C2 between

THE SUBLOGARITHMIC ALTERNATING SPACE WORLD 841

FG. 3.

(fl, j) and the first (?’, d) on C2. Using Lemmas 1 and 2, one can easily construct from C a
computation path D1 such that

791 starts in (1, j),
791 ends in (?,, d’) for some d such that

2 3d < j + Ms(n)(dMs(n + 1). IWl and d’ > min(d, j + JS(n)" IWl),

and
the input head is never moved to the left of j nor to the right of

2j + JMS(n) (Jl[s(n) "Jr- 2). Wl _< j + n’. Wl.

Finally, let C denote a computation path for input X starting in (fl0, t) and ending in (fl, j).
By Lemma 4, such a path exists. M, starting in (fl0, t) and making the same sequence of
moves as in C791797979 makes an infinite universal loop on X.

This completes the proof of the first implication of the lemma. Let us now assume that
aCCM(Ot, ’, Y) holds for a universal configuration (or, i). If acc (or, i, X) is not true, then
there exists an existential configuration (fl0, h) such that M, starting in (c, i) and working
in universal states, reaches (fl0, h), and each computation C of M on X started in (fl0, h) is
rejecting or along C, M makes at least one alternation. Using similar methods as above, one
can show that acc,/(ot, , Y) also does not hold--again, a contradiction. S

2.4. Fooling ATMs by shifting the input head. In the following two lemmas, we con-
sider the influence of shifting the input head between identical copies of a fixed string W. For
this purpose let us denote the shift distance by A "= WI n !.

LEMMA 8 (configuration shift). Let X Z1 Wn+n! W Wn Ze be a binary string with
s > 1 and let ot and be memory states with lot[<_ [/31 _< S(n). Thenfor any integer with

_< IZll ori > Iziwn+n!wswnl andanyintegersj, e [Izwn+n!l+l IZ1 w+n!wsl]
thefollowing hold:

1. (or, i) ,x (fl, j) == (c, i) ,x (/3, j A),
2. (, j) M,X (13, g.) ==> (or, j- A) M,X (ig, g.- A),
3. (c, j) M,X ([J, i) = (Or, j- A) M,X ([J, i).

Proof. First note that the conditions on j and e guarantee that all positions j,/7, j A,
and A considered are at least n blocks W away from the boundaries Z1 and Z2. Define

Xf"=ZIW W WnZ2 and X"’=Z1 W" W W+n!Z2.
Set " "= if < IZ1 I; otherwise, " "= A. Using the pumping lemma twice--first for the
input pair X, X’ and then for X’, X"--we obtain the following:

842 M. LIKIEWICZ AND R. REISCHUK

1. (or, i) M,X (13, j)

2. (or, j) M,X (, g.) :

(or, j) ,x (fl, i)

(or,) M,X, (, j A)

(or, i) M,X" (fl, j- A),

(or, j A) M,X’ (13, e A)

(or, j- A) M,X" (fl, -),

(, j-) ,x, (,)
(, j A) M,X" (, i).

The claim of the lemma follows because X" X. S
In the inductive argument for the proof of Theorem 1 (Proposition in 3 below), we

have to guarantee a certain distance of the input head from the boundaries. For this purpose,
we define

m,n "= k. (n + n!).

LEMMA 9 (position shift). Let k > 2, r, s, and be integers with r, > m,n and s > 1,
and let Z1, Z2, W e {0, 1 }* be arbitrary strings. Thenfor input X Z1 W W W Z2 and

for any configuration (or, i)fulfilling the requirements
1. [Z1 wr[< < [Z1 W WS[and
2. SpaceM(ot, i, X) < S(n) and SpaceM(ot, A, X) < S(n),

thefollowing hold:

acc-I (or, i, X) aCCM- (or, A, X).

Proof. Let input X and configuration (or, i) be as above. We will only give a proof for

aCCkM-l(ot, i, X) == aCCM-1 (Or, A, X),

A similar argument yields the opposite implication. Let

(i) aCCM-* (or, i, X)

be true. First, we will show the following property for computations that start in (or, A). Call
a computation path of finite or infinite length universal if all its configurations are universal.

CLAIM 3. For a universal configuration (or, i) ofM on X, any universal computation path
that starts in (or, A) is finite.

Proof. Let us assume, to the contrary, that there exists an infinite universal computation
path that starts in (or, A). Hence there exists a universal configuration (/3, j) such that

(or, i- A) M,X (fl, j) and (fl, j) M,X (fl, j).

If [Z wnl < j <_ IZ wr++t-(n+’*!)l, then Lemma 8(2) implies

(or, i) M,X (fl, j + A) and (fl, j+A) M,X (fl, j + A).

This means that in (or, i), M starts an infinite universal computation path with X on its input
tape. This yields a contradiction to aCCkM-1 (or, i, X). On the other hand, if j <_ [zIwnl or

j > IZ wr++t-(n+n!)l, then by Lemma 8(3),

(or, i) M,X (i, j).

Since (fl, j) M,X (fl, j), M also generates an infinite universal computation from (or, i).
Note that we can apply the configuration-shift lemma (Lemma 8) to both ot and fl because by
the second assumption I1 _< I/l _< S(n) holds. This ends the proof of Claim 3. [3

THE SUBLOGARITHMIC ALTERNATING SPACE WORLD 843

First, we will solve the base case k 2 and consider an existential configuration (or, i).
Because of acc(ot, i, X), there exists an accepting (, j) with

(, i) M,X (, j).

Using the configuration-shift lemma, we conclude that

(or, i- A) M,X (, j- A) if IZl wn+n![< j < Iz1wr+s+t-nl, and

(, A) M,X (fl, j) otherwise.

Since is accepting, aCCM(Ot, A, X) holds.
For universal configurations (oe, i), it will be shown that any terminating configuration

(, j) with (or, A) M,X (, j) is accepting. Together with Claim 3, this proves that
acc(ot, A, X) holds. Let (, j) with (oe, A) M,X (, j) be a final configuration.
By Lemma 8,

(x, i) M,X (i, j + A)

if IZ1 wnl < j < IZ1 wr++t-(n+n!)l; otherwise

(, i) M,X (fl, j).

Hence, if/3 is nonaccepting, then acct(ot, i, X) does not hold--a contradiction.
Now let k > 2 and consider existential configurations (a, i). Since, by assumption, M,

starting in (or, i) with X on the input tape, accepts, there exists an existential computation path
ending in a universal configuration (fl, j), with

(ii) (or, i) M,X (fi, j),

and

(iii) acc4-2(fl, j, X).

(The trivial case that M accepts without alternations could be handled as above.) Let us divide
the input X Z1 W W W Z2 into three regions A, B, and C as follows:

A := Z1Wr-(n+n!),
B := Wn! WnW Wn,
C :-" Wt-nZ2.

According to j, the input head position in configuration (fl, j), the following situations will
be distinguished.

Case 1. The input head is located in region A or C (see Figure 4(a)), i.e., j < IAI or
j > IABI.

From property (ii) and Lemma 8(3), for Z1 := A and Z2 := C, we obtain that

(or, i- A) M,X (i, j)

(see Figure 4(b)). Therefore, condition (iii) implies aCCM-I (o, A, X).
Case 2. The input head in (fl, j) visits region B (see Figure 5), i.e., IAI < j < IABI.
In this case, using property (ii) and Lemma 8(2), for Ztl Z1 wr-2(n+n!), Z2t .____

Wt-zn Z2, and s’ := n! + n + s + n, we conclude that

(or, i- A) MM,X (fl, j- A).

844 M. LIKIEWICZ AND R. REISCHUK

A B C
n! n+s+n

Z1WW WZ2

(fl, j)

(or, i)

(a) (a, i) M,X (f, j)

ZlWW

(t3, j)

B C
n+s+n n!

(ot, A)

WZ2

FIG. 4.
(b) (or, A) M,X (3, J)

A B C
n! n! n+s+n

Z1WW WZ2
(or, i)

(fl, j)

(a) (t, i) M,X (fl, j)

ZIWW

B C
n! n+s+n n!

i,’i’’---- "i’) WZ2

4>,

FIG. 5.
(b) (o, A) M,X (fl, j A)

Now apply the induction hypothesis for k with parameters r’ "= r (n + n !), s’ and apply
t’ := n to configuration (fl, j). By definition of the parameters mk,n, requirements 1 and
2 are fulfilled. Therefore, (iii) implies

aCCkM-2(fl, j A, X),

and hence aCckM-1 (or, A, X). This completes the proof for existential configurations.
For a universal (or, i), similarly to the case k 2, it will be shown that for any final or

existential configuration (/3, j) that ends a universal computation path,

(or, A) M,X (fl, j) implies acckM-2(fl, j, X).

THE SUBLOGARITHMIC ALTERNATING SPACE WORLD 845

Z1WW

B C
n+s+n n! n!

WZ2

(ot, A)
/

(fl, j)

(a) (or, i-A) M,X (fl, j)

A B C
n! n+s+n n!

ZlWW WZ2

(or, i)

(fl, j + A)

(b) (c, i) M,X (fl, j + A)
FIG. 6.

Remember that, because of Claim 3, only finite paths have to be considered. Let (fl, j) be
such a configuration. Divide the input X into three regions A, B, and C as above. Depending
on which region is visited by the input head in configuration (fl, j), two cases are considered.
If the input head is in region A or C (as in Figure 4(b)), then from Lemma 8(3) we obtain that
(a, i) M,X (fl, j). aCCkM-l(Or, i, X) thus implies ace-2(fl, j, X).

Otherwise, the input head is located in B, i.e., IAI < j <_ IABI (see Figure 6(a)). By
Lemma 8(2), one can deduce that (or, i) u,x (fl, j+A), which implies act2kM-2 (fl, j 4- A, X).
Using the induction hypothesis for configuration (fl, j + A) and for k 1 with r’ := r n,
s’ "---- n + s + n + n !, and t’ "= (n + n !), we obtain acc4-2 (fl, j, X), which completes
the proof. q

2.5. Halting computations for ATMs. Let S and Z be functions such that Z is com-
putable in space S and Z < exp S. We say that a binary string X is Z-bounded if it contains
at most Z(IXI) zeros.

LEMMA 10. For every S-space-bounded ATM M, there exists an ATM M’, which is also
S-space-bounded, such thatfor all Z-bounded strings X, thefollowing hold:

M accepts X iffM accepts X;
AlterM,(X) < AlterM(X);
ifAlterM(X) < cx, then every computation pathofM on X isfinite.

Proof. Let M be an ATM and let X be a Z-bounded input. In the proof below, .Mb
denotes the number of memory states of M as defined in 2.1.

Let a crossing be any transition ofM from a configuration in which it reads an input symbol
a to a configuration in which it reads an input symbol b a, where a, b {0, 1 U {$}. A
sequence C Cu, Cu+l Co of consecutive configurations of a computation path on X is
a long turn if C contains neither alternations nor crossings, if in Cu and Co the input head is
at the same position for some < < IX I, and if within C

either the input head visits position 4- 3/1 but never moves to the left of
or it visits position .Mb2, but never moves to the right of i,

where b is the amount of space used in Co.
On the other hand, a sequence C without alternations or crossings is a long hop if the

positions and j of the input head in Cu (resp., Co) are at least at a distance .M 4- 1 apart and
within C the input head never leaves the region between these two positions.

846 M. LIKIEWICZ AND R. REISCHUK

Now we are ready to describe the behavior of the machine M’. It first computes the value
Z(IXI), which by assumption can be done in space S(IXI), and then simulates M step by step.
Let bt be the amount of work space used by M by its tth step.

After simulating step of M, the machine M’ stops and rejects iff
(a l) M rejects at this step, or
(a2) M has just finished a long turn that contains only existential configurations, or

(a3) since its last alternation, M has executed 2(Z(IXI) + 1) A//bt + 1 many crossings,
or

(a4) within the last 2A/[, -t- 1, steps M has not made any progress, i.e., performed an
alternation, a crossing, a long turn, or a long hop.

M stops and accepts iff
(bl) M accepts, or
(b2) M has just finished a long turn that contains only universal configurations.

To check these conditions, one counter for the number of crossings, one counter for the number
of steps since the last progress and a sliding window for the most recent farthest distance to
the right or left, which can also be realized by counters, suffice. The length of all counters is
bounded by O(S([X[)). Thus, M’ is O(S)-space bounded.

It is obvious that AlterM,(X) <_ Altert(X). To see that all computations of M’ are finite,
first notice that if M does not make progress inifinitely often, M’ will stop the simulation
eventually. Assume that M’ does not stop on some path. If Altert(X) < ec, this cannot
be due to alternations or crossings of M since there is also a finite bound set by M’. Thus it
remains the case that M within one block of identical input symbols performs infinitely many
steps without an alternation. M’ would stop if M makes a long turn; thus M has to make an
unbounded number of long hops. After a long hop to one side, it cannot make a long hop to
the other side because this would result in a long turn. Thus M eventually has to reach the
boundary of this block and performs a crossing, a contradiction.

From Lemma 1, it follows that M’ accepts the same set of Z-bounded strings as M. In
case (a2), there is a shorter turn that brings M into a configuration identical to Co. Thus if
M has an accepting subtree for configuration C,, then it still has it after the chopping of that

Co which is reached by the long turn. The dual argument holds in case (b2). Observe that in
case (a3) M must have gone through a loop, and one can stop the simulation. This is because
there are at most 2(Z(IXI) + 1) different positions on the input tape (counting both directions)
for performing a crossing on a Z-bounded string X. Hence at some position a memory state
must repeat. A similar argument holds in case (a4) for the at most A// many input positions
that can be visited without performing a long turn or hop. q

Using this lemma, we can show the following theorem that extends Sipser’s space-bounded
halting result to alternating TMs.

THEOREM 7. Let S, A, and Z be bounds with A < cxz and Z <_ exp S computable in space
S. Then for every S-space-bounded aaTM M, there exists a aaTM M’ ofspace complexity
S such thatfor all inputs X,

M’ accepts X iffM accepts X and X is Z-bounded, and
every computation path ofM’ on X is finite.

The identity of Ek and co-l-Ik for Z-bounded languages (Theorem 4) now follows
easily.

3. Hierarchies. In this section, the separation results will be proved.

3.1. Technical preliminaries. As a specific example of a function that can be computed
in sublogarithmic space, consider the following function from [3]"

F(n) min{k E 1 k does not divide n}.

THE SUBLOGARITHMIC ALTERNATING SPACE WORLD 847

It is easy to see that F 60(log). Thus on input 1n, a TM can simply try all candidates
k 2, 3 by counting the input length modk until the first nondivisor is found. Using the
binary representation, this requires at most log F (n) < llog n -4- O (1) space.

Obviously, F takes constant values like 2 or 3 infinitely often. We want to show that the
logarithmic upper bound is also achieved infinitely often. This would imply that there exists
another function G of logarithmic growth that can be approximated from below in space llog.
Let Pl < P2 < be the standard enumeration of primes and define

= 1-I
Pi <k

{I)-I (n)"= min{k {I)(k) >_ n},

G(n) "= min{e e > {I)- (n) and e is a prime power}.

The following properties can easily be derived.
1. {I)-l((I)(k)) k and {I)({I)-l(n)) > n.
2. F((k)) G((k)), since any g < k divides {I)(k) and the first nondivisor in the

sequence k + 1, k -4- 2 must be a prime power.
3. F(n) < G(n) for all n, which can be seen as follows" Let k {I}-l(n). Since

we have already considered the case n {I)(k) due to property 1, we may assume
|

n < {I)(k). By definition of {I), there must exist a prime power p[
lgpi that is not a

divisor of n. Thus F(n) < k < G(n).
4. {I)(k) e(+())" The prime number theorem implies

H Pi e/(1+(1)).
pi<k

Thus {P(k) > e(+()). On the other hand,

(k) < H plgpi k [’[11 Pi <_
pi <_,/-

k. H Pi e(’/- lnk+k)(l+o(1))

pi /- pi <_k

Hence {I)(k) < e(+()).
5. {I)-l(n) lnn (1 + o(1)).
6. G(n) -(n)(1 + o(1)) lnn (1 + o(1)), since any interval of the form

[{I)-1 (n), {I}- (n) (1 + o(1))] is guaranteed to contain a prime.
Hence, the function G is of logarithmic growth and approximated from below by F.

Let .T" be an infinite subset of the natural numbers with the following property:

(&) n 6 .T" n + n!

Using the function F, we can give a simple example for such a set ,T" (compare [7])"

9c’={n>2lVge[3 n-l] F(/!) < F(n)}.

The following property of ,T" will be needed in the lower bound proofs.
LEMMA 11.
(1) Every interval oftheform [m, m3] with m > 3 contains an element of/.
(2) For any integer n > 2 holds n + n! ,T’.

Proof. Since the function F is not bounded, the set ,T" is infinite. More specifically,
contains all numbers of the form {I)(p) because F({P(p)) > p and, for all n < {I)(p), by

848 M. LISKIEWICZ AND R. REISCHUK

the same argument as in property 3 above, F((Pk))) < Pk. (1) can be shown by estimating
the density of the sequence ((Pk))k=l,2 Since Pk+l < 2p for all k, we get

+/logpi p,
(I)(Pk+l)-- H P!lgmP*+lJ H Pi

Pi <Pk+l Pi <Pk+l

(P) H Pi < dp (pk)3.
Pi <Pk+l

(2) follows easily from the equation F(n) F(n / n!). To see this equality, note that any
divisor of n divides n + n! as well. Hence F(n) < F(n + n!). On the other hand, from the
definition of F, we know that

F(n) does not divide n

and, since F(n) < n,

F(n) divides n !.

Therefore, F(n) does not divide n + n!, which means that F(n + n!) < F(n). [3

3.2. ATMs with a constant number of alternations. With the help of the sets .T" as
defined above, we construct a sequence of languages that separate the different levels of the
alternation hierarchy for sublogarithmic space-bounded ATMs.

DEFINITION 6. For an infinite subset .T" of the natural numbers, let L be the language
over the single-letter alphabet given by 1n E L iffn . Assume that has property
(&) and that Ly Fl2Space(llog) and Ly E2Space(llog). Then we define L2 :-- {1}+
and, for k > 3, L :--(L-I {0})+. Furthermore,

Lri2 := L. and LE2 "= {1}+ fq -,
L:: := {Wl0W20... 0Wp01 p N, Wi L-i and ! [1...p]

Lm "= {w0w20...0wp01p N, wi L,-1 andS’ [1...p]

Note that L and LH2 are just complementary. For larger k, the corresponding languages
are "almost" complementary, i.e., restricting to strings with a syntactically correct division
into subwords by the 0-blocks (more formally, Lri L C) Lr).

LEMMA 12. For the specific defined above, with the help ofthefunction F, thefollowing
holds:

L: HSpace(llog) and L: EzSpace(llog).

Proof. We describe llog space-bounded H2TMs Mn and E2TMs Ms that recognize the
language L (resp., the complement of L:). The machine Mn verifies the condition that

6 [3 n- 1], F() < F(n)as follows:
deterministically, it computes F(n) and writes down the binary representation of
F(n) on the tape;
universally, it guesses an integer 6 [3... n 1]: it moves its input head to the right
and stops positions from the right end of the string ln;
existentially, it guesses an integer k E 1 F(n) and then, moving the input
head to the right, checks deterministically whether k divides . Mn accepts if k does
not divide .

The complementary machine Mz writes down F(n) in binary on the work tape and tests
whether

3613 n-l] k6[1 F(n)-l] kdivides

Similarly as in Mn, the input-head position represents the integer . The integer k is stored in
binary on the work tape. It is obvious that Mri recognizes Ly and that Mz recognizes L:r in
space O (llog). [3

THE SUBLOGARITHMIC ALTERNATING SPACE WORLD 849

Thus the languages L: as assumed in Definition 6 exist. For the base case of the following
inductive separation, we also need the property that Ly E2 Space(o(log)) and symmetrically
that L:r rI2Space(o(log)). For the example above, this has been shown explicitly in [14].
Below we give a general argument showing that this property follows simply from the condition
n andn +n! ’.

LEMMA 13. For any k > 2, the following hold:

L ESpace(llog),

Lm I-ISpace(llog).

Using the fact that Ly rlzSpace(llog) and L= E2Space(llog), the proof of these
properties is simple. The separation now follows from the following result.

THEOREM 8. For any k > 2, thefollowing hold:

Lz - l-ISpace(o(log)),

LI-I ESpace(o(log)).

We will define specific inputs that belong to LZk and Lrlk and show that any sublogarithmic
space-bounded machine cannot work correctly on both inputs.

Let L Ly be fixed. Recall that infinitely many n N exist with n 3t’, In L and
1n+nt L.

DEFINITION 7. For n f’, define the words

W2 :-- 1n+n! and W2 :--- I n,

and, for k > 3,

0 0 0Wk :-- WEk- Wrlk- k-

n 0 0 0WTk :’-- Wk-1 Wr,k-1 k-1

where m,n are the parameters already used in the position-shift lemma (Lemma 9).
From Definition 7, the next result easily follows.
LEMMA 14. For k > 2 and every n f,

W E Lz and W . Ll-lk,

W 6 Lri and W Lz.

Let k >_ 2 and S 6 SUBLOG be a space bound. We will prove Theorem 8 by showing
that if a ETM M accepts Lm in space S, then for sufficiently large n 6 3c, M accepts W:
as well. Similarly, if a rITM M accepts Lz in space S, then for large n 6 , it accepts W
and hence makes a mistake. Recall that N’M,S denotes the constant defined for M and S in 2.

PROPOSITION 1. Let S o(log) and M be an ATM. Then for any k >_ 2, all n > N’M,S,
all strings U, V {0, 1 }*, and any configuration (or, i) with

1. < [U[or > [U W[and
2. SpaceM(ot, i, UWV) < S(n) and SpaceM(oe, , UWV) < S(n),

thefollowing hold:

acc(ot, i, U W V) ==, acc(ot, , U W: V) if (or, i) is existential,

acc (or, ’, U W V) =: acc(or, i, U W V) if (or, i) is universal.

850 M. LIKIEWICZ AND R. REISCHUK

Proof. Remember that " was defined as

" / if/ _< Igl,

/ i+(IW:I-IWI) ifi >]UWI.

For k = 2, the implications above follow from the 1-alternation lemma (Lemma 7).
To establish the proposition for k > 2, we consider the first time that the machine M

makes an alternation and inductively use the corresponding properties for the strings W:_
and WI_1. The argument concentrates only on the block in the middle of a W: string,
which is a W_ word, and analogously for WI strings with a W_I word in the middle.
The main technical difficulty for the following argument is the possibility that in an accepting
computation, the machine may just make its first alternation in the middle block and therefore
may notice the difference between the W: and W strings. But the configuration- and
position-shift lemmas (Lemmas 8 and 9, respectively) imply that there also exist accepting
computations with the first alternation outside this critical region.

The details are as follows. Assume that the configuration (or, i) fulfills properties 1 and
2. Let n > N’t,s and define

X :=U WIk V U nWEk_I Vt,

Y "= U W:k V U Wrlk_ln V!, where

n 0 andU’ U W:ck_

Vt" 0 n 0 V,

A" n OI.n*WEk_l

f:= { j ifj <_ IU’I,
j + (IW_l- IW_al) if j > IXl- IV’l,

Note that " is defined with respect to the partition of the inputs X, and Y with the prefix U and
suffix V, where j is taken with respect to the prefix U’ and suffix V’. Since

nWm_ll IW_al IWl IWl,

(i) whenever both values are defined.

First we prove the following claim.
CLAIM 4. For any memory state [Oel lot2[S(n) and all jl, j2 with

jl, j2 e [0 Ig’l] Jig’ Wk_l-t- IXl / 11,

the following holds:

(Oil, jl) M,X (0/2, j2) =:= (Oil,]1) M,Y (0/2, j"2)"

Proof For suitable Z, Z2 6 {0, 1 }*, the words considered can be written as

W: Z1 Z2 and W Z1 1+! Z2 if k is odd, and

W Z1 +n! Z2 and W Z1 Z2 if k is even.

The claim then follows from the pumping lemma (Lemma 3). [3

THE SUBLOGARITHMIC ALTERNATING SPACE WORLD 851

(A) First we consider existential configurations (or, i). Assume that

acc (or, i, X)

is true. Hence there exists an existential computation path from (or, i) to a final or universal
configuration (fl, j),

(ii) (o, i) M,X (, j),

with the property

(iii) aCCkM-1 (fl, j, X).

We may assume that

(iv) j < IU’I or j > IU’ W_ll
because if U’l < j < U’ W:_ll, then for Z "." U, Z2 := V, W ".= Wk_ 0, and
s "= 2m,n + 1 n (n + n !), the configuration-shift lemma implies

(a, i) M,X (fl, j- A).

Moreover, for r "= "= mk,n and for s := 1, from the position-shift lemma, we can deduce

acc/-*(fl, j A, X).

Therefore, if IU’l < j < [U’ W:_11, the configuration (fl, j’) with j’ "= j A instead of
(, j) satises .properties (ii)-(iv).

Since according to (i), Claim 4 applied to (ii) yields

(or,) (or, i’) M Y (13, f
A terminating configuration (, j) must be accepting because of (ii) and (iii); hence (fl, j)

is accepting and aCCM(0, ’, Y) is true.
For a universal (, j), we apply the induction hypothesis. Because of (iv), requirements

1 and 2 of the proposition are fulfilled for k 1 and := j. Property (i) implies for this choice
of that " j. Therefore, in (iii), replacing j by ’, we conclude

acc4-1 (/, i, X) (/3, i, Y) O.1212kM-1 (/, , Y).

Hence we can conclude that aCCM(C, ’, Y) holds. This proves the proposition for existential
configurations.

(B) Now let us consider universal configurations (or, i), for which acc(ot, ’, Y) holds.
We have to show that aCCM (0t, i, X) is true.

CLAIM 5. For input X, any universal computation path starting in (or, i) is finite.
Proof. Assume, to the contrary, that there exists an infinite computation path which is

universal and starts in (or, i). This means that there exists a universal configuration (/3, j) such
that

(v) (or, i) DM,X (fl, j) M,X (fl, j).

We can assume that

(vi) j IU’I or j > IU’ W:k_ll

852 M. LIKIEWICZ AND R. REISCHUK

because if IU’l < j < IU’ Wk_ I, the configuration-shift lemma implies

(or, i) M,X (fl, j A) M,X (fl, j A).

Hence (v) and (vi) are fulfilled for j’ := j A. From (i) and Claim 4, it follows that

This means that for input Y there exists an infinite computation path which is universal and
starts in (or, f). We get a contradiction to aCCM (or, f, Y).

Now we want to show that for any final or existential configuration (fl, j) that can be
reached from (or, i) on a universal computation path, the following holds:

acc4-* (fl, j, X).

According to Claim 5 this proves accM(a, i, X). Let (or, i) M,X (, j). Two cases will be
distinguished.

Case 1. j < U’l or j > U’ Wk_l
From Claim 4, it follows that

(or, f) (or, i-) M Y fl f
The assumption aCCM(Ot, f, Y) implies

(vii) aCCM-1 (fl, f, Y).

For a final configuration (fl, j), one can conclude from property (vii) that fl must be accepting;
hence aCCM- (fl, j, X) holds.

For an existential (fl, j), the same implication holds using the induction hypothesis.
Case 2. IU’l < j < IU’ Wk_l.
The configuration-shift lemma implies

(or, i) M,X (fl, j- A).

In the proof of Case 1, it was shown for the configuration (fi, j A) that

aCCkM-1 (fl, j A, X)

holds. Using the position-shift lemma, we obtain aCCkM-* (fl, j, X). This completes the proof
of Proposition 1.

Next, we will show that the second requirement ofthe proposition above is always fulfilled.
PROPOSITION 2. Let k > 2 and M be an ATM of space complexity S with S e o(log).

Then there exists a bound S’ o(log) such thatfor all n >_ ArM, S,,

SpaceM(Wk < S’(n) and SpaceM(Wk) < S’(n).

Proof. The idea of the proof is as follows. If in WI andW all substrings generated in
the recursive construction which are multiplies of n! are cancelled, then the remaining word
has a length pk(n), which is polynomial in n. Using the small-space-bound lemma (Lemma
5), which shows that a sublogarithmic space-bounded machine M does not notice a difference
when an arbitrary block of the input is added n! times, it follows that M must obey a space
bound S(pk(n)) on W and Wk. If S grows sublogarithmically in n, so does S(pk(n)).

The technical details of this proof are outlined below. Let

V21(n) in.

THE SUBLOGARITHMIC ALTERNATING SPACE WORLD 853

For d > 3, define

and for 2 d 1,

0] 2dn+V](n) [V_I (n)

-1 (n) 0

Also define a sequence of polynomials pd(n) as follows:

p2(n) n and, for d > 3, pd(n) (2dn + 1). (Pd-l(n) + 1).

Obviously, for any d > 2 and all n,

pd(n) IV(n)l.
Let M be an ATM of space complexity S with S 6 o(log). Define S’(n) := S(pk(n)).
Obviously, S’ 6 o(log). Let n be an integer with n > A/’M,S,.

Since M is S space bounded,

(i) SpaceM(V(n)) < S(pk(n))-- S’(n).

It is easy to check that for any n and any 6 1 k 2], there are words Z1, Z2 Zr over
the alphabet {0}, where

k

r := H 2mt,n+l
t=k-i+2

(for 1, take r "= 1), such that for W := V_ (n) 0, a := 2n(k i) + n + 1, and
b := 2(k + 1),

wa+nW (n) Wa+n Z Wa+n Z2... Zr_ Zr,

wa+n+bn! wa+n+bn!V+1 (F/) Wa+n+bn! Z Z2 Zr_ Z

By the small-space-bound lemma, the following implications hold for 1 k 2:

SpaceM(V(n)) < S’(n) SpaceM(V+l(n)) < S’(n).

Therefore, by (i), we obtain that

(ii) Spacel(Vk-1 (n)) < S’ (n).

Now let W: denote a word W: where all substrings 1n+n! are reduced to 1n. Similarly, Wm
is obtained from W. Obviously, by the small-space-bound lemma, SpaceM(W:k) < S’(n)
implies Spacel(Wrk) < S’(n) and Space ^" S’n (WFlk) < (n) implies Spacet(W) < S’(n)
The proposition holds since

n n (n)WEk WFlk Vkk-1

and by (ii) the space used by M on input Vk-1 (n) is bounded by S’ (n). [3

Now we are ready to prove Theorem 8. Let us assume that M is a ETM accepting Lm
in sublogarithmic space S. By Proposition 2, there exists a function S’ o(log) such that for
any n > ./M,S’,

SpaceM(Wk < St(n) and SpaceM(Wk < St(n).

854 M. LIKIEWICZ AND R. REISCHUK

Let n with n e .T" be an integer larger than N’M,S, (such an n exists since .T is infinite). By
Lemma 14, Wk Ln; hence M has to accept W, which means that aCCu(Ot0, 0, Wk
is true, where (or0, 0) is the initial configuration of M. From Proposition 1, we conclude that
aCCU(Ot0, 0, W:) as well, and hence M accepts Wzk, which by Lemma 14 does not belong
to Lnk, a contradiction.

In the same way, we can show that if M is a 1-[kTM that accepts Lzk in space S, then M
accepts Wk.

3.3. Unbounded number of alternations. Let us now consider ATMs with a noncon-
stant bounding function A for the number of alternations. The separating results for A-
alternation-bounded space classes (Theorem 2) follow from the propositions below.

DEFINITION 8. Let A N -- N be afunction with A(n) > 2for all n and define
Lz(A) := {X X WO for some r 6 N and W Lzk for some k < A(IXI)},

Ln(A) := {X IX WO for some r 6 N and W Lm for some k < A(IXI)}.

LEMMA 15. For any S SUBLOG and all functions A > 2 computable in space S, the
following hold:

Lr,(A) EASpace(S),

Ln(A) FIASpace(S).

Proof. On input X WO the machine first computes a "= A(IXI) and initializes a
counter with that value. It remains to check whether W 6 LZk for some k < a. This can be
done similarly as in the case for fixed k, decrementing the counter each time an alternation
has been performed. V1

For functions A, B N N, let A <, B denote that A(m) <_ B(m) for all m 6 N with
equality for infinitely many m.

PROPOSITION 3. For any S SUBLOG and allfunctions A and B with 1 < A <_, B and
B. S 6 o(log), the following hold:

Lz(A) YIBSpace(S),

Ll-I(A) ’ EBSpace(S).

Proof. Let S e SUBLOG and let A and B be functions with 1 < A _<, B and B. S 6 o(log).
log mThese assumptions imply that there exists a constant m0 > exp exp 9 such that A(m) < hogm

for all m > m0. Define the functions h and f as follows:

h(m)

log rnexp \]
3 A(m)

f(m) "= max{ 1 ,T t3 {0}, < h(m)}.

For rn > m0, we can bound h by

h(m) <_ exp (10m) m1/2,

exp llog rn llog rn
h(m) > > 3

31ogrn/ llogrn 3

and hence f(m) e ,T’. Moreover, from Lemma 11, it follows that

(i) ()1/3f(m) > h(m) 1/3 > llogm

THE SUBLOGARITHMIC ALTERNATING SPACE WORLD 855

Define the function S’ N N as follows:

S’(n) := max({0} {S(m) lf(m)= n}).

Because f grows unboundedly, S’ (n) will always be a finite number.
LEMMA 16. S’ 6 o(log).
Proof First we show that S 6 o(log of). By assumption,

So -- and log A < llogm < S.

This implies

(t (log_s o -logA o(logh) o(logf)S e o - -T
Thus if n goes to cxz,

and

S(n)
log f(n)

S’(n) S(m) S(m)
max max

logn tmlf(m)=n} logn imlf(m)=n} log f(m)
If n goes to cx, m has to as well, and hence all quotients converge to O. But this means that
S’ o(log). I3

Consider the function defined by

t(m) "= m PA(m(f(m)),

where Pd (n) has already been defined in the proof of Proposition 2, and note that

PA(m)(f (m)) <_ (3 A(m) f(m))A(m) < m.

Thus t(m) > O.
Now let M be an ATM that works in space s(IxI) and makes at most B(IXI) 1 alter-

nations. Let m be an integer with

(ii) m > max{m0, expexp3(A/’M,s,)4} and A(m) B(m).

Such an m exists since A <. B. Then define

k’=A(m) and n:=f(m).

By (i) and (ii), n > ./V’M,s,. Moreover, n " and M makes no more then k 1 alternations
on any input of length m. Let

X :-- W;(n)0t(m),

with the word V; (n) defined as in the proof of Proposition 2. Since the length of V; (n) is
p(k, n), the string X is of length m. From the definition of S’, it follows that

Spacet(X) <_ S(m) <_ max{S(m’) f(m’)= n} S’(n) and

Altert(X) <_ B(m) 1 _< exp S(m) <_ exp S’(n).

Hence for the machine M and the function S’, the assumptions of the small-space-bound
and small-alternation-bound lemmas (Lemmas 5 and 6, respectively) are fulfilled. Using the

856 M. LIKIEWICZ AND R. REISCHUK

small-space-bound lemma for the input X in the similar way as in the proof of Proposition 2,we
can show that

Space(W ot(m)), Spacet(W 0t(m)) Space(X) <_ S’(n).

Similarly, by the small-alternation-bound lemma, we obtain

AlterM(Wk 0t(m)), AlterM(W 0t(m)) AlterM(X) <_ B(m)- k- 1.

Now we can finish the proof. Let us assume that M is a EsTM accepting Ln (A) in space
S. By Lemma 14, Wk Lrik holds; hence M has to accept W 0t(m) But this means
that aec(t0, 0, Wk 0t(m)) is true, where (or0, 0) is the initial configuration of M. From
Proposition 1, we conclude that aceM(C0, O, W; 0t(m)) holds as well. Therefore M accepts
Wk 0t(m), which by Lemma 14 does not belong to Ln (A), a contradiction.

In the same way, we can show that if M is a I7BTM that accepts Lz (A) in space S, then
M accepts Wk 0t(m) [’]

4. Closure properties. In this section, we discuss closure properties of the classes
EgSpace(S) and 17 Space(S) for sublogarithmic bounds S. First, for any integer k >_ 2,
we define the languages

AZk "= L {0} Lz, Bz "= Lz {0} L,

and, symmetrically,

Arlk := L {0} Ln, Bn "= Lri {0} L.

It is easy to see that

(i) Az, Bz EkSpace(llog) and Arlk, Brlk IlkSpace(llog).

PROPOSITION 4. For all k >_ 2, thefollowing hold:

Az Bz l-Ig+ Space(llog) \ Ek+1Space(O(1Og)),
Ank A Bnk Ek+ Space(llog) \ Hg+Space(o(log)).

Proof It is well known that for any function S, the classes ESpace(S) are closed under
union, and, symmetrically, the I-I Space(S) are closed under intersection (see, e.g., [25]).
Hence by (i), Az N Bz Fl+lSpace(llog)and Ang U Bn Ek+lSpace(llog). To
prove that Azg f Bz ’ E+l Space(o(log)) and Am U Br ’ 17+ Space(o(log)), we first
modify Proposition 2 in the following way.

PROPOSITION 5. Let k >_ 2 andM be anATMofspace complexity S with S o(log). Then
thereexistsabound S" o(log) suchthatforalln > .A/’M,s,, andwords W, W2 {Wg, W},

SpaceM(W1 0 W2) _< S’(n).

Proof. Let S"(n) "= S(2pg(n) + 1), where pg is the polynomial specified in the proof
of Proposition 2. It is easy to check that the proof of Proposition 2 generalizes to this situa-
tion. [

Let us assume, to the contrary, that Az f3 Bz Ek+l Space(S) for some S o(log n).
Let M be an S space-bounded E+ITM for Az N Bz. Choose n .T" sufficiently large. By
Lemma 14, Wg Lz; hence M has to accept

x 0

THE SUBLOGARITHMIC ALTERNATING SPACE WORLD 857

which means that there exists an existential computation path starting in initial configuration
(or0, 0) and ending in a universal configuration (/3, j), with

(ii) (a0, 0) M,X (fl, j)

and

(iii) aCCkM(fl, j, X).

(The trivial case where M accepts X without alternation could be handled similarly.) Now let

Y1 "= Wk 0 Wk and Y2 "= W-ik 0 W’:k. By Proposition 5 there exists S" 6 o(log n) such
that

SpaceM(X), SpaceM(Y1), SpaceM(Y2) <_ S"(n).

Therefore, applying Claim 1 and Proposition 1 to (ii) and (iii), respectively, we obtain

(OlO, O) M,Y1 ([, J) and acc4(fl, j, Y1)

if j < [Wk 0[and

(oo, O) M,Y2 (fl, f) and aCCkM(fl, f, Y2)

otherwise, where f j + Y21 IX I, Hence M also accepts input Y1 or Y2. This yields a
contradiction since, by Lemma 14, Y, Y2 Ar,k N Bk.

Similarly, we can show that if a I-Ik+ITM accepts Ark U BrIk within space S o(log n),
then it has to reject X, but it also rejects input Y1 or Ye, which both belong to Ank t3 Brk, a
contradiction. [3

This result can be applied to prove Theorem 3. For all k > 2 and any S SUBLOG, the
following hold:

1. Ek Space(S) and Flk Space(S) are not closed under complementation.
2. Ek Space(S) is not closed under intersection.
3. Ilk Space(S) is not closed under union.
4. Ek Space(S) and Ilk Space(S) are not closed under concatenation.

Property 1 follows immediately from Lemma 13, Theorem 8, and the following equations"
Lzk Lk fq Lnk and Lnk Lk fq Lzk, where Lk is the regular language introduced in
Definition 6.

By (i), Ark, Brk EkSpace(llog) and Arlk, Bnk IlkSpace(llog). On the other hand,
fromProposition4, Ark fq Bk

_
Ek+l Space(o(log)) and Ank Bl-lk . Ilk+l Space(o(log)).

This proves properties 2 and 3.
Property 4 for Ek classes follows from the fact that for any k > 2, Lrk {0}LEk AEk fq

Bk does notbelong to EkSpace(o(log)), but Lrk EkSpace(llog). To see that FIk Space(S)
is not closed under concatenation, define the languages

L "= Lk 2 {e},

where e denotes the empty string, and

L := {wOweO...OwpOI p 6 N, wi Lk-1 and Wl 6 Llk-}.

Obviously, both languages belong to FIk Space(llog), but from Theorem 8, it follows that

Lk L Lrk - FIkSpace(o(log)).

858 M. LISKIEWICZ AND R. REISCHUK

5. Lower space bounds for context-free languages.
PROPOSITION 6. L# {ln01m :n :fi rn} ’ ASpace(o(log)).
Proof. Let us assume, to the contrary, that L# is recognized by an ATM A in space S for

some S o(log). Let S’(n) := S(2n + 1). Obviously, S’ 6 o(log). Let fi := A/’M,s,. Then by
the small-space-bound lemma (Lemma 5), for all k, g >_ 0,

(i) SpaceA (101’) SpaceA (l+k’!01’+e!).

Let

(ii) SpaceA(liO1;).

For this fixed , we define the language {l+k’!01’+e’! k, g 6 N and k g} and
construct an automaton A] that recognizes . A] performs the following algorithm.

Step 1. Check deterministically if the input X has the form 1+!01+e! for some integers
k and e; reject and stop if this condition does not hold.

Step 2. Move the head to the first symbol of the input and start to simulate the machine A.

It is obvious that/] accepts an input X l’+k!01+e! iff A accepts X. Hence we have
L(/]) . It is easy to see that Step can be performed within space O(logfi!), which
is a constant. Moreover, from (i) and (ii), it follows that Step 2 also requires only constant
space g. Hence recognizes f within constant space. We get a contradiction since f, is
nonregular. [3

Using a similar proof, we can show that the language

L= := {ln01n "n G 1}

is also not in ASpace(o(log)).
The rest of this section is devoted to the lower space bounds for a large subset ofnonregular

context-free languages.
The block structure of a bounded language L can equivalently be represented using a

finite alphabet {al ar}. Then L is a subset of {al}*... {ar}*.
DEFINITION 9. Let V(L) denote the set {(v Vr) 1 avl ...a . L}. Sets of the

form {or +n +... + nkl3 n nk N} with or, fll Nr, are calledlinear sets.
Afinite union oflinear sets is a semilinear set. A language L is semilinear ifL c_ {al }*... {ar }*
and V L is a semilinear set.

PROPOSITION 7. Let a language L c_C. {al}*... {at}* be semilinear and let L, L
ASpace(S) for some S o(log). Then L is regular

Proof. For r 1, the proposition is true because every semilinear tally language is
regular. Let us assume that r > 1 and that the proposition holds for r 1. Sets of the form

with y y 1 are called cones (see [1]). Now assume, to the contrary, that L is
nonregular. To show that this cannot occur, we first construct a semilinear language/, 6

A Space(S) that is also nonregular and for which there exists an r-dimensional cone C such
that V({) A C 0. To this end, methods developed by Alt and Mehlhorn [1], [4] will be
used.

LEMMA (see [1]). There exists an r-dimensional cone C and a regular language R
{a }*... {at }* with

V(L) n C V(R) n C.

THE SUBLOGARITHMIC ALTERNATING SPACE WORLD 859

Let R and C be as in the lemma. Define L1 := L \ R and L2 := R \ L. Obviously, L1
or L2 is nonregular since L is nonregular. We set := L1 if L1 is nonregular and/ L2
otherwise. The language i is semilinear since the class of semilinear sets is closed under
Boolean operations [12]. Moreover, / 6 ASpace(S), because L,- ASpace(S), and
V(L) A C 0 for the r-dimensional cone C.

DEFINITION 10. Let us call a set K c_ 1 extended if there exists O/ 1 and Nr+
such that

Y k 6 l O/ + k 6 K.

Remark. In 1], a different definition of extended set has been used. However, it is easy
to check that both definitions are equivalent.

If V (/) is not extended, then one can show similarly as in 1 that there exists a nonregular
language in {al}*... {ar-l}* fulfilling the assumptions of the proposition. Hence by_ the
inductive hypothesis, we obtain a contradiction. Therefore, we can assume that V(L) is
extended. Let O/= (o/1 O/r) and/3 (/31 /r), with O/1 O/r 6 N and/31 ,/r G

N+, be vectors such that

Yk6N O/+kfl6 V(L).

Moreover, let M be an ATM which recognizes L in space S. Define the function S’ as

Since S o(log), S’ o(log) also. Let fi "= N’,s,. Then we define

/ := {a1+(’+e1!)1 arlr-}-(lal-erl!)tr e 1,.. e 1} and /, :=/ (q L.

A contradiction will be obtained from the following claims
CLAIM 6. can be recognized in constant space.
CLAIM 7. is nonregular.
Proof of Claim 6. Using for every r fl/-times the small-space-bound lemma

we obtain that for any sequence of integers i >" 0

(i) g := Spacel(a+(+e’! aOtrt-(l--rl!)ir) S,(a,+, arr+r).
Let/ be an ATM which performs the following algorithm.

Step 1. Check deterministically if the input X has the form

a a

for some integers 1 r. Reject and stop if this condition does not hold.
Step 2. Move the head to the first symbol of the input and start to simulate the machine M.

It is obvious that/ accepts an input X a++eltl ar+(+ert!)r iff/ accepts X.
Hence we have L() . It is easy to see that Step 1 can be performed within space
O(log fi !), which is a constant. Moreover, from (i), it follows that Step 2 also requires only
constant space . Hence recognizes the language/, within constant space. [3

Proofof Claim 7. A set of the form

{’ -+- (kll kr6r) k kr 1}

860 M. LISKIEWICZ AND R. REISCHUK

with , 6 N and 61 r 6 N is called a grid. We show that if is regular then there exists
an r-dimensional grid in V (L).

Assume that L is regular. Then, using the pumping lemma (Lemma 3) for regular lan-
guages, one can show that there exist integers g > 0 and 3a r > 0 such that for all
kl kr >_0,

ot -t- (fi + gfi!)fl -q- (el61 kr(r) E V().

Therefore, the r-dimensional grid G := {?’ + (ka krr) lkl kr N}, where ?’
ot + (fi + efi!)/, is a subset of g(), which implies G

V(). From this and the property

V({) A C 0 shown above, we obtain that G C) C 0 for the r-dimensional cone C. This
yields a contradiction to the following result.

LEMMA (see [1]). Let G

_
N be an r-dimensional grid and let C c_ It be an r-

dimensional cone. Then G f) C 0.
This completes the proof of Proposition 7.
Recall that a language L is called strictly nonregular if there are strings u, v, w, x, and y

such that L f) {u}{v}*{w}{x}*{y} is context free and nonregular. It was shown by Stearns [20]
that every nonregular deterministic context-free language is strictly nonregular. Therefore,
from Proposition 7, we immediately obtain that if L is a nonregular deterministic context-
free, strictly nonregular, or nonregular context-free bounded language, then for ATMs with-
out any bound on the number of alternations, it is not possible that L and L both belong to
A Space(o(log)). Moreover, from Theorem 7, it follows that the class of languages recognized
by space-bounded ATMs with a constant number of alternations is closed under complement.
Hence it follows that the language L does not belong to [..Jr I3Space(o(log)). This com-
pletes the proof of Theorem 6.

6. Conclusions. The obvious question remaining is how classes ESpace(S) and
rI Space(S) compare. It is somewhat annoying that the techniques developed in this pa-
per do not provide any help for the case k 1. It is not completely unrealistic to believe
that both classes may be equal, which would give the novel result that a hierarchy is infinite
although its first level collapses.

If we restrict the complexity classes to bounded languages, E Space(S) is closed under
complementation and both classes are identical, which has been shown in [2] and [23]. But
for k 2, the situation changes completely. The languages Lz and LrI2 are unarythe most
stringent form of a bounded languageand still separate EzSpace(S) from l-I Space(S).
Thus a separation of the first level would require syntactically more complex languages than
the second level. For k > 2, the languages Lz and Lm used in this paper to establish the
separation are no longer bounded. But by Proposition 4, the third level can also be separated
using the simple bounded languages AE2 ["1 BE2 and An2 U Bn2 that both are subsets of
(1}*(01{1}*.

Nothing seems to be known for level 4 and higher. Thus the sublogartihmic space hier-
archy for bounded languages may be even more complex. We have made some observations
leading to the conjecture that for bounded languages this hierarchy might indeed consist of
only a finite number of distinct levels.

Finally, it would be nice to characterize the exact relationship between classes
co-Ek Space(S) and lqk Space(S) for sublogarithmic space bounds S and the class of arbitrary
languages.

REFERENCES

[1] H. AL’, Lower bounds on space complexityfor context-free recognition, Acta Inform., 12 (1979), pp. 33-61.
[2] H. ALT, V. GEFFEIT, ArqD K. MEHLHORN,A lowerboundforthe nondeterministic space complexity ofcontext-free

recognition, Inform. Process. Lett., 42 (1992), pp. 25-27.

THE SUBLOGARITHMIC ALTERNATING SPACE WORLD 861

[3] H. ALT AND K. MEHLHORN,A language overa one symbol alphabet requiring only 0 (log log n) space, SIGACT
Newslett., 1975, pp. 31-33.

[4] Lower boundsfor the space complexity of contextfree recognition, in Proc. 3rd Intemational Collo-
quium on Automata, Languages, and Programming (ICALP), Lecture Notes in Comput. Sci., Springer-
Verlag, Berlin, 1976, pp. 339-354.

[5] B. YON BRAUNMOHL, Alternationfor two-way machines with sublogarithmic space, Proc. 10th Symposium on
Theoretical Aspects of Computer Science, Lecture Notes in Comput. Sci., Springer-Verlag, Berlin, 1993,
pp. 5-15.

[6] B. VON BRAUNM(3HL, R. GENGLER, AND R. RETTINGER, The alternation hierarchy for machines with subloga-
rithmic space is infinite, Research report, Universitit Bonn, Bonn, Germany, January, 1993.

[7] J. CHANG, O. IBARRA, B. RAVIKUMAR, AND L. BERMAN, Some observations concerning alternating Turing
machines using small space, Inform. Process Lett., 25 (1987), pp. 1-9.

[8] V. GEFFERT, Nondeterministic computations in sublogarithmic space andspace constructability, SIAM J. Com-
put., 20 (1991), pp. 484-498.

[9] , Sublogarithmic E2-space is not closed under complement and other separation results, Technical
report, University of E J. afirik, Koice, Slovakia, 1992.

10] , Tally version of the Savitch and Immerman-Szelepcsnyi theorems for sublogarithmic space, SIAM
J. Comput., 22 (1993), pp. 102-113.

11 ,A hierarchy that does not collapse: Alternations in low level space, manuscript.
[12] S. GINSBURG, The mathematical theory ofcontext-free languages, McGraw-Hill, New York, 1972.
[13] N. IMMERMAN, Nondeterministic space is closed under complementation, SIAM J. Comput., 17 (1988),

pp. 935-938.
14] M. LIKIEWICZ AND R. REISCHUK, Separating the lower levels ofthe sublogarithmic space hierarchy, Technical

report, Institut ftir Theoretische Informatik, Technische Hochschule Darmstadt, 1992; Proc. 10th Sym-
posium on Theoretical Aspects of Computer Science, Lecture Notes in Comput. Sci., Springer-Verlag,
Berlin, 1993, pp. 16-27.

15] ,The sublogarithmic space hierarchy is infinite, Technical report, Institut ftir Theoretische Informatik,
Technische Hochschule Darmstadt, Darmstadt, Germany, 1993.

16] B. LITOW, On efficient deterministic simulation ofTuring machine computations below logspace, Math. Systems
Theory, 18 (1985), pp. 11-18.

[17] E MICHEL, A survey ofspace complexity, Theoret. Comput. Sci., 101 (1992), pp. 99-132.
18] D. RANJAN, R. CHANG, AND J. HARTMANIS, Space bounded computations: Review and new separation results,

Theoret. Comput. Sci., 80 (1991), pp. 289-302.
[19] M. SIPSER, Halting space-bounded computations, Theoret. Comput. Sci., 10 (1980), pp. 335-338.
[20] R.E. STEARNS, A regularity testfor pushdown-machines, Inform. and Control, 11 (1967), pp. 323-340.
[21] R.E. STEARNS, J. HARTMANIS, AND P. M. LEWIS, Hierarchies ofmemory limited computations, in Proc. 1965

IEEE Conference Record on Switching Circuit Theory and Logical Design, IEEE Press, Piscataway, NJ,
1965, pp. 179-190.

[22] R. SZELIPCSENYI, The method offorced enumerationfor nondeterministic automata, Acta Inform., 26 (1988),
pp. 279-284.

[23] A. SZEPIETOWSKI, Turing Machines with Sublogarithmic Space, Lecture Notes on Comput. Sci. 843, Springer-
Verlag, Berlin, New York, Heidelberg, 1994.

[24] K. WAGNER, The alternation hierarchy for sublogarithmic space: An exciting race to STACS ’93 (editiorial
note), in Proc. 10th Symposium on Theoretical Aspects of Computer Science, Lecture Notes in Comput.
Sci., Springer-Verlag, Berlin, 1993, pp. 2-4.

[25] K. WAGNER AND G. WECHSUNG, Computational Complexity, Reidel, Dordrech, 1986.

SIAM J. COMPUT.
Vol. 25, No. 4, pp. 862-873, August 1996

() 1996 Society for Industrial and Applied Mathematics
007

TREE-ADJOINING LANGUAGE PARSING IN o(n6) TIME*
SANGUTHEVAR RAJASEKARAN

Abstract. In this paper, we present algorithms for parsing general tree-adjoining languages (TALs). Tree-
adjoining grammars (TAGs) have been proposed as an elegant formalism for natural languages. It was an open
question for the past ten years as to whether TAL parsing can be done in time o(n6). We settle this question
affirmatively by presenting an O(n M(n))-time algorithm, where M(k) is the time needed for multiplying two
Boolean matrices of size k k each. Since O(k2"376) is the current best-known value for M(k), the time bound of
our algorithm is O (n5"376). On an exclusive-read exclusive-write parallel random-access machine (EREW PRAM),
our algorithm runs in time O(n log n) using (n M(n))/log n processors. In comparison, the best-known previous
parallel algorithm had a run time of O(n) using n processors (on a systolic-array machine).

We also present algorithms for parsing context-free languages (CFLs) and TALs whose worst-case run times
are O(n3) and O(n6), respectively, but whose average run times are better. Therefore, these algorithms may be of
practical interest.

Key words, tree-adjoining languages, parsing, natural language processing, parallel algorithms, context-free
grammars

AMS subject classifications. 11Y16, 68N20, 68Q20, 68Q22, 68Q25, 68S05, 68U30

1. Introduction. In [9], Joshi, Levy, and Takahashi introduced a grammatical formalism
called tree-adjoining grammar (TAG). TAGs are strictly more expressive than context-free
grammars (CFGs). For instance, {an bncnln >_ 0} can be generated with a TAG, but this
language is not context free. TAGs have been shown to be good grammatical systems for
natural languages 10]. In this paper, we will restrict our discussion only to the problem of
language recognition, since such an algorithm can also be used for retrieving a parse. We use
the terms "parsing" and "recognition" interchangeably.

Many papers have been written on the parsing problem for TAGs. Vijayashanker and Joshi
19] gave the first polynomial-time algorithm for tree-adjoining language (TAL) parsing. Their
algorithm had a run time of O(n6), assuming that the size of the grammar is constant. This
assumption has been made in most of the literature on parsing. This algorithm had a flavor
similar to that of the Cocke-Kasami-Younger (CKY) algorithm for context-free language
(CFL) parsing.

An Earley-type parsing algorithm has been given by Schabes and Joshi 16]. This algo-
rithm also takes O(n6) time. For some special cases of TALs, better algorithms have been
discovered 15]. Several attempts have been made in the past to obtain o(n6)-time algorithms
(see, e.g., [5, 6]). The parallel complexity of TAL parsing has been studied as well. As an
example, Palis, Shende, and Wei present an optimal linear-time algorithm on a systolic-array
machine with n5 processing elements 12]. An excellent treatise on TAGs can be found in 13].
Recently, Nurkkala and Kumar 11 presented an efficient O (n6)-work parallel algorithm for
TAL parsing.

It was an open question since 1986 [19] as to whether general TAL parsing can be done
in o(n6) time. In this paper, we present an algorithm that runs in time O(n M(n)), where
M(k) is the time needed for multiplying two Boolean matrices of size k k each. The
best-known value for M(k) is O(k2"376) as has been shown by Coppersmith and Winograd
[2]. In a related work, Valiant [18] has shown that CFL parsing can be reduced to Boolean

*Received by the editors December 15, 1993; accepted for publication (in revised form) December 22, 1994.
This research was supported in part by NSF Research Initiation Award CCR-92-09260 and ARO grant DAAL03-89-
C-0031.

tDepartment of Computer and Information Sciences, University of Florida, P.O. Box 116120, Gainesville, FL
32611.

862

TREE-ADJOINING LANGUAGE PARSING IN o(n6) TIME 863

a b

S

b S c

FIG. 1. TAGs: An example.

matrix multiplication. Similar work for CFL parsing has also been done by Graham, Harrison,
and Ruzzo [4]. Although we make use of algorithms for Boolean matrix multiplication, our
approach is different from Valiant’s. Direct application of Valiant’s technique to TAL parsing
seems to fail 14, 15].

OurTAL-parsing algorithm also runs in O (n log n) time using (n2 M(n)) / log n exclusive-
read exclusive-write parallel random-access machine (EREW PRAM) processors. This run
time is nearly the same as that of the previously best-known algorithm for TAL parsing 12].
The processor bound of our algorithm is significantly better than that of [12]. Although we
make use of a different model than that of [12], for example, one could invoke Ranade’s
PRAM-simulation algorithm to infer that it is possible to obtain nearly the same run time on
the systolic-array machine, nearly preserving the work done.

2. Definition of TAGs. A TAG is a 5-tuple G (N, E t_J {}, I, A, S), where
N is a finite set of nonterminal symbols,
E is a finite set of terminal symbols disjoint from N,

is the empty terminal string not in E,
I is a finite set of labeled initial trees,
A is a finite set of labeled auxiliary trees, and
S 6 N is the distinguished start symbol.

Initial and auxiliary trees of a TAG are elementary trees. All internal nodes of elementary
trees are labeled by nonterminal symbols. Every initial tree is labeled at the root by the start
symbol S and has leaf nodes labeled by symbols from E U { }. An auxiliary tree has both its
root and exactly one leaf node (called thefoot node) labeled by the same nonterminal symbol.
All other leaf nodes are labeled by symbols from E U { }. An example of a TAG is given in
Figure 1.

An operation called adjunction composes trees of the grammar as follows: Let 9/be a
tree containing some internal node labeled X, and let/3 be an auxiliary tree whose root is also
labeled by X. Adjoining/3 into 9/results in the tree ot (see Figure 2). The formalism also
supports constrained adjunction, selective adjunction, and obligatory adjunction. See, e.g.,
[19].

Figure 4 in 4 displays a TAG that generates the language L {anbncnln > 0}. Using
the pumping lemma for CFGs, we could readily verify that L is not context free. Thus TAGs
are strictly more powerful than CFGs. Also, TAGs possess numerous interesting linguistic
properties. The linguistic significance of TAGs is described in [8] and [10].

Joshi [8] showed how TAGs factor recursion and the domain of dependencies in an elegant
way. Since the introduction of TAGs, several other formalisms have been proposed for natural
languages. Examples include the linear indexed grammars [3] and combinatorial categorial
grammars 17]. These formalisms are different in terms of the formal objects and operations
defined and were motivated by different aspects of language structure. Surprisingly, all these
formalisms have been shown to be equivalent, thereby increasing the possibility that these
formalisms capture some of the important and fundamental aspects of languages.

864 SANGUTHEVAR RAJASEKARAN

FIG. 2. The operation ofadjunction.

x

2.1. Organization ofthis paper. The rest of this paper is organized as follows. In 3, we
provide an overview of Vijayashanker-Joshi’s algorithm for TAL parsing. In 4, we present
our algorithm for CFL parsing and show how this algorithm can be extended to TALs to
obtain a run time of O(n6). We apply matrix-multiplication algorithms in 5 to show that
TAL parsing can be done in time O(nM(n2)). We reduce this run time further to O(n3M(n))
in 6. Finally, 7 concludes the paper.

3. ijayashanker-Joshi’s algorithm. In this section, we provide a brief summary of
Vijayashanker-Joshi’s algorithm [19]. Their algorithm is similar to the CKY algorithm for
CFL parsing. If ala2.., an is any given input, the CKY algorithm for CFL parsing constructs
a two-dimensional array A such that A[i, j is the set of all nonterminals that can derive the
substring ai+lai+2.., aj. Array A can be constructed in O(n3) time, and then we simply have
to check if the start symbol is in A[0, n].

A similar construction is employed in Vijayashanker-Joshi’s algorithm 19]. Vijayashan-
ker-Joshi’s algorithm 19] is more complicated than the CKY algorithm since a TAG permits
the operation of adjunction (which is not in a CFG). A four-dimensional array A is used for
TAL parsing.

We assume that the TAG is in normal form, i.e., each node has at most two chil-
dren. The array A is defined as follows" A node named c is in A[i, j, k, l] if and only
if there is a derived tree rooted at ot whose frontier is given by ai+lai+2...aj Ya+lak+

al, where Y is a foot node. The frontier of any tree is defined to be the sequence of labels
in the leaves of the tree from left to right.

To begin with, A[i, + 1, + 1, + 1 consists of the nodes in the frontier of elementary
trees whose label is ai+l, for 0 __. < (n 1). For all < j, A[i, i, j, j] contains the foot
nodes of all the auxiliary trees.

The algorithm runs in n4 phases, where each phase consists of the following five cases"

1. If a node/x is in A[i, j, k, p] and another node/z is in Alp, m, rn, l] (for some
k < p < rn and p < rn < l) such that/z and/z2 are the left and fight children,
respectively, of node/z, then the node/z belongs to A[i, j, k, l] if/z is the ancestor
of the foot node (see Figure 3).

2. This step is symmetric to step 1. Here there are two nodes/z and/z such that
tzl A[i, m, m, p], lz2 Alp, j, k, l] (for some < rn < p and rn _< p _< j), and

TREE-ADJOINING LANGUAGE PARSING IN o(n6) TIME 865

jlk p

Case Case 5

FIG. 3. Vijayashanker-Joshi’s algorithm.

these two nodes are the left and right children of node/z. In this case, node/z will
belong to A[i, j, k, l].

3. If/z is the parent of/zl 6 A[i, j, j, k] and/z2 6 A[k, m, m, 1], then/x belongs to
A[i, j, j, l].

4. If/z’s only child is/zl 6 A[i, j, k, l], then/ is also in A[i, j, k, l].
5. If node/z2 is in A[m, j, k, p] and the root/z 6 A[i, m, p, 1] of some derived tree ot

has the same label as that of/z2, then we could adjoin ot at/z2. Thus/x belongs to
A[i, j, k, l] (see Figure 3).

Clearly, each phase of the algorithm takes O(n2) time and there are n4 entries to fill in
the array A. Thus the whole algorithm runs in O(n6) time. Finally, the given input will be
in the language if and only if some initial tree is in A[0, j, j, n], 0 < j _< n. If the grammar
size is also taken into account, this algorithm runs in time O(n6 IGI 2) with space complexity
O(n4 IGI). However, the time bound can be reduced to O(n6 IGI log IGI).

4. The new algorithm. In this section, we present an algorithm for CFL parsing that
runs in O(n3) time with a better average run time. Then we extend this algorithm to TAL
parsing.

4.1. CFL parsing. There are two well-known algorithms for CFL parsing, namely, the
CKY algorithm and Earley’s algorithm, both of which run in time O(n3). Furthermore, CFL
parsing can be reduced to Boolean matrix multiplication 18]. In this subsection, we present
an O(n3)-time algorithm that is slightly different from the CKY algorithm. A special feature
of this algorithm is that it can be adapted (with some crucial modifications) to parse TALs.

Consider a CFG G (N, T, P, S) in Chomsky normal form. Each production in P is
of the form A --+ BC or A --+ a, where A, B, and C are nonterminals and a is a terminal
symbol. The basic idea behind the algorithm is the following: The algorithm runs in stages,
where in each stage we scan through each production in P and grow larger and larger parse
trees. In particular, at any time, each nonterminal has a list of tuples of the form (i, j). If A
is any nonterminal, LIST(A) will have tuples (i, j) such that A derives ai+lai+2...aj.

If A --+ BC is a production in P, then in any stage we process this production as follows:
We scan through elements in LI ST(B) and look for matches in LI ST(C). For example, if
(i, k) is in LIST(B), we check if (k, j) is in LI ST (C), for some j. If so, we insert (i, j) into
LIST(A) (if it is not already there). Processing a single production can be done in O(n3)
time if we maintain the following data structures: (1) for each nonterminal A, an array (call
it XA) of lists indexed through n, where XA[i] is the list of all tuples from LI ST(A) whose

866 SANGUTHEVAR RAJASEKARAN

first item is (1 _< _< n); and (2) an n n matrix M whose (i, j)th entry will be those
nonterminals that derive ai+lai+2...aj. There can be O(n2) entries in LIST(B), and for
each entry (i, k) in this list, we need to search for at most n items in LI ST (C). Thus the total
time needed to process a production is O (n3).

By induction, we can show that at the end of stage (1 _< < n), the algorithm would
have computed all the nonterminals that span any input segment of length g or less. (We say
a nonterminal spans the input segment I ai+lai+2.., aj if it derives I; the nonterminal
is said to have a "span-length" of j i.) Therefore, the algorithm terminates after n stages,
implying that the total run time is O(n4).

However, we can reduce the run time of each stage to O (n2) as follows: In stage e, while
processing the production A --+ BC, work only with tuples from LIST(B) and LIST(C)
whose combination will derive an input segment of length exactly . For example, if (i, k) is
a tuple in LI ST (B), the only tuple in C we should look for is (k, + e). We can look for
such a tuple in O (1) time using the matrix M. With this modification, each stage of the above
algorithm will only take O (n2) time, yielding the following

LEMMA 4.1. This algorithmfor CFL parsing runs in time O(n3) with space complexity
O (n2). The algorithm can also construct parse trees while recognizing CFLs.

Note. This algorithm has an average run time different from the worst-case run time.
For example, if m is the number of elements that will ever be stored in the matrix M, then
the run time of the above algorithm is no more than O(mn). In fact, this bound can fur-
ther be tightened using the fact that a rule of the form A BC can be processed in time
min{ILIST(B)I, [LIST(C)I} by keeping track of the length of each list.

On the other hand, for the CKY algorithm, the worst-case and average-case run times are
the same. It is well known that Earley’s algorithm also has different average and worst-case
run times. Perhaps the performance of our variant of the CKY algorithm compares favorably
to that of the CKY algorithm. Also, our algorithm has a run time that grows quadratically
with the size of the grammar G, just like the CKY algorithm. However, the run time can be
reduced to O (n31G[log [G I) by maintaining each entry of the n x n array as a red-black tree
(or as any other balanced binary tree). The n n array itself can be replaced with a red-black
tree to save space, but the time bound will increase by a logarithmic factor. A comparison
between Earley’s algorithm and ours will be interesting to investigate. A crucial difference
between the two is that our algorithm is bottom-up and Earley’s is top-down. For a description
of Earley’s algorithm, see].

In related works, Valiant [18] has shown that CFL parsing can be reduced to Boolean
matrix multiplication. Similar work for CFL parsing has also been reported by Graham,
Harrison, and Ruzzo [4]. For an excellent treatise on CFL parsing, see].

4.2. Extension to TALs. In this subsection, we show how to extend the above algorithm
to parsing TALs. The first algorithm we present will have a run time of O(n7). In 4.5, we
will show how to reduce the run time to O(n6). We keep track of four indices i, j, k, and
corresponding to two different input segments that any derivation tree might span, with a foot
node separating these segments, as in Vijayashanker-Joshi’s algorithm [19].

We will adapt the algorithm of the previous section. However, the modified algorithm is
complicated by the presence of the adjoin operation. The following assumptions (which have
been made in all the existing TAL-parsing algorithms) are in place: (1) each node in any tree has
< 2 children; (2) each auxiliary tree has at least one terminal symbol in its frontier. (However,
assumption (2) can be relaxed.) As in the CFL-parsing algorithm, here also we associate
a list with each node in each elementary tree. For any node or, LI ST (oe) will at any time
contain quadruples of the form (i, j, k, l) such that the node spans ai+l aj and ak+l a
with a nonterminal in between. One of the basic operations that the algorithm performs is

TREE-ADJOINING LANGUAGE PARSING IN o(n6) TIME 867

EVALUATE-NODE. This procedure takes as input a tree node--say gmand computes LI ST (g),
given the LISTs of its children. This procedure composes the two LISTs associated with
9/’s children.

EVALUATE-NODE(9/)
/* 9/is any node in elementary trees. This procedure computes
LI ST (9/), given the LI STs of 9/’s children. */

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

if 9/has no children then
do nothing

if 9/has one child, say a, then
LIST(F) :-- LIST(a)

if 9/has two children, say a and fl, then
for every (i, j, k, l) L I ST (a) do

for every < rn < p _< n do
if (1, m,m, p) LIST(fl) and (i, j,k, p) LIST(F) then

insert (i, j, k, p) into LIST(F)
end for

end for
for every (l,m, p,q) LIST(fl) do

for everyl <i_<j <ldo
if(i, j, j, 1) LIST(a) and (i,m, p,q) LIST(?,) then

insert (i,m, p, q) into LIST(F)
end for

end for

Here we also maintain an n2 X n2 arrayMsay F. F[i, j, k, l] will store all the nodes
in elementary trees that are known to span the input segments ai+l...aj and ag+l ...al,

l _< i, j, k, _< n. In this paper, 1 < i, j, k, _< n is shorthand for l _< j <k_<l <n.
With such a data structure, we could perform EVALUATE-NODE(9/) for any node 9/ in time
O(n6), since there can be no more than n4 elements in the LI ST of any node. Lines 1-4 of
EVALUATE-NODE correspond to Step 4 of Vijayashanker-Joshi’s algorithm. The rest of the
lines in EVALUATE-NODE correspond to Steps 1-3 of their algorithm.

We also employ a procedure called EVALUATE-TREE which works in a bottom-up fashion,
evaluating nodes at each level. Basically, this procedure updates the LI ST of every node. If
9/is an adjoin node labeled X, we also perform ADJOIN(9/, X).

The procedure ADJOIN(a, X) performs adjunction at the node a, where X is the label of
the node a. ADJOIN corresponds to Step 5 of Vijayashanker-Joshi’s algorithm.

Finally, we have the main procedure called TAL-PARSE, where we evaluate each auxiliary
tree and then each initial tree.

EVALUATE-TREE(T)
/* This procedure "EVALUATEs" all the nodes of tree T level by level
starting from the bottommost level. */

1 for each node 9/in T do
2 EVALUATE-NODE(9/)
3 if 9/is an "adjoin" node labeled X then
4 ADJOIN(?,, X)
5 end for

868 SANGUTHEVAR RAJASEKARAN

ADJOIN(o, X)
/* This procedure performs the adjoin operation at node ot that is labeled by
the nonterminal X; R is an array of n2 lists.

fl is an auxiliary tree labeled by X. */

1 Scan through LI ST (or) and for each quadruple of the form
(q, j, k, r) encountered, add (j, k) to the list R[q, r]

2 for each (i, q, r, 1) LI ST(fl) do
for each (j, k) R[q, r] do

Put (i, j, k, l) into LI ST (or) if it is not there

TAL-PARSE
/* This algorithm takes as input a TAG G and an input ala2.., an and
returns "YES" if the input string is in L(G) and "NO" otherwise. */
0 Initialize the array F and LI ST (?’) for each node y, in elementary trees
1 fore "= ltondo
2 for each auxiliary tree F do
3 EVALUATE-TREE(F)
4 end for
5 for each initial tree ?’ do
6 EVALUATE-TREE(F)
7 end for
8 end for
9 if the root of an initial tree F [0, j, j, n] for some 0 <_ j <_ n then
10 return YES else return NO

Note. The need to perform EVALUATE-TREE on the auxiliary trees first will become clear
in the correctness proof given in 4.4. This is done to account for initial trees that may not
have any non-e terminal symbols in their frontiers. For example, there could be an initial tree
of the form: S S e, where the second S node is an adjunction node. Also
note that the data structure F is crucial to the algorithm. It enables us to perform the following
operations efficiently" (1) update LISTs of nodes; (2) check if a given 4-tuple is in LI ST(t)
for some given or; etc.

4.3. An example. Before proving the correctness of TAL-PARSE, we demonstrate the
basic algorithm above with an example. Consider the following language : {anbncnln >_ 0}.
Figure 4 shows a TAG that generates . Here denotes the adjoin node. Integers ranging
from 1 to 5 are used to label nodes and the label of each node is shown next to it. The input
considered is aabbcc.

Stage 1" LIST(4) is 0. LIST(3) is computed as (4, i, i, 5) for every and (5, j, j, 6) for
every j. LIST (2) (2, 3, 4, 5), (3, 4, 4, 5), (2, 3, 5, 6), (3, 4, 5, 6). Finally, LI ST (1) is
computed as (0, 1, 3, 5), (0, 2, 3, 5), (1, 3, 4, 5), (1, 3, 5, 6).

Stage 2: LIST(4) still remains empty. LIST(3) also remains the same. LIST(2) gets
modified because of the adjunction performed at this node. LI ST (2) gets a new element:
(0, 4, 4, 6). As a result, L I ST (1) also gets a new member: (0, 4, 4, 6). In this case, TAL-
PARSE returns "YES".

4.4. Correctness of TAL-PARSE. In this subsection, we prove the following lemma.
LEMMA 4.2. The algorithm TAL-PARSE is correct.

Proof. The proof will be by induction on . The execution of instructions 2-7 will
constitute a "stage" of the algorithm. In the following proof, by a "terminal symbol," we mean
a terminal symbol other than e.

Induction hypothesis. After the th stage of the algorithm, all tree nodes that span an
input segment of length or less will have been identified. We say a node spans a string of

TREE-ADJOINING LANGUAGE PARSING IN o(n6) TIME 869

S

a *$2

$4

$5

FIG. 4. A TAGfor {anbncnln > 0}.

length if it spans ai+l aj and a+l am such that sum of lengths of these two segments
is

Base case (e 1). If 9/is any node that spans an input segment of length 1, then there
are three possibilities: (1) 9/is labeled by a terminal symbol; (2) the frontier of the subtree
rooted at 9/has a terminal symbol; or (3) , has neither a terminal for a label nor a terminal
in its frontier. Case (1) is trivial. In case (2), EVALUATE-TREE will surely infer that 9/spans

an input of length 1. In case (3), 9/can span an input segment of length 1 only with the help
of an adjoin operation. In particular, the auxiliary tree that is adjoined should have a span of
length 1. But the roots of all the auxiliary trees fall under case (2) and hence would have been
correctly processed in lines 2 and 3 of TAL-PARSE.

The induction step. Assume the hypothesis for all stages < . We will prove it for the
(e + 1)th stage.

Let y be any tree node that spans an input segment of length / 1. The corresponding
derivation can be obtained with a sequence of basic operations, namely, composition and
adjoin performed on trees whose span-lengths are or less. Some of these operations might
not have added to the span-length of the derived tree. Call these operations useless and others
useful. Let ot be the node in this tree at which the last (from bottom-up) useful operation was
performed. Now there are two cases to consider.

Case 1. The last useful operation performed was a composition--say, of two subtrees (of
span-length at least one each). Clearly, both of these subtrees have a span-length of or less
and hence, using the induction hypothesis, would have already been identified. Therefore, the
procedure EVALUATE-TREE when performed on y will identify the fact that , spans an input
segment of length + 1.

Case 2. The last useful operation performed was adjoinnsay, at a node c labeled X.
This means that there is a quadruple--say, (i, j, k, m)--in LIST (or) such that when a derived
auxiliary tree labeled X is adjoined at or, the resultant tree has a span-length of / 1. Let
3 be the derived tree corresponding to the quadruple (i, j, k, m) and 0 be the auxiliary tree
that is adjoined. In this case, if 3 has at least one terminal in its frontier, then 0 will have a
span-length of at most . In 0, each constituent subtree will have a span-length of or less
and hence would have been already identified. Thus the algorithm ADJOIN will identify ot as
having a span-length of e + 1.

870 SANGUTHEVAR RAJASEKARAN

On the other hand, if does not have any terminal in its frontier, then 0 will have a
span-length of g / 1. But auxiliary trees have at least one terminal in their frontiers and hence
would have been processed (by TAL-PARSE) in lines 2 and 3 of stage + 1. Therefore, in this
case also, the procedure ADJOIN will identify ot as having a span-length of

Time and space analysis. Since LI ST(v) will have O(n4) quadruples for any node
EVALUATE-NODE(V) takes time O(n6). In fact, EVALUATE-NODE can be run in O(n5) time.
We only mention how to modify steps 6-11. (R is an array of lists indexed from 1 to n).

1 Scan through LI ST (fl) and for each quadruple of the form
2 (1, m, m, p), add p to the list R[l]
3 for each (i, j, k, l) in LI ST (or) do
4 for each p R[1] do
5 Put (i, j,k, p) into LIST(v) if it is not there

ADJOIN takes time O(n6). Thus for any tree T, EVALUATE-TREE(T) also runs in time
O(n6), implying that the run time of TAL-PARSE is O(n7). Clearly, the space used is O(n4).
As a result, we get the following result.

THEOREM 4.3. The algorithm TAL-PARSE takes O(n7) time and O(n4) space.

4.5. Reducing the run time to O(nr). In 4.1, we reduced the time cost of our variant
of the CKY CFL parser from O(n4) down to O(n3). In this subsection, we use the same
technique for TALs also. That is, in stage q, we only generate trees of span-length exact-
ly q.

We can process steps 6-11 of EVALUATE-NODE in O(n4) time as follows: Let R be an
n x n matrix initialized to all zeros and Q be a list of tuples. In stage q of TAL-PARSE
(1 <_. q < n), we generate only quadruples whose total span length is exactly q.

1 Scan through LI ST (/3) and for each quadruple of the form
2 (1, m, m, p) encountered, mark R[1, p] and add (1, p) to Q
3 for each (i, j, k, l) in LIST (or) do
4 Letp l+q-[(j-i)+(1-k)].
5 if R[l, p] is marked then
6 Put (i, j, k, p) into LIST(v) if it is not there
7 Using the list Q, clean the matrix R for future use

Similarly, we could process ADJOIN in O(n5) time as follows. (Here ot is the node into
which the auxiliary tree rooted at/ is adjoined. R is an n2 x n2 matrix initialized to zeros.)

1 Scan through LI ST (or) and for each quadruple of the form
2 (m, j, k, r) encountered, mark Rim, j, k, r]
3 for each (i, m, r, l) in LI ST(t) do
4 Letp q-[(m-i)+(1-r)].
5 for v := 0 to p do
6 if R[m, m + v, r p + v, r] is marked then
7 Add (i, m + v, r p + v, 1) into LIST() if it is not there
8 Using the list/3, clean the matrix R for future use

Thus it becomes clear that EVALUATE-TREE runs in time O(nS), yielding the following
result.

THEOREM 4.4. The modified version of TAL-PARSE runs in time O(n6) using O(n4)
space.

Note. The worst-case and average-case run times of our algorithm are different. We
believe that this algorithm will perform well in practice.

TREE-ADJOINING LANGUAGE PARSING IN o(n6) TIME 871

5. A faster algorithm for TAL parsing. In this section, we show that TAL parsing can
be done in time O(n M(n2)), where M(k) is the time needed for multiplying two Boolean
matrices of size k k each. We make use of TAL-PARSE.

The claim follows from the following lemmas.
LEMMA 5.1. EVALUATE-NODE(V) can be processed in time n2 M(n) for any node F.
Proof. It suffices to show how we could process lines 6-11 ofEVALUATE-NODE()/) within

the stated time bound. Construct two Boolean matrices A and B corresponding to elements
in LI ST(a) and LIST() as follows: The matrices will be of size n2 n2 each. Rows of the
matrices are named with tuples of the form (i, j) and columns are numbered with tuples of the
form (k, l) (1 < i, j, k, < n). A[i, j; k, l] will be 1 if and only if (i, j, k, l) is a quadruple in
LI ST (or). Similarly, define B.

Clearly, (i, j, k, p) will be in LI ST (?,) if and only if

fijkp Z A[i, j; k, 1] B[1, m; m, p]
/=1 m=l

is a 1. However,

A[i, j; k, l] B[l, m; m, p] A[i, j; k, l] B[l, m; m, p]
/=1 m=l

The above fact suggests the following strategy for processing EVALUATE-NODE(?’)" Let V
be the n x n submatrix of A defined as

Vik {A[i, j; k,/]1, 1 < j, < n,

B[p,q;q,1], < p,1 < n. Now,and let C be an n n matrix such that C[p, l] Yq=l
fijkp is simply the dot product of the jth row of Vik and the pth column of C. Of course, the
jth row in V/k is nothing but all the elements A[i, j; k, l], 1 < < n.

Therefore, multiplying the two n n matrices V/k and C yields the values of fijkp for
1 < j, p < n. Hence obtaining values of all possible fijkp’S takes n2 such multiplica-
tions. [3

LEMMA 5.2. ADJOIN can be performed in time M(n2).
Proof Say we have to adjoin at a node labeled or. Let the auxiliary tree to be adjoined be

/3. We have to generate all quadruples ofthe form (i, j, k, l) such that (i, q, r, l) is in LI ST(fl)
and (q, j, k, r) is in LIST(u). This can be done as follows. Generate matrices U and W
for LI ST (or) and LI ST (fl), respectively, as above. Now the array U can be indexed (i.e.,
permuted) in such a way that the ilth row of U has the following elements:

U[i, 1; 1, l], U[i, 1; 2, 1] U[i, 1; n, l], U[i, 2; 1, 1], U[i, 2; 2, l] U[i, 2; n, 1],

U[i, n; n, l].

Likewise, index (i.e., permute) the elements of W such that the jkth column has the elements

W[1, j; k, 1],W[1, j; k, 2] W[1, j; k, n],W[2, j; k, 1],W[2, j; k, 2] W[2, j; k, n],

W[n, j; k, n].

Clearly, the dot product and then Boolean OR of the ilth row of U and jkth column of W will
be a 1 if and only if the adjoin results in the quadruple (i, j, k, l). [3

As a result we get the following result (making use ofTAL-PARSE and the above lemmas).
THEOREM 5.3. The algorithm TAL-PARSE costs O(n M(n2)) time and O(n4) space.
Note. The above algorithm has a run time of O(n5"75), which already breaks the (R)(n6)

barrier.

872 SANGUTHEVAR RAJASEKARAN

6. An O(n3M(n))-time algorithm. We now show that TAL parsing can be done in time
O(n3 M(n)). Since the best-known value for M(k) is O(k2"376), the time bound of our
algorithm is O(n5"376). The key idea is to use TAL-PARSE together with asymptotically
fast algorithms for Boolean matrix multiplication. In stage q of the algorithm, we process
only quadruples whose span length is exactly equal to q, 1 < q < n. Boolean matrix
multiplication has been previously employed in the design of parsing algorithms 18], [4] as
has been mentioned before.

It should be noted here that it suffices to show how ADJOIN can be performed at any node
in O(n2 M(n)) time in any given stage of the algorithm.

There can be only O(n3) quadruples of the form (i, j, k, l) whose span-length is exactly
equal to q (for any q). These quadruples can be classified according to the value of k j as
follows: Call a quadruple "a class-m quadruple" if k j m. Clearly, there are at most n
such classes and there are at most n2 quadruples in each class whose span length is q.

Consider any arbitrary class (say m) of quadruples. Let (i’, j’, k’, l’) be any quadruple in
this class. Then the other quadruples (i, j, k, l) in this class can be enumerated as follows:

4- c, 4- c, j j’ 4- d, k U 4- d, for any integers c and d (as long as the
tuple (i, j, k, l) is a meaningful one). That is, there are at most n choices for the pair i, and,
independently, there are at most n choices for the pair j, k.

Now construct two Boolean matrices J and K as follows: The ilth row of J will have
entries corresponding to the quadruples

(i, 1, 1,/), (i, 1,2, l) (i, 1, n,/), (i, 2, 1,/), (i, 2, 2,/) (i, 2, n, 1) (i,n,n,l).

Here il ranges over all possible values for the pair i, indicated above. The entry corresponding
to a quadruple (i, j, k, l) will be 1 ifthe node under consideration is known to span it. Similarly,
the jkth column of K will have entries corresponding to the quadruples

(1, j, k, 1),(1, j, k, 2) (1, j, k, n), (2, j, k, 1),(2, j, k, 2) (2, j, k, n) (n, j, k, n).

Here jk ranges over all possible values for the pair j, k indicated above.
Now, the product of the two matrices J and K will give information about all new

quadruples in class m that arise out ofadjunction at the node under concern. That is, a quadruple
(i, j, k, l) in class m is spanned by the node under consideration only if the corresponding
entry in the product is 1. Since J and K are matrices of size n x n2 and n2 x n, respectively,
they can be multiplied in time O(n M(n)). Therefore, we can compute all the quadruples
belonging to a specific class and spanned by the node under consideration in O(n M(n)) time.
The technique employed for multiplication of J and K is as follows: Partition the matrix J
into n submatrices J1, J2 Jn, where Ji consists of the th leftmost block of n columns of
J. Similarly partition K into K1, K2 Kn, where Ki is the th topmost block of n rows
of K, < < n. Now, clearly, the blockwise product of J and K is the same as zin=l Ji Ki.
This implies that we can obtain all the quadruples spanned by this node (of a specific span
length) in time O(n2 M(n)).

As a result, we have shown the following.
THEOREM 6.1. TAL parsing can be done in time O(n3 M(n)) with space complexity

O(n4).
The following theorem pertains to parallel implementation of the above ideas. In TAL-

PARSE, we can run everything in parallel fine, except we process one span-length at a time.
THEOREM 6.2. TAL parsing can be done on the EREW PRAM in 0 (n log n) time using

(n2m(n))/ log n processors.
Proof The theorem can be proven using the fact that two n n matrices can be multiplied in

O (log n) time on an EREW PRAM using M(n) / log n processors [7]. If the above algorithms
are analyzed using this fact, the theorem readily follows. The PT (Processor Time) bound

TREE-ADJOINING LANGUAGE PARSING IN o(n6) TIME 873

of this algorithm is asymptotically the same as the sequential run time. Therefore, our parallel
algorithm is an optimal implementation of the sequential algorithm.

7. Conclusions. We have resolved the open question ofwhetherTAL parsing can be done
in time o(n6). Our algorithm also runs efficiently in parallel. We have presented algorithms
for CFL and TAL parsing which may perform well in practice. Our parallel algorithm has time
cost asymptotically within a log factor of any prior parallel algorithm for TAL parsing. At
the same time, our algorithm uses significantly fewer processors. It is still unknown whether
there is a practical algorithm for TAL parsing that runs in time o(n6).

Acknowledgments. I am grateful to the referees for their critical comments and sugges-
tions. I am thankful to Gtinter Hotz and Aravind K. Joshi for their support and encouragement.
I am also thankful to B. Srinivas and Shibu Yooseph for many stimulating discussions.

REFERENCES

[1] A. AHO AND J. D. ULLMAN, The Theory of Parsing, Translating, and Compiling, vol. 1, Addison-Wesley,
Reading, MA, 1984.

[2] D. CO’PERSMTH AND S. WNOGRAD, Matrix multiplication via arithmetic progressions, in Proc. 19th Annual
ACM Symposium on Theory of Computing, Association for Computing Machinery, New York, 1987,
pp. 1-6; J. Symbolic Comput., 9 (1990), pp. 251-280.

[3] G. GAZDAR, Applicability ofindexed grammars to natural languages, Technical report CSLI-85-34, Center for
Study of Language and Information, Stanford University, Stanford, CA, 1985.

[4] S.L. GRAHAM, M. A. HARRISON, AND W. L. RUZZO, On line context free language recognition in less than
cubic time, in Proc. 8th Annual ACM Symposium on Theory of Computing, Association for Computing
Machinery, New York, 1976, pp. 112-120.

[5] Y. GUAN AND G. HOTZ, An O(n5) recognition algorithm for coupled parenthesis rewriting systems, in Proc.
TAG+ Workshop, University of Pennsylvania Press, Philadelphia, 1992.

[6] K. HARBUSCH, An efficient parsing algorithm for tree adjoining grammars, in Proc. 28th Meeting of the
Association for Computational Linguistics, Morgan Kaufmann, San Francisco, 1990, pp. 284-291.

[7] J. JA JA, An Introduction to Parallel Algorithms, Addison-Wesley, Reading, MA, 1992, p. 248.
[8] A. K. JOSHI, How much context-sensitivity is necessary for characterizing structural descriptions: Tree ad-

joining grammars, in Natural Language Processing: Theoretical, Computational and Psychological Per-
spective, D. Dowty, L. Karttunen, and A. Zwicky, eds., Cambridge University Press, New York, 1985,
pp. 112-133.

[9] A. K. JOSHI, L. S. LEVY, AND M. TAKAHASHI, Tree adjunct grammars, J. Comput. System Sci., 10 (1975),
pp. 136-163.

10] A. KOCHAND A. K. JOSHI, Linguistic relevance oftree adjoining grammars, Technical Report MS-CIS-85-18,
Department of Computer and Information Science, University of Pennsylvania, Philadelphia, 1985.

11 T. NUIKKALAAND V. KUMAI, Aparallelparsing algorithmfor natural language using tree adjoining grammar,
in Proc. 8th International Parallel Processing Symposium, IEEE Computer Society Press, Los Alamitos,
CA, 1994, pp. 315-320.

[12] M. PALS, S. SHENDE, AND D. S. L. WEI, An optimal linear time parallel parserfor tree adjoining languages,
SIAM J. Comput., 19 (1990), pp. 1-31.

[13] B. H. PArTEE, A. TE MULr, ArqD R. E. WALI, Studies in Linguistics and Philosophy, vol. 30, Kluwer
Academic Publishers, Norwell, MA, 1990.

14] G. SATTA, Tree adjoining grammar parsing and Boolean matrix multiplication, in Proc. 32nd Meeting of the
Association for Computational Linguistics, Morgan Kaufmann, San Francisco, 1994.

[15] G. SArrA, personal communication, September 1993.
16] Y. SCHAI3FS AND A. K. JOSHI, An Earley-type parsing algorithm for tree adjoining grammars, in Proc. 26th

Meeting of the Association for Computational Linguistics, Morgan Kaufmann, San Francisco, 1988,
pp. 258-269.

[17] M. STIIDMAN, Dependency and coordination in the grammar of Dutch and English, Language, 61 (1985),
pp. 523-568.

[18] L. G. VALIANT, General context-free recognition in less than cubic time, J. Comput. System Sci., 10 (1975),
pp. 308-315.

[19] K. VIJAYASHANKER AND A. K. JOSHI, Some computational properties oftree adjoining grammars, in Proc. 23rd
Meeting of the Association for Computational Linguistics, Morgam Kaufmann, San Francisco, 1985,
pp. 82-93.

SIAM J. COMPUT.
Vol. 25, No. 4, pp. 874--893, August 1996

() 1996 Society for Industrial and Applied Mathematics
008

AN EFFICIENT PARALLEL ALGORITHM
FOR THE MATRIX-CHAIN-PRODUCT PROBLEM*

PRAKASH RAMANAN

Abstract. We consider the problem of finding an optimal order of computing a matrix-chain product. This
problem can be solved using dynamic programming in O(n3) sequential time, but the best sequential algorithm
known for this problemruns in O (n log n) time. A general technique for parallelizing a class ofdynamic-programming
algorithms leads to an algorithm that runs in O(log n) time on a concurrent-read exclusive-write parallel random-
access machine (CREW PRAM) with O(n6/log n) processors. The best parallel algorithm previously known runs
in O(log n) time using O(n2/log n) processors. We present an algorithm that runs in O(log4 n) time on a CREW
PRAM with n processors.

Key words, matrix-chain product, polygon triangulation, dynamic programming, parallel algorithm, PRAM
model, processor-time complexity

AMS subject classifications. 68Q10, 68Q20, 68Q22, 68Q25

1. Introduction. Dynamic programming is a widely used technique for solving vari-
ous problems in computer science and operations research. Many such problems reduce to

computing the quantity c(1, n) based on arecurrence ofthe following type: for 1 < < j < n,

g(i)
c(i, j) min c(i, k) + c(k, j) + f(i, k, j)

i<k<j

ifj=i+l,
ifj > i-t- 1,

where g(i), 1 < < n, and f (i, k, j), 1 < < k < j < n, are known in advance. We are
required to compute c(1, n) and an optimal value of k at each of the intermediate steps.

Dynamic-programming algorithms for these problems can be implemented by sequential
straight-line programs of size O (n3) using the operations min and + (see]). Guibas et al. [7]
presented a general procedure for implementing such algorithms on very large-scale integration
(VLSI). Here we consider parallel algorithms in the more powerful PRAM (parallel random-
access machine) model. The general method of Valiant et al. 18] for the parallelization of
sequential straight-line programs leads to O(log2 n)-time algorithms using O(n9) processors.
Using the specific features of this class of dynamic-programming algorithms, Rytter [15]
presented O (log9. n)-time algorithms on the CREW (concurrent-read exclusive-write) PRAM
with O(n6/log n) processors. Rytter demonstrated his method on three typical problems of
this class" finding an optimal order of computing a matrix-chain product, constructing an
optimal binary search tree, and finding an optimal triangulation of a polygon (see]).

In this paper we concentrate on the problem of finding an optimal order of computing a
matrix-chain product. This matrix-chain-product problem (MCPP) can be stated as follows.

MCPP. Given positive integers (wl, we Wn), find an optimal order of computing
the matrix chain product M1 x M2 x x Mn-1, where Mi is of dimensions Wi)< Wi+l and
the cost of computing the product of a wi x wj matrix with a wj x wk matrix is wi wj w:.

MCPP can be formulated as a problem of the type discussed above. In the corresponding
recurrence relation, we have g(i) O, 1 < < n, and f (i, k, j) wiwjwk.

Hu and Shing [8] showed that MCPP is equivalent to a problem of finding a minimum-
weight triangulation ofa convex polygon with weighted vertices. A convex polygon is specified
by a list (i.e., a sequence) of vertices, in cyclic order, around the boundary of the polygon. Let

*Received by the editors February 8, 1993; accepted for publication (in revised form) January 4, 1995. This
research was supported in part by a 1992 Summer Research Fellowship from the Liberal Arts and Sciences College
of Wichita State University.

Department of Computer Science, Wichita State University, Wichita, KS 67260-0083 (ramanan@cs.twsu.edu).

874

PARALLEL ALGORITHM FOR MATRIX-CHAIN PRODUCT 875

FIG. 1.

P (vl, 1)2,..., Vn) be a convex polygon (see Figure la). An edge 1)i1)imodn+l, 1 <_ <_ n, is
a straight line segment that connects the two adjacent vertices vi and vi modn/l of the polygon.
An arc vi 1)j is a straight line segment that connects the two nonadjacent vertices vi and vj
of the polygon. Each vertex 1)i, 1 <_ < n, has a weight wi > 0 associated with it. A
triangulation (of the interior) of P consists of n 2 triangles formed by the n edges and n 3
nonintersecting arcs. The cost of a triangle 1)i vj vk is Wi wj Wg. The cost of a triangulation T
is the sum of costs of all the triangles in T. The triangulation problem (TP) we are interested
in is as follows.

TP. Given (Wl, w2, wn), find a minimum-cost triangulation of P.
Hu and Shing [8, 9] showed that MCPP is equivalent to TP; the transformation between

the two problems is straightforward and can be carried out in constant time on a CREWPRAM
with n processors. They also presented an O (n log n) sequential algorithm for TR Ramanan
14] gave a simpler presentation of their algorithm. This algorithm, which is quite sequential,

is described in 2. Our parallel algorithm is based on a divide-and-conquer version of this
algorithm. In 3, we describe the basic ideas behind our divide-and-conquer approach. In 4
and 5, we present the divide-and-conquer algorithm and a parallel implementation of it. The
resulting algorithm runs in O (log4 n) time on a CREW PRAM with n processors, in compar-
ison, Bradford [4] and Czumaj [6] presented O(log n)-time algorithms using O(n3/logn)
and O (n2/log n) processors, respectively.

2. The sequential algorithm. Let P (vl, 1)2 1)n) be a convex polygon (see Fig-
ure 1 a). For the sake of simplicity, we assume that no two vertices of P have the same weight.
Also, without loss of generality, we let 1)1 be the vertex of smallest weight in P; such a vertex
is said to be a global minimum. A global maximum vertex is defined analogously. A vertex vi
is said to be a local minimum if wi < min(wi_l, wi+l). A local maximum vertex is defined
analogously. Note that the number of local minimum vertices and local maximum vertices
are the same. P is said to be m-modal if it has m local minimum vertices.

Let vn+l vl and wn+l wl. Let i, j, 1 < < j 1 <_ n, 1)i :/: 1)j, be such that
wk > max(w/, wj) for all k, < k < j. Then r 1)ivj is called a horizontal arc (h-arc) and
P(r) (vi, 1)i+1 vj) is called the upper subpolygon of P that is bounded below by r. in
our figures, dashed lines are used to represent h-arcs (see Figure 1). Hu and Shing [8] showed
that there are n 3 h-arcs, and that no two of them intersect; so they constitute a triangulation
of P. They also presented a linear-time algorithm for finding all the h-arcs.

We let w(1)) denote the weight of a vertex 1). For an h-arc r, we let r and r2 denote the
two end-points of r such that w(r l) < w(r2); r and r2 will be referred to as the lower and
upper endpoints of r. Let r, rl, and r2 be h-arcs of P. rl is said to be below r2 (or r2 is above
rl), denoted by rl _< r2 (or r2 >__ rl), if all the vertices of P(r2) are also vertices of P(rl). Two

876 PRAKASH RAMANAN

h-arcs are said to be comparable if one of them is below the other; otherwise, they are said to
be incomparable, rl is said to be properly below r2 (or r2 is properly above rl), denoted by
rl < re (or r2 > rl), if r < r2 and rl 7 r2. For rl < r2, r is said to be between r and r2 if

r < r < re; r is said to be properly between rl and r2 if r < r < r2.
A subpolygon of P is a polygon each of whose edges is either an edge or an h-arc of P.

Note that the h-arcs of a subpolygon of P are those h-arcs of P that are in the subpolygon. If ri,

1 < <_ k, are pairwise incomparable h-arcs, we let P(; rl, r2 rk) denote the subpolygon
obtained from P as follows" For each i, 1 < < k, remove from P all the vertices of P (ri)
except r] and r/2. This subpolygon is said to be bounded above by ri, 1 <_ <_ k. If r is another
h-arc such that r < ri, 1 <_ <_ k, we let P (r; r, re rk) denote the subpolygon obtained
from P(r) in a similar manner, i.e., P(r; rl, re r) (P(r))(; rl, re r) (see Figure
lb). This subpolygon is said to be bounded below by r and bounded above by ri, < < k.

Afan of a (sub)polygon is a triangulation of the (sub)polygon in which the vertex u of
smallest weight is connected to all the other vertices; u is called the center of the fan. For a
subpolygon S of P, we let F(S) denote the fan of S; C (S) denotes its cost. F (r; rl, r2 r)
denotes the fan of P(r; r, r2 r/); Cl(r; r, re rk) denotes its cost. The following
is from Hu and Shing [9, Lem.].

LEMMA 2.1 (see [9]). Let H be the set of h-arcs in an optimal triangulation of P. If a
subpolygon of P that is bounded by some ofthe h-arcs in H contains none ofthese h-arcs in
its interior, then afan is an optimal triangulation of the subpolygon.

By Lemma 2.1, we only need to determine which of the n 3 h-arcs are in an optimal
triangulation of P. For this, we need to be able to efficiently compute the cost of a fan of a
subpolygon. Let S be a subpolygon of P that is bounded below by an h-arc r (and possibly
bounded above by some h-arcs). The weight of S is defined as W(S) WaWb, where
the summation is taken over all the edges VaVb of S except r. We let W’(S) denote W(S)
w(rl)w(v), where v is the neighbor of r other than r2 in S. Then Cv(S) w(rl)W’(S).
The weight of r is W(r) W(P(r)); W(r; r, re r) denotes W(P(r; rl, re r)).
Note that

k

W(r; r,, re rk) W(r) _[W(ri) w(ri)w(rei)].
i=1

CF(r; r, r2, r) w(r)W’(r; rl, r2 rk). The modality, the local minima and
maxima, and the weights of all the h-arcs can be easily computed in linear time. Then,
for any subpolygon S, CF(S) can be easily computed using the weights of the h-arcs that
bound S.

The next concept we introduce is the cutoff value of an h-arc. For a subpolygon S of P
that is bounded below by an h-arc r, we let S’ (r) denote the polygon obtained from S(r) S
by inserting a new (special) vertex v’ between r and r2. For example, for r vi vj, < j,
P’(r) (v’, vi, vi+ vj) (see Figure lc). The cutoff value of r, denoted by co(r), is
defined to be the value of w(v’) for which the following holds: The minimum cost of a
triangulation of P’ (r) that contains r equals the minimum cost of a triangulation of P’ (r) that
does not contain r; i.e., there exists an optimal triangulation of P’ (r) that contains r, and there
exists another optimal triangulation of Pt(r) that does not contain r. In [14], we proved the
following.

LEMMA 2.2 (see [14]). For an h-arc r, co(r) exists and is unique; also, co(r) < w(r).
Moreover, if w(v’) < co(r), then no optimal triangulation of P’ (r) can contain r; if w(v’) >
co(r), then every optimal triangulation of P’(r) will contain r; if w(v’) co(r), then there
exists an optimal triangulation of P(r) that contains r, and there exists another optimal
triangulation ofP(r) that does not contain r.

PARALLEL ALGORITHM FOR MATRIX-CHAIN PRODUCT 877

FIG. 2.

For w(v’) < w(rl), we let F’(r; rl, rg. rk) denote the fan of P’(r; rl, r2 rl)
(centered at v’); its cost is w(v’)W(r; rl, r2 r).

Note that once the cutoff values of all the h-arcs in P have been found, we can determine
the h-arcs in an optimal triangulation of P by performing a bottom-up scan in linear time.
In 2.1, we describe a linear-time algorithm for finding an optimal triangulation of unimodal
polygons. In 2.2, we describe its extension to an O (n log n) algorithm for general multimodal
polygons.

2.1. Algorithm for unimodal polygons. Let P (vl, 1)2 On) be an unimodal poly-
gon, where Vl is the global minimum and va is the global maximum (see Figure 2). Henceforth,
in our figures, we let the relative order of the y-coordinates of the vertices of an unimodal
(sub)polygon be the same as the relative order of their weights. Any two h-arcs of P are
comparable; therefore, the n 3 h-arcs of P are one above the other. Let the h-arcs be labeled
r, r2 rn-3 from bottom to top. Let {2, n} be such that Wl min(w2, Wn); the bottom

2edge ro v Vl and the top edge rn-2 rn_3 Va are considered to be degenerate h-arcs. For
1 _< _< n 2, r and ri_ share the end point r/l; i.e., r/1 is either r/l_ or r/2_.

We now describe a linear-time algorithm for finding an optimal triangulation of P. The
algorithm performs a scan from top to bottom and processes the h-arcs one by one in the order
rn-, rn-3 rl, to. When it processes ri, it constructs an optimal triangulation T (ri) of
P (ri), and computes its cost C (ri), and co(ri). By Lemma 2.1, T (ri) can be represented by a
list L 1 (ri) of the h-arcs that are in T (ri); L (ri) contains these h-arcs in bottom to top order,
and its first element is ri. Note that the cutoff values of these arcs need not be in decreasing
order. After processing ri, the algorithm has the two lists L (ri) and L2(ri). L2(ri) is defined
as follows: It is a sublist (i.e., a subsequence) of L 1 (ri); its first element is ri; an element of
L 1 (ri) is in L2(ri) iff its cutoff value is less than that of all the preceding elements in L 1 (ri).

Now, we show how to update L 1 and L2 when the algorithm processes ri-1. L (ri-1) is
obtained from L 1 (ri) as follows: Remove the longest prefix of elements (i.e., h-arcs) all of
which have cutoff values greater than or equal to w (r/1_ 1), and then insert ri- at the front. Let
rj be the second element of L 1 (ri-1). Then T (ri-1) consists of T (rj) and F(ri-1; rj); its cost
is C(ri-1) C(rj) -Jr" CF(ri-1; rj).

Before we can get L2(ri_l), we need to compute co(ri_l). We take co(rn-2) to be 0.

e (w(rn_3) + W(rn_3)) w(rn_3)w(rn_3)]O(rn-3) tO(rn_3)to(rn_3)tOa/[Wa
Wa_lWall)a+l/[Wa(Wa_ + l/)a+l) Wa_lWa+l].

Before we can compute cO(rn-4), we need to know whether or not rn-3 will get "cutoff" at
co(rn-4), i.e., whether cO(rn-4) <_ cO(rn-3) or co(rn-4) > cO(rn-3).

878 PRAKASH RAMANAN

FIG. 3.

We need the following notation. Let L be a list of h-arcs in decreasing order of cutoff
values, and let the last element in L have cutoff value zero. Let r be any h-arc. Locating co(r)
with respect to L means the following: Find co(r) to be greater than the cutoff value of the
first element in L, equal to the cutoff value of a particular element in L, or properly between
the cutoff values of a particular pair of adjacent elements in L.

For 1 _< n 4, co(ri_l) is computed by solving an equation. To set up this equation,
we need to know which h-arcs will exist in an optimal triangulation of P’ (ri-1) when w(v’) is
less than but arbitrarily close to co(ri-1). This is determined by locating co(ri_l) with respect
to L2(ri), as explained in [14]. Finally, L2(ri_l) is obtained from L2(ri) as follows: Remove
the longest prefix of elements all of which have cutoff values greater than or equal to co(ri-1),
and then insert ri-1 at the front.

L (r0) is the list of h-arcs in an optimal triangulation T(ro) of P(ro) P, and C(ro) is
the cost of T(ro). The above algorithm can compute C(ri-1), co(ri_l), and L2(ri_l) from
L2(ri) without using L 1 (ri). So we can compute co(ri) and L2(ri) for varying from n 3
down to 0 without keeping track of L 1.

2.2. Algorithm for multimodal polygons. In this subsection, we describe the O (n log n)
algorithm for general multimodal polygons. First, we describe the algorithm for bimodal
polygons. Let P (Vl, v2 vn) be a bimodal polygon, where Vl is the global minimum,
vb is a local minimum, and Val and Va2 are the local maxima, 1 < a < b < a2 < n; wn < wb
(see Figure 3). Then there exists a vertex va, < d < a 1, such that w < wb < W+l; also,
there exists a vertex l)e, a2 < e <_ n, such that We < Wb < We-1. r,o VVb, r2,0 ObVe
and r0 rave are h-arcs of P. P(rl,o), P(rg.,o), and P(; r0) are unimodal polygons. The
h-arcs of P(; r0) will be labeled as r, ra from top to bottom. Without loss of generality,
let wd < We.

As in 2.1, we let r(r) denote an optimal triangulation of P(r) with cost C(r). The
algorithm for computing the cutoff values for the above bimodal polygon P works as follows:
First find the lists L2(r,o) and L2(r2,0) for unimodal subpolygons P(r,0) and P(r2,0), re-
spectively, using the algorithm in 2.1. Since w < We, let L2"(r2,0) be the list obtained from
L2(r2,0) by removing the longest prefix of elements all of which have cutoff values greater
than or equal to wa. If r2,i is the first element of L2’(r2,0), then T (r0) consists of T(r,o),
T(r2,i) and F(ro; rl,o, r2,i); its cost is

C(ro) C(rl,0) nt- C(r2,i) q- wdW(r2,o; r2,i).

Let L2’ (to) be the list obtained by merging L2(r,0) and L2" (r2,0) into a single list such that
the cutoff values of the elements are in decreasing order from the front. Using L2’(r0), we can
compute co(ro) and obtain L2(r0) as explained in 2.1. Then we can perform a top to bottom

PARALLEL ALGORITHM FOR MATRIX-CHAIN PRODUCT 879

scan of P(; r0); for > 1, co(ri) and L2(ri) can be computed from L2(ri_l) as explained in
2.1. This completes our description of the algorithm for bimodal polygons.

In the above bimodal polygon, ifrl,i and r2,j are h-arcs of P (rl,0) and P (r2,0), respectively,
then they are incomparable; but they are above r0. The h-arc r0 is called a bridge. In general,
a bridge is an h-arc r whose endpoints are the lower endpoints of two other h-arcs r and
r and rtt will have the same upper endpoint. The preceding paragraph describes a general
procedure for obtaining L2(r) from L2(rt) and L2(rtt). In general, an m-modal polygon
will have m 1 bridges. The above top-down algorithm for bimodal polygons can be easily
extended to an O(n log n) algorithm for general m-modal polygons (see [14]).

3. Basics of the divide-and-conquer approach. Let P (Vl, 1)2 1)n) be a general
polygon. Our parallel algorithm, described in 4 and 5, is based on a divide-and-conquer
version of the algorithm presented in 2. In this section, we describe the basic ideas behind the
divide-and-conquer approach and prove some required results. First, we need the following
two lemmas.

LEMMA 3.1. Let T be an optimal triangulation of P that contains the minimum number

of h-arcs, and let T2 be any other optimal triangulation of P. Then all the h-arcs in T are
also in T2. So, there exists a unique optimal triangulation of P that contains the minimum
number ofh-arcs.

Proof. Consider the h-arcs in T from the bottom up. Let r be an h-arc that is in T1 but
not in T2, and suppose that all the h-arcs properly below r in T are also in T2. Let r2 be
the topmost h-arc below rl that is in T2 (r2 could be the bottom edge, which is a degenerate
h-arc). By Lemma 2.2, since T2 does not contain rl or any other h-arc properly between r2
and rl, we have that co(r) > w(r). But then rl can be removed from T, giving an optimal
triangulation with one less h-arc. This is a contradiction. So, all the h-arcs in T are also
in T2. 7]

For a subpolygon S of P, let C(S) denote the cost of an optimal triangulation of S.
LEMMA 3.2. For an h-arc r in P, co(r’) maxsC(S)/[W(S) w((r’))w((r’)2)],

where the maximum is over all the subpolygons S of P that are bounded below by rt.
Proof. At w(v’) co(rt), let T[(rt) be an optimal triangulation of P’ (rt) that contains r’;

let T(rt) be the triangulation that contains the minimum number of h-arcs among all optimal
triangulations of P’ (rt) that do not contain rt; their costs are equal. There exists a subpolygon
S P(r", r, r2, r) such that T(rt) contains ri, _< _< k, and F’(r’; r, r2, r)
(see Figure 1). By Lemma 2.2, since T(r’) contains the minimum number of h-arcs, we have
co(ri) < to(v’) co(rt) < w((rt)l),for 1 < < k. So, T[(rt)alsowillcontainri, 1 < < k.
Since both T1’ (r t) and T(rt) are optimal, the corresponding triangulations in S (r’) must have
the same cost; i.e., co(rt)W(S) C(S) + co(rt)w((r’))w((r’)2). Then the result follows
from Lemma 2.2. [3

To describe our divide-and-conquer approach, we need the following notations. For a
subpolygon S of P, let T (S) denote an optimal triangulation of S and let C(S) be its cost;
if S is bounded by some of the h-arcs in an optimal triangulation T of P, we can take T (S)
to be the optimal triangulation of S that is contained in T. If S P(rt; r, r2 rk), we
let T(rt’, r, r2, r) =_ T(S), and C(rt’, rl, r2, r) =_ C(S). For an h-arc r in S, let
co(S, r’) denote the cutoff value of r in S.

Let P be split along one of the h-arcs r into P (1) P (r) and P (2) P (; r). For j
1, 2, we let P(j, rt; r, r2 rl) =- (P(j))(rt; r, r2 rl). Let T(j) denote an optimal
triangulation of P(j), with cost C(j). For a subpolygon S that is bounded by some of the
h-arcs in T (j), let T (j, S) denote the optimal triangulation of S that is contained in T (j) with
cost C(j, S) C(S); if S P(j, r t’, r, r2, r), we let T(j, rt; rl, r2, r) =_ T(j, S)
and C(j, r’; r, r2 rk) =- C (j, S). Let co(j, rt) denote the cutoff value of r in P (j).

880 PRAKASH RAMANAN

As before, T (r’) denotes an optimal triangulation of P (rI) with cost C (r’), and co(r’) is the
cutoff value of r’ in P.

Our divide-and-conquer approach is as follows: For j 1, 2, separately compute T (j);
as byproducts, we also get T (j, r’), C (j, r’), and co(j, r’) for the h-arcs r’ in T (j). We need to
merge the results for j 1, 2 to obtain T (r’), C (r’), and co(r’) for the h-arcs r’ in an optimal
triangulation T of P. For r’ in T (1), since P (1, r’) --= P (r’), we have T (r’) T (1, r’),
C(r’) C(1, r’), and co(r’) co(l, r’). To obtain T (r’), C(r’), and co(r’) for the other
h-arcs r’ in T, we need the following results.

LEMMA 3.3. For an h-arc r2 in P (2), co(r2) > co(2, r2).
Proof. Follows from Lemma 3.2, since any subpolygon S of P (2) is also a subpolygon

of P. [3

LEMMA 3.4. Let T be the optimal triangulation of P that contains the minimum number

ofh-arcs. Any h-arc in T is also in T (1) or T (2).
Proof. First, we show that any h-arc of P (1) in T will also be in T (1). Let r 1 be an h-arc

of P (1) in T such that no h-arc of P (1) properly below r 1 is in T. Then, by Lemma 2.2, we
have co(l, rl) co(rl) < w(r). So rl and, by Lemma 3.1, all the h-arcs above rl in T
will also be in T (1). Hence any h-arc of P (1) in T will also be in T (1).

Now we show that any h-arc of P (2) in T will also be in T (2). Consider the h-arcs of
P (2) in T from the bottom up. Let r2 be an h-arc of P (2) in T such that all the h-arcs of P (2)
properly below r2 that are in T are also in T (2). Let r21 and r22 be the topmost h-arcs properly
below r2 that are in T and T(2), respectively. Since r21 _< r22, we have w(r2l) < w(r221).
Since r2 is in T, we have co(r2) < w(r2l). By Lemma 3.3, we have co(2, r2) <_ co(r2).
Putting the last three inequalities together, we have co(2, r2) < w(r22). So, by Lemma 2.2,
r2 will also be in T (2). Hence any h-arc of P (2) in T will also be in T (2). [3

From now onwards, our model of computation will be a CREWPRAM with n processors.
In the following sections, using the above results, we present a divide-and-conquer version of
the algorithm in 2 and a parallel implementation of it. Sections 4 and 5 contain O (log2 n)
and O(log4 n) algorithms for unimodal and multimodal polygons, respectively. Czumaj [6]
also presented an O(log2 n) algorithm for unimodal polygons.

4. Parallel algorithm for unimodal polygons. In this section, we present an O (log2 n)
algorithm for unimodal polygons. Let P be an unimodal polygon with n vertices. First, assign
one processor to each vertex. By comparing the weight of each vertex with those of its two
neighbors, we can find the global minimum vertex and the global maximum vertex in constant
time. Then, in constant time, we can relabel the vertices with respect to the global minimum
vertex. So, let P @1, v2 vn) as described in 2.1, where Vl is the global minimum, and
va is the global maximum (see Figure 2). Since (w, w2 Wa) and (w,, w-i Wa+l)
are in increasing order, we can merge the two lists into a single sorted list in O(log log n)
time (see [10, 17]). From this sorted list, we can obtain the n 3 h-arcs, and label them as
rl, r2 rn-3 from bottom to top, as in 2.1, in O(log n) time. Now assign one processor
to each h-arc. We can compute the weights of all the h-arcs by performing a parallel prefix
computation (see [10, 11]), from top to bottom, in O(logn) time.

We need the following definitions. Let r’ be an element of a list L. Aproperpredecessor
of r in L is an element that precedes r’ in L. A predecessor of r’ in L is either r’ or a
proper predecessor of r’. The immediate predecessor of r’ in L is the element that imme-
diately precedes r’ in L. Proper successor, successor, and immediate successor are defined
analogously.

Our divide-and-conquer algorithm and its parallel implementation is as follows: Assign
one processor to each h-arc of P. Divide P along the middle h-arc r r(n-3 day 2 into
P(1) P(r) and P(2) P(; r). For j 1, 2, let LI(j) and L2(j) be the L1 and L2 lists

PARALLEL ALGORITHM FOR MATRIX-CHAIN PRODUCT 881

rl

r2’

r2

FG. 4.

corresponding to an optimal triangulation T (j) of P (j) as described in 2.1. Note that r will
be the last element of Ll(2) and L2(2); it will also be the first element of LI(1) and L2(1).
Compute in parallel for j 1,2, LI(j) and L2(j); as byproducts, we also get T(j,r’),
C(j, r’), and co(j, r’) for r’ 6 L 1 (j). Let L 1 (j, r’) denote the list of successors of r’ in
L 1 (j); it is also the list of h-arcs in T (j, r’).

Let L and L2 be the lists corresponding to an optimal triangulation T of P. We show how
to merge the results for P(1) and P(2) to obtain L 1 and L2 in O(log n) time. For r 1 6 L 1 (1),
we have T(rl) T(1, rl), C(rl) C(1, rl), and co(rl) co(l, rl). We need to find
T (r2), C (r2), and co(r2) for r2 6 L 1 (2). To find T (r2), we need the following lemma.

LEMMA 4.1. Let r2 Ll(2). There exist r2’ Ll(2, r2) and rl’ L2(1) such that the
following hold (see Figure 4)

(i) rl’ is the first element (from the bottom) in L2(1) such that co(rl’) < w((r2’)l).
(ii) The triangulation of P(r2) that consists ofT(2, r2; r2’), T(rl’), and F(r2’; rl’)

is an optimal triangulation T (r2) of P(r2).
Proof Let Tmin(r2) be the optimal triangulation of P(r2) that contains the minimum

number of h-arcs. Let rl’ be the bottommost h-arc of P(1) in Tmin(r2), and let r2’ be the top
most h-arc of P (2) in Tmin (r2). Then, by Lemma 3.4, r 1’ 6 L 1 (1) and r2’ 6 L 1 (2, r2). Also,
since Tmin(r2) contains the minimum number of h-arcs, by Lemma 2.2, rl’ 6 L2(1) and (i)
must hold.

Train(r2) consists of Tmin(r2; r2’), Tmin(rl’), and F(r2’; rl’). T(r) and T(2, r2) are
optimal triangulations of P (1) and P (2, r2), respectively, and contain r 1’ and r2’, respectively.
So, the triangulation T(r2) as described in (ii) has the same cost as Tmin(r2) and hence is
optimal.

COROLLARY 4.2. Let r2 Ll(2). For r2’ Ll(2, r2), let rl’ be the first element (from
the bottom) in L2(1) such that co(rl’) < w((r2’) 1) (see Figure 4). Let

savings(r2’) C(2, r2’) + C(r;

(savings(r) is taken to be 0). Pick rT 6 L 1 (2, r2) such that savings(rT) is maximized. Then
the triangulation ofP(r2) that consists ofT(2, r2; rU), T(r 1’), and F(rU; rl’) is an optimal
triangulation of P (r2).

Proof Let T1 (r2) be the triangulation of P(r2) that consists of T (2, r2) concatenated
with T(r); its cost is C1(r2) C(2, r2) + C(r). For any r2’ 6 Ll(2, r2), let rl’ be as
specified in the corollary. Let T2(r2) be the triangulation of P(r2) specified in the corollary.
It differs from T1 (r2) only in P(rT; rl’). Its cost is

C2(r2) C(2, r2; rT) + C(rl’)

C1 (r2) savings(r2’).

By Lemma 4.1, Tz(r2) must be an optimal triangulation of P(r2) for some r2’ 6 Ll(2, r2).
Clearly, this r2’ must be such that it maximizes C1 (r2) Cz(r2) savings(r2t).

882 PRAKASH RAMANAN

r2

FIG. 5.

In the above corollary, if r2’ rl’ r, then T(r2) consists of T(2, r2) and T(r).
Now we show how to obtain T(r2) and C(r2), for each r2 6 Ll(2), in O(logn) time.

For each r2’ 6 L1 (2), the processor assigned to r2’, using binary search in O(logn) time,
finds the first element rl’ in L2(1) such that co(rl’) < w((r2’)l). Then the processor
computes savings(r2’) in constant time. Once all the processors assigned to the h-arcs in
L 1 (2) have computed their savings, they perform a prefix computation from top to bottom, in
O (log n) time, using the max operation, to find the largest savings. Among all the h-arcs in
L (2, r2), let r2’ have the largest savings; since savings(r) 0, we have savings(r2’) > O.
By Corollary 4.2, T(r2) consists of T(2, r2; r2’), T(r 1’), and F(r2’; rl’); its cost is C(r2)
C(2, r2) + C(r) savings(r2’). Thus C(r2) can be obtained for all r2 Ll(2) in O(log n)
time. When r2 is the bottom degenerate h-arc of P, we get an optimal triangulation T of P
and the corresponding list L 1 in O (log n) time.

Now, we show how to compute co(r2) for each r2 6 Ll(2) in O(log n) time. Before we
can compute co(r2), we need to know which h-arcs will exist in an optimal triangulation of
P’ (r2) when w(v’) is less than but arbitrarily close to co(r2) (see Figure 5). Let T[(r2) be the
triangulation of P’(r2) that consists of T (r2) and the triangle v’r2 r22. For any value of w(v’),
T((r2) is of minimum cost among all triangulations of P’ (r2) that contain r2. The processor
assigned to r2 can compute its cost in constant time as C’ (r2) C(r2) + w(v’)w(r2)w(r22).
For any given value of w(v’), let T(r2) be a triangulation that is of minimum cost among
all triangulations of P’ (r2) that do not contain r2; let C(r2) be its cost. By Lemma 2.2, we
have the following: for w(v’) < co(r2), C;(r2) < C’(r2); at w(v’) co(r2), C(r2)
C(r2).

By Lemma 3.3, we have co(r2) > co(2, r2). To determine if co(r2) co(2, r2) or
co(r2) > co(2, r2), we need the following two lemmas.

LEMMA 4.3. For any w(v’) < co(r2), ifT(r2) contains any h-arc below r, then co(r2)
co(2, r2).

Proof If T(r2) contains any h-arc below r, then co(r2) is independent of P(r); so
co(r2) co(2, r2). 1

LEMMA 4.4. Let r 10 be the first element in L2(1) such that co(r 10) < co(2, r2) (see
Figure 5). Let Td(r2) be the triangulation of P’(r2) that consists of T (r lo) and F’(r2; rl0);
let C(r2) be its cost. Then co(r2) > co(2, r2) iff C(r2) < C’ (r2) at w(v’) co(2, r2).

Proof. Let w(v’) co(2, r2) < co(r2). By Lemma 2.2, T(r2) is of minimum cost
among all triangulations of P’(r2) that do not contain any h-arc properly below r; we have
C(r2) > C(r2). If co(r2)= co(2, r2), then C(r2) > C;(r2)= C(r2). If co(r2) >
co(2, r2), then, by Lemma 4.3, T(r2) can not contain any h-arc below r; then T(r2) can be
taken to be Td(r2); so C(r2) C(r2) < C (r2). [3

The processor assigned to r2, using binary search, in O(log n) time, finds r 10 as specified
in the above lemma. Then the processor computes C(r2) (at w(v’) co(2, r2)), in constant

PARALLEL ALGORITHM FOR MATRIX-CHAIN PRODUCT 883

time,, as C(r2) C(rl0) + co(2, r2)W(r2; rl0). If C(r2) > C(r2), the processor sets

co(r2) co(2, r2). Now consider the case C(r2) < C (r2); we have r 10 > r and co(r2) >
co(2, r2). co(r2) lies between the cutoff values of an adjacent pair of predecessors of r 10 in
L2(1). Also, by Lemma 4.3, when w(v’) < co(r2), T(r2) can not contain any h-arc below
r. The processor assigned to r2 can locate co(r2) with respect to L2(1) as follows: The
processor, in a binary search manner, picks a proper predecessor rla of rl0 in L2(1) with
co(rll) < w(r21) (see Figure 5). (If no such rll exists, then co(r2) lies between the cutoff
values of r 10 and its immediate predecessor in L2(1)). Then the processor tentatively assigns
the value of co(r 11) to w(vt). Let r 12 be the immediate successor of r 11 in L2(1). Let T(r2)
be the triangulation of P’(r2) that consists of T (r 12) and F(r2; r 12). For co(r 12) < w(v’) <
co(r 11), T(r2) is of minimum cost among all triangulations of P’(r2) that do not contain any
h-arc below r. The processor assigned to r2 computes its cost at w(v’) co(r 11), in constant
time, as

C(r2) C(rl2) + co(rll)W(r2; r12).

By Lemmas 2.2 and 4.3, we have co(r2) < w(v’) co(rll) iff C(r2) < C(r2); also,
co(r2) w(v’) co(rl 1) iff Ctl (r2) C(r2). Thus, by performing binary search in L2(1),
the processor can locate co(r2) to be either equal to the cutoff value of some predecessor of
r 10 or properly between the cutoff values of an adjacent pair of predecessors of r 10. In the
latter case, co(r2) can be obtained by solving an equation. So, co(r2) can be computed in
O (log n) time.

Final L2 list can be obtained in O(log n) time as follows. By performing a parallel prefix
computation in L 1, find the smallest cutoff value co(r") preceding each r’ L 1. Then r’ L2
iff co(r’) < co(r").

We have shown that the merge operation can be performed in O (log n) time. So, we have
the following.

THEOREM 4.5. An optimal triangulation ofan unimodalpolygon can befound in 0 (log2 n)
time.

5. Parallel algorithm for multimodal polygons. Let P be a general multimodal poly-
gon with n vertices. In this section, we present an O (log4 n) algorithm for finding an optimal
triangulation of P. The description of the algorithm is divided into the following subsections.
The names of the variables used in a subsection are local to that subsection.

5.1. Finding the local minima, maxima, modality, and the h-arcs. First, assign one
processor to each vertex of P. We can find the global minimum vertex by performing a parallel
prefix computation in O(log n) time. Then, in constant time, we can relabel the vertices with
respect to the global minimum vertex. So let P (vl, v2 vn), where vl is the global
minimum. By comparing the weight of each vertex with those of its two neighbors, we can
find the local minima and maxima in constant time. Then we can find the modality rn (i.e.,
the number of local minima) by performing a parallel prefix computation in O (log n) time.

Now we show how to find all the h-arcs in O(logn) time. Let Wn+l wl. Suppose
that r vi vj, < j, is an h-arc. If wi < wj, then must be the largest index, < < j,
such that wi < wj; if wi > wj, then j must be the smallest index, < j < n + 1, such that
wj < wi. So, as pointed out in [4, 6], finding all the h-arcs of P is equivalent to the following
all-nearest-smaller-value-pairs problem (ANSVP) [3].

ANSVP. Let (1/)1, 1/32 //3n) be a sequence of real numbers, where W is the smallest;
let Wn+l =- Wl. For each j, 1 < j < n, find the largest index i, 1 < < j, such that wi < wj;
also, find the smallest index k, j < k < n + 1, such that wk < wj.

Berkman et al. [3] showed that this problem can be solved in O(log n) time. So, all the
h-arcs can be found in O (log n) time.

884 PRAKASH RAMANAN

’13

rP12
rl0"

,r

r

r2

rl

rO

(a) (b)

FIG. 6.

5.2. Finding the trunk and the weights. As shown in [9], P corresponds to a rooted
binary tree, where each h-arc corresponds to a node (see Figure 6). A node (i.e., h-arc) r’ is
the parent of another node r" if r" is immediately above r’ (i.e., r" is properly above r’ and
there is no h-arc properly between them). Let {2, n} be such that wt min(w2, wn).
The degenerate h-arc vl vt is the root and is at the bottom. Parent-to-child edges are directed
upwards. Only those h-arcs that are bridges (see 2.2) have two children. After finding the
h-arcs, we can set up the tree in constant time. Then, using the Euler tour technique 10, 16],
in O(log n) time, we can compute the sizes (i.e., the number of nodes) of the subtrees rooted
at each of the nodes. Using the same technique, we can also compute the weights of all the
h-arcs in O(logn) time.

Throughout the rest of this paper, the term vertex will refer to a vertex of the polygon P;
unless specified otherwise, the term node will refer to a node of the tree (i.e., an h-arc of P)
defined in the previous paragraph.

The trunk of the tree is a linear chain of nodes defined as follows: The root is on the trunk;
if a non-bridge node is on the trunk, then its child is on the trunk; for a bridge node on the
trunk, its child with the larger subtree is on the trunk. In Figure 6b, the trunk is shown in dark
lines. Assigning one processor to each tree node, the trunk can be found in O(log n) time.

5.3. Outline of the divide-and-conquer algorithm. Our divide-and-conquer algorithm
for finding an optimal triangulation of P is as follows. Assigning one processor to each node
of P, find its trunk T. A basic subtree (equivalently, basic subpolygon) is a subtree (i.e.,
subpolygon) that results when the trunk is removed from the tree. For a basic subpolygon S,
its base is its bottom edge; i.e., the node that is adjacent to a (bridge) node on the trunk. Note
that for any h-arc r in S, we have S(r) P (r). For each basic subpolygon S, recursively find
the following:

(a) the set setl (S) of h-arcs that are in an optimal triangulation of S; this is analogous
to the L 1 list described in 2.1, but it is a set instead of being a list because S might not be
unimodal;

(b) C(r) and co(r) for each r setl(S). T(r) will contain those h-arcs of P(r) that are
in setl S)

(c) the list L2(S) for the subpolygon S, analogous to the L2 list described in 2.2;
(d) for each r L2(S), the cumulative cost CC S, r) and the cumulative weight CW S, r)

defined in the next subsection.
Now we need to glue the subtrees to the trunk. This means obtaining the above four items for
the whole polygon P.

The trunk T of P can be found in O(logn) time. By our choice of trunk, each basic
subtree will have at most n/2 nodes. We will show that the glue operation can be performed in

PARALLEL ALGORITHM FOR MATRIX-CHAIN PRODUCT 885

FIG. 7.

O(log n) time. So, the run-time for the divide-and-conquer part of the algorithm is DC(n) <
DC(n/2) + O(log3 n) O(log4 n). As shown in 5.1 and 5.2, all the other operations can
be performed in O (log n) time. So, the total run-time is O (log4 n).

5.4. The cumulative cost and weight. Let S P(r) for an h-arc r. For some given
w(v’) < w(rl), we want to find an optimal triangulation T’(r) of P’(r) (see Figure 7).
Suppose that, for some rl 6 L2(S), w(vt) > co(r1), but w(v’) is no more than the cutoff
values of all the proper predecessors of rl in L2(S). Then, by Lemma 2.2, there exist pairwise
incomparable h-arcs ri L2(S), 1 < < k, such that T’(r) consists of ri and T(ri), 1 <
< k, and U(r; rl, r2 rk). We define the cumulative set of rl with respect to S as

cset(S, rl) {rl, r2 rk}. The cost of T’(r) is

C’(r)

_
C(r) + w(v’) W(r) (W(r) w(r])w(r))

i=1 i=1

We define the cumulative cost and cumulative weight, respectively, as follows: CC(S, r)
fi= C(ri); CW(S, r) _,=[W(ri)- w(r])w(r?)]. Then

Ct(r) CC(S, rl) + w(v’)[W(r) CW(S, rl)].

Given any w(v’), we want to be able to quickly compute C’ (r). So, we want to efficiently
precompute CC(S, rl) and CW(S, r), for all r 6 L2(S). First note that cset(S, r) is the set
obtained using the following procedure.

L(r) the list obtained from L2(S) by deleting all the proper predecessors of r
cset(S, ra) {r}
From L(rl), delete rl and all the elements that are above rl
while L(rl) # do

Let r’ be the first element of L(rl)
cset(S, rl) cset(S, rl) {r’}
From L(rl), delete r’ and all the elements that e above r’

So, CC(S, rl) and CW(S, rl) can be obtained by summing up C(r’) and W(r’)
w((r’) 1)w((r’)2), respectively, over some of the successors of r in L2(S) (namely, those suc-
cessors that are in cset(S, r)). We would like to split up C(r’) and W(r’) w((r’)l)w((r’)2)
into disjoint pas over the successors of rl in L2(S). Then CC(S, r) and CW(S, r) can be
obtained by summing up these pas over all the successors of rl in L2(S). These pas will
be called the differential cost and differential weight, respectively.

Unlike the cumulative cost and weight, the differential cost and weight of an h-arc
r’ 6 L2(S) depend only on S(r’) P(r’). Let compact(S) be the tree consisting only of

886 PRAKASH RAMANAN

() (b)

FIG. 8.

the nodes (i.e., h-arcs) in L2(S), such that the ancestor-descendant relationship among the
nodes in compact(S) is same as that in S. compact(S) is obtained from S by deleting the nodes
not in L2(S), while preserving the ancestor-descendant relationship; in general, it will not be
binary. Consider the tree S in Figure 8a, where the nodes in L2(S) are circled; Figure 8b
shows compact(S). Given L2(S), compact(S) can be obtained in O(log n) time as follows:

compact(S) +-- S
for 1 to log n do

for all r’ compact(S) do in parallel
ifparent(r’) nil and parent(r’) L2(S) then parent(r’) +- parent(parent(r’))

(* Comment. Now parent(r’) L2(S) for all r’ 6 L2(S) *)
for all r’ in compact(S) do in parallel

if r’ L2(S) then delete r’ from compact(S)

The root of compact(S) is the root r of S. For r 6 L2(S), we define the differential
set dset(r’) to be the set of children of r’ in compact(S). Let dset(r’) {rl, r2 rp for
some p (see Figure 7 with all the r s replaced by r’ s). We define the differential cost to be
DC(r’) C (r’) _,= C(r) and the differential weight to be

P

DW(r’) W(r’)- w((r’))w((r’)2) E[W(r[)- w(r’)w(r[2)]
i=1

By assigning]dset(r’)] processors to r’, we can compute DC(r’) and DW(r’), for all r’ 6

L2(S), in 0 (log n) time.
For r" 6 L2(S), DC(r’) and DW(r’) depend only on some subpolygon of P(r’), and

the subpolygons corresponding to different r"’s are disjoint. Also, it follows by induction that

Er" DC(r") C(r’) and Zr" DW(r") W(r’) w((r’))w((r’)2), where the summation
is over all the descendants r" of r’ (including r’) in compact(S). It follows that r" DC(r")
CC(S, r) and r" DW(r’) CW(S, r), where the summation is over all the successors
r" of rl (including r) in L2(S).

Suppose that we have obtained L2(S). We can obtain compact(S) in O(logn) time.
Then we can compute DC(r’) and DW(r’) for each r’ L2(S) in O(logn) time. Then,
by performing a parallel prefix computation in L2(S) from the rear (i.e., in increasing order
of cutoff values), we can sum up the differential costs and weights (separately) to obtain
CC(S, r) and CW(S, r) for each r e L2(S) in O(logn) time.

g.. The glue operation. Now we show how to glue the basic subtrees to the trunk. This
will not alter the cutoff values of the h-arcs in the basic subtrees; it only involves computing
the cutoff values of the h-arcs in the trunk and obtaining the overall set set1 and list L2 for P.

PARALLEL ALGORITHM FOR MATRIX-CHAIN PRODUCT 887

(a) (b)

FIG. 9.

First, we glue each basic subtree to its adjacent bridge node on the trunk. Let S be a basic
subtree with base r (so S P(r)). Let r’ be the parent of r in P; r’ is a bridge node that
lies on the trunk of P (see Figure 9a). Let r" be the other child of r’ in P; r" is also on the
trunk of P. Let r’ have endpoints U and g2 and r" have endpoints u and u3; then r u2
and r2 u3. We want to first glue S to r’ and r" to obtain the results for P (r’; r"). This only
involves finding T (r’; r"), C (r’; r"), and co(P (r’; r"), r’); co(P (r’; r"), r") is zero.

T (r’; r") and C (r’; r") are obtained as follows: The processor assigned to r’, using binary
search, in O(logn) time, finds the first entry rl in L2(S) such that co(r) < w(ul). Then
T (r’; r") is the triangulation T’ (r) described at the beginning of the previous subsection with
v’ replaced by u; its cost is

C(r’; r") CC(S, rl) + W(Ul)[W(r) CW(S, r)].

So, T(r’; r") and C(r’; r") can be found in O(logn) time.
Now we show how to compute co(P(r’; r"), r’) (see Figure 9b). To set up the equation

for co(P(r’; r"), r’), we have to locate it with respect to L2(S). This is done as follows:
Let T[(r’; r") be the triangulation of P’ (r’; r") that consists of r’, T (r’; r"), and the triangle
v’uu2. For any value of w(v’), T[(r’; r") is of minimum cost among all triangulations
of P’(r’; r") that contain r’. The processor assigned to r’ computes its cost as C’ (r’; r")
C (r’; r")+w(v’)w(u)w(u2). Then the processor, in a binary search manner, picks a candidate
r0 6 L2(S) with co(ro) < min(w(u), w(u2)) and tentatively assigns the value of co(m) to
w(v’); let r be the immediate successor of r0 in L2(S). Let T’(r) be the optimal triangulation
of P’(r) described in the previous subsection at w(v’) co(ro). Its cost is

C’(r) CC(S, rl) + co(ro)[W(r) CW(S, r)].

Let T(rl; r") be the triangulation of P’(r’; r") that consists of T’(r) and the triangle v’uu3.
For co(r) < w(v’) <_ co(ro), T(r’; r") is of minimum cost among all triangulations of
P’(r’; r’I) that do not contain r’. The processor assigned to r’ computes its cost at w(v’)
co(ro) as

C;(r’; r") C’(r) + co(ro)w(u)w(u).

By Lemma 2.2, we have co(P(r’; r"), r’) < w(v’) co(ro) iff C’1 (r’; r") < C;(r’; r"); also,
co(P(r’; r"), r’) w(v’) co(ro) iff C (r’; r") C;(r’; r"). Thus, by performing binary
search on L2(S), the processor can locate co(P(r’; r"), r’) to be equal to the cutoff value of
some element in L2(S), properly between the cutoff values of two adjacent elements in L2(S),
or greater than co(r). In the latter two cases, co(P(r’; r"), r’) can be obtained by solving an
equation. So, co(P(r’; r"), r’) can be computed in O(logn) time.

We have shown that a basic subtree can be glued to its adjacent bridge node on the trunk
in O (log n) time. Now consider the general problem of gluing many basic subtrees to a long

888 PRAKASH RAMANAN

trunk. We first glue each basic subtree to its adjacent bridge node as explained above and then
combine the results together. We will show that the combine operation can be performed in
O(log n) time; so, the glue operation can be performed in O(log3 n) time.

5.11. The combine operation. Let 7 be the trunk of P. Assume that each basic subtree
has been glued to its adjacent bridge node, as explained in the previous subsection. The
combine operation combines all the results to obtain the final cutoff values of the h-arcs in the
trunk and the overall results for P.

The combine operation is perforrned in a divide-and-conquer manner. Split the trunk 7
into two at the middle h-arc r; let T (1) and T (2) be the top and bottom halves of 7. For
j 1, 2, let P (j) be the tree that consists of i? (j) and all the basic subtrees glued to it; so,
P (1) P (r) and P (2) P (; r). For j 1, 2, recursively find the following:

(a) the set setl(j) of h-arcs that are in an optimal triangulation of P(j); the list l(j)
(in bottom to top order) of those h-arcs in 7 (j) that are in set1 (j);

(b) C(j, r’) and co(j, r’) for each r’ 6 1 (j); T(j, r’) will contain those h-arcs of
P (j, r’) that are in set1 (j);

(c) the list L2(j) for P (j), analogous to the L2 list described in 2.2; the sublist/2(j)
of L2(j) consisting of those h-arcs that are also in (j);

(d) CC(j, r’) and CW(j, r’) (with respect to P(j)) for each r’ 6 L2(j).
Now we need to merge the results for P (1) and P(2); this means obtaining the above four
items for the whole polygon P. We will show that the merge operation can be performed in
O(log2 n) time; so, the combine operation can be performed in O(log n) time.

5.7. The range tree in general. Our merge operation uses the range tree data structure
of Lueker [12] and Willard [19] (also see [13]). It is typically used for representing a set of
points in the (x, y)-plane. It consists of a primary structure and several secondary structures.
The primary structure is the segment tree of Bentley [2] (also see [13]). For positive integers
and j, < j, let the interval [i, j] [i, j + 1) (i 1, j] denote {i, + j}. The

segment tree on [i, j] is a rooted binary tree defined as follows: If j, it consists of a single
leaf. If < j, its root corresponds to the interval [i, j]; the left and right subtrees are segment
trees on [i, /(i + j)/2J] and (/(i + j)/21, j], respectively.

The segment tree ST on [1, n] has height [logn], and it can be constructed in O(n)
sequential time. For a node u in ST, let Int(u) denote the interval corresponding to u. For
an arbitrary given interval [i, j]

[1, hi, a node u in ST is called an allocation node if

Int(u) [i, j], but Int(parent(u)) = [i, j]. The intervals corresponding to the allocation
nodes for [i, j] are disjoint, and their union equals [i, j]. There are at most 2[log n] 2
allocation nodes for any [i, j], and they can be found in O(log n) sequential time (see [13]).

Now we are ready to describe the range tree. Let S be a set of points in the (x, y)-plane.
Let the x-coordinates of the points be in [1, n], where ISI O(n), The y-coordinates of
the points are real numbers; so, the y-range [Yl, y2] will denote the range of real y-values
yl < y < y2. For a range tree RT on S, the primary structure is the segment tree ST on the
x-range 1, n]. For a node u in ST, let Su be the subset of S consisting of those points whose
x-coordinates are in Int(u). The secondary structure associated with u is an array Au that
consists of the points in Su in decreasing order of y-coordinates. Each point in Au has two
pointers (called threads) associated with it; see [13] for details.

The storage requirement for RT is O(n log n), and it can be constructed in O(n log n)
sequential time. Let R [x, X2] [y, y2] be an orthogonal rectangle; i.e., R spans the
x-range [x, x2]

_
[1, n] and the y-range [y, Y2]; R is referred to as a range query. We

can obtain the points of S contained in R, in O(log n) sequential time, as follows: First, find
the allocation nodes for the x-range [xl, x2] in ST. Let A be the secondary structure (i.e.,
array) associated with the root of RT. Using binary search (for Y2 and y), locate the topmost

PARALLEL ALGORITHM FOR MATRIX-CHAIN PRODUCT 889

FIG. 10.

and bottommost points pr and p in A with y-coordinates in the range [yl, y2]. For each
allocation node u, we can locate the topmost and bottommost points of Au that are contained in
R by following the threads from pr and p and going down the segment tree to the allocation
nodes.

5.8. Our range tree. Letr2 E /1(2). Fora given w(v’) < w(r21), let T"(r2) denote a
triangulation that is of minimum cost among all triangulations of P’ (r2) that do not contain
any h-arc properly below r (see Figure 10); let C"(r2) be its cost. During the merge operation,
we need to be able to efficiently compute T"(r2) and C"(r2) for different values of w(v’).
For this, we use the range tree data structure.

We need the following definitions and notations. For two h-arcs rl and r2 in P, rl >_ r2,

the distance between rl and r2, denoted by dist(rl, r2), is defined as follows" If rl r2, then
dist(rl, r2) 0; if rl > r2, then dist(rl, r2) is one plus the number of h-arcs that are properly
between rl and r2.

Let S be a basic subpolygon glued to (2); let r2’ be the bridge node in (2) that is
adjacent to the base of S in P. For any h-arc r’ in S, and any h-arc r2" > r2’ in (2), we
define the trunk distance tdist(r2", r’) to be dist(r2", r2’). Recall that r is the topmost node
of " (2). We let tdist(r’) to be the short form for tdist(r, r’).

Let set2(2) be the (set) union of the L2 lists of all the basic subtrees glued to 2? (2). Each
r’ set2(2) can be considered as a point in the (x, y)-plane; its x-coordinate is tdist(r’); its
y-coordinate is co(r’). We set up the range tree RT on set2(2). The x-range corresponding
to the root of RT is [1, n]. The y-coordinates (i.e., cutoff values) are all nonnegative. The
h-arcs in set2(2) can be sorted according to their cutoff values in O(logn) time using the
parallel merge-sort algorithm of Cole [5], and the range tree RT can be set up in O(log2 n)
time.

We augment the secondary structures in RT with some additional information related to
cumulative costs and weights. Consider a node u in RT. Let set2u (2) be the subset of set2(2)
consisting of those h-arcs whose x-coordinates are in Int(u). The secondary structure (i.e.,
array) Au contains these h-arcs in decreasing order of their cutoff values. For any rl in Au, let
the range cumulative set cset(u, rl be the set cset(S, rl obtained using the pseudocode in 5.4
when L2(S) is replaced by Au. Let CC(u, rl) and CW(u, rl) be the range cumulative cost and
weight obtained from cset (u, rl). For each node u in RT, and each rl in Au, we want to store
CC(u, rl) and CW(u, rl). They can be computed in O(log2 n) time (using]set2(2)[O(n)
processors) as follows: For each u, we can compute CC(u, rl) and CW(u, rl) for all rl in A,
in O(log n) time, using [set2u(2)l processors, as explained in 5.4. With Iset2(2)l processors,
we can compute these for all the nodes u in any one level of RT, in parallel, in O(log n)
time. Since RT has O(logn) height, we can compute these for all the levels in O(log2 n)
time.

890 PRAKASH RAMANAN

Now we show how to find T" (r2) and C"(r2) (defined at the beginning of this subsection)
using a single processor, for r2 6 L (2). Let dist(r, r2) and w(v’) yvalue, where
0 < yvalue < w(r21). First, process the range query R [1, i] x [yvalue, c) using RT
as follows. Find the allocation nodes for the x-range [1, i]. Let u be an allocation node.
Among all the h-arcs in Au with cutoff value less than yvalue, let ru have the highest cutoff
value. As explained in the previous subsection, we can find ru for all the allocation nodes in
O (log n) time. Let cset([1,], yvalue) U cset(u, ru), CC ([1,], yvalue) CC(u, r,),
and CW([1, i], yvalue) CW(u, r,), where the union and the summations are over all
the allocation nodes u. Since there are O (log n) allocation nodes, CC([1, i], yvalue) and
CW([1,], yvalue) can be computed in O (log n) time.

Then, using binary search, in O(log n) time, find the first h-arc rl 6 L2(1) with co(rl) <
yvalue. We let upper(r2; yvalue) denote cset(P(1), rl) tO cset([1, i], yvalue). P(r2; yvalue)
denotes the subpolygon of P(r2) that is bounded above by all r’ upper(r2; yvalue) (see
Figure 10). Then, T"(r2) is the triangulation of P’(r2) that consists of r’ and T(r’), r’
upper(r2; yvalue), and F’ (r2; yvalue). Its cost is

C" (r2) C(r’)
r’ 6 upper(r2; yvalue)

+ w(v’) [W(r2)- r’ upper(r2; yvalue)

CC(P(1), rl) + CC([1, i], yvalue)

(W(r’) w((r’)l)w((r’)2))1
+ w(v’)[W(r2) CW(P(1), rl) CW([1, i], yvalue)].

So, a single processor can compute C"(r2) in O(logn) time.

5.9. The merge operation. For the merge operation, we need to obtain items (a)-(d) of

5.6 for the whole polygon P. We show how this can be done in O(log2 n) time.
Note that for r’ setl(j) 1(2) (j 1, 2), we have P(r’) P(j, r’); so T(r’)

T (j, r’), C (r’) C (j, r’), and co(r’) co(j, r’). For r2 6 1 (2), T (r2), C (r2), and co(r2)
are obtained using procedures similar to those in 4 for unimodal polygons. The only added
complication is due to the presence of the basic subtrees glued to T (1) and i? (2). The basic
subtrees glued to i?(1) are accounted for by their contribution to L2(1) and the cumulative
costs and weights in P (1). To account for the basic subtrees glued to 7 (2), we use the range
tree as described in the previous subsection.

For r2 6 1 (2), let L (2, r2) denote the list of successors of r2 in , 1 (2). To find T(r2)
and C(r2), we need the following analogues of Lemma 4.1 and its corollary for multimodal
polygons.

LEMMA 5.1. Let r2 1(2). There exists rT 1(2, r2) such that thefollowing holds
(see Figure 11): Let T0(r2’) be the triangulation of P(r2’) that consists of r’ and T(r’),
r’ upper (rT; w((rT)l)), and F(rT; w((rT))). The triangulation of P(r2) that consists
ofT(2, r2; r2’) and To(r2’) is an optimal triangulation T(r2) of P(r2).

Proof Similar to that of Lemma 4.1.
COROLLARY 5.2. Letr2 1(2). Forr2’ /1(2, r2), let dist(r, r2’) i’; letrl’ be the

first element rom thefront) in L2(1) such that co(rl’) < w((rT)) (see Figure 4). Let

savings(rT) C(2, rT) + C(r) CC(P(1), rl’) CC([1, i’], w((rT)l))
-w((rT))[W’(rT) CW(P(1), rl’) CW([1, i’], w((rT)l))]

(savings(r) is taken to be 0). Pick r2’ 6 1 (2, r2) such that savings(r2’) is maximized. Let
T0(rU) be the triangulation ofP (rT) that consists ofr’ and T (r’), r’ upper(rU w((rU)l)),

PARALLEL ALGORITHM FOR MATRIX-CHAIN PRODUCT 891

FIG. I.

and F(r2’; w((r2’)l)) (see Figure 11). The triangulation ofP (r2) that consists of T(2, r2; r2’)
and T0(r2’) is an optimal triangulation of P(r2).

Proof The proof is similar to that of Corollary 4.2. Let T1 (r2) be the triangulation of
P(r2) that consists of T(2, r2) concatenated with T(r); its cost is C (r2) C(2, r2) + C(r).
For any r2’ 6 ,1 (2, r2), let i’ and rl’ be as specified in the corollary. Let Tz(r2) be the trian-
gulation of P(r2) specified in the corollary. It differs from T (r2) only in P(r2’; w((r2’))).
Its cost is

C2(r2) C(2, r2; r2’) + C(r’)
r’E upper (r2’; w ((r2’)))

k- w((r2t)l) IW’(r2t)- (W(rt)- w((r’)l)w((rt)2))]r’6 upper(r2’;w((r2’)))

C(2, r2; r2’) + CC(P(1), rl’) + CC([1, i’], w((r2’)l))

+ w((r2’))[W’(r2’) CW(P(1), rl’) CW([1, i’], w((r2’)l))]

C1 (r2) savings(r2’).

By Lemma 5.1, Tz(r2) must be an optimal triangulation of P(r2), for some r2’ 6 1(2, r2).
Clearly, this r2’ must be such that it maximizes C1 (r2) C2(r2) savings(r2’). [3

In the above corollary, if r2’ rl’ r, then T(r2) consists of T(2, r2) and T(r).
Now we show how to obtain T(r2) and C(r2),foreachr2 1(2), in O(logn) time, For

r2’ 1(2), let dist(r, r2’) i’; let rl’ 6 L2(1) be as specified in the above corollary. The
processor assigned to r2’ computes CC(P(1), rl’), CC([1, i’], w((r2’)l)), CW(P(1), rl’),
and CW([1, i’], w((r2’)l)) in O(logn) time as explained in the previous subsection. Then
the processor^computes savings(r2’) in constant time. Once all the processors assigned to
the h-arcs in L 1 (2) have computed their savings, they perform a prefix computation from top
to bottom, in O(log n) time, using the max operation, to find the largest savings. Among
all the h-arcs in L 1 (2, r2), let r2’ have the largest savings; since savings(r) 0, we have
savings(r2’) >_ O. Then T (r2) is the triangulation of P (r2) specified in the above corollary;
its cost is C(r2) C(2, r2) + C(r) savings(r2’). Thus C(r2) can be obtained for all
r2 6 ,1(2), in O(logn) time.

Let r20 be the bottom edge (and the root) of P(2) and P, and let r2 be the h-arc in
/ 1 (2) with the largest savings. T (r20) (as described in the previous paragraph) is an optimal
triangulation of P(r20) P, and its cost is C(r20). T(r20) can be obtained as follows"
concatenate T(1) and T(2); replace the triangulation in P(r2; w(r2l)) by a fan. So, the set
setl of h-arcs in T(r20) can be obtained from setl (1) U setl (2) by removing all the h-arcs of
P(r2; w(r2l)). So, setl can be obtained in O(log n) time. Then the list 1 of those h-arcs

of 27 that are in set1 can be obtained in O (log n) time.

892 PRAKASH RAMANAN

Now we show how to compute co(r2), for each r2 6 (2), in O(log2 n) time. Before
we can compute co(r2), we need to know which h-arcs will exist in an optimal triangulation
of P’ (r2) when w(v’) is less than but arbitrarily close to co(r2). T[(r2), C (r2), T(r2), and
C(r2) are same as defined for unimodal polygons in 4; the processor assigned to r2 can
compute C’ (r2) in constant time. By Lemma 2.2, we have the following: for w(v’) < co(r2),
C;(r2) < C (r2); at w(v’) co(r2), C(r2) C(r2).

By Lemma 3.3, we have co(r2) > co(2, r2). To determine if co(r2) co(2, r2) or
co(r2) > co(2, r2), we need the following analogues of Lemmas 4.3 and 4.4.

LEMMA 5.3. For any w(v’) < co(r2), ifT(r2) contains any h-arc below r, then co(r2)
co(2, r2).

Proof. Similar to that of Lemma 4.3.
LEMMA 5.4. Let r 10 be thefirst element in L2(1) such that co(r 10) < co(2, r2) (see Fig-

ure 5). Let Td(r2) be the triangulation T"(r2) of P’(r2) described in the previous subsection
when w(v’) co(2, r2); let C(r2) be its cost. Then co(r2) > co(2, r2) iff Co(r2) < C11 (r2)
at w(v’) co(2, r2).

Proof. Similar to that of Lemma 4.4.
The processor assigned to r2 can determine r 10 andC(r2) (specified in the above lemma),

in O(log n) time as described in the previous subsection. If C(r2) > C (r2), the processor
sets co(r2) co(2, r2). Now consider the case C(r2) < C1 (r2); we have rl0 > r and
co(r2) > co(2, r2). co(r2) lies between the cutoff values of an adjacent pair of predecessors
of r 10 in L2(1). Also, by Lemma 5.3, when w(v’) < co(r2), T(r2) cannot contain any h-arc
below r. The processor assigned to r2 can locate co(r2) with respect to L2(1) as follows:
The processor, in a binary search manner, picks a proper predecessor r 11 of r l0 in L2(1),
with co(rll) < w(r21) (see Figure 5). (If no such rll exists, then co(r2) lies between the
cutoff values of r 10 and its immediate predecessor in L2(1)). Then the processor tentatively
assigns the value of co(rll) to w(v’). Let r12 be the immediate successor of rll in L2(1).
Let Tj(r2) be the triangulation T"(r2) of P1(r2) described in the previous subsection when
w(v’) co(rll). For co(rl2) < w(v’) < co(rll), T(r2) is of minimum cost among all
triangulations of P’(r2) that do not contain any h-arc below r. The processor assigned to r2
computes its cost C;(r2) at w(v’) co(rl 1), in O(log n) time, as described in the previous
subsection. By Lemmas 2.2 and 5.3, we have co(r2) < w(v’) co(r 11) iffC (r2) < C(r2);
also, co(r2) w(v’) co(rl 1) iff C1 (r2) C(r2). Thus, by performing binary search
in L2(1), in O(log2 n) time, the processor can locate co(r2) to be either equal to the cutoff
value of some predecessor of r 10 or properly between the cutoff values of an adjacent pair of
predecessors of r 10. In the former case, we are done. In the latter case, we still have to locate
co(r2) with respect to set2(2). Let A be the secondary structure associated with the root of the
range tree RT. Using a binary search procedure similar to the one above, in O(log2 n) time,
the processor can locate co(r2) to be either equal to the cutoff value of some element in A or
properly between the cutoff values of two adjacent elements in A. In the former case, we are
done. In the latter case, we know which h-arcs will exist in an optimal triangulation of P’ (r2)
when w(v’) is less than but arbitrarily close to co(r2); then co(r2) can be obtained by solving
an equation. So, co(r2) can be computed in O(log2 n) time.

Once we have the final cutoff values, we can obtain the list 2 for 7, in O (log n) time,
as follows: By performing aparallel prefixcomputation in/ 1, find the smallest cutoff value
co(r") preceding each r’ 6 L 1. Then r’ 6 L2 iff co(r’) < co(r").

Once we have 2, we can obtain the list L2 for P, in O(log n) time, as follows: For each
basic subpolygon S glued to 7, find the topmost h-arc in 2 that is below the base of S; let cos
be the cutoff value of this h-arc. Let L2’(S) be the list obtained from L2(S), by removing the
longest prefix of elements all of which have cutoff values greater than or equal to cos. Then
L2 is obtained by sorting/2 U (tAsL2’(S)) in O(log n) time [5].

PARALLEL ALGORITHM FOR MATRIX-CHAIN PRODUCT 893

Finally, for each r’ 6 L2, CC(P, r’) and CW(P, r’) can be computed in O (log n) time
as described in 5.4. So the merge operation can be performed in O(log2 n) time. This leads
to the following.

THEOREM 5.5. An optimal triangulation ofa polygon can befound in 0 (log4 n) time.

REFERENCES

A.V. AHO, J. E. HoPcgOFT, AND J. D. ULLMAN, The Design and Analysis of Computer Algorithms, Addison-
Wesley, Reading, MA, 1974.

[2] J.L. BENTLEY, Algorithmfor Klee’s rectangle problems, unpublished notes, Department of Computer Science,
Carnegie-Mellon University, Pittsburgh, PA, 1977.

[3] O. BEgKMAN, D. BgESLAUEg, Z. GALIL, B. SCHmBEg, AND U. VISHIN, Highly parallelizable problems, in Proc.
21st Annual ACM Symposium on Theory of Computing, Association for Computing Machinery, New
York, 1989, pp. 309-319.

[4] P. BgADFOgD, Efficientparallel dynamicprogramming, in Proc. 30th Annual Allerton Conference on Commu-
nication Control and Computing, University of Illinois Press, Champaign, IL, 1992, pp. 185-194.

[5] R. COLE, Parallel merge sort, SIAM J. Comput., 17 (1988), pp. 770-785.
[6] A. CZUMAJ, Parallel algorithmfor the matrix chain product and the optimal triangulation problems, in Proc.

Symposium on Theoretical Aspects of Computer Science, Lecture Notes in Comput. Sci. 665, Springer-
Verlag, New York, 1993, pp. 294-305.

[7] L. GUmAS, H. T. KUNG, AND C. THOMPSON, Direct VLSI implementation ofcombinatorial algorithms, in Proc.
Caltech Conference on VLSI, California Institute of Technology, Pasadena, CA, 1979, pp. 509-525.

[8] T. C. Hu AND M. T. SHING, Computation of matrix chain products, part I, SIAM J. Comput, 11 (1982),
pp. 362-373.

[9] Computation ofmatrix chain products, part II, SIAM J. Comput, 13 (1984), pp. 228-251.
10] J. JAJA, An Introduction to Parallel Algorithms, Addison-Wesley, Reading, MA, 1992.
[11] R. E. LADNER AND M. J. FISCHER, Parallel prefix computation, J. Assoc. Comput. Mach., 27 (1980),

pp. 831-838.
[12] G. S. LUEKER, A data structure for orthogonal range queries, in Proc. 19th Annual IEEE Symposium on

Foundations of Computer Science, IEEE Press, Piscataway, NJ, 1978, pp. 28-34.
[13] E E PREPARATA AND M. I. SHAMOS, Computational Geometry: An Introduction, Springer-Verlag, New York,

1985.
14] E RAMANAN, A new lower bound technique and its application: Tight lower boundfor a polygon triangulation

problem, SIAM J. Comput., 23 (1994), pp. 834-851.
15] W. RYTTER, Note on efficientparallel computationsfor some dynamicprogrammingproblems, Theoret. Comp.

Sci., 59 (1988), pp. 297-307.
[16] R. E. TARJAN AND U. VISHKIN, An efficient parallel biconnectivity algorithm, SIAM J. Comput, 14 (1985),

pp. 862-874.
[17] L. VALIANT, Parallelism in comparison problems, SIAM J. Comput., 4 (1975), pp. 348-355.
18] L. VALIANT, S. SKYUM, S. BERKOWITZ, AND C. RACKOFF, Fast parallel computation ofpolynomials usingfew

processors, SIAM J. Comput., 12 (1983), pp. 641-644.
[19] D. E. WILLARD, Predicate-oriented database search algorithms, Ph.D. thesis, Technical Report TR 20-78,

Aiken Computational Laboratory, Harvard University, Cambridge, MA, 1978.

SIAM J. COMPUT.
Vol. 25, No. 4, pp. 894-906, August 1996

() 1996 Society for Industrial and Applied Mathematics
0O9

CONVERGENCE IN DISTRIBUTION FOR BEST-FIT DECREASING*

WANSOO T. RHEE AND MICHEL TALAGRAND

Abstract. Consider independent random variables X1 Xn uniformly distributed over [0,], and denote by
Bn the number of bins needed to pack items of these sizes using the best-fit decreasing algorithm. We prove that
the random variable n-1/2 converges in distribution to a nonnormal limit. The method consists of showing that the
patterns created by the algorithm exhibit some kind of convergence.

Key words, bin packing, uniform distribution, best-fit decreasing, convergence in distribution

AMS subject classifications. 60F05, 90B35

1. Introduction. The bin-packing problem requires finding the minimum number of
unit-size bins needed to pack a given collection of items of sizes in [0, 1], subject to the
restriction that the sum of the sizes of the items allocated to a given bin must not exceed
1. This problem has many applications and is known to be NP-complete. In the present
paper, we are interested in the popular approximation algorithm best-fit decreasing (BFD).
In BFD, the items to be packed are first ordered according to decreasing size. Each item is
then packed in turn in the bin in which it fits the best, i.e., in which the remaining space is
minimal after adding the item, opening a new bin whenever necessary. Despite the simplicity
of its definition, BFD does create complicated patterns, and it exhibits anomalous behavior
in the sense that decreasing the size of the items to be packed might result in using a larger
number of bins. The behavior of BFD on deterministic lists can be rather complicated, if not
pathological. One way to assess the relative importance of these complications is to analyze
how BFD operates on random lists of items. A natural randomness assumption is that the items
sizes X1 Xn are independent and distributed according to a given probability measure/x
on [0, 1]. Let us denote by Bn Bn(XI Xn) the number of bins used by BFD to pack
such a list of items. In [5], it is proved that, for a number b(/z) depending only on/z, the
sequence of random variables (r.v.’s) Bn/n converges completely to box), that is, for each
e > 0, }-->_ P(IBn/n- b(/z)] > e) < oc. What is actually implicitly shown in [5] is that
the patterns produced by BFD while packing the random list X X exhibit a kind of
convergence, and it can be said that [5] provides in that case a complete description of the
behavior ofBFD up to effects affecting o(n) bins. A deeper understanding would be provided
by a more precise description. For example, central-limit theorems provide a description of
the situation up to effects of order o(/B). The proof of a central-limit theorem in the general
framework described above appears to be a tough challenge. There are, however, special
distributions for which the analysis is simple. The simplest case is when the distribution has a
strictly increasing density. In that case, with probability very close to 1, all of the items of size
< 1/2 fit in the bins occupied by the items of size greater than 1/2. The next simplest case
is the case where the distribution has a strictly decreasing density. In that case, following the
results of 1], it should be easy to show (although this has not been checked by the authors)
that the wasted space is o(v/-ff) so that the number of bins used equals Yi<n Xi within o(/-ff)
(or even possibly o(1)). The next-hardest case that we consider in the present paper is where
/z is the uniform distribution. In that case, BFD used on a random list does exhibit genuinely

*Received by the editors May 6, 1994; accepted for publication (in revised form) January 4, 1995. This work
was partially supported by a National Science Foundation grant.

Department of Management Sciences, Ohio State University, 1775 College Road, Columbus, OH 43210-1399
(rhee. @osu.edu).

;Equipe d’Analyse, Universit6 Paris VI, Tour 46, 4 Place Jussieu, 75230 Paris cedex 05, France and Department
of Mathematics, Ohio State University, 231 West 18th Avenue, Columbus, OH 43210-1399.

894

BEST-FIT DECREASING 895

complicated patterns (which it does not do in the two previously discussed examples), but
these complicated patterns involve only O (/-d) bins. These patterns are created by the bins
such that the sum of the sizes of the first two items they receive is not around 1 O(n-1/2).
To obtain a central-limit theorem, then, the task is to prove that these patterns exhibit some
kind of convergence, which is the purpose of this paper.

THEOREM 1.1. Denote by Bn the numberofbins usedbyBFD whenpacking a list ofn items
whose sizes are independent and uniformly distributed over [0, 1]. Then the r.v. n--1/2 (Bn -converges in distribution.

Remarks. 1. The analysis extends to the case of the uniform distribution over [a, 1 (a >
0). On the other hand, what happens for the uniform distribution on [0, a] (for 1/2 < a < 1)
is unclear. In particular, according to the claim of the beginning of 5 of], a result such as
Theorem 1.1 cannot hold for the normalizing factor n- 1/2.

2. In contrast with the previous work of these authors [3], [5], it does not seem possible
to give an explicit expression for the limit distribution.

The paper is organized as follows. In 2, we describe the overall approach and the main
step of the proof, which is a purely deterministic result (Theorem 2.2). We then deduce
Theorem 1.1 from Theorem 2.2. The approach to Theorem 2.2 is described in 3. The
necessary technical details are then completed in 4 and 5.

2. The approach. Throughout the rest of the paper, we will not distinguish between
items and item sizes. In order to control the size of the items of a list x (xi)i <_, we will use
the function (defined for 0 _< < 1)

(1) F(x, t) -card{/ < n; xi >_ t}
n

that counts the proportion of items > t. We note the fact that we can define F (y, t) for all
lists y of numbers, whether they are of length n or shorter. The following theorem has proved
a convenient tool in the proof of central-limit theorems.

THEOREM 2.1 (see [2]). If X1 X are independent uniformly distributed (defined on
a rich enough probability space) there exists a Brownian bridge (Wn (t))0<t<l such that the r.v.

Dn suP0<t< Fn(X, t) (1 t) --Wn(t)
/n

satisfies

Ku(lgn)2) < exp(-u),

where K is a universal constant.
This result motivates the study of the packing of a list x (xi)i <n of items which satisfies

(2) suP0<t< [F(x, t) (1 t) aqg(t)] <_ 6,

where 99 is a continuous function on [0, 1] and a and 3 are small. The essential step towards
Theorem 1.1 is the following deterministic result.

THEOREM 2.2. For each > O, there exists a number Ke depending only on , andfor
each continuous function 99 on [0,], there exists a number He(qg) depending only on and
99, such thatfor any list x of items that satisfies (2), with > 1/n, the number BFD(x,) of
bins used while packing the items ofsize > 2-e satisfies

(3)
1
-BFD(x,) aHe((p)
n 2

<_ 3Ke.

896 W. RHEE AND M. TALAGRAND

The first reaction of the reader might be disbelief, since the bound of (3) does not depend
on a. One must bear in mind, however, the fact that the very existence of a list of items that
satisfies (2) for a small 6 forces rather stringent conditions on a0.

COROLLARY 2.3. If a list x of items satisfies (2), the number BFD(x) of bins used in
packing these items satisfies

_I B FD(x) 1

n - aHe(qg) < 6(Ke + 4)

+ 2a(supt<_z-,lo(t)l + supt>__2-, Io(t)l).

Before the hard work starts, it is appropriate to make a technical comment. It is very
convenient to have conditions of the type of (2) only for continuous functions because, for any
size # 1, items of this given size are irrelevant, and for 0 < < 1, (2) implies

(4)
1
card{i < n" xi > t} (1 t) -ao(t)

n

so that foru <t < 1,

(5)
l
card{i < n; u < x t} (t U) a(9(u) 9(t))

n

This observation will be used repeatedly (for lists of items and lists of vacancies).
Proof of Corollary 2.3. Let us first recall some convenient terminology. In the course

of the packing, the only characteristic of the bins that matters is their vacancy, i.e., the space
left in the bins. Thus it is convenient to not distinguish between the list of bins and the list of
their vacancies. Also, we employ the convention that the packing starts with n empty bins to
ensure that we have sufficient capacity to accommodate all items (so that bins having not yet
received items have vacancy one).

The basic idea of Corollary 2.3 is that packing the items of size > 1 2-e creates vacancies
of size < 2-e that are not affected by the packing of the items of size between 2-e and 1 2-e.
Thus the list v (vi)i <_n of vacancies after the items of size > 2-e are packed satisfies (using
(5))

1
t_<2-e:=Fn(v,t) >_ -card{/ <_n;1-2-e_<xi <_l-t}

> (2-e t) 26 2a suPt>_l_2_elqg(t)].

On the other hand, under (2), the list y of items xi < 2-e satisfies

< 2-e =, Fn(y, t) < (2-e t) + 2a supt_<2-elg(t)l + 26.

Thus to prove Corollary 2.3 it suffices to prove the following.
CLAIM. Suppose we are given a decreasing list x (Xl xk) of items and a list of

vacancies v (Vl Vm) with vl > v2 > > Vm. Then when packing these items in a
sequence of bins with vacancies vl Vm, 1, at most m + D(x, v) bins will receive
items, where

D(x, v) supt>_0{card{i < k; xi >_ t)- card{/ < m; U >__ t}}.
The proof of this is almost obvious by induction over k. If x > vl, we put xl alone in

a bin with vacancy one (creating a new vacancy < 1) and the value of D(x, v) decreases by

BEST-FIT DECREASING 897

at least one. If Xl < Vl, we do not use a new bin, and we easily see that the value of D(x, v)
does not increase. [q

We return to the proof of Theorem 2.2. Consider the r.v.

gn, suP >_ 2-e Wn -Jr- suP <_2-e Wn

Setting Xn (Xi)i<n, D’n max(Dn, 1/2n), Corollary 2.3 implies

n 1 2
(6) BFD(Xn)

2 /-He(Wn) < D’n(Ke + 4) + --Rn,e,
where Wn denotes the random function W(t). It follows from (6) that for ’ > we
have

]He(Wn) He,(Wn)] < /-O’(Ke + Ke, + 8) + 2(Rn,e + Rn,e,)

and thus, for u > 0,

P(IHe(Wn) He,(Wn)l > u) < P /-D’,(Ke + Ke, -t- 8) >

+P 2(R,,e+Rn,e,)>-
The important observation is now that neither the left-hand side nor the last term depend

in n. Thus, using Theorem 2.1 and letting n go to infinity, we get

(7) P(IHe(W) He,(W)I >_ u) <_ P Re+Re, >_ -where W(t) is a Brownian bridge, W is the random function -+ W(t), and Re is defined as
Rn,e, using W(t) rather than W(t). Now (7) implies

(8) EIHe(W) Ue,(W)l < 4E(Re + Re,).

Since obviously lime__, ERe 0, we get that the sequence (He(W))e of random variables
is a Cauchy sequence in the space L1 of integrable r.v.’s. Denoting its limit by H(W), we get
from (8) that

EIHe(W)- H(W)I _< 4ERe

and thus, by equality of distribution,

EIHe(Wn) n(Wn)[< 4ERe 4ERe,n.

Going back to (6) gives

EI/- BFD(Xn) - H(Wn)I < (Ke + 4)/-EDI, + 6ERe.

Since limn -EDI, 0, the limit superior as n -- cx of the left-hand side is < 6ERe for
any . Since lime0 ERe 0, the limit of the left-hand side is zero, and Theorem 1.1 follows.

3. Stages ofpaddng. In order to prove Theorem 2.2, we must keep track of the structure
of the list of vacancies as the packing progresses. We recall the convention that the packing
starts with n empty bins (to ensure that there are enough bins). The basic idea was introduced in
[5] that the packing can be decomposed in a number of stages, during which it approximatively

898 W. RHEE AND M. TALAGRAND

has a simpler structure. The structure of the list of vacancies at the end of each stage can be
expressed tractably as a function ofits structure at the beginning ofthe stage. The task is simply
to show that, under (2), this structure is determined by a and go, with an error depending only
on and the stage in which we are currently located. While the proof has much in common
with the arguments of [5], it does not focus on exactly the same aspects and thus had to be
entirely rewritten.

Throughout the rest of the paper, we fix a list x of items, a continuous function go on [0,],
and numbers a and 3 such that (2) holds.

PROPOSITION 3.1. For g. > 1, 1 <_ r < 2e+l we canfind numbers Ke depending only on
g. and r (but not on go or a), numbers ote,r with

(9) 2-e ote,1 _> otg,2" otg,2e+l 2-e-l,

and continuousfunctions ffYe,r on [0, 1] depending only on go, g, and r, such that, after all the
items xi > ote,r of the list x have been packed, the list w (lloi)i< ofvacancies satisfies the
following:

1((10) >_ 2-e-1 ==) Fn(w, t) - ote,r min(t, ote,r) ae,r(t) < Ke,r3.

(11) < 2-e- = Fn(w, t)--- (ote,r- t)-agte,r(t) < Ke,r32-e-I/t.

(12) If ote,r > 2-e-1 then rote,r < and if r >

then thefunction e,r is constant in the interval [2-e, rote,r].

Let us start with some easy observations. First, one of the purposes of (12) is that the
condition re,r < 1 forces ote,2,+ 2-e-. Second, we note that the number of bins that
actually received items is n (1 Fn (w, 1)). Thus Theorem 2.2 follows from Proposition 3.1,
used for g 1 rather than g and for r 2e. Next, we observe that the case g 1, r 1 of
Proposition 3.1 is obvious. Finally, we observe that if Proposition 3.1 has been proved for
if and r 2e+l, it certainly holds for g + 1, r 1, as seen by taking Ke+., > 2Ke,2+1 and
gre+,l gre,ze+,. Thus to prove Proposition 3.1, for a given , we must construct the numbers
ote,r and the functions e,r by induction over r, a goal that will occupy the rest of the paper.

Thus assume that 7re,r and ote,r are constructed and r < 2+. If ote,r 2-e-, we set

7re,+ gre,r, ote,+ 2-e- (The construction of the numbers Ke,r will be explained later).
Thus it suffices to consider the case ote,r > 2-e-1 For simplicity of notation, we set ot

and 7r 7re,r. We start the packing of items xi < ot. This operation is called the current stage
of packing. It will end as the last element > ote,r+ (where ote,r+ will be constructed below)
is packed. As the packing progresses, items are attributed to bins, whose vacancies change.
The vacancy of a bin at the beginning of the current stage will be called its initial vacancy.

An item x > 2-e-a attributed to a bin with vacancy < 2-e creates a new vacancy < 2-e-

that will play no further role in the current stage of packing. We will call an item a surplus item
if it is attributed to a bin with an initial vacancy > 2-e. We will show that, with the exception
of relatively few, the surplus items are attributed r at a time to each vacancy > 2-e. As the
packing progresses, the size of the surplus items decreases, the initial vacancy of the bins that
accept them increases, and the vacancies created in such manner increase. At the beginning
of the current stage, these vacancies are smaller than the size of the items being packed, so
they do not interfere with the packing process. The current stage will (essentially) end when
the size of these vacancies reaches the size of the items being packed. Consider the list y of

BEST-FIT DECREASING 899

items o >_ Yl >_ >- Ym remaining to be packed at the beginning of the current stage and the
list 2-e > vl > >_ Vq of vacancies w-e at most 2-e already created as this stage begins.
Consider the basic matching procedure that attributes in turn, starting with y, each item yi to
the smallest unmatched vacancy vj >_ yi and leaves it unmatched if no such vacancy exists.
Call an item an excess item if it is unmatched under this procedure. It is a basic fact (see, e.g.,
[4]) that the number E (t) of excess items of size at least is given by

E(t) SUpu>_t(card{i <_ m; Yi >-- U}- card{/ < q; V >__ /./})
max(0, suPt<u<(card{i < m; Yi >_ a}--card{/ < q; vi >__ u}).

Combining this result with (2) and (10), we see that, setting 8’ Ke,r for simplicity, for
> 2-e-l, we get

(13)

where

In-1E(t) aA(t)l <_ 48’,

A(t) max(0, suPt<u<(qg(u) -0(ot) (Tt(u) ap(2-e)))).

We observe that --+ A(t) is continuous nonincreasing and that A(ot) 0.
Most of the excess items will be surplus items. Most of the surplus items will fit r at a

time into bins of initial vacancy > 2-e. To get enough space in these bins, we need to consider
all bins with initial vacancy at most (t), where

(4 (t sup _< (2- (_< -a(t
r

Since A is nonincreasing, is nonincreasing. The continuity of implies that

1
(15) (t) < 1 = (2-) -((t))---A(t),

r

Surplus items of size about will fit r at a time in bins with vacancy about (t), creating
vacancies of size about)(t) rt. We want to stop the current stage when this size reaches
t, so we define

(16) ot,r+l inf{t _> 2-e-; (t) _< (r + 1)t}.
For simplicity, we write or’ ote,r+, and we observe a few facts about a’. If or’ > 2-e , for
< or’, we have (t) > (r + 1)t by the definition of or’. Since (t) < 1, we have or’ (r + l) _<

as required by (12). By the definition of (t), we have

1
1/r(2-e) !/r((r + 1)t) _< -A(t)

r

so that, by continuity of !/* and A, we have

1
(17) (2-e) !/* ((r + 1)or’) _< A (or’).

r

Also, for > or’, we have (t) < (r + 1)t. Thus if (r + 1)t < 1, we have by (15) that

1
(2-e) ((r + 1)t) > -A(t).

r

900 W. RHEE AND M. TALAGRAND

Thus if (r + 1)ot’ < 1, we have by continuity of 7t that

1
(18) (2-e) gr((r + 1)ot’) > -A(ot’).

r

We now consider the packing of the items Yi of size ot > Yi > ot’. The way this packing
proceeds was approximatively described above, and we now have to examine how the actual
packing differs from this approximation. We call a bin irregular if either (a) its initial vacancy
w satisfies 2-e < to < rot or (b) its initial vacancy to satisfies to > (r + 1)ot’, and the bin
receives at least one item during the current stage of packing.

We call an item irregular if it falls into an irregular bin, and we call it regular otherwise.
We observe that an irregular item is a surplus item, and we proceed to establish a bound on
the number S of these items. We observe that a surplus item must be an excess item, as shown
by the argument of the claim that follows Corollary 2.3. Therefore, (13) implies

(19) n-1S < aA(ot’) + 48’.

Suppose that there exist irregular bins that arise because of condition (b) above. Then
(r + 1)ot’ < 1, so that (18) holds. Combining this result with (10) and using (12), we see that
the number M of bins with initial vacancy to such that rot < w < (r -t- 1)ot’ satisfies

a
(20) n-1M >_ -A(ot’) 28’.

r

Since the surplus items are of size < ot, each vacancy w > rot will accept at least r consecutive
such items. Therefore, combining (19) and (20), we see that at most (2r + 4)n8’ surplus items
will not fit into bins with initial vacancies to < (r + 1)ot’, so that at most

r-(2r + 4)n8’ + 1 < 6n8’ + 1 < 7n8’

irregular bins arise from condition (b). (Here we have used the fact that, since 8 > 1/n, we
have 1 < 8’n. This fact will be used several times.) Since p is constant on [2e, rot], it follows
from (10) that at most 2n8’ irregular bins arise from condition (a). Thus there are at most 9n8’
irregular bins and thus (rather crudely) at most 9 2e+ln8 irregular items.

Consider a bin whose initial vacancy to satisfies rot < to < (r -t- 1)ot’. After this bin has
received r items of size < ot, its vacancy is > ot. On the other hand, after this bin has
received r items of size > ot’, its vacancy is < ot’. Let us now examine how the regular items

ot Zl Zq > ot

are packed. When Zi is packed, it is attributed to the bin with the smallest vacancy w larger
than zi. By the definition of what we call a regular item, the initial vacancy to of this bin
satisfies either to < 2-e or otr < to < ot(r + 1). If to < 2-e, the bin has not yet received items
in the current stage of packing. If otr _< to < ot’(r + 1), the bin has received at most r 1
items in the current stage of packing, for otherwise its vacancy would be < to rot’ _< ot’ < zi.
Thus its vacancy w’ before it receives zi is at least to (r 1)ot > ot. We now claim that all the
bins with initial vacancy v with zi < v < 2-e have already received items. This is obvious if
v <_ w’ and, in particular, if v < ot. There is nothing more to show if r 1, since the ot 2-e

and to’ >_ ot. If r > 2, then to > 2ot > 2-e so there is nothing to show unless w’ < to, i.e.
the bin that accepts zi has already accepted one item prior to zi. Denote by zj > zi the item it
has accepted prior to zi. Since to (r 2)ot > 2ot > 2-e, all the bins with initial vacancy v
such that zj < v < 2-e have already accepted items at the time zj is packed. Since zj <

BEST-FIT DECREASING 901

this completes the argument. A consequence of this fact is that the regular items Zl _> are
packed by the following procedure: we perform the basic matching of these elements and of
the list of vacancies _< 2-e. The unmatched items (that are exactly the regular surplus items)
are packed r at a time in the vacancies > rot.

So, at the end of the current stage of packing, the situation is as follows.
1. We have created irregular bins, for which we have no control on the final vacancy;

but there are at most 9n3’ of them.
2. From the list of initial vacancies > 2-e, we have removed the irregular bins, as well

as the bins that did receive surplus items. On the other hand, these surplus items did
create new vacancies (all <

3. The basic matching of the list of regular items and of initial vacancies< 2-e has
removed some vacancies and created new ones.

Thus the remaining task is to show that the new list of vacancies obtained from these
operations can be controlled using 7t, to define 7t’ l[te,r+l, and to establish (10) for r + 1.
This is the purpose of4 and 5.

4. Surplus items. Throughout 4 and 5, we will keep the following notations. We will
denote by ot > Zl > the regular items that are packed in the current stage of packing, by
2-e >_ vl > the initial vacancies that are at most 2-e, and by otr _< u _< u2... the initial
vacancies that are > otr.

Thus among the items zi, those that are unmatched in the basic matching with the vacancies
vj are exactly the surplus items that are regular; since we no longer deal with irregular items,
we simply call these the surplus items. We denote these by rl > r2 > Because there are
at most 9 2e+ln61 irregular items, it follows from (13) that for ot’ _< < ot, the number 6(t)
of surplus items of size at least satisfies

(21) aA(t) 13 2e+1 < aA(t) (4 + 9.2e+1) < n-l(t) <__ aA(t) + 4’.

Starting with al, consecutive surplus items are attributed r at a time to vacancies u 1, u2
creating for k > 1, vacancies of size

(22) /3k uk crj.
l+(k-1)r<_j<kr

By the definition of regular items, we do not run out of vacancies of size _< ot’ (r + 1) but
possibly we run out of surplus items before all these vacancies have been used up (in that case,
we will have no control on the final vacancy of the bin that receives the last surplus item). By
(21), we see that there are at least n(aA(ot’) 13.2e+1’) surplus items. These need at least
nr-1 (aa(ot’) 13.2e+16’) bins to accommodate them.

First, suppose ot’ > 2-e-1 and set r (r + 1)ot’. Combining (17) and (10), we see that
there are at most nr-laA(ot’) + 26’n bins of initial vacancy w with 2-e < w < r. Thus all
but at most 15 2e+l 6’n of these bins will be used by the surplus items.

Now suppose ot’ 2-e-1. We define r as

r sup ap(2-e) 7t(t) _< -A(ot’)

1A (ot’) and the above conclusion remains true.Thus ap(2-e) p(r) < 7
We define the function 1 (t) as follows.
Case 1. r < 1. We set

1 (/) min((t), p(r)).

902 W. RHEE AND M. TALAGRAND

Case 2. r 1. For all 0 < _< 1, we set

l(t) (1) (A(ot’)r ((2-e) gr(1))).
PROPOSITION 4.1. The list w’ (w)i< of vacancies at the end of the current stage

satisfies

> 2-e=> 1
Fn (w’, t) al (t)

1 2e+16, 2e+a,< + 14. < 15.
n

We note that by definition is constant on the interval [2-e or’ (r + 1)] unless or’ 2-e-1

In the case r < 1, Proposition 4.1 expresses the fact proved above that the surplus items
remove from the list of vacancies

_
2-e all the vacancies < r, with the possible exception

of the last 14 2e+In6’ such vacancies, and remove at most 7n6’ vacancies < r (as is shown
in the argument following (20)). The term 1/n is created by the last bin with initial vacancy
> 2-e to receive items. In the case r 1, the argument is similar, but the surplus items not
absorbed by the bins with initial vacancy < 1 are received, r at a time, by bins of vacancy 1
(= new bins).

We now turn to the study of the vacancies created by the surplus items. Consider the
function defined for 6 [0, 1] by

O(t) inf{x; or’ <_ x _< 1, (x) rx < t}.

The idea is that the surplus items of size about x create vacancies of size about (x) rx,
and about O(t) A(O(t)) of these should be < t.

LEMMA 4.2. Thefunction 0 (t) is decreasing continuous.

Proof. It is obvious that 0 is left continuous, and that 0 decreases since (x) -rx decreases.
To prove that 0 is right continuous, consider with O(t) > or’, and consider or’ < b < O(t).
Consider b < b’ < O(t). Then (b’) rb’ > t, so that (b) rb > (b’) rb’ + r(b’ b) >
+ r(b’ b) and thus O(t’) > b if t’ < + r(b’ b).]

COROLLARY 4.3. Thefunction O(t) is nondecreasing continuous.
Now, we find a lower bound on the number of vacancies/3g < t. Consider x > O(t).

According to (13), the number of surplus items of size > x is at least

naA(x) 9.2e+n3’.

It follows from (10) and (15) that the number of vacancies of size otr < w <_ (x) is at least
nr-A(x) 2n3’. Attributing r items of size > x to a vacancy < (x) creates a vacancy less
than (x) rx < t. Thereby the number ofvacancies/3k < is at least nar- A(x) 9.2 + n3’.
As x > O(t) is arbitrary, this number of vacancies is at least nar-lo(t) 9 2e+n3’.

Next, we find an upper bound on the number of vacancies/3k < t. An upper bound is
always given by r- times the number of surplus items and hence by anr-1A(od) + 2n6.
Consider

o sup{(x) rx; x >

We observe that, since the function (x) rx decreases, (x) rx < o for x > or’. Thus
O(t) or’ if >_ 0. In that case, r/(t) A(oe’), so the number of vacancies < created by
surplus items is at most ano(t) + 2na’. Consider now < o. Then O(t) > or’. Consider
or’ < x < O(t). Then the definition of O(t) shows that (x) rx > t. Therefore, we have

BEST-FIT DECREASING 903

fik > unless either Uk < (x) or O’l+(k_l) > X. By (10) and (14), the number of values of
k for which Uk < (x) is at most nar-lA(x) + 4n6’. By (10) and (13), the number of values
of k for which O’l+(k-1)r > x is at most 1 + nar-1A(x) + 4n6’. Thus (remembering that the
sequence Uk increases and the sequence aj decreases) the number of values of k for which

flk < is at most

nar-1A(x) + 4n6 + 1 < nar-lA(x) + 5n6.
Since x < O(t) is arbitrary, this number is at most nar
following.

PROPOSITION 4.4. For 0 < < 1,

-l7(t + 5n’. We have proved the

1
card{k; flk < t}

a
-O(t)

n r
< 9.2e+16.

Since there are at most 9n6’ irregular bins, we have the following.
COROLLARY 4.5. The list fl of vacancies of bins with initial vacancies w > 2-e that

received items during the current stage ofpacking satisfies
a 2e+6,Vt, O < < 1, Fn(, t) -O(1- t) <
r

5. Small vacancies. In this section, we study the vacancies created by the basic matching
of the list of regular items ot > 1 > > or’ of size between t and t’ and of the list of bins
with initial vacancies 2-e > Vl > Some of these bins receive no items. We first study the
list of these.

Let us denote by U (t) the number of bins with initial vacancy < that receive no items.
For < or’, we have

(23) U(t) card{j; vj <_ t}.

For >_ o, by Lemma 1 of [5], we have

(24) U(t) supo<,<t(card{j; vj < u}- card{i; i --< U})
sup,,_<u_<t(card{j; l)j U}- card{i; i U}).

Consider the continuous function 99a on [0, 1], given by 991 (U) 0 if U _< Or’, 991 (U)
99(ot’) 99(u) if or’ _< u < or, and 991 (u) 99(ot’) 99(00 is u > or. Taking into account the
number of irregular items, it follows from (2) that

(25)
1
-card{i; i --< U} min(c or’, max(u or’, 0)) a991 (U)
n

< 11.2e+1’.

Let us now define the function g(u) by g(u) 1 if u > 2-e-1 and g(u) 2-e-I/u if
u < 2-e-. It follows from (10) and (11), that

(26)
1lcard{J;n vj <_ u} - 4- ot min(ot, u) 4- a(u) < 28’g(u).

Combining this result with (25), we see that for u >

1
(card{j" vj < u} card{/" i < U}) 4- O/ O/t 4- a((u) 4- 991(U))

n
< 2e+5

904 W. RHEE AND M. TALAGRAND

so that by (24), for > or’, we have

1
O

1
U(t) -t- Ot -+- a3(t)

n
< 2e+58,

where

aP3 (t) sup{p (u) + q)l (u) or’ < u < }.

Observe that 7t3 (or’) b (or’) since 01 (or’) 0.
Also, by (23) and (26), we get, for <

1
U(t) - + + a(t)

n
< 2e+53’g(t).

Thus if we define the continuous function aP4 on [0, 2-el by 4(t) (t) for < c’ and

aP4 (t) P3 (t) for _> c’, we have shown that, for 0 < < 2-e, we have

11
U(t) + min(’, t) + a4(t)

n
< 2e+53’g(t).

Now define 5(t) for 0 < < 1 by 5(t) 0 for > 2-e and 7ts(t) 4(t) 4(2-e) for
< 2-e. We have proved the following.

PROPOSITION 5.1. The lists u ofvacancies ofthe bins with initial vacancy < 2-e that have
not received items at the end of the current stage satisfies

IFn(u, t) or’ + min(t, or’) agts(t)l < 2e+6’g(t).

We now study vacancies that are created by attributing items to vacancies.
The basic fact [5] here is that if x < v, the number of pairs (xi, vj) created by the basic

matching procedure that satisfy xi > x, vj < v is equal to

(27) N(x, v)= inf{card{i; x < i < t} + card{j; < vj < v}; x <t < v}.
We observe that N(x, v) N(x,) if v > c.
For x < v < or, we define

(28) G(x, v) inf{qg(x) qg(t) + p(t) qg(v); x < < v}.

For x < ot < v, we define G(x, v) G(x,). For v < x, we define G(x, v) 0. Thus
G(x, v) is a continuous function on the set A [or, c(] x [or, 2-e]. If we combine (25)-(28),
we get

(29) 1N(x, v) min(v, or) x aG(x, v)
n

< 2e+53.

Now consider ot < Xl, x2 < o/’, 1) < 1)1, 1)2 __< 2-e, and the rectangle R Ix1, x2])< [1)1, 1)2].
We define

(30) G(R) G(Xl, v2) + G(x2, Vl) G(Xl, Vl) G(xl, v2).

If R’ is a product of intervals with the same interior as R, we define G(R’) G(R).

BEST-FIT DECREASING 905

If we consider the two rectangles R1 and R2 obtained from R by making a horizontal or
a vertical cut, it follows from. (30) that G(R) G(R1) + G(R2). Consequently, if a set S is
a finite union of rectangles, we can define G(S) in an unambiguous waymas the sum of the
G(Si)’ s, where (Si) is a covering of S by rectangles with nonoverlapping interiors. Moreover,
it follows from (29) that if S can be written using rn such rectangles, we have

(31) -N(S) lz(S) aG(S)
n

< m2e+56’,

where N(S) denotes the number of matched couples (xi, vj) that belong to S and where

z(S) I{ _< x _< a’" (x x) S}l

To prove (31), we can simply proceed by induction over m, (i) observing that when S is a
product of two intervals, (31) follows from (29) and (ii) using the definition of G(S).

Now consider an integer q and a sequence s of points (xl, Yl) (Xq, yq) of A. We set

R(s) {(x, y) E A; 3m < q; x < Xm, y > Ym}.

The map s --+ G (R(s)) is continuous on Aq This is obvious by using a natural decomposition
of R (s) into rectangles.

Given u > 0, consider the set Aq,u of all sequences s of Aq such that Ym >_ u -+- Xm for
each rn < q, and consider the function

hm(tt) sup{G(R(s)); s E Am,u}.
It should be obvious that this is a continuous function of u.
LEMMA 5.2. Ifrn > 1 + (’)/u we have

N({(x, v) a; v > x + u}) sup{N(R(s)); s Rm,u}.

Proof. Step 1. Starting with to or’, we construct the sequence ti by induction as follows"
ti+l is largest such that the set

Si {(x, 1)); ti < X < ti+l, ti -1- tt < V < ti+l -1- U, V > X q- u}
contains no matched couple.

Step 2. We prove that for ti+2 < or, we have ti+2 > ti+l + u. By construction, there is a
matched couple (x, v) such that v ti+l -t- u and ti < x < ti+l and a matched couple (x’, v’)
such that v’ ti+2 -t- u and ti+l < x’ <_ ti+2. Since x’ is matched to v’, no vacancy of size
x’ < w < v’ remains at the time x’ is matched. Since x is matched later than x’ and since
v < v’, we have v < x’, so that ti+l + u < ti+2.

Step 3. By Step 2, the construction stops with a last tq such that (q 1)u _< o or’ and
tq or’. Now consider a matched couple (x, v) with v > x + u, and consider the largest
such that ti < X, SO that x < ti+l. Since (x, v) Si by construction and since v > x + u,
we have v >_ ti+ + u. Thus (x, v) 6 R(s), where s is the sequence of couples (ti, ti / u) for
O<_i<q-1.

We now combine (31), Lemma 5.2, and the definition of hm (u) to see that

(32) m >_ 1 + (a- a’)/u

= In-lN({(u, v) A; v > x + u}) -ahm(u)l < m2e+53’.

906 W. RHEE AND M. TALAGRAND

The problem now is to get a similar formula for a function h(u) independent of m. So for
p > and 2-p-1 < u < 2-p, we define ml 1 + 2p-e, m2 1 + 2p+l-e, and

h(u) 2p+1(2-p -u)hm(U) + 2p+I(u 2-p-1)hm2(U).

The function h is continuous, and it follows easily from (32) that

In-lN({(x, v) E A; v > x + u}) ah(u)l < 273’g(u).

We have proved the following
PRO’OSlTION 5.3. The number V’ (t) of vacancies of size > created by the bins of the

list (vi that receive items satisfies

1V’(t) -ah(u)
n

< 27’g(u).

If we combine Proposition 4.1, Corollary 4.5, and then Propositions 5.1 and 5.3, we see
that the proof is complete, provided one sets Ke,r+l 29 Ke,r. [3

REFERENCES

[1] J. L. BEtTLE, D. S. JOHNSON, E T. LEIGHTON, C. C. McGocI-I, aND L. A. McG.ocH, Some unexpected
resultsfor binpacking, Sixteenth Annual Symposium on Theory of Computing, Association for Computing
Machinery, New York, 1994, pp. 279-288.

[2] J. KOML0S, E MaJoR, aND G. TUSNADY, An approximation ofpartial sums ofindependent random variables and
the sample DFI, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 32 (1975), pp. 111-131.

[3] W. RHea, Stochastic analysis ofa modifiedfirstfit decreasing, Math. Oper. Res., 16 (1991), pp. 162-175.
[4] W. RHE aND M. TaaGr’,aND, Optimal bin packing with items ofrandom size III, SIAM J. Comput., 18 (1989),

pp. 473--483.
[5.] ,The complete convergence ofbestfit decreasing, SIAM J. Comput., 18 (1989), pp. 909-918.

SIAM J. COMPUT.
Vol. 25, No. 5, pp. 907-935, October 1996

() 1996 Society for Industrial and Applied Mathematics
001

ALPHABET-INDEPENDENT TWO-DIMENSIONAL WITNESS
COMPUTATION*

ZVI GALIL AND KUNSOO PARKS

Abstract. We study two-dimensional periodicity, introduced by Amir and Benson. We charac-
terize periods of a two-dimensional array, namely, the vectors such that two copies of the array, one
shifted by the vector over the other, overlap without a mismatch.

Using this characterization, we design an alphabet-independent linear-time algorithm for two-
dimensional witness computation, i.e., an O(m2)-time algorithm that finds periods of an m m array
as well as witnesses against nonperiods of the array among the vectors whose length is less than m/4.
The constant in the O notation does not depend on the alphabet size. Combined with the alphabet-
independent text-processing algorithm of Amir, Benson, and Farach [SIAM J. Comput., 23 (1994),
pp. 313-323], this leads to the first alphabet-independent linear-time algorithm for two-dimensional
pattern matching.

Key words, two-dimensional periodicity, pattern matching, witness computation

AMS subject classifications. 68Q20, 68Q25, 68U10

l. Introduction. The two-dimensional pattern-matching problem is as follows:
Given pattern P[O..m- 1, O..m- 1] and text T[O..n- 1, O..n- 1], find all occurrences
of P in T. The pattern and the text contain symbols from an alphabet E. Let
a = min(IEI, m2). This problem and all algorithms mentioned below (including ours)
can be easily generalized to rectangular arrays. Applications of the problem include
computer vision [2, 4] and multimedia systems where two-dimensional images are
stored in a database.

Karp, Miller, and Rosenberg [9] gave an O((m2 + n2) logrn)-time algorithm for
two-dimensional pattern matching as an extension of their algorithm for string match-
ing. Then Baker [6] and Bird [7] independently gave an O((m2 + n2)log a)-time algo-
rithm (which we call the BB algorithm for short) for two-dimensional pattern matching
which uses the Knuth-Morris-Pratt (KMP) algorithm [11] and the Aho-Corasick al-
gorithm [1] for one-dimensional string matching. Since the Aho-Corasick algorithm
requires a totally ordered alphabet and its time depends on the alphabet size, the
same holds for the BB algorithm. For an unbounded alphabet, the BB algorithm
takes O((m2 + n2) log rn) time. Using suffix trees, Amir, Landau, and Vishkin [5] also
gave an algorithm whose time complexity is the same as that of the BB algorithm.
Zhu and Takaoka [14] developed a randomized algorithm that uses the KMP algo-
rithm and the Karp-Rabin algorithm [10]. Recently, Amir, Benson, and Farach [4]
gave an algorithm (which we call the ABF algorithm for short) whose text processing
is independent of the alphabet and takes O(n2) time, but whose pattern processing is
still dependent on the alphabet and takes O(m2 log a) time. The pattern processing
required by the ABF algorithm is the two-dimensional witness computation, i.e., the

*Received by the editors December 28, 1992; accepted for publication (in revised form) January
9, 1995.

Department of Computer Science, Columbia University, 450 Computer Science Building, New
York, NY 10027 (galil@cs.columbia.edu). The work of this author was supported by NSF grant
CCR-9014605 and NSF CISE institutional Infrastructure grant CDA-90-24735.

:Department of Computer Engineering, Seoul National University, Seoul 151-742, Korea (kpark
@theory.snu.ac.kr). The research of this author was supported by KOSEF grant 951-0906-069-2.

907

908 ZVI GALIL AND KUNSOO PARK

problem of finding periods of a two-dimensional array as well as witnesses against
nonperiods of the array.

All previous algorithms except the ABF algorithm reduce the two-dimensional
problem into one-dimensional string matching and use known techniques in string
matching. The ABF algorithm uses two-dimensional periodicity for text processing,
but their witness computation resorts to one-dimensional techniques. We present the
first alphabet-independent linear O(rn2)-time algorithm for the witness computation
using two-dimensional techniques. As in the KMP algorithm, the only operation on
the alphabet is the equality test of two symbols. This leads to the first alphabet-
independent linear-time algorithm for two-dimensional pattern matching.

In one-dimensional strings, periodicity is easy to define: a periodic string is pro-
duced by many copies of a period which are concatenated together. This concept can
be generalized to two dimensions, where a rectangular array is produced by many
copies of a parallelogram. However, since we deal with limited-size rectangular ar-
rays, there can be other kinds of periodicities in two dimensions. Amir and Benson
[2] studied two-dimensional periodicity and classified two-dimensional arrays into four
categories: nonperiodic, lattice-periodic, line-periodic, and radiant-periodic. They
also gave an O(rn log a)-time algorithm for classifying an array, which was used in
the pattern processing of the ABF algorithm. We adopt the four categories and char-
acterize the positions of an array where another copy of the array overlaps without
a mismatch in each category (especially in the cases of line-periodicity and radiant-
periodicity, which was not done in [2]). Our witness computation classifies an array
into one of the four categories in O(rn) time, which also improves the pattern pro-
cessing of two-dimensional run-length compressed matching [3].

In 2, some definitions are presented. In 3, we continue the study of two-dimen-
sional periodicity started by Amir and Benson. We obtain new properties of two-
dimensional periodicity. Theorem 1 below is a strengthening of a theorem in [2, 3]
and Theorems 2 and 3 are new. The results of this section may be of independent
interest. In 4, we describe the witness computation for an rn x m array P. In
particular, we find for each vector v with Ivl < rn/4 whether it is a period of P, and in
case it is not a period, we find a witness against it. In the witness computation, we use
computed witnesses to compute new witnesses. Although the algorithmic part is quite
simple, the main technical difficulty is in proving that whenever we use witnesses, the
elements with which we make comparisons lie inside a certain place in the array.

2. Preliminaries. Most of our terminology is from [2]. Let A be an m x m
square array with rows 0,..., m-1 and columns 0,..., m-1 (i.e., A[O..m-1, O..rn-1]),
where the upper-left corner is A[0, 0]. A point is a pair of integers (i, j) for a row
number and a column number j. Note the difference in the definition of points from
the x, y coordinates of the plane. We use (i, j) to represent either a point or a vector
whose tail is at the origin (0, 0) and whose head is at (i, j). We say that a point (i, j)
is in A (or (i, j) E A) if0 < < m and0 < j < m. An element ofAis A[i,j] for
some (i, j) E A. Each element of A is a symbol from an alphabet E. When u (i, j),
A[i, j] is also denoted by d[u]. The forward diagonal (backward diagonal) d of A is
the set of points (i, j) A such that j d (i + j d).

We divide d into four quadrants of size [rn/2 x [rn/2, labeled counterclockwise
from upper-left" quadrants I, II, III, and IV. Note that if rn is odd, the middle row and
column are overlapped among quadrants. A vector (r, c) is a quad-I vector (quad-III
vector) if r > 0 and c > 0 (r < 0 and c < 0). Similarly, (r, c) is a quad-II vector (quad-
IV vector) if r < 0 and c > 0 (r > 0 and c < 0). Note that quad-I (quad-II) vectors

TWO-DIMENSIONAL WITNESS COMPUTATION 909

Av
v

Au

FIG. 1. Av and A-v for a quad-I vector v (top). Au and A-u for a quad-II vector u (bottom).

include horizontal (vertical) vectors with r 0 (c 0). The length Ivl of vector
v (r, c) is the maximum of the absolute values of its coordinates (i.e.,
Since there can be many vectors of the same length, we extend the notion of length
to the lexicographic order of the triple [Ivl, r, c] ([Ivl, c, r]) for quad-I (quad-II) vectors
v (r, c). For any vector v, let Av be the subrectangle of A consisting of all points
u E A such that u- v E A. See Fig. 1. We define the following partial orders on
points. Let u (i, j) and v- (k, 1).

1. it -I V (or v I it) if]g and j < (i.e., v u is a quad-I vector).
2. it -II V (or V -II it) if > k and j G (i.e., v u is a quad-II vector).

A sequence of points Ul,..., Up in A is called a monotone line if ui -I iti+l (iti MII iti+l
in quad-II) for 1 <_ <_ p- 1. For two quad-I vectors vl and v2, we say that vl is
counterclockwise with respect to v2 if rlc. < r2cl (vl becomes parallel to v when Vl
is rotated clockwise by less than 90).

Let Vl and v. be quad-I and quad-II vectors, respectively. The unit cell on Vl, v
is the set of points u (r,c) such that u av + fly2 for some 0 _< a < 1 and
0 <_ fl < 1 (i.e., r and c are integers for which such c and fl exist). The lattice cell
at v on Vl, v2 is the set of points v + u for u in the unit cell (i.e., the unit cell shifted
by v). Two points u and v are lattice-congruent modulo vl, v if u v iv + jr2 for
integers i, j. A point lattice-congruent to (0, 0) modulo Vl, v2 is called a lattice point
OTt Vl V2.

FACT 1. Let vl and v2 be quad-I and quad-II vectors, respectively. Every point in
A is lattice-congruent to a point in the unit cell on v, v.

We now define periodicities of square array A. A period of A is a vector such
that two copies of A, one shifted by the vector over the other, overlap without
mismatch. Formally, a vector v is a period of A if A_v A (i.e., for all w A_,
A[w] A[w + v]). A period v is valid if Ivl < m/4 (i.e., Ivl _< Im/4 1). Let C (C)
be the set of all quad-I (quad-II) vectors v such that Ivl < m/4. We will work with
quad-I and quad-II periods only, because quad-I (quad-II) periodicity implies quad-III
(quad-IV) periodicity and vice versa. See Fig. 1.

We classify square arrays into the following four categories by the existence of

910 ZVI GALIL AND KUNSOO PARK

FIG. 2. Nonperiodic.

valid periods.
1. Nonperiodic: there are no valid periods.
2. Lattice-periodic: there exist a valid quad-I period and a valid quad-II period.
3. Line-periodic: one quadrant has no valid periods, and the other has valid

periods that are on a line going through (0, 0).
4. Radiant-periodic: one quadrant has no valid periods, and the other has at

least two independent (vector independence) valid periods.
This classification is very similar but not identical in the line-periodic and radiant-

periodic cases to the one introduced in [2, 3], where an array is line-periodic if all valid
periods are of the form iv for the shortest valid period v and integer i. (Thus the
array in Fig. 4 is not line-periodic but radiant-periodic in [2, 3].)

Although we consider square arrays for simplicity, two-dimensional periodicity in

3 and our witness computation in 4 can be extended to rectangular arrays.

3. Two-dimensional periodicity. In this section, we will characterize all the
valid quad-I and quad-II periods in each of the four categories. Let vi and vH be
the shortest quad-I and quad-II periods of A, respectively. If A is nonperiodic (i.e.,
IviI, [vi] >_ m/4), there are no valid quad-I and quad-II periods. See Fig. 2. In all
the examples of arrays, the alphabet E {x, o, b}, where b is the blank symbol. The
marked upper-left [m/4] [m/4 square (except column 0) in Fig. 2 consists of all
the points on which (0, 0) is placed by a vector in C[(and thus the points in this
square comprise C]). The marked lower-left [m/4 [m/4 square (except row m- 1)
consists of all the points on which (m- 1, 0) is placed by a vector in CI] (and thus
the points in this square are not elements of

LEMMA 1. If vl is a quad-I (quad-II) period of A and v2 is a quad-I (quad-II)
period of Avl, then vl + v2 is a quad-I (quad-II) period of A.

Proof. Let v v] + v2 and w be a point in A-v. Then w + v] and w + v + v2
are in Avl. Since A[w] A[w + v] by period vl of A and A[w + v] A[w + v + v2]
by period v2 of Avl, we have A[w] A[w + v + v2]. Thus v is a period of A.

LEMMA 2. If v and v2 are quad-I (quad-II) periods of A such that v2- vl is a

quad-I (quad.II) vector, then v2- vl is a quad-I (quad.II) period of Avl.
Proof. Let v v2 v, B Av, and w be a point in B-v. Then w v is in A

and w v + v2(= w + v) is in B. Since A[w] A[w vii A[w v + v2] by periods
v], v2 of A, v(= v2 vl) is a period of B Av.

LEMMA 3. If Vl and v2 are quad-I (quad-II) periods of A such that v- v is a
quad-II (quad-I) vector, then v2- v is a quad-II (quad-I) period of Av and also of
AV2

TWO-DIMENSIONAL WITNESS COMPUTATION 911

Pro@ Let v v2 Vl, / Avl, and w be a point in B-v. Then w- Vl is in A
(since w E B) and w-v1 +v2(= w+v) is in B. Since A[w] A[w-vl] A[w-vl
v(= v2 Vl) is a period of B Av1.

Let B’ A and w’ be a point in B. Then w’-v + v2 w’ + v is in B’ A.
and thus w’-vl (w’-vl +v2)-v2 is in A. Since A[w’] A[w’-vl] A[w’-vl +v2],
v(= v2 Vl) is a period of B’ A2.

LEMMA 4 (see [2]). /f Vl (rl,Cl) and v2 (r2,c2) are quad-I and quad-II
periods of A, respectively, such that r + Irel < m and cl + c < m, then v + v is
either a quad-I period of A (if r >_ Ir2l) or a quad-II period of A (if rl <

Proof. Let v vl + v2 and w be a point in A_v. Then w + v + v2 is in A, and
one of w + v and w + ve is in A because r + Irl < m. Without loss of generality,
assume that w + Vl is in A. Since A[w] A[w + v] A[w + vl + v2], v is a period of
A.

LEMMA 5 (see [2]). /f Vl (rl,Cl) and v2 --(r2,c2) are quad-I and quad-II
periods of A, respectively, such that rl + Irl < m and cl + c. < m, then all lattice
points v ivl + jv2 for Ivl < m are periods of A.

Pro@ By Lemma 1, all iv and all jv are periods of A. We partition the other
lattice points into four groups divided by lines iv and jr2. We prove for the group of
lattice points ivl + jv2 such that i, j > 0 by induction on d + j (the other cases
are similar). When d 2, Vl + v is a period by Lemma 4. Assume that lattice points
iVl + jv for + j < d are periods of A.

We now prove for d > 2. Consider a lattice point v iv + jv such that
+ j d. By assumption, v’= (i- 1)Vl + jr2 and v"= ivl + (j 1)v are periods.

Since i, j > 0, v is either quad-I or quad-II vector. We consider the case in which v is
a quad-I vector. The other case is analogous. Let v (r, c), v’ (r’, c’), v" (r", c"),
and 5 (i- 1)vl + (j 1)v2. Note that v’ and can be either quad-I or quad-II
vectors but that v" is a quad-I vector.

Case 1: v is a quad-I vector, v is a period by applying Lemma 1 to v and v.
Case 2: v is a quad-II vector.

Case 2.1" ? is a quad-I vector. Since v + v2 is a quad-II vector, we have

Ir’l < It21. Thus r + I’r’ < rl + Ir21 < m, and by applying Lemma 4 to v’ and v, v
is a period.

Case 2.2:5 is a quad-II vector. Since vpp 5 + vl is a quad-I vector, we have
r" < r. Thus r" / Ir.l < r / Ir21 < m, and by applying Lemma 4 to v" and v2, v is
a period.

COROLLARY 1. Let vl (r, c) and v (r, c2) be quad-I and quad-II periods
of A, respectively, such that r +It21 < m and c +c2 < m. Then two points u, u A
which are lattice-congruent modulo v, v2 satisfy A[ul] A[u2].

Proof. It follows from the fact that all lattice points are periods.
DEFINITION. _f an array A has v and v2 that satisfy the conditions of Lemma 5,

the whole array A can be generated by the unit cell. Such an array A is called lattice-
generative. The shortest quad-I and quad-II periods of a lattice-generative array A are
called the basis vectors of A.

3.1. Lattice-periodicity.
DEFINITION. Let v (r,c) and v2 (r2,c2) be quad-I and quad-II vectors,

respectively. If a rectangle R contains a max(r, (c / c.) rectangle or (rl +
Irl) x max(c, c) rectangle, we say that R covers the unit cell on v, v.

LEMMA 6. Let R be a rectangle in the plane which covers the unit cell on Vl, v.
Then for each point v in the unit cell on v, v2, there ezists a point u R which is

912 ZVI GALIL AND KUNSOO PARK

X! Xl X
X ;X

X X
x x X

x x
x] x

X Xi
x x x

X x
x X

X] x x
X ix’ I

FIG. 3. Lattice-periodic: vi (1,2), vii (-3, 1).

lattice-congruent to v modulo vl, v2.

Proof. We prove the lemma for a rectangle whose size is max(r1, Jr21) (cl + c2)
or (rl + Ir21) max(c, c2). Consider a max(r1, Ir21) (cl + c2) rectangle R’ (the other
case is similar). Let x max(r, Ir21), y c + c2, and E be the plane. We first show
that the lemma holds for R E[O..x- 1, O..y- 1]. Consider each point v (r, c) in
the unit cell.

Case 1: r 0. Since c < c + c2, v is in R.
Case 2: r > 0. Since r <: r and c <: c + c2, v is in R.
Case3: r <: 0. Let _> 0 be the integer such that c2 <_ c+ic < c+c2. If

0 <<. r+ir < rl, then v+ivl is in R and we are done. Ifr+ir >_ r, there is
a point v+jv for 0 < j <: such that 0 <_ r+jr < r because r <: 0. Since
0 < c + jc < c + ic < cl + c2, v + jv is in R and we are done. Thus the remaining
case is when r + ir < 0. We show that v + ivl v2 is in R. Since v is in the unit
cell, r2 < r(<_ r + ir). Hence we have r2 < r + ir < 0. Since 0
and0<_c+ic-c2<c,v+iv-v2isinR.

Let R’ E[i..i + x 1, j..j + y 1] and LR, be the lattice cell at (i, j). Each
point v in the unit cell is obviously lattice-congruent to a point u E LR,, and each
point u E LR, is lattice-congruent to a point w R as in R. [:]

COROLLARY 2. Let vl and v2 be quad-I and quad-II vectors, respectively, such
that Ivl, Iv21 < m/4. Then every point in A is lattice-congruent modulo v and v2 to
a point in CI U CII.

Proof. It follows from Fact 1 and the fact that CI U CI covers the unit cell on

VI VII.
THEOREM 1. Let v and v2 be the basis vectors of a lattice-generative array A.

Let z (x, y) be a quad-I (quad-II) vector of A such that Az covers the unit cell on
v, v2. Then a quad-I quad-II) vector v (r, c) for r <_ x and c <_ y (r >_ x and c <_ y)
is a period of A if and only if v is a lattice point on v, v2.

Proof’. (if). This is immediate from Lemma 5. See Fig. 3.
(only if). We prove the theorem for quad-I (the proof for quad-II is similar).

Suppose that v (r, c) for r _< x and c _< y is a quad-I period of A and is not a lattice
point on v, v2. Let u be the lattice point such that the lattice cell at u contains v.
Letul =u+v,u=u+v2, andua=u+v+v2. Thenv-u,v-u,v-u2,v-ua
are periods of A. We will show only that the first is a period. The other cases are
similar.

We show that for every w A-v+, A[w] A[w + v- u]. Since Av contains
Az, A (also A-v) covers the unit cell on v, v2. By Fact 1 and Lemma 6, there

TWO-DIMENSIONAL WITNESS COMPUTATION 913

X
X
X

ix
x

X

X
X
X

FIG. 4. Line-periodic: valid quad-I periods (2, 2), (3, 3).

is w’ in A-v which is lattice-congruent to w, and A[w’] A[w] by Corollary 1.

A[w’] A[w’+ v] because v is a period of A. Since u is a lattice point, w’+ v
is lattice-congruent to w + v u. By Corollary 1, A[w’ + v] A[w + v u]. Therefore,
we have A[w] A[w’] A[w’ + v] A[w + v- u].

Connecting v to the four corners of the lattice cell at u, we get four triangles.
Choose one with an obtuse or right angle at v. Then the parallelogram side of this
triangle (say it is vl) is longer than the other two sides (one of v ul and v u2 and
one of v u and v u3). Since at least one of the two is a quad-I (or quad-III) vector,
we have a shorter quad-I period than Vl. This is a contradiction. El

COROLLARY 3. If A is lattice-periodic with basis vectors vi and vii, a vector
v E CI (v E CII) is a valid quad-I period (quad-II period) if and only if v is a lattice
point on vi, vii.

A theorem somewhat weaker than Theorem 1 was proved in [2], from which
Corollary 3 follows. We will later apply Theorem 1 several times. In some of these
applications, the version of [2] is not sufficient. We will use Theorem 1 as follows.
When we say "by Theorem 1 with A, basis vectors vl, v2, and z (x, y)," we will
mean the following: Let z (x, y). Then Az covers the unit cell on vl, v2. Therefore,
Theorem 1 applies.

3.2. Line-periodicity. If A is line-periodic or radiant-periodic, one of vi and
vii is a period and the other is not. If vi (vii) is a period, we say that A is line-periodic
or radiant-periodic in quad-I (in quad-II). When A is line-periodic in quad-I, all valid
periods are on the line passing through (0,0) and vi. We show that the distances
between valid quad-I periods are nonincreasing.

THEOREM 2. Let s1,..., 8p be the valid quad-I periods of A from shortest to
longest, and let s0=(0,0). Then lsi si_l] _> [s+l-s]forl<_i<_p-1.

Proof. Since si s_ is a quad-I period of As_l by Lemma 2, so is 2(si- si-1).
By Lemma 1, 2si s_(= s_ + 2(s- si-1)) is a quad-I period of A. Since si+ is
shorter than or equal to 2s- si_l, we have Is- s_ >_ IS+l s I. The example in
Fig. 4 shows that the inequality can be strict.

3.3. Radiant-periodicity. When A is radiant-periodic in quad-I, there is at
least one valid quad-I period I that is independent of v.

LEMMA 7. If A is radiant-periodic in quad-I, there exists a point A such that
(1) A_ A,
(2) A is lattice-generative,
(3) the basis vectors bx (xx,yx) andb2 (x,y) ofA satisfy]bx],]b21 < m/4,

914 ZVI GALIL AND KUNSOO PARK

(4) A contains an [m/2 x (Yl + Y2 + [m/2) rectangle.
Proof. We describe a recursive algorithm FINDLATTICE(R, u, v) for two lade-

pendent quad-I periods u, v of a rectangle R such that u is shorter than v. We call
it with parameters A, vi, (C), and it will find a point @ E A such that A is lattice-
generative. The min and max operations below take shorter and longer vectors from
the two, respectively.

PROCEDURE FINDLATTICE(R, u, v)
if v u or u v is a quad-II vector then stop;
else (v u is a quad-I vector)

u’ rain{u, v u};
v’ max{u, v u};
FINDLATTICE(Ru, u’, v’);

end if
end

If u, v are quad-I periods of R such that v u is a quad-I vector, then u and
v u are quad-I periods of R by Lemma 2. Also, since u and v are two independent
vectors, so are u and v -u.

Define size(R) to be the pair (p, q) of lengths of the sides of R. For u (rl,
and v (r2,c2), define size(u,v) to be the pair (rl + r,cl + c2). Notice that in
FINDLATTICE, the decrease of size(R) is the same as the decrease of size(u,v).
Since size(A) (m, m) and size(vI, i) < (m/2, m/2) (inequality in each component},
FINDLATTICE must stop. Let R, 5, be the parameters at the last call of FINDLAT-
TICE (i.e., -5 or 5- is a quad-II vector). Let size() (p, q), 5 (rx, c), and
(r2, c2). Since ,) 8iz() 8iz(vi, I) 8iz(,) < (/2, /2) 8iz(,),
we hve size(R) > size(,) + (m/2, m/2), and therefore p r + r2 + [m/2 nd
q + c + [m/2. Assume that - is a quad-II vector (the other case is similar).
We consider Re. Let be the origin of (i.e., A). Since is a qud-I period
of , it is Mso a quad-I period of . By Lemma 3, - is a quad-II period of e.
Since size() (p-r,q-cl), p-r [m/2, and q-c c + (c2-c) + [m/2],e A contains the lower-right [m/2 (c + (c2 -c)+ [m/2]) rectangle of A.
Let b (x.,y) and b2 (x,y) be the bsis vectors of A. Since [b] ([and
]b 5 9 [, A contains n [m/2] (y + y + [m/2) rectangle.

The parameters u, v of FINDLATTICE re transformed to u, v- u with v- u
Iv]. Since we start with two vectors whose lengths re less than m/4, we end with
two such vectors. Thus A is lttice-genertive, and its basis vectors b, b stisfy

<
Consider one aM1 of FINDLATTICE. Let w be the origin of R (i.e., R Aw).

Note that if w is a period of A, then since u is a quad-I period of R, w + u (the origin
of R) is lso a period of A by Lemma 1. Since we start FINDLATTICE with A, the
origin @ of A is a period of A. Therefore, A A_.

COROLLARY 4. f A is radiant-periodic in quad-I, quadrants I and III are lattice-
generative.

In the following, we will refer to the point found in Lemm 7 as @.
LEMMA 8. A nonlattice point v Q (v Q) on b, b2 is not a quad-I (quad-II)

period of A@.
Proof. We prove the lemma for v Q (the other case is similar). Let B A and

z (m/4 1, [m/4 1). By Lemma 7, Bz contains n [m/4 x (yl + y2 + [m/4)
rectangle since [m/2 2[m/4 1. Since bl, b2 < m/4, B covers the unit cell

TWO-DIMENSIONAL WITNESS COMPUTATION 915

FIG. 5. FI(A) and FII(A).

on bl, b2. By Theorem 1, a nonlattice point v E CI on bl, b2 is not a quad-I period of
B.

COROLLARY 5. A nonlattice point v CI on bl, b2 is not a valid quad-I period of
A.

LEMMA 9. If A is radiant-periodic in quad-I, there is no quad-II period v of A
such that vl < m/2.

Proof. Since A is radiant-periodic in quad-I, there is no valid quad-II period
(i.e., Iv <: m/4). We now show that there is no quad-II period v of A such that
m/4 Ivl < m/2. Suppose there exist such quad-II periods. Let v2 be the smallest
among them. That is, A is lattice-generative with basis vectors vi, v2. By Theorem 1
with A, basis vectors vi, v2, and z ([m/4] 1, [m/4] 1), all valid periods v
are lattice points on vi, v2. Since Iv2[_> m/4, there is only one line (passing through
(0, 0) and vi) of lattice points in CI. Thus)I CI is not a lattice point on vi, v2. This
is a contradiction.

DEFINITION. Let B be a lattice-generative subrectangle ofA and v, v2 be the basis
vectors of B. If A[w] A[u] for w A and u B such that w, u are lattice-congruent
modulo v, v2, we say that w is a defect with respect to the lattice of B.

For the rest of this section, a defect will mean a defect with respect to the lattice
of quadrant I of A (or the lattice of A_j). In quadrant II or IV of A, there is at
least one defectwotherwise, A would be lattice-periodic. Without loss of generality,
assume that quadrant II has at least one defect.

DEFINITION. A vector v is affected by a defect u if at least one of u + v and
u- v is in A. A vector v is affected by a set of defects if it is affected by at least
one of them. Let FI(A) be the set of points on forward diagonals d of A such that
-m/2 < d < m/2 and FH(A) be the set of points on backward diagonals d such that
m/2- 1 < d < 3m/2- 1. See Fig. 5.

LEMMA 10. Let N be a set of defects in quadrant II, and x (y) be the smallest
row (largest column) that has a defect in N. Then a vector (r, c) CI is not affected
by N if and only if r >_ m-x and c > y. Similarly, let N be a set of defects in
quadrant IV, and x’ (y’) be the largest row (smallest column) that has a defect in N’.
A vector (r, c) CI is not affected by N’ if and only if r > x and c >_ rn- y’.

Proof. We prove the lamina for quadrant II (the proof for quadrant IV is similar).
Let v (r, c). Since Ivl <: m/4, the points u such that none of u + v and u- v are in
A are exactly the points in B Aim- r..m- 1, 0..c- 1]. Thus v is not affected by N
if and only if the defects in N are in B if and only if x _> rn r and y _< c- 1.

LEMMA 11. If A is radiant-periodic in quad-I, all defects are in A- FI(A).
Proof. By Corollary 5, nonlattice points v CI on b, b2 are not quad-I periods

of A. That is, v and)I are lattice points on bl, b2. Thus if u is a defect, then each
of the four points u + vi, u + , u v, u)I which is in A must also be a defect. If

916 ZVI GALIL AND KUNSOO PARK

Go Gk

FIG. 6. Go and Gk.

V is counterclockwise with respect to 5I, let Vl vi. Otherwise, let vl -vi. In the
following, we consider the case vl v (the other case is similar).

Suppose there is a defect w0 E FI(A). The point w0 is in quadrant II or IV by
Corollary 4. Without loss of generality, assume that w0 is in quadrant II. For > 0,
let Gi be the line passing through wo + iv and parallel to I and size(Gi) be the
length of the intersection of Gi and A. Let k >_ 0 be the largest number such that Gk
contains a defect w in quadrant II. Since w0 E Go is in FI(A) and I(C)iI < m/4, one
of w0 + ?I and w0 ? (which are in Go) is in A. Since Gk, Go are parallel and G
is nearer to the center of A than Go, we have size(Gk) > size(Go) and thus one of
w + ?I and w ?I is also in A. See Fig. 6. Without loss of generality, assume that
w 5I is in A; it must be a defect. If w 5 is in quadrant I, we have a contradiction
to Corollary 4. Therefore, assume that w 5 is in quadrant II. Since I)II III, we
have the following two cases.

Case 1" vi- is a quad-II vector. Since w is in quadrant II, w + vi- is in
n. Since A[w] A[w I] A[w + vi 5] by periods v and I, W -- VI I is a
defect. Note that w + v)I is in Gk+. Since w 5 is in quadrant II and vi is a

quad-I vector, w + v (C)I is in quadrant II or III. If it is in quadrant II, we have a
contradiction to the maximality of k. If it is in quadrant III, we have a contradiction
to Corollary 4.

Case 2: I- vi is a quad-I vector. Since v, 5I- vi are quad-I vectors, we have
w 5i -I w + vi I - w, and therefore w + vi 5 is in quadrant II. As in Case
1, w + vi 5 G Gk+ is a defect and we get a contradiction to the maximality of
k.

DEFINITION. Let z2 (y2) be the smallest row (largest column) that has a defect
in quadrant II and x4 (y4) be the largest row (smallest column) that has a defect in
quadrant IV, if any. Let w (max(rn- x2,x4 + 1),max(ye + 1,rn y4)). Then
Aw is the mazimum rectangle containing Aco (also containing quadrant III) such that
both A and A_ are lattice-generative with the basis vectors b, b. Let DI be the
intersection of C and A. See Fig. 7.

THEOREM 3. A vector v DI is a valid quad-I period if and only if v is a lattice
point on bl, be. Further, there may be valid quad-I periods outside DI.

(i) If vi D, there are no valid quad-I periods outside DI.
(ii) If v DI, let s,..., sp be the valid quad-I periods from shortest to longest

TWO-DIMENSIONAL WITNESS COMPUTATION 917

X X X X X X X X
x x x x x x lx o
x x x x x x x x
x x x x x x x x

Xrx x x x x x x
x x x ,x x x x x

X X X X X X X X
x x x x x x x x

x x x x x x x x
x x x x x x x x

X X X X X X IX X
X X X X X X X X

x x x x x x x x
x x x x x x x x

o x ix x x x x x
x x x x x x x x

FIG. 7. Radiant-periodic (case (i))" bl (1,1),b2 (-1,1). Valid quad-I periods are (2,2),
(3, 1), and (3, 3). Di is the marked 2 x 3 rectangle in CI.

which are outside DI. Then (1) each si for 1 <_ <_ p is a lattice point on bl, b2; (2)
the valid periods form a monotone line; (3) Isi 8i-ll >_ 18i+1 8i[for 1 <_ <_ p- 1,
where so (0, 0).

Proof. By Corollary 5, nonlattice points v E CI on bl, b2 are not quad-I periods
of A. Since Aw and A_w are lattice-generative with the same basis vectors bl, b, all
lattice points in DI are valid quad-I periods of A.

For case (i), suppose v (r, c) is a valid quad-I period outside DI. Since vi

(rl, cl) is the shortest valid period, we have r > rl or c > Cl. Since v is outside DI
and vi is in DI, we have r < rl or c < Cl. Hence either r < rl and c > c or r > rl
and c < cl. Without loss of generality, assume r < rl and c > Cl (i.e., v is above DI).
Then v- vi is a quad-II period of Av by Lemma 3. Since vi is a quad-I period of Av,
A, is lattice-generative.

In the following two paragraphs, we will show that bl and b: are quad-I and quad-
II periods of Av, respectively. That is, A. has no defects with respect to the lattice
of A. Since A. A_, there are no defects in rows r,..., rn 1 r of A. Since v is
above DI, we have r < max(m- x., x4 + 1), i.e., either m- r > x or r _< xa. This is
a contradiction to the definition of x. and x4.

We first show that v- vi is a lattice point on bl, be. (We already know that vi is.)
Since v CI, Av contains a [3m/4] x [3m/4] square (by m- [m/4] + 1 >_ V3m/4]).
If Av contains A, v- vi is a lattice point by Lemma 8. Otherwise (the width of A
is larger than that of A), let R be the lower-right [m/2] x [3m/4] rectangle of A.
Note that R is contained in A and also in A. By Theorem 1 with R, basis vectors
bl, b2, and z (- [m/4] + 1, [m/4] 1), v v. is a lattice point on b, b. (Since Rz
is at least an [m/4] x [m/2] rectangle, it covers the unit cell on bl, b.)

We now show that bl and b2 are quad-I and quad-II periods of A, respectively.
We show that bl is a quad-I period of A (b. is similar). Let B Av and u be a
point in B-b1. Note that A contains quadrant III of A. Since quadrant III contains
the unit cell on vi, v- vi, there is u (u.) in quadrant III which is lattice-congruent
to u (u+bl) modulo vi,v-vi by Lemma6. By periods vi, v-vi of A, we have
A[u] A[ul] and A[u + 51] A[u.]. Since vi, V VI are lattice points on bl, b2, Ul

is lattice-congruent to u. modulo bl, b2. By periods b, b of quadrant III, we have
A[ul] A[u.]. Thus A[u] A[u + bl].

Case (ii) is proved by the following.
(1) Each si is a lattice point on bl, b. because nonlattice points cannot be valid

quad-I periods by Corollary 5.
(2) Suppose two valid periods s{ and 8j for < j create a quad-II vector (i.e.,

918 ZVI GALIL AND KUNSOO PARK

FIG. 8. Radiant-periodic (case (ii))’ bl (0, 1), b2 (-1, 0). Valid quad-I periods are marked
with slashes. DI is the marked 2 3 rectangle in CI.

either sj si or si sj is a quad-II vector). Without loss of generality, assume 8j 8i

is a quad-II vector. Then Asj is lattice-generative with periods si and sj si by
Lemma 3. As in case (i), sj s is a lattice point on bl, b2 and bl, b2 are periods
of Ass. We get the same contradiction as in case (i). Therefore, sl,..., Sp form a
monotone line. See Fig. 8.

(3) The proof of (3) is the same as the proof of Theorem 2. El
Even when quadrants I and III of A are lattice-generative, A may be line-periodic

if the valid quad-I periods form a line passing through (0, 0).
4. The witness computation. We will compute witnesses of a two-dimension-

al array P[O..m- 1, 0..m- 1] in O(m2) time. Combined with the alphabet-independent
text-processing algorithm of [4], this leads to an alphabet-independent linear-time al-
gorithm for two.dimensional pattern matching. In a one-dimensional string, witnesses
can be computed from left to right [13, 8]. In a two-dimensional array, computing wit-
nesses from the upper-left and lower-left corners of the array does not work because
the computed witnesses may be out of boundary in performing duels. We compute
witnesses from the center of the array towards the outside. (We may also start from

l, 0).)
DEFINITION. Let [log2 m]. We define subsquares Pt of the array P for

3 <_ t <_ recursively: P P. Let h be the length of the sides of pt (i.e., pt is an
n x rh square). Then pt-1 pt[[h/nj Urh/nJ + Fh/2] l, [h/n]..Lrh/nj+Frh/2]_l]"
That is, pt-1 is the F/2] Frh/2] square in the middle of pt. Note that 2t-1 <
n [m/2-t] <_ 2t. The center vc of pt (not necessarily a point in pt) is taken to
be (ic, j) (h/2- 0.5, r/2- 0.5). Let C (CI) be the set of all quad-I (quad-II)
vectors v such that Ivl < h/4. Note that C (CI) contains C- (C) even though
this does not appear so in Fig. 9.

TWO-DIMENSIONAL WITNESS COMPUTATION 919

gt-1

pt,

FIG. 9. Stage in pattern processing.

The witness computation has - 2 stages from t 3 to . At stage t,
consider pt as an entire array (row and column indices are 0,...,- i);
compute WITNESS[0..[/41 I, i.. [rh/4] I] (denoted by WITNESS(C))

and WITNESS[- [rh/4] + I..- I, 0..[/4] I] (denoted by WITNESS(C)). WIT-
NESS[v] (rn, rn) for v C (for v CI if v is a valid quad-I (quad-II) period of pt;
otherwise, WITNESS[v] w such that pt[w] pt[w v] (i.e., w, w v pt). The
points w and w v are called a witness and a cowitness of pt against v, respectively.

Initially (t 3), WITNESS(C) and WITNESS(C) are computed by symbol
comparisons in constant time. At stage t > 3, we compute WITNESS(C) and WIT-
NESS(CI), given WITNESS(C-) and WITNESS(C}-I).

DEFINITION. At stage t we say that v is a candidate if it can still be a valid period
of pt. Consider two candidates and v (both quad-I or both quad-II) such that -’I v
O t -<II V. Let w be a witness against v- u.

1. Type-1 duel:
la. If pt[w + u] pt[w], w + u is a witness against u.
lb. If pt [w + u] pt [w v + u], w + u is a witness against v.

2. Type-2 duel:
2a. If pt[w- v] pt[w], w is a witness against v.
2b. If pt[w v] pt[w v + u], w v + u is a witness against u.

The point w + u (point w v) will be called the apex of the type-1 (type-2) duel.
We say that the type-1 (type-2) duel is legal if its apex w + u (w- v) is in pt. The
duel between u and v for u -I v (or u -II v) will be denoted by (u v}.

Consider a duel /u v}. We use one of the type-1 and type-2 duels which is
legal and find witnesses against one (or both) of u and v We will refer below to the
parallelogram of Fig. 10 and we summarize its relevant properties.

FACT 2. (1) If a type-1 duel is used, its apex w + u is always the witness against u
or v (or both), and w is the cowitness against u, or w v + u is the cowitness against
v (both can happen).

(2) If a type-2 duel is used, its apex w- v is always the cowitness against u or
v (or both), and w is the witness against v, or w- v + u is the witness against u (both
can happen).

920 ZVI GALIL AND KUNSOO PARK

gt

FIG. 10. Type-1 and type-2 duels.

Stage t has two major ingredients:
(a) Move WITNESS(C-1) into WITNESS(C) (WITNESS(C-1) into WIT-

NESS(CI)). Although the upper-left corners of p3,..., pog, are all different, WIT-
NESS arrays can be carried on through the stages. That is, if WITNESS[v] (r, c) E
pt-1, then WITNESS[v] (r + [rh/4J, c + [/4J) E pt. Note that (r, c) pt- and
(r + [/4J, c+ [rh/4J) pt refer to the same point in P. This process will be referred
to as the translation of witnesses.

(b) Perform duels in C and CI using WITNESS(C-) and WITNESS(C-).
LEMMA 12. Wheat we pepform dtel8 #t C{ aTtd Ci tsiTtg WITNESS(C-1) and

WITNESS(Ci-), both type-1 and type-2 duels are legal.
Proof. We prove the lemma only for type-1 duels and the case when v- u

C-1. The other cases are similar. Consider a duel (u v} such that u,v C
and v-u E C-. Let w WITNESS[v-u], and let u (i, j), v (k,/), and
w (r,c). Since w is in pt- (i.e., [/4J <_ r,c <_ [rh/nJ + [rh/2] 1), we have
k/4J _< r + i, c + j _< L/4J + [rh/4 + [/2 2 <_ 1. Thus w / u (r / i, c/ j)
is in pt.

Consider a duel (u" v} such that u,v CI and v-u C-1. Let w
WITNESS[v- u], and let u (i, j), v (k, 1), and w (r, c). Since -rh/4 < < 0
and 0 _< j < rh/4, we have 0 <_ r + < Lh/4J + Fh/2 and [r/4J <_ c + j < rh, so
w + u (r + i, c + j) is in pt. 0

For a given vector v, let be the line passing through (0, 0) and parallel to v.
Given v and pt, we can find the valid periods of pt among the vectors on (and
witnesses against the nonperiods among them) in linear time by partitioning Pt into
lines parallel to v and checking periodicity in each line. Periodicity of each line is
checked by using Algorithm 1 in Main and Lorentz [12] (which is a variation of the
KMP algorithm) as follows. For a line consisting of p elements of pt, we construct a
string S[O..p- 1], where S[i] is the ith element of the line, and compute LP[1..p- 1]
in linear time by Algorithm 1 in [12], where LP[i] is the length of the longest prefix
of S which starts at position of S. If + LP[i] < p, the point in Pt corresponding
to position + LP[i] in S is a witness against the vector joining the 0th element and
the ith element of the line since S[LP[i]] S[i + LP[i]] by the definition of LP. See
Fig. 11 for an example. All the vectors on for which a witness is not found after
considering all the lines parallel to v are exactly all the valid periods of Pt among the
vectors on . This procedure will be referred to as LINE.

TWO-DIMENSIONAL WITNESS COMPUTATION 921

x

x

o

x

)! x

FIG. 11. A line parallel to v that consists of 10 elements. LP[5] 2 means S[7] (bottom o) is

a witness against v 5v.

We now describe stage t > 3. First, we translate WITNESS(C-1) and WIT-
NESS(C-1) into WITNESS(C) and WITNESS(CI), respectively. The rest of stage
t depends on the category of pt-.

4.1. pt- is nonperiodic. Since all of C- and C- have witnesses in this
case, we can perform duels between any two candidates in each quadrant of C. In
each of the three quadrants of C except C-1, perform type-1 duels until at most
one candidate survives in the quadrant. We can take any order in performing duels
in a quadrant. Since at most one candidate survives in each quadrant, at most three
candidates survive in C. Check for each surviving candidate if it is a valid quad-I
period of pt by symbol comparisons. Repeat a similar procedure for CI. pt can be
of any of the four categories.

4.2. pt-1 is lattice-periodic. Let vi and VII be the basis vectors of pt-1.

In this subsection, a defect will mean a defect with respect to the lattice of pt-1.

The following lemma shows transitions of periodicities from pt-1 to pt when pt has
defects.

LEMMA 13. (1) If there is a defect in pt, then pt is not lattice-periodic.
(2) If there are defects in two adjacent quadrants of pt, then pt is not radiant-

periodic.
Proof. (1) Let v be a defect in pt. Suppose that pt is lattice-periodic and v, v2

are the basis vectors of pt. By Theorem 1 with pt-1, basis vectors vi, vii, and z
([rh/4] 1, [rh/4] 1), Vl and v2 must be lattice points on vi, vii. Since pt- covers
the unit cell on v, v2, by Lemma 6, there is a point u E pt-1 which is lattice-congruent
to v modulo v, v. Since u and v are lattice-congruent modulo vl, v and v, v are
lattice points on vi, vii, u and v are lattice-congruent modulo vi, vii. Hence we have
pt[u] 7 Pt[v]. Therefore, v is a defect with respect to the lattice on v and v2, which
is a contradiction.

(2) Let u and v be defects in quadrants II and III, respectively. The other cases
are similar. Suppose pt is radiant-periodic in quad-I and b, b2 are the basis vectors
of quadrant I of pt. By Lemma 11, there are no defects in/PI(Pt) with respect to the
lattice on b, b. Since FI(Pt) contains pt-1, by Theorem 1 with pt-1, basis vectors
VI, VII, and z ([/4] 1, [/4] 1), bl and b2 must be lattice points on vi, vii.
As in (1), there is v pt-1 which is lattice-congruent to v modulo bl, b2, and we

922 ZVI GALIL AND KUNSOO PARK

have pt[v] - pt[v’] since v and v’ are lattice-congruent modulo vi, VII. Therefore, v
is a defect with respect to the lattice on b,, b2. Since v is in quadrant III which is
contained in FI(Pt), we have a contradiction with Lemma 11. Similarly, pt is not
radiant-periodic in quad-II because of u.

FACT 3. Let v be a lattice point on vi, vii.

(1) If one of u, u v E pt is a defect and the other is not a defect, u and u v
are a witness and a cowitness against v. In this case, we say that u provides a witness
against v.

(2) If u and u- v are not defects, u cannot be a witness against v.
DEFINITION. Let S be a set of points. A vector v is compatible with S if for each

defect u S,
(a) if u + v is in pt, then pt[u] Pt[u + v], and
(b) if u- v is in pt, then pt[u] pt[u- v].
The algorithm of the lattice-periodic case has five steps:
A1. Compute witnesses against nonlattice points of C and C. These witnesses

are computed from the witnesses against nonlattice points of C- and C- which
were computed in previous stages.

The remaining steps consider the lattice points of C and CI.
A2. Compare each element of pt with the lattice of pt-. If there are no defects,

stop; pt is lattice-periodic.
A3. If there are defects, check by procedure LINE whether pt has valid vertical

or horizontal periods compatible with the defects. If so, compute witnesses against
nonperiods and stop; pt is line-periodic.

A4. If pt has no valid vertical or horizontal periods, compute one of WITNESS
(C) and WITNESS(CI). In this case, the nearest defect to the center of pt provides
witnesses either for all C or for all C.

A5. Compute the other of WITNESS(C) and WITNESS(CI). This step is most
involved and it is divided into two cases depending on whether pt has defects in two
adjacent quadrants or not. In each case, we first reduce the number of candidates to
O() by computing easy-to-find witnesses. Then among the remaining O(rh) candi-
dates, we find the periods which are compatible with all the defects in pt.

A5.1. No two adjacent quadrants have defects (i.e., defects are in quadrants I and
III or they are in quadrants II and IV). Figure 8 shows an example of this case. By (1)
of Lemma 13, pt can be radiant-periodic (as in Fig. 8), line-periodic, or nonperiodic.

A5.2. Two adjacent quadrants have defects. By Lemma 13, pt is either line-
periodic or nonperiodic.

We now describe the five steps in detail.
Step A1. We compute witnesses against nonlattice points of C and CI using the

witnesses against nonlattice points of C and CI- as follows. For each nonlattice
point v in C -CI- there is a point u in C- U CI- which is lattice-congruent to v
modulo vI, vI by Corollary 2 applied to pt-. Let w be the (computed) witness of pt-
against u (i.e., pt- [w] pt- [w-u]). Then there is a point w’ in quadrant III of pt-
which is lattice-congruent to w by Lemma 6 because quadrant III is
square and IVlI, IVliI < rh/8. Since v C, w’-v is in pt-. Since w’ (w-u) is lattice-
congruent to w (w’-v), we have Pt-[w’] Pt-[w] =fi Pt-[w-u] Pt-[w’-v] and
therefore w is a witness against v. Similarly, we compute witnesses against nonlattice
points of CI.

Step A2. We now consider the lattice points of C and CI. Compare each element
of pt with the lattice of pt-. If there are no defects, pt is lattice-periodic, and all

TWO-DIMENSIONAL WITNESS COMPUTATION 923

lattice points of C (C) are valid quad-I (quad-II) periods of pt by Fact 3.
Step A3. If there are defects in pt, let be the nearest defect to the center of

pt in the remaining steps. In this step, we check if pt has valid vertical or horizontal
periods compatible with the defects by procedure LINE, which also computes all wit-
nesses against vertical and horizontal nonperiods. Assume that there are valid vertical
or horizontal periods (but not both by (1) of Lemma 13). Without loss of generality,
assume there are valid vertical periods (the other case is similar). Since valid vertical
periods imply that defects make vertical lines each of which goes through two adjacent
quadrants, pt is line-periodic, but it is neither lattice-periodic nor radiant-periodic by
Lemma 13. Thus the valid vertical periods are all the valid periods of pt. We com-
pute witnesses against other vectors of C and C{I as follows, and we are done. Since
defects make vertical lines and there are no defects in pt-i, the defect Uc is on a
column c such that c < Lr/4J and c _> [rh/4J + [rh/21 and it is on a row r such that
[rh/4J. _< r .< [rh/4J + [rh/2]. For all nonvertical and nonhorizontal vectors v of C
and CI, either + v or u v is not a defect in pt since I1 < /4. Since is a
defect and either u + v or nc v is not, provides witnesses against all nonvertical
and nonhorizontal vectors.

Step A4. Assume next that there are no valid vertical or horizontal periods.
We compute one of WITNESS(C) and WlTNESS(C) as follows. In this case, the
nearest defect u to the center of pt provides witnesses either for all C or for all CI.
If uc is in quadrant II or IV of pt (say in quadrant II), we find witnesses against all
nonvertical vectors of CI. (Note that witnesses against all vertical vectors of CI have
been computed in Step A3.) The point u+v for nonvertical vector v C is closer to
the center than uc because Uc is in quadrant II and v is a quad-II vector. Thus + v
is not a defect. Since uc is a defect and uc + v is not, uc provides a witness against v.
Computing WITNESS(C) is more involved, and it will be described in Step A5. The
case in which Uc is in quadrant I or III is similar. We first compute WITNESS(C) as
above and then WITNESS(C) in an analogous way to the one described below.

Step A5. We now explain how to compute WITNESS(C), assuming is in
quadrant II or IV. This computation is divided into two cases A5.1 and A5.2 depending
on whether pt has defects in two adjacent quadrants or not.

Case A5.1. First, assume that no two adjacent quadrants have defects (i.e., no
defects in quadrants I and III). Then pt can be radiant-periodic in quad-I, line-periodic
in quad-I, or nonperiodic. We will find all valid quad-I periods of pt compatible with
the defects and compute witnesses against the other vectors in C.

It is easy to see that a lattice point v C is a valid period of pt if and only if v
is compatible with quadrants II and IV. Let V be the set of lattice points in C. We
will describe below how to find the set /iI C V of vectors that are compatible with
quadrant II. Similarly, we find the set Viv c V of vectors that are compatible with
quadrant IV. The intersection of /I and I/iv is the set of valid quad-I periods of pt.

In the course of this computation, the witnesses against nonperiods will be computed.
We describe how to find the vectors of V which are compatible with quadrant II

and how to compute witnesses against the other vectors. Let h (h) be the smallest
row (largest column) that has a defect in quadrant II. See Fig. 12. For each row
h <_ i < rh, let di be the largest number such that (i, di) is a defect in quadrant II;
di -1 if row i does not have a defect in quadrant II. Also, di -1 for 0 _< < h.
Let ui (i, di). If di -1, u will be denoted by ..

All vectors of V which are not affected by the defects of quadrant II are obviously
compatible with quadrant II. Among the vectors (r, c) of V which are affected by the

924 ZVI GALIL AND KUNSOO PARK

Uh

T

FIG. 12. Lower-left part of pt (.,s are defects).

defects of quadrant II (i.e., r < - h or c _< h by Lemma 10), we first compute
easy-to-find witnesses against vectors except Uh+i --Uh for 0 < i < - h by the
following procedure. Hence the number of remaining candidates will be O(). Let
u’ (r’, h’) be a defect in column h.

PROCEDURE EASY-WITNESS
1. Consider v (r, c) such that r >_ rh- h and c _< hp. Since c _< h and u is in

column h, u v is in pt. Since r < and r >_ rh- h, we have r r < - r <_ h.
Hence u- v is not a defect, and u is a witness against v. See the rightmost vector
in Fig. 12.

2. Consider v (r, c) such that r < rh- h and v Uh+r- Uh (i.e., c =d+ d).
2.1. Casec>dh+-dh" Sincedh+c>dh+,Uh+visnotadefect, and

it is a witness against v. See the leftmost vector in Fig. 12.
2.2. Case c < dh+ dh" Since dh+ c > dh, Uh+ V is not a defect, and

Uh+ is a witness against v. See the middle vector in Fig. 12.

We now show how to find periods among the remaining O(rh) candidates, i.e.,
those of the form Uh+i Uh. For 0 < < rh- h, we define vi Uh+i Uh if Uh -I Uh+i
(i.e., vi is a quad-I vector); vi is undefined otherwise. We define a relation on rows:

j for < j if vj_ (x, y) is defined and
(i) u=uj =,,or
(ii) ui=* anduj-/,anddj <y, or

(iii) uj ui vj-i and pt[i, O..di] is a sumx of pt[j, O..dj].
Note that vj_i (if it is defined) is the only one among the remaining vectors that can
map row to row j. The relation j means that vj_i is "fine" with respect to rows
and j: in (i), there are no defects in rows and j; in (ii), for every defect u in row

j, u- vj_ is not in pt; in (iii), vj-i successfully maps defects in row to defects in
row j. We extend the relation to intervals: [i..i + 1] [j..j + 1] if + k j + k for
0<k</.

Note that vi is compatible with quadrant II if and only if [h-i..-i-1] [h..-
1]. Checking (i) and (ii) takes constant time. Consider all strings involved in (iii) (i.e.,
Pt[i, 0..d] for d _> 0) and reverse them. Let row-string be the reverse of pt[i, 0..d].
In O(2) time, we will build a matrix PREFIX such that PREFIX(i, j) 1 if and

TWO-DIMENSIONAL WITNESS COMPUTATION 925

only if row-string is a prefix of row-string j. Then (iii) is executed in constant time
by checking if uj u vj-i and PREFIX(i, j) 1. As a result, the naive algorithm
for checking whether lit- i..- i- 1] [h..rh- 1] for every 0 _< i < rh- h takes
0(2) time.

We also need to find witnesses against nonperiods v. If j- j for some
h _< j < when we check [h- i..rh- i- 1] [h..- 1], we find a witness against
v (x, y) as follows.

1. uj_i and uj ," since uj_ + v is not a defect, uj_ provides a witness

against v.
2. uj_ ,, uj ,, and dj

_
y" since uj -v is in Pt and is not a defect, uj

provides a witness against v.
3. uj_ ,, uj ,, and uj uj_ vi" since uj uj_ v, one of uj_ + v

and uj v is not a defect. Hence one of uj_i and uj provides a witness against v.
4. uj uj_ v and row-string j is not a prefix of row-string j (i.e.,

pt[j i, O..dj_] is not a suffix of Pt[j, O..dj])" any point u in row-string j such that
Pt[u- vii 7 Pt[u] is a witness against v.

For case 4, when PREFIX(i, j) 0, we need to compute a point u in row-string
j which does not match.the corresponding point in row-string i.

We now compute the matrix PREFIX. We build a prefix tree which is a trie with
all row-strings involved in (iii) and in which the children of a node are maintained by
a linked list. A node v is marked with i if the string from the root to v is row-string i.
At stage i, we enter row-string if it is not empty. Assume that we enter row-string
i. We walk down the prefix tree from the root with row-string i. On a node, we check
its children by following its linked list. We either find a matching child to continue
with or there is no matching child with row-string i. In the latter case, we create a
set of nodes corresponding to the rest of row-string i.

We analyze the time to construct the prefix tree. When we walk down the prefix
tree to enter row-string i, the matches and creating new nodes are charged to row-
string i. A mismatch means that there is a subtree containing at least one leaf (marked
with k) which we do not go into. The mismatch is charged to the entry PREFIX(k, i);
the total for mismatches is also O(rh). Thus the total time for building the prefix tree
is O().

We now make the prefix tree a compacted trie, i.e., every nonmarked node which
has only one child is removed. (Note that we can also make the prefix tree compact
while we construct it.) Since all leaves are marked nodes and there are O() marked
nodes (including internal nodes having one child), the total number of nodes in the
compact prefix tree is O(rh). As we traverse the tree from the leaves to the root, for
each node v, we compute the list M(v) of row-strings whose corresponding marked
nodes are in the subtree rooted at v. Now we traverse the tree and compute PREFIX
as follows. On a node v marked with i, we set PREFIX(i, j) 1 for each j E M(v).
When we traverse the arc from v to its child u, we set PREFIX(i, j) 0 for each

M(v) M(u) and each j M(u). Let k be the number of symbols from the root
to v. For every entry PREFIX(i,j) 0 computed above, the (k / 1)st position in
row-string j is a mismatch between row-strings and j. Since each entry of PREFIX
is computed once, this computation takes O(rh) time. Traversing the tree also takes
O(rh2) time as in the construction of the prefix tree.

Case A5.2. We now consider the remaining case and assume that two adjacent
quadrants have defects (i.e., there are defects in quadrant I or IiI in addition to one
in quadrant II or IV). Then pt is either line-periodic or nonperiodic by Lemma 13.

926 ZVI GALIL AND KUNSOO PARK

Recall that h (h’) is the smallest row (largest column) that has a defect in quadrant
II, and d is the largest number such that (i,d) is a defect in quadrant ii. Let
L {u (i,d) h <_ < }. Let g be the smallest column that hasadefect in
quadrant IV. For each column g <: j < rh, let dj be the largest number such that
(dj,j) is a defect in quadrant IV; dj -1 if column j does not have a defect in
quadrant IV. Let L’ {(dj,j) g <- J < rh}. Let V be the set of lattice points in C.

LEMMA 14. If there is a vector v compatible with L (L) such that for some defect
u E L (u E L), u + v is in quadrant III or u v is in quadrant I, then all the vectors
of V compatible with L (L’) are on the line passing through (0, 0) and v.

Proof. We prove the lemma for L (the case for L’ is analogous). Let v (r, c).
Without loss of generality, assume that there is w0 L such that w0- v is in quadrant
I (the other case is similar). Suppose there is a vector v V which is compatible
with L and is not on the line passing through (0, 0) and v. Without loss of generality,
assume that v is counterclockwise with respect to v (the other case is similar). For

_> 0, let G be the line passing through wo / iv and parallel to v. Note that G+I is
to the right of G.

Let k _> 0 be the largest number such that Gk contains a defect in L, and let
w (x, y) L be the defect in Gk whose row number is the smallest. Since v is
counterclockwise with respect to v and w0- v is in quadrant I, Go intersects both
quadrants I and II. Since k _> 0, Gk also intersects both quadrants I and II. By the
minimality of x, the row number of w- v’ is less than [/2J. Since Iv’ < /4, we
have x < /4 + [rh/2J. Since there are no defects in Pt-1, y < [/4J. Thus w + v
is in quadrant II, and it is a defect by the compatibility of v with L. Moreover, w / v
is in L because otherwise there would exist w (x, y) L such that x x + r
and y > y + c and w v would be a defect in quadrant II satisfying x r x and
y c > y, so w would not be in L. Since w + v is in Gk+, we have a contradiction
to the maximality of k. [:]

For a vector of V to be a period of pt, it must be compatible with L and L by
the definition of compatibility. In the following, we describe how to find the vectors
compatible with L. Finding the vectors compatible with L is analogous. If Uh satisfies
h _> [rh/4J + [rh/2] and dh >_ [rh/4J, then Uh is a witness against all v E V because
Uh- v (which is in quadrant II) is not a defect. Otherwise, dh < rh/4J because there
are no defects in pt-.

Among the vectors (r, c) of V affected by L (i.e., r < -h or c _< h’), we compute
easy-to-find witnesses against vectors except Uh+ Uh for 0 < < rh- h as in the
procedure EASY-WITNESS. Let u (r, h) L be a defect in column h. Note that
r >_ h. In each case below, we will show only that the relevant point is in quadrant
II, from which it follows that the point is not a defect as in EASY-WITNESS (since
its row coordinate is smaller than h in Case 1 and its column coordinate is larger than
the corresponding d in Case 2).

Case 1: r >_ rh- h and c <_ h. Since r < rh/4, we have h > 3rh/4. Since r _> h,
r > 3/4. Since h c >_ 0 and r r > rh/2, u v is in quadrant II.

Case 2: r < Fn- h and v Uh+ Uh (i.e., c dh+r dh).
Case 2.1" c > dh+ --dh. Since dh < [rh/4J, Uh + V is in quadrant II.
Case 2.2: c < dh+r--dh. Since Uh+r and Uh are in quadrant iI, so is Uh+- v.

Among the vectors v V affected by L, the remaining O(h) candidates are those of
the form Uh+ Uh. For each vector v Uh+ Uh, we consider all u L and check
compatibility (i.e., (a) and (b) in the definition of compatibility). It takes O(rh) time
for each vector v and O(rh2) time overall. If some u L violates (a) or (b)--say

TWO-DIMENSIONAL WITNESS COMPUTATION 927

(a)--for vi, then u provides a witness against v because pt[u] # Pt[u + v]. The
vectors compatible with L are the surviving vectors plus the vectors of V unaffected
by L.

Let U C V be the set of vectors compatible with L and U. Now we find the
periodicity of pt and the remaining witnesses.

1. If U is empty, pt is nonperiodic, and all witnesses have been found.
2. If U is a set of vectors on a line going through (0, 0), we check if the vec-

tots are valid periods of pt by procedure LINE, which also computes the remaining
witnesses.

3. If U contains at least two independent vectors, the nearest defect in quad-
rants I and III to the center will provide witnesses against the vectors of U as follows.
Without loss of generality, assume that the nearest defect uc is in quadrant iII (the
other case is similar). Since u is outside pt-1, Uc_ v is in quadrant II, III, or IV.
We claim that u-v for v E U is not adefect. Ifu-v is in quadrant III, it is
not a defect since u is the nearest one. Suppose u v is in quadrant II or IV (say
quadrant II) and it is a defect. Let u E L be the point in the same row as u- v
(possibly u u- v). We have u+ v in quadrant III, and by Lemma 14, the vectors of
U must be on a line going through (0, 0), a contradiction to the fact that U contains
two independent vectors. Therefore, u v is not a defect and u is a witness for all
vEU.

4.3. P-t is line-periodic (quad-I). Assume that pt- is line-periodic in
quad-I. Let v be the shortest valid quad-I period of P*-. The algorithm of the
line-periodic case has four steps:

B1. Check whether pt- has quad-iI periods v C.
B2. If pt-1 has I10 quad-II periods in C{ (i.e., all vectors in C{i have witnesses),

compute WITNESS(C) using two stages of duels, Steps D1 and D2, and stop.
D1. Perform duels among the vectors in C. The surviving candidates form a

monotone line M since all of CI have witnesses.
D2. Perform duels among the vectors in the monotone line M from shortest to

longest. Since duels are done from shortest to longest, the surviving candidates form
a line, which can be checked by procedure LINE.

B3. If pt- has quad-II periods in C, let II be the shortest one among them.
In this case, we can show that all the quad-II periods of pt- are lattice points on

vi and 5n. Perform duels among the vectors in C and check whether the surviving
candidates are lattice points on v and II. If all of them are lattice points, the rest is
the same as in the lattice-periodic case.

B4. If some vectors in C are nonlattice points, check whether there exists a
nonlattice point which is a period of pt-. If no such nonlattice points exist (i.e.,
all nonlattice points in C are not periods of pt-), the remaining vectors are lattice
points and the rest is the same as in the lattice-periodic case. If such a nonlattice point
exists, we can prove special properties, by which WITNESS(C) can be computed
using Steps D1 and D2 and procedure LINE as in Step B2 and WITNESS(CI can
be computed by symbol comparisons.

DEFINITION. Consider a point (i,j) (on backward diagonal +j). Its distance to
backward diagonal d is defined to be I(i + j) dI. Let Q, Q, Q, and Q (QI,
QI, and Q4I) be quadrants I, II, III, and IV of C (CI), respectively.

In the line-periodic and radiant-periodic cases, we use both type-1 and type-2
duels. We have two rules for choosing the type.

Rule 1. Choose the type of the duel whose apex is closer to the center of pt.

928 ZVI GALIL AND KUNSOO PARK

Rule 2. For a duel between u, v E C, choose the type of the duel whose apex is
closer (by the definition of distance above) to the backward diagonal - 1.

We will use Rule 1 for all the duels in the line-periodic and radiant-periodic cases
except for Step D2, where we will use Rule 2.

We now describe the four steps in detail. In the witness computation, we use
computed witnesses to compute new witnesses. Although the algorithmic part is
quite simple, the main technical difficulty is in proving that the duels we perform are
legal.

Step B1. Since pt-1 is line-periodic with the shortest valid period v (i.e.,
/8), initially all vectors in C-1 except the valid periods of pt-1 on the line passing
through v and (0, 0) have witnesses and all vectors in C-1 have witnesses. However,
pt-1 may have a quad-Ii period v such that r/8 _< Ivl <: /4. First, we check if
pt-1 has such a quad-II period as follows.

BI.1. Perform duels in each of the three quadrants of C except C-1 (i.e.,
Q, Q, Q) using WITNESS(C-1) and WITNESS(C-I). The surviving candi-
dates will form a line parallel to vi in each quadrant and thus at most three lines in

C. The losers of the duels get witnesses from the duels.
B1.2. For each line L (parallel to v) of candidates in CI, choose the shortest

quad-II vector v and check if it is a period of pt-1 by symbol comparisons. Any
mismatch kills all quad-II vectors in the line L by the line-periodicity of pt-1, as
Lemma 15 will show. Thus the shortest surviving vector among the (at most) three
chosen ones, if any, will be the shortest quad-II period of

LEMMA 15. Let w be a witness of pt-1 against v C. If v C is a quad-II
vector such that v -v or v-v is a valid quad-i period of pt-1, one ofw and w+v-v
is a witness of pt-1 against v.

Proof. We prove the lemma for the case in which v-v is a valid quad-I period (the
other case is similar). Note that both w and w- v are in pc-1 and PC[w] PC[w- v].
Consider the parallelogram L whose four corners are w, w- v, w- v, w + v -v. Let
W (FI,Cl), W- Vt: (r2, c2), w- V-" (?3,C3), and w + vt- v (?4, c4). Since the
two sides of L are quad-I vector v- v and quad-II vector v, we have rl <: r2 <: r3
and rl <: r4 <: r3. Since]v’] < /4 and Iv’-v < /8, we have cl -/4 <: c and
c4 < cl + /8. Since w and w v are in pc-l, one (or both) of w v and w + v v
is in pc-1.

If w- v’ is in pt- 1, then w is a witness against v’ because pc [w- v’]
PC[w]) by the period v -v. Otherwise, w + v -v is a witness against v because
pc [w + v’ v] pt [w](pc [w v]).

LEMMA 16. Let be the shortest surviving candidate in C in Step B1.2 (i.e.,
shortest quad-iI period of pc-l). Then we have the following:

(1) All valid quad-I periods of pt-1 are of the form iv1 for integer i.

(2) All the surviving candidates in CI are quad-Ii periods of pc- and also
lattice points on vI, (C).

Proof. By Theorem 1 with pc-l, basis vectors v,, and z ([/8 1,
1), all valid quad-I periods of pc-1 are of the form iv fbr integer i. Let v be the

shortest vector (chosen in Step B1.2) in a line L of candidates in CI. Since all valid
quad-i periods of pt- are of the form ivy, all candidates in L are of the form v + ivy.
Thus if v is a period of pc-l, so are all candidates in L by Lemma 5. Therefore, all
the surviving candidates in C are quad-Ii periods of pc-1.

We now show that the surviving candidates in C are lattice points on v, I.
Case 1" H is in QI" By Theorem 1 with pc-l, basis vectors v,i, and

TWO-DIMENSIONAL WITNESS COMPUTATION 929

z (- [h/4] + 1, [/4] 1), all the surviving candidates in CI are lattice points.
Case 2: II is in QI. This case is similar to Case 1.
Cse 8: H is ia Q. Since one of the candidates in QI is , all of them

are of the form I + ivy, i.e., the candidates in Q are lattice points. By Theorem
1 with p-l, v, 4, and z (-/4] + 1, [/8] 1), all the candidates in Q are
lattice points. Similarly, all the candidates in Q are lattice points.

LEMMA 17. Let be the witness against v CI after Steps BI.1 and B1.2. Then
there are two cases for the locations of the witness and the cowitness - v"

(1) both and - v are in pt-, or

(2) one is in quadrant I or III of pt-1 and the other is outside pt-1 but in

Proof. If was computed before Step B1.1 (i.e., in stage t- 1), both and
-v are in pt- because is a witness of pt- at stage t- 1. If is computed during
Step B1.2, both and - v are again in pt- because Step B1.2 checks periodicities
of pt- only.

Let be the witness computed during Step B1.1. Let u C be the vector to
which v lost in a duel of B1.1. Then u v or v u is in C- or C. Without loss
of generality, assume that v- u is in C- (the other cases are similar). Let w be the
witness against v- u. Since Steps B1.1 and B1.2 compute witnesses against vectors
in C-C1, all witnesses against vectors in C- and C were computed before
Step B1.1. Thus both the witness w and the cowitness w- v + u are in pt-. Recall
that w + u (w v) is the apex of the type-1 (type-2) duel. By Lemma 12, both types
of duels are legal. There are three cases based on the locations of w +

1. If both w + u and w- v are in pt-1, both and - v (which are two
among w, w v + u, w + u, w v by Fact 2) are in pt-1.

2. If one of w + u and w (say w v) is in pt-I and the other is not, Rule
1 chooses the type-2 duel because w- v is closer to the center than w + u, so both

w and v w v are in pt-l.

3 Ifbothw+u and w-v are outside P- both w and w-v+u arein
quadrant I or quadrant III of pt-1 because w, w- v + u pt-1 and u, v C.
Without loss of generality, assume that w, w v + u are in quadrant I of pt-1. Both
w + u and w- v cannot be outside F(Pt) because w F(P) and u, v < /4. If
one of w + u and w v (say w + u) is outside F(Pt), we will show below that w v
is closer to the center than w + u. Thus the type-2 duel is chosen by Rule 1; w
is in quadrant I of P- and - v w- v is outside pt-1 but in ffi(Pt).

Let w (x,y), w + u (i,j), w- v (i,j2), and vc (i,j), the center of
P. We now show that I(w + u) Vc] > 3/4 y 0.5 > I(w v) Vcl.

Since w is in quadrant I, u C is a quad-II vector, and w + u is outside
pt-, we hve i i /4 > IJ Jcl. Hence](w + u) vcl ic

Since j i /2 (i.e., w + u is outside F(Pt)), we have 3/4- j
/4- i. Since j y is the column coordinate of u, it is less than /4. Hence

0.5 + 0.5 < + 0.5
Since w is in quadrant I, v C is a quad-II vector, nd w- v is outside

pt-, we have jc j /4 > [i i[. Hence](w v) v] j j2.
Since y- j2 is the column coordinate of v, it is less than /4. Hence

j-j2=(y-j2)+(jc-y) </4+(j-y)=3/4-y-0.5.
LEMMA 18. If there are no surviving candidates in C, then pt is not radiant-

periodic in quad-I.
Proof. Suppose p-t is rdiant-periodic in quad-I. By Corollary 4, quadrant I (Mso

930 ZVI GALIL AND KUNSOO PARK

III) of pt is lattice-generative with basis vectors bl and b2 satisfying Ibll, Ib2[< rh/4.
By Lemma 11, there are no defects in FI(Pt) with respect to the lattice of quadrant
I, and therefore pt-1 is also lattice-generative with basis vectors bl and b2. (rh/8 <_
Ib.l < /4 because pt-1 has no valid quad-II period.) Since there are no surviving
candidates in CI there exists a witness w of pt against b2, i.e., Pt[w] Pt[w- b].
By Lemma 17, w and w b. are in FI(Pt), a contradiction to Lemma 11. [:]

The computation after Step B1 depends on whether or not there are surviving
candidates in CI.

Step B2. First, assume that there are no surviving candidates in CI (i.e., all of

Ci have witnesses). Then pt is not lattice-periodic because there are no valid quad-II
periods. By Lemma 18, pt can be either line-periodic in quad-I or nonperiodic. In
order to compute WITNESS(C), we will have two stages of duels: Steps D1 and D2.
Step D1 performs duels among the points of C as follows.

Step D1.
D1.1. Perform duels in each of the three quadrants of C except C-1 (i.e.,

QI2, QI3, Q) using WITNESS(C-1) and WITNESS(C-1). The surviving candidates
will form a line in each quadrant (at most four lines in C including the one in C-).

D1.2. Perform further duels between the lines using WITNESS(CI in the process
of combining the four quadrants into C. The surviving candidates form a monotone
line M because all of CI have witnesses.

LEMMA 19. Let @ be the witness against v E C after Step D1.1. Then there are
two cases for the locations of the witness @ and the cowitness - v:

(1) both @ and @ v are in pt-1, or

(2) one is in quadrant II or IV of pt-1 and the other is outside pt-1 but in
Fii(Pt).

Proof. This proof is similar to the proof of Lemma 17 because Step D1.1 is anal-
ogous to Step B1.1 above. Cl

LEMMA 20. Let be the witness against v C after Step D1. Then at least one

of the witness and the cowitness v is in pt-1.

Proof. If v gets the witness w in Step D1.1, one of @ and @- v is in pt-1 by
Lemma 19. If v gets the witness w in Step D1.2, let u C be the vector to which
v lost in a duel. Then u- v or v- u is in Ci because we use only WITNESS(CI
in Step D1.2. Without loss of generality, assume that v- u is in CI. Let w be the
witness against v u. Since v u is in CI w and w v + u satisfy Lemma 17, and
we have two cases"

1. w and w- v + u are in pt-1. Since lul, Ivl < /4, both w + u and w- v
are in pt (i.e., both types of duels are legal). At least one of @ and @- v (which is
one of w and w v + u by Fact 2) is in pt-1.

2. One of w and w v + u is in quadrant I or III of pt-1 and the other is
outside pt-1. Assume that w is in quadrant I (the other cases are similar). Since w is
in quadrant I and u C, the apex w + u of the type-1 duel is in pt-1. If the type-1
duel is chosen by Rule 1, by Fact 2, the new witness @ is w / u, which is in pt-1. If
the type-2 duel is chosen, its apex w- v is closer to the center than w + u by Rule 1,
and therefore it is in pt-1. By Fact 2, the new cowitness @ v is w v, which is in
pt-i.

Step D2. We perform duels anong the points in the monotone line M. Let
vi,...,vp be the candidates in M from shortest to longest. Step D2 consists of p
iterations. At the beginning of iteration q >_ 1, we maintain the invariant that 17 is a
subset of {vi,..., Vq_l } such that

TWO-DIMENSIONAL WITNESS COMPUTATION 931

X

Z+

FIG. 13. X+ XUZ+ andX- XUZ-.

1. either t? is empty or

2. all the vectors in lY are on a line going through (0, 0).
Initially, I? is empty. At iteration q >_ 1, we consider the current candidate Vq and

do the following. If 1 is empty or Vq is on the line , we put vq into 1. Otherwise,
the vector v- u for each u E 1 has a witness because Vq- u is shorter than Vq and it
is not on the line . We perform duels between v and the vectors in I? (in any order
among the vectors in
is the set of surviving vectors among 1 and vq. Note that the new IY satisfies the
invariant. The losers of the duels get witnesses. Step D2 returns l? after considering
all candidates (thus the remaining vectors in l? are on one line going through (0, 0)).
We use the procedure LINE to find the valid periods among the vectors in V and to
compute witnesses for the rest.

We now show that all the duels in Step D2 are legal. Let z and z be the upper-left
and lower-right corners of pt-1, respectively. Let X be the set of points in pt-1 and
X+ (X-) be the set of points in Ptz (Pt_z,). Let Z+ X+ X and Z- X- X.
See Fig. 13.

At the beginning of iteration q >_ 1, we maintain the following invariant (called
Invariant q)’ for each vector v -4 v against which a witness w has been computed,
the witness w and the co-witness w- v satisfy the following:

Condition (i). w, w- v E X+ and w- vq X-; or
Condition (ii). w, w v X- and (w v) + vq X+; or
Condition (iii). w Z+ and w- v E Z-.
LEMMA 21. If w X+(Z+), w- v .X-(Z-), and v v’ for v C, then

w v is in X-(Z-) and (w v) + v’ is in X+(Z+).
Proof. We prove the lemma for X+ and X- (the case for Z+ and Z- is similar).

SincewX+ andv EC,w-visinPt. Sincew-vX- andviv,w-vis
in X-. Similarly, (w v) + v

LEMMA 22, Let q be any iteration of Step D2, and let w be the computed witness
against a vector v -4 Vq. If one of w and w v is in pt-1, w and w v satisfy
Condition (i) or (ii).

Proof. Assume that w is in pt-. Thenw is inX c X+ andw-v is inX-.
By Lemma 21, (w v) + Vq is in X+. Since w,w v X- and (w v) + Vq e X+
Condition (ii) is satisfied.

932 ZVI GALIL AND KUNSOO PARK

Assume that w-v is in pt-1. Then w-v is in X and w is in X+. By Lemma 21,
w Vq is in X-, which satisfies Condition (i).

LEMMA 23. Invariant q holds durin9 iteration q for 1 <_ q <_ p, and all the duels
in Step D2 are legal.

Pro@ By Lemma 20, all witnesses computed before Step D2 satisfy Lemma 22.
Thus the invariant holds at the beginning of iteration 1. Assume that it holds at the
beginning of iteration q _> 1. If Step D2 performs duels at iteration q, each duel is

In "Vq} for l). Consider a duel /n "Vq}. We show that the duel /n "Vq} is legal
and the new witness computed in the duel satisfies Invariant q:

Let v- Vq-U, andw be the witness against v. Note that w+u (W-Vq) is
the apex of the type-1 (type-2) duel and w v w Vq + is the cowitness against
v (i.e. w, w- v, w + , w- Vq are the four points in the parallelogram of Fig. 10).
The following pertain to the cases when witness w satisfies each of the conditions in
Invariant q:

1. Condition (i). There are two cases.

1.1. The type-1 duel is chosen by Rule 2. Since w and w- v are in X+ and w
is closer to the backward diagonal rh- 1 than w v, w v is in X. Since
w-vXandvqC,theapexw+n=(w-v)+vqisinX+ (thetype-1
duel is legal). By Fact 2, w + is the new witness against or Vq, and the
new cowitness is w-v (if Vq loses) or w (if loses). In both cases, the new
cowitness is in X+. Since (w +) Vq w v X c X-, Condition (i) is
satisfied.

1.2. The type-2 duel is chosen by Rule 2. The apex w- Vq is in X- by Invariant
q (the type-2 duel is legal). By Fact 2, w- Vq is the new cowitness, and the
new witness is w (if Vq loses) or w v (if loses). If the new cowitness
w Vq is in X, the new witness and the new cowitness are in X+, and
v Vq X- because (w v) Vq (w Vq +) Vq I W Vq X- by
/. -I)q. Hence Condition (i) is satisfied. If the new cowitness w Vq is in
Z-, we have the following two cases. If the new witness is in X, then we
have (w Vq) + Vq w X+ and Condition (ii) is satisfied. Otherwise, the
new witness is in Z+ and Condition (iii) is satisfied.

2. Condition (ii). This is symmetric to the case of Condition (i).
3. Condition (iii). Since w Z+ and w-v Z- and v "I Vq C, w--t w-v-Vq

(w- Vq) is in Z+ (Z-) by Lemma 21. Both types of duels are legal. Without
loss of generality, assume that the type-1 duel is chosen by Rule 2 (the other case
is symmetric). By Fact 2, w + Z+ is the new witness. If Vq loses in the duel,
Condition (iii) is satisfied since the new cowitness w v is in Z-. If loses,
both the new witness w + and the new cowitness v are in Z+ C X+. Since
(w +) Vq w v Z- C X-, Condition (i) is satisfied.

If w satisfies Condition (i), w Vq, X- for Vq - Vq, C by Lemma 21. Similarly,
if w satisfies Condition (ii), (w v) + Vq, X+. Thus if a witness w satisfies Invari-
ant q, w also satisfies Invariant q for q < q. Hence all witnesses against v - Vq+
which have been computed during iterations 1,..., q satisfy Invariant q + 1. Since
all witnesses against v -I Vq+l which were computed before Step D2 satisfy Invari-
ant q + 1 by Lemmas 20 and 22, all witnesses against v - Vq+l satisfy Invariant
q+l.

Step B3. We now consider the remaining case and assume that there are surviving
candidates in C{I. Let II be the shortest quad-II period of pt- (i.e., n/8 _<
rh/4). By Lemma 16, all candidates in Q{ and all the surviving candidates in CI are

TWO-DIMENSIONAL WITNESS COMPUTATION 933

lattice points on vi, @II. We consider the quad-I vectors in C[.
B3.1. Perform duels in each of Q, Q, and Q using WITNESS(C-1) and WIT-

NESS(C-1). The surviving candidates will form a line in each quadrant (at most four
lines in C including the one in Q).

B3.2. For each line L in Q, QI3, and Q, check if the candidates in L are lattice
points on vi, II by checking only one point in L because the points in L are lattice-
congruent.

If all the candidates in C are lattice points, checking the lattice points of C
and CI is the same as Steps A2-A5 in the lattice-periodic case since pt- is lattice-
generative with basis vectors v, ?I. Notice that witnesses against nonlattice points
have already been computed by duels.

Step B4. Assume that some candidates in C are nonlattice points on v,)II.
Since all candidates in Q are lattice points, nonlattice points are in Q, QIa, and
Q. If Q and QI4 contain nonlattice points, we can find witnesses against them as
follows. Consider the line L in Q. By Theorem 1 with pt-, vi, (C)H, and z ([rh/4]
1, [rh/8] 1), nonlattice points in L are not periods of pt-1. We choose the longest
vector v in L and find a witness w of pt-1 against v by symbol comparisons (i.e.,
pt [w] pt [w- v]). Any point in L is a quad-I vector, and it is v- ivi for some integer
i. Hence we have w v -I w V - ivI -’I W. Since w and w v is in pt-1, w v + i)I
is also in pt-. By the line-periodicity of pt-, pt[w v] pt[w v + ivi] Pt[w],
i.e., w is a witness against all vectors of L. A similar situation holds for the line in

By the computation so far, all the surviving candidates in C except possibly the
line of candidates in Q are lattice points. Since Step B3.1 above is the same as Step
D1.1, all the witnesses computed before and during Step B3.1 satisfy Lemma 19. Since
we find only witnesses of pt-1 in the previous paragraph, all the witnesses computed
so far (against vectors in C) satisfy Lemma 19.

Let L be the line of candidates in Q. Assume that the candidates in are

nonlattice points. Check if the longest vector v in is a quad-I period of pt-1 by
symbol comparisons. Notice that nonlattice point v can be a period of pt- because
Theorem 1 does not apply to this case. If v is not a period, we can find witnesses
against all points in as we did for the line L in Q above and go to the lattice-periodic
case with the remaining candidates (lattice points) in C and C. Thus assume that
nonlattice point v is a period of pt-. Then we have the following special properties.

LEMMA 24. (1) The quad-II vector is in (I and it is the only remaining
candidate in CI.

(2) There is no pair of candidates u, u in C such that u u (C)IX.
gpoof. (1))II is not in (ili because otherwise nonlattice points in C would not

be periods of pt- by Theorem 1 with pt-1, vi, 5II, and z ([/41 1, [rh/4 1).
Similarly, @IX is not in QI" Thus ?)II is in Q..

Suppose that there is a candidate u CI which is not (C)II. Since u is a lattice
point by Lemma 16 and 5II QI, u is ?H + ivi for 0. If > 0, the sum of the
column coordinates of ?I and vi is less than rh/4, and the row coordinate of ?II C
is larger than that of vi, CI (thus a quadrant of pt-1) covers the unit cell on vi, 5II.
Similarly, if < 0, Ci covers the unit cell. By Theorem 1, nonlattice points in C
cannot be periods of pt-, contradicting the existence of v.

(2) Suppose that there is a pair of candidates ul, u in C such that u u.)I.
Since)II is in (i4i, tl is in (and t2 is in Q]. Since all candidates in Q and Q are
lattice points, so are ul and u. Thus one of Ul and u is iv and the other is ivi +

934 ZVI GALIL AND KUNSOO PARK

for > 0, which implies (as in (1)) that C covers the unit cell on 2i, II. By Theorem
1, we get a contradiction to the existence of v. D

To find the valid quad-i periods of pt, run Step D1.2 and then Step D2 and
procedure LINE with the candidates in C. Note that all the witnesses against points
in C (CI) satisfy Lemma 19 (Lemma 17). During Step D1.2, all the duels have
witnesses by Lemma 24. To find the valid quad-II periods of pt, check if II, which is
the only candidate, is a valid period of pt by symbol comparisons.

4.4. pt-1 is radiant-periodic (quad-I). If pt- is radiant-periodic in quad-I,
pt-1 has no quad-II period v such that Ivl < rh/4 by Lemma 9, which implies pt

has no valid quad-II periods; pt is not lattice-periodic, pt is not radiant-periodic
in quad-I because otherwise pt-1 (which is contained in F(Pt)) would be lattice-
generative with basis vectors bl and b2 satisfying Ibl, IV21 < r/4 by Lemmas 7 and
11, contradicting the fact that pt-1 has no quad-II period v such that Ivl < rh/4.
Thus pt is either line-periodic in quad-I or nonperiodic.

The treatment of the radiant-periodic case is almost an exact analogue to that of
the line-periodic case, replacing "lines" by "monotone lines" in all the places except
the line of candidates produced by Step D2 (which is the input to procedure LINE).
The only difference is that, as noted above, rt-1 has no quad-II periods of length
< /4, and we only have Steps B1 and B2.

THEOREM 4. WITNESS(C) and WITNESS(CII) of the array P can be computed
in O(rn) time.

Proof. The correctness follows from the discussion above. Since stage t takes
O() time, the overall time is O(rn).

5. Conclusion. The problem of designing an alphabet-independent two-dimen-
sional pattern-matching algorithm has been open for quite some time. It was partially
solved in [4], and in this paper, we completely solve it by designing an alphabet-
independent linear-time algorithm for two-dimensional witness computation. There
are several other string algorithms (notably those that use suffix trees) which are
alphabet-dependent, and it will be nice to either find an alphabet-independent algo-
rithm or prove that the dependence on the alphabet is inherent.

Acknowledgments. We thank Amihood Amir for helpful suggestions and the
anonymous referees for numerous comments.

REFERENCES

[1] A. V. AHO AND M. J. CORASICK, Efficient string matching: An aid to bibliographic search,
Comm. Assoc. Comput. Mach., 18 (1975), pp. 333-340.

[2] A. AMIR AND G. BENSON, Two-dimensional periodicity in rectangular arrays, manuscript,
1991.

[3] , Two-dimensional periodicity and its applications, in Proc. 3rd ACM-SIAM Symposium
on Discrete Algorithms, Society for Industrial and Applied Mathematics, Philadelphia,
1992, pp. 440-452.

[4] A. AMIR, G. BENSON, AND M. FAPAGH, An alphabet independent approach to two-dimensional
pattern matching, SIAM J. Comput., 23 (1994), pp. 313-323.

[5] A. AMIP, G. LANDAU, AND U. VISHKIN, Efficient pattern matching with scaling, J. Algorithms,
13 (1992), pp. 2-32.

[6] T. J. BAKER, A technique for extending rapid exact-match string matching to arrays of more
than one dimension, SIAM J. Comput., 7 (1978), pp. 533-541.

[7] R.S. BIRD, Two dimensional pattern matching, Inform. Process. Lett., 6 (1977), pp. 168-170.

TWO-DIMENSIONAL WITNESS COMPUTATION 935

[8] D. BRESLAUER AND Z. GALIL, An optimal O(log log n) time parallel string matching algorithm,
SIAM J. Comput., 19 (1990), pp. 1051-1058.

[9] R.M. KARP, R. E. MILLER, AND A. L. ROSENBERG, Rapid identification of repeated patterns in
string, trees, and arrays, in Proc. 4th ACM Symposium Theory of Computing, Association
for Computing Machinery, New York, 1972, pp. 125-136.

[10] R. M. KARP AND M. O. RABIN, Efficient randomized pattern-matching algorithms, IBM J.
Res. Develop., (1987), pp. 249-260.

[11] D. E. KNUTH, J. H. MORRIS, AND V. B. PRATT, Fast pattern matching in strings, SIAM J.
Comput., 6 (1977), pp. 323-350.

[12] M.G. MAIN AND R. J. LORENTZ, An O(n log n) algorithm for finding all repetitions in a string,
J. Algorithms, 5 (1984), pp. 422-432.

[13] U. VISHKIN, Optimal parallel pattern matching in strings, Inform. and Control, 67 (1985),
pp. 91-113.

[14] R. F. Znv AND W. TAKAOKA, A technique for two-dimensional pattern matching, Comm.
Assoc. Comput. Mach., 32 (1989), pp. 1110-1120.

SIAM j. COMPUT.
Vol. 25, No. 5, pp. 936-955, October 1996

1996 Society for Industrial and Applied Mathematics
002

THE TREE MODEL FOR HASHING: LOWER AND UPPER BOUNDS*

JOSEPH GILt, FRIEDHELM MEYER AUF DER HEIDE$, AND AVI WIGDERSON

Abstract. We define a new simple and general model for hashing. The basic model together
with several variants capture many natural (sequential and parallel) hashing algorithms and represent
common hashing practice. Our main results exhibit tight tradeoffs between hash-table size and the
number of applications of a hash function on a single key.

Key words, parallel algorithms, randomization data structures

AMS subject classifications. 68P10, 68P05, 68Q10, 68Q22

1. Introduction. Hashing is one of the most important concepts in computer
science. Its applications touch almost every aspect of this field---operating systems,
file-structure organization [17], communication, parallel and distributed computation,
efficient algorithm design, and even complexity theory [26, 27]. Nevertheless, the most
common use of hashing is for the very fundamental question of efficient storage of
sparse tables (see [23] and [19] for a systematic study).

A fundamental result of Fredman, Komlds, and Szeme%di [10] shows that n
elements (keys) from a universe of any size can be hashed to a linear-size table in
linear expected time, allowing for constant search time. It was observed [21], however,
that although the average insertion time per element is constant, parallel application
of this algorithm does not work in constant time. The reason is that while the average
is constant, some elements will have to be hashed a nonconstant number of times.

In this paper, we study the question of whether parallel hashing can be done in
constant time. We present a simple new general model that captures many natural
(sequential and parallel) hashing algorithms. In a game against nature, the algorithm
and coin tosses cause the evolution of a random tree whose size corresponds to space
(hash-table size) and two notions of depth correspond to the longest probe sequences
for insertion (parallel insertion time) and search of a key, respectively.

We study these parameters of hashing schemes by analyzing the underlying sto-
chastic process and derive tight lower and upper bounds on the relation between the
amount of memory allocated to the hashing execution and the worst-case insertion
time. In particular, we show that except for extremely unlikely events, every input
set of size n will have members for which ft(lg lg n) applications of a hash function are
required. From a parallel perspective, we obtain that if n processors are each given
a key drawn from a large universe and if the input keys cannot be exchanged among
the processors, then f(lg lg n) expected time is required to hash the input keys into
O(n) space. This is despite the existence of serial algorithms which achieve constant
amortized time for insertion as well as constant worst-case search time [8].

Received by the editors September 17, 1993; accepted for publication (in revised form) January
13, 1995. This work was included in the first author’s Ph.D. dissertation [11] and appeared in a

preliminary form in [14]. This research was supported in part by the Leibniz Center for Research in
Computer Science.

Conputer Science Departnent, Technion-Israel Institute of Technology, Technion City, Haifa
32000, Israel (yogiC.@cs.technion.ac.il).

Heinz Nixdorf Institut, Fachbereich Mathematik/Informatik, Universit/t Paderborn, D-33095
Paderborn, Germany (fmadhuni-paderborn.de).

Computer Science Departtnent, Hebrew University of Jerusalem, Jerusalem 91904, Israel
(avi@cs.huji.ac.il).

936

THE TREE MODEL FOR HASHING: LOWER AND UPPER BOUNDS 937

Three variants of the basic model, which represent common hashing practice, are
defined, and tight bounds are presented for them as well. The most striking conclusion
that can be drawn from the bounds is that, under all combinations of model variants,
not all keys may be hashed in constant time.

Outline. This paper is organized as follows. Section 2 describes the basic model
and its variants. Section 3 presents our lower- and upper-bound results. These bounds
are proved in 4 (lower bounds) and 5 (upper bounds). Finally, concluding remarks
are given in 6.

2. The tree model for hashing.

2.1. The basic model. The process of inserting a set S of n elements taken
from some universe U into a hash table can be thought of as a process of refining
partitions and is depicted simply by a tree. Originally, all elements reside in a single
node (the root). A hashing algorithm begins by choosing a range size rn and then
selecting a hash function h which maps U to the range [rn]. Selection of h is according
to some distribution defined on U[’q. It partitions S into subsets $1, $2,..., S, (some
empty) such that Si h-(i)CS, 1,..., m. Following the literature, these subsets
are sometimes called buckets. The function h is stored at the root of the tree. The
root has rn children; the subset Si is moved to the ith child of the root.

The process is repeated for each Si that contains at least two elements. The
refining halts when every leaf contains at most one element from S.

A search for an element z E U in the hash table is easily performed by following
the path from the root which is determined by applying the hash functions at internal
nodes to the element x and, when reaching a leaf, comparing z to the element residing
there if such an element exists.

This model leads to an alternate view of a hashing algorithm as an element-
distinctness-proof generator. The input is a set of distinct keys taken from a universe
with no order relation defined on it. The output is a proof that all elements are
distinct. The proof components are functions from the universe to a bounded range.

2.2. Comments.
1. The two types of strategic decisions made by a specific algorithm are the choice

of range (i.e., number of children) for the hash function, and the choice of distribution
used in selecting a particular function to this range. We assume that the function
used is a truly random function, i.e., all possible functions are given equal probability.

This assumption follows the tradition in the design and analysis of hashing al-
gorithms. Designers of hashing algorithms view truly random functions as an ideal
which cannot be realized because of the huge space required for their representation.
In almost all such analyses (see, e.g., [19, pp. 514-517] and [23, pp. 120-124] for
textbook examples as well as [18, 29, 4, 5, 6, 24, 25]), it is assumed that the hash
functions used are random or, alternately, that the functions are fixed, but the input
set is selected at random. The reason for this assumption is that random functions
have been intuitively perceived as the best for hashing [20]. This intuition was proved
correct under quite general conditions by Ajtai, Komlds, and Szemerdi [1]. (It should
be noted, however, that random functions are not always the best. For example, if

IUI O(n), then the identity function might produce much fewer collisions than a
truly random function.)

With our random-functions assumption, the hashing process that occurs in a node
can be described as the act of independently sending each element of U to each possible
child with uniform distribution. Analyzing the full hashing algorithm is reduced to

938 J. GIL, F. MEYER AUF DER HEIDE, AND A. WIGDERSON

analyzing a natural process of successively throwing identical balls into boxes until
all the balls reside in distinct boxes.

2. Most common algorithms are stronger than the process we described--they
use retries when the chosen hash function is extremely bad (e.g., all elements were
mapped to one cell) and allow the storage of elements in the internal nodes of the tree
as well as in the leaves. These generalizations and others will be considered later by
introducing variants to the basic model.

3. We deliberately deal here with the static case, i.e., when all the elements to
be inserted are known in advance. This does not restrict the generality of the lower
bounds. However, the algorithms presented are for the static case only.

4. Yao’s cell-probe model [30], the standard general model for hashing, can also
be described as a tree in a similar way. Our model differs from his in the way that a
decision tree differs from a Turing machine. The cell-probe model allows each cell a
limited number of bits (depending on U), but these can encode arbitrary objects and
be computed at no cost. Our cells contain either elements or functions. Functions
can only be applied to elements and two elements can only be tested for equality. Our
model, being more structured, is cleaner and easier to analyze, though less general.

2.3. Resources. We have seen that the stochastic process determined by a hash-
ing algorithm AIg given S c U of size n is described by a random tree. The main
resources of AIg operating on S are natural parameters of this tree.

Space. The space required, or hash-table size, denoted by SPaCE(AIg, S), is simply
the total number of nodes in the tree. Note that the space resource also includes nodes
with empty sets. This is in accordance with the standard way of measuring space
complexity in hashing algorithms that charges for unused cells in the hash table.

Insertion time. We denote by TIME(Alg, q) the total insertion time. This is the
sum of depths of all leaves containing an element, i.e., the number of hash-function
applications to all the elements. Each application counts as one time unit. (Indeed,
many practical algorithms use hash functions which can be evaluated in constant
time.)

Parallel insertion time. We denote the depth of the tree by DEPTH(AIg, S). This
is the parallel insertion time under the assumption that each processor is assigned one
key and this processor alone is responsible for inserting this key. This parameter has
two important meanings for sequential algorithms as well. It captures the number of
functions needed to resolve the "worst" pair of elements and the worst-case insert and
search time.

Search time will not be identical to insertion time in the more general models, so
we devote a different notation to it.

Mazimum search time. This is the largest number of function applications needed
to find out if z E U is in S using the tree generated by AIg on S. This parameter will
be denoted by SEARCH(AIg, S). In the basic model, this definition coincides with that
of DEPTH(AIg, S). However, this will no longer be true when the model is elaborated,
although we will still have SEARCH(AIg, S) _< DEPTH(AIg, S).

Let PARAM be a generic parameter (SPACE, TIME, DEPTH, or SEaaCtt); then
PAPAM(AIg, S) will denote the expectation of PARAM with respect to the random
choices made by the algorithm AIg, so PARAM(AIg, S) E(PAaAM(AIg, S)). We
denote by

PARAM(AIg, n) max PARAM(AIg, q)

THE TREE MODEL FOR HASHING: LOWER AND UPPER BOUNDS 939

the performance of AIg on a worst-case set S of size n and by

PARAM() rain PARAM(AIg, r)
AIg

the performance of the best algorithm on its worst-case set S. At times, it will
be useful to ignore tile probabilistic performance and consider the worst possible
performance of AIg (over all possible runs) on the worst-case input, which we denote
by PARAM(AIg, n).

2.4. Variants of the basic model. Einally, we consider more powerful algo-
rithms than those permitted by the basic model.

Retries. An algorithm may allocate (say) m boxes (children) for n balls residing
at a node v and find that in throwing them randomly, they all fall into one or very
few cells. This is an unlikely event that causes a waste of space. The algorithm is
allowed to consider this (or other more likely events) "bad" and try again. We do
not charge for space used in v. To maintain the meaning of depth in this variant, we
create one single child for v and move all tile balls there.

We attach the subscript r to tile resource measures in this model, e.g., SPACEr (AIg,
S) and DEPTHs(n), etc. Note that SARC may be much smaller than DEPTH since
while a search is being performed, no function application should be done at a node
with only one child.

Chainin9. This variant allows the algorithm to store elements in internal nodes
as well. Specifically, when m keys reach a node v, one of them is stored in v and the
remaining m- 1 proceed to v’s children. The term chaining is used since this variant
generalizes hashing techniques in which a chain (a linked list) of keys can be stored
in hashing-array positions.

The subscript c is added to the resources measures. Clearly SEARCHc and DEPTHc
are the same again since even if no branching occurs at node v, the element being
searched for should be compared to the one residing at v.

We allow a combination of chaining and retries which is denoted by the dou-
ble subscript cr. In this combination, the algorithm may leave a key in an internal
node even if the function used at this node was discarded. Obviously, such a node
cannot be skipped in a search.

Parallel hashing. In this variant of the model, we allow the algorithm to try in
parallel several hash functions in a node v and then pick one of them to create v’s
children. Space here is counted as the sum of ranges of all those functions. The
subscript p is added to the resource measures in this variant.

This variant may be combined with the two previous ones; if retries are permitted,
then tile algorithm may choose not to use any of the hash functions that were tried;
if exploiting internal nodes is possible, then the algorithm can leave one element at v
no matter which hash function is selected for the node. Despite its name, this variant
does not lead directly to a parallel random-access machine (PRAM) algorithm. The
major difficulty is the assignment of processors that have completed handling their
original, key to assist the other processors with the yet unhashed keys.

One possible hashing variant was deliberately omitted from the above list; we do
not permit the merging of nodes in the hash trees. Intuitively, merges lose separation
information, and omitting merges from a hashing algorithm should only improve its
performance. It is easy to verify that the TIME, DEPTH, and SEARCH complexity mea-
sures can only decrease as a result of eliminating merge operations. The only possible
merit of merging is to SPACE. It will be evident from the lower-bound proofs that

940 J. GIL, F. MEYER AUF DER HEIDE, AND A. WIGDERSON

merging cannot improve an algorithm with respect to all of the complexity measures
defined above.

Most hashing algorithms deviate from our basic model by allowing one or both of
the retries or the chaining variants. The parallel variant is mentioned as an alternate
hashing idea in [12] and is used by Matias and Vishkin [22].

3. Results. The most interesting algorithms are those that achieve SPACE(AIg,
O(n), i.e., linear space. In his seminal paper [301, Yao asked if one can simultane-

ously achieve SPACE(n) O(n) and SEARCH(n) O(1). In our basic model, this is
impossible.

THEOREM 3.1. IfSPACE(AIg, ft) O(n), then DEPTH(AIg, it) SEARCH(AIg, rt)

(The proof for this theorem, as well as for all other results presented in this section
is in subsequent sections.)

However, allowing retries, Yao gave an algorithm Y which achieves SPACEr(Y, rt)
O(n) and SEARCHr (Y, n) O(1) for large enough universes. For small universes,
q n(1), Tarjan and Yao [28] showed how linear storage and constant search time
can be maintained. Fredman, Komlds, and Szemerdi [10] closed the gap by an al-
gorithm FKS that satisfies SPACEr(FKS,/z) --O(ft) and SEARCHr(FKS, n) --O(1) for
any universe size and any input set. Analyzing their algorithm, we find that while
insertion time TIMEI(FKS, n) O(n), (i.e., on the average we apply only a constant
number of functions to each element), DEPTH(FKS, n) ft(lgn), so soIne element
will be hashed f(lg n) times, and this is the time required for hashing the elements
in parallel using the FKS scheme. A natural question that arises is whether this
parameter can decrease to O(1). We answer this question in the following theorem.

THEOREM 3.2. If SPACE(AIg,/t) O(/t), then DEPTHr(AIg, ft) ft(lg lg n).
Remark. There exists an algorithm DM, due to Dietzfelbinger and Meyer auf

der Heide [91, for managing a dynamic-data hash table that achieves with very high
probability constant worse-case performance. However, DM does not contradict the
stated lower bounds since it fits into neither our basic model nor any of its variants. In
particular, DM pipelines the insertions; processing an inserted element can continue
for up to n steps after the insertion takes place; the algorithm allows keys to be
fetched even if they are not "fully" inserted. Still, as the lower bounds indicate, there
is no easy way of constructing a fast parallel version of DM. There are always keys
for which DM requires as many as n function applications.

With the help of retries, the lower bound of Theorem 3.1 can be met.
THEOREM 3.3. There is an algorithm RetryShallow which uses linear space (i.e.,

(i) TIMEr(RetryShallow, n) O(n),
(ii) DEPTHr(RetryShallow, n) O(lg lg n), and
(iii) SEARCH(RetryShallow, n) O(1).
This algorithm is a variant of the FKS algorithm. The improvement in DEPTH(rt)

is accomplished by using a different, more adaptive memory-allocation scheme while
executing the retries. This algorithm is optimal with respect to all parameters even
if we count arithmetic operations and limit word size to O(lg IUI). Moreover, if we

However, it is interesting to note that the nerging technique is useful for the construction of
good pseudorandom functions which may be used for implementing hashing algorithms [9].

2 Indeed, the parallel hashing scheme of Matias and Vishkin [22], being based directly on FKS,
takes O(lg n) parallel time.

THE TREE MODEL FOR HASHING: LOWER AND UPPER BOUNDS 941

restrict the algorithm to the basic model by eliminating retries, then all the parameters
(except for SEARCH(AIg), which will be the same as DEPTH(AIg)) will remain optimal.

THEOREM 3.4. There is an algorithm BasicShallow for which

(i) SPAcE(BasicShallow, n) O(n),
(ii) TIME(BasicShallow, n) O(n), and
(iii) DFpTu(BasicShallow, n) SEARCU(BasicShallow, n) O(lg lg n).
A nontrivial worst-case upper bound for SPACE is not possible here because for

any such bound, there are (admittedly rare) cases in which enough failures occur to
force an algorithm to overflow this bound.

The general tradeoff between space and depth is given by the following theorem.
THEOaF.M 3.5. /f SPACE(Alg, n) n1+1/A, then DEPTHr(AIg, rt) ft(lg A).
Can the common practice of using internal nodes for storage help by more than

a constant factor? Again, perhaps surprisingly, the answer is positive.
THEOREM 3.6. Both SPACEc(n) O(n) and DEPTHc(n) O(lglgn lg lglg n)

can be achieved simultaneously.
The algorithm behind this theorem uses truly random hash functions or, equiva-

lently, high-degree polynomials. As a more practical alternative, the class of pseudo-
random hash functions defined in [9] can be used here as well.

The next theorem shows that this meager improvement of the lg lg lg n factor is
the best possible, and even it cannot coexist with the employment of retries to achieve
O(1) search time. (As before, adding the power of retries to this variant of the model
cannot improve DEPTH(n).)

THEOREM 3.7. Let AIg be a hashing algorithm operating in the chaining-model
retries and let AIg be the same algorithm restricted to the chaining model. Then we
have the following:

(a) If SPACEr(AIg’, n) SPACEc(AIg, n), then

DEPTHcr(A’gt, n) (DEPTHc(AIg,

(b) If SPACEc(AIg, n)= O(n), then

ft (DEPTH(A,g, n)) ft (SEARCH(AIg, n)) fl0g lg n lg lg lg

(c) If SPACEcr(AIg’,n) SPACEc(AIg, n) O(n) and DEPTHcr(AIg, n)
O(lg lg n lg lg lg n), then

SEARCHr(AIg’, n) Ft (DEPTHc(AIg, n)).
The general tradeoff is given by the following theorem.
THEOREM 3.8. IfSPACE(AIg, n) n+/, then DEPTH(AIg, n) ft(lg A/lg lg k).
In a clear contrast to the first two variants, the "simultaneous retries," which

may be applied in the parallel variant, lead to a significant improvement in DEPTH
because they allow the folding of many iterations into one. Nevertheless, constant
time hashing cannot be achieved in this case as well.

THEOREM 3.9. If SPACEp(AIg, n) O(n), then DEPTHp(AIg, n) O(lg*
Neither retries nor chaining can further decrease the maximal insertion time of

the parallel variant.
THEOREM 3.10. If memory usage is restricted to O(n), then

DEPTHrcp() (DEPTHp(n)).

942 J. GIL, F. MEYER AUF DER HEIDE, AND A. WIGDERSON

4. Proofs of lower bounds. We view hashing algorithms in the treee model
from a parallel perspective. Each parallel iteration is an attempt to separate all
subsets of S that were not previously separated, i.e., subsets that still have two or
more keys in them. Thus successive iterations correspond to successive tree levels.

It should be obvious that with the usage of truly random flmctions, the perfor-
Inance of the algorithm is dependent on the size of S but not on its content. Let Opt
be the best possible algorithm for the current setting of the parameters (space and
model variant). Our proofs are based upon showing that, with a dominant probability,
there is a minimal number of iterations that Opt has to go through.

For simplicity in the analysis, we let Opt make the following assumptions.
E.tra memory. Say that the problem restricts the memory usage to a total of rn

memory cells. This restriction will be weakened for Opt and it will be allowed to use
rn nemory cells in each iteration.

Partial separation. A mapping of a set of keys to memory is called a partial
separation if there exist two keys in the set that are mapped to distinct cells. Opt may
consider any partial separation as being a total separation. The extremely unlikely
case in which all keys from the set are mapped to the same memory is called a complete
failure. Only complete failures need to be passed to the next iteration of Opt.

Restricted set size. In iteration t, Opt has only to deal with (nodes containing)
sets of re keys. Smaller or larger sets can be completely ignored. The exact value of
rt will be specified later.

Early termination. Opt need not be concerned with the case where there are fewer
than lg n sets of size ft. As soon as the number of sets drops below that bound, Opt
can terminate immediately.

Higher success probability. While analyzing Opt, we will assume that failure prob-
ability is determined by r rl, although rt keys are actually mapped. It will be shown
that this assumption may only decrease the failure probability and works in Opt favor.

To account for the random nature of the hashing process, the following definition
is introduced.

DEFINITION 4.1. Events that occur with probability smaller than rt for some

> 0 are called negligible events. Dominating events are the complement of negligible
events.

Negligible events will be ignored in the following discussion since even if they
could be treated by Opt without any resource investment, the expected value of the
performance measures will essentially be the same.

The rest of this section is outlined as follows. Suitable values for rt will be set.
Then we will compute a lower bound on the initial number of sets of size rl. (Since
the algorithm is based on a random process, it may be extremely lucky and break
this bound; thus the lower-bound statement should be read with "ignoring negligible
events" appended to it. Such quantification is implied henceforth.) We next estimate
the number of sets of size rt+ in iteration t + 1 as a function of the number of sets
of size re in iteration t. Then an e,plicit lower-bound for the number of sets of size

rt in iteration t is derived. The lower-bound proofs are then completed by computing
the minimal number of iterations Opt must undergo before completion. The analysis
is done for the basic model and the chaining variant together and then it is repeated
for the parallel variant. We conclude with a remark explaining why all lower bound
proofs are applicable to all the retries variants.

4.1. Root-node hashing. The root node corresponds to the Oth iteration. In
it the set S of n keys is separated into rn subsets using a random flmction h U -+ [rn]

THE TREE MODEL FOR HASHING: LOWER AND UPPER BOUNDS 943

into subsets $1, $2,..., rn. Since h is a random function, the root node is accurately
modeled by the well-studied "balls-into-urns" model [16].

Let c n/rn. For our needs, it is sufficient to restrict attention to the case
c O(1). It is easy to verify that as n tends to infinity, the distribution of the
number of balls (keys) in any single urn (cell) approaches the Poisson distribution
parametrized by c. Let N(r) be the number of subsets that have exactly r elements
in them. Then there exists n’ such that for every n > n’,

(1)
1 OZn

r!

Without loss of generality, assume that n > n from now on.
To see that N(r) is "tightly concentrated" around its expectation, we need the

following fact.
FACT 1 (Azuma). Let F(xl,..., an) be an arbitrary function of n variables which

satisfies

If(xl,...,x,)- f(x.,...,xi_l,xi,xi+l,...,xn)[1

and Xl Xnfor any setting of i, xi,
variables,

Then if xl,..., xn are independent random

Prob (IF- E (F)I > Ave) < e-/2.

Proof. A proof for Azmna’s inequality can be found in [2, Chap. 7]. This textbook
also presents its usage as a general technique in random graphs.

For 1,..., n, let zi be the the cell into which ith member of S was mapped.
Consider the function N(r)/2 to be dependent on the zi’s. A change in xi can change
the value of N(r)/2. Therefore, we can apply Fact 1 to obtain that the probability of
N(r) < E (N(r))/2 is negligible. Consequently,

OZ
>

except for a negligible number of cases.

4.2. The basic model and the chaining variant. In the basic model, we
follow only sets of size 2, i.e., rt 2 for t > 1. When the usage of intermediate nodes
(chaining) is possible, sets of fixed size r can no longer be tracked since the number of
iterations will depend on n, and even complete failure to hash a set will decrease its
size by 1. Instead, define r0 r r(n) and rt+ rt 1. Note that in this variant,
r0 must be greater than the desired lower bound for the number of iterations.

The following fact estimates E (N(r)) for those pairs of r and rn in which we are
interested. Note that in all of the cases below, E (N(r)) is f(n) for some e > 0 and
hence the event N(r) < E (N(r))/2 is negligible.

LEMMA 4.2. The expected value of No(r), the initial (after the root-node hashing)
number of sets of size r, is given by the following:

1. If r 2 and m O(n), then

E(N0(r)) ft(n).

944 J. GIL, F. MEYER AUF DER HEIDE, AND A. WIGDERSON

2. If r 2 and m n1+1/ for some fixed ,, then

3. If r lg lg n/ lg lg lg n and m O(n), then

E(No(r)) (rl-r(lgr-lgc)/lgn))
4. If r lg A/lglg A and m n1+1/x for some fixed ,k, then

E(N0(r)) (l--(r--1)/A--o(1)).
Proof. Apply inequality (1).
From the simplifying assumptions it follows that in iteration t, Opt uses m memory

cells to deal with Nt sets of rt keys each. The algorithm should allocate memory to
cells in a way that will minimize the number of failures Nt+l. The following lemma
reveals the memory-allocation scheme used by Opt.

LEMMA 4.3. Opt uses a balanced memory-allocation scheme; each of the Nt sets
is hashed into miNt cells.

Proof. In iteration t, if a subset (that has rt keys) is mapped by a random function
1-. This probabilityinto rni memory cells, then the complete-failure probability is

is a decreasing function of rni; therefore, a memory allocation does not minimize the
failure probability unless all the m cells are utilized. Let m ml + m2 +... + rnN
be a memory allocation of the m cells to the Nt sets. The expected value of Nt+l is
given by

Nt

}2
i=1

and by convexity, this is minimized when all mi’s are equal.
l-r increases as rt decrease. Thus it is per-The complete-failure probability rni

missible to assume that Opt uses a complete-failure probability derived from r rl,
the initial size of the sets. We can then write

Nt
E (Nt+l) E mi

i=1

and by Lemma 4.3,

E (Nt+) Nt
m

The probability that Nt+l will be much smaller than its expected value is esti-
mated by the following lemma.

LEMMA 4.4. Let Nt be fixed. The event Nt+ < E(Nt+)/4 is n-negligible if
E (N+) > lg n.

Proof. Note that Nt+ is the sum of Nt independent random binary variables.
The lemma is obtained from application of Chernoff bounds [7]. (See [3, 15] for a
succinct statement of these bounds.)

THE TREE MODEL FOR HASHING: LOWER AND UPPER BOUNDS 945

Thus we can assume that Nt >_ E(Nt)/4 simultaneously in all iterations. For
simplicity, we permit Opt to have

Nt m
N+ -Let t Nt/m. Then by dividing the above by m, we have

rt+l 4"
This representation demonstrates the fact that the fraction of sets of a given size
decreases "only" double-exponentially, giving rise to the double-logarithmic lower and
upper bounds. The exact solution of the above recurrence is given by

0
t- 4(rt_l)/(r_l).

Overestimating t may only weaken the lower bound. We can therefore do so by
writing

<

which facilitates an easy counting of the minimal number of iterations.
LEMMA 4.5. If m n3, then the number of levels in Opt’s tree is

1
lg2_lg0

Proof. Let T be given by

Then for t < T,

1 lg lg n lg m
T- lg lgr]o-2

(,o)Nt =refit =m >m =lgn.

It follows that if Opt executes less than T iterations, it will have more than lg n sets
and it cannot terminate. The proof is completed by noting that for m _< na,

T a 1- lg
2 -lg r-----

Applying this lemma to the estimates in Lemma 4.2 will yield the proofs for the
lower bounds set by Theorems 3.1, 3.5, 3.7(b), and 3.8. In particular, we have the
following:

Theorem 3.1. Setting r 2 and m- O(n), we have -lg0 -O(1) and hence

DEPTH(Opt, n) f
1

lg
2- lg r0

=a g
+o(1)

a(g g).

946 J. GIL, F. MEYER AUF DER HEIDE, AND A. WIGDERSON

Theorem 3.5. Setting r 2 and m n1+1/ A fixed, we have -lgn0
lg n/2A + o(1) and hence

1 lgrn
DEPTH(O0t, n) t lg

2 lg /---

((l+l/A)lgn)t lg
2 + lgn/2A + o(1)

(I+I/A)ft lg
1/2A + o(1)

Ft(lg A).

Theorem 3.7(b). Setting r lg n/lg lg n and rn O(n), we have lg 7o
+ O(1) and hence

1 lgm
DEPTHr(Opt, n) ft lg

2 lg TO

(1
lg

lgn + O(1))ft
lg lg lg----- 2 / r lg r / O(1)

(lglgn)2
lglglgn

Theorem 3.8. Setting r lg A/lg lg A, m n+/, fixed, we have -lg To
-(r- 1)/Algn + o(1)) and hence

1 lgrn
DEPTHr(Opt, n) f l- lg r/---------2--lg

(1 (l+l/A)lgn)=ft lglgAlg2+(r-1) lg

(1
lglglA (r 1)/A

(1=f lglgA lg
r-1

=f
lglglgA

4.3. The parallel variant. The memory-allocation scheme as used by Opt is
slightly different here. Many hash functions can be applied in parallel to the same set.
In an iteration t, let mi,1, mi,2,.., be the cardinalities of ranges of those functions for
some subset &, and let m m,l + m,2 +... be the total range used for it. The
probability that all those hash functions will be a complete failure is

mr

This probability is minimized when mi,j 2 for all j. In this case, the complete-failure
probability is

2rni(1--rt)/2.

THE TREE MODEL FOR HASHING: LOWER AND UPPER BOUNDS 947

Note that if the set size is greater than 2, then a complete separation is not possible if
only two cells are allocated to a set. This does not pose a problem in our lower-bound
analysis since we consider any partial separation to be a complete separation.

Let rn rnl + rn2 +... + rnN be a memory allocation of the rn cells to the Nt
sets. The expected value of Nt+ is

E (Nt+l) E 2rni(1-rt)

i--1

Once again, this is minimized when all the rn are equal. Hence we have the following
result.

LEMMA 4.6. In the parallel variant, all hash functions used by Opt are to a range
of size 2. In iteration t, rn/2Nt functions with a total range of size rn/Nt are applied
to each one of the Nt sets of size

From Lemma 4.6, we get a recursion formula for Nt:

E (Nt+l) Nt2rn(1-rt)/2Nt

Note that Lemma 4.4 also holds here, so we can write

Nt+l

_
--N 2rn(1-r)/2Nt

which will take a simpler form using the definition ut rn/Nt"

/2t+ 4,t2(rt-)ut/2 <_ 2(rt-1)ut/2+lg ut+2

For rt >_ 4, we have

/t+l < 2rtut.

By setting rt 4 and rn O(n), we get that u0 O(1). The number of iterations
T required to decrease the number of subsets below lg n (i.e., until UT n/lg n) is
ft(lg* n). This completes the proof of the lower-bound part of Theorem 3.9.

The proof of (the chaining-variant part of) Theorem 3.10 is conducted in a similar
manner to the lower-bound proof for the ordinary chaining variant. Let r r lg* n,
rt+l rt 1, and rn O(n). Then by inequality (2),

’o 0 ((lg*)lg* n)
We can also write

/2t+1 __< 2rtut 2u.
Now the number of iterations required to achieve u > lg n is at least

lg* n 1 lg* u0 f(Ig* n).

948 J. GIL, F. MEYER AUF DER HEIDE, AND A. WIGDERSON

4.4. The retries variant. To complete the lower-bound analysis, we need to
discuss the retries variant and provide proofs for Theorem 3.2 and items (a) and (c)
of Theorem 3.7. Theorems 3.5 and 3.10 reference the retries variant as well. These
references will be treated in a similar manner.

The retries technique is useful if a certain application of a hash function was not
satisfactory according to some criteria. Then instead of coping with it, the algorithm
may try another hash function. However, our simplifications allow Opt a dichotomous
classification of poll results. If there was a complete failure in a hash of a specific
internal node, then doing a retry is the same as what Opt will do in the next iteration,
but with less memory. On the other hand, if this internal node was not a complete
failure, we allow Opt to ignore it without any further resource investment. If retry
was done on such a node then this may only result in a deeper tree. Retries cannot
help in the root node either since the root node behavior is dominant (inequality
and even O(lg n/ retries in the root node will not yield a significantly better value
for No(r).

Thus the addition of retries to any model combination will not affect the DEPTH
lower bounds. Upon further examination of the lower-bound proof of the chaining
variant, it can be seen that a parallel insertion time of O(lg lgn lg lg lg n) cannot be
achieved unless a key is left in ft(lg lg n/lg lg lg n nodes, which will nullify the ability
of the retries variant to achieve SEAPCH O(1).

The equivalence of an algorithm without retries to an algorithm with retries was
possible here because the Opt could use its total memory allowance in each and every
iteration. In general, using this technique to transform AIg, an algorithm that uses
retries into AIg, an algorithm that avoids retries leads to an increase in the memory
used by the algorithm by a factor of up to DEPTH(AIg, n).

5. Proofs of upper bounds. As explained earlier, the main strategic decision
made by a hashing algorithm is the allocation of memory to buckets. In the
algorithm, all hashing attempts (retries of a bucket are into memory of fixed size.
This scheme leads to DEPTH ft(lg n). In order to further decrease the total number
of hashing iterations, a more flexible memory allocation must be employed.

The idealized algorithms Opt used the same memory size in all iterations. The
upper-bound algorithms in all model variants try to follow that scheme and use almost
the same size of memory in every iteration. Thus in every iteration, the memory
portion allocated to remaining buckets is increased.

A decreasing geometric series defines the partitioning of the total memory al-
lowance between the iterations. Informally, we can say that although this series
decreases quite rapidly, the decrease in the number of remaining buckets is so much
quicker that the algorithm will find itself in conditions which are very similar to the
extra-memory assumption which Opt was permitted to make.

The rest of this section is outlined as follows. We begin by reviewing the FKS algo-
rithm. Next, we describe how this algorithm is modified to form our main algorithm,
RetryShallow, which works in the retries model. We proceed by presenting minimal
changes to RetryShallow, obtaining algorithm BasicShallow for the basic model. Algo-
rithm ParShallow for the parallel model and ChainShallow for the chaining model are
presented next.

5.1. Foundation: Algorithm FKS. Algorithm FKS [10] takes an arbitrary set
S c_ U of size n as input and in O(n) expected time generates a hash table for S.
The resulting table uses O(n) storage and supports O(1) lookup time. The algorithm
builds a two-level hash table: a level-1 function splits S into subsets whose sizes are

THE TREE MODEL FOR HASHING: LOWER AND UPPER BOUNDS 949

distributed in a favorable way; then an injective level-2 hash function is built for each
subset.

The :KS algorithm assumes that U {0, 1,... ,q- 1}, where q is prime. This
assumption does not lead to any loss of generality and we will adhere to it henceforth.

DEFINITION 5.1 (polynomial hash functions). The class of d-degree polynomial
hash functions is

h(x) l + ax mod q modm, ainU
i=0

The hash functions used in both levels of I=KS are drawn from the class of linear
(i.e., polynomial-of-degree-I) hash functions. The main properties of the linear hash
functions which enable the construction are given in the following facts, proved in [10].

FACT 2. Let S be fixed, and let h be chosen uniformly at random from the
cla88 _{I (Isl). Then

and, consequently (by Markov’s inequality),

Prob ISil 2 < 51Sl >
i=1

FACT 3. Let S be fixed, and let h be chosen uniformly at random from the class
(m). Then

Prob (h is not injective on S) <_

The algorithm works in two phases as follows"
Phase I. For the given input set S, a level-1 hash function h is selected which

satisfies

i=1

This is done by repeatedly trying functions chosen at random from the class T/1 (n).
It follows from Fact 2 that the expected number of functions tried is constant. The
memory used and the expected number of operations at this phase are therefore O(n).

Phase II. For each bucket Si, the algorithm allocates a range of size 21Sil 2 and
finds a level-2 function which injectively maps the bucket to this range. This func-
tion is constructed by repeatedly trying functions selected at random from the class
1(21S1). Each such function is noninjective with probability at most 1/2 (Fact 3).
The expected number of functions tried is therefore constant. The memory usage and
the expected number of operations per bucket are therefore quadratic in the size of
the bucket. Since the algorithm insisted on attaining inequality (3) at Phase I, we
have that the memory used and the expected number of operations at this phase are
therefore O(n) as well.

950 J. GIL, F. MEYER AUF DER HEIDE, AND A. WIGDERSON

Viewing the algorithm within the tree-model framework, we see that the number
of nodes ("active" buckets) drops by only a factor of approximately 2 from one level
to the following one. This is the reason why the FKS algorithm has the order of lg n
levels.

5.2. The retries variant: Algorithm RetryShallow. Algorithm RetryShallow
is modeled after FKS. Phase I is identical and is concluded by finding a level-1 function
h satisfying inequality (3). The main change in Phase II is that RetryShallow finds
an injective hash function for all buckets by trying memory blocks of rapidly growing
size and not of constant size as in the FKS algorithm. The block-size growth rate is
characterized by the sequence {/t+l },

or, in an explicit form,

(5) /t 22t-2.

Algorithm RetryShallow executes procedures RetryShallowl,... RetryShallow[lg n]
simultaneously. A procedure RetryShallow., j 1,..., [lg nl, handles buckets Si for
which

2J-1 < [qi[_< 2j.

Initially, all of these buckets are active. The procedure is a series of iterations in
which buckets are deactivated by finding an injective hash function for them. Let
Nt,j be the number of keys in buckets belonging to procedure j which are active at
the beginning of iteration t. Iteration t is a series of attempts to reduce Nt,j by a
factor of/t/2. In each such attempt, each of the active buckets is hashed into a
memory block of size/t22j using a hash function selected at random from the class
7-t1(t22J). If the attempt fails to reduce the number of keys in active buckets to
2Nt,j//t, then a "retry" is done in all nodes corresponding to active buckets; all
separations obtained are disregarded. Otherwise, buckets for which an injective hash
function was found become inactive; noninjective hash functions are disregarded (a
retry) and the procedure carries on to iteration t + 1.

The procedure terminates when there are no more active buckets belonging to it.
The algorithm terminates when all procedures terminate.

Analysis of DEPTH(RetryShallow, n). As noted in the description of FKS, the
contribution of Phase I to DEPTH(NetryShallow, n) is at most constant.

If t >_ 4n, then by the end of iteration t, the number of keys in active buckets is

Nt, < 2=
t 4n 2’

i.e., Xt+l,j O. It follows from (5) that setting t O(lglg n) suffices to ensure/t >_
4n. Hence for all j, the number of iterations of NetryShallowj is O(lg lg n).

It follows from Fact 3 that a function selected at random from 7-t(/t22j) is not
injective on a bucket of size at most 2 with probability at most 1lilt. Hence the
expected number of active keys by the end of an attempt is at most Nt,j//t. By
Markov’s inequality, the probability of any given attempt to be successful is at least

THE TREE MODEL FOR HASHING: LOWER AND UPPER BOUNDS 951

1/2. The expected number of attempts in an iteration is therefore at most 2 and the
total expected number of attempts in any single procedure is O(lg lg n).

Attempt failures are independent. We can therefore apply Chernoff bounds, ob-
taining that there is a constant C such that for any /> C, the probability that the
total number of attempts will be more than /times its expected value is o(1/lg/C n)
in any given procedure. Since there are at most [lg n procedures executing si-
multaneously, the expected parallel time until the slowest procedure terminates is
also O(lg lg n). We therefore have DEPTg(RetryShallow, n) O(lg lg n).

Analysis of SPAcE(RetryShallow, n). As noted in the description of FKS, the
contribution of Phase I to SPAcE(RetryShallow, n) is O(n). Consider any procedure
RetryShallowy. In iteration t, there are at most Nt,y/2y active buckets; each such
bucket is hashed into a memory block of size t22y. The total memory used in the
iteration is therefore bounded above by Nt,yt2y. (Recall that no space is charged for
retry nodes.) The memory used in the following iteration is at most half of that,

Nt+,+ 2 < 2Nt, 2 Nt, 2
t 4 2

Thus the total memory usage is, up to a constant factor, the same as memory used in
iteration 1. Since initially E (y’. ISI) n and 1 O(1), we get that, even accounting
for the possible doubling of set sizes due to rounding, SPACE(RetryShallow, n) O(n).

Analysis of TIME(RetryShallow, n). Note that the expected number of times
RetryShallow accesses any memory cell is constant. Then TIME(RetryShallow, n)
O(n) follows from SPacE(RetryShallow, n) O(n). Since all functions used in
RetryShallow are polynomials of degree 1, we get that the number of operations is
linear even if arithmetic operations are counted and word size is limited to O(lg IUI).

Analysis of SEaRCH(RetryShallow, n). RetryShallow constructs a 2-level hash table
for S. The first level consists of the function selected at Phase I which splits S to
buckets. Tim second level consists of the injective hash functions found in Phase II for
each of the buckets. We therefore have SEaac(RetryShallow, n) 2. This completes
the proof of Theoreln 3.3.

5.3. The basic model: Algorithm BasicShallow. Algorithm BasicShallow
which works in the basic model is derived from RetryShallow by replacing retry nodes
in RetryShallow by refining nodes. A description of the modifications to the algorithm
and to the analysis follows.

Phase I. The algorithm creates an initial partition by selecting a hash function uni-
formly and at random from the class/-t (n). The goal of this phase is to achieve a par-
titioning of S into buckets $1, $2,..., Sn (some empty) such that inequality (3) holds.
While this goal is not achieved, the algorithm iterates as follows. Each nonempty
bucket S is hashed using a function selected at random from/-/1(IS1). Since the
total memory used for all buckets is n, this hashing forms a refined partition of S
into n buckets. Let S, S.,..., Sn now denote these newly created subsets of S. If
inequality (3), is attained, then the phase ends; otherwise, the algorithm iterates
again hashing each nonempty subset into a range equal to its size using a linear hash
function.

Phase II. Similarly to Algorithm RetryShallow, Algorithm BasicShallow splits
into procedures BasicShallow,..., BasicShallowr]g]. Consider a bucket S formed
in Phase I, 2y-1 < ISil _< 2Y; then Si and all subbuckets formed from it during Phase
II are handled by procedure BasicShallowy. Buckets and keys do not move between
procedures.

952 J. GIL, F. MEYER AUF DER HEIDE, AND A. WIGDERSON

Attempts of RetryShallow are translated to refining rounds of BasicShallow. Let
Nt, be the number of keys in active buckets at the beginning of iteration t

_
1 of the

procedure BasicShallow. Similarly to RetryShallow, the iteration ends when its rounds
achieve that the number of keys in its active buckets is no greater than 2Nt,/, where
t is as before. In a round, a bucket of size r is hashed into a memory block of size tr2
using a function selected at random from (tr2). If this function is injective, then
the bucket becomes inactive. Otherwise, the bucket is split into smaller subbuckets
and processing continues for all subbuckets which have two or more keys.

Analysis. It follows from the linearity of the expectation that Fact 2 holds also
for each refining iteration of Phase I. The expected number of iterations in this phase
is therefore O(1). The contribution of the phase to the expected depth is constant
and its contribution to the expected memory usage is O(nI. The analysis of Phase II
follows.

Consider a round of iteration t of BasicShallowj. The probability for a bucket of
size r, active at the beginning of the round, to remain active after the round is at most
r/(2J/3t) < 1/t. As before, the expected number of active keys by the end of the
round is at most Nt,j/t; the probability that the round will fail (i.e., that it will not
terminate the iteration) is at most 1/2; the expected number of rounds in an iteration
is therefore at most 2. Following along the lines of the analysis of RetryShallow, we
have DEPTH(BasicShallow, n) O(lg lg n) and therefore SEaRCH(BasicShallow, n)
O(lg lgn).

The memory-allocation scheme is such that memory allocated to all subbuckets
formed from a certain bucket is never greater than what would have been allocated
to the bucket had it not been split. Memory cannot be reused in the basic model,
so even nonsuccessful rounds contribute to the total memory usage. However, we
have that the memory used in rounds of the same iteration is essentially the same
and that the expected number of rounds in an iteration is 0(1). It follows that the
expected memory used in an iteration of BasicShallow is no more than a constant
times the memory used of the same iteration of RetryShallow. This completes the
proof of Theorem 3.4.

5.4. The parallel variant" Algorithm ParShallow. Both RetryShallow and
BasicShallow can be implemented on a parallel machine where each processor is ini-
tially assigned a key and keys do not move among processors [12]. The ParShallow
algorithm described below achieves O(lg* n) depth in the parallel model by applying
several hash functions to a key in each tree node. In a parallel setting, this corresponds
to allowing multiple processors to hash the same key. In each successive iteration,
more and more processors are drafted to hash fewer and fewer keys. The bookkeeping
required in each iteration for identifying the active keys and assigning processors to
them is not trivial. A PRAM algorithm running in O(lg* n) time was first described
by Matias and Vishkin [22]. Their algorithm is based in part on ParShallow, which we
describe next. We use the description and the analysis of RetryShallow as a skeleton.

The following differences apply. The sequence fit starts with/31 4 and increases
at a quicker rate, /3t 2-2. In iteration t of procedure ParShallowj the/3tr2-size
memory block allocated to a bucket of 2j-1 < r _< 2j keys is further divided into
/3t2i/2r subblocks of 2r2 cells each. The parallel hashings are then done into these
subblocks. The probability of failure in injectively mapping a bucket of size r into
a subblock of size r is at most 1/2. Therefore, the probability to fail in all/3t2J/2r
simultaneous trials is at most

2-t2j/2r <

THE TREE MODEL FOR HASHING: LOWER AND UPPER BOUNDS 953

In iteration t of the jth procedure, rounds continue until the number of active keys is
at most 2.2-t/2Nt,j, and hence

Nt+l,j <_ 2.2-t/2Nt,j.

This last bound together with the definition of the sequence {/t} proves that
DEpTH(ParShallow) O(lg* n). To see that SpacE(ParShallow) SpACEr(ParShal-
low) O(n), note that the total memory used by a round of iteration t + 1 is at
most 1/2 of the total memory used by a round of iteration t and that the total mem-
ory used in the first iteration is linear. This completes the proof of the upper-bound
part of Theorem 3.9.

5.5. The chaining variant: Algorithm ChainShallow. The reduction in
DEPTH to O(lg lg n/lg lg lg n) is achieved by replacing Phase II of RetryShallow by
two phases"

Phase IIa. Use the prototype of algorithm RetryShallow to continuously break sub-
sets until they are all small enough instead of attempting to achieve a complete sepa-
ration. In particular, hashing is conducted until all subsets have R lg lg n/lg lg lg n
or fewer keys.

Phase IIb. When all subsets are smaller than R, then in each tree level, hashing
is into a range of size 1. Recall that the chaining-model variant allows for storing a
key in every internal node. At most R levels will thus be added to the tree regardless
of the hash function employed.

Phase IIa of ChainShallow therefore deals with sets of at least R elements; as soon
as a subset is broken into smaller pieces, the phase ceases to handle it. We need the
hashing functions used to satisfy a "good-breaking" property.

DEFINITION 5.2. Let be a class of hash functions mapping sets of size r into
memory of size/3r. Let h be picked at random from 7-t. Then 7-t is a good breaker

Prob (gilh-x (i)l < R) _< -.
This property is achieved by random functions [11, Chap. 2]. However, true random
functions are not useful for hashing since they require huge space for representation
and consequently nonconstant evaluation time. The class of polynomial hash functions
of degree R is a good breaker as well. Its members can be represented efficiently.
Unfortunately, each application of a hash function of this class requires the order of
R steps, which amounts to a total of O(lglgn) time (although the number of hash
function applications is still O(lg lg n/lg lg lg n)).

Dietzfelbinger and Meyer auf der Heide [9] gave a construction of a good-breaker
class 74 such that a function h 7 can be evaluated in constant time. This class 7
is best suited for a more practical implementation of ChainShallow since it offers the
advantages of sublinear representation and constant-time evaluation.

The sequence {t} is defined in the algorithm ChainShallow by

(6) /t+l
4 1 O(1).

As in RetryShallow, the basic unit of memory allocation is /3t22j in iteration t of
ChainShallowj. A subset of size r _< 2J belonging to this procedure is hashed using a
good breaker into a tr2J-size memory block. The probability that the subset will not
be broken into small enough subsets is at most/tI-R. The rounds of an iteration carry

954 a. GIL, F. MEYER AUF DER HEIDE, AND A. WIGDERSON

on until N(r) <_ 2Nt(r)fllt-R; then the expected number of rounds in an iteration will
be < 2 here as well. Thus we have

(7) <_

Combining recurrences (6) and (7), we see that memory requirements decrease
geometrically:

Nt-t-1 (r)t-t-1

Adding to this the fact that the root-node function must have satisfied inequality (3),
we infer that the total memory usage is linear.

Solving recurrence (6), we have

/t t1Rt-14-(Rt-1)/(R-1),
from which it follows that the number of iterations is O(R), completing the proof of
Theorem 3.6.

6. Concluding remarks. The hashing model proposed leads to an alternate
view of hashing algorithms as element-distinctness-proof generators. In our lower-
bound analysis, we assumed that all of the hash functions (the proof components) are
completely random. However, it is not difficult to see that if the universe is not too
large, say polynomial in the size of the input set, and if nonrandom functions can be
used, then the lower bounds do not hold (e.g., by an integer-sorting algorithm).

Is the random-functions assumption essential? It was shown before [1, 31] that
random functions are optimal in certain hashing situations. On the other hand,
hashing algorithms that are based on open addressing or on the FKS scheme (such as
the one described in [13]) as well as the upper bounds presented here do not assume
the existence of random functions. We conjecture that the lower-bound results hold
for a superpolynomial-sized universe even if arbitrary functions are allowed.

Although the model proposed in this paper is very general, it does not cover all
hashing algorithms (e.g., the one presented in [9]). It may be interesting to define
more general models and to gain better understanding of these models as well.

Acknowledgment. Fruitful comments made by Faith E. Fich are gratefully ac-
knowledged.

REFERENCES

[1] M. AJTAI, J. KOML6S, AND E. SZEMERtDI, There is no fast single hashing function, Inform.
Process. Lett., 7 (1978), pp. 270-273.

[2] N. ALON AND J. H. SPENCER, The Probabilistic Method, John Wiley, New York, 1991.
[3] D. ANGLUIN AND L. (I. VALIANT, Fast probabilistic algorithms for hamiltonian paths and rnatch-

ings, J. Comput. System. Sci., 18 (1979), pp. 155-193.
[4] W. C. CHEN AND J. S. VITTER, Analysis of early-insertion standard coalesced hashing, SIAM

J. Comput., 12 (1983), pp. 667-676.
[5] , Analysis of new variants of coalesced hashing, ACM Trans. Database Systems, 9 (1984),

pp. 616-645.
[6] , Deletion algorithms for coalesced hashing, Comput. J., 29 (1986), pp. 436-450.
[7] H. CHERNOFF, A measure of asymptotic efficiency for tests of a hypothesis based on the sum

of observations, Ann. Math. Star., 23 (1952), pp. 493-507.

THE TREE MODEL FOR HASHING: LOWER AND UPPER BOUNDS 955

[8] M. DIETZFELBINGER, A. R. KARLIN, K. MEHLtiORN, F. MEYER AUF DEP HEIDE, H. POHNERT,
AND R. E. TARJAN, Dynamic perfect hashing: Upper and lower boznds, SIAM J. Comput.,
23 (1994), pp. 738-761.

[9] M. DIETZFELBINGER AND F. MEYER AUF DER HEIDE, A new universal class of hash functions
and dynamic hashing in real time, in Proc. 1990 International Colloquium on Automata,
Languages, and Programming, Springer-Verlag, Berlin, New York, Heidelberg, 1990, pp. 6-
19.

[10] M. L. FREDMAN, J. KOMLdS, AND E. SZEMER[DI, Storing a sparse table with O(1) worst case
access time, J. Assoc. Comput. Mach., 31 (1984), pp. 538-544.

[11] J. Gnu, Lower bounds and algorithms for hashing and parallel processing, Ph.D. thesis, ttebrew
University of Jerusalem, Jerusalem, 1990.

[12] J. GIL AND Y. MATIAS, Fast and efficient simulations among CRCW models, J. Parallel Distrib.
Comput., 23 (1994), pp. 1.35--148.

[13] , Fast hashing on a PRAM: Designing by expectation, in Proc. 1991 Symposium on
Discrete Algorithms, Society for Industrial and Applied Mathematics, Philadelphia, 1991,
pp. 271-280.

[14] J. GIL, F. MEYER AUF DER HEIDE, AND A. WIGDERSON, Not all keys can be hashed in constant
time, in Proc. 1990 ACM Symposium on Theory of Computing, Association for Computing
Machinery, New York, 1990, pp. 244--253.

[15] T. HAC,ERUP aND C. ROB, A guided tour of chernoff bounds, Inform. Process. Lett., 33
(1989/1990), pp. 305-308.

[16] N. L. JOHNSON AND S. KOTZ, Urn Models and their Application, John Wiley, New York, 1977.
[17] A. R. KA[LN aND E. UPFAL, Parallel hashing: An efficient implementation of shared memory,

in Proc. 1986 ACM Symposium on Theory of Computing, Association for Computing
Machinery, New York, 1986, pp. 160-168.

[18] G. D. KNOTT, Direct chaining with coalescing lists, J. Algorithms, 4 (1984), pp. 7--21.
[19] D. E. KNUTH, Sorting and Searching, The Art of Computer Programming, vol. 3, Addison-

Wesley, Reading, MA, 1973.
[20] , Computer science and its relationship to mathematics, Amer. Math. Monthly, 8 (1974),

pp. 323-343.
[21] Y. MATIAS, personal communication, 1990.
[22] Y. MATIAS AND U. V1SHKIN, Converting high probability into nearly-constant time: With ap-

plications to parallel hashing, in Proc. 1991 ACM Symposium on Theory of Computing,
Association for Computing Machinery, New York, 1991, pp. 307-316; Technical report
UMIACS-TR-91-65, Institute for Advanced Computer Studies, University of Maryland,
College Park, MD, 1991.

[23] K. MEHLHORN, Data Structures and Algorithms I: Sorting and Searching, EATCS Monographs
on Theoretical Computer Science, Springer-Verlag, Berlin, Heidelberg, 1984.

[24] B. K. PITTEL, Linear probing the probable largest search time grows logarithmically with the
number of records, J. Algorithms, 8 (1987), pp. 236-249.

[25] B. K. PITTEL AND J.-H. YU, On search times for early-insertion coalesced hashing, SIAM J.
Comput., 17 (1.988), pp. 492-503.

[26] M. SPSER, A complexity theoretic approach to randomness, in Proc. 1983 ACM Symposium on
Theory of Computing, Association for Computing Machinery, New York, 1983, pp. 330-
335.

[27] L. J. STOCKMEYER, The complexity of approximate counting, in Proc. 1983 ACM Symposium
on Theory of Computing, Association for Computing Machinery, New York, 1983, pp. 118-
126.

[28] R. E. TArJSN aND A. C. YAO, Storing a sparse table, Comm. Assoc. Comput. Mach., 21 (1979),
pp. 606-611.

[29] J. S. VITTER, Analysis of coalesced hashing, Ph.D. thesis, Technical report STAN-CS-80-817,
Department of Computer Science, Stanford University, Stanford, CA, 1982.

[30] A. C. YAO, Should tables be sorted?, J. Assoc. Comput. Mach., 28 (1981), pp. 615-628.
[31] , Uniform hashing is optimal, J. Assoc. Comput. Mach., 32 (1985), pp. 687-693.

SIAM J. COMPUT.
Vol. 25, No. 5, pp. 956--997, October 1996

1996 Society for Industrial and Applied Mathematics
003

ON-LINE PLANARITY TESTING*

GIUSEPPE DI BATTISTA AND ROBERTO TAMASSIA$

Abstract. The on-line planarity-testing problem consists of performing the following operations
on a planar graph G: (i) testing if a new edge can be added to G so that the resulting graph is itself
planar; (ii) adding vertices and edges such that planarity is preserved. An efficient technique for on-
line planarity testing of a graph is presented that uses O(n) space and supports tests and insertions
of vertices and edges in O(log n) time, where n is the current number of vertices of G. The bounds
for tests and vertex insertions are worst-case and the bound for edge insertions is amortized. We
also present other applications of this technique to dynamic algorithms for planar graphs.

Key words, planar graph, on-line algorithm, dynamic algorithm

AMS subject classifications. 68R10, 05C10, 68Q20, 68P05

1. Introduction. The problems of testing planarity and constructing planar em-
beddings of graphs have been extensively studied in the past years and find direct
application in a variety of areas including circuit layout, graphics, computer-aided
design, and automatic graph drawing.

In a static environment, where an n-vertex graph G is entirely known in advance,
we can test the planarity of G and compute a planar embedding in optimal O(n) time
[5, 8, 18, 20, 31, 381. In a dynamic environment, where a planar graph G is assembled
on-line by insertions of vertices and edges, we would like to determine quickly whether
an update causes G to become nonplanar. Namely, the on-line planarity-testing prob-
lem consists of performing the following operations on a planar graph G: (i) testing if
a new edge can be added to G so that the resulting graph is itself planar; (ii) adding
vertices and edges such that planarity is preserved.

While many research efforts have been focused on planar graphs and on dynamic
graph algorithms, the development of an efficient algorithm for on-line planarity test-
ing has been an elusive goal.

Recent results on planar graphs include algorithms for parallel planarity testing
[37, 46], embedding [4, 62], drawing [10, 13, 19, 51], reachability [36, ,54, 57], shortest
paths [22], and minimum spanning trees [15, 21]. Previous work on dynamic graph
algorithms is surveyed in 2. The technique of [53] is a first step toward on-line
planarity testing. Namely, it solves the restricted problem of maintaining a planar
embedding of a planar graph. It uses O(n) space and supports queries (testing whether
two vertices are on the same face of the embedding) and updates (adding vertices and
edges to the embedding) in O(log n) time.

Received by the editors November 2, 1994; accepted for publication (in revised form) January
24, 1995. This paper includes results presented at the 30th IEEE Symposium on Foundations of
Computer Science (1989) and the 17th International Colloquium on Automata, Languages, and
Programming (1990). This research was supported in part by the ESPRIT II Basic Research Actions
Program of the EC under contract 3075 (project ALCOM), National Science Foundation grants
CCR-9007851 and CCR-9423847, Office of Naval Research/Defense Advanced Research Projects
Agency contract N00014-91-J-4052, ARPA order 8225, the Progetto Finalizzato Sistemi Informatici
e Calcolo Parallelo of the Italian National Research Council, and U. S. Army Research Office grant
DAAL03-91-G-0035. This research performed in part while G. Di Battista was with the University
of Rome "La Sapienza" and with the Universit della Basiliata, while G. Di Battista was visiting
Brown University, and while R. Tamassia was visiting the University of Rome "La Sapienza."

Dipartimento di Discipline Scientifiche, Sezione Informatica, Terza Universit degli Studi di
Roma, 84 Via della Vasca Navale, Rome 001.46, Italy (dibattista@iasi.rm.cnr.it).

Department of Computer Science, Brown University, Providence, RI 02912-1910 (rt@cs.
brown.edu).

956

ON-LINE PLANARITY TESTING 957

In this paper, a technique for on-line planarity testing is presented that uses O(n)
space and supports tests and updates in O(log n) time, n being the current number of
vertices of the graph. The bounds for tests and vertex insertions are worst-case and
the bound for edge insertions is amortized.

The following repertoire of query and update operations is defined for a planar
graph G:

Test(vl, v2): Determine whether edge (vl, v2) can be added to G while preserving
planarity, i.e., test whether graph G admits a planar embedding F such that vl and
v2 are on the boundary of the same .face of F.

InscrtEdge(e, vl,v.): Add edge e between vertices v and v to graph G. The
operation is allowed only if the resulting graph is itself planar.

InscrtVertex(e, v,e, e): Split edge e into two edges el and e2 by inserting vet-

tex v.
Attach Vertex(e,v,u): Add vertex v and connect it to vertex u by means of

edge e.

Make Vertex(v): Add an isolated vertex v.
Our main result is expressed by the following theorem.
THEOREM 1.1. Let G be a planar graph that is dynamically updated by adding

vertices and edges, and let n be the current number of vertices of G. There exists a data
structure for the on-line planarity-testing p’oblem in G with the following performance:
the space requirement is O(n); operation Make Vcrtex takes worst-case time O(1);
operations Test, Attach Vertex, and InsertVertex take worst-case time O(logn); and
operation InsertEdge takes amortized time O(log n).

The techniques developed in our work provide new insights on the topological
properties of planar st-graphs and on the relationship between planarity and the
decomposition of a graph into its biconnected and triconnected components.

The rest of this paper is organized as follows, in 2, we survey previous results
on dynamic graph algorithms. Section 3 provides basic definitions. In 4, we present
a static data structure that supports only operation Test in biconnected graphs. Sec-
tions 5 and 6 describe the dynamic data structure for on-line planarity testing in
bicoImected graphs. The data structure is extended to general planar graphs in 7.
Finally, some applications of our technique to graph planarization, on-line transitive
closure, and on-line minimum spanning trees are given in 8.

2. Dynamic graph algorithms. The development of dynamic algorithms for
graph problems has acquired increasing theoretical interest, motivated by many im-
portant applications in network optimization, very large-scale integration (VLSI) lay-
out, computational geometry, and distributed computing. In this section, we survey
representative dynamic graph algorithms for reachability, shortest paths, minimum
spanning trees, and connectivity. Throughout this section, n and rn, respectively,
denote the number of vertices and edges of the graph being considered. A general
lower-bound technique for incremental algorithms, with applications to dynamic graph
algorithms, is discussed in [3].

A teachability query in a digraph asks whether there is a directed path between
two vertices. For general digraphs, there exist insertions-only semidynamic data struc-
tures with O(n) space, O(1) query time, and O(n) amortized update time [6, 32, 43].
The same performance is achieved for deletions only in acyclic digraphs [6, 33]. Fully
dynamic data structures with O(n) space and O(log n) query and update time exist for
some classes of planar digraphs [11, 34, 54, 56]. The related problem of maintaining
a topological ordering of an acyclic digraph is studied in [1].

958 GIUSEPPE DI BATTISTA AND ROBERTO TAMASSIA

A shortest-path query in a digraph asks for the length of a shortest path between
two vertices. Fully dynamic data structures for shortest-path queries are presented in

[16, 48]. They have O(n2) space, O(1) query time, O(n) time for edge insertion, and
O(rnn+n log n) time for edge deletion. The best-known semidynamic data structures
supporting insertions in digraphs with unit edge lengths use O(n) space and have
constant query time; the total time to process all edge insertions is O(na log n), which
amortizes to O(n log n) time per insertion for dense graphs [2, 39]. For series-parallel
digraphs with weighted edges, there exists a fully dynaxnic O(n)-space data structure
that supports queries and updates in O(logn) time [9]. This data structure also
maintains a maximum flow within the same time bounds.

The dynamic maintenance of minimum spanning trees has the interesting property
that, after an update operation consisting of a weight change or adding/deleting an

edge, at most one edge needs to be replaced in the minimum spanning tree. For general
graphs, the best result is O(x/-) update time and O(rn) space [21]. In the special
case of planar graphs, updates can be done in O(log n) time using an O(n)-space fully
dynamic data structure [11, 15].

Regarding connectivity problems, a classical result shows that the connected com-

ponents of a graph can be efficiently maintained in a semidynamic environment where
only edge-insertions are performed, by means of a union-find data structure [58]. A
sequence of k queries and edge insertions takes time O(kc(k, n)), where c(k, n) de-
notes the slowly growing inverse of Ackermann’s function. The same performance is
obtained for biconnected components [42, 60], triconnected components [11, 42], and
tbur-connected components [35]. Semidynamic techniques supporting deletions only
are studied in [17, 47]. In a fully dynamic environment, the connected components of
a general graph can be maintained in time O(v/) per update operation [21], while
the biconnected components of a planar graph can be maintained in O(n2/a) time
using O(n) space [25]. The related problems of maintaining the two- and three-edge-
connected components are studied in [23, 24, 60].

3. Preliminaries. We assume that the reader is familiar with graph terminology
and basic properties of planar graphs (see, e.g., [40]). Throughout this paper,
denotes the number of vertices of the planar graph G currently being considered.
Unless otherwise specified, we only consider graphs without self-loops and multiple
edges. Recall that a planar graph without self-loops and multiple edges has
edges.

First, we review some definitions on graph connectivity. A separating k-set of
a graph G is a set of k vertices whose removal increases the number of connected
components of (7. Separating l-sets and 2-sets are called cutvertices and separation
pairs, respectively. A connected graph is said to be biconnected if it has no cutver-
tices. The blocks of a connected graph (also called biconnected components) are its
maximal biconnected subgraphs. A graph is triconnected if it is biconnected and has
no separation pairs.

A planar drawing of a graph is such that no two edges intersect (except possibly
at the endpoints). A graph is planar if it admits a planar drawing. A planar drawing
partitions the plane into topologically connected regions, called faces. The unbounded
face is called the ezternal face. The boundary of a face is its delimiting circuit. All the
face boundaries of a biconnected graph are simple circuits. For brevity, we sometimes
use "face" to mean "face boundary."

The incidence list of a vertex v is the set of edges incident upon v. A planar
drawing determines a circular ordering on the incidence list of each vertex v according

ON-LINE PLANARITY TESTING 959

to the clockwise sequence of the incident edges around v.
Two planar drawings of the same connected graph G are equivalent if they de-

termine the same circular orderings of the incidence lists. Two equivalent planar
drawings have the same face boundaries. A planar embedding or simply embedding F
of G is an equivalence class of planar drawings and is described by circularly sorted
incidence lists for each vertex v. The face boundaries of any drawing of F are called
the faces of F. A triconnected planar graph has a unique embedding, up to reversing
all the incidence lists.

A planar st-graph G is a planar acyclic digraph with exactly one source (vertex
without incoming edges) s and exactly one sink (vertex without outgoing edges) t
which admits a planar embedding such that s and t are on the same face. Such graphs
were first introduced in [38]. Vertices s and t are called the poles of G. Henceforth,
we shall only consider embeddings of a planar st-graph such that s and t are on the
same face. Following the developments of [10, 13], we visualize a planar st-graph with
s and t on the external face and all the edges directed upward; see Fig. 1.

17

16

15

9 14

10

3 11

FiG. 1. Example of a planar st-graph.

The following properties are demonstrated in [55].
LEMMA 3.1. Let F be a planar embedding of a planar st-graph G.

1. The incoming edges of each vertex v of G appear consecutively in the inci-
dence list of v sorted according to F, and so do the outgoing edges.

2. Each face of F consists of the concatenation of two directed paths.
With reference to the second property, the origin and destination of the paths

forming a face f are called the extreme vertices of f. The other vertices of f are

960 GIUSEPPE DI BATTISTA AND ROBERTO TAMASSIA

called internal vertices of f. For example, the planar st-graph of Fig. 1 has a face
with extreme vertices 11 and 15 and with internal vertices 12, 18, 13, and 19.

A planar st-orientation of an undirected graph G is an orientation of the edges
of G such that the resulting directed graph is a planar st-graph. A graph G admits a
planar st-orientation if and only if it is planarly st-biconnectible [38], i.e., the graph
obtained from G by adding the edge (s, t) is planar and biconnected. A planar st-
orientation can be computed in O(n) time [18].

4. Tests. In this section, we consider the problem of performing operation Test
on a biconnected planar graph with n vertices. We assume that the graph has been
oriented into a planar st-graph such that s and t are adjacent.

4.1. Decomposition tree. Let G be a planar st-graph. A split pair of G is
either a separation pair or a pair of adjacent vertices. A split component of a split
pair {u, v} is either an edge (u, v) or a maximal subgraph C of G such that C is an
uv-graph and {u, v} is not a split pair of C. A maximal split pair {u, v} of G is such
that there is no other split pair {u’, v’} in G such that {u, v} is contained in a split
component of {u’, v’ }.

For example, in the planar st-graph G of Fig. 1, the pair {3, 7} is a split pair but
not a maximal split pair, while {0, 17} is the only maximal split pair of G. The split
components of the split pair {1, 17} are shown in Fig. 2.

17 17 17

8

9

1 1 1

15

19

13 14

11

FIG. 2. Split components of the split pair {1, 17} in the planar st-graph of Fig. 1.

The decomposition tree T of G describes a recursive decomposition of G with
respect to its split pairs and will be used to synthetically represent all the embeddings
of G with vertices s and t on the external face. Tree T is a rooted ordered tree
whose nodes are of four types: S, P, Q, and R. Each node # of T has an associated
planar st-graph (possibly with multiple edges), called the skeleton of # and denoted
by skeleton(#). Also, it is associated with an edge of the skeleton of the parent u of
#, called the virtual edge of # in skeleton(u). Tree T is recursively defined as follows.

ON-LINE PLANARITY TESTING 961

Trivial case. If G consists of a single edge from s to t, then T consists of a single
Q-node whose skeleton is G itself.

Series case. If G is not biconnected, let c1,..., ck-1 (k _> 2) be the cutvertices of
G. Since G is planarly st-biconnectible, each cutvertex ci is contained in exactly two
blocks Gi and G+I such that s is in G1 and t is in Gk. The root of T is an S-node

#. Graph skeleton(p) consists of the chain el,..., ek, where edge e goes from c-1 to
ci, co s, and c t, plus the edge (s,t). (See Fig. 3(a))

Parallel case. If s and t are a split pair for G with split components GI,..., G
(k >_ 2), the root of T is a P-node #. Graph skeleton(p) consists of k + 1 parallel
edges from s to t, denoted el,..., ek+l. (See Fig. 3(b))

Rigid case. If none of the above cases applies, let {sl,tl},...,{s,t} be the
maximal split pairs of G (k _> 1), and for 1,..., k, let Gi be the union of all the
split components of {s,t}. The root of T is an R-node #. Graph skeleton(p) is
obtained from G by replacing each subgraph Gi with the edge ei from si to ti and
by adding the edge (s, t). Notice that the skeleton of an R-node is triconnected. (See
Fig. 3(c))

4=t c4=t

c3 c3

e3
c2 c2

e2
el el

el

c0-8
(a)

(b)

e4

el

(c)

T1 T2 T3 T4

T1 T2 T

TI T T T T

FIef. 3. (a) Series decomposition. (b) Parallel decomposition. (c) Rigid decomposition.

In the last three cases (series, parallel, and rigid), # has children #1,... ,#k (in this
order), such that #,i is the root of the decomposition tree of graph G (i 1,..., k).
The virtual edge of node #i is edge ei of skeleton(p). Graph Gi is called the pertinent
9raph of node #i, and the expansion 9raph of ei. (Note that G is the pertinent graph
of the root.) We denote with s, and t, the poles of the skeleton of a node #. We find
it convenient (e.g., in Theorem 4.6 below) to define the expansion graph of a vertex

962 GIUSEPPE DI BATTISTA AND ROBERTO TAMASSIA

of skeleton(p) as the vertex itself.
Figure 4 illustrates the decomposition tree and the skeletons of the R-nodes for

the planar st-graph of Fig. 1. Our definition of decomposition tree is a variation of
the one given in [4] and is closely related to the decomposition of biconnected graphs
into triconnected components [30].

(0,17)

(1,2) (2,3) (7,8) (8,17) (1,9) (9,17) (1,11) (11,12) (12,15) a8 (15,16) (: (12,17) (16,17)

(3,4) (3,6) (4,7) (6,7) (1,10) (10,12)

(4,5) (5,6) (11,18)(18,13)(13,19) (19,15) (11,14) (14,15)

FIG. 4. Decomposition tree 7- for the planar st-graph of Fig. and skeletons of the R-nodes.

LEMMA 4.1. The decomposition tree 7- of G has O(n) nodes. Also, the total
number of edges of the skeletons stored at the nodes of 7" is O(n).

Proof. The leaves of 7- are Q-nodes in one-to-one correspondence with the edges
of G, and each internal node of 7- has at least two children. Hence 7- has O(n) nodes.
If a node # of 7- has k children, then skeleton(p) has at most k + 1 edges (one edge
for a Q-node, k edges for an S- or P-node, and k + 1 edges for an R-node). Hence the
total number of edges of the skeletons is at most the sum of the number of nodes and
edges of 7- and thus is O(n).

Now, we show how the decomposition tree can be used to represent all the planar
embeddings of a planar st-graph G with the edge (s, t). Let F be a planar embedding
of G.

Two basic primitives can be used to obtain a new planar embedding from F. A
reverse operation consists of flipping a split component around its poles. A swap
operation consists of exchanging the position of two split components of the same
split pair. For example, Fig. 5 shows the planar embedding obtained from that of
Fig. 1 by means of two swap operations and one flip operation.

LEMMA 4.2 (see [12]). Given a pair of embeddings F’ and F" of a planar st-graph
G with the edge (s, t), F" can be obtained from F’ by means of a sequence of O(n)
reverse and swap operations.

By Lemma 4.2, the decomposition tree 7" can be used to represent an embedding

ON-LINE PLANARITY TESTING 963

17

15

18

11

FIG. 5. Embedding obtained from the one of Fig. 1 by means of two swap operations around
the split pairs (1, 17) and (11, 15) and one flip operation around the split pair (1, 17).

of G by
1. selecting one of the two possible flips of the skeleton of each R-node around

its poles; and
2. selecting a permutation of the skeletons of the children of each P-node with

respect to their common poles.
Before presenting the algorithm for operation Test, we need to introduce addi-

tional concepts.
Let v be a vertex of G. The allocation nodes of v are the nodes of T whose

skeleton contains v. Note that v has at least one allocation node. For example, with
reference to the planar st-graph of Fig. 1 and its decomposition tree shown in Fig. 4,
we have that the allocation nodes of vertex 15 are the Q-nodes associated with its
incident edges plus nodes c5, cs, al0, and Oz11.

The following facts can be easily proved.
FACT 1. The pertinent graphs of the children of a node # can only share vertices

of skeleton(p).
FACT 2. If v is in skeleton(p), then v is also in the pertinent graph of all the

ancestors of #.
FACT 3. If v is a pole of skeleton(p), then v is also in the skeleton of the parent

ofp.
FACT 4. If v is in skeleton(p) but is not a pole of skeleton(#), then v is not in

the skeleton of any ancestor of #.

964 GIUSEPPE DI BATTISTA AND ROBERTO TAMASSIA

LEMMA 4.3. Let v be a vertex of G. The least common ancestor It of the allocation
nodes of v is itself an allocation node of v. Also, if v s, t, then # is the only allocation
node of v such that v is not a pole of skeleton(p).

Proof. For the first part of the lemma, it is sufficient to show that the least
common ancestor # of two allocation nodes #l and #. of v is itself an allocation node
of v. This is trivial if one of #1 and #2 is an ancestor of the other. Otherwise, by
Fact 2, vertex v is in the pertinent graphs of the children of # which are ancestors of

#1 and #2. Hence, by Fact 1, vertex v must be in skeleton(#). The second part of the
lemma follows from Facts 3 and 4. El

According to Lemma 4.3, the least common ancestor of the allocation nodes of
vertex v is called the proper allocation node of v. For example, in Figs. 1 and 4, the
proper allocation nodes of vertices 1, 6, and 15 are c1, a, and c5, respectively.

FACT 5. If V s, t, then the proper allocation node of v is either an R-node or
an S-node.

Let v be a vertex of the pertinent graph of a node # of T. The representative of v in

skeleton(#) is the vertex or edge x of skeleton(p) defined as follows: if # is an allocation
node of v, then x v; otherwise, x is the edge of skeleton(p) whose expansion
graph contains v. For example, in Figs. 1 and 4, edge (11, 15) of skeleton(c5) is the
representative of vertices 13, 14, 18, and 19, while vertex 7 in skeleton(a3) is the
representative of itself.

FACT 6. The nodes of 7- whose skeleton has a representative for vertex v are
the allocation nodes of v (the representative is a vertex) and their ancestors (the
representative is an edge).

LEMMA 4.4. Given any two distinct vertices vl and v2 of G, there exists a node

X of 7, such that vl and v2 have distinct representatives in skeleton(x). Also, let #1
and #2 be the proper allocation nodes of vl and v., respectively, and let # be the least
common ancestor of #1 and #2.

1. If #1 #2 It, then the common allocation nodes of vl and v2 are exactly
those with distinct representatives for Vl and

2. If It1 7 # and #. It then It is the only node with distinct representatives
for vl and

3. If It1 is an ancestor of It2, then the allocation nodes of Vl on the path from
It2 to It are exactly those with distinct representatives for vl and v2 (such nodes form
a path in T).

Proof. By Fact 6, cases 1, 2, and 3 characterize the set of nodes X of 7, such that
vl and v2 have distinct representatives in skeleton(x), r]

In the example of Figs. 1 and 4, the nodes with distinct representatives for ver-
tices 6 and 17 are aa and a. (case 3), while for vertices 6 and 13, node a2 is the only
node with distinct representatives (case 2).

A peripheral edge (vertex) of a planar st-graph G is such that it appears on the
same face of s and t for some embedding of G. A node It of 7" is said to be peripheral if
its virtual edge is peripheral in the skeleton of the parent of It. Note that the children
of S- and P-nodes are always peripheral.

In the example of Figs. 1 and 4, the peripheral edges of skeleton(a5) are (1, 12),
(12, 17), (1, 11), (11, 15), (15, 16), and (16, 17), while the only nonperipheral vertex of
the entire graph is 5. Also, all the R-, P-, and S-nodes except a9 are peripheral.

FACT 7. Let e be an edge of the skeleton skeleton(p) of node It. If vertex v is

peripheral in the expansion graph of e and e is peripheral in skeleton(It), then v is
peripheral in the pertinent graph G, of It.

ON-LINE PLANARITY TESTING 965

The following lemma gives a method for testing whether a vertex is peripheral in
the pertinent graph of some node of T.

LEMMA 4.5. Let be a node of T, and v be a vertex of the pertinent graph G
of . Let # be the proper allocation node of v.

1. If# , then v is peripheral in G if and only if v is peripheral in skeleton(it).
2. If it is an ancestor of , then v is always peripheral in G.
3. If it is a descendant of , then let be the child of whose subtree con-

rains it.
Then vertex v is peripheral in G if and only if v is peripheral in skeleton(it) and all
the nodes on the path from # to ; (inclusive) are peripheral.

Proof. Case 1 is proved by observing that substituting the virtual edges of
skeleton(it) with their expansion graphs or vice versa does not change the periph-
eral status of the vertices of skeleton(it). Case 2 follows from Lemma 4.3 since v is a
pole of G. Case 3 follows by inductively applying Fact 7. E]

4.2. Test algorithm. In this section, we show how to perform operation Test.
The algorithm is based on the following theorem, whose intuition is illustrated in
Fig. 6.

Xl x2

v2

skeleton(z)

FIG. 6. Schematic illustration of Theorem 4.6.

THEOREM 4.6. Let Vl and v2 be vertices of a planar st-graph G with the edge
(s, t). There exists an embedding F of G such that vl and v2 are on the same face of
F if and only if there exists a node X of the decomposition tree T of G such that:

1. vl and v have distinct representatives xl and x2 in X;
2. Xl and x2 are on the same face of some embedding of skeleton(x); and
3. v and v2 are peripheral vertices of the expansion graphs GI and G of x

and x respectively.
Proof: If. From condition 2, let E be a planar embedding of skeleton(x) with x

and x on the same face. Also, from condition 3, let F and F. be planar embeddings

966 GIUSEPPE DI BATTISTA AND ROBERTO TAMASSIA

of G1 and G2 with vertices vl and v2 on the same face as the poles of (1 and
G2, respectively. (See Fig. 6.) We replace Xl and x2 in E with F and F2 and
perform at most two reverse operations such that vl and v2 will be on the same
face. We replace the remaining edges of skeleton(x) with planar embeddings of the
corresponding pertinent graphs. This gives a planar embedding of the pertinent graph
of X such that vl and v2 are on the same face. Such an embedding can. be easily
extended to an embedding of G with the desired property.

Only if. We find node X using Lemma 4.4. Let #1 and #. be tile proper allocation
nodes of vl and v2, respectively, and let tt be the least conmon ancestor of #1 and
If one of #1 and #2 is the ancestor of the other, then we define X as tile lowest node
on the path between #1 and #2 such that the pertinent graph of X contains both
and v.. Otherwise, we define X #. Hence condition 1 is verified.

Consider a planar embedding F of G with vl and v2 on the same face. We
contract into single edges the pertinent graphs of the children of X while preserving
the embedding. We obtain an embedding of skeleton(x) with xl and x2 on the same
face (condition 2).

In order to prove condition 3, assume for contradiction that vl is not a peripheral
vertex of G1. We have #1 X and #1 is an R-node. Let sl and t- be the poles of
skeleton(#l). By condition 2, xl and x2 are on the same face of skeleton(x), so that
there exists a simple undirected path in skeleton(x) between sl and tl that contains

z2. We replace each edge z of such path with a path 7r between the poles of the
pertinent graph of node such that z is the virtual edge of , where, if 2 is an
edge, path 7c goes through vertex v2. This gives a simple undirected path 7c of G
between sl and tl. Hence graph G+ consisting of G1, edge (v, v2), and path r must
be planar. Consider a planar embedding of G1+. By removing edge (vl, v.) and path
r, we obtain a planar embedding of G1 such that Vl, sl, and tl are on the same
face. This contradicts the assumption that Vl is not a peripheral vertex of G1. A
similar argument can be used to show that v2 must be a peripheral vertex of G2. This
completes the proof of condition 3.

In the example of Figs. 1 and 4, vertices 6 and 13 verify the hypothesis of Theo-
rem 4.6, while vertices 5 and 18 do not.

We remark that either a skeleton graph admits a unique embedding (R-node) or
any two vertices/edges can be placed on the same face (P-, Q-, and S-nodes). Hence
Theorem 4.6 reduces the Test operation to a test on a fixed embedding. The algorithm
Ibr operation Test (Algorithm 1) is based on Theorem 4.6 and its proof.

We give two examples for the algorithm Test which refer to Figs. 1 and 4.
Consider operation Test(13,6); namely, Vl 13 and v2 6. We have that

#1 (110, 2 OZ6, and # a.. Thus we are in case (b) and X # c2, A
2 ca, and 2 a0. Since X is a P-node, there exists an embedding of
skeleton(x) with the representatives of vl and v2 on the same face. Also, both
and 2 are on tile path from X to the root (actually, they are the root). Therefore,
Test(13, 6) returns true.

Consider operation Test(17,5); namely, Vl 17 and v2 5. We have that
#t a0, #2 c9, and # #1 c0. Thus we are in case (c). Vertex v2 is peripheral
in skeleton(#.), 2 c9, and X a and is not an allocation node of Vl. Therefore,
Test(17, 5) returns false. In this example, vertex 5 is not "peripheral enough" with
respect to vertex 17.

The correctness of the algorithm follows from Theorem 4.6 and Lemmas 4.4
and 4.5. In case (a), condition 3 of Theorem 4.6 is always trivially verified. Re-

ON-LINE PLANARITY TESTING 967

ALGORITHM 1. Test(v1, v.)
1. Find the proper allocation nodes #1 of Vl and #2 of v2
2. Find the least common ancestor # of #1 and #2.
3. case of

() p ;
let X #;
if vl and v2 are on the same face of some embedding of skeleton(x)

then return true
else return false.

(b) #1 P and #2 #;
let X #;
for 1, 2 do

Find the representative x of v in skeleton(x) as follows: de-
termine the child A of X on the path from # to X, and let xi
be the virtual edge of A in skeleton(x).
Find the first nonperipheral node n on the path from # to
the root.

endfor
if (xl and x2 are on the same face of some embedding of
skeleton(x)) and (Vl and v2 are peripheral vertices of skeleton(#1)
and skeleton(#2), respectively) and (1 and 2 are either children of

or on the path from # to the root)
then return true
else return false.

(C) #1 # and #2 : #
if v2 is not a peripheral vertex of skeleton(#2)

then return false
Determine the first nonperipheral node n2 of the path from #2 to the
root.
if 2 is a child of # or 2 is on the path from #1 to the root

then set X #1
else set X equal to the parent of

if X is not an allocation node of Vl
then return false

Find the representative x2 of v2 in skeleton(x).
if vl and x2 are on the same face of the embedding of skeleton(x)

then return true
else return false.

(d) #2 # and #1 P
(This is analogous to the previous case and theretbre omitted.)

endcase

garding condition 2, if it is not verified at node #, then by Lemma 4.4, # is the only
node that verifies condition 1. In case (b), condition 1 of Theorem 4.6 is verified only
for node #, the least common ancestor of the proper allocation nodes of vl and v2. We
set X #, test condition 2 directly, and verify condition 3 by applying Lemma 4.5.

Case (c) is more complex since more than one node may satisfy condition 1 of
Theorem 4.6. By Lemma 4.4, such nodes are the allocation nodes of vl on the path
from tt2 to/zl.

968 GIUSEPPE DI BATTISTA AND ROBERTO TAMASSIA

In this case, the specific choice of node ; made in the proof of Theorem 4.6 (i.e.,
the lowest node on the path between #1 and #2 such that the pertinent graph of X
contains both vl and v.), which satisfies condition 1, appears difficult to compute.
Thus we use a slightly different approach, where node X satisfies condition 3. First,
we choose node ;g as the highest node where condition 3 is satisfied by applying
Lemma 4.5. If X is not an allocation node of Vl, then condition 1 is not verified at
X; moreover, since condition 1 can be satisfied only at ancestors of ; and condition 3
can be satisfied only at or below X, there is no node for which both conditions 1 and
3 can be satisfied. Otherwise (; is an allocation node of Vl), condition 1 is satisfied
and we check condition 2 directly. If condition 2 is not verified, then Vl is not an

endpoint of the representative edge x2 of v2 in skeleton(x). Hence vl is not a pole
of the expansion graph of x2, so that no descendant of X is an allocation node of vl.
This implies that condition i cannot be verified at any descendant of X.

4.3. Static data structure and time complexity. The following data struc-
ture can be used to efficiently perform the Test operation in a static environment.
We store with each vertex a pointer to its proper allocation node in T. Hence step 1
takes O(1) time. We equip tree T with a data structure which uses linear space and
supports least common ancestor queries in constant time [29, 50]. Hence step 2 takes
O(1) time.

Concerning step 3, we set up the following data structures. Each node of T has
a pointer to the corresponding virtual edge in the skeleton of its parent. We mark
all the peripheral nodes and the peripheral vertices and e@es of each skeleton. Also,
each node 4 has a pointer to the first nonperipheral node in the path from to the
root (the root node points to itself). Finally, we equip the skeleton of each R-node
with the data structure for planar embedding tests described in [53]. This allows us
to test whether two vertices/edges are on the same face of the planar embedding of
the skeleton in O(log n) time.

By Lemma 4.1, tree T uses O(n) space. All the remaining data structures use

O(n) space. The decomposition tree T can be constructed in O(n) time using a
variation of the algorithm of [30] for finding the triconnected components of a graph.
The planar embeddings of the skeletons of T and their peripheral vertices and edges
can be computed in O(n) time using the planarity-testing algorithm of [30]. We
conclude the following.

THEOREM 4.7. Let G be a biconnected planar graph with n vertices. There ezists
an O(n)-space data structure that supports operation Test(u, v) on G in time O(log
and can be constructed in O(n) preprocessing time.

Proof. Orient G into a planar st-graph, where s and t are adjacent vertices, and
then use algorithm Test with the data structure described above.

Note that the O(log n) bound on the query time depends only on the performance
of the data structure of [53] for testing whether two vertices/edges are on the same face
of a planar embedding. It can be shown that, applying perfect hashing [59], the query
time of [53] can be reduced to O(1) at the expense of using a complicated O(n)-space
data structure with O(n2) preprocessing time. We have the following corollary.

COPOLLAaY 4.8. Let G be a biconnected planar 9raph with n vertices. There
ezists an O(n)-space data strtcttre that supports operation Test(t, v) on G in time

O(1) and can be constructed in O(n2) preprocessing tine.

5. Updates. In this section, we show how to perforIn operations InsertEdge and
Insert Vertez on a biconnected planar graph G. As shown in the following theorem,
the above repertoire of update operations is complete for biconnected planar graphs.

ON-LINE PLANARITY TESTING 969

THEOREM 5.1. A biconnected planar graph G with n >_ 3 vertices and rn edges
can be assembled starting from the triangle graph (a cycle of three vertices) by means

of rn- 3 InsertEdge and Insert Vertez operations such that each intermediate graph
is planar and biconnected. Also, such a sequence of operations can be determined in

O(n) time.

Proof. We compute an open-ear decomposition D (P0, PI,..., P) of G, which
is a partition of the edges of G into an ordered collection of edge-disjoint simple paths
P0, PI,..., Pr, called ears, such that

P0 is a simple cycle;
the two endpoints of ear Pi, for _> 1, are distinct and contained in some

j < i; and
none of the internal vertices of Pi are contained in any Pj, j < i.

A graph G has an open-ear decomposition if and only if it is biconnected; moreover,
all intermediate graphs Di P0 + P1 +"" + Pi of an open-ear decomposition of
a biconnected graph are biconnected [61]. Further, if G is planar, then each Di is
planar since it is a subgraph of G. An ear decomposition can be computed in O(n)
time using the st-numbering technique [18]. We show how to use D to determine the
assembly sequence of G. Starting from the initial triangle graph, we construct cycle
P0 by means of a sequence of Insert Vertez operations. Next, we add the remaining
ears P,..., P, each by means of one InsertEdge operation followed by zero or more
Insert Vertez operations. Since we start with the triangle graph having three vertices
and since each operation adds one edge, the total number of operations is rn- 3. To
avoid forming intermediate graphs with multiple edges, we modify the ears as follows.
For each edge e (, v), let Pio be the ear containing e, with Pio PeP". If there
are ears Pi,..., Pi with endpoints and v and i0 < i < < i, we replace Pio
with PPiP and Pi with e. Note that each intermediate graph generated is planar
since it is homeomorphic to a subgraph of G. The above modification of the ears can
be computed in O(n) time by radix-sorting the edges and ears on their endpoints.

In our dynamic environment, we maintain a planar st-orientation of a biconnected
planar graph G such that s and t are adjacent vertices as follows.

In operation InsertVertez(e, v,e,e), if e goes from s to t, then we orient edge
e from s to v and edge e from t to v. Vertex v is the new sink of the orientation.
Otherwise, we orient el and e in the same way as e.

In operation InsertEdge(e, v, v), we orient e from v to v if v. is reachable from
v in the planar st-orientation and from v to v if v is reachable from v. If neither
vertex is reachable from the other, both orientations of e are possible. To test the
condition on reachability, we use the following theorem.

THEOREM 5.2. Let vl and v2 be vertices of a planar st-graph G with the edge
(s, t) and such that there ezists an embedding F of G such that v and v2 are on the
same face of F. Let X be a node of the decomposition tree T of G such that

1. v and v have distinct representatives z and z in X;
2. Zl and z. are on the same face f of some embedding of skeleton(x); and
3. vi and v are peripheral vertices of the expansion graphs G1 and G of X

and z2 respectively.
Then there ezists a directed path in G from vl to v2 if and only if there ezists a directed
path in the boundary of face f from X to x..

Proof. Note that the existence of node X is guaranteed by Theorem 4.6. By the
definition of a pertinent graph, there exists a directed path in G from Vl to v2 if and
only if there exists a directed path in skeleton(x) from Xl to z. By the teachability

970 GIUSEPPE DI BATTISTA AND ROBERTO TAMASSIA

properties of planar st-graphs given in [54], we have that there exists a directed path
in skeleton(x) from Xl to x2 if and only if there exists a directed path in the boundary
of face f from Xl to x2.

By property 2 of Lemma 3.1, face f consists of two directed paths with a common
origin and destination. Hence the time for testing reachability in f is dominated by
the complexity of determining if two objects of f (each a vertex or an edge) are on
the same path and, if so, which object precedes the other. In the rest of this section,
we assume that G is a planar st-graph that contains the edge (s, t).

The algorithm for operation Insert Vertex is as follows. Let p be the Q-node
storing edge e and let be the parent of p. If is a P-node or an R-node, we replace
p with a subtree consisting of an S-node and two child Q-nodes. If is an S-node, we
remove p and add two new child Q-nodes to

In the rest of this section, we present the algorithm for operation InsertEdge(e,
vl, v2). The algorithm makes use of several types of transformations that modify the
decomposition tree. If a transformation produces a node with exactly one child, such
node is absorbed into its parent. We assume that operation Test(vl,v2) has been
already performed and has returned true.

The algorithm InsertEdge and its subroutines are shown as Algorithm 2 and
Procedures 1-6.

ALGORITHM 2. InsertEdge(e, vl, v2)
Find the proper allocation nodes #1 of vl and #2 of v2 and their least common
ancestor #.
case of

1. #1=#2=#;
let X #;

{ Since G already contains the edge (s, t), by Fact 5, node X is
either an S-node or an R-node. }
FinalTransformationl

2. #=#and#2#;
let X #;
for 1, 2 do

PathCondensation (#
endfor
FinalTransformation2 (X,)1,

3. Pl # and #2 # #;
Determine the lowest node X on the path from P2 to # such that skeleton(p)
contains
if X #2
then FinalTransformationl (X)
else

PathCondensation (#2, 2
FinalTransformation3 (X, A2).

4. #2 # and
(This is analogous to the previous case and therefore omitted.)

endcase

ON-LINE PLANARITY TESTING 971

PROCEDUaE 1. FinaITransformationl
1. an R-node. We have two subcases.

Graph skeleton(x) does not contain an edge between V and v2.
Edge e is inserted in skeleton(x) and we add to the children of X a
new Q-node associated with e.
Graph skeleton(x) contains an edge between Vl and
The edge (vl, v2) of skeleton(x) is the virtual-edge of a child of X.
If is a P-node, we add to the children of a new Q-node associated
with e and we insert another edge from vl to v2 in skeleton(). Else,
we replace with a new P-node with children and. a Q-node storing
edge e.

X is an S-node. We perform at node X the transformation illustrated in
Fig. 7. The sequence of children of X is partitioned into subsequences, and G, where consists of the children of X associated with the edges of
skeleton(x) between vertices vl and v2. We remove the nodes of/ from the
children of X and replace them with a new P-node whose children are a Q-
node associated with edge e and an S-node whose children are the nodes of. Graph skeleton(x) is updated by replacing the chain between vl and v
with a single edge. The skeleton of the new P-node consists of two multiple
edges from v to v. The skeleton of the new S-node consists of a chain of
[1 edges from v to v2. Note that if I1 1, the new S-node is absorbed
into its parent, as mentioned above.

T1 T2 T3 T4 T5 T6

c6

c5

T3 T4

FIG. 7. The procedure FinalTransformationl when X is an S-node.

972 GIUSEPPE DI BATTISTA AND ROBERTO TAMASSIA

PROCEDURE 2. PathCondensation (#i, ;ki)

InitialTransformation (tt
Determine the child A of X on the path from # to X.
set p #;
while p - hi do

set r equal to the parent of p;
ElementaryTransformation (p, r; 7/);
set p

endwhile

PROCEDURE 3. InitialTransformation
If #i is an S-node, expand #i into a structure consisting of an R-
node and two S-nodes and ’, such that (see Fig. 8)

has children and " and has the same parent as #i;

graph skeleton() consists of edges (s.,vi), (vi,t.), and

graphs skeleton(’) and skeleton(/’) consist of the subchains
of skeleton (#i from s. to vi and from vi to t., respectively.

Rename #i u.

FIG. 8. Expansion of an S-node in InitialTransformation.

ON-LINE PLANARITY TESTING 973

PROCEDURE 4. ElementaryTransforrnation (p, r; 7r)
Let X be the type of node p and let r be the parent of p. Perform the RX-
transformation described below and shown in Fig. 9.

RR-transformation: Contract nodes p and r into a new node 7r. Graph
skeleton(7c’) is obtained from skeleton(zr) by replacing the virtual edge of p
with skeleton(p) minus the edge (so, to). (See Fig. 9(a))
RP-transformation: Rename p and r into r and p, respectively. Set the
parent of p equal to r. Set the parent of 7r equal to the former parent of
7c. Graph skeleton(p’) is equal to skeleton(zr) minus one of the edges (so, to)
(the former virtual edge of p). Graph skeleton(To’) is equal to skeleton(p)
plus a virtual edge (sp,,to,). (See Fig. 9(b))
RS-transformation: Split node r into nodes p and p" such that skeleton(p)
and skeleton(p") are the subchains of skeleton(zr) from s to so and from to
to t, respectively. Rename p into r. Set the parents of p and p" equal to
r. Set the parent of 7c equal to the former parent of r. Graph skeleton(7c)
consists of skeleton(p) minus edge (so, to) plus edges (s, so), (tp, t), and
(s,t). (See Fig. 9(c))

(a)

(b)

FI. 9. Elementary transformations: (a) RR; (b) RP; (c) RS.

974 GIUSEPPE DI BATTISTA AND ROBERTO TAMASSIA

PROCEDURE 5. FinalTransformation2 (X,/1,
Let X be the type of node X. Perform the X-transformation described below and
shown in Fig. 10. Note that A1 and A2 are R-nodes.

R-transformation: Contract nodes X, A1 and A2 into a new R-node XI.
Graph skeleton(x’) is obtained from skeleton(x) by replacing the virtual
edges of A1 and A2 with their skeletons (minus the edge between their
poles) and by adding the edge (vl, v2).
P-transformation: Contract nodes A and A2 into a new R-node A. Graph
skeleton(A) is obtained by the union of skeleton(A), skeleton(A2), and the
edge (v, v2).
S-transformation: Partition the sequence of children of X into subsequences
a, A1,/, A, and 7 in this order from left to right. We remove the nodes
of/ from the children of X and replace them with a new R-node ,. Also,
we create a new S-node A with parent - and whose children are the nodes
of/. Graph skeleton(,) is obtained from skeleton(A) and skeleton(A2) by
adding the edges (sl, t2), (tl, s.), and (Vl, v).

(a)

(b)

/
(c)

FIG. 10. The procedure FinalTransformation2: (a) R; (b) P; (c) S.

ON-LINE PLANARITY TESTING 975

PROCEDURE 6. FinalTransformation3 ()/,/2)

Let X be the type of node)t. Perform the X-transformation described below. Note
that 2 is an R-node.

R-transformation: Contract nodes X and/, into a new R-node)/. Graph
skeleton()t’) is obtained from skeleton(x) by replacing the virtual edge of

with skeleton() (minus the edge between the poles/and by adding the
edge
S-transformation: Partition the sequence of children of X into subsequences
a, /, 2, and / in this order from left to right, where vx is the common
pole of the pertinent graphs of the last node of a and the first node of
/. We remove the nodes of/ from the children of X and replace them
with a new R-node . Also, we create a new S-node with parent and
whose children are the nodes of/. Graph skeleton(r) is obtained from
skeleton(;2) by adding the edges (Vl, s2), (vl, t2), and (vl, v2).

(0,

(4,5) (5,6) / / (11,14) (14,15)

(11,18) (18,13) (13,19) (19,15)

FIG. 11. Initial S-transformation in operation InsertEdge(e, 13, 6).

With reference to Figs. 1 and 4, we show how InsertEdge(e, 13, 6) is performed.
We are in case 2. The initial transformation at #1 is shown in Fig. 11. Elementary
transformations RP, RR, and RS are shown in Figs. 12-14. The final decomposition
tree (after FinalTransformation2) is shown in Fig. 15.

We now argue about the correctness of the algorithm InsertEdge. We discuss
case 2 since it is the most general. Similar considerations hold for cases 1, 3, and 4.

First, we observe that after the insertion of edge (Vl, v.), the poles of X remain
a separation pair of G. Hence only the subtree of T rooted at X is affected by the
insertion. Namely, we show that the algorithm InsertEdge correctly computes the
decomposition tree of the pertinent graph of X plus the edge (Vl, v2).

976 GIUSEPPE DI BATTISTA AND ROBERTO TAMASSIA

(0,17)

(0,1)

(1,,17)
(3,4) (3,6) (4,7) (6,7)

/ \
(4,5) (5,6)

(1,9) (9,17) (12,15) (15,16) (: (12,17) (16,17)

(1,10) (10,12)

(11,18)(18,13)(13,19) (19,15)(11,14) (14,15)

FIG. 12. Elementary RP-transformation in operation InsertEdge(e, 13, 6).

(0,

(;,4) (3,6) (4,7) (6,7) (1,10) (1012)(11,18)(1,13)(13,19)(19,15) (11,14) (14,15)

/ \
(4,5) (5,6)

FIG. 13. Elementary RR-transformation in operation InsertEdge(e, 13, 6).

ON-LINE PLANARITY TESTING 977

(0,

t,4) (,b4,7)
[6,71

(1,9) (9,17) (1,11) (11,1212,15).5,16) 2,16)(12,1
(16, 7)

(1,2 2,3) (4,5) (5,6) (7,8) (8,17) (1,10) (10,12)(11,18)(18,13)(13,19)(19,15) (11,14) (14,15)

FIG. 14. Elementary RS-transformation in operation InsertEdge(e, 13, 6).

(o,

(1,9) (9,17)(3,4)(3,64,7)(6,7)1,11)(11,12, .5,16) 2,16)(12,1
(1,2 ,3) (4,5) (5,6) (7,8) (8,17) (1,10) (10,12)(11,18) (18,13)(13,19)(19,15) (11,14) (14,15)

FG. 15. Final P-transformation in operation InsertEdge(e, 13, 6).

978 GIUSEPPE DI BATTISTA AND ROBERTO TAMASSIA

U3(

U2

FI(. 16. Graph e used to show the correctness of the algorithm InsertEdge.

Let # be a node of 7" whose pertinent graph G contains vertex v,. We denote
by O the graph obtained from Gu by adding three new vertices ul, u., and u3 and
the edges (ul, s,), (ul, u2), (s,, u2), (u2, vi), (u2, t,), (u2, u3), and (t,, u3) aS shown
in Fig. 16. Intuitively, the "gadget" added to Gu forces vi to appear on the external
face. The formal proof consists of showing that

1. each transformation (initial or elementary) at a node 7c on the path from # to
A produces the decomposition tree of 0, 1, 2, except for the Q-nodes associated
with the extra edges added to Gu and their virtual edges in the skeletons;

2. the final transformation at node)/ produces the decomposition tree of the
pertinent graph of X plus the edge (v., v2).

The first property can be proved by induction. The base case is the initial trans-
formation at #. The inductive steps correspond to the elementary transformations.
The second property can be proved by a simple case analysis. Note that the graph
O is planar since by Theorem 4.6 vertex v is peripheral in the pertinent graph of r.
We omit the details of the correctness proof, which are tedious but straightforward.

6. Dynamic data structure. All the information needed to perform the Test
algorithm must be updated by the InsertEdge and Insert Vertex algorithms. We de-
scribe a data structure that represents the decomposition tree 7", the skeletons (with
their embeddings) of the nodes of 7", and the maximal paths of peripheral nodes in
7". The interface of the data structure consists of records for the vertices and edges
of the graph G.

6.1. Requirements. In this section, we discuss the primitive operations that
need to be supported by the dynamic data structure. The data structure for the de-
composition tree 7- should support finding the parent of a node and the least common
ancestor of two nodes. Also, it should support the initial, elementary, and final trans-
formations. Each such transformation is executed by means of a constant number of
link/cut and expand/contract operations.

Concerning skeletons and their embeddings, we need to support a repertoire of
access, query, and update operations. The access operations are as follows:

1. find the proper allocation node of a vertex;
2. find the poles of the skeleton of a node.
The query operations are as follows:

1. determine if a vertex is peripheral with respect to the skeleton of an R-node;

ON-LINE PLANARITY TESTING 979

2. determine if two objects (each a vertex or an edge) are on the same face of
the skeleton of an R-node.

3. determine if two objects on the same face f of a skeleton are also on the same
directed path forming the boundary of f and, if so, which object precedes the other.

The nontrivial update operations are as follows:
1. add vertices and edges to skeletons;
2. replace an edge of a skeleton with another skeleton;
3. split the skeleton of an S-node (by removing an edge).

Finally, we need to maintain the set of peripheral nodes of T so that we can

efficiently determine the first nonperipheral node on the path from a node # to the
root of T.

6.2. Maintaining planar embeddings. Our technique for maintaining the
planar embedding of the skeletons extends that of [53], where the latter two update
operations are not supported.

We recall from property 2 of Lemma 3.1 that the boundary of each face of the
embedding of a planar st-graph G consists of two directed paths with common origin
and destination. Also, by property 1 of Lemma 3.1, each vertex of G distinct from
the poles s and t is an internal node of exactly two faces.

FACT 8 (see [53]). Let F be a planar embedding of a planar st-graph G. Objects
X and x. of G, each a vertex or an edge, are on the same face f of F if and only if
one of the following conditions is verified:

1. each of xl and x2 is an edge or an internal vertex of f;
2. one of xl and x2 is an edge or an internal vertex and the other is an extreme

vertex of f;
3. both x and x2 are extreme vertices of f

An extreme pair is a pair of vertices that are the extreme vertices of some face f
of F. For example, (12, 17) and (11, 15) are extreme pairs of the graph of Fig. 1.

By Lemma 3.1, every object is internal in exactly two faces, and every face has
exactly two extreme objects (always vertices). Hence conditions 1 and 2 can be
tested in constant time after having determined the four faces where x and x. are
internal and these faces’ extreme vertices. Condition 3, on the other hand, is tested by
searching for (v, v.) in the set of extreme pairs. The data structure of [53] maintains
the set of extreme pairs in a dynamic dictionary and the set of internal vertices of
each face in two concatenable queues (associated with the two directed paths forming
its boundary).

We now show how to modify the data structure of [53] to support our extended
set of operations.

LEMMA 6.1. The set of extreme pairs is an invariant of a planar st-graph with
respect to all its planar embeddings.

Proof. By Lemma 4.2 we can construct any embedding by means of reverse and
swap operations on a given embedding. We show that the set of extreme pairs of an
embedding stays unchanged after a reverse or a swap. Consider a reverse operation
on a split component C with poles s and t (see Fig. 17). The boundaries of the faces
internal to C are modified by exchanging their left and right chains, so that their
extreme pairs remain the same. Let / and 7" be the left and right chains forming
the external boundary of C, where each such chain does not contain s or t. The
faces f and g on the left and right of C contain 3/ and as subchains of their right
and left chains, respectively. After the reverse operation, these faces are modified by
replacing / with 7" in the right chain of f and 3’" with 3/ in the left chain of g. Hence

980 GIUSEPPE DI BATTISTA AND ROBERTO TAMASSIA

the extreme pairs of f and g stay unchanged. Finally, the remaining faces of G are
not affected by the reverse operation. Similar considerations show that extreme pairs
stay unchanged after a swap operation. D

g

FG. 17. Example for the proof of Lemrna 6.1.

According to Lemma 6.1, we denote by g the set of extreme pairs of G.
LEMMA 6.2. After performing operation InsertEdge(e, vl, v2), the set $ is updated

by means of at most one deletion and two insertions. Also, after performing operation
InsertVertez(v, e, el, e2), the set $ stays unchanged.

Proof. By Lemma 6.1, the update of the set g is the same in any embedding.
Hence we consider adding the edge (vl, v) to an an embedding where v and v are
on the same face f. By Lemma 3.1, the boundary face f consists of two directed
paths. Let (/, h) be the extreme pair of f. If v and v are on the same directed path
of f, then we add to g the pair (Vl, v.), unless it is already in g (when v and
v2 h). Otherwise, we remove from g the pair (1, h) and add to g the pairs (vl, h) and
(,v).

The poles of each skeleton and, for R-nodes, the edge between them are directly
stored at each node, so that they can be determined in 0(1) time. Their update takes
0(1) time in each transformation.

The record of each face f of skeleton(#) (except the two faces containing the edge
(s,, t,)) has a bidirectional pointer to the element of g associated with the extreme
pair of f.

ON-LINE PLANARITY TESTING 981

6.3. Data structure. The data structure consists of a main component and of
an auziliary component. The main component is a tree T* that represents both the
decomposition tree T and the skeletons of the nodes of T. The auxiliary component
is a dictionary (e.g., a balanced search tree) that stores the set g, so that searches and
updates in g take O(log n) time. The updates to be performed in g are determined
in the final transformations.

The main component T* is an edge-ordered dynamic tree [151, a variation of the
dynamic tree of Sleator and Tarjan [52]. It is a rooted ordered tree with nodes of vat-

ious types that supports each of the following primitive tree operations in logarithmic
time:

Find the parent of a node.
Find the least common ancestor of two nodes.
Given two sibling nodes, determine which one precedes the other in the or-
dered sequence of the children of their parent.
Given a node , find the first node of a given type on the path from to the
root.
Link two trees by making the root of one tree a child of a node of the other
tree.
Cut a tree into two trees by removing a tree-edge.
Expand a node into two nodes Pl and 9. linked by a new tree-edge such
that the expansion preserves the ordering of the children. In other words, if
c/3 is the sequence of children of p, then cp.y is the sequence of children of
1 and/3 is the sequence of children of
Contract a tree-edge (, p2) and merge nodes p, and P2 into a new node
p such that the contraction preserves the ordering of the children. In other
words, if cp2"y is the sequence of children of and /3 is the sequence of
children of z2, then c/%/is the sequence of children of

The main component T* is obtained from the decomposition tree T by expanding
each node # of T into a tree rooted at #, called a skeleton tree, which describes the
embedding of skeleton(#), as follows (see Fig. 18):

1. First, we make children of # a set off-nodes representing the faces of skeleton(#)
(their order is irrelevant). The f-node associated with a face f is also said to
be a p-node ("peripheral" node) if f contains an edge (s,, t,), and otherwise
it is said to be a b-node ("blocking" node). Note that if # is a P-node or an

S-node, then all the children of # are p-nodes. Also, if # is an S-node or an
R-node, it has two child p-nodes.

2. Next, we attach to each f-node two subtrees, called boundary trees, that repre-
sent the two directed paths forming the boundary of the face (see Lemma 3.1),
excluding the extreme vertices. Each boundary tree is a two-level tree whose
leaves are an alternating sequence of e-nodes and v-nodes representing edges
and vertices of the path, respectively, and are ordered according to the direc-
tion of the path.

3. Finally, for each former child p of #, we make child of one of the two e-nodes
of the skeleton tree of # associated with the virtual edge of in skeleton(#).
If the closest f-node ancestor of one of such e-nodes is a p-node, then we make
a child of that e-node.

The data structure is completed by the following additional pointers. Each R-, P-,
and S-node stores pointers to the poles of its skeleton, so that they can be determined
in O(1) time. Their update takes O(1) time in each transformation. Each f-node has

982 GIUSEPPE DI BATTISTA AND ROBERTO TAMASSIA

7

3

6 6 4

(3,6) (6,7) (3,4) (4,7) ,a9

FIG. 1.8. Portion of tree T* representing the skeleton tree for node c6 of the decomposition tree
shown in Fig. 4.

a bidirectional pointer to the element of g storing the extreme pair of its associated
face. Finally, we establish a pointer from each edge to its Q-node and two pointers
from each vertex v to its two representative v-nodes in the boundary trees of the
skeleton tree of skeleton(#), where # is the proper allocation node of v. Note that
tree T can be obtained from tree T* by contracting each skeleton tree into its root.
We call the S-, P-, Q-, and R-nodes of T* primary nodes.

6.4. Complexity analysis. In this section, we analyze the performance of the
data structure described in 6.3.

LEMMA 6.3. The above data structure for on-line planarity testing uses O(n)
space.

Proof. The data structure uses space proportional to the total size of the skeletons
stored at the nodes of T*. Thus, by Lemma 4.1, the space requirement is O(n). E]

We now consider operation Test.
LEMMA 6.4. The above data structure supports operation Test in time O(log n).
Proof. To find the proper allocation node of a vertex v, we access one of the

two v-nodes r of v and find the closest primary node ancestor of . This takes time
O(]ogn).

To determine whether two objects x and x2 (each a vertex or an edge) are on
the same face of a skeleton, we use Fact 8. Conditions 1 and 2 of Fact 8 are checked
in O(log n) time by finding the closest f-node ancestors of the e-nodes of x and x2.
Namely, x. and x2 are both on face f if the f-node of f is the closest f-node ancestor
for both an e-node of x and an e-node of x2. Condition 3 is verified by searching for
the pair (x,x2) in g, again in O(logn) time.

ON-LINE PLANARITY TESTING 983

To determine whether a vertex v is peripheral in the skeleton of its proper allo-
cation node #, we find the closest f-node ancestors of the two v-nodes of v and test if
at least one of them is a p-node. This takes time O(log n).

To determine the first nonperipheral primary node on the path from a node
to the root of T*, we find the closest b-node ancestor of # and then the closest
primary node ancestor of . This takes time O(log n). [:1

Operation Insert Vertez is very simple to analyze. It takes worst-case time O(log n).
In the rest of this section, we discuss the time complexity of operation InsertEdge.

In operation InsertEdge, we need to restructure the tree 2r* and the dictionary. Each transformation (initial, elementary, or final) of the algorithm InsertEdge
can be performed in O(logn) time by means of O(i) link/cut and expand/contract
operations on tree 2r* and O(i) updates (insertions or deletions) of . Hence the
time complexity of operation InsertEdge is O((I + T)log n), where T is the number
of transformations performed.

THEOREM 6.5. The amortized time complezity of operation InsertEdge over a
sequence of update operations is O(log n).

Proof. Let R, S, and P denote the sets of R-, S-, and P-nodes of T, respectively,
and let deg(#) denote the number of children of node #. We define the following
potential function associated with the data structure:

+
ESUP

Define the amortized number of transformations performed by InsertEdge as A
T + A(I), where A(I) is the variation of potential. An RR-transformation decreases by
one the number of R-nodes and does not change the degrees of S- and P-nodes. An
RP-transformation does not change the number of R-nodes and decreases by one the
sum of the degrees of S- and P-nodes. An RP-transformation does not change the
number of R-nodes and decreases by one the sum of the degrees of $- and P-nodes.
The initial and final transformations in InsertEdge change the potential by a constant.
Hence, we conclude that A O(1). Since I1 O(n), the total time complexity
of a sequence of n update operations starting from a graph with O(1) vertices is
O(nlogn).

We conclude the following.
THEOREM 6.6. There exists a data structure for on-line planarity testing of a

biconnected planar graph G whose current number of vertices is n with the following
performance: the space requirement is O(n); operations Test and Insert Vertex take
worst-case time O(log n), and operation InsertEdge takes amortized time O(log n).

Proof. The space and time complexity bounds follow immediately from Lem-
mas 6.3 and 6.4 and Theorem 6.5.

7. Tests and updates in general graphs. In this section, we consider on-
line planarity testing for general (nonbiconnected) planar graphs. We first consider
connected graphs and then disconnected graphs.

7.1. Tests in connected graphs. We consider a connected planar graph
with n vertices. We use the data structure of the previous section for each block
(biconnected component) of G and represent the relationship between blocks by means
of the block-cutvertex tree.

The block-cutvertex tree of a connected graph G has a B-node for each block
(biconnected component) of G, a C-node for each cutvertex of (, and edges connecting

984 GIUSEPPE DI BATTISTA AND ROBERTO TAMASSIA

each B-node # to the C-nodes associated with the cutvertices in the block of # (see,
e.g., [28]). The block-cutvertex tree was previously used in [53, 60] for maintaining
biconnected components.

We construct an augmented block-cutvertex tree B for G as follows (see Fig. 19).
We root B at an arbitrary B-node. Next, we add n new leaf nodes, called V-nodes, to
B, each associated with a vertex of G. The parent of the V-node representing vertex
v it is the C-node associated with v if v is a cutvertex, and is the B-node associated
with the unique block containing v otherwise. The number of nodes of B is O(n). We
store at each B-node p a secondary structure consisting of the data structure of the
previous section for on-line planarity testing in the block B of tt.

30
23

24 30

24

29

25 29

(d)

I v I

FIG. 19. (a) A 1-connected graph G. (b) The augmented block-cutvertex tree B of G.
(c) to(Z). (d) to().

The following definitions are analogous to those given for the decomposition tree
in 4.

We define graph skeleton(#) for a node # of B as follows (see Fig. 19):
If # is a V-node representing vertex v, then skeleton(#) consists of a single
vertex v.
If # is a B-node, then skeleton(p) is the block corresponding to #. Each child
u of # is a V- or C-node and hence uniquely associated with a vertex v. The
virtual vertex of u in skeleton(p) is v.
If # is a C-node, let c be the cutvertex associated with # and k be the number
of children of # in B; skeleton(p) is a "star" tree with k + 2 vertices, where
the center vertex is c and the other vertices are the virtual vertices of the

ON-LINE PLANARITY TESTING 985

children of #, plus a vertex representing the parent of #.
Note that each child of # is uniquely associated with a vertex of skeleton(#). It is
easy to see that two vertices are in the same block if and only if the path in B between
their V-nodes has exactly one B-node.

The pertinent graph Gu of a node # is skeleton(#) if # is a V-node, and it is the
union of all the blocks of the B-nodes in the subtree of B rooted at # otherwise. The
pivot of a B-node # distinct from the root is the cutvertex whose C-node is the parent
of #. The pivot of the C-node of a cutvertex c is c itself. In the example of Fig. 19,
vertex 3 is the the pivot of nodes/2,/3,/4, and 5.

The expansion graph of a vertex v of skeleton(#) is the pertinent graph of the
child of # with virtual vertex v, or it is v itself if no such child exists. Observe that
if v is not a a cutvertex of G, then its expansion graph is v itself.

A vertex v is pivotal in the pertinent graph Gu of a node # if it appears in the
same face of the pivot of # in some embedding of G. We say that a node u is pivotal
if the pivot of u is pivotal in the pertinent graph of the parent of u. Note that a child
of a C-node is always pivotal. In the example of Fig. 19, the V-node of vertex 5 is
pivotal while the V-node of vertex 6 is not pivotal.

Let v be a vertex of the pertinent graph Gu of a node # of B. The representative
of v in the skeleton of # is the vertex x of skeleton(#) defined as follows: if v is in
skeleton(p), then x v; otherwise, x is the vertex of skeleton(p) whose expansion
graph contains v. In the example of Fig. 19, the representative of vertex 5 is vertex 3
in skeleton(/l) and is vertex v in skeleton(2).

We now show how to perform operation Test(vl, v2) for vertices in distinct blocks
(see Fig. 19).

THEOREM 7.1. Let v and v be vertices of a connected planar graph G. There
exists an embedding F of G such that v and v. are on the same face of F if and only
if there exists a node X of the block-cutvertex tree 13 of G such that

1. Vl and v have distinct representatives x and x. in
2. x and x. are on the same face of some embedding of skeleton(x); and
3. vl and v2 are pivotal vertices of the expansion graphs of x and x, respec-

tively.

Proof. The proof is essentially the same as that of Theorem 4.6, except for the
different meaning of the terminology.

We provide now examples of application of Theorem 7.1 referring to the graph of
Fig. 19. Regarding Test(l, 4), we have v 1, v 4, X , x vz3, and x. vz,
so that all the conditions of Theorem 7.1 are verified. Regarding Test(5, 20), we have
Vl 5, v2 20, X /, xl 3, and x 14, and again all the conditions of
the theorem are verified. Indeed, see in Fig. 20 how edge (5, 20) can be inserted.
Regarding Test(6,20), we have Vl 6, v 20, X =/, x 3, and x 14, and
condition 3 is not verified since vl is not pivotal in the expansion graph of x. Finally,
regarding Test(12,20), we have vl 12, v 20, X , x 10, and x2 14, and
condition 2 is not verified since X and x are not on the same face of some embedding
of skeleton(x).

The following lemma will be used to efficiently test condition 3.
LEMMA 7.2. Vertex v is pivotal in Gx if and only if the first nonpivotal node on

the path of 13 from the V-node of v to the root is either a child of X or a node of the
path from X to the root.

It is interesting to observe the analogy between the concepts of peripheral (defined
in 4) and pivotal. The proof of Lemma 7.2 is analogous to that of Lemma 4.5.

986 GIUSEPPE DI BATTISTA AND ROBERTO TAMASSIA

21

29

FIc. 20. Example of operation InsertEdge for vertices in distinct blocks: (a) graph of Fig. 19

after performing operation InsertEdge(e, 5, 20); (b) its augmented block-cutvertex tree.

THEOREM 7.3. Let G be a connected planar graph with n vertices. There exists
an O(n)-space data structure that supports operation Test(u, v) on G in time O(log n)
and can be constructed in O(n) preprocessing time.

Proof. Condition 1 of Theorem 7.1 is verified for at most two nodes of B: always
for the least common ancestor # of the V-nodes of vl and v2 and possibly for a child
of #. The latter case arises when Vl is a cutvertex and v. is in a block whose B-node
is a child of the C-node of vl. Condition 2 is equivalent to performing operation
Test(x, x) in skeleton(x), which is either a biconnected graph or consists of a single
vertex.

By Lemma 7.2, we can test condition 3 of Theorem 7.1 using for each vertex v
a pointer to the first node 7 in the path from the V-node of v to the root of B such
that v is not pivotal in Gv.

The time and space complexity bounds follow from Theorem 4.7 and from the
fact that tree B has O(n) nodes.

COROLLARY 7.4. Let G be a connected planar graph with n vertices. There exists
an O(n)-space data structure that supports operation Test(u,v) on C in time O(1)
and can be constructed in O(n) preprocessing time.

7.2. Updates in connected graphs. We consider a connected planar graph G
with n vertices. It is easy to see that operations InsertEdge and Attach Vertex form
complete repertoire of operations for connected planar graphs.

LEMMA 7.5. A connected planar graph G with n vertices and m edges can be
assembled starting from a single vertex by means of m InsertEdge and Attach Vertex

ON-LINE PLANARITY TESTING 987

operations, such that each intermediate graph is planar and connected. Also, such a

sequence of operations can be determined in O(n) time.

Proof. First, construct a spanning tree of G by means of n- 1 Attach Vertez
operations, and then add the remaining edges with rn- n + 1 InsertEdge opera-
tions.

Operation Attach Vertez(e, v, u) is performed as follows. First, if u is a cutvertex,
let fl’ be its C-node; otherwise, replace the V-node of u with a new C-node fl’ and a
child V-node. Second, create a new B-node fl" (associated with the block consisting
of the newly added edge e) with a child V-node (associated with the newly added
vertex v) and make fl" a child of fl’.

We now examine the structural changes of the block-cutvertex tree when operation
InsertEdge(e, vl,v2) is performed on G. If Vl and v2 are in the same block B of
G, then the primary structure of the block-cutvertex tree stays unchanged, and we
process the insertion in the secondary structure (decomposition tree) of the B-node of
B. Otherwise (see Fig. 20), let ttl and tz be the V-nodes of vl and v, respectively,
and let X the least common ancestor of #1 and #2. The effect of InsertEdge is to
merge the "old" blocks corresponding to the B-nodes of/ on the paths of/ from #,
to X and from #2 to X (inclusive) into a "new" block/3’.

The primary structure of/5 is updated by means of a sequence of primitive tree
operations (see 6.3). To update the secondary structure, we need to efficiently merge
the decomposition trees of the old blocks into the decomposition tree of the new
block]3’. We reorient all the old blocks, except the largest one, denoted B*. Avoiding
the reorientation of B* is the key to the efficient aInortized behavior of the InsertEdge
algorithm. Each old block distinct from B* is reoriented into a planar st-graph with
poles given by consecutive cutvertices in the chain from #1 to #2. By adding these
orientations to the orientation of B*, we obtain a planar st-orientation of the B’ whose
poles are the same as those of B*. See a schematic example in Fig. 21.

The decomposition tree of the new block B’ is obtained as follows. Let/31 and f12
be the nodes of/3 adjacent to the B-node of 23* in the path of/3 between the V-nodes
of Vl and v, with /3 on the side of v.i, 1,2. Let u be the vertex associated
with node/3, 1, 2. (Note that/3.i is either a C-node or a V-node.) We perform
InsertEdge(e, u,, u2) in B* and then replace the Q-node of e in the decomposition
tree of B* with an S-node whose subtrees are the newly built decomposition trees of
the other old blocks. Note that one of u and u is the former pivot c* of t3".

In our dynamic environment, we maintain the forest P, called pivotal forest,
obtained from/ by removing all the edges from nodes that are not pivotal to their
parents. Hence the first nonpivotal node on the path of/3 from the V-node of v
to the root (see Lemma 7.2) is the root of the tree of P containing the V-node of v.

To update the pivotal forest, we observe that the pivot c of the new block B’ is
the cutvertex parent of X and is in general (when B* is not the block of X) different
from the former pivot c* of B* (see Fig. 21). Let # be the proper allocation node of
c* in the decomposition tree of B’. The new pivot c is in the pertinent graph of an
edge of skeleton(#) incident upon c*. Such a pertinent graph is an orientation with
poles u and u of the union of edge e and the old blocks except B*. Hence we have
that nodes of/3 can go from pivotal to nonpivotal but not vice versa.

To efl%iently maintain the pivotal forest P, we use the following auxiliary data
structure. Consider a B-node of P associated to a block B, and let c be its pivot.
Let T(B) be a new copy of the decomposition tree of B associated with a planar
st-orientation of B with t c. We modify 7" into a forest P* (B) as follows:

988 GIUSEPPE DI BATTISTA AND ROBERTO TAMASSIA

(a)

(b)

FIG. 21. Schematic example of operation InsertEdge for vertices in distinct blocks: (a) aug-
mented block-cutvertex tree; (b) reorientation of the blocks, except the largest one, denoted B*.

1. Let 7)*(B) T(B).
2. Remove from 7)*(B) the Q-nodes.
3. For each (remaining) node # of T)*(B), if # is nonperipheral and the virtual

edge of # is not in the same face as c in skeleton(v), we remove the edges
from # to its parent v.

4. For ech vertex u # c, create a U-node #. Let v be the proper allocation
node of u and (s,, t,) be the edge between the poles of v. Make # a child of
, if one of the following cases applies: (i) c is in skeleton(,), and c and u are
on common fce of skeleton(,); or (ii) c is not in skeleton(,), and
and u re on a common face of skeleton(,).

5. For ech allocation node, of c, let e0 (c, u0),..., e_i (c, U-l) be the
edges incident on c in skeleton(v) in clockwise order around c; # be the child
of - whose virtual edge in skeleton(,) is e; f (i 0,..., k- 1) be the face
of skeleton(v) containing edges e and e(i+l)modk; nd E be the set of edges
of f excluding e and e(i+l)mod k.

(a) Expand node v into node v with k new children v0,..., V-l.
(b) For 0,..., k 1, make #,i and the U-node of u be children of v.
(c) Let the order of the children of v from left to right be #0, 0, v0,.

;k-1 /]k-1.

(d) For 0,..., k- 1, make each former child of whose virtual edge is
in Ei be a child of i

ON-LINE PLANARITY TESTING 989

(e) For 0,..., k- 1, make each U-node that is a former child of t, whose
associated vertex u is in face fi and is not adjacent to c a child of

(f) For 0,..., k- 1, order the children of t,i from left to right according
to the clockwise sequence of vertices and edges in face fi of skeleton(t,).

6. For each node t, that is not an allocation node of c, let f0 and fl be the faces
on the two sides of the edge between the poles of (s, t) in skeleton(z),
and let Ei (i 0, 1) be the set of edges of fi excluding (s, t).
(a) Expand node into a node t,’ with children 0 and
(b) For 0, 1, make each former child of whose virtual edge is in Ei be

a child of i
(c) For 0, 1, make each U-node that is a former child of whose associ-

ated vertex u is in face fi a child of
(d) For 0, 1, order the children of t,i from left to right according to the

clockwise sequence of vertices and edges in face fi of skeleton(z).
We replace the B-node of block B in B with forest 7)*(B) and identify each V-

and C-node that is a former child of the B-node with the U-node of 7)* (B) associated
with the same vertex. We denote by 7)* the resulting forest. The correspondence
between 7) and 7)* is given by the following lemma.

LEMMA 7.6. Let be the B-node of T) associated with a block B and # be the
child of associated with a vertex u of B. There is an edge in 7) between # and
(i.e., u is pivotal in B) if and only if there is a path in T)*(B) between the U-node of
u and the root of T)*(B).

Proof. The proof follows from Lemma 7.2 and the above construction.

By Theorem 7.1 and Lemmas 7.2 and 7.6, forest 7)* is equivalent to 7) regarding
Test operations. We represent forest 7)* with an edge-ordered dynamic tree [15].
Hence operation Test can be performed in O(log n) time.

Now we examine how to modify forest 7)* in consequence of update operations
on G. We consider operation InsertEdge first for vertices in the same block and then
for vertices in distinct blocks. We omit the discussion of operations Insert Vertex and
Attach Vertex.

When operation InsertEdge joins vertices in the same block B, the modifica-
tions of 7)* are in exact correspondence with the transformations performed on the
decomposition tree of B and take additional O(log n) time (amortized).

When operation InsertEdge joins vertices in distinct blocks, referring to the ter-
minology developed earlier in this section, we construct 7)*(B’) by rebuilding 7)* (B)
for each old block B except the largest block B* and by restructuring 7)*(B*) as
follows:

1. Restructure T)*(B*) in consequence of InsertEdge(e, u, u2). Without loss of
generality, assume that c* u,.

2. Let T be the tree of 7)* (B*) containing the U-node 2 of u2, and let p be the
root of T.

3. Reroot T at node n2.
4. Perform local updates along the path of T from p to 2.
5. Link T to the the rest of the newly reconstructed P*(B’).

Let be the length of the path between p and 2, and let Ap be the variation of
the number of edges of 7) in consequence of InsertEdge. We have the following result.

LEMMA 7.7. The restructuring of 7)* takes time O(logn- A +
Proof. The rerooting ot T and local updates are performed using a variation of op-

eration evert of edge-ordered dynamic trees. This takes O(log n) time plus

990 GIUSEPPE DI BATTISTA AND ROBERTO TAMASSIA

time to perform the local updates.
We conclude this section with the amortized analysis of the time complexity of

operation InsertEdge for vertices in distinct blocks. Let (9 be the set of old blocks.
Denote by nB the number of vertices of block B and by As the variation of the
number of nodes of/3 in consequence of InsertEdge. (Note that As >_ -2. 1(.91 + 1.)
Let t* be the time to perform InsertEdge(e, ul, u2) in B*.

From the above discussion, we have that, with an appropriate choice of the time
unit, the total time t for operation InsertEdge is

where

t t* + ts -+- to + tp + log n,

BO-{B*}

Namely, to is the time to reorient the old blocks and rebuild their secondary struc-
tures; t is the time to update the primary structure of B by means of primitive tree
operations; and tp is the time to update forest P*.

Let B B, where B is the set of allocation nodes of the cutvertex-c parent
of B in B, in the decomposition tree of B. Let P denote the total number of edges
of P. Let B be the potential of the data structure for block B, as given in the proof
of Theorem 6.5. We define the potential of the data structure as

B B

where the constant a > 0 denotes the maximum variation of potential of a block in
consequence of an InsertEdge operation. (Recall that the proof of Theorem 6.5 shows
that such variation is bounded by a positive constant.) Since Il + Il o(), we
have that

Denoting by AA the variation of cardinality of A, the variation A of potential
in consequence of insertE@e is given by

where

AGo + AOs + A(I)7,,

A nB’’lg
1 E ()nB log

1

tB BO

2). log n E ((I)B + a + 2). log n,
BEO

The following lemma is proved in [12]. Its proof is sketched here for the reader’s
convenience.

and let 1< x <LEMMA 7.8 (see [121). Consider the function f(x) xlog :,
<_ x. We have

f(xl +... + xk) (f(xl) +... + f(xk)) <_ -2(Xl +... + xk-1).

ON-LINE PLANARITY TESTING 991

Proof. This is a proof by induction on k. The base case (h 2) is easy to prove
by a simple analysis of the binary entropy function h(x) f(x) + f(1 z) for
0<x<l. [:1

By Lemma 7.8, to + A(I)o <_ 0. By Theorem 6.5, we have

t* -A(I)B. log n + log n

and

(I)B, _< Z (q) + a)+ AO..
BE(.9

Thus

t* _< --(I)B," log n + Z ((I)B + a). log n.
BEO

This implies that t* + tt + A(I) O(logn). Finally, we have that g < -At, and
therefore tT + A7 < 0. We conclude that t + A(I) O(log n), so that the amortized
time complexity of InsertEdge is O(log n).

7.3. Disconnected graphs. For graphs that are not connected, we complete
our repertoire with operation Make Vertex which can clearly be performed in O(1)
time. Let G be a general planar graph (possibly disconnected). We consider the block-
cutvertex forest of G, which is the forest of the block-cutvertex trees of the connected
components of G. When an InsertEdge operation joins two old connected components
C and C" into a new connected component C, we rebuild the block-cutvertex tree of
the smaller old component, so that it can be linked as a subtree of the block-cutvertex
tree of the larger component.

Again, we perform an amortized analysis. Let nc denote the size of the connected
component C. The time for InsertEdge is t log n + min(nc,, riG,,). The potential
of the data structure is defined as

E (b’nC’lgl)+c
all components C ?ZC

where b > 1 is a constant such that 17)1 + IN] _< b.n, and q)c is the potential of
connected component C as defined in 7.2. We can immediately verify that joining
C and C" affects the part of the potential associated with the size of 79 and ,4 so
that it increases by at most b. min(nc,,nc,,). By Lemma 7.8, we conclude that
t + A(I) O(log n).

The above analysis concludes the proof of Theorem 1.1 stated in 1.
8. Some applications.

8.1. Graph planarization. Let G be a graph with n vertices and rn edges.
Given a set of weights on the edges of G, a maximum-weight planar subgraph of G is
a planar subgraph of G with the maximum total edge weight. Finding a maximum-
weight planar subgraph is NP-hard even if all the edges have unit weights [26]. Given
an ordering e0,..., e,-i of the edges of G, each subgraph S of G is identified by
an integer k(S) (brn-l"’" b0)2 such that bit b 1 if and only if edge e is in
S. The lexicographically maximum planar subgraph of G with respect to the given

992 GIUSEPPE DI BATTISTA AND ROBERTO TAMASSIA

edge ordering is the planar subgraph S of G with maximum k(S). Several heuristics
have been developed for computing maximum-weight planar subgraphs; see, e.g.,
[14, 41]. There is experimental evidence that if the edges are sorted by decreasing
weight, a lexicographically maximum planar subgraph provides a good approximation
of a maximum-weight planar subgraph [14]. As a corollary of Theorem 1.1, we can
construct a lexicographically maximum planar subgraph in O(rnlogn) time. The
same result has been obtained in [7] with a different technique. A maximal planar
subgraph of G can instead be constructed in O(n + rn) time [49] using the technique
of

8.2. Transitive closure. In this section, we study the maintenance of reacha-
bility information in planar st-graphs, an important class of planar digraphs that find
several applications in computational geometry [27, 44, 45] and graph layout [10, 13].
Queries are of the following type: "Is there a directed path from vl to v27" This
problem was previously best solved using a data structure for general digraphs with
O(n2) space, O(1) query time, and O(n) amortized update time [32, 43].

However, this problem admits an efficient algorithm if we assume that the digraph
is embedded and restrict the InsertEdge operation to join vertices on the same face
of the embedding. That is, in the fixed-embedding problem, an edge that preserves
planarity cannot be added if this requires a change of the embedding. A data structure
for the fixed-embedding version of reachability in planar st-graphs is presented in [54].
The space requirement is O(n), and the query/update time is O(log n) (worst-case).
We show that the fixed-embedding restriction of the above technique can be removed
by using the decomposition tree (see 4) to maintain a hierarchical representation of
the embedding.

More formally, the on-line teachability problem for a planar st-graph G con-
sists of performing on G a sequence of update operations InsertEdge(e, v, v2) and
I’nsertVertez(v, v), intermixed with queries of the following type:

Reachable(v, v): Determine whether there exists a directed path from v to re.
It is shown in [54] that an embedded planar st-graph admits two total orderings of

its vertices, edges, and faces, called left-sequence and right-sequence, such that there
exists a path from Vl to v if and only if Vl precedes v2 in both the left- and right-
sequences. The update of the left- and right sequences after an InsertEdge operation
that preserves the embedding consists of a simple exchange of subsequences, so that
it can be efficiently supported by means of concatenable queues. See [54] for details.

The extension of the technique of [54] to InsertEdge operations that arbitrarily
modify the embedding is based on the following properties, whose proof is left to the
reader.

LEMMA 8.1. Let # be a node of the decomposition tree of a planar st-graph G.
The left-sequence (right-sequence) of the pertinent graph of # can be obtained from
the left-sequence (right-sequence) of skeleton(#) by replacing each edge e with the left-
sequence (right-sequence) of the ezpansion graph of e minus its poles.

LEMMA 8.2. Flipping the embedding of a planar st-graph around the poles ez-
changes the left-sequence with the right-sequence.

We consider an (arbitrary) embedding of graph G, and we maintain two copies
of the decomposition tree, denoted TL and T, which differ only in the order of the
children at each node. In tree Tc, the children of each node are ordered according
to the left-sequence of the corresponding virtual edges. Tree T is similarly defined
with respect to the right-sequence. There is a one-to-one correspondence between the
nodes of T. and T. By Lemma 8.1, the left-to-right order of the Q-nodes of

ON-LINE PLANARITY TESTING 993

yields the subsequence of edges of the left-sequence (right-sequence). Since vertices
are not explicitly described in our representation of the left- and right-sequences, we
perform the query Reachable(v1, v2) by considering any edge el incoming to vl and
any edge e. outgoing from v, and we test whether el precedes e. in both the left-
and right-sequence. If v has no incoming edges, then it must be the source of G,
and hence it reaches v. A similar argument applies if v has no outgoing edges. If
Reachable(v1, v2) true, a path from v to
visit of the decomposition tree, where k is the path length.

When adding an edge to G, we may have to modify the embedding. This is done
by means of the primitive topological operations reverse and swap; see Lemma 4.2.
A reverse operation flips the embedding of the pertinent graph of a node around its
poles. A swap operation restructures the embedding of the pertinent graph of a P-
node # by embedding the pertinent graph of a child of # in a different position. By
Lemma 8.2 the reverse operation corresponds to exchanging the subtrees of 2/’L and

7- rooted at the corresponding nodes. It is performed by two cuts followed by two
links. The swap operation is performed by means of two link and cut operations at
two corresponding P-nodes of 7"L and

After the embedding has been modified so that Vl and v are on the same

face, the exchange of subsequences in the left-sequence and right-sequence caused
by InsertEdge(c, v, v) is performed only at node X associated with v and v (see
InsertEdge in Algorithm 2), and can be done with O(1) primitive tree operations. We
represent 2FL and 2/’R as ordered dynamic trees [15].

THEOREM 8.3. Let G be a planar st-graph with n vertices. There exists an O(n)-
space data structure for the on-line teachability problem in G that supports operations
Reachable, InsertEdge, and Insert Vertex in O(logn) time, where the bound is amor-
tized for InsertEdge and worst-case for the other operations. Also, a directed path
between two vertices can be reported in time O(log n + k), where k is the path length.

8.3. Minimum spanning tree. In this section, we investigate the maintenance
of a minimum spanning tree of a planar graph under weight changes and insertions
of vertices and edges. Queries are of the following type: "Is edge e in the current
minimura spanning tree?" The previous best result for this problem is an O(m)-space
data structure for general graphs supporting queries in O(1) time and updates in

O(x/) time [21]. Also, this problem admits a more efficient algorithm if we assume
that the graph is embedded and restrict the InsertEdge operation to join vertices on
the same face of the embedding. Namely, O(n) space and O(log n) query/update time

(worst-case) can be achieved [15].
The on-line minimum-spanning-tree problem consists of maintaining the minimum

spanning tree of a graph. First, we consider the case of a biconnected planar graph
that is subject to a sequence of updates Insert Vertex and InsertEdge, intermixed with
the following operations:

InMst(e): Determine whether edge e belongs to the current minimum spanning
tree.

Reweight(e, w): Set the weight of edge e equal to w.
The fixed-embedding technique of [15] is based on the fact that the edges of G

not in the minimum spanning tree T dualize to a maximum spanning tree T* of the
dual graph G*. The cocycle (partition of the vertices) induced by the deletion of
edge e from T corresponds to the cycle induced by the insertion of e* into T*, and
vice versa. Hence the dynamization of the minimum spanning tree can be done by
representing both T and T* by ordered dynamic trees that support the usual tree

994 GIUSEPPE DI BATTISTA AND ROBERTO TAMASSIA

operations plus queries on the minimum-/maximum-weight edge on the tree path
between two vertices.

As previously described, the decomposition tree can be supplemented with embed-
ding information so that the modifications of the elnbedding required by an InsertEdge
operation are carried out in amortized time O(log n). Regarding the update of the
dual tree T*, we observe that the faces to the left and right of a pertinent graph are a

separation pair of G*. Hence T* is updated in a reverse or swap operation by means
of a sequence of O(1) expand, cut, link, and contract operations performed at the
nodes of T* representing the faces to the left and right of the pertinent graph being
flipped or moved. Figure 22 shows a schematic example of the update of T* in a
reverse operation.

FIG. 22. Schematic example of the update of the dual tree T* in a reverse operation. The
pertinent graph being reversed and the portion of T* in it are shown. Dual nodes are represented by
filled squares, and dual edges are represented by thick lines.

THEOREM 8.4. Let G be a planar biconnected graph with n vertices. There
exists a data structure for the on-line minimum-spanning-tree problem that supports
operation InMst in O(1) time and operations Insert Vertez, InsertEdge, and Reweight
in O(log n) time. The time bound is amortized for InsertEdge and worst-case for the
other operations.

The minimum spanning tree of a nonbiconnected graph is the union of the mini-
mum spanning trees of its blocks. Hence we have the following result.

THEOREM 8.5. Let G be a planar graph with n vertices. There exists a data struc-
ture for maintaining on-line a minimum spanning forest of G that supports opera-
tion InMst in O(1) time and operations InsertVertex, MakeVertex, InsertEdge, and

ON-LINE PLANARITY TESTING 995

Reweight in O(log n) time. The time bound is amortized for InsertEdge and worst-
case for the other operations.

REFERENCES

[1] B. ALPERN, R. HOOVER, B. ROSEN, P. SWEENEY, AND F. K. ZaDECK, Incremental evaluation of
computational circuits, in Proc. ACM-SIAM Symposium on Discrete Algorithms, Society
for Industrial and Applied Mathematics, Philadelphia, 1990, pp. 32-42.

[2] ll. AUSIELLO, ll. F. ITALIANO, A. MARCHETTI-SPACCAMELA, AND W. NANNI, Incremental algo-
rithms for minimal length paths, in Proc. ACM-SIAM Symposium on Discrete Algorithms,
Society for industrial and Applied Mathematics, Philadelphia, 1990, pp. 12-21.

[3] A. M. BERMAN, M. C. PAULL, AND B. G. RYDER, Proving relative lower bounds for incremental
algorithms, Acta Inform., 27 (1990), pp. 665-683.

[4] D. BIENSTOCK AND C. L. MONMA, On the complexity of of covering vertices by faces in a
planar graph, SIAM J. Comput., 17 (1988), pp. 53-76.

[5] K. BOOTIt AND G. LUEKER, Testing for the consecutive ones property property, interval graphs,
and graph planarity using PQ-tree algorithrns, J. Comput. System Sci., 13 (1976), pp. 335-
379.

[6] A. L. BUCHSBAUM, P. C. KaNELLAKIS, AND J. S. VITTER, A data structure for arc insertion
and regular path finding, in Proc. ACM-SIAM Symposium on Discrete Algorithms, Society
for Industrial and Applied Mathematics, Philadelphia, 1990, pp. 22-31.

[7] J. CA, X. HAN, AND R. E. TARJAN, An O(rnlogn)-time algorithm for the maximal subgraph
problem, SIAM J. Comput., 22 (1993), pp 1142-1162.

[8] N. CHIBA, T. NISHIZEKI, S. ABE, AND T. OZAWa, A linear algorithm for embedding planar
graphs using PQ-trees, J. Comput. System Sci., 30 (1985), pp. 54-76.

[9] R. F. COHEN AND R. TAMASSIA, Dynamic expression trees and their applications, in
Proc. ACM-SIAM Symposium on Discrete Algorithms, Society for Industrial and Applied
Mathematics, Philadelphia, 1991, pp. 52-61.

[10] G. D BATTISTa AN[) R. TAMASSlA, A19oritms for plane representations of acyclic digraphs
Theoret. Comput. Sci., 61 (1988), pp. 175--198.

[11] , On-line graphs algorithms with SPQR-trees, in Automata, Languages, and Program-
ming (Proc. 17th International Colloquium on Automata, Languages, and Programming),
Lecture Notes in Comput. Sci. 442, Springer-Verlag, Berlin, New York, Heidelberg, 1990,
pp. 598-611.

[12] , On-line maintenance of triconnected components with SPQR-trees, Algorithmica, 15
(1996), pp. 302-318.

[13] G. DI BATTISTA, R. TAMASSIA, AND I. G. TOLLIS, Area requirement and symmetry display in
drawing graphs, in Proc. ACM Symposium on on Computational Geometry, Association
for Computing Machinery, New York, 1989, pp. 51-60.

[14] P. EADES, L. FOULDS, AND J. GIFFIN, An efficient heuristic for identifying a maximal weight
planar subgraph, in Combinatorial Mathematics IX, Lecture Notes in Math. 952, Springer-
Verlag, Berlin, New York, Heidelberg, 1990, pp. 239-251.

[15] D. EPPSTEIN, I. F. ITALIANO, R. TAMASSIA, R. E. TARJAN, J. WESTBROOK, AND M. YUNG,
Maintenance of a minimum spanning forest in a dynamic plane graph, J. Algorithms, 13
(1992), pp. aa-54.

[16] S. EVEN AND H. (]AZIT, Updating distances in dynamic graphs, Methods Oper. Res., 49 (1985),
pp. 371--387.

[17] S. EVEN AND Y. SHILOACtt, An on-line edge deletion problem, J. Assoc. Comput. Mach., 28
(1981), pp. 1-4.

[18] S. EVEN AND R. E. TARJAN, Computing an st-numbering, Theoret. Comput. Sci., 2 (1976),
pp. 339-344.

[19] H. DE FRAYSSEIX, J. PacH, AND R. POLlaCK, Small sets supporting Fary embeddings of pla-
nar graphs, in Proc. 20th ACM Symposium on Theory of Computing, Association for
Computing Machinery, New York, 1989, pp. 426-433.

[20] H. E FRaYSSEIX aN P. ROSENSTIEHL, A depth-first-search characterization of planarity,
Ann. Discrete Math., 13 (1982), pp. 75-80.

[21] G. N. FREDEaICKSON, Data structures for on-line updating of minimum spanning trees with
applications, SIAM J. Comput., 14 (1985), pp. 781-798.

[22] , Fast algoritms for shortest paths in planar graphs, with applications, SIAM J. Comput.,
(gs), pp. 004-0e.

[23] , Ambivalent data structures for dynamic 2-edge-connectivity and k smallest spanning

996 GIUSEPPE DI BATTISTA AND ROBERTO TAMASSIA

trees, in Proc. 32nd IEEE Symposium on Foundations of Computer Science, IEEE Com-
puter Society Press, Los Alamitos, CA, 1991, pp 632-641.

[24] Z. (ALIL AND G. F. ITALIANO, Fully dynamic algorithms for edge-connectivity problems, in
Proc. 23rd ACM Symposium on Theory of Computing, Association for Computing Ma-
chinery, New York, 1991, pp. 317-327.

[25] , Maintaining biconnected components of dynamic planar graphs, in Automata, Lan-
guages, and Programming (Proc. 18th International Colloquium on Automata, Languages,
and Programming), Lecture Notes in Comput. Sci. 510, Springer-Verlag, Berlin, New York,
Heidelberg, 1991, pp. 339-350.

[26] M. R. GAPEY AND D. S. JOHNSON, Computers and Intractability: A Guide to the Theory of
NP-Completeness, W. H. Freeman, San Francisco, 1979.

[27] M. T. GOODRICH AND t. TAMASSIA, Dynamic trees and dynamic point location, in Proc. 23rd
ACM Symposium on Theory of Computing, Association for Computing Machinery, New
York, 1991, pp. 523-533.

[28] F. HARARY, Graph Theory, Addison-Wesley, Reading, MA, 1969.
[29] D. HAPEL AND R. E. TARJAN, Fast algorithms for finding nearest common ancestors, SIAM

J. Comput., 13 (1984), pp. 338-355.
[30] J. HOPCROFT AND 12.. E. TARJAN, Dividing a graph into triconnected components, SIAM J. Com-

put., 2 (1973), pp. 135-158.
[31] , Efficient planarity testing, J. Assoc. Comput. Mach., 21 (1974), pp. 549-568.
[32] G. F. ITALIANO, Amortized efficiency of a path retrieval data structure, Theoret. Comput. Sci.,

48 (1986), pp. 273-281.
[33] , Finding paths and deleting edges in directed acyclic graphs, Inform. Process. Lett., 28

(1988), pp. 5--11.
[34] G. F. ITALANO, A. MARCHETTI-SPACCAMELA, AND U. NANNI, Dynamic data structures for

series-parallel graphs, in Algorithms and Data Structures (Proc. 1989 WADS), Lecture
Notes in Comput. Sci. 382, Springer-Verlag, Berlin, New York, Heidelberg, 1989, pp. 352-
372.

[35] A. KANEVSKY, l.. WAMASSIA, ,]. CttEN, AND C. DI BATTISTA, On-line maintenance of the

four-connected components of a graph, in Proc. 32nd IEEE Symposium on Foundations of
Computer Science, IEEE Computer Society Press, Los Alamitos, CA, 1991, pp. 793-801.

[36] M.-Y. KAO AND P. N. KLEIN, Towards overcoming the transitive-closure bottleneck: Efficient
parallel algorithms for planar digraphs, in Proc. 22nd ACM Symposium on Theory of
Computing, Association for Computing Machinery, New York, 1990, pp. 181-192.

[37] P. N. KLEIN AND J. H. IEIF, An efficient parallel algorithm for planarity, J. Comput. System
Sci., 37 (1988), pp. 190-246.

[38] A. LEMPEL, S. EVEN, AND I. CEDERBAUM, An algorithm for planarity testing of graphs, in The-
ory of Graphs, International Symposium, Gordon and Breach, New York, 1967, pp. 215-
232.

[39] C. C. LIN AND R. C. CIANG, On the dynamic shortest path problem, in Proc. International
Workshop on Discrete Algorithms and Complexity, 1989, pp. 203-212.

[40] T. NISHIZEKI AND N. CHIBA, Planar Graphs: Theory and Algorithms, Ann. Discrete Math. 32,
North-Holland, Amsterdam, 1988.

[41] T. OZAWA AND H. TAKAHASHI, A graph-planarization algorithm and its applications to random
graphs, in Graph Theory and Algorithms, Lecture Notes in Comput. Sci. 108, Springer-
Verlag, Berlin, New York, Heidelberg, 1981, pp. 95-107.

[42] J. A. LA POUTRI, Dynamic graph algorithms and data structures, Ph.D. thesis, Department
of Computer Science, University of Utrecht, Utrecht, The Netherlands, 1991.

[43] J. A. LA POUTRI AND ,J. VAN LEEUWEN, Maintenance of transitive closures and transitive
reductions of graphs, in Graph-Theoretic Concepts in Computer Science (Proc. 1987 WG),
Lecture Notes in Comput. Sci. 314, Springer-Verlag, Berlin, New York, Heidelberg, 1988,
pp. 106-120.

[44] F. P. PREPARATA AND I. TAMASSIA, Fully dynamic point location in a monotone subdivision,
SIAM J. Comput., 18 (1989), pp. 811-830.

[45] , Efficient point location in a convex spatial cell complex, SIAM J. Comput., 21 (1992),
pp. 267-280.

[46] V. RAMACHANDRAN AND J. H. REIF, An optimal parallel algorithm for graph planarity, in
Proc. 30th IEEE Symposium on Foundations of Computer Science, IEEE Computer Society
Press, Los Alamitos, CA, 1989, pp. 282-293.

[47] J. H. tEIF, A topological approach to dynamic graph connectivity, Inform. Process. Lett., 25
(1987), pp. 65-70.

[48] H. ROHNERT, A dynamization of the all-pairs least cost problem, in Proc. 1985 Symposium on

ON-LINE PLANARITY TESTING 997

Theoretical Aspects of Computer Science, Lecture Notes in Comput. Sci. 182, Springer-
Verlag, Berlin, New York, Heidelberg, 1985, pp. 279-286.

[49] P. ROSENSTIEHL, personal communication.
[50] B. SCH1EBER AND U. VISHKIN, On findin9 lowest common ancestors: Simplification and paral-

lelization, SIAM J. Comput., 17 (1988), pp. 1253-1262.
[51] W. SCttNYDER, Embedding planar graphs on the grid, in Proc. ACM-SIAM Symposium on

Discrete Algorithms, Society for Industrial and Applied Mathematics, Philadelphia, 1990,
pp. 138-148.

[52] D. D. SLEATOR AND R. E. TAPJAN, A data structure for dynamic trees, J. Comput. System
Sci., 24 (1983), pp.

[53] R. TAMASSIA. A dynamic data structure for planar graph embedding, in Automata, Languages,
and Programming (Proc. 15th International Colloquium on Automata, Languages, and
Programming), Lecture Notes in Comput. Sci. 317, Springer-Verlag, Berlin, New York,
Heidelberg, 1988, pp. 576-590.

[54] R. TAMASSIA AND F. P. PREPARATA, Dynamic maintenance of planar digraphs, with applica-
tions, Algorithmica, 5 (1990), pp, 509-527.

[55] R. TAMASSIA AND I. G. TOLLIS, A unified approach to visibility representations of planar graphs,
Discrete Comput. Geom., (1986), pp. 321-341.

[56] , Dynamic teachability in planar digraphs with one source and one sink, Theoret. Com-
put. Sci., 119 (1993), pp. 331-343.

[57] I{. TAMASSIA AND J. S. VITTER, Parallel transitive closure and point location in planar struc-
tures, SIAM J. Comput., 20 (1991), pp. 708-725.

[58] R. E. TARJAN AND J. VAN LEEUWEN, Worst-case analysis of set-union algorithms, J. As-
soc. Comput. Mach., 31 (1984), pp. 245-281.

[59] R. E. TAPIAN AND A. C.-C. YAO, Storing a sparse table, Comm. Assoc. Comput. Mach., 22
(9z9), pp. 0--1.

[60] J. WESTBROOK AND R. E. TARJAN, Maintaining bridge-connected and biconnected components
on-line, Algorithmica, 7 (1992), pp. 433-464.

[61] H. WHITNEY, Non-separable and planar graphs, Trans. Amer. Math. Soc., 34 (1932), pp. 339-
362.

[62] M. YANNAKAI<IS, Four pages are necessary and sufficient for planar graphs, in Proc. 18th ACM
Symposium on Theory of Computing, Association for Computing Machinery, New York,
1986, pp. 104-108.

SIAM J. COMPUT.
Vol. 25, No. 5, pp. 998-1023, October 1996

() 1996 Society for Industrial and Applied Mathematics
O04

PARALLEL SUFFIX-PREFIX-MATCHING ALGORITHM AND
APPLICATIONS*

ZVI M. KEDEMt, GAD M. LANDAU*, AND KRISHNA V. PALEM

Abstract. Our main result in this paper is a parallel algorithm for suffix-prefix- (s-p-) match-
ing that has optimal speedup on a concurrent-read/concurrent-write parallel random-access machine

(CRCW PRAM). Given a string of length m, the algorithm runs in time O(log m) using m/logm pro-
cessors. This algorithm is important because we utilize s-p matching as a fundamental building block
to solve several pattern- and string-matching problems, such as the following: 1. string matching;
2. multitext/multipattern string matching; 3. multidimensional pattern matching; 4. pattern-occur-
rence detection; 5. on-line string matching. In particular, our techniques and algorithms are the first
to preserve optimal speedup in the context of pattern matching in higher dimensions and are the
only known ones to do so for dimensions d > 2.

Key words, amortized complexity, CRCW PRAMs, multidimensional pattern matching, par-
allel algorithms, pattern-matching automaton, speedup, string matching

AMS subject classifications. 68P99, 68Q10, 68Q22, 68Q25, 68Q68, 68R15, 68U15

1. Introduction. Several important problems in computing involve the detec-
tion of repeated patterns within regular structures such as strings and higher-dimen-
sional arrays. As a consequence, there is a rich history of fast algorithms for solving
these problems. Karp, Miller, and Rosenberg [KMR72] used techniques based on suc-
cessively refining equivalence classes of patterns of increasing size, where the patterns
in an equivalence class are identical. Initially, they consider equivalence classes of
patterns made up of a single character from the input. On each successive step, they
construct equivalence classes of bigger pieces of the input by appropriately combin-
ing the equivalence classes from the previous step. Their algorithm was not optimal.
Using a different approach, Weiner [W73] built a suffix tree and used it to design a
linear-time algorithm for a fixed alphabet.

Two linear-time (optimal) algorithms for the string-matching problem were given
by Znuth, Morris, and Pratt [KMP77] and Boyer and Moore IBM77]. These algo-
rithms are based on the powerful notion of a failure function. Failure functions led
to a substantial amount of subsequent work. Galil and Seiferas [GS83] have reported
time- and space-optimal sequential, real-time algorithms for string matching. Aho
and Corasick [AC75] have linear-time algorithms for a natural generalization of the
string-matching algorithm in which the input has multiple patterns, possibly of dif-
ferent sizes.

Eificient algorithms for multidimensional pattern matching (or d-dimensional pat-
tern matching) have been independently reported by Baker [Ba78], Bird [Bi77], and

Received by the editors August 4, 1992; accepted for publication (in revised form) January 25,
1995. A preliminary version of this paper appeared in Proc. 1989 ACM Symposium on Parallel
Algorithms and Architectures.

Department of Computer Science, Courant Institute of Mathematical Sciences, New York Uni-
versity, 251 Mercer Street, New York, NY 10012-1185 (kedem@cs.nyu.edu). The research of this
author was supported in part ONR contract N00014-85-K-0046 and NSF grant CCR-89-6949.

Department of Computer Science, Polytechnic University, 6 MetroTech, Brooklyn, NY 11201
(landau@poly.edu). The research of this author was partially supported by NSF grants CCR-8908286
and CCR-9305873 and the New York State Science and Technology Foundation, Center for Advanced
Technology in Telecommunications, Polytechnic University, Brooklyn, NY.

Department of Computer Science, Courant Institute of Mathematical Sciences, New York Uni-
versity, 251 Mercer Street, New York, NY 10012-1185 (palem@cs.nyu.edu).

998

PARALLEL MATCHING ALGORITHM AND APPLICATIONS 999

Karp and Rabin [KR87] (randomized). These algorithms run in time O(d(nd +rnd)),
given that the input text and pattern are of size nd and rnd, respectively.

Parallel algorithms for string matching were given by Galil [G84] for strings from
a fixed alphabet and Vishkin [V85] for strings from an arbitrary alphabet. Later,
Breslauer and Galil [BG90], Vishkin IV91], and Galil [G92] designed new parallel algo-
rithms for string matching with an arbitrary alphabet. Mathies [M88] and Amir and
Landau [AL88] have presented parallel algorithms for solving the multidimensional
pattern-matching problem. However, the techniques developed in these algorithms
do not scale in the sense that they have not yielded optimal speedup when applied to
pattern matching in higher dimensions. Our results in this paper are the first to solve
pattern-matching problems in higher dimensions with optimal speedup. Subsequently
and recently, Amir et. al [ABF93] and Cole et. al [CCG+93] presented techniques for
achieving optimal speedup for the two-dimensional pattern-matching problem with
an unbounded alphabet.

Our main result is an optimal-speedup parallel algorithm for solving the suffix-
prefix-matchin9 (s-p-matching) problem. Using this algorithm as the basic building
block, we specify optimal-speedup parallel algorithms for several pattern- and string-
matching problems; optimal-speedup parallel algorithms were not known for most of
these problems before. (Given a problem instance of size n, we say that a parallel
algorithm running in T(n) steps using P(n) processors performs work P(n) x T(n).
We say that such an algorithm has optimal speedup if the work that it performs is
(asymptotically) the same as the runnin9 time of the best-known sequential algorithm
for solving the same problem.) The definition of the s-p-matching problem and a list
of these other problems are given in 1.1. Our results have the advantage that they
scale to higher dimensions while preserving optimal speedup.

In particular, our algorithm relies on the appropriate combination of two basic
ideas. First, a novel aspect of our algorithm is that we construct a finite automa-
tion, as in Aho and Corasick [AC75], in parallel. This finite automaton can be used
to recognize short strings of length O(logrn), where rn is the size of the input, in
linear work. Since this step uses failure functions, we note that our algorithm is
the first to use them in the parallel context. The second idea that we use involves
computing characteristics, originally introduced in [AILSV88] and [KP92]. These
characteristics are essentially the "short names" used by Karp, Miller, and Rosen-
berg [KMR72], as described in the first paragraph above. It is this combination
that allows us to obtain optimal-speedup parallel algorithms for pattern matching in
higher dimensions. All of our algorithms are developed in the context of an arbitrary
concurrent-read/concurrent-write parallel random-access machine (CRCW PRAM)
[J92].

The rest of this paper is organized as follows. In 1.1, the significant results in
this paper are reported. Section 1.2 describes some previous work. Section 2 presents
the new optimal-speedup algorithm for the s-p problem. Section 3 describes some
applications of the s-p-matching algorithm. Section 4 gives some concluding remarks.

1.1. Significant results in this paper. Our contributions are as follows:
1. We specify a parallel algorithm for the s-p-matching problem that has optimal

speedup. The input to this problem consists of two equal-length strings A and B,
both of length rn. We wish to determine for each i, where 1 <_ <_ rn, whether the

In their paper, Karp and Rabin state that these algorithms ([BATS], [Bi77], and [KR87]) run in
time O((nd + rnd)), but Karp, in personal communication, clarified that they assume a constant d.

1000 ZVI M. KEDEM, GAD M. LANDAU, AND KRISHNA V. PALEM

suffix of A of size is identical to the prefix of B of the same size. Our algorithm runs
in O(logm) time using m/logm processors. The s-p-matching problem embodies
a computational bottleneck in several pattern-matching problems. Therefore, using
this algorithm as the fundamental building block, we are able to design the following
optimal-speedup parallel algorithms.

2. We specify a new and simple algorithm that has optimal speedup for solving
the string-matching problem with a polynomial-size alphabet. The input to this
problem consists of two strings: a text of length n and a pattern of length m (m _< n).
We wish to determine for each position of the text whether the pattern is equal to
the substring of the text starting at it. Our algorithm runs in O(logm) time using
n/logm processors. Except for this problem, optimal-speedup parallel algorithms
were not known for the remaining four applications listed below.

3. We specify a new and simple algorithm that has optimal speedup for solv-
ing the multitezt//multipattern string-matching problem. The input to this problem
consists of u text strings T1, T2,..., T of lengths nl, n2,..., n, respectively, and v
patterns P1,P2,...,Pv, each of length m _< ni for 1 < < u. We wish to deter-
mine for each position of each text string whether one of the patterns is equal to
the substring of the text starting at it. Our algorithm runs in time O(logm) using
(vm + Ej=I nj)/logm processors.

4. We specify an optimal-speedup parallel algorithm for multidimensional pat-
tern matching. The input to this problem consists of two arrays: a text of size nd and
a pattern of size md (m <_ r, d >_ 1). We wish to determine for each position of the
text whether the pattern is equal to the subarray of size md of the text starting at it.
This algorithm runs in time O(dlogm) using nd/logm processors.

5. We specify an optimal-speedup parallel algorithm for solving the occurrence-
detection problem. Informally, the input to this problem is a text string of size n
presented as an (unordered) set of pieces of size k n/1, no two of theIn equal.
The problem is as follows: given a pattern of size m, determine if there exists a
concatenation of the substrings to form a single string of size n such that the pattern
occurs in the resulting string. This question is relevant to issues in molecular biology
[CD88], [TU88]. Our algorithm solves this problem in time O(log m) using n log m
processors.

6. We specify a parallel algorithm for on-line string matching that has optimal
amortized speedup. This is an on-line algorithm motivated by practical problems such
as text editing. Here we have a text of size n and a pattern of size m < n for which
the string-matching problem has already been solved. Now, the text is extended by
k characters, i.e., it is now of length n + k, and we wish to determine if there are any
additional matches of the pattern in the text. Our algorithm solves this problem in
time O(log m + log k), and the amortized work (to be defined precisely later) done by
it is always linear and hence optimal.

1.1.1. Remarks on alphabet size and space. Throughout the rest of this
paper, we are concerned with an alphabet size that is at most polynomial in m.
Given this, we assume without loss of generality that E C_ {0, 1,...,m- 1} and
therefore the individual symbols of the alphabet (elements of E) are each log m bits
long. Following standard conventions [J92], a processor is assumed to be able to read
a constant number of symbols in a constant number of time units. We note that this
is more general than the constant-sized alphabet used in [G84], for example. However,
we do not consider alphabets of an arbitrary size relative to the size of the string, as
in [V85]. All of our operations are standard PRAM operations. In contrast, in dealing

PARALLEL MATCHING ALGORITHM AND APPLICATIONS 1001

with an arbitrary-sized alphabet (as in [V85]), it is assumed that any two symbols
can be tested for equality in O(1) time and work independent of the size. Given this
assumption, we note that a problem with an arbitrary alphabet could be converted
to one in which IEI _< rn by sorting in O(n log rn) work.

All of our techniques will work with space O(rn1+) as in the work of Apostolico
et al. [AIBSV88] for any 0 < e _< 1 with a corresponding slowdown proportional to
1/e. These implementations with reduced space requirements can be realized with
just O(rn) cost (work) for initialization, following [H88].

1.2. Previous work. We now compare our applications of the s-p matching
algorithm with previous results.

1. Galil [G84] and Vishkin [V85] have designed optimal-speedup parallel algo-
rithms for string matching with input strings drawn, respectively, from a bounded
and arbitrary alphabet. Both of these algorithms run in time O(log r) using r/log n
processors of a CRCW PRAM. Breslauer and Galil [BG90], designed an algorithm
that runs in time O(loglogn) using n/ (log log n) processors of a CRCW PRAM.
Vishkin [V91] presented an algorithm whose text analysis runs in time O(log* n) us-

ing n/log*n processors of a CRCW PRAM, and Galil [G92] recently presented an

algorithm that runs in constant time and uses a linear number of processors. This
result has now been extended to the two-dimensional case [CCG+93] as well, using
several new ideas.

2. Mathies [M88] presented a parallel algorithm for solving the multidimen-
sional pattern-matching problem that runs in O(dlog2 n) time using nd processors
of a CRCW PRAM. Subsequently, Amir and Landau [AL88] presented an improved
algorithm for the multidimensional pattern-matching problem that runs in O(d log rn)
time using nd processors of a CRCW PRAM. Previous work does not yield an optimal
speedup parallel algorithm for this problem.

2. An optimal-speedup algorithm for the s-p-matching problem. In this
section, we begin with a parallel algorithm for solving the s-p-matching problem that
embodies some of the main ideas but does not have optimal speedup. Then, in the
subsequent subsections, we progressively refine it by introducing additional techniques
to eventually derive a parallel algorithm with optimal speedup in 2.4.

2.1. Computing characteristics and thereby deriving 6. In the interests
of completeness, we start with a formal definition of the s-p-matching problem:

Input: Strings A aoal.., a,_ and B bobs.., b,_ over an alphabet E.
Output: A bit vector 5[O...m- 1], where 5[i] 1, if and only if a,--i-a,-i...

a,_l. bob, bi.
The most straightforward computation of 5, which is used to solve the s-p-

matching problem, would involve explicit manipulation of the m suiixes of A and
the rn prefixes of B. However, this is obviously ineiicient. This ineiiciency can be
overcome by observing that the set S of these 2rn suixes and prefixes splits into at
most 2m (and at least m) equivalence classes under the relation of equality. There-
fore, there exists a function that maps S into the set [1... 2rn] with the property that
two strings of the same length are mapped onto the same value if and only if they are
equal. It will be suiicient for us to compute any such function in order to determine
5.

Therefore, throughout the rest of this section, we will be concerned with com-

puting such a characteristic function X (or characteristic for short) for a given set of
strings. In particular, we wish to compute a characteristic function that maps the el-

1002 ZVI M. KEDEM, GAD M. LANDAU, AND KRISHNA V. PALEM

ements of such a set to "small" integers such that two elements of the set are mapped
on the same integer if and only if they are equal. These X values can then be used to
quickly compute 5.

Without loss of generality, we will assume that m is a power of two. To help in
the explanation, we will start with the assumption that we are given c x m processors
for an appropriately chosen constant c. (Essentially, we will assume that there is a
processor for every character in the given input.) Subsequently, we will extend this
algorithm to one that only uses m/logm processors by using Brent’s lemma [Br74];
the optimal-speedup result will follow from this extension.

2.2. A simple suboptimal algorithm. We first sketch a simple algorithm for
computing 5 in O(m log m) work and time O(log m). This algorithm computes the
characteristics of the suffixes of A and the prefixes of B in S by appropriately com-
bining the characteristics of their substrings.

Specifically, for each i, 0, 1,..., logm, we compute the characteristic of the
set of all substrings of A and B of length 2i, as was done in [AILSV88] and [ZP92].
For the purpose of illustration, we will describe this computation for a value as-
suming that the characteristics were computed for i- 1. We note that substrings
of the same length are always handled concurrently. We first note that substrings
of A and B are handled similarly here. Let ajaj+l...aj+2_l be a substring of
A. Dedicate a processor, say Pk (0 <_ k _< 2m- 1), to this substring. Given
that the characteristics of strings of length 2i-1 were computed in the previous
step, x(aj...aj+2i-l_l) and x(aj+2i-l...aj+2_l) are known and are in the range
[0... 2m- 1]. This information is now combined to compute the characteristics of
substring ajaj+l...aj+2_l as follows. Processor Pk writes k into location num-
ber x(aj.., aj+2-l_l)+ 2mx(aj+2- aj+2_l) of some vector indexed by 0, 1,...,
(2m)2- 1. Then P reads the value in the above location and assigns this to
x(aj,aj+l.., aj+2_l). As all the processors write in parallel, only one of the pro-
cessors writing into a location succeeds, and all processors writing into this location
read that value. Moreover, the resulting X value is in the range [0... 2m- 1]. Note
that in phase 0 the vector is of size m, the size of the alphabet; processor Pk writes
k into location a in the vector.

These characteristics are now combined appropriately to derive the X values of the
suffixes and prefixes in S. Assume that the empty string is assigned the characteristic
of 2m (to make it different from those computed above). Let be a suffix of A of some

x’lg m 2length z_=0 c c E {0, 1}. Write as the concatenation log,log(,-l)...0,
where the length of is ci2 (that is, the length is 0 or 2). Do the same for each
prefix b of B. In log m steps it is possible to compute characteristics for the set S
by combining in step i, 1,..., log m, the values X(0... -1) and X() to obtain
X(0...). (To use the approach of the previous paragraph, replace 2m by 2m + 1.)
All ’s and b’s are processed in parallel as above to assure consistent assignment of
characteristics to strings in S.

OBSERVATION 1. The .function 5 can be computed in O(m log m) work and time
O(log m).

2.3. Characterizing prefixes efficiently. In this section, we refine the above
algorithm to where the total work done is only O(m) on the string B for which the
characteristics of the prefixes have to be computed. This computation will run in
time O(log m). However, the corresponding characterization of the suffixes of string
A will still need O(m log m) work. We will return to a discussion of this issue in 2.3.2

PARALLEL MATCHING ALGORITHM AND APPLICATIONS 1003

below. Subsequently, in 2.4, we will refine these ideas further to get an algorithm
that solves the s-p-matching problem in O(log rn) time and O(m) overall work.

In order to improve the work done in characterizing the prefixes of string B,
we structure the computation to proceed in two stages, referred to respectively as
the winding stage and the unwinding stage. The winding stage consists of phases
0, 1,...,logrn. In phase i, we compute the characteristic of the set of substrings
{by... bj+2-i 0 <_ j _< m- 2 and j divisible by 2}. Basically, in phase i, only
those positions whose distance from the head of B is a multiple of 2 are "active."
The computation corresponding to all the other positions will have "gone to sleep."
For each active position j, we compute the characteristic of the substring of length
2 starting at j. Therefore, on phase i, we compute the characteristics of only rn/2
substrings of B.2

In the (complementary) unwinding stage, the information computed in the wind-
ing stage is combined. Its schedule is the "reverse" of that of the winding stage, and
its phases are log m 2, log m- 3,..., 0. In phase i, we compute the characteristics of
the set {b0... bj J > 2, J + 1 divisible by 2 and not divisible by 2+ }. At this point,
the characteristic of the prefix of B ending at position j is computed by combining
previously computed characteristics of its substrings, as described in 2.2.

Remark. It is easily verified that the unwinding stage has two fewer phases than
the winding stage. This is because the positions scheduled during phases log rn and
log rn-1 in string B have their characteristics completely computed during the winding
stage. Since only nodes whose characteristics are not completely computed during
the winding stage need to be processed during the unwinding stage, we can drop the
counterparts of these winding phases during unwinding. Therefore, we start with an

unwinding phase of log m 2.
We will also introduce an example below to illustrate these issues.

2.3.1. An example. We will now present an example of the naming as it pro-
ceeds on the example strings A cabacaba and B abacabab. Essentially, in the
algorithm described thus far, during the winding as well as the unwinding phases,
the computation on A mimics the computation on B, so that the final X values are
correct. In other words, the algorithm must compute characteristics for suffixes of A
that are consistent with those given to the prefixes of B. To do this, the intermediate
steps in the computation of the characteristics of the suffix of A of any length j must
follow the the computation of the characteristic of the prefix of B of length j.

In Table 1, we show the schedule based on which positions are active during the
winding and the unwinding stages of string B. At each phase, we also show the
characteristic values computed for the active positions.

In Table 2, we illustrate the way in which positions in string A are active and
"keep up" with the computation on string B. The final value of each position is shown
in boldface in Tables 1 and 2. As noted in the remark above, we note that the number
of unwinding phases is two fewer than that of their winding counterparts. The results
of the computations from Tables 1 and 2 are summarized below over all the phases

2 The scheduling of computation on substrings of B is based on the algorithm from [KP92] used
for computing characteristics of lineage functions of forests and is similar to the well-known prefix-
sum computation [FL80]. Informally, we are given an input forest whose vertices and/or edges are
labeled. A lineage function maps a set of labels of paths in this forest into some (range) set. However,
since strings are a very special (degenerate) case of arbitrary forests, the techniques used here in the
case of strings are significantly simpler than those used in the context of arbitrary forests for which
the algorithm was originally designed.

1004 ZVI M. KEDEM, GAD M. LANDAU, AND KRISHNA V. PALEM

TABLE 1
Execution trace on string B abacabab.

Winding Stage Unwinding Stage
Position Processor Phase 0 Phase 1 Phase 2 Phase 3 Phase 1 Phase 0

Number
X X X X X X

8 12
9 6 15
10 12 10
11 4 11 11
12 12 12
13 6 15 13
14 12 14
15 6 15 15 15

TABLE 2
Execution trace on string A cabacaba.

Winding Stage Unwinding Stage
Position Processor Phase 0 Phase Phase 2 Phase 3 Phase Phase 0

Number

X X X X X X
0 4 0 4 0
1 12 15 11 13 14
2 6 2 2 2
3 12 11 3 3
4 4 0 4
5 12 15 10
6 6 2
7 12

TABLE 3
Summary of characteristics of the substrings of A and B.

Phase0: a=12, b=6, c=4.
Phase 1: ab 15, ac 11, ba 2, ca O.
Phase 2: abac 11, abab 15, acab 3, baca 2, caba 4.
Phase 3: abacabab 15, cabacaba O.
Phase 1: abacab 13, bacaba 2.
Phase 0: aba 10, abaca 12, acaba 3, abacaba 14.

in Table 3.
Let us consider a typical match of the prefix of B of size 7 with the suffix of

A of the same length; the match is induced by the sequence cr abacaba. Tracing
through the tables, we see that these names are computed by decomposing cr into
subcomputations on the three substrings as follows: abaclabla. Let us consider the
unwinding stage in Tables 1 and 2 to understand this better. At the end of the
winding stage, the characteristic of abac is 11, that of ab is 15, and that of the last
symbol a in isolation is 12. In Phase 1 of the unwinding stage, processors 13 and
1 characterized the string abacab to be 13. Finally, in Phase 0, processors 1 and 14
computed the final characteristic of 14 in strings A and B, respectively, declaring the
match.

It is easy to verify that the resulting characteristics of two substrings are always
the same whenever they are identical. In the present implementation, we allow non-

PARALLEL MATCHING ALGORITHM AND APPLICATIONS 1005

bob bzb b4b

bo b2 b3 b4 b6

FIG. 1. Prefixes B and B share intermediate substrings.

identical strings of different lengths to sometimes get the same characteristic value.
However, this does not cause any problem in solving the s-p-matching problem cor-
rectly.

2.3.2. The difficulty in characterizing suffixes efficiently. Recall that in
the algorithm discussed above, during phase of the winding stage, characteristics of
substrings {aj... aj+2-i I0 j <_ m- 2i} of string A are computed. We observe
that no more than m- 2 + 1 substrings of A are active during this phase. Likewise,
during phase of the unwinding, for each k and j such that 0 <_ k _< rn- 2 + 1 and
j + 1 is maximal and is divisible by 2 and not divisible by 2i+1, the characteristics of
the set {ak ak+j } of substrings of A are computed. For example, consider rn 128,

5. Then k is in the range of 0... 97. Now consider k 10; we compute j + 1 to be
96, and therefore the characteristics of {al0... a105} will be computed. Once again,
it is easy to verify that fewer than. m- 2 + 1 substrings of A are active during this
phase.

Note that prefixes of B of lengths 2 + 1 and a2 + 2 for some (share many
overlapping substrings. Indeed, it was this fact that allowed us in 2.3 to structure
the winding and unwinding stages such that the only O(m) work was done on string
B overall. However, as shown in the example below, the "simulation" of this compu-
tation on the suffixes of A does not have this nice structure. In particular, suffixes of
increasing lengths of string A do not share overlapping substrings in such a simula-
tion. As such, it is not hard to verify that by the end of the winding stage, we would
have computed the characteristics of a set of O(m log m) substrings of A but of only
O(m) substrings of B. We will now sketch a brief example to better illustrate this
difficulty. In Figure 1, we have an example string B and we consider two prefixes of it
of six characters and seven characters each and denoted by B and B", respectively.
Similarly, we consider an example string A shown in Figure 2, and two of its suffixes
in turn also with six and seven characters are A and A", respectively.

Clearly, one possible case of s-p matching is where the suffix A of A of length six is

aligned with the prefix B of B of the same length. Similarly, the second case is where
A" is aligned with B". As shown in the figures (and explained above), prefixes B
and B" share intermediate substrings that are composed during the naming process.
For example, the characteristic of B" is derived simply by adding the single character
b to the characteristic of B. However, as we can see from Figure 2, this is not true
of the corresponding suffix A" with respect to A.

1006 ZVI M. KEDEM, GAD M. LANDAU, AND KRISHNA V. PALEM

am_(i am_5 am_4 am_’am_ an_

am.7 am_6 am_5 am_4

FIG. 2. Sujxes A and Apl do not share intermediate substrings.

2.4. The optimal algorithm. Recall from the previous section that A was the
"difficult" string as it required O(mlogrn) work. Intuitively, the way in which we

get around this is to shrink A to a string of size m log rn. This is done by first
partitioning it into rn/logm nonoverlapping substrings, each of length log rn. We
then replace each substring by its characteristic value X to get a new string A. In
conjunction with this, we decompose B into log rn strings, /1,/2,.../logm, each of
length m log m, as follows: character in the jth such string characterizes the log m-
length substring of B starting at position j + log m. We operate on each of these
log m cases generated by B independently using the single copy of A as described in

2.3.
The algorithm is stated concisely in 2.4.1. This is followed by a detailed example

in 2.4.2 that illustrates this concise description. In order to achieve parallel speedup,
the algorithm for s-p matching discussed here relies on a parallel construction of the
well-known Aho-Corasick automation from [AC75]. We describe the details of this
parallel construction in 2.4.3. This construction is used to implement steps 1 and
2 from 2.4.1, as shown in 2.4.4. Subsequently, step 3 of the algorithn is described
in 2.4.5 and 2.4.6. The details of coping with "boundary conditions" in step 4 are
discussed in 2.4.7, and solving the s-p-matching problem in step 5 is summarized in

2.4.8. Finally, the complexity of the overall algorithm is analyzed in 2.4.9.
2.4.1. Concise statement of the algorithm.

1. Compute in parallel the Aho-Corasick automaton M representing the set of
rn/log m nonoverlapping substrings of A of length log rn each:

aoal.., alog m-1
alog malog m+l a2 log m--1

am-log mare-log m+l am-1.

Let gi for 0, log rn,..., rn log rn be the name (number) of the state accepting the
substring aiai+l.., ai+logm-1. (We note that a state gi for 0, logm,..., m-logrn
accepts the substring aai+l...ai+logm-1 if and only if from the start state, the
sequence of transitions induced by aiai+.., ai+logm-1 lead to state gi.) Create the
string A a0alogm2 log m m-log m.

PARALLEL MATCHING ALGORITHM AND APPLICATIONS 1007

log m log m log m

A
a0 "algm-I alg m a21og m- am-log m am-1

Fla. 3. The transformation done to string A.

2. Apply in parallel the automaton M to the string B considered as text. As
the result, create the string/) bob1... m-log m, where is the state accepting the
string bb+l b+logm-1.

Create log m strings

/1 bl blog m+ 2 log m+1... m-2 log m+1,

/2 b2 blog m+22 log m+2... m-2 log m+2,

-logm logm2 log m... m--log m.

At this point, we have "compressed" string A by a factor of log m, as shown in Figure
3.

Furthermore, we have also "decomposed" string B into log m components, each
of length m/log m; one such decomposed component is illustrated in Figure 4.

3. Compute in parallel the characteristics of the set consisting of all the proper
suffixes of the string A and all the proper prefixes of the strings B1, B2,..., Blogm.

4. Compute in parallel the characteristics of the set consisting of all the suffixes
of the set of strings

aoa alog m-1
alog malog m-I-1 a2 log m-1,

am-log mam-log m+l am-1

and all the prefixes of the string bob1.., blog m-1.
This part of the computation is used in processing the "remainder" pieces as

shown in Figure 4.
5. Compute in parallel the vector 5. Let j, where 1 _< j <_ m, be such that

j cl log m + c., where cl _> 0 and 1 _< c _< log m. Also, let j 1. Then 6[i] 1
if and only if

(a) *(gm-cl logmgm-(cl-1)ogm.., gm-logm))/(b2b.+ogm... bc2+(c1-1)logm)
and

(b) X(am--lam-i... am-c logm-1) X(bobl... b2-1).

1008 ZVI M. KEDEM, GAD M. LANDAU, AND KRISHNA V. PALEM

B

REMAINDER log rn

b0 bl ...bi_ bi blogm+i_l

log m log rn

blogm+i ...b21ogm+i-ll bm-21ogm+i"’bm-logm+i-1

’i ,I-log m+i bm-21ogm+i

FIc. 4. The manner in which string B decomposes into

2.4.2. Example. We now present an example. Let E- {a, b}, m 16, and

A bbabbbaaabaabbab, B aabaabbabababaaa.

1. Decompose A bbablbbaalabaalbbab (we broke A into strings of length log2 16
4 each). We now need to construct an automaton representing the four (actually

three distinct) substrings. The automaton has 10 states. Its starting state is , and
it is defined by the functions listed in Table 4 below and represented in Figure 5. In
this figure, the "goto" function is denoted by the solid lines, whereas the "failure"
function is indicated by the dashed or broken lines; please refer to 2.4.3 for a detailed
review of the structure of such an automaton.

TABLE 4.

b
o a
c b

/ b
a
b
a

g b
a
b

b
r] a

a
0 b

b

state symbol g(state, symbol)

PARALLEL MATCHING ALGORITHM AND APPLICATIONS 1009

TABLE 4 (cont.

state f(state)

0

stands for abaa, 0 for bbaa, for bbab. Thus A-
2.

3. The relevant (distinct) substrings consisting of certain suffixes of and pre-
fixes of/)1,/)2,/)3, and/)4 are/, 5, , r, 5,/7, 55, , 7,/77, /, 5, r]Tc, and 055,
and we may assume that characteristics have been computed for them appropriately.

4. The relevant (distinct) substrings are a, b, aa, ab, aab, baa, bab, aaba, abaa,
bbaa, and bbab, and we may assume that characteristics have been computed for them
appropriately.

5. Let us compute 518]. 8, j + 1 9. Thus j 2.4 + 1, and therefore
cl 2 and c2 1. Note that asa,s. bb5 55; 55 stands for abaabbab. The
equality of asa2 bb5 is determined by checking the characteristics of asal and
bb5. Furthermore, a7 b0 a, which is also checked by characteristics. Thus
5[8] 1. Indeed, the suffix of length 9 of A and the prefix of length 9 of B are both
equal to aabaabbab.

Before proceeding any further, we will first describe the construction of the Aho-
Corasick automaton in detail. It has to be recalled that this construction is done in
step 1 of the algorithm described in 2.4.1.

2.4.3. The Aho-Corasick automaton and its parallel construction. We
assume that the reader is to some extent familiar with the work of Aho and Corasick
from [AC75]. However, we will briefly review that work and fix the notation now.

First, given several pattern strings, a tree (trie) describing them is constructed. This
tree describes the underlying automaton (see Figure 5) whose states correspond to
the nodes. We have a "goto" function g(state r, symbol a) represented by the
solid lines in Figure 5 that indicates the next state to go to if we are in state r and
the current symbol in the text string being read is a. In other words, 9(r, a) s if
the prefix can be extended by the symbol a. The new state will be s. Let r](r) denote
the depth of the state r, that is, the distance between it and the root (in Figure 5)
of the tree. The automaton is in state r if and only if the following conditions hold:

(i) The suffix of the prefix of the text string examined so far is equal to the
labels of the states from the root to r. Let c denote this sequence of labels to r.

(ii) Furthermore, c is equal to a prefix of some pattern string(s).
(iii) Also,](r) is the largest possible match found thus far ending in the text-

string position being currently matched.

1010 ZVI M. KEDEM, GAD M. LANDAU, AND KRISHNA V. PALEM

FIG. 5. The Aho-Corasick automation for this example.

We also have the "failure" function f(r) represented by the broken lines in Figure
5. The failure function is used to continue matching the pattern on the string should
g(r, a) fail. This indicates that there is no pattern string whose prefix is a.a, where
denotes concatenation as a prefix. Equivalently, any symbol of the text being read

cannot be used to extend the prefix. That is, if g(r, a) for the symbol a that was read
is undefined, the automaton goes to state f(r) and processes a again. In other words,
it checks whether g(f(r), a) is defined. If it is, the transition takes place; otherwise,
f(f(r)) is checked, and so on.

2.4.3.1. The parallel construction. We start by assigning a processor to each
pattern string. Recall that, conceptually, each state of the automaton corresponds
to a substring of one or more of the pattern strings. Informally, each state of the
automaton is associated with an array of size IE[. 3 Let us suppose that the automaton
has been constructed to include all states of depth d or less. Let r be a state at depth
d. Then, if g(r, a) s, the parallel algorithm first allocates a new array of size]E

3 Recall that in our paper, we are concerned with a IEI that is polynomially bounded in the size
of the input strings. Therefore, the automaton can be trivially implemented using a polynomial
amount of space.

PARALLEL MATCHING ALGORITHM AND APPLICATIONS 1011

to represent s. This is done by (one of) the processor(s) allocated to a pattern string
whose prefix of length d + 1 defined state s. Following this step, this processor adds
a pointer in the position corresponding to a (in the array representing r) to point to
the array representing s. This pointer implements g(r, a) s.

We will now address the question of computing the failure function f. However,
before proceeding with this parallel construction, it is helpful to briefly review its
classical sequential construction. The sequential algorithm computes f iteratively
based on the depth d of the state s. Let r be the (unique) parent state of s in
the corresponding tree representation. In particular, let g(r, a s. Informally, the
iterative process involves following the failure fllnctions towards the root of the trie
until a state s is encountered such that

1. the string of symbols representing the path from the root to cr s is a
proper suffix of the sequence of symbols encoding the path from the root to state s
and

2. a is the longest sequence with the above property.
Equivalently, let (r) d- 1 and let g(r,a} s. Let rl,r2,...,r (u >_ 1) be the
shortest sequence with the following properties" rl r, ri+ f(ri) for _> 1 and
9(r, a) is defined. Then f(s) 9(r, a).

Returning to the question of constructing the failure functions in parallel, we will
now show that the parallel algorithm will proceed in at most O(D) steps, where D
denotes the length of the longest pattern string in the input,a For any state z, we
denote by -(x) the step in which the computation of f(x) is finished. We will show
the following.

THEOREM 2.1. For any state s, c(s) <_ 2(s) 1 (f(s)).
Proof. Again, let r, s, and a be such that g(r, a) s. The computation of f(s)

will start in the step following the step in which f(r) was computed. By (informal)
induction on the depth of a state, f(r) is computed by step 2r/(r) 1 (f(r)). We
will show that it will end no later than in step 2(s) 1 (f(s)).

During the computation, the processor P allocated to s (technically, this is one
of the processors allocated to the string whose prefix of length (s) terminates at s)
follows the sequence f(r), f(r2),..., f(r-l), u >_ 1, described above, with one step
required for examining each f (and associated g). However, we need to ensure that
processor P does not wait by more than a constant amount of time to determine each
of the f(ri) for 1 <_ <_ (u- 1), or else processor P might have to "wait" for the
processor computing f(ri) to complete its computation.

We will therefore first prove the following crucial bound on the time that relates
-(ri) and -(s). Specifically we have the following.

LEMMA 2.2. For 1 <_ <_ (p 1), -(ri) <_ 2r(s) (f(s)) + 1.

Proof. We first recall that f(ri)= ri+l and that r/(ri) > r(ri+) by construction.
Therefore, we note that r(s), (r), r/(r2),..., r(r_l) is a strictly decreasing sequence
of integers. From the above, it immediately follows that

(1) r/(r) < r/(s) i.

From the monotonicity of the depths of the sequence ri, it also follows that

(2)

4 In our actual application, all the pattern strings are of (equal) D log rn length.

1012 ZVI M. KEDEM, GAD M. LANDAU, AND KRISHNA V. PALEM

or, since rl(f(s)) rl(r,) / 1,

(3) (f(s)) 1

_
(r) (.- i).

Equivalently, replacing with + 1, we have

?(f(s))- 1 < ?](’i+1)- (//- i-- 1).

From (4) above and the fact that r(f(r)) f(’i+l), it immediately follows that

rl(f(s)) + (- i) 2 < rl(f(ri)).

By our induction on the depth of the state, recall that

(6) -(ri) < 2r/(ri)- 1- (f(ri))

for < u. Substituting in (6) for /(ri) and rl(f(ri)) from (1) and (5) above, respec-
tively, and simplifying, we have

(7) -(ri) _< 2r/(s) ?(f(s)) u- + 1.

From the lemma above, we deduce that f(rl) is the last of the failure functions to
be computed from the sequence f(rl),/(r2) f(r,_l). Furthermore, it is computed
by T 2/(s)- rl(f(s))- , derived by substituting 1. This implies that all
the required u- 1 values of f are known by step T. Let us now recall that in
order to compute f(s), processor P follows the sequence f(rl), f(r2),..., f(r._),

>_ 1, described above, with one step required for examining each f (and associated
g). Assuming that processor P starts the computation of f(s) after time step T we

conclude that this computation is completed by step T+ (u- 1) 2/(s) rl(f(s)) 1,
and the theorem is proved.

2.4.4. Computing characteristics of substrings of length log m. From the
construction in 2.4.3, it is easy to compute the characteristics of the set of m/log m
substrings 0, glogm,..., g,-log, of A (used to derive). Since these strings are all
of equal (short) length of log m symbols, we have the following from Theorem 2.1.

OBSERVATION 2. The Aho-Corasick automaton M that accepts strings g0,
gm-og- can be constructed in work O(m) and time O(logm). The X values

for the substrings of A are simply the names of the states that accept them in the
automaton.

We now proceed to assign characteristics to the m- logm substrings of B as
follows. Dedicate a processor Pk (here 0 <_ k < m/logm- 1) to compute the charac-
teristics klog,, ogm+,..., (+)og,-I of the logm substrings

b og,... b(+1) log m-l, bk og ,+ b(+) log,,..., b(k+l) log rn-1 b(+2) og,-.

This is easily done by running the automaton on the string bklogm.., b(k+2)logm-2
sequentially! If a substring of length log rn is accepted, we characterize it by the
name of the accepting state. If it is not accepted, we characterize it by the name
of the state the automaton reached after processing it. This sequential computation
is done in O(logm) time per processor. (Note that we are not actually assigning
distinct characteristics to the substrings of B that are not equal to any of the m/log m
substrings of A. As it turns out, this does not affect the correctness of our algorithm.)

PARALLEL MATCHING ALGORITHM AND APPLICATIONS 1013

2.4.5. A sketch of one of the cases. Assume for now that we have computed
the characteristics of the following set of 2m/log m substrings of length log rn of A and
B" gi x(ai.., a+log,-l) and x(b.., b+log,-l), where is a positive-integer
multiple of log m. gi and bi are symbols from a suitable alphabet and can be encoded
in O(log m) bits. Now consider the two strings :i aoaog, . lo,. ,-o, and
B bobog, b2 o,... b,-og,. These two strings are of length m/logm each. The
characteristics of the suffixes and the prefixes defined by these two strings can therefore
be computed in work O((m/log m)log(m/log m)) O(m) using our algorithm from
2.3. This will give a partial solution to the problem for the original input strings A
and B. Specifically, we solve the problem of computing the characteristics, but only
for the suffixes of A and the prefixes of B whose lengths are divisible by log m. Notice
that in this computation, O(m) work was devoted to A derived from A, but only
O(m/log m) work was devoted to B derived from B. The extension of the approach
to handle the complete problem will balance the requirements so that O(m) work is
devoted to both strings derived by A and those derived from B as well.

2.4.6. Computing characteristics for the original inputs. To generalize
from 2.4.5, assume that we have computed the characteristics of the following sub-
strings of A and B, each of length logm: bibi+l bi+og,- for 0, 1,..., m-logm
and aiai+.., ai+ogm-1 for divisible by log m. Denote

bi x(bibi+ bi+og,-),

x(aa+.., ai+log m-).

We will now proceed to solve the original problem by considering suffixes of the
single string fi and prefixes of the log m strings derived from B of the form

It can be verified that, disregarding "remainder" strings of length _< log m (this
is sketched in 2.4.7), every potential matching of a suffix in A with a prefix of B is
covered by one of these log m strings. Therefore, we characterize the set of all suffixes
of A and the prefixes of each of the logm strings B, B,..., Bog,. Furthermore,
from the previous discussion, the next observation follows immediately.

OBSEaVATION 3. The characteristics of fil can be computed in O(m) and those

of each of the [in work that is linear in the size of (O(m/log m)). Hence the total
work done is O(m).

2.4.7. Computing characteristics of the remainders. In B, there are only
log m distinct "remainder" strings of the form bobs.., bx, where 0 < x < log m- 1.
In other words, these are all possible prefixes of the substring formed by the first
logrn positions of B. In A, there are a total of m possible remainders. To see

this, let us consider A as being decomposed into m/logm disjoint substrings each
of length log m. Each of these substrings contributes exactly log rn of its suffixes as
possible remainders. For example, consider the substring alog,.., a(+l)og,-. In
this case, the remainders are all of its suffixes including the substring itself. This
computation can be viewed as solving m/log m s-p-matching problems, one for each

1014 ZVI M. KEDEM, GAD M. LANDAU, AND KRISHNA V. PALEM

of the substrings of A and a unique pattern string from B. However, the pattern in
this case is only O(log rn) characters long. Therefore, to solve the problem in parallel,
we need to assign only log2 rn processors; log rn proccessors are assigned to each of the
distinct prefixes of B. Consider one of the substrings of A in question of length log rn.
With a single processor, its suffixes are named using the techniques outlined in 2.3
in O(log rn) time (and work). (Note that in 2.3, the computation of the prefixes is
efficient while the computation of the suffixes is less efficient. One can easily reverse

this, namely, design an algorithm that has linear work on the suffix computation and
O(m log rn) work on the prefix computation.) Therefore, we have the following.

OBSERVATION 4. The characteristics of the set of the remainder strings can be
computed in O(m) work and O(log m) time using up to m/ log rn processors.

2.4.8. s-p matching from characteristics. We use characteristics to compute
the vector .

Let j E {1,2,...,rn}, and we write j Cl logrn +c., where cl > 0 and 1 < c. <
log m. Also, let j 1. Then 5[i] 1 if and only if

1. am-c1 logmam-cl logrn-t-1.-, am-1 bc2bc+l b=c2-1+cl logan and
2. am-i- am-i am-c1 log rn- 5o51 bc.-1.

It is easy to see that the first condition is equivalent to verifying the following
relationship between characteristics"

X(g,- logmgm-(-) ogm gm--og,) x(bc.b+logr b.+(-1) ogm).

This condition checks whether the suffix of length cl of A (of length cl log rn in A) is
equal to the prefix of length Cl of Be (substring of length c log rn of B that starts
with bc). The second condition checks whether the remainders of length c2 in both
A and B are equal.

2.4.9. Complexity. We first state the time/processor complexity of the algo-
rithm. The proof of the theorem is not given here as it follows in a straightforward
manner from the statement of the algorithm and the discussion and observations in
the previous sections.

THEOREM 2.3. The above algorithm solves the s-p-matching problem in O(log m)
time using work of O(m) on a CRCW PRAM given input strings A and B of size rn
each.

Given this theorem and using Brent’s lemma, we immediately obtain an algorithm
that solves the s-p-matching problem in O(log m) time using m/log rn processors (of
a CRCW PRAM as well) given input strings A and B of size rn each. Beginning with
3, we will use this modified algorithm.

To reiterate, our algorithm relies on two basic ideas. These ideas are
1. computation of characteristics and
2. the usage of failure functions for recognizing very short strings of equal length

by means of the Aho-Corasick automaton.
Using the first idea alone will give us a suboptimal-speedup algorithm of work
O(m log log m). This is because we can replace the Aho-Corasick automaton and
its application in the naming of the strings in steps 1 and 2 of our algorithm (2.4.1)
with a procedure for computing characteristics. It is a simple exercise to verify that
this replacement will require an additional O(log log m) multiplicative work overhead
due to the computation on B.

3. Applying the s-p matching algorithm. We will now describe various ap-
plications of our algorithm for s-p matching.

PARALLEL MATCHING ALGORITHM AND APPLICATIONS 1015

3.1. Multiple s-p-matching problems. Most of the subsequent algorithms
can be put in a setting of simultaneously solving the matching of several suffixes
against several prefixes. Say we are given u text strings T1,T2,...,T of lengths
nl,n2,... ,n, respectively, and v patterns P1,P2,... ,Pv, each of length rn <_ n for
1 _< _< u. We wish to determine which suffixes of the T’s match which prefixes of the
Pj’s. It is possible to forInulate an algorithm for this general problem at this point,
but instead we will develop various special cases of it as needed.

3.2. String matching. The classical string-matching problem is defined as fbl-
lows:

Input: a pattern string of length rn and a text string of length n _> rn.
Output: all the positions in the text in which the pattern matches.
We will show how to reduce the solution of the problem to the solution of a version

of the multiple s-p-matching problem.
Let the pattern string be P pip2 Pr and let the text string be T

"Cut" T into [n/rn] nonoverlapping substrings T1, T.,...,

Tj t(j_l)rn+lt(j_l)rn+2 tjrn

for j < In and T[/,] t[/,lt[/,l+.., t,.. Thus T TT... T[n/,1.
It is easy to see that the pattern matches some position in the text if and only

if for some j, a suffix of length k > 0 of Tj matches a prefix of P and a prefix of
lengthm-k of Tj+l matches asuffixofP. Ifk morj [n/rn], thenj+lis
undefined. This observation can be used to immediately produce an algorithm for
string matching. For a simple example, consider P abaa, T babaaaaabaa. Here
T baba, T aaaa, and T3 baa.

P matches T in position 2 because of the following reasons:
1. aba is both a suffix of T and a prefix of P.
2. a is both a prefix of T2 and a suffix of P.

Thus, in general, we need to solve two subproblems:
1. the s-p-matching problems for finding the matches between all the suffixes

of the strings T, T,..., T[n/] and the prefixes of the string P;
2. the s-p-matching problems for finding the matches between all the suffixes

of the string P and the prefixes of the strings T1, T,..., T[/].
These two subproblems can be solved in time O(logm) and work O(n) by a

straightforward application of the standard s-p algorithm. For instance, the first
subproblem can be solved by parallel solution of the [n/m] s-p problems, each defined
by a pair of strings (Tj, P). This will characterize the set consisting of all the suffixes
of T, T,..., T[/] and the prefixes of P. (T[/ could, in general, be shorter than
m, but this is not significant.) Again, following Brent’s lemma we have the result
below.

THEOREM 3.1. Given a text string of length n and a pattern of length m, the algo-
rithm above solves the string matching problem using n log m processors in O(log m)
time of a CRCW PRAM.

3.3. Multipattern string matching. We will now define the multipattern
string-matching problem.

Input: a text string of length n and v patterns each of length m. (The patterns
are not necessarily distinct.)

Output: for each position in the text, indicate if a pattern matches there. If a
match exists, report one of the matching patterns.

1016 ZVI M. KEDEM, GAD M. LANDAU, AND KRISHNA V. PALEM

Let T be the text string, and let P1, P2,... Pv be the patterns. Again consider an
example first. Let

T abbbab,
.PI P2 ab, Pa ba.

Then ab matches T at positions 1 and 5, and ba matches T at position 4. Thus
there are four "acceptable" representations of the output depending on whether
we state that P1 or P2 match at positions i or at position 5. Thus if 0 indi-
cates no match, the answer could be given by any of the following four strings:
10031, 10032, 20031, 20032. To make the presentation easier, in the rest of the paper,
we will represent outputs in which all the occurrences of a substring corresponding to
more than one pattern are denoted by a single symbol. Thus we would allow 10031
or 20032; however, 10032 and 20031 are disallowed as valid representations of the
output. We will therefore require that the output is in a canonical form:

Output: A string Q qlq2...qn-,+ over the alphabet {0, 1,..., v} satisfying
the following conditions:

1. qi j > 0 if Pj matches T at position i. qi 0 if there is no match.
2. ql q. if and only if Pjl matches T at position il, Pj2 matches T at position

i2, and Pjl Pj..
For ease of exposition, assume without loss of generality that rn divides n, and let

q n/rn. Furthermore, we assume that all the patterns are distinct. We do this to
obtain the output in normal form. There is no loss of generality in making this claim
since given a set of patterns P, P.,... Pv, we can eliminate duplicates and compute
the reduced set consisting of only distinct patterns easily using naming (as in the case
of string A before) in linear work and time O(log rn).

Again cut the text T into q nonoverlapping pieces of length rn each: TI, T,..., Tq.
Compute the characteristics of the set consisting of all the prefixes and all the suffixes
of the set of strings A {P, P,..., Pv, T1, T,..., Tq}. To derive linear work, the
following algorithm is used:

1. Each string in A is cut into rn/logrn nonoverlapping substrings of length
log rn. Construct the automaton accepting all these substrings. Each substring is
characterized by the name of the state accepting it. Compress the strings, obtaining
(v + q) strings of length rn/log rn each. Here each string in A plays the role of A in
the s-p algorithm; this step is analogous to step 1 of the s-p algorithm.

2. For each string in A, create log rn strings of length rn/log rn- 1 each. A
symbol in a new string stands for a substring of length log rn in the original string.
We obtain (v + q)log m strings of length rn/log rn- 1 each. Here each string in A
plays the role of B in the s-p algorithm; this step is analogous to step 2 of the s-p
algorithm.

3. Compute the characteristics of the set consisting of all the proper suffixes of
the strings computed in step 1 and all the proper prefixes of the strings computed in
step 2. This step is analogous to step 3 of the s-p algorithm.

4. Compute the characteristics of the "remainder" strings. This step is analo-
gous to step 4 of the s-p algorithm.

5. Generalizing from our pattern-matching algorithm, we note that Pi matches
Tatpositionj-crn-/, l<c<_q,O</<_rn-1, l_<j<n-rn+l, ifandonly
if the suffix of length (/ + 1) of T matches the prefix of length (/ + 1) of P and the
prefix of length (rn 1) of T+ matches the suffix of length (rn 1) of P.

PARALLEL MATCHING ALGORITHM AND APPLICATIONS 1017

This can be done as sketched below.
Assume the existence of some vector V of length (2(n + vm) + 1) 2 initialized

to 0. For a string S, let pref(S, i) and suf(S, i) denote the prefix and the suffix of
length of S, respectively.

From the previous steps, we can assume that we have computed the character-
istics of all the prefixes and all the suffixes of the patterns and the text pieces. We
now proceed in two steps:

(a) We assign a processor to each position of each pattern. In parallel, for each
position 7 <- m of each pattern Pi, the processor assigned to it writes in the location
V[x(pref(Pi, 7)) + (2(n + vm) + 1)X(suf(P, m- 7))]. As a result of this step, we
have "coded" all existing pairs of prefix-suffix for each pattern.

(b) We assign a processor to each position of each Tj. The processor at position

rn-7+l of Tj reads the value ofV[x(suf(Tj, 7))+(2(n+vm)+l)x(pref(Tj+l, m-7))].
Pattern Pi matches T at position jm-7 + 1 if and only if the value read was i.

Step 5(a) was needed to make sure that a spurious match is not obtained by
combining a prefix of one pattern with the suffix of another pattern.

THEOREM 3.2. Given a text string of length n and v patterns each of length m, the
algorithm above solves the multipattern string-matching problem using (n+vm) / log m
processors in O(log m) time of a CRCW PRAM.

3.4. Multitext/multipattern problem.
Input: u text strings and v patterns. The length of the ith text string is hi, and

the length of all patterns m is the same.
Output: u strings (1,(2,...,(u over the alphabet {0, 1,...,v}. Each Qj

qj,lqj,2.., qj,j-,+ is of length nj m + 1 and satisfies the following conditions"
1. qk,i j > 0 if and only if Pj matches Tk at position i. (0 indicates no match.)
2. If Pjl matches TI at position l, P.. matches T at position i2, and Pjl

Pj2, then ql,il q.,i..
THEOREM 3.3. The obvious modification of the algorithm in 3.3 solves the mul-

titext/multipattern matching problem in time O(log m) using (vm + -.j nj)/ log m
processors.

3.5. Multidimensional pattern matching. We now describe our parallel al-
gorithm for the multidimensional pattern matching problem.

Input: a d-dimensional pattern array P[1..m, 1..m,..., 1..m] of size md and a d-
dimensional text array T[1..n, 1..n,..., 1..hi of size nn. (P[1..m, 1..m,..., 1..m] stands
for {P[il,i2,...,in] 1 _< il,i2,...,in < m}, etc.)

Output: a d-dimensional array Q[1..n- m + 1,1..n- m + 1,..., 1..n- m + 1]
over {0,1} such that Q[i, i,..., in] 1 if and only if the pattern matches the text
in position (il, i2,..., in), that is, T[i..i. + m- 1, i2..i2 + m- 1,..., in..in + m- 1]
P[1..m, 1..m,..., 1..m].

Essentially, we use the same framework as given in [Ba78, Bi77, KR87] in the
sequential case. The sequential algorithm requires time O(dnn). In [AL88], a paral-
lel algorithm for this problem was given requiring work dnn log m and time O(d log m).
The improvement in complexity in the algorithm implementation we will pre-
sent comes from the fact that we now overcome the bottleneck in earlier algorithms
by using our optimal algorithm for multitext/multipattern string matching from
3.4.

We describe the algorithm recursively:

1018 ZVI M. KEDEM, GAD M. LANDAU, AND KRISHNA V. PALEM

1. Match the set of strings of the form P[il,i2,...,id-1, 1..m] in the set of
strings of the form T[kl,k2,...,kd-l,j..j + m-1]. Present the canonical output as
several (d- 1)-dimensional arrays. Specifically, we get the following arrays:

(a) R[1..m, 1..m,..., 1..m]. R[il, i2, id-1] is x(P[il, i., id-1, 1..m]).
(b) Sj[1..n, 1..n,...,1..n] j 1, 2,...,n-m+ 1. Sj[kl,k2,...,kd-1] is the

characteristic of the string from P matching T at position (kl, k,..., kd-l,j) if such
a pattern exists; it is 0 if no such pattern exists.

2. Recursively solve several (d- 1)-dimensional problems. Specifically, match
R in $1, S,..., S_,+1.

P matches T at position T[kl, k2,..., kd-l,j] if and only if R matches Sj at
position kl, k,..., kd-1.

We now proceed to analyze the complexity of the algorithm. From 3.4, we know
the following.

FACT 1. V pattern strings of length m each can be matched in u >_ v text strings

of length n >_ m each in work c u n for an appropriate constant c.
Using this fact, we need to show the following.
LEMMA 3.4. For the algorithm above, Wd(nd), the work required by the text of

size nd, satisfies Wd(nd) <_ cdnd and the time required is O(dlog n).
Proof. Let us review the two steps above. In the first step, we match md-1 pattern

strings of length m each in nd-1 text strings of length n each. This can be done in
work cnd-ln- cnd and time O(log n).

In the second step, we solve in parallel n-re+l, (d- 1)-dimensional problems, each
consisting of matching a pattern of size md- in text of size nd-1. By induction and
the previous fact, this can be done in work (n-m+ 1)Wd-1 (nd-l) <_ nc(d- 1)nd-1
c(d- 1)nd. The time required is O((d 1)log n). Combining the complexities of the
two steps, we obtain that the work is Wd(nd) <_ cdnd and the time is O(dlog n). []

By interpreting the above lemma appropriately, we have the following result.
THEOREM 3.5. The algorithm above solves the multidimensional pattern-matching

problem in time O(dlogm) using nd/logm processors of a CRCW PRAM.
We now present an example. In this example, d 3, m 2, and n 3. The

problem instance is defined by

a b
P[1..2,1..2,1] b b

b a
P[1..2,1..2,2] b b

a b a

T[1..3,1..3,1]- b a a
b b b

b a b
T[1..3,1..3,2]= a b b

a b b

a b a

T[1..3,1..3,3]= b b b
a a a

PARALLEL MATCHING ALGORITHM AND APPLICATIONS 1019

(note that P matches T at position (1, 2, 2)).
The recursion has three stages:

1. We compute the characteristics of the appropriate substrings of P. Without
loss of generality, they are

P[1, 1, 1..2] ab,
P[1, 2, 1..2] ba,
P[2, 1, 1..2] bb,
P[2, 2, 1..2] bb,

x(P[1, 1, 1..2]) 1,
x(P[1, 2, 1..2]) 2,
x(P[e, , ...]) a,
(P[, ., ..]) .

We obtain the following characteristics for the strings of T:

T[1, 1, 1..3] aba,
T[1, 2, 1..3] bab,
T[1, 3, 1..3] aba,
T[2, 1, 1..3] bab,
T[2, 2, 1..3] abb,
T[, , ..] a,
T[3, 1, 1..3] bad,
T[3, , 1..3] bb,
T[3, , 1..1 ba,

X(T[1, 1, 1..2]) 1,
x(T[1, 2, 1..2]) 2,
x(T[1, 3, 1..2]) 1,
x(T[2, 1, 1..2]) 2,
x(T[2, 2, 1..2]) 1,
x(T[2, 3, 1..2]) 1,
x(T[3, 1, 1..2]) 2,
x(T[3, 2, 1..2]) 3,
x(T[3, 3, 1..21) 3,

The pattern is now coded as a two-dimensional object R[1..2, 1..2]; R[i,j] stands
for the characteristic of P[i, j, 1..2]. The text is coded as two two-dimensional objects
$1 [1..3, 1..3] and S[1..3, 1..3]; S[i,j] stands for the characteristic ofT[i,j, k..k+m-1].

1 2

1 2 1
$1[1..3,1..3]= 2 1 1

2 3 3

2 1 2
$211..3,1..3] 1 3 3

0 2 2

(note that R matches $2 at position (1, 2)).
2. As stated in the description of the algorithm, we should now solve two match-

ing problems: R in S1 and R in $2. It is simpler to combine these two problems into
the single problem of matching R in S and $2.

We compute the characteristics of the appropriate substrings of R. Without loss
of generality, they are

R[1, 1..2] 12, x(R[1, 1..2]) 1,
R[2, 1..2] 33, x(R[2, 1..2]) 2.

We obtain the following characteristics for the strings of S and $2:

o1[1, 1..3] 121,
Sl [2, 1..3] 211,
S [3, 1..3] 233,
s[, 1..31 212,
S[2, 1..3] 33,
[3,1..3] 022,

X(o111, 1..2]) 1,
X(Ol [2, 1..2]) 0,
(o0113, 1..2]) 0,
X($211, 1..2])=0,
(s[, ..]) 0,
X($213, 1..2]) 0,

X(Sl[1, 2..3]) 0,
X(Sl[2, 2..3]) 0,
(s[a, ..a]) ,
X(S.[1, 2..3]) 1,
(.[, ..al) ,
X($213, 2..3]) 0.

1020 ZVI M. KEDEM, GAD M. LANDAU, AND KRISHNA V. PALEM

The pattern is now coded as a one-dimensional object U[1..2]; U[i] stands for the
characteristic of R[i, 1..2]. The text is coded as four one-dimensional objects V1,1 [1..3],
v,[..a], v,[..a], v.,[..a]; v,[i] stands for the characteristic of Sj[i,k..k + 1]. (U
and V play the same role as R and S in the previous stage.)

V1,111..3] 100,

V1,211..3] 002,

000,

(note that U matches V2,2 at position 1).
3. We should now solve four matching problems. Again we combine them into

a single problem.
We compute the characteristics of the appropriate substrings of U. Without loss

of generality, they are

U[1..2] 12, x(U[1..2])= 1.

We obtain the following characteristics for the strings of V1,1, V,., V2,, V.,:

V,[1..3] 100, X(V,I [1..2]) 0, (VI,1 [2..3]) 0,
V.,211..3] 002, x(Vl,2[1..2]) O, x(Vl,:[2..3]) O,
V,. [1..3] 000, (V2,1 [1..2]) O, (V2,1 [2..3]) O,
V2,[1..3] 120, x(V2,[1..2])= 1, x(V,212..3])= 0.

In stage 3, we found that U matches Ve,2 at position 1. Therefore, the output of
stage 2 is that R matches S at position (1,2). Hence in stage 1, we indeed deduce
that P matches T at position (1, 2, 2). Of course, the answer could be written in the
form of Q as required by the formal specifications of the output.

3.6. The pattern-occurrence detection. In this section, we consider the prob-
lem of string matching when the text has been cut into a number of pieces. Formally,
we have the following:

Input: a pattern string P poP1 Pn- of length m and distinct tezt substrings
T, T2,..., Tt of length k each.

Output: decide whether there exists a permutation of the text substrings for
which the pattern is a match and, if yes, produce one such permutation and the
match position tbr it.

Before we proceed with the description of our algorithm, several remarks are in
order. Generally, one might consider that the strings are of arbitrary lengths and pos-
sibly replicated. Then the "assembling" of strings into a single text string is difficult.
The deterministic problem of pattern matching in this case is NP-hard [TU88]. Ap-
proximation algorithms for this more difficult problem, which appeared in molecular
biology [TU88], were given in [CD88, TUB8, KM95, Tur89, Ukk90, BJLTY91].

PARALLEL MATCHING ALGORITHM AND APPLICATIONS 1021

We now proceed with the description of our algorithm solving the simpler problem
we have formally defined above. To simplify the exposition, consider the case when
m > 3k and m is a multiplication of k. Observe that a matching permutation exists
if and only if there exist distinct jl,j.,... ,js, where js > 3 such that the pattern is
equal to a suttix of Tjl followed by Tj.,..., Tjs_ followed by a prefix of Tj..

The algorithm proceeds in two steps.

1. We compute an integer vector CENTER[O,..., m- 1]. CENTER[i] j if
and only if pip{+l.., pi+k-1 tj,otj,.., tj,k_; if no such j exists, set CENTER[i]
0.

2. We compute a bit vector ENDS[O..k- 1]. ENDS[O] 1. For >_ 1,
ENDS[i] 1 if and only if there exist distinct ja and jb such that

(a) 8uf(Tja i) pfef(P, i) (Po... Pi-1 is equal to tile sutfix of length of Tja.),
(b) pref(Tj, k i) suf (P, k i),
(c) for each r O, 1,..., talk- 2, pi+a.., pi+(+)_ is different from both Tj

and Tj.

A match exists if and only if for some 0, 1,..., k- 1, (i) ENDS[i] 1 and
(ii) all CENTER[i / rk] for r 0, 1,..., talk 2 are 0 and distinct.

All these vectors can be computed in time O(log m) using O(kl) work. It is easy to
see how to complete the algorithm to produce the output in those complexity bounds
too.

If m < k, we also have to test whether the pattern matches one of the text pieces,
which too can be done in optimal speedup. Therefore, we have the following result.

THEOREM 3.6. The above algorithm solves the pattern-occurrence-detection prob-
lem in time O(logm) using kl/logm processors on a CRCW PRAM.

3.7. On-line string matching. In this section, we consider the parallel version
of the on-line string-matching problem.

On-line Input: a pattern string P and a sequence of text substrings T, T2,..., Tt
given dynamically.

On-line Output: for each i, 1, 2,..., l, after producing the output for T, T2,
Ti-1, produce the output consisting of all those positions in which P matched

T1T.... Ti_ITi and that were not reported previously.
To specify the complexity of an on-line parallel algorithm, we will need to intro-

duce a few notions. Let m denote the length of P and for each i, let ki denote the
of T and let ni -= kj. Now let be in {1, 2,..., l}. Consider the time in-length

stant when the algorithm finished processing the text substrings T1, T2,..., Ti-1 and
produced the corresponding output. It is now given Ti and produces the "incremen-
tal" output. Let T(n_l, m, k) and P(n-l, m, k), respectively, denote the time and
the number of processors required by the algorithm to produce that output. The total
amortized work done by the algorithm is defined as i=1
We say that this algorithm has optimal amortized speedup provided that for all pos-
sible inputs the amortized work done is within a constant factor away from the time
complexity of solving this problem by the best-known sequential algorithm.

We will now sketch an optimal-speedup (on-line) algorithm briefly. The details
are easy to fill out. To simplify the exposition, consider only the case when pattern
matching was done for some pattern and some string, and then the string is further
extended and pattern matching needs to be done for the new longer string. Assume
then that, using our algorithm from 2, pattern matching has been solved for a pattern
of length m and a text string S of some length n, and then an additional text string

1022 ZVI M. KEDEM, GAD M. LANDAU, AND KRISHNA V. PALEM

S of length k is presented. The main idea behind the on-line implementation is to
use the algorithm and data structures used in the off-line case described in 2, but
handling each extra text chunk as it is given to the to the algorithm dynamically.
Of course, it is important to be able to do this without recomputing most of the
information that was done earlier on. The work bounds are estimated by amortizing
on text chunks that are multiples of log m.

We must now solve the pattern matching problem for the augmented string SS.
In general, assuming that n > 2m, we can write S $1S2S3, where length(S1) is a
positive multiple of m, length(S2) equals rn, and length(S3) is smaller than rn. We
have all the suffix information for S. and all the prefix information for $3.

We consider two cases:
1. length(S3) + k < m. To avoid simple case analysis, assume k >_ log rn. We

need to extend the prefix information available for $3 to get the prefix information
for SaS. By applying the automaton M, it is possible to do so in work of O(k) in
time of O(log rn). (By refining our algorithm, the total time could be lower for certain
cases where k is smaller than m, but it is not worth considering this here.)

2. length(S3) + k >_ n. Write S’ SaSb, where length(Sa) rn- length(S3).
We will need to compute the following:

(a) The prefix information for SaSa. This is done as described above.
(b) The suffix information for $3S. This is done as in our algorithm for regular

string matching, in time O(log rn) and work O(rn).
(c) The prefix information for Sb. This is also done as described above.
THEOREM 3.7. The algorithm above solved the on-line pattern-occurrence problem

in parallel amortized linear work. The time for processing each substring is O(log m).

4. Conclusions. In this paper, we employ s-p matching as the core computation
in several pattern- and string-matching problems. Our main result is a parallel algo-
rithm for computing s-p matching which has optimal speedup on a CRCW PRAM.
This algorithm is based on novel techniques that combine notions of characteristic
functions with the well-known automaton-based approach to string matching that
uses failure functions. Briefly, we first break the text and pattern (both of length m)
appropriately into "small pieces" of size O(log rn). Then, using a parallel variant of
the algorithm due to Aho and Corasick [AC75] for short (log rn-length) strings, we
group these small pieces into equivalence classes based on string equality. Given such
equivalence classes, we assemble these small pieces together and solve the problem on
the entire input. This is done by successively and consistently refining the equiva-
lence classes. Using this algorithm for s-p matching as the basic building block, we
specify optimal-speedup parallel algorithms for several pattern- and string-matching
problems.

[ABF93]

[AC75]

[AILSV88]

[AL88]

REFERENCES

A. AMIR, G. BENSON, AND M. FARACH, Optimal parallel two dimensional pattern
matching, in Proc. 5th ACM Symposium on Parallel Algorithms and Architec-
tures Association for Computing Machinery, New York, 1993, pp. 79-85.

A. V. AHO AND M. J. CORASlCK, Efficient string matching, Comm. Assoc. Comput.
Mach., 18 (1975), pp. 333-340.

A. APOSTOLICO, C. ILIOPOULOS, G. M. LANDAU, B. SCHIEBER, AND U. VISHKIN, Paral-
lel construction of a suffix tree with applications, Algorithmica, 3 (1988), pp. 347-
365.

A. AMIR AND G. M. LANDAU, Fast parallel and serial multi dimensional approximate
array matching, Theoret. Comput. Sci., 81 (1991), pp. 97-115.

PARALLEL MATCHING ALGORITHM AND APPLICATIONS 1023

[B378]

[Bi77]

[Br74]

[BG90]

[BJLTY91]

IBM77]

[CCG+93]

[CD88]

[FLS0]

[G84]

[G921

[s83]

[H88]

[J92]
[KM95]

[KMP77]

[KMR72]

[KP92]

[KR87]

[M88]

[TU881

[Tur89]

[Ukk90]

[vs]

[V91]

T. P. BAKER, A technique for extending rapid exact-match string matching to arrays
of more than one dimension, SIAM J. Comput., 7 (1978), pp. 533-541.

R. S. BIRD, Two dimensional pattern matching, Inform. Process. Lett., 6 (1977),
pp. 168-170.

R. P. BRENT, The parallel evaluation of general arithmetic expressions, J. Assoc. Com-
put. Mach., 21 (1974), pp. 201-206.

D. BRESLAUER AND Z. (ALIL, An optimal O(loglogn) time parallel string matching
algorithm, SIAM J. Comput., 19 (1990), pp. 1051--1058.

A. BLUM, T. JIANG, M. LI, J. TROMP, AND M. YANAKAKIS, Linear approximation of
shortest superstrings, in Proc. 23rd ACM Symposium on Theory of Computing,
Association for Conputing Machinery, New York, 1991, pp. 328-336.

1:. S. BOYER AND J. S. MOORE, A fast string searching algorithm, Comm. Assoc.
Comput. Mach., 20 (1977), pp. 762-772.

R. COLE, M. CROCHEMORE, Z. GALIL, L. (ASIENIEC, R. HARIHARAN, S. MUTHUKR-
ISHNAN, K. PAIK, AND W. RYTTER, Optimally fast parallel algorithms for prepro-
cessing and pattern matching in one and two dimensions, in Proc. 34th Annual
IEEE Conference on Foundations of Computer Science, IEEE Computer Society
Press, Los Alamitos, CA, 1993, pp. 248-258.

J. L. CORNETTE AND C. DELIS1, Some mathematical aspects of mapping DNA cosmids,
Cell Biophysics, 12 (1988), pp. 271-293.

M. J. FSCHER AND L. LADNER, Parallel prefix computation, J. Assoc. Comput. Mach.,
27’ (1980), pp. 831-838.

Z. GALIL, Optimal parallel algorithms for string matching, Inform. and Control, 67
(1985), pp. 144-157.
, A constant-time optimal parallel String-Matching Algorithm, in Proc. 23rd

ACM Symposium on Theory of Computing, Association for Computing Machinery,
New York, 1992, pp. 69-76.

Z. GALIL AND J. I. SEIFERAS, Time-space optimal string matching, J. Comput. System
Sci., 26 (1983), pp. 280-294 and 338-355.

T. HAGERUP, On saing space in parallel computation, inform. Process. Lett., 29
(1988), pp. 327-329.

J. JX JX, An Introduction to Parallel Algorithms, Addison-Wesley, Reading, MA, 1992.
J. D. KECECIOGLU AND E. W. MYERS, Combinatorial algorithms for DNA sequence

assembly, Algorithmica, 13 (1995), pp. 7-51.
D. E. KNUTH, J. H. MORRIS, AND V. R. PRATT, Fast pattern matching in strings,

SIAM J. Comput., 6 (1977), pp. 323-350.
R. M. KARP, R. E. MILLER, AND A. L. ROSENBERG, Rapid identification of repeated

patterns in strings, trees, and arrays, in Proc. 4th ACM Symposium on Theory of
Computing, Association for Computing Machinery, New York, (1972), pp. 125-136.

Z. M. KEDEM, AND K. V. PALEM, Optimal parallel algorithms for forest and term
matching, Theoret. Comput. Sci., 93 (1992), pp. 245-264.

R. M. KARP AND M. O. RABIN, Ejcient randomized pattern-matching algorithms,
IBM J. Res. Develop., 31 (1987), pp. 249-260.

T. P. MATHIES, A fast parallel algorithm to determine edit distance, Technical report
CMU-CS-88-130, Department of Computer Science, Carnegie Mellon University,
Pittsburgh, 1988.

J. TARHIO AND E. UKKONEN, A greedy approximation algorithm for constructing short-
est common superstrings, Theoret. Comput. Sci., 57 (1988), pp. 131-145.

J. TURNER, Approximation algorithms for the shortest common superstring problem,
Inform. and Comput., 83 (1989) pp. 1-20.

E. UKKONEN, A linear time algorithm for finding approximate shortest common su-

perstrings, Algorithmica, 5 (1990), pp. 313-323.
U. VISHKIN, Optimal parallel pattern matching in strings, Inform. and Control, 67

(1985), pp. 91-113.
, Deterministic sampling: A new technique for fast pattern matching, SIAM J.

Comput., 20 (1992), pp. 22-40.
P. WEINER, Linear pattern matching algorithm, in Proc. 14th IEEE Symposium on

Switching and Automata Theory, IEEE Computer Society Press, Los Alamitos,
CA, 1973, pp. 1-11.

SIAM J. COMPUT.
Vol. 25, No. 5, pp. 1024-1044, October 1996

1996 Society for Industrial and Applied Mathematics
005

RANDOMIZED CONSENSUS IN EXPECTED O(Nlog2N)
OPERATIONS PER PROCESSOR*

JAMES ASPNESt AND ORLI WAARTS*

Abstract. This paper presents a new randomized algorithm for achieving consensus among
asynchronous processors that communicate by reading and writing shared registers. The fastest pre-
viously known algorithm requires a processor to perform an expected O(n2 log n) read and write op-
erations in the worst case. In our algorithm, each processor executes at most an expected O(n log2 n)
read and write operations, which is close to the trivial lower bound of (n).

All previously known polynomial-time consensus algorithms were structured around a shared-coin
protocol [J. Algorithms, 11 (1990), pp. 441-446] in which each processor repeatedly adds random +/-1
votes to a common pool. Consequently, in all of these protocols, the worst-case expected bound on
the number of read and write operations done by a single processor is asymptotically no better than
the bound on the total number of read and write operations done by all of the processors together.
We succeed in breaking this tradition by allowing the processors to cast votes of increasing weights.
This grants the adversary greater control since he can choose from up to n different weights (one
for each processor) when determining the weight of the next vote to be cast. We prove that our
shared-coin protocol is nevertheless correct using martingale arguments.

Key words, consensus, distributed algorithms, shared memory, randomized algorithms, asyn-
chronous computation, martingales

AMS subject classifications. Primary 68Q22; Secondary 60G42, 60F10

1. Introduction. In the consensus problem, each of n asynchronous processors
starts with an input value 0 or 1 not known to the others and runs until it chooses a
decision value and halts. The protocol must be consistent: no two processors choose
different decision values; valid: the decision value is some processor’s input value;
and wait-free: each processor decides after a finite expected number of its own steps
regardless of other processors’ halting failures or relative speeds.

We consider the consensus problem in the standard model of asynchronous shared-
memory systems. The processors communicate via a set of single-writer, multireader
atomic registers. Each such register can be written by only one processor, its owner,
but all processors can read it. Reads and writes to such a register can be viewed as
occurring at a single instant of time.

Consensus is fundamental to synchronization without mutual exclusion and hence
lies at the heart of the more general problem of constructing highly concurrent data
structures [20]. It can be used to obtain wait-free implementations of arbitrary ab-
stract data types with atomic operations [20, 23]. Consensus is also complete for
distributed decision tasks [11] in the sense that it can be used to solve all such tasks
that have a wait-free solution.

Consensus is often viewed as a game played between a set of processors and an
adversary scheduler. Using the standard wait-free model of an asynchronous shared-

Received by the editors November 30, 1992; accepted for publication (in revised form) January
25, 1994. A preliminary version of this work appeared in Proc. 33rd IEEE Symposium on Foundations

of Computer Science.
Department of Computer Science, Yale University, New Haven, CT 06520-8285 (aspnes

@cs.yale.edu). During the time of this research, the first author was at Carnegie-Mellon Univer-
sity and supported in part by an IBM Graduate Fellowship.

Computer Science Division, University of California at Berkeley, Berkeley, CA 94720
(waarts@cs.berkeley.edu). During the time of this research, the second author was at Stanford
University and supported in part by an IBM Graduate Fellowship, U.S. Army Research Office grant
DAAL-03-91-G-0102, and NSF grant CCR-8814921.

1024

RANDOMIZED CONSENSUS 1025

memory system, each processor can execute as an atomic step either (a) a single read
or write operation or (b) a flip of a local fair coin not visible to the other processors.
The sequencing of the processors’ actions is controlled by a scheduler, defined as a
function that at each step selects a processor to run based on the entire prior history of
the system, including the internal states of the processors. (Concurrency is modeled
by interleaving.) Remarkably, it has been shown that the ability of the scheduler
to stop even a single processor is sutficient to prevent consensus from being solved
by a deterministic algorithm [10, 12, 16, 20, 22]. Nevertheless, it can be solved by
randomized protocols in which each processor is guaranteed to decide after a finite
ezpected number of steps.

Chor, Israeli, and Li [10] provided the first solution to the problem, but their
solution deviated from the standard model by assuming that the processor can flip
a coin and write the result in a single atomic step. Abrahamson [1] demonstrated
that consensus is possible even for the standard model, but his protocol required
an exponential expected number of steps. Since then, a number of polynomial-work
consensus protocols have been proposed. Protocols that use unbounded registers have
been proposed by Aspnes and Herlihy [4] (the first polynomial-time algorithm), Saks,
Shavit, and Woll [24] (optimized for the case where processors run in lock step), and
Bracha and Rachman [8] (running time O(n2 log n)). Protocols that use bounded
registers have been proposed Attiya, Dolev, and Shavit [5] (running time O(na)),
Aspnes [31 (running time O(rt2(p + n)), where p is the number of active processors),
Bracha and Rachman [7] (running time O(n(p + n))), and Dwork, Herlihy, Plotkin,
and Waarts [13] (immediate application of what they call time-lapse snapshots and
with the same running time as [7]).

The main goal of a wait-free algorithm is usually to minimize the worst-case
expected bound on the work done by a single processor. Still, for all of the known
polynomial-work wait-free consensus protocols, the worst-case expected bound on the
work done by a single processor is asymptotically no better than the bound on the
total work done by all of the processors together.

Therefore, one of the main contributions of this paper is in showing that wait-
free consensus can be solved without requiring the fast processors to perform much
more than their fair share of the worst-case total amount of work executed by all
processors together. At the same time, we improve significantly on the complexity
of all currently known wait-free consensus protocols, obtaining a protocol in which a
processor executes at most an expected O(n log n) read and write operations, which
is close to the trivial lower bound of gt(n). To do this, we introduce a new weak
shared-coin protocol [4] that is based on a combination of the shared-coin protocol
described by Bracha and Rachman [8] and a new technique called weighted voting,
where votes of faster processors carry more weight. We believe that our weighted-
voting technique will find applications in other wait-free shared-memory problems
such as approximated consensus and resource allocation.

The rest of the paper is organized as follows. Section 2 describes the intuition
behind our solution while emphasizing the main difference between our solution and
those in [3, 4, 5, 7, 8, 13, 24]. Section 3 describes our shared-coin protocol. Section 4
reviews martingales and derives some of their properties. Section 5 contains the proof

As discussed in 6, this gain in per-processor performance involves a slight increase in the total
work performed by all processors when compared with the Bracha-Rachman protocol.

The consensus protocol can be constructed around our shared-coin protocol using the established
techniques of Aspnes and Herlihy [4].

1026 JAMES ASPNES AND ORLI WAARTS

of correctness of our shared-coin protocol. A discussion of the results appears in 6.
2. Intuition and relation to previous results. All of the known polynomial-

work consensus protocols are based on the same primitive, the weak shared coin.
A weak shared coin returns a single bit to each processor; for each possible value
b E {0, 1}, the probability that all processors see b must be at least a constant 5 (the
agreement parameter of the coin/, regardless of scheduler behavior.3 Aspnes and Her-
lihy [4] showed that given a weak shared coin with constant agreement parameter, it
is possible to construct a consensus protocol by executing the coin repeatedly within
a rounds-based framework which detects agreement. The number of operations exe-
cuted by each processor in this construction is O ((n + T (n))/5/, where T(n) is the
expected work per processor for the weak-shared-coin protocol. For constant 5 and
under the reasonable assumption that T(n) dominates n, the work per processor to
achieve consensus becomes simply O

Therefore, to construct a fast consensus protocol, one need only construct a fast
weak shared coin. The underlying technique for building a weak shared coin has not
changed substantially since the protocol described in [4]; each processor repeatedly
adds random +_1 votes to a common pool until either the total vote is far from the
origin [3, 4, 5, 7, 13] or a predetermined number of votes have been cast [8, 24].
Any processor that sees a nonnegative total vote decides 1, and those that see
negative total vote decide 0. (The differences between the protocols are largely in
how termination is detected and how the counter for the vote is implemented.)

There are many advantages to this approach. The processors effectively act as
anonymous conduits of a stream of unpredictable random increments. If the scheduler
stops a particular processor, at worst all it does is keep one vote from being written out
to the common pool--the next local coin flip executed by some other processor is no
more or less likely to give the value the scheduler wants than the next one executed by
the processor it has just stopped. Intuitively, the scheduler’s power over the outcome
of the shared coin is limited to filtering out up to n- 1 local coin flips from this
stream of independent random variables. But the effect of this filtering is at worst
equivalent to adjusting the final tally of votes by up to n- 1. If a constant multiple of
n votes are cast, the total variance will be ft(n), and using a normal approximation
the protocol can guarantee that with constant probability the total vote is more than
away from the origin, rendering the scheduler’s adjustment ineffective.

Alas, the very anonymity of the processors that is the strength of the voting
technique is also its greatest weakness. To overcome the scheduler’s power to withhold
votes, it is necessary that a total of ft(n2) votes are cast-- but the scheduler might also
choose to stop all but one of the processors, leaving that lone processor to generate all
ft(n2) votes by itself. Consequently, for all of the polynomial-work wait-free consensus
protocols currently known, the worst-case expected bound on the work done by a
single processor is asymptotically no better than the bound on the total work done
by all of the processors together.

We overcome this problem by modifying the O(n2 log ’n) protocol of Bracha and
Rachman [8] to allow the processor to cast votes of increasing weight. Thus a fast
processor or a processor running in isolation can quickly generate votes of sufficient
total variance to finish the protocol, at the cost of giving the scheduler greater control

3 The term agreement parameter was first used by Saks et al. [24] in place of the more melodra-
matic but less descriptive term defiance probability of Aspnes and Herlihy [4]. Aspnes [3] used a bias
parameter, equal to 1/2 minus the agreement parameter; however, this quantity is not as useful as
the agreement parameter in the context o[a multiround consensus protocol.

RANDOMIZED CONSENSUS 1027

1
2
3
4
5
6
7
8
9

10
11

12
13

14
15
16
17 end

PROCEDURE shared_coin()
begin

my_reg(variance, vote) .- (0, 0)
tl
repeat

for 1 to c do

+ +
tt+l

end
read all the registers, summing the variance fields into the local
variable totaLvariance

until total_variance > K
read all the registers, summing the vote fields into the local variable
totaLvote
if total_vote > 0
then output 1
else output 0

FG. 1. Shared-coin protocol.

by allowing it both to withhold votes with larger impact and to choose among up to
n different weights (one for each processor) when determining the weight of the next
vote to be cast.

There are two main diificulties that this approach entails; the first is that careful
adjustment of the weight function and other parameters of the protocol is necessary to
make sure that it performs correctly. More importantly, correctness proofs for previous
shared coins based on random walks or voting [3, 4, 5, 7, 8, 13, 24] considered only
equally weighted votes and have therefore been able to treat the sequence of votes as
a sequence of independent random variables using a substitution argument. Because
our protocol allows the weight of the ith vote to depend on which processor the
scheduler chooses to run, which may depend on the outcomes of previous votes, we
cannot assume independence.

However, the sign of each vote is determined by a fair coin flip that the scheduler
cannot predict in advance, and so despite all the scheduler’s powers, the expected
value of each vote before it is cast is always 0. This is the primary requirement of
a martingale process [6, 15, 21]. Under the right conditions, martingales have many
similarities to sequences of sums of independent random variables. In particular,
martingale analogues of the central limit theorem and Chernoff bounds will be used
in the proof of correctness.

3. The shared-coin protocol. Figure 1 gives pseudocode for each processor’s
behavior during the shared-coin protocol. Each processor repeatedly flips a local coin
that returns the values +1 and -1. with equal probability. The weighted value of
each flip is w(t) or -w(t), respectively, where t is the number of coins flipped by the
processor up to and including its current flip. Each weighted flip represents a vote
for either the output value 1 (if positive) or 0 (if nonpositive). After each flip, the
processor updates its register to hold the sum of the weighted flips it has performed

1028 JAMES ASPNES AND ORLI WAARTS

and the sum of the squares of their values. After every c flips, the processor reads the
registers of all the other processors and computes the sum of all the weighted flips
(the total vote) and the sum of the squares of their values (the total variance). If the
total variance is greater than the quorum K, it stops and outputs 1 if the total vote
is positive and 0 otherwise. Alternatively, if the total variance has not yet reached
the quorum K, it continues to flip its local coin.

The function local_flip returns the values 1 and -1 randomly with equal proba-
bility. The values K and c are parameters of the protocol which will be set depending
on the number of processors n to give the desired bounds on the agreement parameter
and running time. The weight function w(t) is used to make later local coin flips have
more effect than earlier ones so that a processor running in isolation will be able to
achieve the quorum K quickly. The weight function will be assumed to be of the form
w(t) ta, where a is a nonnegative parameter depending on n; although other weight
functions are possible, this choice simplifies the analysis.

We will demonstrate that for a suitable choice of K, c, and a, all processors
return 1 with constant probability; the case of all processors returning 0 will follow
by symmetry. The structure of the argument follows the proof of correctness of the
less sophisticated protocol of Bracha and Rachman [8], which corresponds to Figure
1 when w(t) is the constant 1, K (3(n2), and c O(n/logn). Votes cast before
the quorum K is reached will form a pool of common votes that all processors see.
We will show that with constant probability, (i) the total of the common votes is far
from the origin and (ii) the sum of the eztra votes cast between the time the quorum
is reached and the time some processor does its final read in line 13 is small so that
the total vote read by each processor will have the same sign as the total common
vote.

This simple overview of the proof hides many tricky details. To simplify the
analysis, we will concentrate not on the votes actually written to the registers but
on the votes whose values have been decided by the processors’ execution of the local
coin flip in line 7; conversion back to the values actually in the registers will be done
by showing a bound on the difference between the total decided vote and the total of
the register values. In effect, we are treating a vote as having been "cast" the moment
that its value is determined instead of when it becomes visible to the other processors.

Some care is also needed to correctly model the sequence of votes. Most impor-
tantly, as pointed out above, allowing the weight of the ith vote to depend on which
processor the scheduler chooses to run means the votes are not independent. Thus the
straightforward proof techniques used for protocols based on a stream of identically
distributed random votes no longer apply, and it is necessary to bring in the theory
of martingales to describe the execution of the protocol.

4. Martingales. A martingale is a sequence of random variables $1, $2,... which
informally may be thought of as representing the changes in the fortune of a gambler
playing in a fair casino. Because the gambler can choose how much to bet or which
game to play at each instant, each random variable Si may depend on all previous
events. But because the casino is fair and the gambler cannot predict the future, the
expected change in the gambler’s fortune at any play is always 0.

We will need to use a very general definition of a martingale [6, 15, 21]. The sim-
plest definition of a martingale says that the expected value of Si+l given $1, $2, Si

4 The definitions of the common and extra votes we will use differ slightly from those used in [8];
the formal definitions appear in 5.

RANDOMIZED CONSENSUS 1029

is just Si. To use a gambling analogy, this definition says that a gambler who knows
only the previous values of her fortune cannot predict its expected future value any
better than by simply using its current value. But what if the gambler knows more
information than just the changing size of her bankroll? For example, imagine that
she is placing bets on a fair version of roulette and always bets on either red or black.
Knowing that her fortune increased after betting red will tell her only that one of
eighteen red numbers came up; but a real gambler will see precisely which of the eigh-
teen numbers it was. Still, we would like to claim that this additional knowledge does
not affect her ability to predict the future. To do so, the definition of a martingale
must be extended to allow additional information to be represented explicitly.

The tool used to represent the information known at any point in time will be
a concept from measure theory, a or-algebra. 5 The description given here is informal;
more complete definitions can be found in [15, IV.3, IV.4, and V.11] or [6].

4.1. Knowledge, (r-algebras, and measurability. Recall that any proba-
bilistic statement is always made in the context of some (possibly implicit) sample
space. The elements of the sample space (called sample points) represent all possible
results of some set of experiments, such as flipping a sequence of coins or choosing
a point at random from the unit interval. Intuitively, all randomness is reduced to
selecting a single point from the sample space. An event, such as a particular coin
flip coming up heads or a random variable taking on the value 0, is simply a subset
of the sample space that "occurs" if one of the sample points it contains is selected.

If we are omniscient, we can see which sample point is chosen and thus can tell for
each event whether it occurs or not. However, if we have only partial information, we
will not be able to determine whether some events occurred or not. We can represent
the extent of our knowledge by making a list of all events we do know about. This
list will have to satisfy certain closure properties; for example, if we know whether or
not A occurred and whether or not B occurred then we should know whether or not
the event "A or B" occurred.

We will require that the set of known events be a cr-alge’bra. A a-algebra jc is a
family of subsets of a sample space f that (i) contains the empty set; (ii) is closed
under complement" if $c contains A, it contains f \ A (the complement of A); and (iii)
is closed under countable union: if contains all of A1, A2,..., it contains [.Jil Ai.6
An event A is said to be -measurable if it is contained in 3c. In our context, the term
"measurable," which comes from the original measure-theoretic use of a-algebras to
represent families of sets on which a probability distribution is well defined, simply
means "known."

We "know" about an event if we can determine whether or not it occurred. What
about random variables? A random variable X is defined to be -measurable if every
event of the form X

_
c is it-measurable. (The closure properties of jc then imply

that such events as a

_
X b, X d, and so forth are also ’-measurable.) Looking

at the situation in reverse, given random variables X, X2,..., we can consider the
minimum -algebra for which each of the random variables is it-measurable; this
or-algebra, written (Xi}, is called the or-algebra generated by X1, X2,... and represents
all information that can be inferred from knowing the values of the generators.

A a-algebra gives us a rigorous way to define "knowledge" in a probabilistic
context. Measurability and generated a-algebras give us a way to move back and

5 This is sometimes called a a-field.
6 Additional properties, such as being closed under finite union or intersection, follow immediately

from this definition.

1030 JAMES ASPNES AND ORLI WAARTS

forth between the abstract concept of a a-algebra and concrete statements about
which random variables are completely known. To analyze random variables that are
only partially known, we need one more definition. We need to extend conditional
expectations so that the condition can be a or-algebra rather than just a collection of
random variables.

For each event A, let IA be the indicator variable that is 1 if A occurs and 0
otherwise. Let U E [X I9c] be a random variable such that (i) U is .P-measurable
and (ii) E [UIA] E [XIA] for all A in 9c. The random variable E [X I9c] is called
the conditional expectation of X with respect to " [15, V.II]. Intuitively, the first
condition on E [XI9c] says that it reveals no information not already found in jc.

The second condition says that just knowing that some event in 9c occurred does not
allow one to distinguish between X and E IX 9c]; this fact ultimately implies that
E IX Jc] uses all information that is found in 9c and is relevant to X.

If jc is generated by random variables XI, X2,..., the conditional expectation
E [X IJc] reduces to the simpler version E [X IXI, X2,...]. Some other facts about
conditional expectation that we will use (but not prove) are the following: if X is
)C-measurable, then E [XY]$c] X E [YI$c] (which implies E [X ISc] X); and if

’ C_ $c, then E [E [XI9C]15’’] E [X I’]. See [15, V.11].
4.2. Definition of a martingale. We now have the tools to define a martingale

when the information available at each point in time is not limited to just the values
of earlier random variables. A martingale {Si, i}, 1 _< _< n, is a stochastic process
where each S is a random variable representing the state of the process at time and

is a or-algebra representing the knowledge of the underlying probability distribution
available at time i. Martingales are required to satisfy three axioms for all i:

1. $’ c_ +. (The past is never forgotten.)
2. Si is $]-measurable. (The present is always known.)
3. E [S+I I$c] S. (The future cannot be foreseen.)

Often, ci will simply be the or-algebra {SI,..., S} generated by the variables S
through S; in this case, axioms 1 and 2 will hold automatically.

To avoid special cases, let c0 denote the trivial a-algebra consisting of the empty
set and the entire probability space. The difference sequence of a martingale is the
sequence X1, X2,..., Xn, where X1 S1 and Xi Si Si-1 for > 1. A zero-mean
martingale is a martingale for which E [Si] 0.

4.3. Gambling systems. A remarkably useful theorem, which has its origins in
the study of gambling systems, is due to Halmos [18]. We restate his theorem below
in modern notation.

THEOREM 4.1. Let {S, }, 1 <_ <_ n, be a martingale with difference sequence
{X}. Let {{i}, 1 < <_ n, be random variables taking on the values 0 and 1 such that
each i is _l-measurable. Then the sequence of random variables S j=l <jXj
is a martingale relative to . (That is, {S,} is a martingale.)

Proof. The first two properties are easily verified. Because i is 9Ci_l-measurable,
E [iXili-] i E [Xi $ci-] 0, and the third property also follows, rl

4.4. Limit theorems. Many results that hold for sums of independent random
variables carry over in modified form to martingales. For example, the following
theorem of Hall and Heyde [17, Thm. 3.9] is a martingale version of the classical
central limit theorem.

THEOREM 4.2 (see [17]). Let {Si,2i} be a zero-mean martingale. Let V
Ei%l E [X i-] and let 0 < 5 < 1. Define Ln En

{_-i m [I/{12/=a] /m [IV

RANDOMIZED CONSENSUS 1031

Then there exists a constant C depending only on 5 such that whenever L, <_ 1,

(1) IPr [Sn <x]- (x)l </’7,/,1/(3+25)
n 1

where is the standard unit normal distribution with mean 0 and variance 1.
For our purposes we will need only the case where x and 5 are both set to 1. This

allows the statement of the theorem to be simplified considerably. Furthermore, the
rather complicated fraction containing x is never more than 1 and so can disappear
into the constant. The result is:

THEOREM 4.3. Let {&,Jri} be a zero-mean martingale. Let V E=I E[X
i-1]. Define Ln _7’.i=1E [[Xi[4] + E [IV- 112]. Then there exists a constant C
such that whenever Ln <_ 1,

(2)]Pr [S, _< 1]- (1)] < CL/,

where 4 is the standard unit normal distribution with mean 0 and variance 1.
If we are interested only in the tails of the distribution of S, we can get a tighter

bound using Azuma’s inequality, a martingale analogue of the standard Chernoff
bound [9] for sums of independent random variables. The usual form of this bound
(see [2, 25]) assumes that the difference variables X satisfy IXil _< 1. This restriction
is too severe for our purposes, so below we prove a generalization of the inequality.
In order to do so, we will need the following technical lemma.

LEMMA 4.4. Let {Si,2ri},l 5 i <_ n, be a zero-mean martingale with differ-
ence sequence {X}. Let .o C_ be a (not necessarily trivial) a-algebra such that
E [S [br0] 0. If there exists a sequence of random variables Wl, w2,...,w and a
random variable W such that

1. W is .o-measurable,
2. each wi is Ui_-measurable,
3. for all i, IXi] <_ wi with probability 1, and
4. n 2 < W with probability 1Ei----I ZOi

then for any (> O,

(a) [’ I0] _< /.

Proof. The proof is by induction on n. First, notice that since ecxl is convex, we
have

(_)2w
e + 1 w-X1 eWl

2w

and thus

[(w-X)e-aw+ (1-w-X)e’’* [3ro1E [X .."0 __< E
2/) 2U1

+2 2Wl
1 -aw + eawe

since E [X [2r0] is zero.

1032 JAMES ASPNES AND ORLI WAARTS

Then, however,

1 (e_w ewlE [eax JE’0 -nt- cosh ozl/)

If n 1, we are done since w <_ W. If n is greater than 1, for each _< n- 1,
let S Si+l-Xl and jc $ci+1. Then { ,3c},1 _< <_ n- 1, satisfies the

and W W w so by theconditions of the lemma with - 1, wi wi+l
induction hypothesis, E[es’- I] <_ e(w-l)/2. But then, using the fact that
E IX I)c] E [E IX Jc’] jc] when)c

_
jc,, we can compute

THEOREM 4.5. Let {Si, $ci}, 1 <_ <_ n, be a zero-mean martingale with difference
sequence {Xi}. If there ezists a sequence of random variables w, w2,..., wn and a
constant W such that

1. each wi is i_-measurable,
2. for all i, IXiI < wi with probability 1, and
3. = wi _< W with probability 1,

then for any > 0,

/2W(4) Pr [Sn 2] e-

Proof. By Lemma 4.4, for any a > 0, E [eas] eW/. Thus by Markov’s
inequality,

Pr [S A] Pr [e e] eW/2e-.
Setting a A/W gives (4).

Symmetry immediately gives us the following corollary.
COROLLAaY 4.6. For any martingale {Si,i} satisfyin9 the premises of Theorem

4.5 and any A > O,

() Pr IS. -] -x/w.

Proof. Replace each Si by -Si and apply Theorem 4.5.

5. Proof of correctness. For this section, we will fix a particular scheduler. We
may assume without loss of generality that the scheduler is deterministic because any
random inputs the scheduler might use cannot depend on the history of the execution
and therefore may also be fixed in advance.

Consider the sequence of random variables X, X2,..., where X represents (a)
the ith vote that is decided by some processor executing line 7 or (b) 0 if fewer than
local coin flips occur. Note that the notion of the ith vote is well defined since we model

RANDOMIZED CONSENSUS 1033

concurrency by interleaving; it is assumed that the scheduler advances processors one
at a time. For each i, let 9ci be (X1,..., Xi), the a-algebra generated by X1 through
Xi. Because the scheduler is deterministic, all of the random events in the system
preceding the ith vote are captured in the variables X1 through Xi-, and the
algebra 9ci_ thus determines the entire history of the system up to but not including
the ith vote. Furthermore, since the scheduler’s behavior depends only on the history
of the system, 9ci_ in fact determines the scheduler’s choice of which processor will
cast the ith vote. Thus conditioned on 9ci_, Xi is just a random variable which
takes on the values +w with equal probability for some weight w determined by
the scheduler’s choice of which processor to run. Hence E [Xi 9ci-] 0, and the
sequence of partial sums Si -)=1 Xi is a martingale relative to

We are not going to analyze {Si, 9ci} directly. Instead, it will be used as a base
on which other martingales will be built using Theorem 4.1.

Let i 1 if 2=1 X _< K and 0 otherwise. Votes for which i 1 will be

called common votes. For each processor P, let 4P 1 if the vote Xi occurs before
P reads, during its final read in line 13, the register of the processor that determines
the value of Xi, and let P 0 otherwise. In effect, P is the indicator variable
for whether P would see Xi if it were written out immediately. Observe that for a
fixed scheduler, the values of both hi and 4P can be determined by examining the
history of the system up to but not including the time when the vote X is cast, and
thus both hi and /P are 9ci_l-measurable. Consequently, the sequences {=1 i,jXj }
and j=l 4f’Xj } are martingales relative to {9ci} by Theorem 4.1. Votes for which

P 1 but 0 will be referred to as the extra votes for processor P. (Observe that

P _> hi since P could not have started its final read until the total variance was at
least K.) The sequence {}= (4P i)Xi} of the partial sums of these extra votes
is a difference of martingales and is thus also a martingale relative to

The structure of the proof of correctness is as follows. First, we observe that the
distribution of the total common vote, iXi, is close to a normal distribution with
mean 0 and variance K for suitable choices of a and K; in particular, we show that
for n sufficiently large, the probability that iXi > will be at least a constant.
Next, we complete the proof by showing that if the total common vote is far from
the origin, the chances that any processor will read a total vote whose sign differs
from the common vote is small. This fact is itself shown in two steps. First, it is
shown that, for suitable choice of c, the total of the extra votes for a processor P,
}-(P i)Xi, will be small with high probability. Second, a bound A is derived on
the difference between Pi Xi and the total vote actually read by P.

It will be necessary to select values for a, K, and c that give the correct bounds
on the probabilities. However, we will be in a better position to justify our choice
for these parameters after we have developed more of the analysis, so the choice of
parameters will be deferred until 5.5.

5.1. Phases of the protocol. We begin by defining the phases of the protocol
more carefully. Let ti be the value of the ith processor’s internal variable t at any
given step of the protocol. Let Ui be the random variable representing the maximum
value of ti during the entire execution of the protocol. Let Ti be the random variable
representing the maximum value of ti during the part of the execution of the protocol
where 1.

In the proof of correctness, we will encounter many quantities of the form
_,= x(Ti) or Ei= x(Ui) for various functions X. We will want to get bounds on

1034 JAMES ASPNES AND ORLI WAARTS

these quantities without having to look too closely at the particular values of each Ti
or Ui. This section proves several very general inequalities about quantities of this
form, all of which are ultimately based on the following constraint:

j--1

The constant 2a / 1 will reappear often; for convenience, we will write it as A. As
noted above, a >_ 0, and hence A _> 1.

Define Tc (AKIn) 1/A so that K nT/A. The constant Tc represents the
maximum value of each Ti if they are set to be equal while satisfying inequality (6).
Note that TK need not be an integer. Now we can show the following.

LEMMA 5.1. Let (x) xA/A and let X be any strictly increasing function such
that Xp- is concave. Then for any nonnegative {x}, if E= (x) <_ K, then

E= x(x) < x(T).
Proof. Since X- is concave, we have

[19, Thm. 92]. Simple algebraic manipulation yields

EX(Xi) rtX (2-1 (E)(Xi)))
However, _

)(X)n - In E -- < - T/.

Hence E X(xi) <_ nx(TK). D
Letting X be the identity function, we have x-l(x) (Ax) I/A, which is concave

for A >_ 1. Hence we have the following corollary.
COROLLARY 5.2.

n

() T, _< .T.
i--1

In the case where X)-1 is convex, the following lemma applies instead.
LEMMA 5.3. Let (x) xA/A and let X be any strictly increasing function

such that X- is convex. Then for any nonnegative {xi}, if Ei= (xi) <_ K, then

= x() < (-)x(0)+ x(/T)
Proof. Let Y E (xi). Now X(xi)= x-l(xi) or

(x)X-((1 (xi))O+Y]2 Y)
which is at most

1 (x))y x/j_l(0)/ ...i).x_l(y)

RANDOMIZED CONSENSUS 1035

given the convexity of X/)-1

n

i=1

Hence

_<: (n- 1)X-1(0)+ X-I(K),
which is just (n- 1)X(0) +

The quantity nl/ATK is the maximum value that any x can take on without
violating the constraint on x. So what Lemma 5.3 says is that if X-1 is convex,

X(x) is maximized by maximizing one of the x’s while setting the rest to zero.
For the variables U, we can show the following.
LEMMA 5.4. Let (x) xA/A and let X be any strictly increasing function such

that X(-(x) + c + 1) is concave in x. Then

n

(s) _< + +
i--1

Proof. Let W be the number of votes written to the registers during the part
of the execution where the total of the register-variance fields is less than or equal
to K. The set of variables {W} satisfies the inequality E wA/A <-- K using the
same argument as gives (6). Furthermore, U _< W + 1 + c because after the ith
processor’s next vote, the total variance in the registers must exceed K and it can
cast at most c more votes before noticing this fact. Define X’(x) X(x + c + 1). Then
x(Ui) <_ x(Wi + c + 1) x’(Wi). But , X’, and Wi satisfy the premises of Lemma

n5.1 and thus= x(Ui) < n X’{:1 (W{) < nx’(TK): nx(Tz + c + 1).
Setting X to be the identity function gives the following result.
COROLLARY 5.5.

n

(9) E U
_
n(TK + c + 1).

i=1

Proof. X(--I(x)t_ C t_ 1) Ax1/A -t-c + 1, which is concave since A k 1. El
Define g 1 + (c + 3)/TK; then gTK TK + c + 3 will be an upper bound for

TK + c+ 1 as well as a number of closely related constants involving c that will appear
later.

5.2. Common votes. The purpose of this section is to show that for n suffi-
ciently large, the total common vote is far from the origin with constant probability.
We do so by showing that under the right conditions, the total common vote will be
nearly normally distributed.

Let SK -= tjXj. As pointed out above, {SK =1 tJZJ, T’i} is a mar-
tingale. Let N [nTK]. It follows from Corollary 5.2 that" 0 for > N and
thus SNK lim_. SK is the sum of all the common votes. The distribution of SNK is
characterized in the following lemma.

LEMMA 5.6. If
4A2

(10) n/ATK

_
I,

1036 JAMES ASPNES AND ORLI WAARTS

then

(11) IPr S
_
V/-]- q)(1)_< C1

where C1 is an absolute constant.
Proof. The proof uses Theorem 4.3, which requires that the martingale be normal-

ized so that the total conditional variance V is close to 1. So let Y iXi/v/- and
consider the martingale {E= ,;}. To apply the theorem, we need to compute a
bound on the value LN.

We begin by getting a bound on the first term E E [}E14]. We have

(12) Z [114] Z I14 1 1

i=1 i=1 i=1 i=1 j=l

NOW

Consider the two parts of this bound separately. Define (z) z’a/A, X(z)
zi+l/(4a + 1); then X:-l(y) (Ay)(i+)/a/(4a + 1)is convex, X(0) 0, and hence

Ei= /(4a + 1) is at most (n/ATK)4+/(4a + 1) using Lemma 5.3.
Similarly, let X(z) z4. Here the convexity ofX-x depends on the value of a.

If a 2 1/2, then X,f-l() (A)4/A is convex (since 4a/A- 4a/(2a + 1) 2 1), and
n Ta < (nl/ATK)4a= n4a/AT}a < n(4a+l)/Aw4a Ifthus (again by Lemma 5.3) = K"

a 1/2, then X-l(y) is concave (since now 4a/A 1), and thus by Lemma 5.1,

Plugging everything back into (12) gives

N n(4a+l)/A,-p4a (?%1/ATK)4a+K(13) EE[Iy{4] <_
K2 + K2(na + l)

i=1

For the second term E [IV 112], observe that

N N

g? EE [Y/2 .L-i-1 E E [(tiXi)2 Jsi-l],
i=1 i=1

which is just 1/K times the sum of the squares of the weights IXil of the common
votes. But the total variance of the common votes can differ from K by at most the
variance of the first vote Xi for which i 0. Since the processor that casts this vote
can have cast at most n/ATK votes beforehand, the variance of this vote is at most
(ni/aTK + 1)2, giving the bound

()41 n/ATK + 1(14) IV- 112 <_ -Combining (13) and (14) gives

(4a+l)/Aw4a (I/ATK)4a+I (I/ATK + 1)4LN K + +K K (4a + 1) K

RANDOMIZED CONSENSUS 1037

Tt(4a-i-1)/Ar-p4a’K Tt(4a+I)/ATa-t-1 n4a/ArIa(1 + -I/ATI)4a

+ +Ke Ke (4a + 1) K

An-1/AT + An-/AT exp(4an-1/ATl)An-1/AT + 4a + 1

2An-1/AT + el/A2n-/nT
4A

nl/ATK

The third-to-last step uses the approximation (1 + z)b ebx %r nonnegative b and z.
The resulting exponential term is serendipitously bounded by e1/2 if (10) holds since
2a < A A implies 4an-/AT < 2A(n/ATK)- 2/4.

A more direct application of (10) shows that LN 1, and thus Theorem 4.3
applies. Hence

<_ C
nl/AK

(A)/
_

C1 rtl/ATK
D

5.3. Extra votes. In this section, we examine the extra votes from the point of
view of a particular processor P.

Recall that 4P is defined to be 1 if the vote Xi is cast by some processor Q before
P’s final read of Q’s register and 0 otherwise. Clearly, P _> i since P could not have
started its final read until the total variance exceeded K. As discussed above, both
,y and are i_-measurable. Thus 4 is a 0- 1 random variable that is

Pi_-measurable, and {S Ej= jXj,i} s a martingale by Theorem 4.1.
Define A n(DTK). The following lemma shows a bound on the tails of X.
LEMMA 5.7. If

(15) ga <_ - nA

and

1 7(16) 9
A _< 1 + 8 log(10n)’

then for each processor P,

(17) Pr [E(/P -i)Xi < A- V] < 1
i0n

Proof. The proof uses Corollary 4.6, so we proceed by showing that its premises
(stated in Theorem 4.5) are satisfied for {EX, i}.

By Corollary 5.5, X and thus X is zero for > n(TK + c + 1). Thus Xi
S, where M n(TK + c + 1).

7 By log(x), we will always mean the natural logarithm of x.

1038 JAMES ASPNES AND ORLI WAARTS

Set wi [iXl. Then the first premise of Corollary 4.6 follows from the fact that
for each i, and [X are both -measurable. The second premise is immediate. For
the third premise, notice that

The first term is

The second term is

n U

i=1

for some t which is at most U for some i. Thus

(8)

n U

E(]iXi[)2 -K q-t2a q- EEj2a
i=I j=l

n U+I

i=1 j=l

n

<_ -K + E(U + 2)A/A.
i--1

Let X(x) (x + 2)A/A. Then

(19) X(-I(Y)+C+I) ()A(Ay)/A + c + 3

A
We can treat this function as an instance of a class of functions of the form

(xp + C)q, where x, p, q, and C are all nonnegative, whose concavity (or lack thereof)
can be determined by finding the sign of the second derivative"

sgn I(xP + V)q] -sgn [--q(xP + C)q-lpxp-11
sgn [q(q 1)(xp + c)q-2p2x2p-2 + q(xp + c)q-lp(p 1)xp-2]
sgn [q(xp + c)q-2pxp-2 [(q 1)pxp + (xp + C)(p- 1)]]
sgn [(q- 1)pxp + (xp + C)(p- 1)]

+
In the particular case we are interested in, p l/A, q A, and C c + 3. Since

pq- 1 0, the first term vanishes and the sign is equal to the sign of 1/A- 1, which
is less than or equal to zero since A _> 1. Thus the function (x1/A + c+ 3)A is concave,
and since concavity is preserved by linear transformations, ((Ay) 1/A + c + 3)A/A is
concave as well.

Lemma 5.4 now gives

n

(20) E (U + 2)A < nX(TK + c + 1) n(TK + c + 3) ‘4
< n(gTK)A

A A A
i--1

RANDOMIZED CONSENSUS 1039

It follows from (18) and (20) that

< (vf)a
A

K K(gA 1).

Applying (5) from Corollary 4.6 now yields, for all/ > 0,

(21) Pr [S --/] e-’x/(2g(ga-l)).

If (15) holds, then A <_ v/-/2. Thus

< e-K/(SK(gA-1))
e-1/(s(A-1)).

But if (16) holds, then

1gA--1 <
Slog(I0n)

and, since log(10n) > 0 and g > 1,

1 _< log(10n),
S(A-

from which it follows that

e-1/s(gA-1) < e- log(10n) 1
Cl

10n

5.4. Written votes vs. decided votes. In this section, we show that the
difference between 4Pxi and the total vote actually read by P is bounded by
zx

LEMMA 5.8. Let Rp be the sum of the votes read during P’s final read. Then

(22) E (iPXi RP <- n(Tk + c + 1) a <_ n(gTK a A.

Proof. Suppose /P 1, and suppose Xi is decided by processor Pj. If the vote
Xi is not included in the value read by P, it must have been decided before P’s read
of Pj’s register but written afterwards. Because each vote is written out before the
next vote is decided, there can be at most one vote from Pj which is included in

Pxi but is not actually read by P. This vote has weight at most U]. Thus we

have [y’ Pi Xi- Rp Ei=I U?.
Now let X(x) x. Then X(-l(y) + c + 1) ((Ay) 1/A + c + 1) a. The concavity

of this function can be shown using the argument applied to (19) in Lemma 5.7: the
sign of its second derivative will be equal to the sign of (pq 1)xp + C(p- 1), where
x Ay, p 1/A, q a, and C c + 1. Since Ay and c + 1 are both nonnegative and
a/A and 1/A are both less than or equal to 1, both terms are nonpositive and thus
((Ay) I/A + c + 1)a is concave. The rest follows from Lemma 5.4.

1040 JAMES ASPNES AND ORLI WAARTS

5.5. Choice of parameters. Let us summarize the proof of correctness in a
single theorem.

THEOREM 5.9. Define
A=2a+l,

c+3
g=l+ TK

and suppose that all of the following hold:

<_

1<_ + 8 log(10n)
4A2

(25) nl/ATK
<_ 1.

Then the protocol implements a shared coin with agreement parameter at least

(26) 1- q(1)+ C nl/aT: +-i
where C1 is the constant from Lemma .6.

Pro@ To show that the agreement parameter is at least (26), we must show
that for each z {0, 1}, the probability that all processors decide z is at least (26).
Without loss of generality, let us consider only the probability that all processors
decide 1; the case of all processors deciding 0 follows by symmetry.

The essential idea of the proof is as follows. With at least a constant probability,
the total common vote is at least (Lemma 5.6). The "drift" added to this total
by the extra votes for any single processor P is small with high probability (Lemma
5.7). Thus even after adding in the extra votes for P, the total will be large enough
that the offset A n(gT) caused by votes that are generated but not written out
in time for P’s final read will not push it over the line (Lemma 5.8).

More formally, we wish to show that the event

nX>and
for each P, 2(i)Xi > &

occurs with probability at least (26). Since this event implies that for all P, X >
&, by Lemma g.8, we have that each P reads a value greater than 0 during its final
read and thus decides 1.

It will be easiest to compute an upper bound on the probability that this event
does not occur. For the event not to occur, we must have either Xi or

2()X &- for some P. But since the probability of a union of events
never exceeds the sum of the probabilities of the events, the probability of failing in
any of these ways is at most

P

(27) (1) + C n/ATK + n lO

RANDOMIZED CONSENSUS 1041

by Lemmas 5.6 and 5.7. Therefore, the probability that some processor decides 0 is
at most (27), and thus the probability that all processors decide 1 is at least 1 minus

(7).
The running time of the protocol is more easily shown.
THEOREM 5.10. No processor executes more than (AK)I/A(2 + n/c)-F 2c + 2n

register operations during an execution of the shared-coin protocol.
Proof. First, consider the maximum number of votes a processor can cast. After

(AK) 1/A votes, the total variance of the processor’s votes will be

xa > xa dx
A

x--1

so after at most an additional c votes, the processor will execute line 11 of Figure 1 and
see a total variance greater than K. Thus each processor casts at most (AK)1/a + c
votes. But each vote costs 1 write operation in line 8, and every c votes costs n reads
in line 11, to which must be added a one-time cost of n reads in line 13. The total
number of operations is thus at most ((AK) 1/A + c)(1 + In/c])+ n <_ ((AK) I/A +
c)(2 + n/c) + n (AK)/A(2 + n/c) + 2c + 2n.

It remains only to find values for a, K, and c which give both a constant agreement
parameter and a reasonable running time. As a warm-up, let us consider what happens
if we emulate the protocol of Bracha and Rachman [8].

THEOREM 5.11. If a O, If 4n, andc n/(41ogn)-3, then forn sufficiently
large, the protocol implements a shared coin with agreement parameter at least 0.05
in which each processor executes at most O(n log n) operations.

Proof. For the agreement parameter, we have A 1, Tt(4n, and g 1 +
1/ (161og n) Then (23) holds since g 1 <_ (1/2)v/Tz</nA 1. Furthermore,

1 I 1/A

log(10n)
-1+

>I+

8(log n + log 10)
1

16 log n

when n >_ 10. Thus (24) holds. The remaining inequality (25) holds for n >_ 1, so by
Theorem 5.9, we have a probability of failure of at most

1)1/5 1
O(1) + C1 n2 + 1--d

<_ 0.842 + O (n--/5)+0.1,
which is not more than 0.942 + e for n sufficiently large. In particular, for n greater
than some no, this quantity is at most 0.95, and the agreement parameter is thus at
least 1 0.95.

The running time is immediate from Theorem 5.10. El
Now consider what happens if a is not restricted to be a constant 0.
THEOREM 5.12. If a (logn-1)/2, K (16nlogn)lgn(n/logn), and c

(n/ log n)- 3, then for n sufficiently large, the protocol implements a shared coin with
constant agreement parameter in which each processor executes at most O(n log2 n)
operations.

1042 JAMES ASPNES AND ORLI WAARTS

Proof. We have A logn, TK 16nlogn, and g 1 + 1/(16log2 n).
We want to apply Theorem 5.9, so first we verify that its premises are satisfied.

To show (23), compute

1)
(logn-1)/2

< (
(lgn-1)/(321g2 n) < el/(321ogn)ga 1 +

161og2 n

which for n >_ 2 will be less than (1/2)x//nA 2. To show (24), note that

e1/(16 lg n)gA 1 /
16 log2 n

and thus log(gA) <_ 1/(161ogn). But

log (1 + 8 log(10n)
>

8 log(10n) 128 log2(10n)
1 1

8(log n / log 10) 128(log n / log 10) 2

(using the approximation log(1 + x) :> x- (1/2)x2). For sufficiently large n, this
quantity exceeds 1/(161ogn)and (24)holds. The remaining constraint (25)is easily
verified, and thus Theoren 5.9 applies and the agreement parameter is at least

log n
1 (I)(1) / C1 nl/logn(16nlogn)

/

_>1- 0.842+0
logn

which is at least 0.05 for sufficiently large n. Thus the protocol gives a constant
agreement parameter.

Now by Theorem 5.10, the number of operations executed by any single processor
is at most (AK)I/A(2 + n/c)+ 2c + 2n, or

(log n) 1/log n(16n log n)(n/ log n)/ log nO(log n) + O(n),

which is O(n log2 n). [:l

6. Discussion. This paper presents the first randomized consensus algorithm
which achieves a nearly optimal worst-case bound on the expected number of opera-
tions a processor needs to execute. To achieve this, we construct a weak-shared-coin
protocol based on random voting where the weight of votes cast by a processor in-
creases with the number of votes it has already cast. The consensus protocol can
then be constructed around it using the established techniques of Aspnes and Herlihy
[4] with only a constant-factor increase in the number of operations done by each

8processor.
This work leads to several interesting questions. First, our voting scheme implic-

itly gives higher priority to operations done by processors that have already performed

s Due to the unbounded round structure of [4], the resulting consensus protocol assumes un-
bounded registers. We believe these unbounded registers can be eliminated using the bounded round
numbers construction of Dwork, Herlihy, and Waarts [14].

RANDOMIZED CONSENSUS 1043

many operations. Such implicit priority granting may yield faster algorithms for other
shared-memory problems, such as approximate agreement or randomized resource al-
location.

Also, although our solution improves significantly on the worst-case expected
bound on the number of operations a single processor is required to perform in order
to achieve consensus, the total number of operations done by all of the processors
together is slightly larger (by a factor of log n) than in the unweighted-voting protocol
of Bracha and Rachman [8]. It is of theoretical interest whether there is an inherent
trade-off here.

Acknowledgments. We would like to thank Serge Plotkin and David Applegate
for their many useful suggestions.

REFERENCES

[1] K. ABRAHAMSON, On achieving consensus using a shared memory, in Proc. 7th ACM SIGACT-
SIGOPS Symposium on Principles of Distributed Computing, Association for Computing
Machinery, New York, 1988, pp. 291-302.

[2] N. ALON AND J. H. SPENCER, The Probabilistic Method, John Wiley, New York, 1992.
[3] J. ASPNES, Time- and space-efficient randomized consensus, J. Algorithms, 14 (1993), pp. 414-

431.
[4] J. ASPNES AND M. HERLIHY, Fast randomized consensus using shared memory, J. Algorithms,

11 (1990), pp. 441-461.
[5] H. ATTIYA, D. DOLEV, AND N. SHAVIT, Bounded polynomial randomized consensus, in Proc.

8th ACM Symposium on Principles of Distributed Computing, Association for Computing
Machinery, New York, 1989, pp. 281-294.

[6] P. BILLINGSLEY, Probability and Measure, 2nd ed., John Wiley, New York, 1986.
[7] (. BRACHA AND O. RACHMAN, Approximated counters and randomized consensus, Tech. report

662, Technion, Haifa, Israel, 1990.
[8] , Randomized consensus in expected O(n2 log n) operations, in Proc. 5th International

Workshop on Distributed Algorithms, Springer-Verlag, Berlin, New York, Heidelberg, 1991.
[9] H. CHERNOFF, A measure of asymptotic efficiency for tests of a hypothesis based on the sum

of observations, Ann. Math. Stat., 23 (1952), pp. 493-407.
[10] B. CHOR, A. ISRAELI, AND M. LI, Wait-flee consensus using asynchronous hardware, SIAM J.

Comput., 23 (1994), pp. 701-712; preliminary version appears in Proc. 6th ACM SIGACT-
SIGOPS Symposium on Principles of Distributed Computing, Association for Computing
Machinery, New York, pp. 86-97, 1987.

[11] B. CHOa AND L. MOSCOVICI, Solvability in asynchronous environments, in Proc. 30th Annual
IEEE Conference on Foundations of Computer Science, IEEE Computer Society Press, Los
Alamitos, CA, 1989, pp. 422-427.

[12] D. DOLLY, C. DWORK, AND L. STOCKMEYER, On the minimal synchronism needed for dis-
tributd consensus, J. Assoc. Comput. Mach., 34 (1987), pp. 77-97.

[13] C. DWOaK, M. HEaLIHY, S. PLOTKIN, AND O. WAARTS, Time-lapse snapshots, in Proc. Israel
Symposium on the Theory of Computing and Systems, Springer-Verlag, Berlin, New York,
Heidelberg, 1992, pp. 159-170.

[14] C. DWORK, M. HERLIHY, AND O. WAARTS, Bounded round numbers, in Proc. 12th ACM
SIGACT-SIGOPS Symposium on Principles of Distributed Computing, Association for
Computing Machinery, New York, 1993, pp. 53-64.

[15] W. FELLER, An Introduction to Probability Theory and Its Applications, vol. 2, 2nd ed., John
Wiley, New York, 1971.

[16] M. J. FISCHER, N. A. LYNCH, AND M. S. PATERSON, Impossibility of distributed commit with
one faulty process, J. Assoc. Comput. Mach., 32 (1985), pp. 374-382.

[17] P. HALL AND C. HEYDE, Martingale Limit Theory and Its Application, Academic Press, New
York, 1980.

[18] P. R. HALMOS, Invariants of certain stochastic transformations: The mathematical theory of
gambling systems, Duke Math. J., 5 (1939), pp. 461-478.

[19] G. HARDY, J. LITTLEWOOD, AND (. PSLYA, Inequalities, 2nd ed., Cambridge University Press,
Cambridge, UK, 1952.

1044 JAMES ASPNES AND ORLI WAARTS

[20] M. HERLIHY, Wait-free synchronization, ACM Trans. Programming Lang. Systems, 13 (1991),
pp. 124-149.

[21] P. KoPP, Martingales and Stochastic Integrals, Cambridge University Press, Cambridge, UK,
1984.

[22] M. C. LouI AND H. H. ABU-AMARA, Memory requirements for agreement among unreliable
asynchronous processes, in Advances in Computing Research, vol. 4, F. P. Preparata, ed.,
JAI Press, Greenwich, CT, 1987.

[23] S. A. PLOTKIN, Sticky bits and universality of consensus, in Proc. 8th ACM Symposium on

Principles of Distributed Computing, Association for Computing Machinery, New York,
1989, pp. 159-176.

[24] M. SaKS, N. SHAVIT, AND H. WOLL, Optimal time randomized consensus: Making resilient
algorithms fast in practice, in Proc. 2rid Annual ACM-SIAM Symposium on Discrete
Algorithms, Society for Industrial and Applied Mathematics, Philadelphia, 1991, pp. 351-
362.

[25] J. SPENCER, Ten Lectures on the Probabilistic Method, Society for Industrial and Applied
Mathematics, Philadelphia, 1987.

SIAM J. COMPUT.
Vol. 25, No. 5, pp. 1045--1060, October 1996

() 1996 Society for Industrial and Applied Mathematics
OO6

OPTIMAL GROUP GOSSIPING IN HYPERCUBES UNDER A
CIRCUIT-SWITCHING MODEL*

SATOSHI FUJITAt AND MASAFUMI YAMASHITAt

Abstract. Let U be a given set of nodes of a parallel computer system and assume that each
node u in U has a piece of information t(u) called a token. This paper discusses the problem of each
u E U broadcasting its token t(u) to all nodes in U. We refer to this problem as the group-gossiping
problem, which includes the (conventional) gossiping problem as a special case. In this paper, we

consider the group-gossiping problem in n-cubes under a circuit-switching model and propose an

optimal group-gossiping algorithm for n-cubes under the model.

Key words, parallel algorithm, gossiping, circuit-switching model, optimal-time bound, n-cubes

AMS subject classifications. 05C38, 68Q20, 68R10

1. Introduction. Massively parallel computer systems usually consist of enor-
mous number of processors (called nodes) connected by communication links and are
characterized by the absence of shared memory. In them, nodes communicate with
each other by message-passing via communication links. This paper discusses an in-
formation-dissemination problem that is a natural extension of the gossiping problem
for parallel computer systems.

Let V be the set of nodes in a parallel computer system, and let U
be a subset of V. We assume that each node u E U has a piece of
information t(u) called a token. Then the group-gossiping problem
for U is the problem of broadcasting the tokens to all nodes in U and
making every node u E U know all tokens t(v) (v U).

When U V, it is the conventional gossiping problem, which has been investigated
extensively during the past decade [2, 3, 8, 12, 11, 14, 18, 22], and when Ig 2, it is
the point-to-point routing problem [4, 20].

By definition, any gossiping algorithm can correctly solve the group-gossiping
problem since U _c V. Suppose that a node can communicate a message to another
node in a step (i.e., in one unit of time) only if there is a communication link between
them. We call this the assumption of link communication. It captures well a char-
acteristic of the store-and-forward routing communication scheme. Assuming link
communication, group gossiping requires time greater than or equal to the diameter
of the network topology of the system in the worst case. On the other hand, for each
of many network topologies, there has been proposed a gossiping algorithm which
achieves a gossiping time close to the diameter of the network topology even if the
links are half-duplex, i.e., bidirectional communication via a link in a time unit is

Received by the editors July 28, 1993; accepted for publication (in revised form) January 25,
1995. Earlier versions of some results contained in this paper appear in the following paper: S.
Fujita, M. Yamashita, and T. Ae, "Optimal group gossiping in hypercubes under wormhole routing
model," in Proc. 4th International Symposium on Algorithms and Computation, Lecture Notes in
Computer Science 762, Springer-Verlag, Berlin, 1993, pp. 227-286.

Department of Electrical Engineering, Faculty of Engineering, Hiroshima University,
Kagamiyama 1-4-1, Higashi-Hiroshima 739, Japan (fujita@csl.hiroshima-u.ac.jp, makse.hiroshima-
u.ac.jp).

The store-and-forward routing scheme sends messages as packets. Execution of a send (packet)
instruction at a node picks a packet from its queue and sends it to the queue of the adjacent node
specified in the packet through the link connecting the two nodes. The packet is delivered to its
destination by repeating local packet transmission.

1045

1046 SATOSHI FUJITA AND MASAFUMI YAMASHITA

not permitted [19]. 2 Therefore, the group-gossiping problem is efficiently solvable by
elaborate gossiping algorithms for parallel computer systems adopting the store-and-
forward routing communication scheme (i.e., when we assume link communication).

Circuit switching is an alternative communication scheme for parallel computer
systems and telecommunication networks. In this routing scheme, a node wishing
to send a message to a destination node first reserves a route from the source node
to the destination node and then flows a message to the destination node along the
reserved route in a pipelined manner [20]. It is usually assumed that a message of
unit length sent by a node can rearch its destination node in unit time. We call this
the assumption of line communication.3 This paper investigates the group-gossiping
problem for the circuit-switching routing communication scheme (i.e., assuming line
communication).

An intuitive description of the model we have in mind is the following4 (a formal
description of the model will be given in 2}"

Suppose that a node u wishes to send a message M to a node v
through route P. Then communication is delayed until all links in
P become free. Once communication starts, it finishes by a small
constant time -, where - is insensitive to nodes u and v, message M,
and route P. If more than two communications occur simultaneously
via routes sharing links, exactly one of them succeeds. In other words,
we need to reserve the route before starting communication, but once
it is reserved, communication is made quickly.

Although communication is made in a constant time regardless of the locations
of the communicating nodes, it is required to reserve a route connecting them for
communication. In order for k pairs (i, vi) (1 _< _< k) of nodes to communicate with
each other simultaneously, we must reserve k edge-disjoint routes connecting those
pairs. A group-gossiping algorithm requires many nodes to send tokens in parallel
to achieve short gossiping time, but the degree of possible parallelism is obviously
bounded by, e.g., the edge-connectivity of the network topology, and, moreover, the
given subset U may be distributed inadequately for parallel communication. The
main theme of this paper is how to extract parallelism under those conditions. To
simplify the explanation and to clarify the analysis, in this paper, we assume that
the time required for reserving a route is negligible, although it in practice would be
proportional to the length of the route to be reserved.

As the underlying network topology G, i.e., G (V, E), where V is the set of
nodes and E is the set of links, we adopt n-cubes, which are the most popular topology
for commercial parallel computer systems (e.g., iPSC/2 and nCUBE-2). We propose
two group-gossiping algorithms for n-cubes. Let [UI 2n for <_ 1. The first
algorithm completes the group-gossiping in time [log2(IU 1)/log2 n] + o(log2(IU
1)/log2 n), provided that 1/(1) o(n), which asymptotically achieves a lower
bound [log2(IU 1)/log. hi. The second algorithm, on the other hand, achieves the

If we further assume that each node can communicate with at most one neighbor node in each
time unit, in many cases, we can find lower bounds strictly greater than the diameter of the network
topology [18, 19].

3 The concept of line communication was later extended in various ways. For example, wormhole
routing [7] is a hybrid of store-and-forward routing and circuit-switching routing. Several commercial
parallel computer systems adopted the wormhole routing (see, e.g., [24] for a survey), and several
papers address theoretical problems on it [10, 13, 21, 23].

4 Hromkovi et al. considered a similar problem under a quite different model of circuit switching.
Their model assumes that every node on a delivery route can eavesdrop on the message flowing on
the route. See [15] for details.

GROUP GOSSIPING UNDER A CIRCUIT-SWITCHING MODEL 1047

same time complexity as the first one, provided that 1/(1- e) (n). By combining
these algorithms, we obtain an asymptotically optimal group-gossiping algorithm for
any U (c_ V).

Thus far, several routing problems have been investigated under the circuit-
switching routing model [1, 6, 1.6, 17], including the broadcast problem [5, 9]. To
the authors’ knowledge, however, no investigation has been carried out for the gos-
siping problem under the circuit-switching model.

This paper is organized as follows. In 2, we introduce some notation and define
the circuit-switching model and the group-gossiping problem formally. We also show
a lower bound on the time complexity of the group-gossiping problem. Sections 3, 4,
and 5 are concerned with the first gossiping algorithm, which asymptotically achieves
the lower bound when 1/(l-e) o(n). In 3, we show an outline of the first algorithm.
It consists of three phases. Sections 4 and 5 describe an efficient implementation of
each phase. Section 6 proposes the second algorithm, which asymptotically achieves
the lower bound when 1/(1 -) ft(n). The algorithm uses the procedure proposed
in 5; the procedure of 5 is commonly used in both algorithms. Section 7 concludes
the paper.

2. Preliminaries.

2.1. Notation. Let 7-t (V, E) be an undirected n-cube, where V {0, 1},
and for any u, v V, {u, v} E iff u and v differ in exactly one bit. An element in
V is called a node, and an element in E is called an edge. If u and v differ in the ith
bit5 and {u, v} E, we denote u (R)v. (Note that if u (R)v, then v (R)u.) An
edge {u, v} is called the ith edge of u if v (R)in. Let Ei _C E be the set of the ith
edges of 7-/. An ordered pair (u, v) of nodes is called a link. If {u, v} E, then (u, v)
is called the ith link of u. Let Li {(u, v), (v, u)" {u, v} Ei} be the set of ith links.
Finally, let L U<i< L be the set of all links.

DEFINITION 2.1. Let rn be an integer in {0, 1,... ,n}. For each x {0, 1}", let
Tlx be the subcube of induced by the set of nodes {yx y E {0, 1}n-m}.

DEFINITION 2.2. Let v be a node in V and m be an integer in {0, 1,..., n}. For
each x e {0, 1}m, v(x) is defined as v(x) yx, where y is the prefix of v of length
n- m. For given U c V, U(x) is defined as U(x) {v(x) v e U}.

Example 2.3. Let n 4. 01 is the 2-cube induced by set {0001,0101,1001,1101}.
When v 1111 and x 01, v(x) 1101 since v(x) is the node which has the same
prefix 11 of length 2 with v and suffix x.

DEFINITION 2.4. Given G (V,E), a path connecting u and, v (V) is a
sequence of links P gg2...gm such that (w_,w) L for 1 <_ <_ m,
wo u, and Wm v. If the wi’s are distinct, path P is said to be simple. Since
we consider only simple paths in this paper, a path means a simple path. If a path P
contains a link (u, v) and another path Q contains a link (u, v) or (v, u), then they
are said to share edge {u,v}. A set of paths are said to be edge-disjoint if any two
paths in the set share no edges.

Let U and W be two disjoint subsets of V. We say that U and W are connected
by edge-disjoint paths if there is a set of edge-disjoint paths such that each node in
U (resp. in W) is connected with a node in W (resp. in U) by some path in the set.
If there is a set of edge-disjoint paths which contains a path connecting u and v for

5 In this paper, we number bits in binary strings from left to right. That is, the most significant
bit is the first bit and the least significant bit is the nth bit, where n is the length of the binary
string.

1048 SATOSHI FUJITA AND MASAFUMI YAMASHITA

any u E U and v W, then U and W are said to be fully connected by edge-disjoint
paths. When {u} and U are connected by edge-disjoint paths, we say that u and U
are connected by edge-disjoint paths.

2.2. Circuit-switching model. In the rest of this paper, with a graph G
(V, E) we identify a parallel computer system consisting of the set V of nodes con-
nected by the set E of links. A node in 7-/communicates with another node in "H by
sending a message along with a path connecting them in 7-{. 7-/ has a global clock,
and all nodes synchronously execute their operations according to the global clock.
More precisely, each node can initiate communication at any time instant t 0, 1,
When a node u wishes to send a message to another node v at some time instant to,
u first selects a path connecting u and v as the message route. Let 7) be the set of
paths selected by nodes who wish to initiate communication at the same time instant

to. If a path in 7) is edge-disjoint with any other paths in 7), then the message is sent
from its source to its destination through the path by (and not including) time to + 1.
If two paths share an edge, one of them is selected arbitrarily, and communication
using the selected path occurs. A node u can send out messages to all edges incident
on u simultaneously. Moreover, those messages can be distinct. However, u never
receives a message from an edge to which it sends out a message since paths must be
edge-disjoint. The message sent is received only by the destination node at the other
end of the path. Other intermediate nodes in the path cannot receive the message,
namely, they merely relay the message.

Finally, we assume that each message is long enough to carry any number of
tokens.6

A time interval It, t + 1) is called a time unit, and we assume that nodes can send
and/or receive messages as described in the previous paragraph and prepare the next
communication in one time unit.

We call this model the circuit-switching model. Note that the time required
for reserving a path is assumed to be negligible in this model. It is equivalent to
assuming that a time unit is long enough to complete both reservation and message
transmission. Note also that under this model, edges are half-duplex, i.e., at most one
message can pass through in one time unit.

2.3. Group-gossiping problem. Let 7-/ (V, E) be an n-cube. For a given
nonempty subset U c_ V, consider the following problem: broadcast {t(u) "u U}
to all nodes in U, where t(u) is a piece of information called token held by u U.
We call this problem the group-gossiping problem for U. When IUI 2, it is the
point-to-point routing problem, and when U V, it is the conventional gossiping
problem [14]. In what follows, let U 2n for 0 < e _< 1.

A lower bound on the group-gossiping time under the circuit-switching model is
derived as follows. Under the model, a node v V can send any number of tokens to
at most n nodes in a time unit since the degree of v is n. (Note that some of the n
receivers may not be adjacent with v.) Hence it requires at least

6 Standard literature (see [14]) on the gossiping problem adopts this assumption. In practice,
sharing raw large information is inefficient in both communication time and space. Hence, an im-
portant algorithm-design issue is who shares what. As a result, small "key" information is shared
by nodes, as usual. The assumption reflects it.

GROUP GOSSIPING UNDER A CIRCUIT-SWITCHING MODEL 1049

@173

\0

P1 731
0 0 0

2 ?32
0 0 0

3 ?33

0 O 0
FIG. 1. An illustration for the proof of Lemma 3.1.

time units to broadcast token t(v) to all nodes in U \ {v}. Since group gossiping
requires at least the same time units, we have the following theorem.

THEOREM 2.5 (lower bound). The 9roup 9ossipin9 for U requires at least
[log (Igl- 1)/log2 n] time units.

3. Outline of algorithm GROUP_GOSSIP1. This section describes an out-
line of the first group-gossiping algorithm, GROUP_GOSSIP1, which asymptotically
achieves the lower bound in Theorem 2.5, provided 1/(1- e) o(n). In 3-5, we
assume that 1/(1 e) o(n).

We show a lemma which prepares the basis for how to distribute and collect
information from n other nodes in the n-cube under the circuit-switching model.

LEMMA 3.1. Let h be any natural number and let K: (X, A) be an h-cube. Then
any set Y C_ X of size h and any node v (E X \ Y) are connected by edge-disjoint
paths.

Proof. Without loss of generality, we can assume v Oh. Let Y {vl, v2,..., Vh}
be any h-set which does not contain v Oh.

See Figure 1 for an illustration. For each 1 _< _< h, condsider the shortest path
Pi connecting (R)iv and vi defined as follows: Pi glg2...g,, where gk Ljk for
1 _< k _< m, and LjlLj2 Lj. is a subsequence of Li+Li+...LhL, Li. Note
that B b,b.., bm is a subsequence of C ClCu... Ch iff B is obtained from C by
removing some ci’s. In short, path Pi uses links in Li+Li+....LhLI...Li in this
order. Clearly, Pi is determined uniquely since for each 1 _< k < h, links in Lk occur
at most once in Pi.

First, we show that any two paths Pi and Pj (i j) do not contain the same
link in L. Suppose that both Pi and Pj contain a link g (w, (R)w) Lk for some k.
Without loss of generality, we assume that < j. By definition, (R)iv and (R)jr differ at
the ith bit. Since a link in Li occurs as the last link in Pi (if it occurs), the ith bits
of w and (R)iv are the same. Therefore, in Pj, a link in Li must occur before g Lk.
However, this is impossible since < j. Hence if Pi and Pj share an edge {u, v}, one
contains link (u, v) and the other contains link (v, u).

We construct a set of edge-disjoint paths 7) connecting the sets {(R)iv 1 < _< h}
and Y {vi" 1 _< _< h} by modifying Pi’s as follows: (1) Select an edge {w, (R)kw}

1050 SATOSHI FUJITA AND MASAFUMI YAMASHITA

shared by two paths Pi and Pj. Let Pi Ql(w, (R)kw)Q2 and Pj Qa((R)kw, w)Q4,
where Q1, Q2, Q3, and Q4 are sequences of links. (2) Modify these paths as Pi
and Pj Q3Q, i.e., remove the shared edge by exchanging their destinations. (3) If
there remains a shared edge, go to (1); otherwise, let 7) be the set of Pi’s and stop.

In step (2), a shared edge is removed from the set of P’s. Hence the procedure
terminates. It is clear that when it terminates, paths in 7) are edge-disjoint. Now we
have a set of edge-disjoint paths connecting {(R)v, (R)2v,..., (R)hV} and Y. For any i,
Pi contains no links incident on v because v Y. Hence, by catenating link (v,
to Pi for each i, we have edge-disjoint paths connecting v and Y.

Algorithm GROUP_GOSSIP1 consists of three phases. Each node u in U initially
holds a distinct token t(u). The first phase moves these Igl tokens to a set W of
2d(<_ IUI) nodes, called intermediate nodes, in one time unit. Here d is an integer
determined by IUI and n. This move uses the communication routes constructed in
Lemma 3.1. At the end of the first phase, every intermediate node (E W) keeps at
least [IUI/2dJ tokens. In the second phase, the nodes in W exchange the tokens they
collected in the first phase by repeatedly applying a communication scheme proposed
in 5. As we will see later, it takes log, IUI/log. n + o(log2 Igl/log2 n) time units,
and after the second phase, every node in W holds the set T {t(u) :u E U} of all
tokens. Finally, in the third phase, the nodes in W broadcast T to all nodes in U
in one time unit by using the communication routes in the first phase in the reverse
direction.

Algorithm GROUP_GOSSIP1 is described as follows.

ALGORITHM GROUP_GOSSIP1 (for U satisfying 1/(1- e)= o(n))
Phase 1. Each node u U sends t(u) to a node in W in one time unit.
Phase 2. All nodes in W exchange their tokens in log2 lUll log n + o(log, lUll

log n) time units.
Phase 3. Every node in U receives the set of all tokens from a node in W in one

time unit.

The following two sections describe concrete implementations of these three phases.
In 4, we determine the set W of intermediate nodes for given U and construct edge-
disjoint paths connecting U and W. Section 5 shows an algorithm for exchanging
tokens among all nodes in W quickly.

4. Communication with intermediate nodes. In this section, we first de-
termine the set of intermediate nodes W and then construct edge-disjoint paths con-

necting U and W. The-edge-disjoint paths are used as the communication routes in
both Phases 1 and 3: tokens flow from U to W in Phase 1 and from W to U in Phase
3 through the same routes.

4.1. Intermediate nodes W. Given U (c V), let d be the.smallest nonnegative
integer which satisfies the inequality

Inequality (1) does not hold when d n since U is assumed to be nonempty. On
the other hand, inequality (1) holds when d n- 1 since 1/(1 -e) < n. Then d is
well-defined and d < n.

Consider the following procedure, PARTITION, and let b/ be the partition of
U generated by PARTITION(n, U). Since PARTITION includes nondeterministic

GROUP GOSSIPING UNDER A CIRCUIT-SWITCHING MODEL 1051

choice, b/may not be determined uniquely. In such a case, we select an arbitrary one
as/d and fix it.

PROCEDURE PARTITION(m, U)
Step 1. If m _< n- d, then return Uz.
Step 2. Partition Uz into the following three subsets:

Xo {wOy e Uz" wlz e Uz, Iw[m- 1 and y, z e {0, 1}n-m},
X1 {wly e Uz wOz e U,]w[m- 1 and y,z e {0, 1}n-m},
r Ux \ (X0 UXl).

and

Note that for any element in Xo, there is an element having the same prefix of length
m- 1 in X1, and vice versa.

Step 3. Let Y0 be an arbitrary subset of Y of size [IYI/2]. Let Y1 Y \ Yo.
Step 4. Let Uo Xo U Yo and Ulx X1 YI.
Step 5. Call PARTITION(m- 1, Uo) and PARTITION(m 1, Uz).

Example 4.1. Consider the case of n 4. Let

U {1110, 1010, 0001, 0101, 1001, 1111}.

Let us partition U by calling PARTITION(4, U) and obtain L/. The smallest integer
d satisfying inequality (1) is 1. Since 4 (= m) > 3 (= n- d), it proceeds to Step
2. In Step 2, U is partitioned into three subsets X0 {1110}, X1 {1111}, and
Y {1010,0001,0101, 1001}. In Step 3, Y is further partitioned into two subsets
Y0 {1010, 0001} and Y1 {0101, 1001}, for example, and then in Step 4, Uo and
U are determined as

Uo Xo U Yo {1110, 1010, 0001}
U1 X1 U Y1 {1111, 0101, 1001}.

and

In Step 5, PARTITION(3, U0) and PARTITION(3, U) are called. These procedures
return Uo and U since 3 (= m)= n- d.

The following lemma shows that PARTITION partitions a given set U into subsets
with almost equal sizes.

LEMMA 4.2. For any two subsets U, Uy Lt, lUll and IUyl differ at most 1.

Proof. PARTITION partitions U by recursively calling itself. The proof is by
induction on the level t of the recursion. When t 1, since
1 holds by Step 3. Assume that for any two subsets U and Uy constructed at level t,
]lUxl-]Uy[] _< 1 holds. If each subset constructed at level t has an equal size, since
each U is partitioned into two subsets U0 and Ux such that IUo Ux II <- 1
in Steps 3 and 4 at level t + 1, the statement holds. Suppose that IUzl k and
Uyl k+ 1 for some U and Uy. If k is even, since U0zl Ulzl k/2 and
max{IUoyl, IUlyl} k/2 + 1, the statement holds. If k is odd, since IUoyl IUyl
(k + 1)/2 and min{IU0xl, IUxxl} (k- 1)/2, the statement again holds. Hence the
lemma holds.

By Lemma 4.2, we immediately obtain the following corollary, since the maximum
level of recursion is d and hence I/AI 2d.

COROLLARY 4.3. The size of any subset obtained by PARTITION is at most
[IuI/l

1052 SATOSHI FUJITA AND MASAFUMI YAMASHITA

U0
e v)

0001

QO001

1010 iii0

lO00 Roo 0110

0000 0100

-1110

W 0001

FIG. 2. An illustration of edge-disjoint paths connecting Uo and W.

Using the partition b/, we define W as follows"

w e u}.

{ecall the definition of notation v(x) given in Definition 2.2.
Example 4.4. Consider Example 4.1 again. Since b/= {Uo, U1}, W {0000(0),

)000() } (0000, 000).
4.2. Edge-disjoint paths connecting U and W. This subsection presents

edge-disjoint paths connecting U and W.
Let v be an arbitrary node in U. Suppose that v is in Ux E b/. Let u 0n(z) be

a node in W. We will connect v and u by a path P QR which is determined as
follows"

(i) Q is the shortest path connecting v and v(z) in such a way that if in
a link in Lx occurs before a link in Lv, then x > y holds. In short, Q uses links in
Ln, Ln-’,,... ,Ln-lxl+l in this order.

(ii) R connects v(x) and u. Notice that both v(x) and u (= 0n(z)) are in

x. (Recall Definition 2.1 for x.) Since I{v(z) v Ux}l <_ [IUI/2a <_ n-d
by Corollary 4.3, there are edge-disjoint paths connecting u and each of v(z)’s by
Lemma 3.1. We take the path as

Example 4.5. See Figure 2 for an illustration. Consider the set of intermediate
nodes W {0000,0001} obtained in Example 4.4. In this case, 0001 (E Uo) and
0000 (= 0001(0)) are connected by Qoool (0001, 0000). Since 0000 Uo(O) is an
element of W, Uo(O) \ {0000} is connected with 0000 by paths

Rlo (1110, 0110)(0110, 0100)(0100, 0000) and

RlOlO (1010, 1000)(1000, 0000).

Note that in this particular case, since 1010 and 1110 are in o, both (1010 and Ql110
are empty paths, and since 0000 is in W, Rooo is also an empty path.

Let II {Qv:V U}, 122 {R: v e U}, and II {QvRv:V e U}. The goal
of this subsection is to prove the following theorem.

GROUP GOSSIPING UNDER A CIRCUIT-SWITCHING MODEL 1053

THEOREM 4.6. Any two paths P, Pv EII are edge-disjoint.
Theorem 4.6 is immediate, if all of the following three claims hold.

(i) Any two paths Q E II1 and Rv 1-I. are edge-disjoint.
(ii) Any two paths Q, Q. II1 are edge-disjoint.
(iii) Any two paths R, R. II2 are edge-disjoint.

In the following we show the correctness of the three claims.
LEMMA 4.7. Any two paths Qu I-[1 and R II2 are edge-disjoint.
Proof. Let Ux be any set in b/, and consider any node v in Ux. Note that

x {0, 1}d. Since v and v(x) have the same prefix of length n-d and Q. is a shortest
path connecting them, Qv does not use links in [-J<<n-d L. On the other hand,
since path R. consists of links in T/x, Rv does not use links in [-Jn-d<<_n L. Hence
for any v, u U, Q and Ru do not share an edge.

LEMMA 4.8. Any two paths Ru, R H2 are edge-disjoint.
Proof. If u and v belong to the same Ux b/, R and R are edge-disjoint by

definition. Suppose that u and v belong to different sets Ux and U, E L/, respectively.
Since R and Rv are paths in different hypercubes 7-/z and 7-/y, respectively, they do
not share an edge.

LEMMA 4.9. Any two paths Q, Q, II1 are edge-disjoint.
Proof. Let u U L/and v Uy E b/for some x and y (x and y may not be

distinct). Suppose that Q and Q share an edge e {w, (R)kw} Ek. Let us rewrite
V e {0,

rewrite u and v as follows"

’/ ?dJlblZl and v wlbz,

where bl, b {0, 1}, and Zl,Z2 {0, 1}n-k.
follows"

Also using w, we rewrite x and y as

and y

where x, yl {0, 1}d+k-n.
First, consider the case of b - b. By the definition of PARTITION, since x and

have suffix w. in common, both u and v belong to Uw.. Therefore, u wbzl UD1
and v wbz. UD: since bl = b.. Since bw is a suffix of x, the kth bits of
and u(x) are the same. Hence a link g L never occurs in Qa contradiction.

Next, consider the case of b b2. Let wa be the longest common prefix of u and
v. That is,

u w353z3 and v w3b4z4,

where Iwa] >_ k, b3, b4 {0,1}, b3 b4, z3, z4 e {0,1}h, and h < n-k. Let w4 be
the suffix of wu with length h. Since both u and v belong to U=, they both belong
to Urn, as well. By the definition of PARTITION(n h, U,4),

U Vb3w4 and v Ub4w4
--a contradiction since either u or v is not in Uw2.

By using the edge-disjoint paths II connecting U and W, Phases 1 and 3 are
executed as follows.

Phase 1. Each u Ux e Lt sends t(u) to w On(z) W through path P in II
connecting u and w.

1054 SATOSHI FUJITA AND MASAFUMI YAMASHITA

Phase 3. Eachu e U e b/ receivesT {t(v)’v e U} fromw 0(x) e W
through path P in reverse direction.

Since H is a set of edge-disjoint paths, we have the following theorem.
THEOREM 4.10. Each of Phases 1 and 3 requires only one time unit.

5. Exchange tokens among intermediate nodes. Recall that set W of in-
termediate nodes satisfies that IWI 2d and d <_ n- 1. At the beginning of Phase 2,
for each T/x, tokens of nodes in Ux are held by node on-dx in -/x. Let r n d- 1,
and s llog2rj /log2(n-d- 1)J. In this section, we assume that d _< n-3
without loss of generality. If d >_ n- 2, let Y {03x "E {0, 1}n-3} C_ W. Then we
regard Y as W in the rest of the section at the expense of at most six time units
since all nodes yx W can send tokens to 03x Y in three time units, as shown in
Preprocessing below, and 03x can broadcast T to all nodes yx in three time units, as
shown in Postprocessing below.

Preprocessing (when d _> n- 2). For 1, 2, 3, one in a time unit sequentially,
for all u W in parallel, if the ith bit of u is 1, then u sends all tokens it holds to
(R)u.

Postprocessing (when d

_
n- 2). For 3, 2, 1, one in a time unit sequentially,

for all u 0z W (for some z) in parallel, u sends set T of all tokens to (R)u.

5.1. Basic communication routes. Fix any w {0, 1}d-s and consider the
following two subsets:

So {OOrxw" x {0,1}s} and

1 {lOrxw" x {0, 1}s}.

For each pair (u, v) in So S, we give a path Pv connecting u and v in T/ and
show that the set of paths F {Pv u So and v S } is a set of edge-disjoint
paths. For each x {0, 1}*, 2 denotes the integer whose binary representation is x.
By 0(;,), we denote the bit sequence bb2.., b {0, 1} such that b 0 iff
k il,i2,...,ij.

Let u OOryw So and v 10rzw $1. If s 1, u and v are connected by Pv
as follows. Note that r 2 or 3 since s Llog rJ.

1. If 2 , then u and v are adjacent with each other. We take

2. If=0and2=l,

P. (000w, O0(r;1)Ow)(OO(r;1)O, 10(r;1)0W)
(10(r;1)0w, lO(r;1)lw)(lO(r;1)lw, 10rlw).

3. If=land2=0,

Pu (00lw, O0(;2)1w)(OO(r;2)1w, 10(r;2)lw)
(10(r;) lw, 10(r;2)Ow)(10(;2)Ow, 10r0w).

It is easy to verify that So and $1 are fully connected by F {P u So and
v $1} and that F is a set of edge-disjoint paths.

In the following, we consider the case of s _> 2. When s :> 2, the path P connecting
u and v is determined as follows:

GROUP GOSSIPING UNDER A CIRCUIT-SWITCHING MODEL 1055

1. If 2 , we take

2. If > 2, the path P consists of four subpaths P1, P2, P3, and P4. The first
part P1 of P is given as follows"

P (00w, 00(;+)w)(00(;+)w, 00(+,9+)yw).

Note that 2 + 1 < + 1 _< r since s [log2 rJ. The second part P2 of P consists of
a link in L"

P2 (00(r;2q-l’+l)YU, 10(r;2+1’2+1)YW)

The third part P3 of P connects nodes 10(r;2+1’9+1)yw and 10(r;+’9+)zw by the
shortest path which uses links in Lr+., L+3,..., L+s+ in this order. The last part
P4 of P is given as follows:

P4 lO(r’z+l’f+l)zw, lO(r;f+l)zw)(lO(r;2+)zw, lOrzw)

3. If 9 < 2, the first, second, and fourth parts P1, P, and P4 of P are

given in the same way as in the case of 9 > 2. The third part P3 of P connects

Ul 10(r;+l’2+l)yw and u2 lO(r;2+l’f+l)zw as follows.
(a) If for each 1 < _< s, the ith bits of y and z differ, i.e., the Hamming distance

between t and u2 is s (= lYl), then P3 is given as the shortest path connecting nl
and u2 using links in L+2, Lr+3,... ,Lr+s+l in this order, i.e., P3 is the same as in
the case of > 2.

(b) Otherwise, let k be an integer in {r + 2, r + 3,..., r + s + 1} such that the
kth bits of u and u take the same value. Then P3 is given as

where P is a shortest path connecting (R)ku and OkU2.
Example 5.1. Let n 10. Suppose that d 4. Then U is partitioned into

8 (= 23) subsets, and s log2 7J 2. By selecting 00 as w
for example, So and $1 are as follows:

So {000000x00 x E {0, 1}2 }
Sl { 100000X00 X E {0, 1}’ }.

and

First, consider the path P connecting 00501w (G So) and 10510w (S1).
01 < 10, we use the third rule. P PIPP3P4 is given as follows:

Since

P1 (0000000100,0001000100) (0001000100, 0011000100),
P2 (0011000100, 1011000100),
P3 (1011000100, 1011001100)(1011001100, 1011001000),
P4 (1011001000, 1010001000)(1010001000, 1000001000).

and

Path P passes through the subcube induced by the nodes which contain l’s at the
third and fourth bits. On the other hand, the path Q QQ.Q3Q4 connecting

1056 SATOSHI FUJITA AND MASAFUMI YAMASHITA

00510w and 10501w is given by the second rule since 1--- > --.
(0000001000, 0010001000) (0010001000, 0011001000),
(0011001000, 1011001000),
(1011001000, 1011000000)(1011000000, 1011000100),
(1011000100, 1001000100)(1001000100, 1000000100).

and

Path Q also passes through the subcube induced by the nodes which contain l’s at
the third and fourth bits. However, P and Q do not share edges in the subcube since

Pa and Qa are selected to be edge-disjoint.
Let F {Pv u E S0 and v E $1}. It is obvious that each path Pv in F

correctly connects u S0 and v $1 using edges in ?-t. The following three lemmas
guarantee that F is a set of edge-disjoint paths.

LEMMA 5.2. No edge in E1 is shared by paths in F.
Proof. Let P F be the path connecting a node oOryw So and a node 10

S1.
First, consider the case of y z. Assume that there exists a path Q (P) in F

which shares an edge {c, (R)la} in E1 with P. Without loss of generality, we assume
that P contains link g (c, (R)la). Then Q must contain the same link (a, (R)la) since
each path in F contains exactly one link in L1 and every node in S0 has the same
prefix 0. (In other words, all edges in E1 are used in the same direction.) Since a has
prefix 00(r;+1’+1), Q must connect 00rzw and lOryw. Hence OOryw and OOrzw have
the same suffix of length d with a--a contradiction since y z follows.

Next, consider the case of y z. Let Q F be any path (- P) which shares
an edge in E1 with P. Since P contains link (00ryw, 10ryw) in L1, Q also connects.
O0ryw and 10ryw-a contradiction. Hence the lemma holds, rl

LEMMA 5.3. Let gl m2<i<r+l Ei. No edge in gl is shared by paths in F.
Proof. Let P F be the path connecting a node OOryw So and a node 10

$1. In each path in F, edges in gl are used in the first and fourth parts. Since every
node in So has the same prefix 0 and each path in F uses exactly one link in L1, for
any two paths P, Q E F, the first part of P and the fourth part of Q are edge-disjoint.

We prove that for any two paths P, Q F, the first parts of P and Q are edge-
disjoint. (We can apply a similar argument to the fourth part, so we omit the proof
for that case.)

The first part of P contains two edges in 1, {00ryw, O0(r;e+l)Yw} and
00(r;e+l’+l)yw}. Therefore, if Q contains one of the above edges, then Q must con-
nect OOryw and 00rzw-a contradiction. Hence the lemma holds. F1

LEMMA 5.4. Let g2 mr+<i<_r+8+l Ei. No edge in g. is shared by paths in F.
Proof. Let P F be the path connecting a node OOryw So and a node 10

$1. Since if y z, P uses no edges in g, without loss of generality, we assume y z.
Assume that there exists a path Q (P) in F which shares an edge e in g with P.

Since y z, by definition, e connects two nodes having the same prefix 10(r;+1,+1).
Hence Q connects 00rzw and 10ryw. Without loss of generality, we assume
Let

U 10(r;2+1’7+1)yW and u2 10(r;+l’7+l)zw.

Since > 2, the third part P3 of P connects U and u2 by the shortest path using
links in Lr+., Lr+3,..., Lr+s+l in this order.

GROUP GOSSIPING UNDER A CIRCUIT-SWITCHING MODEL 1057

If the Hamming distance between y and z is s (>_ 2), the third part Q3 of Q
connects u2 and ul by the shortest path which uses links in Lr+., Lr+3,..., Lr+s+
in this order. Let e- {10(r;+l’2+l)ow, @r+k+110(r;2+l’3+l)ctW} Let us rewrite a as

ClbCt2, where Icll k- 1, la21 s- k, and b E {0, 1}. In P, c1 is a prefix of z and
a2 is a suffix of y. On the other hand, in Q, c1 is a prefix of y and a is a suffix of
z. Therefore, for some bl,b2 {0, 1}, y abla, and z alb,a.--a contradiction
since the Hamming distance between y and z is at most 1.

If the Hamming distance between y and z is strictly less than s, the third part
Q3 of Q is given as follows:

(3 (t2 @r+k+l 2)(3(@r+k+lt1,tl),

where k is an integer such that y and z take the same value at the kth bit. Let
b {0, 1} be the kth bit of y. Since P3 is the shortest path connecting u and u., for
any edge {al, a2} used in P3, the (r + k + 1)st bits of a and a2 are b. On the other
hand, let {/31,32} be an edge used in Q3. Then either the (r + k + 1)st bit of/31 or
that of/32 is not b since Q is a shortest path connecting (R)++lU. and (R)r.++Ul.
Hence P3 and Q3 are edge-disjoint.

By Lemmas 5.2, 5.3, and 5.4, we have the next theorem.
THEOREM 5.5. Sets So and SI are fully connected by set F of edge-disjoint paths

in 7-t,.

5.2. Exchange tokens among all nodes in W. Let cr be an integer in {0, 1,...
d- 1}. For each wl {0, 1} and w2 {0, 1}d-(a+), define three subsets W,w,
Ww,,, and W as follows:

e {0,
W- {10z 00z e W}.

Then I/V- {Ww,w "w {0,1} and wg. {0,1}d-(+s)} (resp. {Wwl,.u
Wl {0, 1} and w {0, 1}d-(+)}) forms a partition of W (resp.) and IINI-
[[2d-. By Theorem 5.5, W, and W,. are fully connected by edge-disjoint
paths in the subcube induced by {ywxw "y {0, 1}+1 and x E {0, 1}} because
of the symmetry with respect to dimension. Let F,l,w2 {Qv u Ww,w.. and
v W,.} be the set of edge-disjoint paths guaranteed by Theorem 5.5. By using
F,’s, Phase 2 is realized as procedure TOKEN_EXCHANGE as follows.

PROCEDURE TOKEN_EXCHANGE
Step 1. Let cr- 0 and b 0.
Step 2. Repeat Steps 3 and 4 [d/s] times.
Step 3. If b-0 (resp. b- 1), for allwl E {0,1} andw2 E {0,1}-(+*), each

u E W,,. C_ W (resp. u E WI, c_ W) sends all tokens it holds to every node in

WI,. (resp. W,,2) through paths in Pw,,.
Step 4. Letcr=cr+sandb=b(R)l.
Step 5. If [d/s is odd, each node u in W sends the set of tokens it holds (which

is shown to be T {t(v) v E U} in below) to node (R)lu in W by link (u,

The key observation regarding TOKEN_EXCHANGE is that if [d/s is even,
every node in W holds set T {t(v)’v U} of all tokens, and otherwise, if [d/s
is odd, every node in W holds T when the loop of Steps 3 and 4 finishes since as the

1058 SATOSHI FUJITA AND MASAFUMI YAMASHITA

result of (a single execution of) Step 3, if b 0 (resp. b 1), then all tokens held
in Wol,w2 (resp. Wwl,2) are sent to every node in W,w (resp. Ww,w). This is
because Ww, and W,o are fully connected by edge-disjoint paths (for a more
formal discussion, see the proof of the following theorem).

THEOREM 5.6. TOKEN_EXCHANGE correctly solves the group-gossiping prob-
fo W o/o + o(o/o) ti it.

Proof. Let u 00z and v 00y be any two nodes in W. In order to show
correctness, it is sucient to show that there is a sequence of paths P, P,..., P[a/]+
connecting u and v, where Pi is a path used in the ith round of TOKEN_EXCHANGE.
(Since u and v are taken arbitrarily, this argument also shows the existence of a
sequence of paths connecting v and

Let K [d/s. We rewrite x and y as x xx2..,x and y yy2.., y, where
[xil- lyil s for 1 K- 1 and xl]yl s. Since Wa,... and Wa,x...
are fully connected by Fx,..., there is a path P in Fx,... which connects u with
u lOryx...x, where A is an empty sequence. Since Wv,a... and Wvl,Xa...
are fully connected by Fy,a...x, there is a path P in F,a... which connects
u with u O0yyx3...x, and so on. By repeating similar arguments, there
is a path P which connects u_ with u bOyly2 ...y, where b 0, i.e.,
u 00y v if K is even and b 1 if K is odd. In the latter case, the tokens T
held in u are sent to v (= 00y) in Step 5 through path P+ (u, u).

As for the number of time units since any two paths P F, and Q F
are edge-disjoint, each round of TOKEN_EXCHANGE completes in one time unit.
Let us estimate [d/s. Since KIai/id - d hods or d - 1 nd (because
1/(1) o(n)}, by the definition of d, d E n. By the definition of s,

s [log(n d 1)J
log n(1 e) 2

log2 n + log2(1 e) 2.

Since d en log U, we have

[d/s < [log ,U,
logan+log,(i-e)-2

< ogi luI + 1.
log n + log(1 -e) 2

Since 1/(1 e) o(n), log n + log(1 e) log n o(log n). Now we have

d/s] < log]U] +o (loglog2 n log: n

Each of Phases 1 and 3 takes one time unit by Theorem 4.10. If d n- 2, we
need at most six more time units to apply TOKEN_EXCHANGE as mentioned at the
beginning of this section. Consequently, we have the following theorem.

THEOREM 5.7. Assuming 1/(1- e)- o(n), algorithm GROUP_GOSSIP1 solves
the group-gossiping problem for U in

log n log: n

time units, which is asymptotically optimal.

GROUP GOSSIPING UNDER A CIRCUIT-SWITCHING MODEL 1059

6. The second algorithm, GROUP_GOSSIP2. This section proposes algo-
rithm GROUP_GOSSIP2, which asymptotically achieves the lower bound in Theo-
rem 2.5, provided 1/(1

If 1/(1 e) f(n), then 1 O(1/n), and therefore, IUI 2n 2n-(1).
Let 5 be an integer in {0, 1,..., n-3}. We now give algorithm GROUP_GOSSIP2.

ALGORITHM GROUP_GOSSIP2

Phase 1. Let W {0x x E {0, 1}n-}. For each x E {0, 1}-, fix a shortest-
path tree T. in which every node in 7-/x is connected with On(x) by a shortest path.
(The shortest paths in T need not be edge-disjoint.) In each 7-/x (x {0, 1}n-) in
parallel, node 0n(x) collects all tokens in 7-/ in 5 time units through edges in T.

Phase 2. Apply TOKEN_EXCHANGE to W to exchange tokens among all nodes
in W. Since 5 < n- 3, by Theorem 5.7, it correctly finishes in [(n- 5)/log2(5- 1)]
time units.

Phase 3. In each (x {0, 1}n-) in parallel, node u 0n(x) in W broadcasts
the set of all tokens to all nodes in 7-/ in 5 time units through edges in T again.

The correctness of algorithm GROUP_GOSSIP2 is clear, and it finishes in

25+ +1
log(5-)

time units. Since log2 IUI n- O(1), n- 5 < log2 IUI holds for 5 w(1). Since

IUI O(IVI) log IUI/log n O(n/log2 n). Hence, by selecting 5 to satisfy 5
o(n/log2 n) and 5 w(n) for any constant e < 1 (e.g., 5 n/(log2 n)2 satisfies
this condition), GROUP_GOSSIP2 asymptotically achieves the lower bound in The-
orem 2.5. That is, the following theorem holds.

THEOREM 6.1. Assuming 1/(1 e) (n), algorithm GROUP_GOSSIP2 cor-
rectly solves the group gossiping problem for U in

lg IUI + o (lg2 [U])log2 n log2 n

time units, which is asymptotically optimal.

7. Concluding remarks. In this paper, we introduced the group-gossiping prob-
lem and considered the problem in n-cubes under the circuit-switching model. A lower
bound on the gossiping time is [log2(IU 1)/log2 n] and is achieved asymptotically
for any U (C_ V) by two algorithms, GROUP_GOSSIP1 and GROUP_GOSSIP2.

REFERENCES

[1] W. AIELLO, T. LEIGHTON, B. MAGGS, AND M. NEWMAN, Fast algorithms for bit-serial routing
on a hypercube, in Proc. 2nd Symposium on Parallel Algorithms and Architectures, Asso-
ciation for Computing Machinery, New York, 1990, pp. 55-64; Math. Systems Theory, 24
(991), . -7.

[2] A. BAGCHI, S. L. HAKIMI, J. MITCHEM, AND E. SCHMEICHEL, Parallel algorithms for gossiping
by mail, Inform. Process. Lett., 34 (1990), pp. 197-202.

[3] A. BAGCHI, S. L. HAKIMI, AND E. SCHMEICHEL, Gossiping in a distributed network, IEEE
Trans. Comput., 42 (1993), pp. 253-256.

[4] D. P. BERTSEKAS AND J. N. TSITSIKL1S, Parallel and Distributed Computation: Numerical
Methods, Prentice-Hall, Englewood Cliffs, NJ, 1989.

[5] S. BITAN AND S. ZAKS, Optimal linear broadcast, J. Algorithms, 14 (1993), pp. 288-315.
[6] G.-I. CHEN AND T.-H. LAI, Constructing parallel paths between two subcubes, IEEE Trans.

Comput., 41 (1992), pp. 118-123.

1060 SATOSHI FUJITA AND MASAFUMI YAMASHITA

[7] W. J. DALLY AND C. L. SEITZ, Deadlock-free message routing in multiprocessor interconnection
network, IEEE Trans. Comput., 36 (1987), pp. 547-553.

[8] R. C. ENTmNGER AND P. J. SEATER, Gossips and telegraphs, J. Franklin Inst., 307 (1979),
pp. 353-360.

[9] A. M. FARLEY, Minimum-time line broadcast networks, Networks, 10 (1980), pp. 59-70.
[10] S. FELPERN, P. RAGHAVAN, AND E. UPFAL, A theory of wormhole routing in parallel comput-

ers, in Proc. 33rd Foundations of Computer Science, IEEE Press, Piscataway, NJ, 1992,
pp. 563-572.

[11] P. FRAIGNIAUD, Asymptotically optimal broadcasting and gossiping in faulty hypercube multi-
processor, IEEE Trans. Comput., 41 (1992), pp. 1410-1419.

[12] P. FRAIGNIAUD AND E. LAZARD, Methods and problems of communication in usual networks,
Tech. report 91-33, Laboratoire d’Informatique du Paralllisme, tcole Normale Suprieure
de Lyon, Lyon, France, 1991; Discrete Appl. Math., 53 (1994), pp. 79-133.

[13] C. J. GLASS AND L. M. NI, Adaptive routing in mesh-connected networks, in Proc. 14th Inter-
national Conference on Distributed Computer Systems, IEEE Press, Piscataway, NJ, 1992,
pp. 12-19.

[14] S. M. HEDETNIEMI, S. T. HEDETNIEMI, AND A. L. LIESTMAN, d survey of gossiping and broad-
casting in communication networks, Networks, 18 (1988), pp. 319-349.

[15] J. HROMKOVI, R. KLASING, E. A. STSHR, AND H. WAGENER, Gossiping in vertex-disjoint paths
mode in d-dimensional grids and planar graphs, in Proc. 1st Annual European Symposium
on Algorithms, T. Lengauer, ed., IEEE Press, Piscataway, NJ, 1993, pp. 200-211.

[16] T. KNIGHT, Technologies for low latency interconnection switches, in Proc. 1st Symposium on
Parallel Algorithms and Architectures, Association for Computing Machinery, New York,
1989, pp. 351--358.

[17] R. KOCH, Increasing the size of a network by a constant factor can increase performance by
more than a constant factor, in Proc. 29th Foundations of Computer Science, IEEE Press,
Piscataway, NJ, 1988, pp. 221-230.

[18] D. W. KRUMME, Fast gossiping for the hypercube, SIAM J. Comput., 21 (1992), pp. 365-380.
[19] D. W. KRUMME, G. CYBENKO, AND Z. N. VENKATARAMAN, Gossiping in minimal time, SIAM

J. Comput., 21 (1992), pp. 111-139.
[20] F. T. LEIGHTON, Introduction to Parallel Algorithms and Architectures: Arrays, Trees, Hyper-

cubes, Morgan Kaufmann, San Francisco, 1992.
[21] D. H. LINDER AND J. C. HARDEN, An adaptive and fault tolerant wormhole routing strategy

for k-ary n-cubes, IEEE Trans. Comput., 40 (1991), pp. 2-12.
[22] D. PIGHARDS AND t. L. LIESTMAN, Generalization of broadcasting and gossiping, Networks,

18 (1988), pp. 125-138.
[23] L. SCHWIEBERT AND D. N. JAYASIMHA, Optimal fully adaptive wormhole routing for meshes,

Tech. report OSU-CISRC-4/93-TR16, Department of Computer Science, Ohio State Uni-
versity, Columbus, OH, 1993.

[24] A. TREW AND (. WILSON, EDS., Past, Present, Parallel: A Survey of Available Parallel Com-
puter Systems, Springer-Verlag, Berlin, New York, Heidelberg, 1991, pp. 125-147.

SIAM J. COMPUT.
Vol. 25, No. 5, pp. 1061-1081, October 1996

() 1996 Society for Industrial and Applied Mathematics
007

ON POINT LOCATION AND MOTION PLANNING AMONG
SIMPLICES*

MARCO PELLEGRINI

Abstract. Let U be a set of n possibly intersecting (d- 1)-simplices in &space for d _> 2,
and let 4(V) be the arrangement of V. Let K 14(U)I be the number of faces of any dimension
in the arrangement of U. A data structure is described that uses storage O(nd-l+e K) and is
built deterministically in time O(nd-l+e + Klogn), where > 0 is an arbitrarily small constant,
such that the face of 4(U) containing a query point is located in time O(loga n). If two query
points are in the same cell of 4(U), a collision-free path connecting them is produced. This result is
obtained by exploiting powerful and so far overlooked properties of sparse nets introduced by Chazelle
[Discrete Cornput. Geom., 9 (1993), pp. 145-158]. If the (d- 1)-simplices in V have pairwise-disjoint
interiors and d >_ 3, improved bounds are obtained. A data structure is described that uses O(nd-l)
storage and is built deterministically in time O(nd-l) such that point-location queries are solved in
time O(logn). Also, as a by-product, this method gives the first optimal worst-case algorithm for
triangulating a nonsimple polyhedron in 3-space.

Key words, arrangements of simplices, point location, sparse nets, motion planning, triangu-
lations

AMS subject classifications. 68P05, 68Q25, 68Q40, 68U05

1. Introduction.

1.1. Point location: Definition and previous results. Point location is a
central problem in computational geometry [PS85, Ede87, Meh84], and a continuous
stream of research papers have been published on this topic beginning in the early
days of computational geometry. Let U be a set of n possibly intersecting (d- 1)-
simplices in Ed. For example, we consider segments on the plane, triangles in 3-spa,ce,
tetrahedra in 4-space, etc. Such a set U decomposes Ed into open cells of dimension
d and relatively open cells of dimension k with 0 _< k < d. This collection of cells is
called the arrangement A(U) induced by U in Ed. We associate a unique identifier
to each cell in A(U) from a universe of distinct labels. Let K be the cardinality
of A(U), also referred to as the combinatorial complexity of the arrangement of U.
The point-location problem consists of preprocessing U into a data structure so that
subsequently the following query can be answered efficiently:

(A) Given a query point q, find any cell in A(U) whose relative interior contains
q.

In this paper, we also consider two variations of the point-location problem for which
slightly different bounds are known.

(B) Given a query point q, determine whether q is incident to any element of U
(incidence query).

(C) Given a query point q, determine the element of U immediately below q in a
fixed direction. (This variation is also called vertical ray-shooting problem.)

Received by the editors October 13, 1993; accepted for publication (in revised form) January
25, 1995. A preliminary version of this work appeared in Proc. 26th ACM Symposium on Theory of
Computing. This research was supported by the CNR of Italy within the 1993-1994 Senior Visiting
Scientist program at ICSI.

Department of Computer Science, King’s College, Strand, London WC2R 2LS, UK. Current
address: Instituto di Matematica Computazionale, Consiglio Nazionale delle Richerche, 46 Via S.
Maria, 56126 Pisa, Italy.

1061

1062 MARCO PELLEGRINI

Several results are known when restrictions are placed on the input set U and on the
dimension d. We assume that the dimension d is a small constant and the multiplica-
tive constants in the "big-Oh" notation depend on d.

Hyperplanes. When U is a set of hyperplanes H in Ed for d _> 2, Clarkson [Cla87]
solves point-location queries in time O(log n) using a data structure of size10(nd+e)
which is constructed in expected time o(nd+). Chazelle and Friedman [CF92] solve
the vertical ray-shooting problem in O(log n) time using a data structure of size O(nd),
but with an high preprocessing time. Chazelle [Cha93] solves point-location queries
in time O(log n) using a data structure of size O(nd) built deterministically in time

O(nd). Chazelle [Cha93] solves incidence queries in O(log n) time using a data struc-
ture of size O(nd/(log n)d-) which is built deterministically in time O(nd/(log n)d-).
Matougek [Mat93] solves vertical ray-shooting queries within the same bounds.

Planar maps. The point-location problem has been studied extensively for the
case when U is a set of segments in E2 forming a planar map (e.g., [LP77, Pre81,
LTS0]). Even a partial list of all tile important results on this problem is beyond
the scope of this paper, and for a more complete discussion of point-location algo-
rithms for planar maps, we refer the reader to Preparata and Shamos [PS85] and
Edelsbrunner [Ede87]. Point-location queries (variations (A), (B), and (C)) are an-
swered in time O(logn) using O(n) storage and O(nlog n) preprocessing time (see,
e.g., [Kir83, EGS86, Co186, ST86]). The techniques used in [Kir83, EGS86] are essen-
tially based on properties of planar maps that do not hold for generalizations of such
maps to three- and higher-dimensional spaces. The results in [Co186, ST86] are based
on the sweeping paradigm. These algorithms sweep a line on the plane and dynam-
ically (or semidynamically) maintain the intersection of with the cells in 4(U). For
the plane, the problem is to maintain dynamically a one-dimensional arrangement,
which is relatively easy. Preparata and Tamassia [PT88] give an efficient method for
dynamic naintenance of planar maps, which is used in [PT89] in connection with a
plane sweeping in 3-space. The sweeping paradigm fails in dimension four since we
do not have yet an efficient method for dynamic maintenance of three-dimensional
maps.

Pairwise-interior-disjoint simplices in d >_ 3. If U is a set of n interior-disjoint
triangles in E3 forming a convex arrangement, the method of [PT89, GT91] solves
point-location queries in time O(log2 n) using O(nlogn) storage and preprocessing
time. If tile set U is still formed by interior-disjoint triangles in E3 but the arrange-
ment of U is not composed of convex cells, Mulmuley [Mu191] gives a method that
solves point-location queries in time O(log2n) using O(n) storage and O(n log n)
preprocessing time.

Intersecting simplices. When U is a set of hyperplanes in general position or a set
of interior-disjoint simplices, the size of the arrangement of U is bounded tightly by a
function of n. Therefore, the upper bounds are expressed as a function of one variable
n. When we allow the simplices in U to intersect each other, we have that K is in
the range In, nd]. Therefore, we are interested in algorithms whose time and storage
bounds depend explicitly on K. If U is a set of n possibly intersecting segments in
the plane, we can use the optimal algorithm of Chazelle and Edelsbrunner [CE92] to
construct 4(U) in time O(n log n + K). Since .4(U) is a planar map of size O(K), we
can use the point-location methods fbr planar maps and solve point-location problems

Here and throughout the paper, we denote with an arbitrarily small positive real number. The
multiplicative constant in the big-Oh notation may depend on and it goes to infinity as e tends to
0.

ON POINT LOCATION AND MOTION PLANNING AMONG SIMPLICES 1063

in time O(log n) using O(K) storage and O(n log n + K) preprocessing time.

Recently and independently, de Berg, Guibas, and Halperin [dBGH941 have ex-
tended the sweeping-plane technique in [Mu191] to sets of intersecting triangles in
3-space. They build a decomposition of 4(U) into O(n+ + K) convex cells using
O(n2+ + K log n) time. Point-location queries are answered in time O(log2 n). Since
the approach is based on a sweeping plane, it suffers of the limitations mentioned
before for extensions to higher-dimensions.

1.2. New results on point location: Intersecting simplices. The main
contribution of this paper is a method for solving point-location queries in an arrange-
ment of n possibly intersecting simplices in Ea for d >_ 2. Our time and storage bounds
depend explicitly on the number of cells in the arrangement of simplices K
We answer point-location queries in time O(log3 n) using a data structure of size

O(n-1+ + K) which is built deterministically in time O(n-1+ + K logn). We
answer incidence queries in time O(log n) and vertical ray-shooting queries in time
O(log3 n) using O(n-+ + K) preprocessing time and storage.

Nonintersecting simplices. If the simplices in U are pairwise interior disjoint, we
obtain improved time and storage bounds for d >_ 3. We give a deterninistic algorithm
that builds a data structure of size O(na-i) in time O(na-). Point-location, vertical
ray-shooting, and incidence queries are answered using this data structure in time
O(log n).

1.3. Motion planning among simplices. The results in this paper are tel-
evant for motion-planning problems. For background material on motion planning,
we refer the reader to [SS90, Lat91]. The motion-planning problem in its simplest
(purely geometrical) form is defined in [SS89] as follows"

Let B be a robot system consisting of a collection of rigid subparts
having a total of k degrees of freedom, and suppose that B is free
to move in two- or three-dimensional space V amidst a collection of
obstacles whose geometry is known to the robot system. The motion-
planning problem for B is as follows" Given an initial position Z1
and a desired final position Z of/3, determine whether there is a
continuous obstacle-avoiding motion of B from Z to Z, and if so,
plan such a motion.

Since B has k degrees of freedom, a position of B is representable as
The subset of Ek representing positions in which/3 does not collide with obstacles in
V is called the space of free positions FP C E. Thus the motion-planning problem
is reduced to the problem of finding a path connecting Z and Z in FP. If FP
is a semialgebraic set in E, Schwartz and Sharir [SS83] solve the motion-planning
problem in time polynomial in the number of algebraic constraints defining FP and
their maximal degree and doubly exponential in k. Canny [Can87] gives an algorithm
with running time roughly O(n), where n is the number of algebraic constraints.

Point robots. If the robot B is a point in d-dimensional space and the obstacles
are simplices, we have the simplest d-dimensional motion-planning problem. Aronov
and Sharir [AS92] give an O(na- log n) upper bound on the complexity of one cell in
an arrangement of n (d- 1)-simplices in Ea. For d 3, this bound and the method
in [AS90] result in an algorithm for computing one cell of 4(V) in O(n+) expected
time.

A recent result of de Berg, Matouek, and Schwarzkopf proves that any two points
connected by a collision-free path among n possibly intersecting convex obstacles in

1064 MARCO PELLEGRINI

Ec can also be connected by a piecewise-linear path composed of O(n(ct-1)[c/2+l])
segments. Algorithms for computing such paths are provided only for d 2.

1.4. New results in motion planning. The technique we develop for solving
point-location queries among simplices in Ed gives us with little extra effort a method
for planning motions of point robots among obstacles represented by simplices in Ed.
Our result is relevant when the initial position is not fixed but rather part of the query,
as is often the case during the design and simulation of robotic systems. In this case,
it is more convenient to compute the whole arrangement of simplices once during
preprocessing rather than computing single cells on-line. Moreover, since motion-
planning problems for more general robots can be solved by reduction to motion
planning for point robots in higher-dimensional space, we can use our method to
compute the free space FP whenever the expanded obstacles in configuration space
are simplices. The free space FP is, in general, only a subcomplex of 4(U), and in
the worst case, the two sets can have complexity differing by orders of magnitude.
On the other hand, in more practical situations, the arrangement 4(U) is likely to be
sparse when the obstacles are far from each other in terms of the size of the robot B.
Our algorithm is able to take advantage of the sparsity of jr(U), and in such cases, it
provides a more efficient algorithm than general roughly O(rt) solutions [Can87] or
solutions based on extending the simplices into hyperplanes.

For example, we use our results to find the isotopy classes of lines induced by
a set of polygons in 3-space which are on a family of parallel planes. We map lines
in Ea as points in E4 and edges in Ea as simplices in E. The arrangement
of these simplices represents the isotopy classes of lines. Thus using O(n+ + K)
storage, we can find in time O(log n) the isotopy class of a query line and produce
collision-free motions of a line. In this context, K is related to the number of lines
that meet four edges of the input polygons. This particular motion-planning problem
arises in controlling a radiation beam for radiosurgery of the brain. The model of the
human brain as a collection of parallel polygons can be obtained in a natural way by
using a CAT scanner.

1.5. Triangulations. Often, point-location methods are based on decomposing
the free space Ea/U into convex parts. Such decompositions are referred to generically
as triangulations. The problem of building triangulations is important in its own right
with a wide range of applications. Most of the known results are for d 2 (see, e.g.,
[Cha87]) and fewer are for higher-dimensional spaces (i.e., d > 3). In this paper, we
consider the problem in d _> 3 when U is a set of pairwise-interior-disjoint (d- 1)-
simplices. This class of input is important because it includes boundaries of general
polyhedra in Ea.

A concept similar to that of a triangulation is that of a binary space partition
(BSP). Given a set U of n interior-disjoint triangles in 3-space, a BSP of E3 induced
by U (denoted BSP(U)) is a hierarchical partition of E into convez cells associated
with the nodes of a binary tree. The root is associated with the whole space E3

and the regions associated with the children of node v form a convex partition of the
region associated with v. The leaves are associated with regions whose interior does
not meet any triangle in U. Paterson and Yao show in [PY90] how to obtain a BSP
of size O(n) in time O(n3) for d- 3. In higher-dimensional space, the method in
[PY90] builds a BSP of size O(n-) in time O(n+).

For the special case when U is the boundary of a polyhedron in Ea and U is
connected, Chazelle [Cha84] gives a triangulation of size O(n) which is built in time
O(n). Both bounds are worst-case optimal. The method in [Cha84] relies on the

ON POINT LOCATION AND MOTION PLANNING AMONG SIMPLICES 1065

connectivity of the boundary, and therefore this method does not extend naturally to
polyhedra with disconnected boundaries. Some triangulations for special polyhedral
sets in E3 are discussed in [Ber93].

1.6. New results on triangulations, in this paper, we show a method for
building a triangulation induced by pairwise-interior-disjoint (d- l)-simplices in d-
dimensional space (d >_ 3). We obtain a deterministic algorithm that builds a trian-
gulation of size O(nd-l) in time O(nd-). To our knowledge, no better algorithm is
known for dimension d >_ 4 for the case when U is a set of pairwise-interior-disjoint
simplices even forming a connected boundary. The size and time bounds of our al-
gorithm are worst-case optimal for d 3, as follows from an Ft(n2) lower bound in

[Cha84]. For d 3, our result is the first worst-case optimal O(n2) algorithm for
triangulating a nonsimple polyhedron in 3-space.

1.7. On cuttings and sparse nets. The main tools used in this paper are
cuttings and sparse nets. Given n hyperplanes in Ed, a (i/r)-cutting is a collection
of simplices with disjoint interiors which together cover Ed and such that the interior
of any simplex is cut by at most n/r hyperplanes. Chazelle describes a deterministic
algorithm to construct (i/r)-cuttings of size O(rd) in time O(nrd-) [Cha93]. This
algorithm is the basis of improved methods for locating points in arrangements of
hyperplanes and for many other geometric problems. Matougek uses the algorithm in

[Cha93] in order to improve time and storage bounds on the simplex range-searching
problem [Mat92].

The algorithm for constructing (i/r)-cuttings relies on properties of the so-called
sparse nets, which are special subsets of an input set H of hyperplanes. Intuitively, a

sparse net R of a set H for a region s of Ed is a subset of H such that the number
of vertices in the arrangement of H within s is well approximated by the number of
vertices of the arrangement of _R within 8.

In [Cha93, Mat92], this property of sparse nets is applied to objects (hyper-
planes) that produce "globally dense" arrangements (i.e., every d hyperplanes in gen-
eral position meet in one point) by exploiting the "local sparsity" of the arrangements.
Previous randomized (e.g., [ClaS"/]) and deterministic (e.g., [Mat91])techniques are

already quite efficient for globally dense arrangements, and therefore we gain polylog-
arithmic or small polynomial factors by using the cuttings described in [Cha93]. In
this paper, we show that sparse nets are very useful computational tools for objects
like (d- l)-simplices that produce "globally sparse" arrangements (i.e., not every
d (d- 1)-simplices meet, and in general there can be between 0 and O(nd) points
meeting d (d- 1)-simplices).

1.8. The method. We will show three data structures to solve incidence queries,
vertical ray-shooting queries, and point-location queries. Each data structure uses the
previous one. We first tackle the problem of solving incidence queries. The general
strategy is a classical geometric divide-and-conquer. We select a subset N C U and use
N to partition Ed into convex cells of constant descriptive complexity (also referred to
as elementary cells). We compute the simplices of U intersecting each elementary cell
and apply the same method recursively within the elementary cell. At each recursive
call, the size of the problem is reduced, and eventually we obtain elementary cells
which do not intersect any simplex in U. At this point, we stop the construction.

The elementary cells generated during the preprocessing are organized in a search
tree which has the flavour of a multidimensional extension of the hereditary segment
tree [CEGS89, dBGH94] or of a multidimensional extension of search trees in the

1066 MARCO PELLEGRINI

trapezoid nethod for planar point location [Pre81, PS85].
We answer the incidence query by visiting the tree until we either detect an

incidence of the query point with a simplex in U or reach a leaf and conclude that
there is no incidence.

The main contribution of this paper is in the analysis techniques that allow us to
derive the input-sensitive bounds on the storage and time bounds. The difficult task
is to make sure that we obtain at each level of the search tree a fine-tuned bound on
the number of elementary cells. If we use a coarse bound on the number of elementary
cells, we will easily end up with total storage O(nd), which falls short of our goal of
a bound of roughly O(I(+ o(nd)). This tight control on the size of the construction
is attained by exploiting the properties of the sparse nets [Cha93].

Chazelle uses the sparse nets in order to produce hierarchical cuttings for sets of
hyperplanes. These cuttings than are the main ingredient of his method for solving
point-location queries in arrangements of hyperplanes [Cha93]. Here we follow the
same general approach of [Cha93] with two main differences. Algorithmically, we
construct elementary cells in d-space and also elementary cells in (d- 1)-space, which
are then "lifted" to d-space. In the analysis, we use finer arguments on the number
of elementary cells in order to obtain a final bound that depends explicitly on K.

Once we have the data structure for incidence queries, we add auxiliary data struc-
tures that enable us to solve vertical ray-shooting queries within the same asymptotic
bounds for preprocessing and storage.

We solve incidence queries and vertical ray-shooting queries using the fact that
these are decomposable queries, that is, knowing the solution for sets of simplices U1
and U2, we can easily find the solution for U1 tA U2. This does not hold for point-
location queries among simplices. In fact, if we partition the input set U, we may
lose essential connectivity information on the set Ed\ U. When the input is formed
by hyperplanes, two points are in the same cell of the arrangement if and only if
the two points are on the same side of each hyperplane. For simplices, this simple
characterization no longer holds and we need more powerful methods to identify the
cells in A(U).

Our method to overcome these difficulties consists of building a sequence of sets of
graphs which encode the topological information.. This sequence is indexed by the di-
mension of the subspaces in which our arrangement is contained, starting from dimen-
sion two up to dimension d. In this construction, ray-shooting operations are an es-
sential ingredient needed to "lift" the topological information from lower-dimensional
to higher-dimensional arrangements. At the end of the preprocessing phase, we have
built the connectivity graph for A(U and each face is properly labelled. Given a
query point p, we use a sequence of d vertical ray-shooting queries to find a vertex of
A(U) in the same face

When the set U is formed of pairwise-disjoint simplices, we use a more direct line
of attack that aims at generating a hierarchical triangulation of the free space Ed\ U.
The point-location procedure is a natural product of the hierarchical triangulation.

The paper is organized as follows. Section 2 recalls the main properties of the
sparse nets [Cha93]. In 3, we give and analyze the algorithms for solving incidence
queries and vertical ray-shooting queries. In 4, we give and analyze the algorithm
for solving point-location queries. In 5, we give the algorithm for constructing a
triangulation induced by disjoint simplices; as a corollary, we obtain a method for
solving point-location queries for this particular type of input set.

ON POINT LOCATION AND MOTION PLANNING AMONG SIMPLICES 1067

2. Sparse nets and hierarchical cuttings. In this section, we give the basic
definitions and lemmas from [Cha93] which form the background to the results shown
in the subsequent sections. Let H be a set of n hyperplanes in the Euclidean d-
dimensional space Ed. We assume that H is in general position, meaning that exactly
d hyperplanes meet in a common point. Let R c_ H be a subset of p _< n hyperplanes.
For a segment e, let R (resp. H) be the number of hyperplanes in R (resp. H)
intersecting e but not containing e. For a d-simplex s, let v(R,s) (resp. v(H,s)) be
the number of vertices of the arrangement created by R (resp. H) contained in the
relative interior of s. We denote by H(s) the subset of hyperplanes of H intersecting
s. All definitions and lemmas in this section extend to improper simplices (i.e., with
some vertices at infinity). Let r be a positive integer number.

DEFINITION 1. R is a (1/r)-approximation for H if for any segment e,

R H 1

DEFINITION 2. R is a (1/r)-net for H if for any segment e, He > n/r implies
R>0.

DEFINITION 3. R is a sparse (1/r)-net for (H, 8) if for any segment e, He
implies R > 0 and the following inequality holds:

DEFINITION 4. A (1/r)-ctti9 for H is a partitio of Ea ito iterior-disjoit
simplices sch that an simplez meets at most /r hferplanes of H. The nmber of
simplices in the partition is called the size of the cttin9.

Let us suppose that we are given a set H of n hyperplanes in Ea and a collection
of d-simplices which partitions of Ea. Let s be one of these d-simplices in

r0 be a constant, and > 0 be an integer. Assume that for any s in , we have
Ig()l /-, Given these conditions, is a (l/r;-)-cutting for H. The objective
is to locally refine each simplex s in order to obtain a 1/r-cutting for H. If it happens
that Ig(s)l n/r, then there is no work to be done since s satisfies the condition
for being an element of a (1/r)-cutting.

Therefore, we consider the case when n/r H(s) /r;-. Computing a sparse
net for (H(s), s) directly is time consuming; therefore, following Chaelle [Cha9a], we
first generate an approximation A(s) of H(s) and then build a strong net for (A(s), s),
whose triangulation is the desired refinement for s. We define p0 lg()l/ and
P p0 log p0. We can achieve our aim with a sparse net of sie p. The following
lemmas summarize important properties of the construction in [Cha9g].

LEMMA 1 (see IthaCa]). et A(s) be (1/(2dpo))-approzimation 4 H(s) and
R(s) a sparse (1/(2dpo))-et for A(s) i s; the the folloin9 ineqalit holds:

v(R, s) 4(p/lH(s)l)dv(H, s) + 4pd/po

LEMMA 2 (see [Cha93]). A canonical triangulation of the sparse net R(s) of
Lemma 1 has size O(pd- + v(R,s)).

Observation. Combining the bounds of Lemmas 1 and 2, we obtain a bound on
the number of simplices in the refinement of s"

pd
0 (pdo-11ogdpo--(H(8)/)

1068 MARCO PELLEGRINI

LEMMA 3 (see [Cha93]). The approximation A(s) and the sparse net R(s) of
Lemma 1 are computed in time O(IH(s)l).

LEMMA 4 (see [Cha93]). The number of hyperplanes in H intersecting any simplex
in the canonical triangulation of Lemma 2 is less than or equal to n/r.

The collection of all the simplices obtained as a result of canonical triangulations
of the sparse nets R(s) of Lemma 1 within s, together with those simplices s for
which no work was done, for all s e , is a (1/r)-cutting for H.

3. Incidence and vertical ray-shooting queries.

3.1. Preliminary definitions. We fix once and for all a vertical direction in
Ed. The following definitions are essential for the algorithm.

DEFINITION 5. A d-cell in Ed is a d-dimensional simplex in Ed or an infinite
prism whose axis is vertical and whose cross-section is a (d- 1)-simplex.

DEFINITION 6. A (d- 1)-simplex t partially covers a d-cell s if t intersects s and
the vertical projection of t does not completely contain the vertical projection of s.

If (d- 1)-simplex t partially covers a d-cell s, then the vertical projection of some
(d- 2)-face of t will intersect the vertical projection of s.

DEFINITION 7. A (d- 1)-simplex t completely covers a d-cell s if t intersects s
and the projection of t contains the projection of s.

The concept of partially covering and totally covering (d- 1)-simplices can be seen
as an extension to higher dimensions of the concept of "short" and "long" segments
in hereditary segment trees. In this paper, d-cells will be called also elementary cells.

3.2. A data structure for incidence queries. We are given a set U of n
possibly intersecting (d- 1)-simplices in /d. We build a sequence of sets of d-cells
Co,..., C, where logo n and r0 is a suitable constant. The base of the construc-
tion is Co and the construction precedes inductively from C_ to C. The set C is
a collection of d-cells with auxiliary information (s,P(s), Q(s)), where s is d-cell in
Ed, P(s) is a subset of simplices in U partially covering s, and Q(s) is a subset of
simplices in U covering s. In each set C, the union of the elementary cells is Ed. The
invariants maintained over the sets C are

(I) P() m,t o I()1 _< /,
() I()1 <- 0/.
3.3. The incremental step of the algorithm. The first set is Co { (Ed, U,) },

which satisfies invariants (I) and (II). The algorithm to construct C from C_ for
k > 0 works in two main phases.

1. For any elementary cell s in C_, if IQ(s)l <_ ron/r, then we add to C the
triple (s,O, Q(s)). Otherwise, by the induction hypothesis, we have that ron/ro <
I()1 _< 0/0- and we have the conditions for the application of Lemma 1. We
build a sparse net of Lemma 1 in s on Q(s). We triangulate the sparse net, thus
obtaining a set of d-cells (or, , Q(cr)), where Q(cr) is the subset of elements of Q(s)
totally covering

We choose the parameter of the net po(S) r0-lQ()l/n and thus obtain
C21(/I <_ r0/% for each new cell cr as follows from Lemma 4. Note that for ev-

ery s in C_,, we have po(S) <_ to, which is an important property exploited in the
analysis.

2. For any s in C_, if P(s) is empty, we skip phase 2. If IP(s)l <_ n/ro, then
we add to C the triple (s, P(s), 0). Otherwise, by the induction hypothesis, we have
n/r0 < IP()l < n/r0-1 We vertically project the (d- 2)-faces of simplices in P(s)

ON POINT LOCATION AND MOTION PLANNING AMONG SIMPLICES 1069

onto a (d- 1)-dimensional subspace and extend the projections into full hyperplanes
in this subspace. We denote this set of hyperplanes in (d- 1)-space with .P’(s).
We vertically project s and decompose the projection into (a constant number of)
(d- 1)-simplices. For any such region s’, we make a sparse net of Lemma 1 for the
hyperplanes P’(s) in s’. We triangulate the sparse net and obtain a set of (d- 1)-cells.
We extend the (d- 1)-cells vertically in d-space within s, obtaining infinite prisms
(7, P(r/), Q(r)), where P(r) is the subset of simplices in P(s) partially covering and
Q() is the subset of simplices in P(s) totally covering

We choose the parameter of the nets p(s) rlP(s)/n in order to obtain
P() n/r from Lemma 4 and IQ()I Ir(s)I ron/r from the induction
hypothesis. Note that, for every s in C_ we have pg(s) to.

The collection of all the elementary cells generated in the two phases is C. The
elementary cells in C satisfy invariants (I) and (II). The d-cells produced in the two
phases are organized in a two-level search tree. The search trees on d-cells built in
phase 1 (resp. 2) will be called Q-trees (resp. P-trees). The search tree built on the
sequence C0,..., C is used as sketched in the introduction to test whether a query
point q is incident to any simplex in U. The main issues are the time spent in the
construction and the size of the search tree.

3.4. Analysis of the algorithm. To simplify the notation, we set po(s)
max{p(s),pg(s)}. We denote by K the total number of vertices in the arrangement
of the set of simplices U which are incident to at least d of the (d- 1) simplices in U;
clearly, we have K (). We denote by c, c,.., absolute multiplicative constants
which may depend on d. We obtain a bound on Cal by summing the number of new
d-cells generated in one iteration of the algorithm for all the d-cells in Ca-1. We use
Lemma 2 to bound the number of d-cells obtained at each iteration of the algorithm.

ICl c1[-()ogd- 0() + v((s),)]

(1)
+ c[pg-(s) oga- po(s) + v(’(s), s’)].
sCk_

We apply the observation fter Lemma 2, the observation that p(s) ro always, and
the induction hypothesis on the size of Q(s) and P(s), thus obtaining a new expression
bounding

e3[Tg-1 loga ro + (’r logro/)av(Q(s), s)]
sC_

+ c4[g-2 logd- o + (r log T()/)d-I(P
sC_l

We rearrange the summations and subsume smaller terms under larger ones:

(3) c[g- logd0 + (logr0/)d((S),S)+ (logo/)d-(P’(s),s’))].
sC_

Finally, noticing that

_
v(P’(s), s’) O(nd-l), we obtain the following recur-

sive inequality in the variable :

ICl [o- (logd o)lC-l + oa(]oga o)(/d) + o(-) (IoNa- o)].

1070 MARCO PELLEGRINI

In the next lenma, we solve recursion (4) and find a bound on ICkl in terms of n
and K.

T-}"k(d- lq-e)LEMMA 5 ICkl < -0 + F(K/na)rd, where F and D are constants with
respect to k, n, and If.

Proof. Let us define a value/c such that

That is,

Let /cJ. Note that for k _< ,
while for k > k,

(7) (/(/()) r0kd
_

r0k(d-l+e).

We will show that for k _< , equation (4) has a solution ICI <_ Dro(d-l+)
for a constant D. We will show that for k > k, equation (4) has a solution ICkl <_
F(K/nd)rod for a constant F. Notice that equation (4) is a recursive equation on a
function of k; thus the term Kind is treated like a constant during the solution of the
recurrence.

Case 1" 0 <_ k <_ . We prove the bound ICkI <_ Dro(-+) by induction. For
k 0, the bound is trivially true since Co (E, U, 0) and IC01 1. Otherwise, we
inductively assume that the bound holds for Ck-l"

<_ c6[rdo-l+(logd ro)D(1/r))r(ok-1)(d-l+) + rod(logd ro)(K/nd) + r0
k(d-1) (logd-1 T’0)

, (-+) r0 r0(e-) (loge-c6[(logd ro)D(1/ro)ro + (logd ro)(K/nd) + r0)].

Since k k, we have (K/nd)rd= O(r(d-l+). Thus

(s) IC [0og 0)D(1/5)+ (og o)+ (og- 0)]g(-1+).

Choosing r0 dependent on e and choosing D large enough, we can make sure that

cT[(logd ro)D(1/r)) + (logd r0) + (logd-1 r0)]

_
D,

and therefore we prove the bound.
Case 2" k > . We prove by induction a bound ICkl <_ F(K/nd)rod. The base

case is for k k + 1. By using the bound of Case 1 for C within equation (4), we
easily obtain a bound

Ic/11 _< [(logd d- rdro)Dro ro (d- +) + (lgd ro)(K/rid) + "-o (logd-1 r0)]
_< (:/)0(+1)

ON POINT LOCATION AND MOTION PLANNING AMONG SIMPLICES 1071

for a constant F depending on ro, D, and e. Let us assume that the bound holds
inductively:

ICl c6[r0d-l(1ogd r0)lC-l + od(ogd o)(I/rz) + rko(d-1)(logd-1 r0)]

--< [0(o" o)F(1/o)(C/’)(o-) + 0"(" 0)(C/") + 0("-)(-1 0)l.

Since k > , inequality (7) holds and we have r0
(c-1) < 0k(d-l+e) O((K/ftd)’kod).

Therefore,

(9) ICl c8[(logdro)F(1/ro) + (logd r0) + (logg-1 ro)](K/nd)rod.

Choosing F and ro large enough, we have

c8[(log ro)F(1/ro) + (log ro) + (logd-1 ’o)]

_
F,

and the bound is proved, rl

3.4.1. Storage and preprocessing time bounds. We continue the construc-
tion until k reaches the value logo n. The total number of elementary cells is

(10) E ICkl - Z[Dr(d-l+) + F(K/nd)rd]"
k=0 k=0

This is a summation of geometric series of ratio r0
d-l+e and roa, which is proportional

to the last term of the series. Thus we have a bound O(Drtoid-l+e)’" + 2F(K/nd)/o)
O(na-l+ + K) on the size of the search tree. The time spent on each d-cell in the
search tree is linear in the number of (d- 1)-simplices intersecting it by Lemma 3.
Thus we have a bound

(11) E(nro/rko)lCkl <_ E(rtro/rko)[Drko(d-l*e) + F(K/nd)rkod].
k=0 k=0

By simple manipulations and using the previous observation on the sum of geometric
t(a-2+) _t(a-)series, we obtain an upper bound O((nro)[Jro + F(K/nd).l-o]), which is

O(nd-l+e +
3.4.2. Query time for incidence queries. We organize the sets Co, C1,..., C

as levels of a two-layer search tree where the P-tree is the primary structure and the
Q-tree is the secondary one. Given the query point q, we exhaustively search an
elementary cell s at the root of our search-data structure, which contains q in its
closure. Then we continue the search recursively in the P-tree and the Q-tree rooted
at s. On the Q-tree, the search visits a single path of logarithmic depth. Therefore,
we have a total cost O(log n) for searching a Q-tree. The query on a P-tree is solved
recursively. If T(h) is the time needed to solve the query starting from a node at
height h, we have that

T(h) <_ O(logn) + T(h- 1),
T(1) =0(1).

Thus T(log n) O(log2 n).

1072 MARCO PELLEGRINI

Since the total number of cells of any dimension in the arrangement A(U) is

O(na-1 + K), we have the following theorem.
THEOREM 1. Given a set U of n possibly intersecting (d- 1)-sirnplices in d-

space, we can build a data structure of size O(nd-l+e -t-/) deterministically in time
O(na-l+e + K), where K is the cornplezity of the arrangement 4(U). Afterwards, we
can determine in time O(log2 n) whether a query point is incident to a sirnplez in U.

3.5. Vertical ray shooting in arrangement of simplices. In order to solve
the vertical ray-shooting problem, we add auxiliary data structures to the search tree
built previously. Let us discuss Q-trees first. We consider cells s E Ca-1 and r E Ca
such that a c s and cr is obtained by phase 2 of the algorithm. We determine during
preprocessing the subset of (d- 1)-simplices in Q(s)/Q(cr) which lies below or. We can
extend the simplices of this subset into full hyperplanes and build a data structure
o. ry ooti. i. onv ,oyto, o iz roughly O(IQ()I/) [ShV].
This data structure is associated with a.

Let us now consider the P-trees. We consider cells s Ca-1 and a Ca such
that a c s and cr is obtained by phase 1 of the algorithm. Note that in this case,
both s and a are vertical infinite cylinders. From this, it follows that if a query
point q is in or, then the simplex in P(s) immediately below q is either the simplex
in P(cr) immediately below q or the simplex in Q(cr) immediately below q. Vertical
ray-shooting queries are solved by recursive calls on P-trees and by using the auxiliary
data structures on Q-trees. On Q-trees, the search path visits O(log n) nodes, and at
each node, O(log n) time is spent querying the data structure in [Sch92].

The query time for the recursion on the Q-trees rooted at a simplex s has an
additional logarithmic factor; thus we obtain a time O(log2 n) for one partial query.
The query time satisfies the same equation as before with an additional O(log: n)
term due to the queries on the auxiliary data structures. If T(h) is the time needed
to solve the query starting from a node at height h, we have that

T(h) <_ + T(h-

Thus T(logn) O(log3 n).
bounded by

The time needed to construct the data structure is

The discussion above proves the following theorem.
THEOREM 2. Given a set U of n possibly intersecting (d- 1)-simplices in d-

space, we can build a data structure of size O(nd-l+ + K) deterministically in time

O(nd-+ + K), where K is the complezity of the arrangement A(U). Afterwards, we
can solve vertical ray-shooting queries in time O(loga n).

2 We could use the method in [AM92], but in doing so, we would add an extra logarithmic factor
to the query time.

ON POINT LOCATION AND MOTION PLANNING AMONG SIMPLICES 1073

4. Point location among simplices. In this section, we tackle the general
point-location problem by using the solution to the vertical ray-shooting problem as
a subroutine. We encode the facial structure of A(U) in a sequence of sets of graphs.
The final graph will have nodes for each face of A(U), and each node will have a label
indicating the d-dimensional cell that has this face at its boundary. For a query point
p, we retrieve at query time the labels associated with the faces containing it.

In the following discussion, we will have to deal with the fact that a face is incident
to more than one cell, and therefore we must consider the role of the several "sides"
of a face. The main idea is to walk along the boundary of cells and describe such a
boundary as an incidence graph of lower-dimensional cells. We use ray shooting in
order to join "islands" of the boundary of a cell that cannot be reached by the simple
walking procedure. If we think of this problem on the plane with a set of segments,
it is clear that we can describe the boundary of a cell by walking clockwise on the
connected parts of its boundary. What follows is a generalization of this walking and
jumping idea to higher-dimensional spaces.

4.1. Definitions. First, we give additional definitions that lay the groundwork
for the main result. The terminology and the concepts used are consistent with those
introduced in [AS92].

A set U of n (d- 1)-simplices in Ed decomposes Ed into open cells of dimension
d (also called d-faces) and into relatively open cells of dimension k for 0 < k < d. Let
4(U) be the collection of cells of any dimension induced by U. We assume that the
simplices in U are in general position, meaning that any k of them (for k 2,..., d)
intersect, if at all, in a polytope of dimension at most d-k. This intersection is called
a (d- k)-flap in [AS92]. We assume that d + 1 simplices in U do not have a point
in common. We also assume that the intersection of any collection of k open faces
of dimensions il,..., ik is either empty or a polytope of dimension d- -.j(d- ij).
A perturbation argument shows that the maximum size of the quantities of interest
is attained by a set U in general position. We distinguish outer k-faces, which are
contained in the relative boundary of a simplex in U, and inner k-faces, which are
contained exactly in the interior of d- k simplices and avoid their relative boundary.
We distinguish between different sides of an (inner or outer) face. Let f be an inner
k-face contained in the relative interior of d- k simplices. The hyperplanes spanning
these simplices divide space into 2d-k open regions. A side of f is a pair (f, r), where
r is one of these regions. If f is a d-cell, then it has only one side, namely (f,/d).
Notice that a (d- 1)-face has two sides. Similar definitions hold for the outer k-faces
with the difference that outer k-faces are contained in fewer than d- k simplices.

DEFINITION 8. A side (f, r) is a k-border of a d-cell C if either f C and k d
or f is k-face on the boundary of C and some open neighborhood of f in r [_J f is
contained in C U f

Intuitively, the concept of k-border captures the fact that f is on the boundary
of a d-cell C and that C is on the same side of f as r.

DEFINITION 9. For 0 <_ k

_
< d, a (c, i)-border of C is a pair ((f,R), (g, Q))

of borders of C of dimensions k and such that f C] and R C Q.
Let G(U) be a graph whose nodes are k-borders of A(U) for all values of k.

Two nodes (f,R) and (g, Q) are connected by an edge in G(U) if ((f,R), (g, Q)) is a

(k, /)-border. We aim at generating a labelling of the nodes of G(U) such that all the
k-borders of a same d-cell C have the same label and this label is different from the
label of k-borders of d-cell C if C C.

1074 MARCO PELLEGRINI

4.2. The preprocessing algorithm. The construction of the labelled graph
G(U) for U in En is done in phases which are denoted with an index j 2,..., d.
At the end of phase j, we have a set of labelled incidence graphs, where each graph
corresponds to an arrangement of simplices in dimension j. We use this information
to build a set of graphs of arrangements in dimension j + 1. The output of the last
phase for j d represents our labelled graph G(U). To start our construction, let
us consider dimension j 2, which is our base case. We compute the collection
B2 (d_U2) of all of (d- 2)-subsets of U. Let fl be an element of B2 and q(fl) be
the 2-flap which is the intersection of the simplices in . If q() is not empty, we
build the planar arrangement of the segments U {s q(/)ls e U/} on q(/).
Using the method of [CE92], we can explicitly construct such in arrangement in time
O(nlogn + KZ), where KZ is the number of vertices in 4(U). Within the same
time, we can compute the graph G(Uz) and label its k-borders with the name of the
bordering cell. Moreover, we can add standard planar point-location data structures
in order to be able to locate a 0-border of the 2-cell containing a query point.

We have established the result for j 2. Now we assume j > 2 and assume
inductively that we have computed the relevant data structure for (j- 1). More
precisely, we have the labelled graphs G(Uz) for all/ Bj_ (d-V(j_)) and also
the point-location/vertical ray-shooting data structures for all sets UZ. We shall use
this intbrmation to construct the graphs G(UT), where 3’ G F By (dU_y). Consider
a particular 3‘ G F. We aim to construct the incidence graph over the set of simplices
U7 {s q(7)ls e U/7} on q(7). The relative boundary of q(7) is formed by j- 1
simplices, and we can assume inductively that we know the arrangement induced by
U on the facets of q(7) and the corresponding incidence graph G.

An inner k-face f in A(U) is contained in d- k simplices of U. We can split
these d- k simplices into two groups: d- j of them define a flat q(7) to which f
belongs; the j k remaining simplices define the affine span of f within q(@. We
denote by r(/) { e FIf q(7)} the subset of elements of F containing f in their
corresponding j-flap. Similarly, we define B(f) { G Bj_lf C q()}. From the
previous observation, IF(f)l n-(d-j) and IB(f)l (d_a(_k)). Fixing a F(f); is

equivalent to fixing d- j simplices incident to f; thus we can choose any one of the
remaining j k simplices incident to f to define a set/ in B(f). We therefore have
the following set:

B(f, 3‘) {/ e U(f)lq(/) q(3‘)},

representing the ’s which contribute to 3‘. The cardinality of this set is IB(f, 3’)1

The main idea is to use the regions of the k-borders in graphs in G(B) to build
the regions of k-borders in graphs in G(F). First, we must establish with a counting
argument that we indeed have enough nodes from lower-dimensional graphs to carry
out the construction. One face f in A(U) corresponds to 2j-k k-borders in G(U/),
and each such k-border has associated a region delimited by (j k) facets. These
facets are regions of k-borders of f in the set of graphs G(Uz) for E B(f, 3"). In order
to construct G(U) for all 3’ E F, we proceed in the following way: we duplicate every
node in every G for B. This operation reflects the fact that every (j- 1)-cell
has two sides in the new space q(3’). Consequently, every label is split into a positive
and a negative label. The total number of k-borders of a face f in graphs G(Uz) for
/ B(f, 3") becomes

2[2J--k(j k)] (j k)[2J-].

ON POINT LOCATION AND MOTION PLANNING AMONG SIMPLICES 1075

Now the algorithm is easy: we build the regions of k-borders of f in G(U) by
taking the regions of k-borders of f in G(U) for/3 E B(f, 7) as facets. We associate
to the nodes in G(U) an initial labelling using the (j- k) labels of the facets of
the region of each k-border in G(U.). We recall that the labels we are using are
just names of (j- 1)-cells. At this stage, we have an initial labelled graph G(U)
with a labelling consistent with the information we obtain from lower-dimensional
graphs. On the other hand, this initial labelling is such that a single cell in
does not yet have a unique identifier. The next phase of the algorithm finds a unique
identifier for every j-cell of 4(U) and updates the labels of the k-borders in G(U)
correspondingly. Let C be a j-cell in 4(U).

Relabelling Step I. We build a label graph LG(7) whose nodes are nodes of G(U).
We place a.n edge between two nodes of LG(7) if and only if the two initial labels of
the nodes have no empty intersection. Then we run a standard connected-component
algorithm on LG(7) [AHU74]. During the visit of the graph LG(3’), we also compute
for each connected component of the graph the lowest point in the vertical direction
of the space q(7). At the end of this phase, every path-connected component of the
boundary of C has a unique label.

Relabelling Step II. Now we proceed to identify the several connected components
of the boundary of a j-cell C on q(7). We build in q(7) for U the vertical ray-shooting
data structure described in 3. We build a a graph of boundary components BCG(7)
whose nodes are the connected components of the graph LG(7). We connect with an
arc two nodes u and n’ in BCG(7) if, shooting in q(7) from the lowest point of u, we
reach a point on u.

Afterwards, we find the connected components of BCG(7) using standard graph-
searching algorithms. The next lemma states that the final labelling obtained from
the connected components of the graph BCG(/) satisfies the uniqueness property.

LEMMA 6. The identifiers of the connected components of BCG(7) are unique

Proof. In order to simplify the argument, we assume that all the simplices in U
are bounded, and we consider a solid compact d-ball B containing U in its interior.
Let C be a nonempty j-cell of A(U)CB and B1,..., B be the connected components
of the boundary of C. Cell C is bounded and, in particular, at least one boundary
component is a regular boundary as defined in [Ale56, p. 41], i.e., a set which separates
Ed into two domains. Moreover, one of these two domains is bounded and the other
is unbounded. The procedure for linking nodes in the graph BCG(7) produces
partial order among the nodes 11,...,/k. We show that there cannot be two bottom
elements in this partial order.

If B is not a regular boundary, then the vertical ray from the lowest point of
is within C and will intersect another boundary component. Therefore,/i cannot be
a bottom element of the partial order. Let us assume by contradiction that we have
two regular boundaries B1 and B. with associated bounded domains D1 and D. such
that B and B2 are both bottom elements of the partial order. If this is the case, then
the vertical downward ray from the lowest point of B (resp. B.) is in the unbounded
domain defined by B1 (resp. B.). Therefore, we have that C c_ D and C C_ D.. Now
we have two main cases to consider since the other cases lead easily to contradictions.

Case 1" D2 C D, from which C C_ D C D. But then B cannot be on the
boundary of C unless it is a subset of B. Since B and B2 are disjoint, we have
contradiction.

1076 MARCO PELLEGRINI

Case 2:D2 c Ed \ D1. In this case, D1 3 D2 0 and therefore C 0, which is
a contradiction.

From the discussion above, it follows that all the boundary components of a cell
C are included in the same component of the graph BCG(3’).

Now we assume that B is a boundary component of C, Bg. is a boundary com-
ponent of C2, and (B1, B2) is an arc in BCG(U). If this is the case, there is a vertical
segment which connects B and B, which does not intersect any simplex in U, and
which at the extremes belongs to C and C2. It follows that C1 and C are path
connected and therefore are the same j-cell of A(U). We have proved that if the
nodes of BCG(’) are the boundary-connected components of cells in A(U), then the
connected components of BCG(’) are in 1-1 correspondence with j-cells of A(U).

Now let p and p2 be two points on a connected component B of the boundary
of a j-cell C. Then there is a continuous path contained in B and in C that has
and p as extremes. We can reduce this path so that it visits each (j 1)-face of B
at most once. Let F,..., F be the sequence of (j 1)-faces of a path connecting
and p, and let fi be the (j 2)-face shared by Fi and Fi+l. Assuming by induction
on the dimension that we have a unique label for the faces Fi, we have that the initial
labelling of the (j 2)-border fi of C is (F, F+I). Therefore, if we build the graph
LG(’,/), there will be a path connecting F and Fk in LG(/).

On the other hand, ifp on face F1 and p on face F belong to different boundary
components B and B, then any path between B and B2 will have at least one point
which does not belong to any (j- 1)-border in the graphs G(B). Therefore, the faces
F and F are not connected by any path in LG(7).

Once we have defined the labels, these are propagated from the graph BCG(7) to
the graph LG(7) and to G(7) and recursively to the lower-dimensional graphs which
contribute to G(7). We stop the construction when j d and the final object is a
single graph G(U) with a proper labelling together with a vertical ray-shooting data
structure for U.

4.3. Point-location procedure. Using the data structure VRS(U), we can
find for a query point p the simplex s E U immediately below p and also the landing
point pt on s. We repeat the vertical query procedure on s. Eventually, we reach a
vertex of A(U) whose label is the (unique) label of the d-dimensional cell containing
p.

4.4. Time and storage analysis. The number of sets in Bj is O(nd-J). For
j 2, which is the base case, we spend time O(n log n + KZ) for each set/. Thus the
total cost of the base step is

E O(?’t log ft _qt_ /(/3) O(?’td-1 log ?’-t @ /().

The graphs G(Bj) for j > 2 have total size

+ K,) + K).

We keep a dictionary of faces such that for each face, we can efficiently retrieve the
corresponding borders and the graphs G(Bj) having these borders as nodes. We can
use standard data structure with logarithmic cost per operation. Thus we bound
the time to construct a(r) with O(nd-llogn + K logn). The additional vertical

ON POINT LOCATION AND MOTION PLANNING AMONG SIMPLICES 1077

ray-shooting data structures are set up at cost

O(n-+ + KZ) O(n-+ + K).

Labelling steps I and II are based on depth-first search [AHU74] and take over-
all time proportional to the size of G(13). The ray-shooting operations in labelling
step II take O(log3n). The number of vertical ray-shooting queries is O(n) for
each E Bj because we have always at most n components. Thus the total cost
is O(nd-j+l log3 n) O(nd-1 log3 n). The graphs BCG() have only O(n) nodes;
therefore, finding the components takes total time O(na-j+) O(na-x) [AHU74].
The correctness of the algorithm has been established in the previous section. The
analysis of the storage and preprocessing time gives us the following theorem.

THEOREM 3. Given a set U of n simplices in Ed, let K be the number of cells of
any dimension in A(U). For every e > O, it is possible to build a point-location data
structure of size O(nd-l+e + K) in time O(nd-+e + K log n), where the constant of
proportionality depends on e, such that a unique identifier for the cell containing a
query point p can be found in time O(log3 n).

We obtain the following corollary, which exploits the point-location data structure
to solve motion-planning problems.

COROLLARY 1. Using the data structure of Theorem 3, given two points Pl and
P2, we can determine in time O(log3 n) whether there is a collision-free path from p
to P2.

Since we can store spanning trees of the graphs built in the several phases of the
algorithms, we can find an explicit representation of a path connecting two query
points. The length of the path is O(nd-1 log n), as follows from the bound in [AS92].

5. A method for building triangulations. In this algorithm, by a &cell, we
indicate a truncated vertical prism whose cross-section is a (d- 1)-simplex. We are
given a set U of n pairwise-interior-disjoint (d- 1)-simplices in Ed. The construction
of the triangulation T(U) of Ed\ U proceeds in stages. We build a sequence of
sets Co,..., CA, where logro n and r0 is a suitable constant. The basis of the
construction is Co, and we proceed inductively from Ck- to build Ck. The set Ck is
a collection of triples (s, P(s), Q(s)), where s is a d-cell, P(s) is the subset of (d- 1)-
simplices in U partially covering s, and Q(s) is the subset of (d- 1)-simplices in U fully
covering s. If s E Ck, we will have associated sets P(s) and Q(s) with the invariant
properties that

(I) I.P(s)l <_ n/ro (first invariant),
(IX) IQ(s)l <_ nro/ro (second invariant).
Ck is a refinement of C_l and, moreover, the &cells in Ck partition Ed. At

the last stage, Ct contains only d-cells intersecting a constant number of original
simplices in U, and thus we obtain a triangulation T(U) of size O(ICtI) by a final
greedy decomposition. The first set is Co { (Ed, U, 0)}, which satisfies invariants (I)
and (II). We assume that the two invariants hold for Ck_ with k > 0, and we show
how to construct Ck.

5.1. The algorithm. Let s be an elementary cell in Ck-1. Since the the first
and second invariants hold by the inductive hypothesis, s is partially covered by at
most n/ro- (d- 1)-simplices and is fully covered by at most nro/ro- (d- 1)-
simplices. The covering (d- 1)-simplices Q(s) are disjoint, and therefore they are
linearly ordered in the vertical direction within s. We split Q(s) into at most r0

1078 MARCO PELLEGRINI

groups of [Q(s)/ro] simplices each by selecting every [Q(s)/rolth (d- 1)-simplex
in the vertical ordering. The selected totally covering (d- 1)-simplices slice s into
elementary cells numbered 1,..., r0, which we denote a(s, i) (or ci whenever s is
clear from the context). We also denote by cr’(s, i) the vertical projection of or(s, i).

From the above construction, each cri is covered by IQ(cri)l _< nro/ro k (d- 1)-
simplices. Each ai is partially intersected by IP(ri)] qi (d- 1)-simplices, where

Ei q’i P(s)l <- n/ro-1. This property is easily proved since a partially covering
(d- 1)-simplex of P(s) can intersect to only one elementary cell

The average cri has a partial cover of size IP(s)l/ro, which is exactly what is
needed to have a valid element of the set C. To make this averaging argument work
in the worst case, we proceed as follows for each elementary cell cri. If P(ai) < n/ro,
we do nothing. Otherwise, we project independently for each cell ai all the (d- 2)-
boundaries of the partially covering simplices of P(cr) onto a (d- 1)-subspace. We
extend these sets into full hyperplanes, obtaining a set Pt(s, i) of qi hyperplanes in
(d- 1)-space. Since n/r <_ IP(ai)I G n/r-1, we have the conditions for using
Lemma 1. We build the sparse net of Lemma 1 in (d- 1)-space and its triangulation.
Thus we generate elementary (d- 1)-dimensional cells which are (d- 1)-simplices.
Then each such cell is extended in the vertical direction and intersected with ai, thus
obtaining a into truncated d-prism.

We choose as a parameter of the sparse-net construction a number p0i such that
qi/poi -IP(s)l/ro, and thus p0i qiro/IP(s)l. The interesting property we use in
the analysis is that the sum of the p0i’s is less than r0"

po qro/IP(s)l ro/IP(s)l q <_ rolP(s)l/IP(s)l to.

Let r/be a cell so obtained. We have that the number of (d- 1)-simplices partially
covering r/is]P(?)I -< qi/poi P(s)/ro n/rok (Lemma 4); thus /satisfies the first
invariant of Ck. The number of (d- 1)-simplices in Q(r/) is at most [Q(s)l/ro + IP(s)l
and thus is at most n/ro-1 + n/ro-1 2nro/ro.

We take /and use the median simplex in the vertical ordering of Q(/) to split
into two cells 71 and r/2 which satisfy both invariants for Ck. Collecting all of these
cells we have Ck, which is a partition of Ea. This is the end of the algorithm that
builds C starting from C_1.

5.2. Analysis of the algorithm. We now derive a recursive equation linking
the size of C with the size of Ck-1 by summing the number of new cells produced by
the algorithm for each cell s in C-1. Let Ai(s) be the number of d-dimensional cells
generated within or(s, i) in one phase of the algorithm. Using the bound of Lemma 2,
the number of cells obtained is

Ai(s) <_ cg[pd-2 + (pi/qi)d-v(P’(s, i), cT’(s, i)) + pdi-1/POi],

where pi P0i log P0i. Thus the total number of cells in C is bounded by

]C <_ 2 Z E
sECk-. a(s,i)

Z E C10[p/d-2 -1- (Pi/qi)d-lv(Pt(s’i)’(Y’(8’i)) -[- pdi-1/POi]"
sECk-

ON POINT LOCATION AND MOTION PLANNING AMONG SIMPLICES 1079

Bounding terms of the summation separately, we have

d-2 _
?0

d-2 logd-2 ro

and

Since P/qi <_ rok(logro)/n, we obtain a term

EE(rOk(d-1)(lOgrO)d-1/nd-1)v(Pt(8’ i)’ rt(s’ i)).

Since Es Ei v(P’(s, i), a’(s, i)) O(?’td-1), we obtain the following recursive inequal-
ity"

[CkI <_ c11(logro)d-lro(d-1) + Cll(lOgro)d-lrod-2[Ck-ll

for a constant cll which is independent of r0. In the next lemma, we solve the
recurrence, obtaining a bound for ICkl as a function of k.

LEMMA 7. ICkl

_
Drok(d-1) for a constant D independent of k.

Proof. We use an induction on k. For k 0, Co (Ed,v,fi), so [Co[_< D for
D _> 1. Inductively, we assume the bound on [C_[.

[Ck[C11(1og ro)d-lrok(d-1) 4- c11D(log ro)d-rod-2ro (k-1)(d-1)

<_ Cll(logro)d-lrok(d-1) 4- (CllD(logro)d-1/ro)rok(d-1).

Choosing r0 and D large enough, we can make sure that

c11(logro)d-1 4- c11D(logro)d-/ro <_ D,

and thus the bound is proved. El
The total number of cells in the sequence of sets Ck is a summation of a geometric

sequence of ratio r0
d- > 1, so its value is proportional to the last term, which is

O(n-).

E [Ckl <_ E Drok(d-1) - 2Drol(d-1): O(rtd-1)"
k=0 k=O

What is the time to compute all of the Ci’s? The sparse nets are computed in time
linear in the number of simplices partially covering the elementary cells by Lemma 3.
The slicing hyperplanes are found by repeated applications of a selection algorithn
in time O(rolQ()ll for any elementary cell s. Thus we have running time

E((n/ro) + (nro2/rok))lCk <_ 2(1 + ro2)Dnro(d-2) O(nnd-2) O(?’td-1).
k=0

The above discussion proves the following theorem.

1080 MARCO PELLEGRINI

THEOREM 4. Give a set U of n pairwise-interior-disjoint (d- 1)-sirnplices in d-
space with d >_ 3, we can deterrninistically build a triangulation T(U) of size O(nd-i)
in time O(nd-1).

Following the tree structure of the triangulation, we can locate the cells in T(U)
containing a query point p in time O(log n).

COROLLARY 2. We can find in time O(log n) the cells ofT(U) containing a query
point p and the simplex in U immediately below p.

6. Conclusions. In this paper, we have presented algorithms for solving point-
location and motion-planning queries in arrangements of simplices in Ed for any
fixed d _> 2. The preprocessing time and storage bounds depend explicitly on the
complexity of the arrangement induced by the simplices. This feature is important in
order to exploit the "sparsity" of arrangements which are obtained, for example, in
motion-planning and visibility applications. For sets of interior-disjoint simplices in
Ed with d >_ 3, we improve bounds for building triangulations, and we obtain a fast
point-location method as well.

Acknowledgments. I wish to thank Bruno Codenotti and Nine Amenta for
their observations on an early draft and the referees for their useful comments.

[HUa]

[Ale56]
[Age]

[AS90]

[AS92]

[Ber93]

[Can87]

[CE92]

[CF92]

[Cha84]

[Cha87]

[Cha93]

[Cla87]

[Co186]
[dBGH94]

REFERENCES

A. V. AHO, J. E. HOPCROFT, AND J. D. ULLMAN, The Design and Analysis of Computer
Algorithms, Addison-Wesley, Reading, MA, 1974.

P. S. ALEXANDROV, Combinatorial Topology, Graylock Press, Rochester, NY, 1956.
P. K. AGARWAL AND J. MATOUEK, Ray shooting and parametric search, in Proc. 24th

Annual ACM Symposium on Theory of Computing, Association for Computing
Machinery, New York, 1992, pp. 517-526.

B. ARONOV AND M. SHAI{IR, Triangles in space or building (and analyzing) castles in
the air, Combinatorica, 10 (1990), pp. 137-173

-------, Castles in the air revisited, in Proc. 8th ACM Symposium on Computational
Geometry, Association for Computing Machinery, New York, 1992, pp. 146-256.

M. BERN, Compatible tetrahedralizations, in Proc. 9th ACM Symposium on Computa-
tional Geometry, Association for Computing Machinery, New York, 1993, pp. 281-
288.

J. CANNY, The Complexity of Robot Motion Planning, MIT Press, Cambridge, MA,
1987.

B. CHAZELLE AND H. EDELSBRUNNER, An optimal algorithm for intersecting line seg-
rnents in the plane, J. Assoc. Comput. Mech., 39 (1992), pp. 1-54.

B. CHAZELLE, H. EDELSBRUNNER, L. (UIBAS, AND M. SHARIR, Algorithms for bichro-
marie line segment problems and polyhedral terrains, Report UIUCDCS-R-90-1578,
Department of Computer Science, University Illinois at Urbane-Champaign, Ur-
bane, IL, 1989.

B. CHAZELLE AND J. FRIEDMAN, Point location among hyperplanes and vertical ray-
shooting, Comput. Geom., in press.

B. CHAZELLE, Convex partitions of polyhedra: A lower bound and worst-case optimal
algorithm, SIAM J. Comput., 13 (1984), pp. 488-507.
, Approximation and decomposition of shapes, in Advances in Robotics, Vol. 1:

Algorithmic and Geometric Aspects of Robotics, Lawrence Erlbaum Associates,
Hillsdale, NJ, 1987, pp. 145-185.
, Cutting hyperplanes for divide and conquer, Discrete Comput. Geom., 9 (1993),

pp. 145-158.
K. L. CLARKSON, New applications of random sampling in computational geometry,

Discrete Comput. Geom., 2 (1987), pp. 195-222.
R. COLE, Searching and storing similar lists, J. Algorithms, 7 (1986), pp. 202-220.
M. DE BERG, L. GUIBAS, AND D. HALPERIN, Vertical decompositions for triangles in

3-space, in Proc. 10th ACM Symposium on Conputational Geometry, Association
for Computing Machinery, New York, 1994.

ON POINT LOCATION AND MOTION PLANNING AMONG SIMPLICES 1081

[Ede87]

lEGS86]

[GT91]

[Kir83]

[Lt91]

[LP77]

[LT80]

[Mat91]

[Mt92]

[Mat93]

[Meh84]

[Mul91]

[Pre81]

[PS85]

[PT88]

[PT89]

[PY90]

[Sch92]

[ssss]

[SS891

[SS90]

[ST86]

H. EDELSBRUNNER, Algorithms in Combinatorial Geometry, Springer-Verlag, Berlin,
New York, Heidelberg, 1987.

g. EDELSBRUNNER, L. GUIBAS, AND J. STOLFI, Optimal point location in a monotone
subdivision, SIAM J. Comput., 15 (1986), pp. 317-339.

M. GOODRICH AND R. TAMASSIA, Dynamic trees and dynamic point location, in Proc.
23rd Annual ACM Symposium on Theory of Computing, 1991, pp. 523-533.

D. KIRKPATRICK, Optimal search in planar subdivision, SIAM J. Comput., 12 (1983),
pp. 28-35.

J.-C. LATOMBE, Robot Motion Planning, Kluwer Academic Publishers, Norwell, MA,
1991.

D. LEE AND F. PREPARATA, Location of a point in a planar subdivision and its appli-
cations, SIAM J. Comput., 6 (1977), pp. 594-606.

R. LIPTON AND R. E. TARJAN, Applications of a planar separator theorem, SIAM J.
Comput., 9 (1980), pp. 614-627.

J. MATOUEK, Cutting hyperplane arrangements, Discrete Comput. Geom., 6 (1991),
pp. 385-406.

Range searching with efficient hierarchical cuttings, in Proc. 8th ACM Sym-
posium on Computational Geometry, Association for Computing Machinery, New
York, 1992, pp. 276-285.

On vertical ray shooting in arrangements, Comput. Geom., 2 (1993), pp. 279-
285.

K. MEHLHORN, Multidimensional Searching and Computational Geometry, Springer-
Verlag, Berlin, New York, Heidelberg, 1984.

K. MULMULEY, Hidden surface removal with respect to a moving view point, in Proc.
23rd Annual ACM Symposium on Theory of Computing, Association for Comput-
ing Machinery, New York, 1991, pp. 512-522.

F. PREPARATA, A new approach to planar point location, SIAM J. Comput., 10 (1981),
pp. 473-482.

F. P. PREPARATA AND M. I. SHAMOS, Computational Geometry: An Introduction,
Springer-Verlag, Berlin, New York, Heidelberg, 1985.

F. PREPARATA AND R. TAMASSIA, Fully dynamic techniques for point location and tran-
sitive closure in planar structures, in Proc. 29th IEEE Symposium on Foundations
of Computer Science, IEEE Computer Society Press, Los Alamitos, CA, 1988,
pp. 558-567.
, Efficient spatial point location, in Proc. 1989 Workshop on Algorithms and

Data Structures, Lecture Notes in Comput. Sci. 382, Springer-Verlag, Berlin, 1989,
pp. 3-11.

M. S. PATERSON AND F. F. YAO, Efficient binary space partitions for hidden surface
removal and solid modeling, Discrete Comput. Geom., 5 (1990), pp. 485-503.

O. SCHWARZKOPF, Ray-shooting in convex polytopes, in Proc. 8th ACM Symposium on
Computational Geometry, Association for Computing Machinery, New York, 1992,
pp. 286-295.

J. T. SCHWARTZ AND M. SHARIR, On the piano mover’s problefn II General techniques
for computing topological properties of real algebraic manifolds, Adv. Appl. Math.,
4 (1983), pp. 298-351.
, A survey of motion planning and related geometric algorithms, in Geometric

Reasoning, D. Kapur and J. L. Mundy, eds., MIT Press, Cambridge, MA, 1989,
pp. 157--169,
, Algorithmic motion planning in robotics, in Handbook of Theoretical Computer

Science, vol. A, J. van Leeuwen, ed., Elsevier, Amsterdam, 1990, pp. 157-169.
N. SARNAK AND R.E. TARJAN, Planar point location using persistent search trees,

Comm. Assoc. Comput. Mach., 29 (1986), pp. 669-679.

SIAM J. COMPUT.
Vol. 25, No. 5, pp. 1082-1104, October 1996

() 1996 Society for Industrial and Applied Mathematics
OO8

BOUNDS ON THE EFFICIENCY OF MESSAGE-PASSING
PROTOCOLS FOR PARALLEL COMPUTERS*

ROBERT CYPHERt AND SMARAGDA KONSTANTINIDOUt

Abstract. This paper considers the problem of creating message-passing protocols for parallel
computers. It is assumed that the processors are connected by a network that provides guaranteed
delivery of every message, provided that each message delivered by the network is removed by
the receiving processor unconditionally and in finite time. Two models of message passing are
considered, namely, a selective model in which the receiver specifies the source of the message and
a nonselective model in which the receiver accepts messages from all sources. We consider only
space-efficient protocols in which each processor has storage for a constant number of messages and
message headers. We present three main results. First, we give a protocol for the selective model
that performs a constant amount of communication per send or receive posted by the application.
Second, we prove that no such efficient protocol exists for the nonselective model. Third, we present
a protocol for the nonselective model that performs a logarithmic amount of communication per send
or receive posted by the application.

Key words, communication protocols, end-to-end protocols, message passing, parallel comput-
ing deadlock

AMS subject classifications. 68Q10, 68Q22, 68Q25

1. Introduction. A standard model for communication in both parallel and
distributed computers is the message-passing model, in which processes communicate
solely by posting matching send and receive commands [2]. The implementation of a
message-passing model requires a communication protocol that guarantees the delivery
of messages between matching send and receive commands.

Numerous communication protocols have been proposed and their properties
studied, particularly in the context of communication networks [13, 16]. A signif-
icant amount of work has also been done in the area of communication protocols
for loosely coupled multiprocessors interconnected via a local-area network or token
ring [1, 15, 18, 19]. In the area of message-passing parallel computers, the assump-
tions regarding the properties of the system can be substantially different from those
used in the area of distributed systems [5, 11]. In particular, the interconnection
networks of most parallel machines in existence use blocking routing algorithms in
which messages that encounter congestion are not discarded by the network. Instead,
these messages continue to hold resources until they can be serviced. As a result,
the interconnection network is typically guaranteed to be free of deadlock only if the
following continuous-consumption requirement is met: every message delivered by the
network is removed by the receiving processor unconditionally and in finite time [8].
Furthermore, it is common for the processors in a parallel machine to have local mem-
ory but no disks. As a result, the communication protocol must make ecient use of
the limited memory that is available. This paper considers the problem of creating
message-passing protocols for parallel computers that are memory ecient and that
satisfy the continuous-consumption requirement.

One simple type of communication protocol for n processors requires the static
allocation of n storage buckets per processor, where each bucket can store one or more

Received by the editors January 26, 1994; accepted for publication (in revised form) January
25, 1995. A preliminary version of this paper appeared in Proc. 1993 ACM Symposium on Parallel
Algorithms and Architectures.

Department of Computer Science, Johns Hopkins University, 3400 North Charles Street, Balti-
more, MD 21218 (cypher@cs.jhu.edu, konstant@cs.jhu.edu)

1082

MESSAGE-PASSING PROTOCOLS 1083

messages [16]. The storage in these buckets can be managed with a sliding-window
protocol in which the receiving processor grants tokens for additional messages to
each sending processor. Such protocols have been used in parallel computers [14], but
the requirement of n storage buckets per processor limits their scalability. Although
it is relatively easy to obtain a protocol that requires only n bits per processor (rather
than n buckets), it is natural to ask if protocols exist that have constant storage
requirements per processor.

In fact, a protocol requiring constant storage per processor was developed in
the context of distributed operating systems [3]. In this protocol, each processor
maintains a list of the messages that have been sent to the processor but have not yet
been received. This list is distributed among the processors sending messages to the
given processor in order to reduce the memory requirements. Specifically, if message
M1 originating at processor $1 arrives at the destination processor R before R posts a

receive, M1 is discarded and a record of the request is kept in R. If another processor
$2 sends a message M2 to R before R has consumed M1, M2 is also discarded and a
control message is sent from R to $1 with the address of $2. If yet another processor
$3 sends a message M3 to R before R has consumed M1, M3 is also discarded and a
control message is sent from R to $2 with the address of $3. Then, when R retrieves
message M1 from S, it also receives the address of $2, which is the next processor
in the distributed list of outstanding messages for R. Similarly, when R retrieves the
message M2 from $2, it also receives the address of $3. In general, R maintains a
linked list of processors attempting to send it messages by storing the addresses of
only the first and last processors in the list.

Unfortunately, this protocol does not satisfy the continuous-consumption require-
ment stated above. In particular, R must send out a message for each message that
arrives at R after M1 arrives. Because R must generate a message for each addi-
tional message that it receives, it can receive messages only as fast as it can send new
messages into the network. As a result, this protocol could deadlock if it were im-
plemented on top of a blocking point-to-point or multistage communication network,
such as the ones typically used by current multicomputers.

In addition, other researchers have addressed the deadlock problems that are
caused by blocking networks and finite storage at the sending and receiving proces-
sors [7, 8, 10]. However, these papers do not consider the implementation of message-
passing primitives.

The remainder of this paper is organized as follows. In 2, formal definitions of
the model and of the problems being addressed are presented. An efficient protocol
for selective receives is given in 3. A proof that no such efficient protocol is possible
for nonselective receives is given in 4. Finally, a protocol that requires a logarithmic
number of messages per send or receive posted by the application is presented in 5.

2. Formal model and problem definitions.

2.1. The model. We will consider the implementation of a single parallel ap-
plication. The application consists of n processes that operate asynchronously and
communicate with one another solely by issuing send and receive commands. Asso-
ciated with each application process is a communication process that implements the
communication protocol. An application process communicates by posting a send or
receive command to its associated communication process and then blocking until it
is unblocked by its communication process.

The n communication processes communicate with one another by sending and
receiving messages over an interconnection network. Each communication process has

1084 ROBERT CYPHER AND SMARAGDA KONSTANTINIDOU

a single outgoing port for sending messages to the network and a single incoming port
for receiving messages from the network. Each of these ports has a strictly first-in first-
out (FIFO) queue that can hold a constant number of messages. A communication
process sends a message to another process by placing the body of the message along
with a header giving the address of the destination process into its outgoing FIFO
queue (provided that it is not full).

We will assume that every application message is of the same size and that each
communication process has storage for a constant number of application messages
and message headers. Application messages and message headers are assumed to be
indivisible units that cannot be merged or encoded in any way. More specifically, the
only operations that a communication process can apply to an application message or a
message header are store, copy, discard, send, and receive. The body of a message sent
through the interconnection network can contain a constant number of application
messages and message headers.

The interconnection network provides full connectivity between communication
processes and is guaranteed to deliver every message within finite time, provided
that the communication processes guarantee continuous consumption of messages. In
addition, the network is nonovertaking. That is, multiple messages sent from the same
source to the same destination arrive in the order in which they were sent.

2.2. The problems. We will consider two message-passing models. The first
model consists of the commands SEND(M,R) and SRECV(S). The command
SEND(M, R) sends the application message M to process R. The command SRECV(S),
called a "selective receive," receives an application message from process S. Both the
SEND and SRECV commands block the application process that posts them until a
matching SRECV or SEND command has been posted. It will be assumed that for
each SEND (respectively, SRECV) that the application posts, a matching SRECV
(respectively, SEND) will eventually be posted.

The second model consists of the commands SEND(M, R) and NRECV(). The
command SEND(M, R) sends the application message M to process R. The command
NRECV(), called a "nonselective receive," receives an application message from any
process. Both the SEND and NRECV commands block the application process that
posts them until a matching NRECV or SEND command has been posted. It will
be assumed that for each SEND (respectively, NRECV) that the application posts, a
matching NRECV (respectively, SEND) will eventually be posted.

For both models, an application process may post either a finite number or an
infinite number of send and receive commands. The communication protocol is re-
quired to guarantee that for every SEND(M, R) command posted, the message M is
transferred within finite time to the process R that issues the matching receive com-
mand. In addition, the communication protocol must unblock the application process
within finite time after its posted send or receive has been completed.

3. Upper bound for selective receives. In this section, we present a proto-
col for SEND and SRECV that requires only constant storage per process and that
performs only a constant amount of communication per SEND or SRECV posted by
the application.

The protocol uses four types of control messages, called READY, REQ1, REQ2,
and ACK, and two types of data messages, called DATA1 and DATA2. The protocol
operates as a finite-state machine where the number of states (eight) is independent
of the number of processes. Initially, all of the communication processes are in state

MESSAGE-PASSING PROTOCOLS 1085

Co. The protocol performs the following operations based on the state of the com-
munication process:

State Co. Discard all arriving messages. If the associated application process
posts a SEND, enter state So. if the associated application process posts a SRECV,
enter state R0.

When the application process has a posted SEND, the communication process is
in one of the following states. Let R denote the destination of the posted SEND and
let M denote the message being sent.

State So. Send a READY message to R. Discard all arriving messages that are
not from R. If a REQ1 message from R arrives, enter state S1. If a REQ2 message
from R arrives, enter state

State $1. Send a DATA1 message containing M to R. Discard all arriving rues-
sages that are not from R. If a REQ2 message from R arrives, enter state $2. If an
ACK message from R arrives, enter state

State S2. Send a DATA2 message containing M to R. Discard all arriving mes-
sages except an ACK from R. When an ACK message from R arrives, enter state

State S3. Unblock the associated application process. Enter state Co.
When the application process has a posted SRECV, the communication process

is in one of the following states. Let S denote the source specified by the posted
SRECV.

State Ro. Send a REQ1 message to S. Discard all arriving messages that are not
from S. If a READY message from S arrives, enter state R1. If a DATA1 message
from S arrives, enter state R.

State Ri. Send a REQ2 message to S. Discard all arriving messages except a
DATA2 message from S. When a DATA2 message from S arrives, enter state R.

State R2. Send an ACK message to S. Copy the data from the most recent
(DATA1 or DATA2) message to the application. Unblock the associated application
process. Enter state Co.

Three possible executions of this protocol are illustrated in Figures 1, 2, and 3.
These figures, in which time moves downward, show the actions and states of two
processes that execute matching SEND and SRECV commands. Messages from other
processes are discarded and are not shown.

The idea behind this protocol is that both the sender and the receiver initiate
the communication. If the READY message from the sender arrives at the receiver
before the matching SRECV is posted, the receiver discards the READY message
(because the receiver does not yet know that it will want to communicate with the
given sender). However, in this case, the SRECV will eventually be posted, at which
point the receiver sends a REQ1 message to the sender and the communication will
be established (see Figure 1). The situation in which the REQ1 message from the
receiver arrives before the matching SEND is posted is analogous (see Figure 2).
The need for two types of data messages (DATA1 and DATA2) arises because of the
possibility of the SEND and matching SRECV being posted nearly simultaneously
(see Figure 3). In particular, note that in both Figures 2 and 3, the receiver posts an
SRECV, sends a REQ1 message, receives a READY message, sends a REQ2 message,
and then receives a data message. If only one type of data message were used, the
receiver would not be able to distinguish between these two cases and would not know
if it should unblock its application or wait for another data message from the sender.

We will now prove that the above protocol is correct. We will assume for Theo-

1086 ROBERT CYPHER AND SMARAGDA KONSTANTINIDOU

SENDER
STATES

SENDER
ACTIONS

SEND POSTED

RECEIVER
ACTIONS

RECEIVER
STATES

so

$1

SRECV POSTED

APPLICATION UNBLOCKED

APPLICATION UNBLOCKED

R0

R2

CO

FIG. 1. A possible execution of the selective receive protocol in which the READY message
arrives before the SRECV is posted.

rein 3.1 that each communication process has sufficient storage in its outgoing FIFO
queue for all of the messages that it sends. We will bound the storage and communi-
cation requirements in Theorem 3.2.

THEOREM 3.1. The above protocol is a correct implementation of SEND and
SRECV. Furthermore, once an application process becomes unblocked after posting a
SEND (SRECV), its communication process will not receive any messages that were
generated by the matching SRECV (SEND).

Proof. The proof is by contradiction. If the theorem does not hold, there must
exist a process S that posts a SEND of a message M to a process R, where R posts a
matching SRECV from S and where the theorem fails for this SEND-SRECV pair but
does hold for all previous SEND-SRECV pairs between these two processes. Consider
such a SEND-SRECV pair, and note that once S posts this SEND, the first message
that it will receive from R will be generated by the matching SRECV. Similarly, once
R posts this SRECV, the first message that it will receive from S will be generated
by the matching SEND.

We will now consider how the theorem could fail to hold for this SEND-SRECV
pair. When S posts this SEND to R, S enters state So and sends a READY message
to R. There are two cases based on when this READY message arrives at R.

Case 1. In this case, the READY message from S arrives at R before R posts
its matching SRECV from S (see Figure 1). This implies that the READY message
will be discarded by R, R will post its matching SRECV from S, R will enter state
R0, and R will send a REQ1 message to S. This implies that the REQ1 message will

MESSAGE-PASSING PROTOCOLS 1087

SENDER
STATES

SENDER
ACTII)NS

RECEIVER
ACTIONS

SRECV POSTED

RECEIVER
STATES

R0

SO

$2

$3

R1

SEND P()STED

,._...---- APPLICATION UNBLOCKED

APPLICATION UNBLOCKED

R2

CO C0

FIG. 2. A possible execution of the selective receive protocol in which the REQ1 message arrives

before the SEND is posted.

arrive at S when S is in state So, S will enter state $1, and S will send a DATA1
message containing M to R. This implies that the DATA1 message will arrive at R
when R is in state R0, R will enter state R2, R will send an ACK message to S, R
will copy M to its application process, R will unblock its application process, and R
will enter state Co. This implies that the ACK message will arrive at S when S is
in state S1, S will enter state $3, S will unblock its application process, and S will
enter state Co. Note that in this case, S receives and consumes all messages issued
by R as a consequence of the SRECV (namely REQ1 and ACK) before it unblocks
its application process. Similarly, R receives and consumes all messages issued by S
as a consequence of the SEND (namely READY and DATA1) before it unblocks its
application process.

Case 2. In this case, the READY message arrives at R after R has posted the
matching SRECV from S, sent a REQ1 message to S, and entered state R0. Then
there are two subcases:

Case 2a. The REQ1 message from R arrived at S before S posted the
matching SEND to R (see Figure 2). This implies that the REQ1 message was
discarded by S. Then the READY message arrives at R when R is in state R0,
R sends a REQ2 message to S, and R enters state R1. The REQ2 message finds
S in state So and results in S entering state $2 and sending a DATA2 message to
R. This implies that the DATA2 message will arrive at R when R is in state R1,
R will enter state R, R will send an ACK message to S, R will copy M to its

1088 ROBERT CYPHER AND SMARAGDA KONSTANTINIDOU

SENDER
STATES

$1

$2

SENDER
ACTIONS

RECEIVER
ACTIONS

SRECV POSTEDSEND POSTED

APPLICATION UNBLOCKED

RECEIVER
STATES

R1

R2

$3 APPLICATION UNBLOCKED

co

FIG. 3. A possible execution of the selective receive protocol in which the SEND is posted before
the REQ1 message arrives and the SRECV is posted before the READY message arrives.

application process, R will unblock its application process, and R will enter state Co.
This implies that the ACK message will arrive at S when S is in state $2, S will enter
state $3, S will unblock its application process, and S will enter state Co. Note that
in this case, S receives and consumes all messages issued by R as a consequence of the
SRECV (namely REQ1, REQ2, and ACK) before it unblocks its application process.
Similarly, R receives and consumes all messages issued by S as a consequence of the
SEND (namely READY and DATA2) before it unblocks its application process.

Case 2b. In this subcase, the REQ1 message from R arrived at S after S
posted the matching SEND to R and thus finds S in state So (see Figure 3). Then,
possibly simultaneously, S enters state $1 and sends a DATA1 message to R and
R enters state R1 and sends a REQ2 message to S. Upon the arrival of the REQ2
message, S enters state $2 and sends a DATA2 message to R. Possibly simultaneously,
R receives the DATA1 message while in state R1 and discards it. When the DATA2
message arrives at R, R is still in state R. Then it enters state R2, it sends an
ACK message to S, R copies M to its application process, R unblocks its application
process, and R enters state Co. This implies that the ACK message will arrive at S
when S is in state $2, S will enter state $3, S will unblock its application process, and
S will enter state Co. Note that in this case, S receives and consumes all messages
issued by R as a consequence of the SRECV (namely REQ1, REQ2, and ACK) before
it unblocks its application process. Similarly, R receives and consumes all messages
issued by S as a consequence of the SEND (namely READY, DATA1, and DATA2)
before it unblocks its application process.

MESSAGE-PASSING PROTOCOLS 1089

Note that in every case, the following hold:
I. The SEND (SRECVI blocks until the matching SRECV (SEND) is posted.
2. The SEND (SRECV) is unblocked within finite time after the matching

SRECV (SEND) is posted.
3. The message sent by the SEND is transferred to the matching SRECV.
4. Once an application process becomes unblocked after posting a SEND

(SRECV), its communication process will not receive any messages that were gen-
erated by the matching SRECV (SEND).
Therefore, the theorem holds for this SEND-SRECV pair, which is a contradic-
tion.

THEOREM 3.2. The above protocol requires only constant storage per process and
performs only a constant amount of communication per SEND or SRECV posted by
the application.

Proof. The protocol consists of eight states and each state consists of at most
four steps. Therefore, the protocol requires only a constant amount of control storage
per process. By examining the possible interactions between S and R given in the
proof of Theorem 3.1, it is clear that a communication process will send at most three
messages in response to the posting of a SEND or SRECV. Therefore, the protocol
performs only a constant amount of communication per SEND or SRECV posted by
the application.

Furthermore, it is also clear from examining the possible interactions between
S and R given in the proof of Theorem 3.1 that a communication process A which
is acting in response to a SEND (SRECV) does not unblock its application process
until the process B that is executing the matching SRECV (SEND) has received at
least one message from A generated by the SEND (SRECV) currently posted at A.
Therefore, by the time a communication process unblocks its application process for
the ith time, all of the messages sent by the communication process in response to the
first i- 1 postings of SENDs and SRECVs at that process have been accepted by the
network (because at least one message sent in response to the ith posting of a SEND
or SRECV has arrived at the process posting the matching SRECV or SEND). More
precisely, when a communication process unblocks its application process for the ith
time, the communication process has sent at most two messages that have not yet
been accepted by the network (because all messages from the first i- 1 postings of
SENDs and SRECVs have been accepted by the network, and at least one message
from the ith posting of a SEND or SRECV has been accepted by the network). As
a result, storage for at most five messages that have been sent but not yet accepted
by the network (three for the (i + 1)st SEND or SRECV and two for the ith SEND
or SRECV) is sufficient to hold all of the messages generated by the (i + 1)st SEND
or SRECV). Because was chosen arbitrarily, it follows that storage for at most five
messages per process is sufficient to prevent deadlock. [1

4. Lower bound for nonselective receives. In this section, we prove that
any protocol for SEND and NRECV that uses only constant storage per process
cannot perform a constant amount of communication per SEND or NRECV posted
by the application. For the purposes of the proof, we will focus on a simple class
of applications that require a number of processes to each send a single message to
process 1. The proof is by contradiction and consists of two halves. In the first
half (Lemma 4.2), we assume the existence of a scalable protocol that implements
such applications correctly and we prove that there is at least one such application
for which the protocol is poorly suited. In the second half (Theorem 4.3), we show

1090 ROBERT CYPHER AND SMARAGDA KONSTANTINIDOU

that given this particular application, the protocol cannot implement the application
correctly, thus yielding a contradiction.

More precisely, throughout the remainder of this section, we will consider only ap-
plications in which process 0 posts one NRECV, process 1 posts one SEND to process
0 followed by x NRECVs (for some integer x), and some set of x other processes each
post one SEND to process 1. Recall that in order to send a message, a communication
process must provide a message header specifying the destination of the message. A
central theme in our proof will be keeping track of the message headers that each
communication process holds (and thus the set of processes to which it can send mes-
sages). We will call the message headers that are present in a communication process
at initialization of the protocol static headers. Recall that a communication process
can obtain new headers only by receiving them in messages. Message headers that
are acquired from messages sent from other processes will be called dynamic headers.
Also, recall that each communication process has storage for only a constant number
of messages and (static and dynamic) message headers. In fact, our lower bound will
apply to any protocol with these bounds on storage for messages and message headers,
regardless of the amount of control storage that is available.

Let the constant cl be the maximum number of static headers per process, and let
the constant c2 be such that each process can store at most c2 (static and dynamic)
headers and at most c2 data messages. Let n denote the number of processes other
than process 0 and let G be the n-node directed graph such that there is an edge
from node a to node b iff process a has a static header with b’s address. For ease
of presentation, we will often refer to a process and to its corresponding node in G
interchangeably. Note that G has at most cn edges and outdegree at most c.

Assume for the sake of contradiction that a protocol with constant storage per
process for messages and message headers exists such that it performs a constant
amount of communication per SEND or NRECV posted by the application. Note
that given such an efficient protocol, if a single SEND to process 1 is posted at some
process a and if no other SENDs or NRECVs have been posted, the protocol will send
only a constant number of messages involving only a constant number of processes.
We will call a’s region the set of processes that are involved sending and/or receiving
at least one of the messages caused by such a SEND being posted at process a. (If the
protocol depends on the initial state of the processes and the communication network
and/or if it depends on random bits, select an arbitrary initial state and set of values
for the random bits and define each node’s region given this initial state and these
random bits.) Let the constant c3 be such that every process has at most c3 processes
in its region. For each process a, let the depth of a be the number of processes b (out
of the set of n possible processes) such that a is in b’s region. Note that each process
contributes to the depth of at most c3 other processes (namely, those processes in its
region), so the sum of the depths of all the processes is at most a3n.

The intuition behind our lower bound is as follows. Let S be the set of x nodes
with a SEND posted to node 1. Consider any node a E S. Node a is unaware of
whether or not other nodes have SENDs posted to node 1. As a result, node a must
execute a protocol that operates correctly when it is the only node with a SEND
posted to node 1. Similarly, each of the other x- 1 nodes in S must execute a
protocol that operates correctly if it is the only node with a SEND posted to node 1.

Process 0 will be ignored for the remainder of the discussion. It was introduced solely in order
to force process 1 to send a message, which in turn forces process to remove messages from the
network in order to satisfy the continuous-consumption requirement.

MESSAGE-PASSING PROTOCOLS 1091

We will divide the n nodes into two classes" those in a set C (which includes node 1)
and those not in C. We will define C so that it includes every node that lies in the
the region of two or more nodes in S.

We will consider a possible time T in the execution of the protocol at which all
of the nodes outside of C were able to send all of the messages that they attempted
to send but the nodes in C have not yet been able to send any messages. At time
T, each node outside of C that is in the region of some node a E S has no way of
knowing that a was not the only node with a SEND posted to node 1. As a result, it
will only perform the communication that it would have performed if node a were the
only sender. On the other hand, nodes within C may have received messages initiated
by multiple nodes in S, and as a result the nodes in C may be able to detect that
there is more than one sender. However, we will force the set C to be small (it will
have o(z) nodes), so the continuous-consumption requirement will force the nodes in
C to discard most of the data messages and message headers that they receive (due
to the constant storage per node). As a result, the only nodes that will still hold the
application message from a certain node a E S will be in a’s region and outside of C.
However, the only nodes that realize that a’s application message has not yet been
successfully delivered to node 1 are within C. By suitably bounding the distances in
the graph G, we will be able to show that any attempt by a node in C to inform a node
outside of C that it must resend the application message that it holds will require
too many (w(z)) messages. Lemma 4.2 and Theorem 4.3 formalize this argument.
Theorem 4.1 will be useful in proving Lemma 4.2.

The following theorem follows from Turn’s theorem in extremal graph theory [4].
THEOREM 4.1. For any positive integers n and k, where 2 <_ k <_ n/16, every

graph G with n nodes and (n2 n)/2 n2/16k edges contains a clique of k + 1 nodes
as a subgraph.

LEMMA 4.2. Given a protocol with constant storage per process for messages
and message headers that performs a constant amount of communication per SEND
or NRECV posted by the application and given the definitions presented above, there
ezists an integer z, a set S of z nodes in G, and a set C of o(x) nodes in G such that
the following two properties hold:

Property 1. The distance in G from any node c in C to any node b not in C,
where b is in the region of some node a in S, is w(x).

Property 2. The distance in G from any node a not in C, where a is in the region
of some node b in S, to any node c not in C, where c is in the region of some node
d b in S, is a(x).

Proof. We will first have to decide on the correct value of x. in order to find
x, consider the infinite sequence Yo, Yl,y2,..., where y0 log*n and for each i >_ 0,

yi+ 128c3ycY. Let k be the largest integer such that Yk _< n and note that
k _> (log* n)/4 (for all sufficiently large n). For each i, where 0 _< < k, let Ri denote
the set of all nodes with depths greater than or equal to n/yi+ and less than n/yi,
and let di denote the sum over all nodes a in Ri of the depth of a. Because the sets
Ri and Rj are disjoint if - j -i=0 di <_ ann. Therefore, the average value of the
di’s is at most 4c3n/log* n, which implies that there must exist an i, 0 < < k, such
that di < 4c3n/log* n. Let y yi for such a value of i, and note that there are at
most 4c3n/log*n nodes a such that a’s region contains at least one node with depth

greater than or equal to n/128c3y2c
4

and less than n/y. Let x y2. Note that
y4

yk < n and < k, so 128c3y2Q < n. As a result, log*n < y < (logn)/ and
(log*) _< x _< (log)/.

1092 ROBERT CYPHER AND SMARAGDA KONSTANTINIDOU

Let the set C consist of node 1 plus those nodes with depths greater than or equal
to n/y. Note that the total over all nodes a in C of the depth of a is at most can.
Therefore, C contains at most 1 + can/(n/y) 1 + c3 o(z) nodes. For each node
a, let a’s outer region consist of the nodes in a’s region that are not in C. Also, for
each node a, let a’s eztended region consist of each node c such that there exists
node b in a’s outer region where the distance in G from b to c is at most z2 y4.

We now want to create the set S of x nodes that is required. First, start with
all r nodes and remove from consideration each node a such that a’s outer region
contains at least one node with depth greater than or equal to n/128cay2cl Note
that from the definition of y, this eliminates at most 4can/log*n o(n) nodes from
consideration.

Next, we will eliminate from consideration those nodes that violate Property 1.
More specifically, we will remove from consideration each node a such that there exists
a node b in a’s outer region and a node c in C where the distance in G from c to
b is z y4 or less. Because C contains fewer than 2cay nodes and for each node
in C there are at most 2c nodes that are at distance at most y4 from the given

node in C, at most 4caycl nodes are at distance at most y4 from a node in C. Each

of these nodes is in the outer region of at most n/128cay2c
4

nodes that are still

under consideration, so this eliminates at most 4cayc n/128cayc n/32- o(n)
nodes from consideration. At this point, for each node a still under consideration,
the distance in G from any node c E C to any node in a’s outer region is at least
z c(z), so node a satisfies Property 1.

Finally, we want to select a set of z nodes that also satisfy Property 2. Note that
Property 2 requires the set of x nodes in S to have outer regions that are sufficiently
far from one another. In order to select such a set of z nodes, we will create a graph
H that captures, for each pair of possible nodes, whether or not their outer regions
are too close to one another. More precisely, create the undirected graph H where
the nodes correspond to the n- o(n) nodes in G that remain under consideration.
For each pair of nodes a and b in H, add an edge (a, b) to H if a’s extended region

intersects b’s outer region. Note that a’s extended region contains at most 2cac
nodes, and each of these nodes is in the outer region of at most n/128cayc

4

nodes

in H, so examining a’s extended region adds at most 2cac n/128cayc n/64
edges to H. Therefore, examining all n- o(n) extended regions of nodes in H adds
at most n/64 edges to H. Let H (that is, the graph with the same nodes
as H but which contains an edge between nodes a and b iff H does not contain an
edge between a and b). Let n denote the number of nodes in H and note that
n/2 < rt <_ n (for all sufficiently large n). The graph H has n nodes and at least

Tt2 Ttt 2 2 7>
2 6@2 2 16y2

edges. Therefore, it follows from Theorem 4.1 that H contains a clique of y + 1 > z
nodes. Let S be any set of x nodes from such a clique. For each pair of nodes a and
b in S, the edge (a, b) is present in H’, so the edge (a, b) is not present in H, which
implies that a and b have outer regions that are at least z cz(z) apart in the graph
G. As a result, the sets S and C satisfy Properties 1 and 2.

THEOREM 4.3. There does not ezist a protocol with constant storage per process
for messages and message headers that performs a constant amount of communication
per SEND or NRECV posted by the application.

MESSAGE-PASSING PROTOCOLS 1093

Proof. Assume for the sake of contradiction that such an efficient protocol exists.
Consider any set of n processes, let x, S, and C be as defined in Lemma 4.2, and
for each node a, let a’s outer region consist of the nodes in a’s region that are not in
C. Note that as a consequence of Property 2 in Lemma 4.2, if node a is in the outer
region of node b in S and if node a is in the outer region of node b in S, where b b,
then a - a and G does not contain the directed edge (a, a).

Now consider the execution of this protocol in which SENDs to process 1 are
posted at each of the processes in S, each process not in C that received a posted
SEND or a message from another process has sent all the messages that it is required
to send by the protocol, and each message that has been sent has also been delivered,
but no process in C has yet sent any messages and no NRECVs have yet been posted
at process 1. Denote this point in the execution of the protocol time T.

At time T, the o(z) processes in C can store only o(x) headers and o(x) data
messages. Let S be the subset of S consisting of each process a in S for which at
time T there exists a process in C that contains either a’s data message or a dynamic
header for a node in a’s outer region. Let C be the set of processes consisting of the
processes in C plus each process that is in the outer region of a process in S1. Note
that at time T, all of the dynamic headers in C are either for processes in C or for
processes that do not contain any dynamic headers. Let C be the set of processes
consisting of the processes in C plus each process a for which at time T there exists
a process in C with a header for a. Note that C contains o(x) processes, that it
contains process 1, and that all of the dynamic headers in C are for processes in
C. Also note that all of the processes not in C (in fact, all of the processes not in
C) will not send any additional messages after time T until they receive at least one
message. But there must exist at least one process s (and in fact, at least x- o(x)
processes) that is in S \ C". The only processes that at time T contain the data from
the SEND that was posted at s are the processes in s’s outer region. However, all of
these processes will remain inactive until they receive an additional message. Such an
additional message must be generated (directly or indirectly) by one of the processes
in C, but any chain of messages initiated by a message in C must consist of a(x)
messages (as a result of Properties 1 and 2 in Lemma 4.2 and the fact that C only
contains dynamic headers for nodes in C"). Thus the protocol will generate c(x)
messages, which is a contradiction.

5. Upper bound for nonselective receives. In this section, we present a
protocol for SEND and NRECV that requires only constant storage per process and
that performs a logarithmic amount of communication per SEND or NRECV posted
by the application. This protocol is based on a deadlock-free packet-routing algorithm
for a constant-degree, point-to-point network. We will first define a class of deadlock-
free packet-routing algorithms for point-to-point networks called buffer-reservation
algorithms, and we will show how buffer-reservation algorithms can be simulated using
the hardware model presented in 2.1. We will then show how buffer-reservation
algorithms can be used to develop protocols for nonselective receives, and we will
examine one such buffer-reservation algorithm and the protocol that it produces.

5.1. Buffer-reservation algorithms. Given a point-to-point network M con-
sisting of n nodes, each of which contains a set of buffers, a buffer-reservation packet-
routing algorithm specifies to which buffers a packet may be moved based solely on the
packet’s source node, destination node, and current buffer. More formally, a buffer-
reservation algorithm A is a function A(s, d, b) -- w, where s and d are the packet’s
source and destination nodes, b is the packet’s current buffer, and the set w (called

1094 ROBERT CYPHER AND SMARAGDA KONSTANTINIDOU

the packet’s waiting set) is the set of buffers to which the packet may be moved. All
of the buffers in a waiting set must either be in the node that currently holds the
packet or in neighboring nodes (that is, nodes that are connected by an edge to the
node currently holding the packet). Each node in the network contains one injection
buffer and one delivery buffer. Injection buffers are never allowed to appear in waiting
sets, and the waiting set of a packet that is in a delivery buffer must be empty.

A standard technique for proving that a buffer-reservation algorithm is deadlock-
free is to provide a total ordering of the buffers and to show that every packet that
is not in the delivery buffer of its destination node has a waiting set that contains at
least one buffer with higher rank than the buffer currently holding the packet [6, 7, 17].
We will call a buffer-reservation algorithm for which such an ordering of the buffers
exists an ordered buffer-reservation algorithm.

We will prove the following theorem.
THEOREM 5.1. Let c be a constant, let f(n) be a function, and let A be an

ordered buffer reservation algorithm for an n-node point-to-point network M with the
following properties:

1. The degree of M is at most c.
2. Each node in M contains at most c buffers.
3. Regardless of a packet’s source and destination nodes, every path that the

packet can take when using algorithm A has length at most f(n) and ends at the
delivery buffer in the packet’s destination node.
There exists a communication protocol A" for SEND and NRECV between n pro-
cesses that requires only constant storage per process and that performs only O(f(n))
communication per SEND or NRECV posted by the application.

Our approach will be to simultaneously simulate a constant number of separate
buffer-reservation algorithms on the hardware defined in 2.1. Each such buffer-
reservation algorithm will provide a virtual network with its own injection buffer and
delivery buffer in each node. In each of these virtual networks, a packet can be
routed from any node’s injection buffer to any node’s delivery buffer with O(f(n))
communication. The communication protocol A" will use these virtual networks to
implement the SEND and NRECV commands in a deadlock-free manner, while using
only constant storage per process and performing only O(f(n)) communication per
SEND or NRECV posted by the application.

We will begin by describing a protocol A that uses the hardware defined in
2.1 to simulate a single ordered buffer-reservation algorithm A having the proper-
ties given in Theorem 5.1. The protocol uses three types of control messages, called
REQ, GRANT, and DENY, and one type of data message, called DATA. The n
processes of A correspond to the n nodes of M, and each process has (at most c)
buffers corresponding to the buffers in M. Associated with each buffer are three
flags, called Full(i), Granted(i), and SendBuf(i). Full(i) indicates the presence of a
message in i, Granted(i) indicates that has been granted to some data message,
and SendBuf(i) indicates that the contents of should be sent out when the pro-
cess’s outgoing FIFO queue has sufcient space. Also associated with each buffer
are three arrays of flags, called SendReq(i,j), SendDeny(i,j), and Requested(i, j).
SendReq(i, j) indicates that a REQ message should be sent to buffer j from buffer i,
SendDeny(i, j) indicates that a DENY message should be sent to buffer j from buffer
i, and Requested(i, j) indicates that an unsatisfied REQ message has been sent from
buffer j to buffer i.

Note that because M has degree at most c and each node in M has at most

MESSAGE-PASSING PROTOCOLS 1095

c buffers, each buffer in M can receive messages from at most c2 / c buffers and
can send messages to at most c + c buffers. Therefore, the arrays SendReq(i,j),
SendDeny(i, j), and Requested(i, j) are of constant length. In addition to the buffers
and their associated flags, each process has two flags, called Inject and Deliver, that
indicate whether a new message is ready to be placed in the injection buffer and
whether the message in the delivery buffer can be removed. Initially, all of the flags are
cleared (i.e., given the value FALSE). Finally, each process also contains (a constant
number of constant-size) counters so that it can satisfy requests for buffers and for
the outgoing FIFO queue in a fair, round-robin manner.

Intuitively, whenever a DATA message is placed in some buffer i, the protocol
sends REQ messages from to each buffer j in the DATA message’s waiting set.
When an available buffer j receives a REQ message from buffer i, it allocates buffer
j (by setting GRANTED(j)) and sends a GRANT message to i. If buffer is still
attempting to send the DATA message when the GRANT from j arrives, it sends the
DATA message to j (see Figure 4). On the other hand, if is not attempting to send
a DATA message to j, sends a DENY message to j so that j can be granted to some
other DATA message (see Figure 5).

NODE CONTAINING NODE CONTAINING
BUFFER BUFFER

FIG. 4. An execution of protocol A in which a DATA message in buffer is transferred to a

buffer j in its waiting set.

In the intuitive description above, there were cases in which the protocol was
required to send a message in response to the receipt of a message. For example, the
receipt of a DATA message destined for buffer causes the protocol to send REQ
messages. However, in order to satisfy the continuous-consumption requirement, the
protocol cannot delay the reception of the DATA message until the REQ messages
can be sent. For this reason, the protocol uses the SendReq(i,j) flags to record its
desire to send such REQ messages. When the the outgoing FIFO queue eventually
becomes free, a SendReq(i,j) flag will be cleared and a REQ message from to j
will be placed in the outgoing FIFO queue. The SendDeny(i,j) flags play a similar
role. In addition, flags are used to synchronize the placement of messages in injection
buffers and the removal of messages from delivery buffers. When a new message is
ready to be placed in an injection buffer, the corresponding Inject flag is set. Once
the protocol has copied the new message into the injection buffer, the Inject flag is

1096 ROBERT CYPHER AND SMARAGDA KONSTANTINIDOU

NODE CONTAINING
BUFFER k

NODE CONTAINING
BUFFER

NODE CONTAINING
BUFFER

FIG. 5. An execution of protocol A in which a DATA message in buffer is transferred to a

buffer k in its waiting set. Buffer j is also in its waiting set.

cleared. The Deliver flag plays a similar role with respect to the delivery buffer.
More formally, the protocol A consists of three processes per node, called In-

ject/Deliver, ManagelnFIFO, and ManageOutFIFO, each of which operates as a finite-
state machine with a constant number of states. (However, note that it could also be
viewed as the single process with a constant number of states obtained by taking the
Cartesian product of these three finite-state machines.) Each process waits for certain
events to occur, and when such an event occurs, it performs a fixed set of actions.
The actions are performed atomically in the sense that all of the actions performed
in response to one event are completed before the process performs any actions in
response to a different event. The protocol operates as follows:

INjECT/DELIVER. This process responds to the following two events:
I. Either injection buffer is empty and the Inject flag becomes TRUE or the

Inject flag is TRUE and injection buffer becomes empty. When this occurs, the new
data message is copied to i, Full(i) is set, Inject and SendBuf(i) are cleared, and for
each buffer j in the message’s waiting set, SendReq(i, j) is set.

2. Either the delivery buffer contains a data message and the Deliver flag
becomes TRUE or the Deliver flag is TRUE and a data message is placed in delivery
buffer i. When this occurs, the message is removed from the delivery buffer and
Deliver and Full(i) are cleared. Then, if there exists a j such that Requested(i, j) is
set, such a j is selected fairly, a GRANT message addressed to j is placed in i, Full(i),
Granted(i), and SendBuf(i) are set, and Requested(i, j) is cleared.

MANAGEINFIFO. This process responds to the following four events:
I. A DATA message addressed to buffer arrives in the incoming FIFO queue.

When this occurs, the DATA message is moved from the incoming FIFO queue to
i, Full(i) is set, Granted(i) and SendBuf(i) are cleared, and for each buffer j in the
message’s waiting set, SendReq(i, j) is set.

2. A REQ message from buffer j addressed to buffer arrives in the incoming
FIFO queue. When this occurs, the REQ message is removed from the incoming FIFO
queue. If either Full(i) or Granted(i), Requested(i, j) is set. Otherwise, a GRANT
message addressed to j is placed in i, Full(i), Granted(i), and SendBuf(i) are set, and

MESSAGE-PASSING PROTOCOLS 1097

Requested(i, j) is cleared.
3. A GRANT message from buffer j addressed to buffer arrives in the incoming

FIFO queue. When this occurs, the GRANT message is removed from the incoming
FIFO queue. If SendBuf(i) is FALSE and contains a data message with j in its
waiting set, the data message is addressed to j and SendBuf(i) is set. Otherwise,
SendDeny(i, j) is set.

4. A DENY message addressed to buffer arrives in the incoming FIFO queue.
When this occurs, the DENY message is removed from the incoming FIFO queue. If
there exists a j such that Requested(i, j) is set, such a j is selected fairly, a GRANT
message addressed to j is placed in i, Full(i), Granted(i), and SendBuf(i) are set, and
Requested(i, j) is cleared. Otherwise, Full(i) and Granted(i) are cleared.

MANAGEOuTFIFO. This process responds either when the outgoing FIFO queue
is empty and there is a SendReq, SendDeny, or SendBuf flag that becomes TRUE or
when there is a SendReq, SendDeny, or SendBuf flag that is set and the outgoing
FIFO queue becomes empty. When this occurs, it selects (fairly) a SendReq(i,j),
SendDeny(i, j), or SendBuf(i) flag that is TRUE and does the following:

1. if SendReq(i, j) is selected, SendReq(i, j) is cleared and a REQ message from
to j is placed in the outgoing FIFO queue.

2. If SendDeny(i, j) is selected, SendDeny(i, j) is cleared and a DENY message
from to j is placed in the outgoing FIFO queue.

3. If SendBuf(i) is selected and contains a GRANT message, SendBuf(i) and
Full(i) are cleared and the GRANT message is placed in the outgoing FIFO queue.

4. If SendBuf(i) is selected and does not contain a GRANT message, SendBuf(i)
and Full(i) are cleared and the message in is placed in the outgoing FIFO queue.
Then, if there exists a j such that Requested(i, j) is set, such a j is selected fairly, a
GRANT message addressed to j is placed in i, Full(i), Granted(i), and SendBuf(i)
are set, and Requested(i, j) is cleared.

We will now prove that given any ordered buffer-reservation algorithm A having
the properties given in Theorem 5.1, the protocol A defined above performs deadlock-
free communication from injection buffers to delivery buffers.

LEMMA 5.2. if X is a DATA or GRANT message stored in a buffer i, then X
will not be overwritten by another message.

Proof. First, note that if is an injection buffer, X cannot be overwritten because
the Inject/Deliver process only places DATA messages in when is empty, and never
has a GRANT message (because is not in the waiting set of any message). Now con-
sider the case where is not an injection buffer. In this case, the Inject/Deliver process
cannot overwrite X because it only places messages in the injection buffer. Also, the
ManageinFIFO process cannot overwrite X because a DATA message addressed to
can only arrive after a GRANT message has been sent from that indicates that
is empty, a GRANT message is only placed in if Full(i) is FALSE, and REQ and
DENY messages are never placed in buffers. Finally, the ManageOutFIFO process
cannot overwrite X because it does not place messages in buffers, rl

The following lemma proves that the protocol A maintains the continuous con-
sumption property.

LEMMA 5.3. If a control or data message X arrives in an incoming FIFO queue,
it will be removed unconditionally from the incoming FIFO queue by the communica-
tion process within finite time.

Proof. By the construction of At, the ManageInFIFO process removes message
X from the incoming FIFO queue unconditionally and within finite time. Cl

1098 ROBERT CYPHER AND SMARAGDA KONSTANTINIDOU

LEMMA 5.4. If a control or data message X that is addressed to buffer is placed
in an outgoing FIFO queue, it will arrive at the process containing buffer within

finite time.

Proof. Recall that the network guarantees delivery, provided continuous consump-
tion of messages by the communication processes. Because Lemma 5.3 guarantees
continuous consumption of messages, any message placed in an outgoing FIFO queue
will be delivered by the network within finite time. D

We will say that a message is ready to be sent if it is a DATA or GRANT message
that is stored in some buffer and SendBuf(i) is set or if it is a REQ or DENY message
that is indicated by the fact that a SendReq or SendDeny flag is set.

LEMMA 5.5. [f a control or data message X is ready to be sent, it will be placed
in the outgoing FIFO queue within finite time.

Proof. It follows from Lemma 5.4 that any message currently in the outgoing
FIFO queue will leave the outgoing FIFO queue in finite time. Because there are
only c buffers, c3 + c2 SendReq flags, and c3 + c2 SendDeny flags competing for the
same outgoing FIFO queue and these messages are serviced by ManageOutFIFO in
a round-robin manner, at most 2c3 / 2c / c other messages can enter the outgoing
FIFO queue before X enters it. From Lemma 5.4, each of these message will leave the
outgoing FIFO queue in finite time. Furthermore, from Lemma 5.2, it follows that X
will not have been overwritten. Therefore, the ManageOutFIFO process will place X
in the outgoing FIFO queue. D

LEMMA 5.6. [f a control or data message X addressed to buffer is ready to be
sent, it will arrive at the process containing buffer within finite time.

Proof. This follows immediately from Lemma 5.5 and Lemma 5.4.
LEMMA 5.7. [fa data message X is stored in a buffer i, then within finite time,

either X will move to one of the buffers in its waiting set or every buffer j in X’s
waiting set will hae its Requested(j, i) flag set.

Proof. Consider any buffer j in the waiting set of X. When X was first placed in
i, the process that placed X in (either Inject/Deliver or ManageInFIFO) set the flag
SendReq(i,j) and cleared the flag SendBuf(i). From Lemma 5.6, this causes a REQ
message to arrive at the process containing buffer j within finite time. The Man-
ageInFIFO process that receives this REQ message will either set the Requested(j, i)
flag or place a GRANT message in j addressed to i. If it creates such a GRANT
message, then from Lemma 5.6, the GRANT message will arrive at the process con-

taining buffer within finite time. Thus either Requested(j, i) is set or a GRANT
from j arrives at i. If for every buffer j in X’s waiting set, Requested(j, i) is set, the
lemma holds. On the other hand, if there exists a buffer j in X’s waiting set that
causes a GRANT from j to arrive at i, let j be the one that causes the first such
GRANT message to arrive at i. When this GRANT message arrives, X will not have
been overwritten (from Lemma 5.2) and SendBuf(i) will be set, so it follows from
Lemma 5.6 that X will arrive at the process containing j within finite time, at which
point it will be placed in j. [1

LEMMA 5.8. If a GRANT message in a buffer is ready to be sent to a buffer j,
then within finite time either a DATA message or a DENY message will arrive at
yron j.

Proof. From Lemma 5.6, the GRANT message will arrive at the process containing
j within finite time. When this occurs, the ManageInFIFO process will either address
a DATA message in j to and set SendBuf(j) or it will set SendDeny(j, i). It follows
from Lemma 5.6 that either a DATA message or a DENY message addressed to

MESSAGE-PASSING PROTOCOLS 1099

from j will arrive at the process containing within finite time.
At this point, we have shown that DATA messages will either advance within

finite time or they will set all of the Requested(j, i) flags in the message’s waiting
set. Our next step will be to show that DATA messages will in fact always advance
within finite time. However, in order to show this, we will have to assume that mes-
sages which arrive in delivery buffers are eventually removed so that other messages
can make progress. In particular, we will require that the following delivery-buffer-
emptying requirement is met: whenever a DATA message is placed in a delivery buffer,
the associated Deliver flag is set within finite time, regardless of whether or not the
injection buffer in the same node ever becomes empty. As a result, the message in the
delivery buffer can be removed and other DATA messages can make progress. Note
that if we did not have this delivery-buffer-emptying requirement, DATA messages
might never be able to leave the network, thus causing deadlock. Also, note that
the delivery-buffer-emptying requirement is identical to the continuous-consumption
property, except that it applies at the level of the virtual network that is being simu-
lated rather than at the level of the physical network.

LEMMA 5.9. Assume that the delivery-buffer-emptying requirement is met. If a
data message X is stored in a buffer i, then either is a delivery buffer, in which case
X will be removed from within finite time, or is not a delivery buffer, in which
case X will move to one of the buffers in its waiting set within finite time.

Proof. Assume for the sake of contradiction that the lemma does not hold, and let
be the highest-ranked buffer (according to the ordering of the buffers in A required

by the definition of an ordered buffer-reservation algorithm) for which the lemma does
not hold. If is a delivery buffer, then it follows from the delivery-buffer-emptying re-
quirement that the associated Deliver flag will be set within finite time. Furthermore,
it follows from the construction of the Inject/Deliver process that X will be removed
from within finite time. However, this implies that the lemma holds for buffer i,
which is a contradiction.

On the other hand, if i is not a delivery buffer, then it follows that there must exist
a buffer j in X’s waiting set with rank greater than i’s rank. From Lemma 5.7, within
finite time either X will move to a buffer in its waiting set (in which case the lemma
holds) or the Requested(j, i) flag will be set. From the definition of and Lemma 5.6,
whenever j contains a data or control message, the message is moved out of j within
finite time. Because the Requested(j, i) flag is set, a GRANT message will be placed
in j and sent to some buffer k for which Requested(j, k) is set. From Lemma 5.6,
this GRANT message will be delivered to k in finite time, and from Lemma 5.8, k
will return a DATA or DENY message to j within finite time. Because there are a
finite number of buffers which can request j and because these requests are satisfied
in a round-robin manner, it follows that within finite time will receive a GRANT
from j. At this point, either X has already been addressed to another buffer in its
waiting set and SendBuf(i) has been set or X will be addressed to j and SendBuf(i)
will be set. In either case, from Lemma 5.6, X will be moved to a buffer in its waiting
set within finite time. Therefore, the lemma holds for buffer i, which is a contradic-
tion.

5.2. Protocol for nonselective receives. Our protocol for SEND and NRECV
is based on the linked-list protocol created by Burkowski, Cormack, and Dueck [3],
which was discussed in 1. Recall that the linked-list protocol maintains a distributed
linked list of the processes attempting to SEND to each process. This protocol re-

quires only a constant amount of storage per process and it performs only a constant

1100 ROBERT CYPHER AND SMARAGDA KONSTANTINIDOU

amount of communication per SEND or NRECV. Also, recall that the linked-list
protocol does not satisfy the continuous-consumption requirement, so it cannot be
implemented directly on the physical network. However, we will show that it can be
implemented using just a contant number of virtual networks.

We will have to make two minor changes to the linked-list protocol. First, the
original linked-list protocol [3] implemented a Reply primitive in addition to the SEND
and NRECV primitives. Because we are only implementing SEND and NRECV
primitives, we will only utilize the parts of the linked-list protocol that correspond to
the SEND and NRECV primitives. 2 Second, in the original linked-list protocol [3],
when a process is waiting in a linked-list of senders and it receives a request to send
its data to the receiver, it must immediately send a message containing both its data
and a pointer to the next process in the linked list. 3 Because in our implementation
the pointer value may not be ready when the request to send the data arrives, we
will use an extra flag in each process to record whether a request to send data to
the receiver has arrived. We will call the linked-list protocol with these two minor
changes the modified linked-list protocol.

The modified linked-list protocol uses five types of messages, called SEND_RE-
QUEST, SEND_AGAIN, SEND_QUEUE, PROCEED, and REPLY_BLOCK. An ex-
ample of an execution in which a process $1 posts a SEND to a process R which
has already posted a matching NRECV is shown in Figure 6. A SEND_REQUEST
message containing the application message is sent from S to R. Process R responds
by sending a REPLY_BLOCK message to S and unblocking its associated application
process. When the REPLY_BLOCK message arrives at S, S unblocks its associated
application process.

Another example of an execution of the modified linked-list protocol is shown in
Figure 7. In that figure, S1 and $2 send SEND_REQUEST messages to R containing
application messages. Because the matching NRECVs have not been posted when the
SEND_REQUEST messages arrive, R discards the application messages and sends a
SEND_QUEUE message to $1 containing the address of S (thus creating a linked
list of the processes $1 and S waiting for R). When the first NRECV is posted at R,
R sends a PROCEED message to $1, which responds with a SEND_AGAIN message
containing the application message and the address of S. Both 8’1 and R know that
the first message has been communicated successfully, so they unblock their associated
application processes. When the next NRECV is posted at R, R sends a PROCEED
message to S (recall that R obtained the address of S. in the SEND_AGAIN message
from $1). S then responds with a SEND_AGAIN message containing the application
message and a null pointer (because $2 is the last process in the linked list of waiting
processes).

We will begin by assuming that each communication process has a single incoming
FIFO queue and a single outgoing FIFO queue, each of which is of constant size, and
that no outgoing FIFO queue remains full forever (regardless of the fact that the mod-
ified linked-list protocol does not satisfy the continuous-consumption requirement).
Later, we will show how virtual networks can be used to guarantee that no outgoing
FIFO queue remains full forever. The following properties of the modified linked-list
protocol are immediate from the complete description of the linked-list protocol given

2 Specifically, the Reply_Request and Error packets will not be used and the Reply_Blocked state
will not exist.

3 Specifically, when a Proceed packet arrives, the pointer value from the most recent Send_Queue
packet must be sent along with the data.

MESSAGE-PASSING PROTOCOLS 1101

S

SEND POSTED

R

NRECV POSTED

APPLICATION UNBLOCKED

APPLICATIONUNBLOCKED 1
FIG. 6. An execution of the modified linked-list protocol in which the NRECV is posted by R

before the corresponding SEND is posted by S.

$1 R $2

SEND POSTED

SEND POSTED

......... NRECV POSTED

APPLICATION UNBLOCKED

APPLICATION UNBLOCKED

NRECV POSTED

........-----""’ APPLICATION UNBLOCKED

APPLICATION UNBLOCKED

FIG. 7. An execution of the modified linked-list protocol in which SEND_REQUESTs from
and $2 arrive at R before R posts the matching NRECVs.

1102 ROBERT CYPHER AND SMARAGDA KONSTANTINIDOU

by Burkowski et al. [3].
THEOREM 5.10. If each communication process has one incoming FIFO queue

and one outgoing FIFO queue, each of constant size, the messages sent by the modified
linked-list protocol can be divided into three classes4 such that the following hold:

1. Whenever a process places a Class-1 message in its outgoing FIFO queue, no
other Class-1 message is in the process’s outgoing FIFO queue.

2. A Class-2 message is placed in an outgoing FIFO queue only in response to
the removal of a Class-1 message from the incoming FIFO queue. Furthermore, no
other messages are removed from the incoming FIFO queue or placed in the outgoing
FIFO queue between the time the Class-1 message is removed from the incoming FIFO
queue and the time the Class-2 message is placed in the outgoing FIFO queue.

3. Whenever a process places a Class-3 message in its outgoing FIFO queue, no
other Class-3 message is in the process’s outgoing FIFO queue.

4. Whenever a Class-1 message arrives in the incoming FIFO queue in process
i, it is either removed unconditionally and within finite time or it is removed within

finite time once the outgoing FIFO queue in process has space for one additional
Class-2 message.

5. Whenever a Class-2 or Class-3 message arrives in an incoming FIFO queue,
it is removed unconditionally and within finite time.
Furthermore, if no outgoing FIFO queue remains full forever, the modified linked-
list protocol correctly implements SEND and NRECV between n processes with only
constant storage per process and a constant amount of communication per SEND or
NRECV posted by the application.

We are now prepared to prove Theorem 5.1.

Proof of Theorem 5.1. Given the buffer-reservation algorithm A, we utilize the
simulation of A presented in 5.1 three times to create three separate virtual networks,
each with its own injection and delivery buffers and its own Inject and Deliver flags.
Then we implement the modified linked-list protocol by using the ith virtual network,
1 _< _< 3, to route Class-/ messages. In particular, Class-/ messages are sent by
setting the ith Inject flag and waiting for them to be placed in the ith injection buffer
and Class-/messages are received by copying them from the ith delivery buffer and
setting the ith Deliver flag.

Lemma 5.9 shows that each virtual network is free of deadlock, provided that
the delivery-buffer-emptying requirement is satisfied for that network. It follows from
property 5 above that whenever a Class-2 or Class-3 message arrives in a delivery
buffer, the associated Deliver flag will be set within finite time. As a result, the
delivery-buffer-emptying requirement is satisfied for virtual networks 2 and 3, which
are therefore free of deadlock. As a result, it follows that every message placed in a
Class-2 injection buffer is removed within finite time.

Now let us consider virtual network 1. Property 4 above states that whenever a
message is placed in a Class-1 delivery buffer, either the associated Deliver flag is set
unconditionally and within finite time or it is set within finite time once the Class-2
injection buffer has space for one additional Class-2 message. However, we just showed
that every message placed in a Class-2 injection buffer is removed within finite time.

Therefore, even if the Class-2 injection buffer is full when a message is placed in a
Class-1 delivery buffer, the Class-2 injection buffer will have room for an additional
message within finite time, so the first Deliver flag will be set within finite time. As a

4 Class 1 consists of the Send_Request messages, Class 2 consists of the Send_Queue and Re-
ply_Block messages, and Class 3 consists of the Proceed and Send_Again messages.

MESSAGE-PASSING PROTOCOLS 1103

result, virtual network 1 also satisfies the delivery-buffer-emptying requirement, and
it follows from Lemma 5.9 that virtual network 1 is also free from deadlock.

Also, it follows from property 2 above that only Class-1 and Class-3 messages must
be injected in response to an application SEND or NRECV. Therefore, it follows from
properties 1 and 3 above that whenever a message must be injected in response to
an application SEND or NRECV, the appropriate injection buffer will be free. As a
result, the modified linked-list protocol will not deadlock, and the protocol is a correct
implementation of SEND and NRECV.

Furthermore, it follows from the construction of the virtual networks that only
constant storage is required per node. Finally, note that whenever a DATA message
is placed in a buffer in a virtual network, it causes at most a constant number of
Requested flags to be set, each of which causes at most a constant number of control
and data messages to be sent. As a result, A" performs only O(f(n)) communication
per packet sent by the modified linked-list protocol. Because the modified linked-list
protocol sends only a constant number of packets per SEND or NRECV posted by
the application, it follows that A" performs only O(f(n)) communication per SEND
or NRECV posted by the application.

The following theorem follows from a deadlock-free routing algorithm for the
shuffle-exchange that was presented by Pifarr et al. [12].

THEOREM 5.11. There ezists an ordered buffer-reservation algorithm A for an

n-node point-to-point network M such that the following hold:
1. M has degree at most 3.
2. Each node in M has at most four buffers.
3. Regardless of a pactcet’s source and destination nodes, every path that the

packet can take when using algorithm A has length at most 31ogn and ends at the
delivery buffer in the packet’s destination node.

Combining Theorems 5.1 and 5.11 yields the following theorem.
THEOREM 5.12. There ezists a protocol for implementing SEND and NRECV

among n processes that requires only constant storage per process and performs O(log n)
communication per SEND or NRECV posted by the application.

It should be noted that Theorem 5.1 gives a technique for generating a protocol
A" from an adaptive routing algorithm A. A simpler proof of Theorem 5.12 could
be obtained by generating a protocol A" from an oblivious routing algorithm A that
requires constant storage per node and uses routes of length O(logn), such as the
routing algorithm for a binary-tree network in which each node has two buffers, one
for moving up the tree and one for moving down the tree [9]. However, this approach
has the disadvantage of creating a bottleneck near the root of the tree.

REFERENCES

[1] Y. AFEK AND E. IAFNI, End-to-end communication in unreliable networks, in Proc. 7th Annual
ACM Symposium on Principles of Distributed Computing, Association for Computing
Machinery, New York, 1988, pp. 131-148.

[2] G. ANDREWS AND F. SCHNEIDER, Concepts and notations for concurrent programming, ACM
Comput. Surveys, 15 (1983), pp. 3-43.

[3] F. BURKOWSKI, G. CORMACK, AND II. DUECK, Architectural support for synchronous task
communication, in Proc. 3rd International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, Association for Computing Machinery, New
York, 1989, pp. 40-53.

[4] G. CHAaTRAND AND L. LESNIAK, Graphs and Digraphs, 2nd ed., Wadsworth and Brooks/Cole
Advanced Books and Software, Monterey, CA, 1986.

1104 ROBERT CYPHER AND SMARAGDA KONSTANTINIDOU

[5] I. CIDON AND I. S. GOPAL, Control mechanisms for high -speed networks, in Proc. IEEE Inter-
national Conference on Communications, IEEE Press, Piscataway, NJ, 1990, pp. 259-263.

[6] R. CYPHER AND L. GRAVANO, Requirements for deadlock-free, adaptive packet routing, SIAM
J. Comput., 23 (1994), pp. 1266-1274.

[7] K. D. CJNTHER, Prevention of deadlocks in packet-switched data transport systems, IEEE
Trans. Comm., 29 (1981), pp. 512-524.

[8] C. LEISERSON, Z. ABUHAMDEH, D. DOUGLAS, C. FEYNMANN, M. GANMUKHI, J. HILL,
W. HILLIS, B. KUSZMAUL, M. S. PIERRE, D. WELLS, M. WONG, S.-W. YANG, AND R. ZAK,
The network architecture of the connection machine CM-5, in Proc. 4th Annual ACM Sym-
posium on Parallel Algorithms and Architectures, Association for Computing Machinery,
New York, 1992, pp. 272-285.

[9] P. M. MERLIN AND P. J. SCHWEITZEP, Deadlock avoidance in store-and-forward networks I:
Store-and-forward deadlock, IEEE Trans. Comm., 28 (1980), pp. 345-354.

[10] , Deadlock avoidance in store-and-forward networks II: Other deadlock types, IEEE
Trans. Comm., 28 (1980), pp. 355-360.

[11] Y. OFEK AND M. YOUNG, Principles for high speed network control, in Proc. 9th Annual ACM
Symposium on Principles of Distributed Computing, Association for Computing Machinery,
New York, 1990, pp. 161-175.

[12] G. PIFARRt, L. GRAVANO, S. FELPERIN, AND J. SANZ, Fully-adaptive minimal deadlock-free
packet routing in hypercubes, meshes, and other networks, in Proc. 3th Annual ACM Sym-
posium on Parallel Algorithms and Architectures, Association for Computing Machinery,
New York, 1991, pp. 278-290.

[13] L. POUZIN, Methods, tools, and observations on flow control in packet-switched data networks,
IEEE Trans. Comm., 29 (1981), pp. 273-286.

[14] G. tEGNIEI, Delta message passing protocol, in Proc. 1st Intel Delta Applications Workshop,
1992, pp. 173-178.

[15] A. SISTLA, Distributed algorithms for ensuring fair interprocess communication, in Proc. 3rd
Annual ACM Symposium on Principles of Distributed Computing, Association for Com-
puting Machinery, New York, 1984, pp. 266-277.

[16] A. S. TANENBAUM, Network protocols, ACM Comput. Surveys, 13 (1981), pp. 175-211.
[17] S. TOUEG AND K. STEIGLITZ, Some complexity results in the design of deadlock-free packet

switching networks, SIAM J. Comput., 10 (1981), pp. 702-712.
[18] R. WATSON, The Delta-t transport protocol: Features and expansions, in Proc. 14th Conference

on Local Computer Networks, 1989, pp. 399-407.
[19] C. WILLIAMSON AND D. CHERITON, An overview of the VMTP transport protocol, in Proc. 14th

Conference on Local Computer Networks, 1989, pp. 415-420.

SIAM J. COMPUT.
Vol. 25, No. 5, pp. 1105-1121, October 1996

() 1996 Society for Industrial and Applied Mathematics
009

ON-LINE SCHEDULING OF IMPRECISE COMPUTATIONS
TO MINIMIZE ERROR*

WEI-KUAN SHIH AND JANE W. S. LIU*

Abstract. This paper describes three algorithms for scheduling preemptive, imprecise tasks on
a processor to minimize the total error. Each imprecise task consists of a mandatory task followed
by an optional task. Some of the tasks are on-line; they arrive after the processor begins execution.
The algorithms assume that when each new on-line task arrives, its mandatory task and the portions
of all the mandatory tasks yet to be completed at the time can be feasibly scheduled to complete by
their deadlines. The algorithms produce for such tasks feasible schedules whose total errors are as

small as possible. The three algorithms are designed for three types of task systems: (1) when every
task is on-line and is ready upon its arrival, (2) when every on-line task is ready upon arrival but
there are also off-line tasks with arbitrary ready times, and (3) when on-line tasks have arbitrary
ready times. Their running times are O(n log n), O(n log n), and O(n log2 n), respectively.

Key words, real-time systems, scheduling to meet deadlines, deterministic scheduling, on-line
scheduling

AMS subject classification. 68Q25

1. Introduction. The imprecise computation technique [1-10] has been pro-
posed as a way to provide scheduling flexibility. In the imprecise computation model,
each task consists of a mandatory portion followed by an optional portion. The
mandatory portion must be executed to completion before the deadline of the task.
The optional portion can be terminated before it is completed, if necessary, in order
for the task and other tasks to meet their deadlines. The result produced by a pre-
maturely terminated task contains an error that is a nondecreasing function of the
processing time of the unexecuted portion. The scheduler ensures that the mandatory
portions of all tasks are completed by the deadlines of the tasks while trying to keep
the errors in their results small. Several efficient algorithms have been proposed to
solve different scheduling problems, including the problem to minimize the total or
average error [3-6] and the problem to minimize the maximal flow time [10].

In an earlier paper [5], we proposed an algorithm (called Algorithm F) that can
find optimal schedules of imprecise, preemptable tasks with arbitrary ready times
and deadlines on a uniprocessor system. Algorithm F is optimal in the sense that it
always finds a feasible schedule, with the minimum average error, as long as feasible
schedules of the tasks to be scheduled exist. Its time complexity is O(n log n). Here,
by a feasible schedule, we mean one in which the mandatory portion of every task
completes by its deadline. Algorithm F is also optimal in the aspect of complexity
because the lower bound of finding an optimal schedule for this problem is gt(n log n).
A drawback of Algorithm F is that it is an off-line algorithm; it cannot handle on-
line scheduling. We say that an algorithm is off-line if the parameters of all the
tasks to be scheduled are known before the algorithm is used to schedule the tasks
and the execution of any task begins. Otherwise, if there are newly arriving tasks
to be scheduled after the executions of some tasks begin, we say that scheduling is

Received by the editors July 7, 1992; accepted for publication (in revised form) January 31, 1995.
This research was partially supported by ONR contracts N00014-89-J-1181 and N00014-92-J-1146.

Department of Computer Science, National Tsing Hua University, Hsinchu, Taiwan, Republic
of China (wshih@cs.nthu.edu.tw).

Department of Computer Science, University of Illinois at Urbana-Champaign, 1304 West
Springfield Avenue, Urbana, IL 61801 (janeliu@cs.uiuc.edu).

1105

1106 WEI-KUAN SHIH AND JANE W. S. LIU

on-line.
In this paper, we concentrate on on-line scheduling of imprecise tasks to minimize

the total error of all tasks. We classify tasks as on-line and off-line. Tasks that arrive
before the processor starts executing any task are off-line tasks, and tasks that arrive
after the processor starts executing some tasks are on-line tasks. The parameters
of an on-line task become known when it arrives. On-line scheduling is important
for a real-time system. One of the most important functions for a real-time system
is to handle external events. External events are usually unpredictable. An event
can arrive at any time, and the parameters of the task handling the event can have
arbitrary values. This unpredictable nature of the external events makes optimal on-
line scheduling impossible [12]. In particular, it is known that there can be no on-line
algorithm that is optimal in the following sense: it always finds, for any system of
on-line imprecise tasks, a feasible schedule with the minimum total error whenever
the system has feasible schedules. This paper describes three on-line algorithms for
scheduling imprecise tasks preemptively on a processor to minimize the total error of
all tasks. They are greedy in that they try to schedule as much of the optional potion
of each task as possible after setting aside sufficient amounts of processor time for the
mandatory portions of all the arrived tasks so that these tasks can complete on time.
These algorithms are optimal, in the sense that they produce feasible schedules with
the minimum total error, when the given task system satisfies the feasible mandatory
constraint. We say that a task system satisfies this constraint if at the time of arrival of
every new on-line task, its mandatory portion, together with the yet-to-be-completed
mandatory portions of already arrived tasks, can always be precisely scheduled to
complete by their deadlines. This constraint is often met by task systems in which
the processing time of the mandatory portion of every task is small compared to the
processing times of the optional portions.

The remaining of this paper is organized as follows. Section 2 gives a precise
definition of the on-line imprecise-task-scheduling problem in general as well as the
special case of the problem solved here. Sections 3-5 present our algorithms for
scheduling on-line tasks to minimize total error. Section 6 is a summary and discusses
future works.

2. On-line-scheduling problem. We are given a system of preemptable, im-
precise tasks T {T1,T2,...,Tn} in which each task T is characterized by the
following parameters, which are rational numbers:

(1) ready time r at which T becomes ready for execution;
(2) deadline d by which Ti must be completed; and
(3) processing time ’, which is the time required to execute Ti to completion in

the traditional sense.
Logically, each task T is decomposed into two subtasks: the mandatory subtask M
and the optional subtask O. Hereafter, we refer to M and O simply as tasks. We
use M and Oi to mean specifically the mandatory task and the optional task of T,
respectively, and use T to mean the task as a whole. Let rn and o be the processing
times of M and O, respectively, rn and o are rational numbers, and rn + o T.
The ready times and deadlines of the tasks Mi and O are the same as that of T,
and O depends on M and therefore cannot begin execution until M is completed.
In any valid schedule of T, every task T is assigned at least m units of time; we say
that M is precisely scheduled. If in a schedule, the task O is assigned ai units of
processor time, the error of T is o cry. The value of a is in the range [0, o];
is zero if O is precisely scheduled, that is, a o. By the total error of a schedule,

ON-LINE SCHEDULING OF IMPRECISE COMPUTATIONS 1107

r,,; d, m o arrival time

0 10 0 6 0

0 14 4 0 0

2 10 4 0 2

0 2 4 6 8 1(/ 12 14 16 18 20 22

O1 M3 M2

FIa. 1. An ezarnple illustratin9 the difficulty in on-line scheduling.

we mean the total error }-i ei of all tasks when they are executed according to the
schedule.

Earlier results on on-line scheduling (e.g., [12]) allow us to conclude that there
is no optimal on-line algorithm that always finds a feasible schedule of an on-line
task system whenever the given task system has feasible schedules. The example in
Figure 1 illustrates that this fact remains to be true for imprecise task systems. In
this example, we have three tasks. Tasks T1 and T2 are off-line tasks. Task Ta is an
on-line task and it arrives at time 2. Our goal is to keep the total error minimum, as
well as to schedule all mandatory tasks so that they complete by their deadlines. A
good strategy for achieving this goal is to arrange the executing order of mandatory
and optional tasks so that the possibility of feasibly scheduling new on-line tasks is
maximized. In other words, we execute mandatory tasks as soon as possible provided
that we do not increase the total error by executing any mandatory task with a
later deadline sooner than an optional task with an earlier deadline. According to
this strategy, we choose to schedule T2 at time zero. Although T1 has earlier deadline
than T, T1 is not a mandatory task. We increase the possibility of feasibly scheduling
M and the mandatory tasks that might arrive in the future, but do not increase the
total error, by executing T2 in the interval [0, 2]. At time 2, Ta arrives and is ready for
execution. Ta is a mandatory task with an earlier deadline than T2. Ma is scheduled
at t 2. The total error is 2. It is easy to see that we could have the feasible schedule
with 0 total error shown in Figure 1 by scheduling T in the interval [0, 2]. On the
other hand, suppose that we schedule T in the interval [0, 2] but Ta has a deadline
at 14 and has processing time equal to 10. In this case, the task system cannot be
feasibly scheduled, while it would be feasible if M. were scheduled in [0, 2].

Because it is not possible to find optimal algorithms for scheduling general on-
line imprecise-task systems, in the following three sections, we confine our attention to
task systems that satisfy the feasible mandatory constraint. The algorithms described
in these sections are optimal for such task systems. In 6, we will discuss their
performance when used to schedule task systems that do not satisfy the feasible
mandatory constraint.

1108 WEI-KUAN SHIH AND JANE W. S. LIU

We must consider four cases of the on-line scheduling problem. These cases are
as follows.

Case 1. There is no off-line task, and every on-line task is ready for execution
when it arrives.

Case 2. There is no off-line task, and on-line tasks have arbitrary ready times.
Case 3. There are off-line tasks, and every on-line task is ready for execution

when it arrives.
Case 4. There are off-line tasks, and on-line tasks have arbitrary ready times.

Cases 2 and 4 are the same in the following sense: in both cases, we face the problem
of how to schedule the on-line tasks that are not ready for execution at the time
instants of their arrivals. From the scheduling point of view, an on-line task that has
arrived (and whose parameters have become known) but is not ready for execution
can be viewed as an off-line task at the time when a new schedule is constructed.
Therefore, we can eliminate Case 2 and consider the remaining three cases. The
algorithms described in the next three sections are solution to Cases 1, 3, and 4.

3. On-line tasks ready upon arrival in the absence of off-line tasks. In
this section, we present an algorithm for scheduling a system T of on-line tasks with
arbitrary deadlines and execution times. In the case considered in this section, the
ready time of each task is the instant of arrival of the task, and there is no off-line
task. The algorithm, called the NORA (No Off-line tasks and on-line tasks Ready
upon Arrival) algorithm, schedules all tasks so that their mandatory portions are
completed by their deadlines and their optional portions are completed as much as
possible. At any scheduling-decision time, tasks are scheduled on the earliest-deadline-
first (EDF) basis. We will return to specify when scheduling decisions are made. The
algorithm schedules every mandatory task Mi precisely by assigning to it rni units of
processor time. On the other hand, it may assign less than oi units of time to the
optional task Oi.

3.1. Reserving time for mandatory tasks. The NORA algorithm maintains
a reservation list for all tasks that have arrived but are not yet completed and uses it
as a guide in deciding where to schedule optional tasks and how much time to assign
to them. A reservation list is derived from a feasible, precise schedule of the unfinished
(that is, yet-to-be-completed) portions of all the mandatory tasks. We will describe
in the next paragraph how this schedule is constructed. An interval that is assigned
to a task in this schedule is a reserved interval in the reservation list; it is reserved
for the execution of mandatory tasks. The reservation list tells us which intervals are
reserved and which are not but does not distinguish the tasks to which the reserved
intervals are assigned. The NORA algorithm never schedules any optional task in a
reserved interval. In this way, the algorithm ensures that a sufficient amount of time
is assigned to each mandatory task for it to complete by its deadline.

More precisely, a reservation list is defined by the time instants at which reserved
intervals begin and end, as well as the amount of time reserved for each manda-
tory task. It is obtained from a precise schedule of all the unfinished portions of
the mandatory tasks that have arrived, and this schedule is constructed using the
reverse-scheduling approach. By reverse scheduling, we mean that all tasks are sched-
uled from the end of the reservation list, at the latest deadline, to the beginning, at
the current time, in the following manner. Each task is scheduled at or before its
deadline, and tasks are scheduled in the latest-ready-time-first order. Like the EDF
algorithm, this strategy always finds a feasible schedule of all mandatory tasks when-
ever they have feasible schedules [11]. Figure 2 illustrates a feasible, precise schedule

ON-LINE SCHEDULING OF IMPRECISE COMPUTATIONS 1109

I)r(messing time of the
’,’; d, mfinishc(t porti(ms

16 4

2 8 2

3 11 2

4 14 3

0 2 4 6 8 10 12 14 16 lS 20 22

curr(;nt tinm

()

rcscrvc(t interval

(the amounts reserved for M 4, M 2, M., 2, and M 3)

(b)

FIG. 2. An example of a reservation list. (a) The schedule produced by the reverse-scheduling
algorithm. (b) The reservation list.

constructed using the reverse-scheduling approach and the corresponding reservation
list. In this example, we have four tasks. The table lists the parameters of the tasks,
and the timing diagrams show the schedule and the reservation list produced by re-
verse scheduling of the tasks at time t 4. We note that the roles of deadlines and
ready times are reversed. We schedule these four tasks starting from time 16. The
deadline of task M1 is 16. From the reverse-scheduling point of view, it means that
task M1 is "ready" to be scheduled at 16. We schedule M in the interval (14,16).
At time 14, M4 is "ready" to be scheduled, and its ready time is later. Therefore,
M4 preempts M at time 14. We schedule M4 in the interval (11,14). Because Ma’s
deadline is 11 and its ready time is later than the ready time of M, Ma is scheduled
in (9,11). We repeat the same process until all mandatory tasks are scheduled and
produce the schedule in Figure 2(a). The corresponding reservation list maintained
by the algorithm is shown in Figure 2(b).

The reservation list is updated each time a new task Ti arrives. The result is
that some interval(s) before the deadline d of total length rn is (are) reserved for the
mandatory task Mi in order to ensure its completion before di. We will return later to
describe the reservation step, which adds new reserved interval(s) into the reservation
list upon arrivals of new tasks, as well as the times when reserved intervals are released,
that is, made available for optional tasks.

3.2. Scheduling decisions. The NORA algorithm works as follows" the sched-
uler maintains a prioritized task queue in which tasks are ordered on the EDF basis.
In the beginning, there is no task in the task queue, and the processor is idle. When

1110 WEI-KUAN SHIH AND JANE W. S. LIU

i. For as long as no event occurs, assign the task at the head of the task queue, the task with
the earliest deadline, to processor for execution.

2. When an event occurs:

2.1 Event_ I: the current task is completed or terminated at its deadline:
--remove the current task from the task queue;
--cancel the reservation of the current task;
--goto step 1.

2.2 Event_2: the beginning of the first reserved interval is reached:
--if there is time reserved for the current task,

then cancel the reservation of the current task;
else terminate the current task and remove it from the task queue;

--goto step I.
2.3 Event_3: a new on-line task arrives:

---update the reservation of the current task;
--make reservation for this new task;
--insert this task into the task queue;
--goto step I.

FIG. 3. Pseudocode of the NORA algorithm.

an on-line task arrives, the scheduler makes reservation for this new task, puts this
task into the task queue, and schedules the first task in the task queue for execution.
For every task, the processor always executes the mandatory portion first and then
tries to execute the optional portion if there is enough time. Every task is terminated
either when its optional portion completes or when its deadline is reached. When
a task is terminated, it is removed from the task queue. A scheduling decision is
made whenever any of the following possible events occurs. In the description of the
events, we use t to denote the time at which an event occurs and Ti to denote the
task executing at t.

Event_l. Task Ti (including Mi and O) completes or the deadline d of T is
reached, that is, T terminates either normally or prematurely.

Event_2. The current time t reaches the beginning of a reserved interval in the
reservation list.

Event_3. A new on-line task arrives.
Figure 3 gives the pseudocode of the NORA algorithm. When an Event_ 1 occurs,

any time x still reserved in the reservation list for the terminated task Ti is released.
This is done by deleting the earliest interval(s) of length x from the reservation list.
(We will return to show that this operation is correct.) The task at the head of the
task queue with the earliest deadline among all the unfinished tasks is scheduled.
The processor continues to execute the newly scheduled task until the next event
occurs.

When an Event_ 2 occurs, the current time t is the beginning of a reserved interval.
It is possible that some time remains to be reserved for M according to the reservation
list. In this case, this reserved time (say x units) is released; the earliest interval(s) of
length x is (are) deleted from the reservation list. We sometimes refer to this action
as canceling the reservation of M. The processor continues to execute T. If, on the
other hand, no time is reserved for T, Ti is terminated. The task with the earliest
deadline among all the tasks that have reserved times according to the reservation list
is scheduled and executed.

When an Event_3 occurs, the current executing task T is preempted, and the
reservation list is updated. If the mandatory task M is completed at the time,

ON-LINE SCHEDULING OF IMPRECISE COMPUTATIONS 1111

16 8 5 3

2 8 6 4 2

4 11 3 2

3 14 5 3 2

0 2 4 6 8 10 12 14 t6 18 20 22
timel .,I

(amounts rescrwxt for M 5)

(ammnts reserved flr M 4, M 4)

(amounts rescrwxt for M 4, M2 :3, M :3)

reservati(m list
att=l

t=3

t=4

(anumnts reserved flr M1 4, M 2, M 2, M 3)
t=5

(mn{nmts reserwxt fbr M 4, M: 2, M 3)
t=7

(amounts reserwxt fbr M 4, M 3)

(amounts reserw;d for M 4)

t=9

t= 12

()

(b)

FIG. 4. An example illustrating the NORA algorithm. (a) The reservation list. (b) The final
schedule.

the time reserved for it is released. If Mi requires x units more of processor time
to complete, we update its reservation by adding or deleting a reserved interval in
the beginning of the reservation list so that the total reserved time for Mi is x. A
reserved interval (or intervals) of length equal to the processing time of the newly
arrived mandatory task is inserted into the reservation list. After the reservation list
is updated, the task with the earliest deadline is scheduled and executed if the arrival
time t is not in a reserved interval. Otherwise, the step taken when an Event_2 occurs
is carried out.

The operations of the NORA algorithm are illustrated by the example in Figure 4.
The table in Figure 4 gives the total execution times of all mandatory and optional

1112 WEI-KUAN SHIH AND JANE W. S. LIU

tasks. No task arrives after t 4. Figure 4(a) shows the reservation lists generated
at different time instants at which the reservation list is updated. Figure 4(b) shows
the schedule produced by the algorithm. At t 1, T1 arrives. The interval (11,16)
is reserved for it, and it is scheduled for execution. At t 2, T. arrives. The
reservation list is updated. T1 is preempted, and T. is scheduled because T2 has an
earlier deadline. At t 3 and t 4, T4 and Ta arrive. The reservation list is updated
each time. T2 continues to execute until t 5 when the beginning of the reservation
list is reached. Since there are still two units of time reserved for M2, this time is
released, and T2 continues to execute. At t 7, the beginning of the reservation list
is reached again. T is terminated at this time. Ta is at the head of the task queue
and has reserved time according to the reservation list; it is scheduled. Similarly, Ta is
terminated and T4 and T are scheduled at t 9 and t 12, respectively, to produce
the schedule in Figure 4(b). The total error is 7.

3.3. Updating the reservation list. We must reserve my units of time for
each newly arrived on-line task Tj. This is a critical part in the NORA algorithm.
Clearly, we can construct a new reservation list from the beginning using the reverse
scheduling algorithm each time a new task arrives. This approach will give us an
algorithm with run time O(n log n). Fortunately, we can update the reservation list
quickly when making new reservations.

To see how, we note that it is not necessary to move the reserved interval(s) to
different places during such an update. We can simply reserve for the newly arrived
mandatory task My the interval(s) prior to the deadline of Ty that is (are) not reserved
in the old list. This reservation can be done by reverse scheduling My alone in the gaps
between the reserved intervals in the old reservation list. We call this action inserting
My into the old list. For example, suppose that at t 2, task Ta in Figure 5 arrives.
We insert Ma into the old list. Because the deadline of Ta is 9 and the interval [6,8]
is already reserved, we reserve the intervals [8,9] and [5,6] for Ma. Similarly, at t 3
when T4 arrives, we simply insert M4 into the old list, adding the reserved intervals
[4,5] and [9,11].

Adding new reservations to the reservation list by simply inserting the new tasks
into the old list is possible because the NORA algorithm only checks where reserved
intervals begin. It does not keep track of which interval is reserved for what task. This
means that we can construct the reservation list in any way as long as the beginnings
of the reserved intervals in the resultant reservation list are the same as those in the
reservation list constructed by reverse scheduling all the unfinished mandatory tasks
together with the new mandatory task. The following lemma shows that we can
indeed construct the new reservation list in the faster way described above.

LEMMA 3.1. The new reservation list produced by simply inserting the newly
arrived mandatory task My into the old list is the same as the reservation list derived
from the schedule that is produced by using the reverse-scheduling algorithm on all
unfinished mandatory tasks.

Pro@ To simplify our discussion, let 1 (n) and 2(ft) denote the reservation lists
produced by simply inserting the nth new mandatory task into the old list S (n- 1)
and the list produced by using the reverse scheduling algorithm on all unfinished
mandatory tasks upon the arrival of the nth task, respectively. We want to prove
this lemma by induction. Clearly, 1 (1) and S. (1) are the same. Now suppose
that S(n- 1) and S2(n- 1) are the same but S].(n) and S2(n) are different. We
compare the two lists S (n) and S2(n). In the schedule produced by using the reverse-
scheduling algorithm on all unfinished mandatory tasks and the new task, all the tasks

ON-LINE SCHEDULING OF IMPRECISE COMPUTATIONS 1113

16 4

2 8 2

3 9 2

4 11 3

0 2 4 6 8 10 12 14 16 18 20 22

current time

c11rrelt tiilc

current time

FIG. 5. An illustrative example of updating the reservation list.

are scheduled as late as possible. The gaps between reserved intervals in S:(n) cannot
be moved earlier because the reserved intervals in S2(n) cannot be moved later. Since
Sl(n) and S2(n) are different, Sl(n) contains at least one reserved interval that can
be moved to a later time. However, $1 (n) is constructed by inserting the nth task
into the old reservation list $1 (n- 1) according to the reverse-scheduling algorithm.
Since S1 (n- 1) is the same as S2(n- 1), all reserved intervals in S (n- 1) cannot be
moved to later times, and no gap in S (n- 1) can be moved earlier. Because the nth
task is scheduled in the gaps in $1 (n- 1), no reserved interval in $1 (n) can be moved
later. This is a contradiction to the supposition that S(n) and Se(n) are different.
We can thus conclude that S (n) and S2(n) are the same. [3

Now that we know how to add the reservation of a new task into the reservation
list, the remaining problem is how to cancel the reservation of a task and release
the time reserved for the task. Again, the most straightforward way to do this is
to apply the reverse-scheduling algorithm to construct a new reservation list each
time. Again, we are fortunate and do not need to use this time-consuming method.
According to the NORA algorithm, the reservation of a task is canceled only when it
is the currently executing task. We cancel the reservation of the currently executing
task by deleting the earliest reserved interval(s) in the reservation list. The following
lemma shows that this simple method updates the reservation list correctly since the
currently executing task is the one with the earliest deadline.

LEMMA 3.2. If all unfinished tasks are ready, the reservation of the task with the
earliest deadline for x units of time can be canceled by deleting the reserved interval(s)
of length x from the beginning of the reservation list.

Proof. The task with the earliest deadline is denoted by Ti. Given a schedule
produced by reverse scheduling all the unfinished tasks, we can move the intervals
assigned to Ti to the beginning of the schedule by swapping the time intervals assigned
to Ti with other tasks that have later deadlines than it. Therefore, we can consider
the reserved interval(s) in the beginning of the reservation list as being reserved for

1114 WEI-KUAN SHIH AND JANE W. S. LIU

Ti and delete them when we want to cancel the reservation for Ti.

3.4. Optimality of the NORA algorithm. The optimality of the NORA al-
gorithm requires that the following two conditions are satisfied:

i. All mandatory tasks are completed before their deadlines.
2. The total error is minimized.

The satisfaction of condition I for any task system that satisfies the feasible mandatory
constraint discussed in 2 is obvious. The algorithm always reserves sufficient time for
all the unfinished mandatory tasks before their deadlines. The reservation for a task
is canceled only when we have completed the task. Theorem I shows that condition 2
is satisfied and the NORA algorithm is optimal whenever the task system satisfies the
feasible mandatory constraint.

THEOREM 3.1. The NORA algorithm can find a schedule with the minimum total
error for a task system consisting solely of on-line tasks that are ready upon arrival.

Proof. To show that any schedule found by the NORA algorithm has the minimum
total error, we examine the sources of the errors. From the pseudocode of NORA in
Figure 3, there are three kinds of events. When an Event_l occurs, the current
task is terminated because it is completed or its deadline is reached. The error in
its result when it terminates is as small as possible. When an Event_3 occurs, no
task is terminated. Therefore, no error is produced in step 2.3. An Event_2 occurs
when we reached the beginning of the first reserved interval. In step 2.2, some error
is produced when we terminate the current executing task and remove it from the
task queue if it is not completed at the time. However, this optional task is not
completed because there is no time to complete it. In other words, at least one of
the unfinished mandatory tasks would miss its deadline if we continue to execute this
optional task. Moreover, because no intentional idle time is inserted in the schedule,
we cannot execute other tasks with earlier deadlines than the current task earlier to
make room for this optional task without increasing their errors. Consequently, the
error generated by step 2.2 in handling an Event_2 is minimal.

4. On-line tasks with arbitrary ready times together with off-line tasks.
If we are satisfied with an O(n2 log n) algorithm for scheduling on-line tasks that
have arbitrary ready times in the presence of off-line tasks, we can easily find one
by modifying the NORA algorithm in a straightforward manner. An example is
the algorithm described by the pseudocode in Figure 6. Whenever the task system
satisfies the feasible mandatory constraint, this algorithm is optimal in the sense
that it guarantees all mandatory tasks are completed by their deadlines and the
total error is minimized. The following theorem states this fact; its proof follows
straightforwardly from the proof of Theorem 1.

THEOREM 4.1. The algorithm in Figure 6 can find a schedule with minimum total
error for an on-line task system in which on-line tasks have arbitrary ready times and
there are off-line tasks.

Because tasks have arbitrary ready times, we must keep track of where the re-
served intervals of the individual tasks are. The reservation list is the schedule
generated by reverse scheduling all the unfinished tasks. The complicated reverse-
scheduling step must be repeated each time to insert a new task into the schedule or
to delete a task from the schedule. In this section, we present techniques that lead to
algorithms with run times O(n2) and O(n log2 n).

4.1. Reservation array. To speed up the algorithin in Figure 6, we need a
data structure other than the reservation list to tell us when mandatory tasks must

ON-LINE SCHEDULING OF IMPRECISE COMPUTATIONS 1115

0. Generate the reservation list of all off-line tasks.
Put all ready tasks in the task queue ordered on the EDF basis.

1. For as long as the task queue is not empty and no event occurs, assign the task at the head
of the task queue, the task with the earliest deadline, to the processor for execution.

2. When an event occurs:
2.1 Event_l: a task becomes ready:

--update the reservation of the current task;
--put the newly ready task in the task queue;
--goto step 1.

2.2 Event_ 2: the mandatory portion of the current task completes:
---cancel the reservation of the current task from the reservation list;
--goto step 1.

2.3 Event_3: the optional portion of the current task completes or terminated at its
deadline:
--remove the task from the task queue;
--goto step 1.

2.4 Event_4: a new on-line task arrives:
---if the current task is mandatory, update the reservation of the current task;
--make reservation for this new task;
---if this task is ready, insert it into the task queue;
--goto step 1.

2.5 Event_5: the beginning of a reserved interval is reached:
--.if the interval is reserved for the current task,

then goto step 1;
else update the reservation of the current task;
--put the task assigned to the reserved interval at the head of the task queue;

goto step 1.

FIG. 6. An algorithm for scheduling tasks with arbitrary ready times.

be scheduled and which mandatory task to schedule so that all mandatory tasks are
sure to complete by their deadlines. For this purpose, we use an array, called the
reservation array. It is denoted by P. There is an element in this array for every
task whose parameters are known. In particular, let crj be the processing time of the
portion of the mandatory task Mj that is completed when we update the reservation
array. (Later, we will discuss when this array is updated.) The value of the reservation
array element P(i) corresponding to the task Ti, which is either an off-line task or an
arrived on-line task, is given by

(1) P(i) di- E (mj
d <_d

It is the difference---the slack--between the deadline d and the total amount of pro-
cessor time that must be assigned to the unfinished portions of all the mandatory
tasks whose deadlines are equal to or less than di. Because the feasible mandatory
constraint is satisfied, P(i) is larger than or equal to zero for all at all times.

At the beginning, there is no on-line task. We construct the reservation array P
for all the off-line tasks, aj is zero for all j before the processor starts executing. The
initial value of P(i) is di-. <. rnj for all off-line tasks Ti. After the processor starts
executing, we add offsets--that is, increments in processing times of the completed
portions of mandatory tasks--to all elements of P to reflect the progress made toward
the completion of the mandatory tasks. When a new on-line task Tt arrives, we add
a new element P(1), and its initial value is given by equation (1), where cr is the

1116 WEI-KUAN SHIH AND JANE W. S. LIU

processor time of the completed portion of Mj at the time when Tt arrives.
To explain how the information provided by the reservation array can be used to

determine when (and which) mandatory tasks must be scheduled, we again examine
the algorithm in Figure 6. When the current time t reaches the beginning of a re-
served interval in the reservation list, there exists a deadline, denoted by db, which
is such that the entire interval between db and the current time is reserved. We call
this deadline db the bottleneck of the task system at the current time. The proces-
sor can keep on executing optional tasks as long as there is no bottleneck. When a
bottleneck exists, the processor must execute some unfinished mandatory tasks; oth-
erwise, at least one mandatory task will miss its deadline. At any time t, we can
determine whether a bottleneck exists and which deadline is the bottleneck from the
value of P(i). In particular, a deadline di becomes a bottleneck when it satisfies the
inequality

dj <d

that is, when P(i) < t.
In the example shown in Figure 7, we have three off-line tasks. Initially, P(1) 5,

P(2) 4, and P(3) 2. At time 1, there is no bottleneck, as indicated by the values
of P(i) and illustrated by the timing diagrams in Figure 7(a). At time 2, we have
completed one unit of M1, or1 1, and the array P is updated. Both d2 and d3
are less than d. We only need to add one to P(1). At this time, P(3) is equal
to t. We find a bottleneck d3 at time 2. It means that no optional task can be
scheduled in the interval from 2 to da. This fact is illustrated by the timing diagrams
in Figure 7(b).

We now modify the algorithm in Figure 6, making use of the reservation array
P instead of the reservation list in order to speed up the algorithm. This array is
generated and initialized as described above. All the ready tasks are placed in the
task queue and ordered on the EDF basis. At time zero, we schedule the task with
the earliest deadline among all ready tasks. We keep on executing the current task
until one of the following five events occurs.

(1) Event_ 1: Some task becomes ready for ezecution. When such an event occurs,
we record tle change in the amount of processor time required to complete the manda-
tory task of the current task in the reservation array P. We only need to modify the
elements in P for the tasks with deadlines equal to or later than the deadline of the
current task. Let the current task be Tj. The new offset is the processing time of the
portion of M. that is completed since the last update of the array P and is denoted
by Acrj. The formula to modify elements of the array P is P(k) P(k) + Acrj if
dk > dj; otherwise, P(k) remains unchanged. After updating the array P, the newly
ready task is put on the task queue, and the task with the earlier deadline is scheduled
and executed.

(2) Event_2: The mandatory task of the current task completes. We modify the
array P as we do in (1), when an Event_ 1 occurs, and choose the task at the head of
the task queue for execution.

(3) Event_3: The optional portion of the current task completes or is terminated
at its deadline. In this case, we remove the current task from the task queue and
select the next task from the task queue for execution.

(4) Event_4: A new on-line task arrives. In this case, we need to modify the
array P as follows. We first update the array P according to (1). An empty element

ON-L1NE SCHEDULING OF IMPRECISE COMPUTATIONS 1117

18 4

2 8 4

4 11 5

0 2 4 6 8 10 12 14 16 18 20 22
tiIne I,, ,I ,I I .I l

()
r() 5, r() 4, r(a) .

(b)
P(1) 6, P(2) 4, P(3) 2.

Fc. 7. An example illustrating the usage of the array P. (a) When 1, there is no bottleneck.
(b) When 2, da becomes a bottleneck.

is allocated to the new task and is used to store information about the task. Let the
new task be Tt and the new element be P(1). We find the largest deadline, denoted
by dr,, that is less than dt and assign the content of P(l’) to P(1). Then we add
d-dr,-rnt to P(l) and subtract rnt from all elements P(k), where d > dr. After the
array P is updated, we add the task T into the task queue if it is ready and schedule
the task at the head of the task queue.

(5) Event_5: Some deadline becomes a bottleneck. Let the deadline that is the
bottleneck be dj. We update the array P as in (1). If dj is no longer a bottleneck after
the update, we continue to execute the current task. If d.j remains a bottleneck, this
means that all the time from the current time to d is reserved for mandatory tasks
and the processor does not have time to execute any optional tasks in this interval.
The ready mandatory tasks are scheduled on the EDF basis in the interval between
the current time and d.
This algorithm, called the OAR (On-line tasks with Arbitrary Ready time) algorithm,
is simple. It contains O(n) steps. Here n is the number of tasks in the task system,
including on-line and off-line tasks. The run time for each step is at most O(n).
Therefore, the algorithm has run time O(n2).

4.2. Speed-up method. The OAR algorithm described above is slow because
we spend O(n) to modify the consecutive elements of the reservation array each time

1118 WEI-KUAN SHIH AND JANE W. S. LIU

we update the array. To speed up this step, we use a hierarchy of priority queues
instead of an array to store the elements P(i). We can modify any specific group of
elements in the queue in O(log2 n) time.

We begin by using a binary tree to construct the priority queue. The tree is
constructed based on the deadlines of all off-line tasks plus a nonexisting deadline
which is later than all deadlines of off-line and on-line tasks. The leaves of the binary
tree represent the deadlines. Without loss of generality, we assume that the number u
of off-line tasks plus one is a power of two. We construct a complete binary tree based
on these + 1 deadlines such that every internal node of the binary tree represents
several consecutive deadlines. The leaf node P(i) representing the deadline di has the
value di dj_<d mj, the initial value of P(i). The value of each internal node of
the binary tree at any time is the total offset that applies to all leaves of the subtree
rooted at this internal node. Because this is a priority queue, each internal node
also has a pointer showing which leaf in the subtree rooted at it has the smallest
value after all offsets are added to them. Therefore, the task system will have a
bottleneck when the leaf pointed by the root of the binary tree has a value less than
or equal to t. The following operations update the values of the nodes in the binary
tree.

(1) To add an offset to all leaves, we add the offset to the root of the whole tree.
(2) To add an offset to all leaves that have deadlines larger than some specified

deadline dj, we find the path from the root to the leaf node that corresponds
to the deadline d. Then we examine all nodes on this path. If an examined
node is the left child of a node on this path, we find its right sibling and add
the offset to this right sibling.

The run time of these two operations is at most O(logn). The time to find the
smallest value from this priority queue is at most O(log u) also. Therefore, if there
are no on-line tasks, the run-time of the OAR algorithm is O(u log).

When on-line tasks arrive, the binary tree of the priority queue must be expanded
to accommodate the elements of these on-line tasks. To avoid reconstructing the
whole binary tree, we simply insert the node representing the new deadline into the
tree upon the arrival of each new task. This operation will destroy the completeness
of the binary tree; the longest path of the binary tree will no longer be O(logn),
where n is the total number of tasks in the task system. To shorten the length of
the longest path, we construct a hierarchy of priority queues and use these queues
to store the reservation array elements of all on-line tasks. We assign a hierarchy of
priority queues to each leaf of the main priority queue, the queue constructed based
on the deadlines of the off-line tasks. In each hierarchy, there are at most O(log n)
layers. In each layer, there is at most one priority queue. Therefore, the total number
of priority queues in each hierarchy is at most O(log n). The number of nodes in the
ith layer is equal to 2i-1.

When an on-line task arrives, we find in the main priority queue the leaf rep-
resenting the smallest deadline that is larger than the deadline of the new on-line
task. We then construct for this on-line task a priority queue in the first layer of the
priority-queue hierarchy of this leaf node. If there is already a priority queue in the
first layer, we merge the new first-layer priority queue with the existing one and put
the merged queue in the second layer. If there is a priority queue in the second layer,
we merge the old one and the new one and put the merged queue in the third layer,
and so on. The smallest value stored in the priority-queue hierarchy is the smallest
value stored in all priority queues in this hierarchy. To update an reservation-array

ON-LINE SCHEDULING OF IMPRECISE COMPUTATIONS 1119

element or a group of consecutive elements stored in the priority-queue hierarchy, we
need to update all priority queues in the hierarchy at the same time. This operation
takes O((logn) 2) instead of O(logn). Since there are O(n) updates, the total time
required to update the reservation array is O(n(log n)2). The run-time for construct-
ing a priority-queue hierarchy is easy to calculate. When two priority queues of the
ith layer are merged, the new priority queue is in the (i + 1)th layer. Therefore, the
reservation array element of each on-line task is stored in any layer of the hierarchy at
most once. The number of layers in the hierarchy is at most O(log n); so the total time
spent for constructing all priority-queue hierarchies is at most O(n log n). Therefore,
the total run-time of the OAR algorithm is at most O(n(log n)2).

5. On-line tasks ready upon arrival in the presence of off-line tasks. In
3, we showed that in Case 1, where there is no off-line task and on-line tasks are ready
upon arrival, the reservation list can be updated in a simple way. This simple way
to update the reservation list is used in the NORA algorithm. It remains correct if
there is only one off-line task among on-line tasks that are ready upon arrival and the
deadline of the off-line task is the latest among all deadlines. This observation points
us to a way to simplify the OAR algorithm to handle Case 3, where on-line tasks are
ready for execution when they arrive and there are off-line tasks with arbitrary ready
times. We call this simplified algorithm the ORA (On-line task Ready upon Arrival)
algorithm. Its time complexity is O(n log n).

Without loss of generality, let T,T,..., be the off-line tasks, and their
deadlines are such that 0 < d < dg. < < d. The idea behind the ORA algorithm is
as follows: we divide the time into +1 intervals, I (0, d], I (d, d],..., I+
(d, oc]. We maintain u + 1 reservation lists R1,Rg.,... ,R+. Before the processor
begins executing any task, the reservation list Ri(i <_ u) contains only the reserved
interval [di -rni, di] for the off-line task Ti, and the reservation list R+ is empty.
After the processor begins execution and on-line tasks arrive, we make the reservation
for an on-line task whose deadline is in the interval Ii in the reservation list Ri. The
simple operations for updating the reservation of on-line tasks used in the NORA
algorithm are used to update each of the reservation lists.

In order to maintain and use the information provided by the + 1 reservation
lists together, we also maintain a reservation array P as is done in the ORA algorithm.
There is an element P(i) for each reservation list Ri. As will become evident later,
in deciding when mandatory tasks must be scheduled, the ORA algorithm, like the
NORA algorithm, only checks whether the beginning of the earliest reserved interval
in a reservation list is reached. For this reason, it suffices for us to keep track of the
length li of time between the beginning of the earliest reserved interval and the end of
the latest reserved interval in each of the reservation list Ri. The latter is the deadline
di of the off-line task Ti for _< and is the latest deadline of on-line tasks whose
deadlines are after d. We denote this deadline by d+. Clearly, li is equal to the
sum of the lengths of all reserved intervals and gaps between reserved intervals in the
reservation list Ri.

Initially, before the processor begins execution, each of the reservation lists Ri for
_< contains one reserved interval [di rni, di] for the off-line task Ti, and R+I is

empty, li is equal to rni for _< and is equal to zero for + 1. The initial value
of P(i) is given by

>; mj
dj <di

1120 WEI-KUAN SHIH AND JANE W. S. LIU

for _< u, and P(u + 1) dn. The operations of the ORA algorithm are similar to
the operations of the OAR algorithm. P(i)’s are updated when any task becomes
ready, when the mandatory task of the current task completes, when a new on-line
task arrives, and when some deadline becomes a bottleneck. A difference between the
two algorithms is in how P(i)’s are updated. During each update, we first update the
reservation list Ri in which the reservation of the current task was made and compute
the new value of li. Let ak be the processing time of the completed portion of the
mandatory task Mk. The value of P(i) is set to be

(3) P(i) di li E (mk ak).
dk <d

Specifically, let Act denote the processing time of the mandatory portion of the
current task that is completed since the last update of the array P. To update the
reservation of the task, we update the reservation list Ri by removing a reserved
interval(s) of (total) length Ar from the beginning of R. Let Act’ be the difference
between the lengths of the time from the beginning of the earliest reserved interval
to the end of the latest reserved interval in Ri before and after Ri is updated. When
a new task Tt arrives, we make a reservation for Mt in the reservation list Ri if the
deadline of T is in the interval Ii. This reservation is done by reverse scheduling Mt
in the gaps between the reserved intervals in Ri. Let A1 be the increase in the length
of the time interval from beginning of the earliest reserved interval and the end of the
latest reserved interval in Ri due to this new reservation. We subtract A1 from P(i)
and subtract mt from all elements P(k), where d > di.

We note that at any time t when P(i) <_ t, the beginning of the reservation list Ri
is reached. This fact means that all the time from the current time to the beginning
t of the first gap in the reservation list Ri is reserved for mandatory tasks and the
processor does not have time to execute any optional tasks in this interval. The ready
mandatory tasks are scheduled on the EDF basis in the interval between the current
time and tI.

We use a binary-tree priority queue, the same as the one used in the OAR al-
gorithm, to store the u + 1 reservation-array elements. This time we do not need a
priority-queue hierarchy. The total run time for updating the reservation lists and the
reservation array is O(n log n) because the reservation for each on-line task is made
in one reservation list. Therefore, the run-time of the ORA algorithm is O(n log n).

6. Summary. in this paper, we examined the on-line scheduling problem in the
imprecise computation model to minimize total error. There are four different cases
to be considered. We proposed three algorithms that are solutions of these four cases.
Two of these algorithms have time complexity O(nlogn), and the other has time
complexity O(n log’n).

The algorithms described here are greedy in that they try to schedule as much of
each optional task as possible. We have shown that this strategy leads to schedules
whose total errors are as small as possible. However, when trying to finish more
optional tasks with earlier deadlines, the execution of some mandatory tasks with
later deadlines may be postponed. This is the main cause of suboptimality of these
algorithms in terms of the chance to produce feasible schedules of arbitrary task
systems. They are optimal only when the given task system satisfies the feasible
mandatory constraint. In this paper, we assumed that tasks have identical weights.
A paper for the weighted version of this problem is in preparation.

ON-LINE SCHEDULING OF IMPRECISE COMPUTATIONS 1121

REFERENCES

[1] K. J. LIN, S. NATARAJAN, W. S. LIU, AND T. KRAUSKOPF, Concord: A system of imprecise
computations, in Proc. 1987 IEEE Compsac, IEEE Press, Piscataway, NJ, 1987, pp. 75-81.

[2] J.W.S. LIU, K. J. LIN, AND S. NATARAJAN, Scheduling real-time, periodic jobs using imprecise
results, in Proc. 8th IEEE Real-Time Systems Symposium, IEEE Press, Piscataway, NJ,
1987, pp. 210-217.

[3] J. Y. CHUNG AND J. W. S. LIU, Performance of algorithms for scheduling periodic jobs to
minimize average error, in Proc. 9th IEEE Real-Time Systems Symposium, IEEE Press,
Piscataway, NJ, 1988, pp. 142-151.

[4] J. W. S. LIU, K. J. LIN, W. K. SHIH, A. C. Yu, J. Y. CHUNG, AND W. ZHAO, Algorithms for
scheduling imprecise computations, Comput. Magazine, 24 (1991), pp. 58-68.

[5] W. K. SHIH, J. W. S. LIU, AND J. Y. CHUNG, Algorithms for scheduling imprecise computations
with timing constraints, in Proc. 10th IEEE Real-Time Systems Symposium, IEEE Press,
Piscataway, NJ, 1989, pp. 12-19; SIAM J. Comput., 20 (1991), pp. 537-552.

[6] J. BLAZEWICZ AND G. FINKE, Minimizing mean weighted execution time loss on identical and
uniform processors, Inform. Process. Lett., 24 (1987), pp. 259-263.

[7] A. L. LIESTMAN AND R. n. CAMPBELL, A fault-tolerant scheduling problem, IEEE Trans.
Software Engrg., SE-12 (1986), pp. 1089-1095.

[8] E. K. P. CHONG AND W. ZHAO, Performance evaluation of scheduling algorithms for impre-
cise computer systems, Technical Report, Department of Computer Science, University of
Adelaide, Adelaide, SA, Australia, September 1988.

[9] , User controlled optimization in task scheduling for imprecise computer systems, Tech-
nical Report, Department of Computer Science, University of Adelaide, Adelaide, SA,
Australia, October 1988.

[10] J. Y-T. LEUNG, T. W. TAM, C. S. WONG, AND G. H. YOUNG, Minimizing mean flow time
with error constraints, in Proc. 10th IEEE Real-Time Systems Symposium, IEEE Press,
Piscataway, NJ, 1989, pp. 1-11.

[11] E. L. LAWLER AND J. M. MOORE, A functional equation and its application to resource allo-
cation and scheduling problem, Management Sci., 16 (1969), pp. 77-84.

[12] S. BARUAH, G. KOREN, D. MAO, B. MISHRA, A. RAGHUNATHAN, L. ROSIER, D. SHASHA,
AND F. WANG, On the competitiveness of on-line real-time task scheduling, in Proc. 12th
IEEE Real-Time Systems Symposium, IEEE Press, Piscataway, NJ, 1991, pp. 106-115.

SIAM J. COMPUT.
Vol. 25, No. 6, pp. 1123-1143, December 1996

1996 Society for Industrial and Applied Mathematics
001

KOLMOGOROV COMPLEXITY AND INSTANCE COMPLEXITY OF
RECURSIVELY ENUMERABLE SETS*

MARTIN KUMMERt

Abstract. The way in which way Kolmogorov complexity and instance complexity affect prop-
erties of recursively enumerable (r.e.) sets is studied. The well-known 2 logn upper bound on the
Kolmogorov complexity of initial segments of r.e. sets is shown to be optimal, and the Turing degrees
of r.e. sets which attain this bound are characterized. The main part of the paper is concerned with
instance complexity, introduced by Ko, Orponen, SchSning, and Watanabe in 1986, as a measure of
the complexity of individual instances of a decision problem. They conjectured that for every r.e.
nonrecursive set, the instance complexity is infinitely often at least as high as the Kolmogorov com-
plexity. The conjecture is refuted by constructing an r.e. nonrecursive set with instance complexity
logarithmic in the Kolmogorov complexity. This bound is optimal up to an additive constant. In
the other extreme, the conjecture is established for many classes of complete sets, such as weak-
truth-table-complete (wtt-complete) and Q-complete sets. However, there is a Turing-complete set
for which it fails.

Key words. Kolmogorov complexity, instance complexity, recursively enumerable sets, complete
sets

AMS subject classifications. 03D15, 03D32, 68Q15

1. Introduction. In recent years, ideas from Kolmogorov complexity have turned
out to be of central importance for both foundations and applications, as witnessed
by the textbooks of Calude [3] and Li and Vitnyi [10].

Intuitively, Kolmogorov complexity measures the "descriptional complexity" of a
string x. It is defined as the length of the shortest program that computes x from
the empty input. Accordingly, the Kolmogorov complexity of initial segments of a
set A is considered as a measure of the "randomness" of A. It is well known that for
recursively enumerable (r.e.) sets, the Kolmogorov complexity of initial segments of
length n is bounded by 2 log n. We show that this bound is optimal and characterize
the Turing degrees of r.e. sets which attain this bound as the array nonrecursive
degrees (a proper subclass of the r.e. nonrecursive degrees), introduced by Downey,
Jockusch, and Stob [5]. This characterization yields a curious "gap phenomenon"" in
every r.e. Turing degree, either we find an r.e. set which attains the 2 log n bound or,
for all of its r.e. sets and every e > 0, the Kolmogorov complexity is almost always less
than (1 + e)log n. This bound is tight because, by a result of Meyer and Chaitin, if
the Kolmogorov complexity is always less than log n + O(1), then the set is recursive.

Ko, Orponen, SchSning, and Watanabe [9, 14] have recently introduced the notion
of instance complexity as a measure of the complexity of individual instances of A.
Informally, ic(x A), the instance complexity of x w.r.t. A, is the length of the shortest
total program which correctly computes XA(X) and does not make any mistakes on
other inputs but is permitted to output "don’t know" answers. It is easy to see that
the Kolmogorov complexity of x is an upper bound for the instance complexity of x
(up to a constant). A set A has hard instances if for infinitely many x’s the instance

Received by the editors June 1, 1994; accepted for publication (in revised form) February 2, 1995.
A preliminary version of this paper appeared under the title "The instance complexity conjecture" in
Proc. 10th Annual Conference on Structure in Complexity Theory, IEEE Computer Society Press,
Los Alamitos, CA, 1995, pp. 111-124.

Institut fiir Logik, Komplexitt, und Deduktionssysteme, Universitt Karlsruhe, D-76128 Karls-
ruhe, Germany (kummer@ira.uka.de).

1123

1124 M. KUMMER

complexity of x w.r.t. A is at least as high as the Kolmogorov complexity of x (up to
a constant which may depend on A), i.e., the trivial upper bound is already optimal.

Orponen et al. conjectured in [13, 14] that every r.e. nonrecursive set has hard in-
stances (the instance-complexity conjecture (ICC)). Buhrman and Orponen [2] proved
ICC for m-complete sets. Tromp [16] proved that the instance complexity of x
w.r.t, any nonrecursive set A is infinitely often at least logarithmic in the Kolmogorov
complexity of x, but this lower bound was believed to be far from optimal.

However, we show that there is indeed an r.e. nonrecursive sets A with ic(x A _<
log C(x)+O(1) for all x. This also establishes the first counterexample to the ICC and
shows that the border between the instance complexity of recursive and nonrecursive
sets is at log C(x) instead of C(x). Since our construction places a lot of restrictions
on A, the question arises of whether the ICC still holds for all complete sets even
w.r.t, weak reducibilities.

We answer this positively by showing that the ICC holds for all weak-truth-table-
complete (wtt-complete) sets and all Q-complete sets, i.e. it holds for all reducibilities
stronger than Turing reducibility. However, we show that it fails for some Turing-
complete set. In fact, we construct an effectively simple set for which it fails. (It
is known that every effectively simple set is Turing complete.] Since every strongly
effectively simple set is Q-complete, it follows that the ICC holds for all strongly effec-
tively simple sets but not for all effectively simple sets, i.e., we have obtained a very
close separation. In addition, we show that the ICC holds for all hyperhypersimple
sets (which are known to be neither Q-complete nor wtt-complete).

We also investigate a weak version of instance complexity, where programs may
not halt instead of giving "don’t know" answers. We show that this yields a much
stronger notion of "hard instances," e.g., while all c-complete sets still have hard
instances in this stronger sense, this no longer holds for d-complete sets.

The resource-bounded version of instance complexity is also well studied; we
refer the reader to [2, 7, 8, 14]. It seems that in this setting, the (suitably adapted)
ICC is likely to hold, e.g., in [7], the ICC is proved w.r.t, polynomial-space-bounded
computations; however, it is also shown that the polynomial-time-bounded version of
the ICC is oracle dependent.

2. Notation and definitions. Our notation generally follows that of Li and
Vitnyi [10]. For p E {0, 1}*, l(p) denotes the length of p; e is the empty string. We
write log(x) for log2(x). We use the special symbol _[_ to denote the "don’t know"
output. XA is the characteristic function of A. We identify A/" and {0, 1}* via the
canonical correspondence as in [10, p. 11]. For the convenience of the reader, we
recall some recursion-theoretic notions that are used later; for background, see the
textbooks of Odifreddi [12] and Soare [15].

i is the ith function in a standard enumeration of all partial recursive functions
of one argument. If is partial recursive, then (x) denotes the result, if any,
of performing s steps in the computation of (x). f(x) means that f is defined
on x and f(x) T means that f is undefined on x. dom(f) {x f(x) } and
range(f) {f(x):x e dom(f)}. Wi dom(i) is the ith r.e. set. K {e: (e) }
is the halting problem. If A is an r.e. set, then A denotes the set of elements
enumerated into A before step s in some fixed recursive enumeration of A. D denotes
the nth finite set in a canonical enumeration of all finite sets.

In addition to the well-known m-reducibility (<,), truth-table reducibility (<tt),
and Turing reducibility (<T) we also consider the following. Q-reducibility: A <c2 B
if there is a recursive function f such that x A = Wj() c_ B. wtt-reducibility:

KOLMOGOROV COMPLEXITY AND INSTANCE COMPLEXITY 1125

A <_wtt B if there is a recursive function g and a Turing reduction q) such that A B
and in the computation of (I)B, on input x, all queries are less than g(x). Positive
reducibility: A <_p B if there is a recursive function f such that x

Df(x) A Dy C_ B]. Disjunctive reducibility: A <d B if there is a recursive function

f such that x A :> Df(x) N B O. Conjunctive reducibility: A <c B if there is a
recursive function f such that x A :> Df(x) C_ B.

A sequence {Ui}ieH of finite sets is a strong array if there is a recursive function

f such that Ui Df(i). A sequence {Ui}iH of finite sets is a weak array if there
is a recursive function f such that Ui Wf(i). An array is disjoint if its members
are pairwise disjoint. An r.e. set A is hypersimple if there is no disjoint strong array
{Ui}iar such that A C Ui 0 for all i. An r.e. set A is hyperhypersimple if there is
no disjoint weak array {U}i such that A C U 0 for all i.

After these preliminaries, we now turn to the central definitions of Kolmogorov
complexity and instance complexity.

DEFINITION 2.1 (Chaitin, Kolmogorov, Solomonoff). For any partial recursive
mapping U" {0, 1}* x {0, 1}* -- {0, 1}* U{_l_} and any x {0, 1}*, we define Cv(x)
min{/(p) U(p, e) x}, the Kolmogorov complexity of x in U. If no such p exists,
then Cu(x)

It is helpful to think of U as an interpreter which takes a program p and an input
z and produces the output U(p, z)

Instance complexity was introduced in [9] in order to study the complexity of
single instances of a decision problem.

DEFINITION 2.2 ((Ko, Orponen, SchSning, Watanabe 1986)). Let A c_ {0, 1}*. A
function f" {0, 1}* -- {0, 1,_1_} is called A-consistent if If(x) XA (X) V f(x) _l_ for
all x dom(f)]. The instance complexity ofx w.r.t. A in U is defined as icv(x A)
min{/(p) ;z. U(p, z) is a total A-consistent function such that U(p, x))tA(X)}. If
no such p exists, then icv(x A)

If we drop the requirement that ;z. U(p, z) is total in the definition of icv, then
we obtain a weaker notion of instance complexity, which we denote by icv(x A).
Note that icv(x’A) <_ icv(x’A) for all x and A.

It is well known (see [10]) that there exist "optimal" partial recursive functions V
such that for every partial recursive mapping U, there is a constant c with Cv(x) <_
Cv,(x) + c, icv(x A) <_ icv,(x A) + c, and icv(x A) _< icv,(x A) + c for all x and
A.

For the following, we fix an optimal mapping U and write C(x), ic(x" A), and
ic(x" A) for Cv(x), icv(x A), and icv(x A), respectively. We also write Us(p, z) for
the result, if any, after s steps of computation of U with input (p, z). CS(x) denotes
the approximation to C(x) after s steps of computation (i.e., with Us in place of
U in the definition of C(x)). Clearly, CS+l(x) <_ CS(x) and Ct(x) C(x) for all
sufficiently large t.

The instance complexity of x can be bounded by the Kolmogorov complexity of x
in the sense that for every set A, there is a constant c such that ic(x" A) <_ C(x) + c
for all x. Informally, x is a hard instance of A if this upper bound is also a lower
bound. This was the motivation for the following definition (which is independent of
the choice of the optimal U).

DEFINITION 2.3 (Ko, Orponen, SchSning, Watanabe 1986). A set A has hard
instances if there is a constant c such that

ic(x A) > C(x)-c for infinitely many x’s.

126 M. KUMMEP

If the condition holds with ic in place of ic, we say that A has hard instances w.r.t.
lC.

Remark. The difference between ic and ic is perhaps best explained by an example.
Suppose that A is an r.e. set and we want to define a program p such that it witnesses
ic(x" A) <_ IPl for all x with C(x) < n. Since p has to be total, we have to define
it for every input z at some step s. If z already appears in As, there is no problem;
we set U(p, z) 1. If z has not yet appeared and CS(z) >_ n, we could try to define
U(p, z) _[_, but this can later become incorrect if it turns out that C(z < n. If we
set U(p, z) 0 and z later appears in A, then p is also incorrect.

In the case of ic, we have more freedom. We may leave U(p, z) undefined until
C(z) < n at some stage s. If this never happens, then V(p,z) is undefined and
C(z) >_ n, which is fine. Still, the second source of error remains. If C(z) < n and z
has not yet appeared in A at stage s, we have to define U(p, z), and the best we can
do is to set U(p, z) 0. However, this may later turn out to be incorrect.

3. A version of Barzdins lemma. In this section, we consider the Kolmogorov
complexity of initial segments of r.e. sets. For A C_ Af and n EAf, we write XA n
for the string XA (0)... XA (n)

Let us first recall what was previously known. The uniform complexity of a string
bl bn of length n is defined as

C(cr; n)= min{l(p)’U(p, m)= bl... bm for all rn <_ n}.

We write C(XA; n) for C(XA (n- 1); n). Barzdin (see [1]; see also [10, Thin. 2.18])
characterized the worst case of the uniform complexity of r.e. sets:

(i) For every r.e. set A, there is a constant c such that for all n, C(XA; n) <_
log n + c.

(ii) There is an r.e. set A such that C()iA; n) >_ log n for all n.
Let us now look at the standard Kolmogorov complexity C(XA n). Utilizing a

result of Meyer [11, p. 525], Chaitin proved that if there is constant c such that for
all n, C(XA n) <_ log n + c, then A is recursive [4, Thm. 6], [10, Exercise 2.43].

For every r.e. set A, there is a constant c such that C(XA n) _< 2 log n + c for
all n (see [10, Exercise 2.59]). On the other hand, there is no r.e. set A such that
C(XA In) _> 2 log n- O(1) for all n. This follows from the argument in [10, Exercise

In [10, Exercise 2.59], it is stated as an open question (attributed to Solovay)
whether the upper bound 2 log n is optimal. The following result shows that this
is indeed the case. For ease of conversation, we say that A is complex if there is a
constant c such that C(XA n) 2 log n- c for infinitely many n EAf.

THEOREM 3.1. There is an r.e. complex set.
Proof. Let to 0, tk+l 2tk, and Ik (tk, tk+l] for all k 0. (I) is a sequence

of exponentially increasing half-open intervals.
_t+ (i-tk+l) andg(k)=max{/’2t+-l<f(k)}. Note thatLet f(k) i=t+

f(k) gt+(1 -o(1)) and g(k) 21ogtk+ 2- o(1), for k . We enumerate
an r.e. set A in steps as follows.

Construction:
Step 0: Let A0 0.
Step s + 1" Let As+l As. For k 0,..., s do the following" if C(XAs n) <_

g(k) for all n Ik, then enumerate min(A N Ik) into As+.
End of Construction.

KOLMOGOROV COMPLEXITY AND INSTANCE COMPLEXITY 1127

Let A U>oAs. Suppose for the sake of contradiction that C(XA n) <_ g(k) for
all n I. Then we eventually enumerate every n I into A. Note that for fixed n,
there are at least n-tk + 1 different strings r XA n with l(a) n+ 1 and C(a) <_
g(k). (The suffix of XA n runs through lxO-t-x for x 0,...,n- ta.) Thus
there are at least f(k) many different strings which all have Kolmogorov complexity
at most g(k). This contradicts the fact that f(k) > 2g()+ 1.

Therefore, for every k, there exists n I with C(XA n) > g(k), i.e., C(XA
n) > g(k) >_ 21ogn- 2- o(1). Thus A is complex. []

We now characterize the T-degrees of r.e. complex sets. Downey, Jockusch, and
Stob [5] introduced the notion of an array nonrecursive set. This captures precisely
those r.e. sets that arise in multiple-permitting arguments. In [5, 6], several other
natural characterizations of this degree class are given.

An r.e. set A is called array nonrecursive w.r.t. {Fk}kV if

(Ve)(Bk)[W n Fk A n F].

Here {Fk }ken; denotes a very strong array. This means that {Fk }ke is a strong array
of pairwise-disjoint sets which partition Af and satisfy[Fkl < IFk+l for all k

An r.e. set is array nonrecursive if it is array nonrecursive w.r.t, some very strong
array {Fk}ke. A T-degree is called array nonrecursive if it contains an r.e. array
nonrecursive set. Not every r.e. nonrecursive T-degree is array nonrecursive [5, Thm.
2.10].

THEOREM 3.2. The T-degrees containing an r.e. complex set coincide with the
array nonrecursive T-degrees. In addition, if A is r.e. and not of array nonrecursive
T-degree, then for every unbounded, nondecreasing, total recursive function f, there
is a constant c such that

C(XA n) <_ log n + f(n) + c for all n Af.

Proof. Note that in order to mke A complex, it suffices to perform the con-
struction from Theorem 3.1 for infinitely mny intervals. Suppose that A is rray
nonrecursive w.r.t. {Ik}ker, and fix an enumeration {A}e of A. We modify the
construction of Theorem 3.1 and enumerate an auxiliary r.e. set B as follows. If in
step s + 1, C(XA n) <_ g(k) and B n Ik A n Ik, then enumerate min(As n Ik)
into B+.

By hypothesis on A, there re infinitely many k’s such that A Ik B n Ik. By
the proof of Theorem 3.1, this implies that A is complex. In [5, Thm. 2.5], it is shown
that every array nonrecursive T-degree contains a set A which is array nonrecursive
w.r.t. {Ik}keAf; thus it contains n r.e. complex set.

For the converse, we use [5, Thin. 4.1]. It states that if A is r.e. and is not of array
nonrecursive T-degree, then for every total function g <_T A, there is a total recursive
approximation -(x,s) such that lim (x, s) g(x) and I{s "-(x,s) # (x, s+l)} <_ x
for all x G Af. Informally, g(x) can be recursively approximated with at most x mind
changes. In [5], this is stated only for 0/1-valued g, but their proof provides the more
general version.

Let A be r.e. and not of array nonrecursive T-degree. Assume that we are given
any total recursive, nondecreasing, unbounded function f. Let re(x) 1 + max{n
f(n) <_ x}; rn is total recursive. Let g(x) XA re(x). Since g is recursive in A,
there is a total recursive approximation y(x, s) as above.

How can we describe XA n? Given n, we compute n’ min{x "re(x) > n}.
Then we simulate (n’, s) until it outputs g(n’), which gives us XA n. In order

1128 M, KUMMER

to perform the simulation, we only need to know the exact number k n of mind
changes of "(n’, s). Thus)A n is specified by the pair (k, n/, which can be encoded
by a string of length logn+21og(k+ 1) +O(1). Since m(k-1) _< n, we have f(n) >_ k
by the definition of m. Thus we get

C(XA n) <_ log n + 2 log(k + I) + O(1) <:_ log n + f(n) + O(1).

This completes the proof of the theorem.
Note that Theorem 3.2 entails the following curious gap phenomenon. For every

r.e. T-degree a, there are only two cases..
1. There is an r,e. set A E a such that (n)[C(XA n) >_ 21ogn O(1)].
2. There is no r.e. set A e a and > 0 such that (n)[C(xA n) >_ (1 +

e) !ogn O(1)].
4. The ICC fails. In this section, we determine the least possible instance com-

plexity of r.e. nonrecursive sets. Here it is convenient to take A as a subset of {0, 1 }*.
Clearly, if A is recursive, then ic(x :A) is bounded by a constant for all x. The next
result (another gap theorem) shows that for infinitely many x, ic(x A) must be at
least logarithmic in C(x) if A is nonrecursive.

THEOREM 4.1. If ic(x A) __. log C(x) 1 for almost all x, then A is recursive.
Proof. Let Pk {0, 1} <-k and let 7)(Pk) denote the set of all subsets of P.

Uniformly in k, we enumerate a finite set B C_ {0, 1}*.
Construction:

Step 0: Let Sk 7)(Pk) and Bk .
Step n + 1: Search via dovetailing for I S, x {0, 1}*, and s iV" such that

Us(p, x) = A. for all p I. If such an I is found, then enumerate x into Bk, remove I
from Sk, and go to step n + 2.
End of Construction.

Note that Bk is nonempty since I = trivially satisfies the condition for all x and
s. Also, at most [P(Pk)[21Pkl elements are enumerated into Bk and Bk is uniformly
r.e, Thus there is a partial recursive function b" {0, 1}* {0, 1}* {0, 1}* such that
b({0, 1} [Pkl e) = Bk for all k. In particular, C(x) <_ IPkl----- 2k+l 1 for all x Bk.
Choose a constant c such that C(x) <. C(x) + c for all x.

Let A C_ {0, 1}* be given and suppose that ic(x’ A) log C(x)- 1 for almost
all x. Then ic(x’ A) <_ log(C(x) + c) 1, so ic(x’ A) _< log C(x) for almost all x.
Since [log C(x)J _< [log(2k+l 1)J = k for all x Bk, we can choose k large enough
such that for all x Bk, we have ic(x A)

__
k.

Thus for each x e B, there is p 6 P such that Az. U(p, z) is a total A-consistent
function with U(p, x) = XA(X). Let Io {p e Pk Az. U(p, z) is a total A-consistent
function}. This set is nonempty since Bk is nonempty.

Now consider the construction of Bk. Note that I0 cannot be removed from Sk.
Otherwise, there exists x e Bk such that C(x) _< 2+l 1 and U(p,x) = A_ for all
p I0, i.e., ic(x A) > k, contradicting the choice of k. Since I0 is never removed
from Sk, it follows from the construction of Bk that for every x, there is p I0 with
U(p,x) XA(X). Thus if we amalgamate all of the functions U(p,-) with p I0, we
get a recursive characteristic function of A, i.e., A is recursive.

We prove that the lower bound of Theorem 4.1 is tight even for r.e, nonrecursive
sets. This refutes the ICC of Orponen et al. [13, 14], [10, Exercise 7.41], which states

i’his result was previously obtained by Tromp [161,

KOLMOGOROV COMPLEXITY AND INSTANCE COMPLEXITY 1129

that every r.e. nonrecursive set has hard instances. In contrast, our result together
with Theorem 4.1 shows that the true threshold between the instance complexity of
recursive and nonrecursive sets is log C(x) instead of C(x).

THEOREM 4.2. There is an r.e. nonrecursive set A and a constant c such that

ic(x" A) <_ logC(x) + c for all x.

Proof. It suffices to construct an r,e. nonrecursive set A and a partial recursive
function such that ic(x A) <__ log C(x) + 2 for almost all x. In the following, we
write Cp for Az. (p, z).

Let Ek {x C(x) < 2k 2} for k

_
1. We want to establish that ic(x A) _< k

for all x E Ek. Let M {Pk,l,...,Pk,2k-2} denote the set of the first 2k 2 strings
of length k. The idea is that every Cpk, is A-consistent and for each x Ek there is
p M such that Cp witnesses that ic(x A) _< k. There is, however, some difficulty
in combining this with the requirement of making A nonrecursive.

The basic idea to satisfy the latter requirement is as follows. For each e >_ 1, we
establish a unique diagonalization value de and then wait until de is enumerated into
We; if this ever happens, we enumerate de into A. Here we interpret We as a set of
strings. Hence this strategy makes sure that A is not r.e., so A is an r.e. nonrecursive
set.

Suppose that de appears in Ek before it appears in We. If we define -)Pt,i (de) = 0
for some i, then since Cp, should be A-consistent, we can no longer enumerate de
into A. This threatens our diagonalization strategy. On the other hand, we should
certainly make sure that ice(de A) _< k.

This conflict is solved by a finite-injury priority argument"
If e >_ k and we are forced to define)Pk,i (de) 0, then we assign a new, much

larger value to de and try to diagonalize at this new value. Note that de is changed
only finitely often because there are only finitely many values which may appear in Ek
for some k

_
e. Thus the value of de eventually stabilizes and the eth diagonalization

strategy goes through with this final value.
If e < k, then we do not use Cp, to ensure that ice(de A) <_ k. Thus we define

Cp,i(de) +/-, which certainly maintains the A-consistency. Instead, we will have two
special programs Te,1 and Te,2 of length e (which are not in Me; this is the reason why
we have left out two strings) to witness that ice(de A)

_
e < k. More precisely, if

the final de-value is not enumerated into A, then ere.1 will be the correct function. If
the final de-value is enumerated into A, then e,1 will not be A-consistent, but r,2
is used as a backup function.

It remains to explain how only IMI many programs can take care of all of the
elements in Ek, which may be up to 2IMkl 1 many. We show in an example how
two programs pl and p2 can take care of 3 22 1 elements. (For simplicity, we
drop the distinction between numbers and strings.) At the beginning, Cp and p2 are
undefined. Now in step s, the first element x < s appears. We let Cp (x) XA(X)
for all x _<: s. In the following steps s, we define Cp (s) +/- until the second element
x appears, say at step s2 :> x2. If x2 <:_ sl, we do nothing. If x2 > s, then we define
Cp2 (x) XA(X) for all x <_ s2, and in the following steps t, we define p2 (t) +/-. The
point is that Cp. also takes care of x; thus we suspend the definition of Cp until a
third element x3 appears at step s3 > x3. If x3 :> s, then we resume the definition of
pl and let pl (x) XA (x) for all s2 <: x <_ s3. For arguments t > s3, we define both
functions to be equal to +/-. Note that now p and P2 together take care of x, x2, and
x3.

1130 M. KUMMER

This idea is easily generalized. Let succ(a) denote the lexicographical successor
of a, i.e., if a bl... bn 1n, then succ(a) 0-1 lb+.., bn, where min{j bj
0}. For example, succ(m) (000) for m 0,..., 7 yields the sequence 000, 100, 010, 110,
001, 101, 011, 111. The programs Pk, E Mk with SUCC(m)(oIMkl)(i) 1 take care if
exactly m elements are enumerated into E. For example, the first three elements are
handled by p, and pk,2, the first four by Pk,3, the first five by Pk,1 and Pk,3, etc. (In
the implementation below, we count only those elements which are not de-values for
some e < k.) Note that since m _< 2 IMkl 1, succ is never applied to 11MI.

We now turn to the detailed implementation. First, we fix some additional nota-
tion and conventions. Let (-,-/denote a recursive pairing function which is increas-
ing in its second argument. We assume that elements of E are enumerated in steps
such that in each step, at most one new element is enumerated; also, if x is enumer-
ated in step s, then l(x) < s. We,s is the finite set of strings which are enumerated
into W in at most s steps of computation.

In the construction, the variables e, i, j, k, n, s, and t denote numbers and p, x,
and z denote strings. In addition, the following variables are used: p,s is the finite
portion of)p constructed up to stage s; the ith bit of ak,s {0, 1} IMI tells us whether
Cp,i is currently assigned to take care of the elements in E; len(k, s) is the greatest
length n such that our setup at stage s guarantees that ic(x A) _< log Cs (x) + 2 for
all x Ek,s with l(x) < n; d(s) is the current value of the eth diagonalization point.
We call e "active" as long as no d-value has been enumerated into A; otherwise, we
call e "passive." Therefore, if e is "passive," then we know that we have explicitly
satisfied the eth diagonalization requirement. As denotes the finite set of elements
which have been enumerated into A up to stage s.

Let R(k, s) {d(s’) e < k A s’ _< s}. As explained above, the programs in Mk
do not need to take care of the elements in R(k, s).

If one of the variables v(s) is not explicitly changed at stage s + 1, then we assume
without further mention that v(s + 1) v(s).

We first describe the construction of Cp for p M, k >_ 1. Then we define Cp
for the two special values p Tc,, ’,2 of each length e.

Construction:
Stage 0: Let)p /X. for all p e {0, 1}*. For all k >_ 1" ak,o OIMkl; len(k, 0)

0; d(0) 0(’); declare k to be "active." Let A0
Stage s + 1"
Case I: s is even.
For e 0,..., s, if e is active and d(s) e W,s As, then enumerate d(s) into

A and declare e "passive."
Case II: s is odd, s 2(k, t} + 1.
Let Cp, (x) _l_ for all with ak,s(i) 1 and all x with l(x) t.
If a new element x, l(x) < t, enters Ek after exactly t steps, then act according

to the following cases:

(a) If x e R(k, s) or l(x) < len(k, s), then go to stage s + 2.

(b) Otherwise, do the following:
Let ak,s+ succ(ak,s) and min{j ak,s+(j) 1}. (At most 21Mkl_ 1

elements are enumerated in Ek, so we get
Let n min{l(z)’z dom(p,i)}.
Define Cp, (z) XAs (z) for all z R(k, s) such that n <_ l(z) <_ t.

KOLMOGOROV COMPLEXITY AND INSTANCE COMPLEXITY 1131

Let epk, (z)= _L, for all z E R(k, s) such that n <_ l(z) <_ t.
Let len(k, s + 1) t + 1. For all active e
Go to stage s + 2.

End of Construction.

For each e >_ 1, we define

[0 ifx e range(de);(x)
[otherwise.

If e is active at all stages, then let
stage where e is declared "passive" and let

Ax. ’. Otherwise, let se be the (unique)

0
l,

if (3t < se)[x de(t)

otherwise.

Verification. Most of the following claims are standard. The crucial one is Claim

CLAIM 1. For all e >_ 1, we have the following:
(a) l(de) is nondecreasing, and for all s, if de(s) de(s+1), then l(de(s+l)) > s.

(b) range(de) is a uniformly recursive finite set; range(de) n range(de,) 0 for
all e’ e.

(c) If A range(de) contains an element x, then x lims__,de(s).
(d) For all x and s, if l(x) <_ s and, for all e, x de(s), then x de(s’) for all e

and all s > s.

(e) A is r.e. and nonrecursive.

Proof. (a) If de(s) de(s+ 1), then for some s <_ s, l(de(s)) (e, st} < (e, s+ 1}
l(de(s + 1)). Note that (e, s + 1} > s since (-,-} is monotone in the second argument.

(b) It follows from (a) that range(de) is uniformly recursive. It is a finite set
because de(s) changes only if a new element is enumerated in some set Ek, k < e,
which happens only finitely often. Thus lims_ de(s) exists and is finite, range(de)
and range(de,) are disjoint for e - e’ since (-,-} is injective.

(c) If de(s) is enumerated into A at stage s + 1, then e is declared "passive," so

de(s) is fixed at all later stages.
(d) This follows from
(e) Clearly, A is r.e. Suppose for the sake of contradiction that A is recursive.

Then there exists e with A We. By (a) and (b), there is a stage s such that
de(s’) de(s) for all s’ >_ s. By construction, de(s) is enumerated into A iff it is
enumerated into We. This contradicts the hypothesis A We.

CLAIM 2. For all e >_ 1, we have the following:
(a) ,1 and r,2 are uniformly partial recursive.
(b) If e is always "active," then ,1 witnesses that ic(x A) <_ e for all x

range(de).
(c) If e is eventually "passive," then , witnesses that ic(x A) <_ e for all

x range(de).
Proof. (a) This follows from Claim l(b).
(b) If e is always "active," then range(de) N A 0; thus ,1 is A-consistent and, (x) 0 XA (x) for all x range(de).
(c) If e is declared "passive" at stage s + 1, then A C range(de) {de(s)}. Thus, is A-consistent and ,. (x) XA(X) for all x range(de).

1132 M. KUMMER

Let denote the finite portion of defined at the end of stage s.

CLAIM 3. For all s 2(k, t} + 1, we have the following:
(a) For all i, 1 <_ <_ IMI, , is an A-consistent function.
(b) For all 1 < < IMI if a,+(i) 1 then dom(/+) {x l(x) < t}.Pk,i

(c) For all x, l(x) < len(k, s + 1), g x R(k, s), then there exists i, 1 M],
with a +(i) 1 and /+(x) XA+ (x)Pk,i

Proof. (a) We use Claim l(d) and the fact that Cp, is defined at stage s + 1 only
for arguments less than s. If e < k and Cp, (d(s’)) is defined, then Cp, (d(s’))
so there is no problem with consistency. If e k and Cp,(d(s’)) XA+ (d(s’))
is defined at stage s + 1 > s’, then either e is already "passive," so XA+ (d(s’))
XA(d(s’)), or e is "active" and we define d(s+l) at stage s+l such that l(d(s+l))
l(d(s’)). In the latter case, we get Cp,(d(s’)) XA+ (d(s’)) XA(d(s’)) O.

(b) and (c) are shown by induction on s. Consider stage s + 1 2(k, t} + 2. If
no new element is enumerated in Ea after exactly t steps, then aa,+ a, and (b)
and (c) follow from the induction hypothesis and the definition of Cp, at stage s + 1.

Now assume that x enters E after exactly t steps. If case (a) occurs, the claim
follows from the induction hypothesis. If case (b) occurs, we have x R(k, s) and
len(k,s) l(x) < t. We have a,+ succ(a,), so a,+(i’) aa,(i’) for all
i’ > i= min{j a,+l(j) 1}.

If a,+ (i’) 0 for all i’ > i, then s + 1 is the first stage s’, where a,,(i) 1.
This means that ; x. T nd b+(z) XA (z) XA+ (z) for all z such that

wPk,i

t z
If there is > with a,s+(i) 1, then there exists a greatest stage s < s

with a,s,(i) 1 A a,,+(i) 0. Then we have a,s’+(i’) aa,s+(i’) for all i’ >
and we have a,,+ (i’) aa,+ (i’) 0 for all i’ < i. By induction hypothesis, we

get for 11 x with l(x),< len(k, s’ + 1) that if x R(k, s’), then there exists j with

a,,+(j) 1 and ;(x) XA,+(x) XA(X). (The second equality holds by
p rt

Since R(k, s’) R(k, s), it only remains to consider x with len(k, s’+ 1)
len(k,s + 1) t + 1. Since a,,(i) 1, it follows by induction hypothesis that

dom(,) dom(’,) {x "l(x) < len(k,s’ + 1)}. Thus n min{/(z) z

dom(,)} len(k, s’ + 1), and t stage s + 1, we define p/s+(z), XA(Z) for all
z R(k, s) such that len(k, s’ + 1) n l(z) < t + 1 len(k, s + 1). For z e R(k, s)
and l(z) < t, we have /s+ (z) 2 This completes the proof of (b) and (c)wPk,i

CLAIM 4. Fop almost all x, ic(x A) log C(x) + 2.

Proof. Let k 1 be minimal such that x E. If x R(k, s) for some s, then
by Claim 2, we get ic(x A) < k. If x R(k, s) for all s, then let aa lim a,.
By Claim 3, there exists i, 1 [M, such that ak(i) 1 A Cp,(x) XA(X).
Furthermore, Cp, is total recursive and A-consistent, so ic(x A) k. Since

E , we have k > 1 and x E_, so 2a-1 2 C(x), i.e., k log(C(x) + 2) + 1
log C(x) + 2 for all x with C(x) 2.

What happens for ic? Of course, the ICC also fails for ic. It even fails in a much
stronger way because, in contrast to Theorem 4.1 ic can be arbitrary small, as we
now show.

THEOREM 4.3. For every recursive function f, there is an r.e. nonrecursive set
A such that

f((x" A)) <_ C(x) for almost all x.

KOLMOGOROV COMPLEXITY AND INSTANCE COMPLEXITY 1133

Proof. We may assume that f is strictly increasing. As above, it suffices to define
a partial recursive function (p,x) such that f(ic(x A)) _< C(x) for almost all x
and A is nonrecursive. This leads to the following requirements for all _> 1:

(x) [C(x) < f(i + 1) (Sp (0, 1) [X extends bp and

(P) W

These can be satisfied by an easy finite-injury construction. Fix an enumeration of
Ei {x C(x) < f(i + 1)} for all i.

During the construction, we have for each a current pi {0, 1} which satisfies
(Ni) for all x that have been currently enumerated into E. If some x with ep (x) 0
is later enumerated into A, then ep is no longer A-consistent and we have to choose
a new pi. Since we have 2 candidates for pi, we can afford 2 1 injuries.

Therefore, we are allowed to enumerate a diagonalization witness x into A at
stage s for the sake of (Pi), only if x has not yet appeared in any Ej with j _< i.
Clearly, (P) can still be satisfied. Furthermore, (N) is injured at most times. Since

<_ 2 1 for all >_ 1, every (N) will eventually be satisfied.
Remark. In the course of the construction, at most 2(i+1) 1 elements are

not allowed to be enumerated into A by (Pi). Hence we can fix in advance a set
Ji of 2$(i+1) witnesses for (Pi) and guarantee that one of them will be successful.
Therefore, we can also modify the construction and satisfy the following requirements
(P) instead of (Pi) for any fixed r.e. set B:

(P) i B : Ji A O.

Then we get B _d A. If we choose B K, this shows that there is a d-complete
set which satisfies the condition of the theorem. Since we need to enumerate at most
one element of Ji into A, we get that A <_tt() B, i.e., A is wtt-reducible to B by a
one-query reduction. Thus every r.e. wtt-degree contains a set A as in the theorem.
It can be shown that this does not hold for r.e. tt-degrees.

5. R.e. sets with hard instances. While we have shown in the last section that
the ICC fails for some r.e. nonrecursive sets, it is interesting to find out whether there
are properties of r.e. sets which imply the existence of hard instances. We consider
this question for classes of complete sets and simple sets. Indeed, in most cases, it
turns out that such sets must have hard instances, which is a partial resurrection of
the ICC.

Buhrman and Orponen [2], [10, Exercise 7.40] proved that the set of all random
strings R {x" C(x) >_/(x)} satisfies ic(x" R) >_ l(x)-O(1) for all x e R. (Actually,
their result also holds for ic instead of ic.) Using the observation

(,) If A m B via f, then ic(x "A) <_ ic(f(x)’B)+ O(1) for all x

and the fact that R is co-r.e., they concluded that every m-complete set A has hard
instances in its complement. They asked whether the hard instances can be chosen
from A instead of A. (This is, of course, impossible in the ic version.) The next result
gives a positive answer.

THEOREM 5.1. There is an r.e. set A with ic(x" A) >_ l(x) for infinitely many
xA.

Proof. Uniformly in n, we enumerate A (0, 1}n as follows. Let Xl,..., x2 be a
listing of all strings of length n in lexicographical order.

1134 M. KUMMER

Construction:
Step 0: Enumerate xl into A; let 1, I {0, 1} <-n-l, J {1,...,2n} {1}.
Step s + 1: If there is a program p E I such that
(a) Us(p, xj) e {0, 1} for some j e J or
(5) u(p, x)= +/- or n y J,

then choose the least such p, let I I- {p}, and do the following:
In case (a), enumerate xj into diff Us(p, xj) 0. Let J J- {j}.
In case (b), let min(J). Enumerate x into A and let J J- {i}.

End of Construction.

At the end of step 0, we have III IJI- 2n 1. In all later steps, an element of
I is removed iff an element of J is removed. Thus at the end of each step, we have
I IJI. Also, if case (b) occurs, then min(J) exists (since at that point, IJI > 0).
Note that the value of XA(Xj) is fixed when j is removed from J.

Let i0, I0, and J0 be the final values of i, I, and J in the above construction and
choose so such that i0, I I0, and J J0 in all steps t _> so. Suppose for the
sake of contradiction that ic(x "A) < n via p {0, 1}<-.

Ifp I0, then there is a stage s _< so whenpwas removed from I. Ifpwas
removed in case (a) via j, then U(p, xj) XA(Xj). If p was removed in case (b), then
U(p, Xo) _k. Hence p does not witness that ic(x A) < n, which is a contradiction.

If p I0, then J01 IIol _> 1 and there is t > so such that Ut(p,x) {0, 1, _l_}
for all x E J0. Hence at stage t + 1, either case (a) or (b) occurs and II0] decreases,
contradicting the choice of so.

Thus we have ic(x A) >_ n- l(xo) and clearly x A. Since this holds for
all n, the theorem is proved.

Using (*), we get the following corollary.
COROLLARY 5.2. For every m-complete set A, there is a constant c such that

ic(x A) _> C(x) -c for infinitely many x A.

This result also holds for a much weaker reducibility, as we now show.
THEOREM 5.3. For every wtt-complete set A, there is a constant c such that

ic(x A) _> C(x) -c for infinitely many x A.

Proof. Suppose that A is a wtt-complete set. We enumerate an auxiliary r.e. set
B and a uniformly r.e. sequence {E} with levi _< 2. Then there is a partial
recursive function {0, 1}* {0, 1}* -- Af such that ({0, 1},e) E. Hence
C(x) <_ n for all x E and there is a constant c, independent of n, such that
C(x <_ n + c for all x En. Thus it suffices to satisfy the following requirement for
all n:

(R) (xeENA) [ic(x’A) >_n-l].

By the recursion theorem and the fact that A is wtt-complete, we can assume
that we are given in advance the index of a wtt-reduction from B to A, i.e., a Turing
reduction (I) and a total recursive use bound g such that for all x, XB(X) A(x) and
in the computation of A(x), every query is less than g(x). (In more detail, there
are recursive functions h and k such that for all e, Wc is wtt-reducible to A via
with use bound k(c). For each e, an r.e. set B Bc is enumerated using Oh(c)
and g k(c) in the construction below. By the s-m-n theorem, there is a recursive

KOLMOGOROV COMPLEXITY AND INSTANCE COMPLEXITY 1135

function f such that B Wf(). By the recursion theorem, there is an index e0 such
that W Wf(o). Then B B is the required set.)

Each (Rn) is satisfied independently from the other requirements; therefore, for
the following, fix n and let xl In, 1},... ,x2n In, 2n}, rn max{g(xi) 1 _< _<
2n}, and I {p’l(p) < n- 1}. We enumerate E, and B N {Xl,...,x2n} in steps

2n as follows.0,...,

Construction:
Step 0: Let so 0 and E 0.
Step + 1" Search for the least s _> si such that we have the following:
(1) A8 (xj) 1 with use less than g(xj) for j 1,..., and (Ass (xj) 0 with

use less than g(xj) for j + 1,...,2n.
(2) For each x E E, there is p E I such that we have the following:

(2.1) Us(p,z) is defined for all z _< m.
(Vz < z) # +/- U (p, z)

(2.3) Us(p, x) 1.
Let si+l s. Enumerate xi+ into B and compute some y

A- As+. (Note that y exists because otherwise A(x+) 0 1 X(x+).
We can find y by enumerating A.) Let CONS be the set of all p e I which satisfy
conditions (2.1) and (2.2) for s Si+l. If U(p,y) =_1_ for all p CONS, then
enumerate y into En.

Goto step + 2.
End of Construction.

By construction, we have levi

_
2n and E c_ A. We want to argue that in some

step of the construction, the search does not terminate. Since XB A, this can
only happen if condition (2) is not satisfied for any sufficiently large s. However, this
means that ic(x" A) >_ n- 1 for some x E.

Consider the value of CONS c_ I after each terminating step. We show that a new
program enters CONS or a program is removed from CONS forever. Since there are
at most III < 2- programs which may at some point become members of CONS, it
follows that there are less than 2.2n-1 2n terminating steps, which completes the
proof.

Note that if a program p is removed from CONS ut some stage s, then there is
y such that U(p, y) 0 and XA (Y) 1. Thus p cannot enter CONS again at any
later stage.

Suppose that step + 1 terminates and consider the current value of CONS and
of y at the end of this step. There are two cases:

(a) U(p, y) _[_ for all p E CONS. Then y is enumerated into En, so in the next
step, a new program must enter CONS such that condition (2.3) is satisfied for x y.

(b) U (p, y) = _i_ for some p e CONS. Hence U8 (p, y) 0 and since XAsi+. (Y) 1,
p is removed from CONS if the next step terminates.

By a similar proof, one can show that every bounded-truth-table-complete (btt-
complete) set has hard instances w.r.t, ic. We have noted in the remark following
Theorem 4.3 that this is no longer true for d-complete sets, but we can show that it
still holds for Q-complete sets.

Recall that A is Q-complete if it is r.e. and there is a recursive function g such
that for all x,

x K , W() c_ A.

1136 M. KUMMER

See [12, p. 281] for more information on Q-reducibility.
THEOREM 5.4. Every Q-complete set A has hard instances, even w.r.t, ic.

Proof. Suppose that A is Q-complete. As in the previous proof, we enumerate an
auxiliary r.e. set B and an r.e. sequence of finite sets {En}nAf such that IEnl

_
2n.

It suices to get infinitely many n such that there is y En with i-(y A) n- 2.
By the recursion theorem and the Q-completeness of A, we may assume that we

are given in advance a recursive function g such that B _<Q A via g, i.e., for all x,
x B v W() C_ A.

The first idea is to run a version of the previous construction. We keep a number
x out of B and find y Wg() which has not yet been enumerated into A. Then we
enumerate y into E and wait until some A-consistent program p with l(p) <: n- 2
shows up and U(p, y) O. Then we enumerate x into B, which forces y into A and
diagonalizes p.

However, this approach does not work because it might happen that after we enu-
merate y into En, y is also enumerated into A, and after that, U(p, y) i is defined.
Then we cannot diagonalize p by enumerating x into B, but we have incremented
IEnl. Since this can happen an arbitrary finite number of times, we run into conflict
with the requirement IEnl <_ 2n.

Therefore, we use the following modification. For each n, if E, 0, then we
enumerate y into En only if y has been previously enumerated into En+l, and then
we proceed according to the first idea. If y is later enumerated into A, we get a
diagonalization for n + 1 instead of n, which is also fine.

Now we turn to the formal details. Let In {p" l(p) < n-2}. p E {0,1}*
is called A-consistent at stage s + 1 if, for all z _< s, either Us(p, z) is undefined or
u (p, z) (z).

We maintain the following invariant for all n, s, and y:
If E = at stage s + 1, then enumerate y into En only if P(n, s, y) holds, where

P(n, s, y) = y En+I As, En C_ As, and there is p In+ which is A-consistent
at stage s + 1 and Us (p, y) O.

As a consequence of this invariant, it already follows that]Enl <_ 2n. Suppose
that En and we enumerate y into En at stage s + 1. Then we enumerate the next
element into En only after y has been enumerated into A, and hence the program
p I+ which had witnessed the condition P(n, s, y) is diagonalized and can never
again be A-consistent. Since II+l <: 2-, it follows that we will enumerate at most
1 + 2n-1 elements into En. In particular, IEnl <_ 2n for all n.

We say that n is saturated at stage s + 1 if for every y En, there is p In
such that p is A-consistent at stage s + 1 and U(p, y) XA (Y). The goal of the
construction is to produce infinitely many n such that each of them is only finitely
often saturated. This implies at once that there are infinitely many y En with
i-(y A) >_ n- 2, and we are done.

To achieve this goal, we construct a sequence do <: d < d2 < and satisfy the
following requirements

(R) The interval Ida, d+l) contains an n which is only finitely often saturated.

The d’s are constructed by recursive approximation. The value of d may change
finitely often and eventually stabilizes. Some additional variables are needed for book-
keeping. For each i, there is a finite set T containing the set of all x’s which may be
enumerated into B for the sake of (R). For each n, we have three variables active(n),
cand(n), and source(n), active(n) is a Boolean flag which indicates if there is some

KOLMOGOROV COMPLEXITY AND INSTANCE COMPLEXITY 1137

y En- As to be enumerated into En-1; in this case, cand(n) y and source(n) x
such that x Bs and y

We say that i requires attention at stage s + 1 if one of the following conditions
holds at the beginning of stage s + 1:

(1) di+l is undefined.
(2) di+l is defined and every n [di, di+l) is saturated at stage s + 1.

Construction:
Stage 0: Let do 0, d+ =, Ti for all i. Let active(n) 0 and En 0 for

all n.
Stage s + 1: For every n such that active(n) 1 and cand(n) As let active(n)

0,
Let be the least number which requires attention at stage s + 1. If it requires

attention through (1), then let di+l s + 1.
If it requires attention through (2), we then distinguish two cases:
(a) If there is a least n (d, d+) such that active(n) 1 and En-1 C_ As, then

enumerate cand(n) into En- and let active(n) 0. If n- 1 d, then enumerate
source(n) into B; otherwise, let active(n- 1) 1, cand(n- 1) cand(n), and
source(n- 1) source(n).

(b) Otherwise, put s + 1 into T and let x min(T- Bs). Find the least s’
such that Wg(),s,- As 0 and let y min(W(x),s,- As). Let active(s + 1)
1, cand(s + 1) y, source(s + 1) x, and enumerate y into E+I.

In both cases, let T T 2 [.jy> Ty and let Tj 0 and dj =" for all j > i.
End of Construction.

It easily follows by induction on s that our invariant is satisfied. Note that before
we enumerate a new element into En- via step (a), we require that En-1 C_ As. If we
enumerate an element via step (b), then the corresponding set was previously empty.
Therefore, at each stage s + 1, every En contains at most one element which is not in
As. Now suppose that En- 0 at the end of stage s and we enumerate an element
y into En-1 at stage s + 1. Then case (a) occurred and y cand(n) As (since
active(n) 1). By the previous remarks, we have En- C_ As. Since n is saturated
at stage s + 1, there is an A-consistent p In such that Us(p, y) XA (Y) 0. Thus
P(n 1, s, y) holds.

Hence it only remains to verify that requirement (R) is satisfied for all i. This is
done by induction on i. By induction hypothesis, there is a least a stage so such that
d so is defined at stage so and no < i requires attention at any stage s > so.
At the end of stage so, we have Ed 0 and T 0. We have shown above that the
cardinality of Ed is always bounded by 2d. Hence there exists s _> so such that
Ed does not change after stage sl. Note that Ed C_ A because each time that we
enumerate y into Ed, we enumerate some x into B such that x B :> W() c_ A
and y W(x); thus we force y into A. Therefore, we can choose s large enough such
that Edi C_ As for all s _> sl.

Suppose for the sake of contradiction that requires attention infinitely often.
We will argue that at some stage s2 > sl, a new element is enumerated into Ed,
which contradicts the choice of s. There is a first stage s + 1 > sl where requires
attention through (2), If case (a) applies, let no n; if case (b) applies, let no s + 1.
Let x0 source(n0) and yo cand(n0). If y A, then there is a stage s’ > s such
that no is the least n > d with active(n) 1 and En-1 c_ As. In the following
stages, when requires attention, y will be enumerated into Eno, Eno-, Eno-2,...,
and finally into Ed, which yields the desired contradiction. If y E A, it might happen

1138 M. KUMMER

that y is enumerated into A before it arrives in Ed. Then, however, eventually a
new candidate y’ from Wg(xo) is chosen in case (2)(b), and a new attempt is started
to bring y’ into Ed. Again, it might happen that y’ is enumerated into A before it
arrives in Ed. However, this process cannot repeat infinitely often because otherwise
x0 B and hence there is some y E Wg(xo) A. This y would in some iteration be.
chosen as a candidate which cannot be enumerated into A. Therefore, at some stage
s2 + 1 > s l, some y is enumerated into Ed. Since y As2 and Ed C_ As., this implies
that Ed increases, which is a contradiction.

Thus requires attention only finitely often and (Ri) is satisfied. This completes
the proof of the inductive step. D

Recall that A is strongly effectively simple if it is a coinfinite r.e. set and there is
a total recursive function f such that for all e,

W c_ A = max(W)< f(e).

Since every strongly effectively simple set is Q-complete [12, Exercise III.6.21a], we
get the following corollary.

COROLLARY 5.5. Every strongly effectively simple set has hard instances, even
w.r.t, ic.

It is known that hyperhypersimple sets are not Q-complete [12, Thm. III.4.10],
but we can still show that they have hard instances.

THEOREM 5.6. Every hyperhypersimple set has hard instances, even w.r.t, ic.

Proof. The basic idea of this proof is similar to that of Theorem 5.4. Assume
that A is hyperhypersimple. We enumerate an r.e. sequence of finite sets {En}er
such that IE <_ 2. It suffices to get infinitely many n such that there is y E E
with (y" A) >_ n- 2.

Let I {p’l(p) < n- 2}. We initialize E {n} and may later enumerate
elements from E into E_I. This time, we ensure that at any stage s, at most two
elements of E belong to As. We never enumerate an element twice into the same
set. Furthermore, we enumerate x into En at stage s + 1 only if there is a program
p I+ which is A-consistent at stage s + 1 and Us(p,x) O.

From this invariant, it already follows that lEvi _< 2. It is easy to see by
induction on k that we enumerate the (2k + 1)st element into En at stage s + 1
only if there are at least k programs p from I+ which were A-consistent at some
previous stage nd are now diagonalized (i.e., for each such p, there is z En As
such that Us(p,z) 0). Since there are less than 2- programs in I+, it follows
that IEnl < 2" 2n- + l 2n - 1.

As in the previous proof, we say that n is saturated at stage s + 1 if for every
y E,, there is p I such that p is A-consistent at stage s+ 1 and U (p, y) XA (Y).
We want to produce infinitely many n’s which are only finitely often saturated.

To this end we construct for each e a sequence d < d < such that for each i,
]A EdTI >_ 1 or there is n E Ida, di+l) which is only finitely often saturated Suppose
we have constructed at the end of stage s an initial segment of this sequence, say

d < < dn+. Let count(n, s)]As En,sl. We extend this initial segment at
stage s + 1 only if count(d, s) >_ 1 for all <_ m. In the end, we shall be able to
argue that if the sequence is infinite, then there is a weak array which witnesses that
A is not hyperhypersimple. Thus the sequence must be finite, say d < < dm(e)+l,
and there is n Ida, dn 1) which is only finitely often saturated. Also, since the()+
strategy to extend the eth sequence is active at only finitely many stages, we cn

KOLMOGOIOV COMPLEXITY AND INSTANCE COMPLEXITY 1139

build an (e + 1)st sequence with d+1 > dn(e)+, which will also be finite and gives
us another number that is only finitely often saturated, etc.

We assign priorities as follows. The definition of the eth sequence has higher
priority than the definition of the eth sequence if e < e. The definition of the ith
member of the eth sequence has higher priority than the definition of the ith member
if < . In other words, we take the lexicographical ordering <lx on Af x N" as our
priority ordering.

For technical reasons, we enumerate for each e a set M. When we are working
on the eth sequence, we try to establish for each d an element x Ed7 A. In M,
we enumerate the current candidate for x.

We say that (e, i) requires attention at stage s + 1 if one of the following conditions
holds at the beginning of stage s + 1.

(1) d is undefined and for all j [0, i- 1), count(d,s) >_ 1 and every n

[d, dj+l) is saturated at stage s + 1.
e e de(2) d and di+ are both defined, count(i,s) 0 and every n [d di+l) is

saturated at stage s + 1.

Construction:
Stage 0: Let d =T and M 0 for all e and i, and let E {n} for all n.
Stage s + 1" Choose the lexicographically least (e, i) which requires attention at

stage s + 1.
If it requires attention through (1), then let di s + 1 and let dj - for all

(e’, j) >x (e, i). If 0 or count(di_, s) _> 1, then enumerate s + 1 into Me.
dIf it requires attention through (2) there is a least n (i,di+l) such that

count(n- 1, s) <_ 1, and there is a least x E,- (As2M, UE_I,), then
enumerate x into En-. If, in addition, n- 1 d, then enumerate x into M. In
any case, let d’ =T for all (e’,j) >ex (e, i).
End of Construction.

It easily follows by induction on s that count(n, s) <_ 2 for all n and s, in particular,
IE A _< 2. Also, we enumerate at stage s + 1 an element x from E into E_
only if it does not yet belong to En-1 A and n is saturated. In particular, there is
a program p I which is A-consistent at stage s + 1 and Us (p, x) 0.

CLAIM. For every e, there are only finitely many stages where (e, i) requires
attention for some i.

Proof. Suppose for the sake of contradiction that there exists a least e and in-
finitely many s’s such that (e, i) requires attention at stage s + 1 for some i. Then we
argue that A is not hyperhypersimple. First, there is a least stage so >_ 1 such that no

(e,) with e < e requires attention at any stage s _> so. Then we define d so at
stage so and enumerate so into M By the choice of so, the value of d has stabilized.G
Note that all elements which have been previously enumerated into M are less than
so and so they do not matter for the following. By induction on s _> so, it follows
that En, contains at most one element from M, A for all n >_ d.

We now distinguish two cases:
(a) If there is a least such that (e, i) requires attention infinitely often, then

’s with j < i hve stabilized. Thus (e, i) infinitelythere is a stage s >_ so where all dj
often requires attention through (2) and di+ tends to infinity. Then, however, it
follows similarly to the previous proof that unboundedly many elements are eventually
enumerated into EdT, which contradicts the fact that the cardinality of Ed7 is bounded.

If (e, i) requires attention through (2) at any stage s _> s, then count(d, s) 0;
thus an (e, j) with j > cannot require attention through (2) at any later stage s’ > s

1140 M. KUMMER

until a new element is enumerated into/d and count(d, st) 1. During that time,
M does not change. (This is because, if (e, j) requires attention at stage g + 1, then
j E {i, + 1}. If (e, + 1) requires attention, then it requires attention, through
(1) and g + 1 is not enumerated into M as count(d,g) 0.) This guarantees
that eventually a new element is enumerated into Ed. since there exist elements
Z (Un>d E,) (A U M Ed,s). Since IEn,s C (M, A)I _< 1 for n >_ d,
it causes no problems to maintain the constraint that an element x is enumerated
from E into E_ at stage s + 1 only if x

_
(M, As).

(b) If for every there are only finitely many stages (but at least one stage) where
(e, i) requires attention, then it follows that the values d stabilize and form an infinite
increasing sequence. Let d denote the final value. Since the sequence is infinite, it
follows that lim count(d, s) >_ 1; thus IEd7 A >_ 1. From the actual construction,
we get [Ed C A 1 and Ed A c_ M.

Uniformly in i, we enumerate an r.e. set Ui as follows. For every stage s + 1 >_ so
where (e, i) is chosen, we enumerate s + 1 into Ui if case (1) applies and s + 1 is
enumerated into M. If case (2) applies and x is the element enumerated into
then we enumerate x into Ui.

Since each element enumerated into Ui is at the same time enumerated into M
and is therefore blocked for the other sets, it follows that the Ui’s are pairwise disjoint.
By the remarks above, each Ui intersects A. Thus A is not hyperhypersimple. This
contradiction completes the proof of the claim.

Thus for each e, there exists a maximal re(e) > 0 such that the value of dem(e)+I
stabilizes and no (e, j) with j > re(e) + 1 requires attention at any sufficiently large
stage. This means that there exists n [d,dn(e)+) which is only finitely often

saturated. Thus there is y En with ic(y" A) >_ n- 2. Clearly, we get infinitely
many pairwise-different such y’s. This completes the proof.

The previous result does not hold for hypersimple sets since one can construct a

hypersimple set that does not have hard instances. This can be done, e.g., by a direct
modification of the proof of the next theorem.

Recall that A is effectively simple if it is a coinfinite r.e. set and there is a recursive
function f such that for all e,

W c_ A => IWI <_ f (e).

It is known that every effectively simple set is T-complete [12, Prop. III.2.18].
THEOREM 5.7. There is an effectively simple set which does not have hard in-

stances. In particular, there is a T-complete set which does not have hard instances.

Proof. The construction in the proof of Theorem 4.2 is not combinable with the
requirement of making A effectively simple. Therefore, we use a modified version,
where we do not attempt to have the instance complexity as low as possible.

In the following, we outline the construction. A will be effectively simple for some
f to be determined later. As in the proof of Theorem 4.2, we are given a uniformly r.e.
sequence {Ek}kear and we build a partial recursive function such that for almost
all k and each x G Ek, there is some p {0, 1} k that witnesses that ic(x :A) <_ k.

How do we define Cp? We will keep a list S S of programs of length k. The
length of S will be fixed (depending on k). Furthermore, we have a pool P Pk
of unused programs of length k. At the beginning, IS[+ IPI 2k. During the
construction, some of the programs in S may become inconsistent with A, in which
case they are removed from S and new programs from P are inserted into S. There
may also exist a "backup program" chosen from P.

KOLMOGOROV COMPLEXITY AND INSTANCE COMPLEXITY 1141

The programs in S will be defined at z with a 0/1-value only if x was enumerated
into EL. The definition proceeds in circular order. The first program in S takes care
of the first element which is enumerated into EL, the second program takes care of the
second element, and so on. In this way, we handle the first ISI elements. Ideally, we
would like to again have that the first program takes care of the (IsI + 1)st element,
etc. However, this does not work because as soon as a program is brought into play,
we have to define it for larger and larger inputs. Thus it might happen that all of our
programs are already defined (with output _1_) at z when z is enumerated into EL as
the (IS + 1)st element at stage s.

Thus we are using a program q from P which is still undefined everywhere and
define it as Xa (z) for all z < s; in particular, this covers all elements currently in
For all larger values, we output _[_. q is called the current backup. We also suspend
defining the programs in S until new elements x _> s are enumerated into EL. Then
we continue as above for the next IS] such elements. After that, a new program from
P is defined as the current backup in a similar way as q, and so on.

What is the advantage of that scheme? It is more robust against injuries which
may happen when an element x with p(x) 0 is later enumerated into A. In that
case, only one p E S is destroyed. Also, only the x E EL are critical because for
z EL we have p(x) 2_. If p is destroyed, then we assign a new program from P
as a substitute.

A crucial part in this process is the definition of the new backup q when a round
has been completed at the beginning of stage s. Before we define q, we enumerate
into A all x < s which do not belong to any En with n < 9(k). This defines the
current A. Here 9 is some fast-growing function to be determined later. Then we
define q(Z) XA (z) for all z < s and 2q(Z) _k otherwise.

We use the following strategy to make A effectively simple, if at the end of some
stage s, we have We, c_ A and IWe,l > f(e), then choose an x W, which does
not belong to any En with n <_ 9(e) and enumerate it into A. Note that x exists if
we choose f large enough such that f(e) _> IE0l + IEll-]-...-}-

This completes the description of the construction. It remains to choose the
parameters such that it works. We first count how many of the {;p’s with l(p) k are
used. Then we choose ISLI,]ELI, and g in such a way that the number of programs
used is less than 2L.

Let m max{i’g(i) <_ k}. Then for each _< m, there can be []Eil/ISil] many
rounds, and after each round, all programs in SL may be destroyed (and have to be
replaced by new ones from PL). At this time, it is important that after the action of
i, we immediately define the new programs that replace the former ones which have
been destroyed. We can do this without any further enumeration of elements into A.
There is no cascading effect which could blow up the number of injuries. Thus at
most ISL] Eim=l [IEiI/ISI] many programs of length k are ever injured while in

How many of the backup functions are destroyed? Note that this may happen
each time when some < k acts, i.e., whenever completes a round. Thus at most

k-1i=0 [IEil/ISil] many backup programs are destroyed.
The number of injuries resulting from making A effectively simple can be bounded

by re+k+1. If we act for the sake of W,CA 7/= 0 (which happens at most once), then
a program from SL can be destroyed only if e _< m, and a current backup program
can be destroyed only if e < k. To see the latter, note that if the current q is defined
at x E0 2... t2 Eg(L), then /)q(X) {1, J_} because of the additional enumeration of
elements into A which was performed when q was brought into play.

1142 M. KUMMER

TABLE 1

r m btt c d I,p l tt IWtt Q IT
ic x x x x x x x x

lC x x x x

Thus we need to ensure that for almost all k,

(+)
m k-1

2 > IS l Fl l/IS ll / / / / 1.
i=1 i=1

Let ISk]- [2k/kJ, g(k) 2k, and Ek {x "C(x) < 3k/2}, so IEkl < 23/2.
Define the recursive function f by f(e) rv’g()23i/21 The right-hand side of (+)/z..i=0

is bounded above by

+ + + + o(1),

which is less than 2 for all sufficiently large k. With this choice of parameters, we
get for almost all x, C(x) >_ (3/2/ (ic (x A) 1), i.e., ic(x A) <_ (2/3)C(x)+ 1.
Thus A does not have hard instances. [:]

The previous results characterize the reducibilities Gr with r E {m, btt, c, d,
p, tt, wtt, Q, T} (cf. the figure in [12, p. 341] for the implications between these
reducibilities) such that every r-complete set has hard instances, for both ic and ic.
In Table 1, we have marked the possible combinations.

Remark. The T-degrees of r.e. sets with hard instances do not coincide with any
of the known degree classes. It can be shown that they form a proper subclass of
the r.e. nonrecursive degrees and that they properly extend the array nonrecursive
degrees. There is also an r.e. nonrecursive degree such that all of its r.e. sets have
hard instances.

6. Open questions. We have provided a comprehensive picture of instance com-
plexity of r.e. sets. However, there are still interesting open questions left for further
research:

(i) How low can the instance complexity of a T-complete set be? Is there a

T-complete set A with ic(x "A) <_ log C(x) + O(1) for all x?
(ii) Does every T-degree that contains an r.e. set with hard instances also contain

an r.e. set with hard instances w.r.t, ic?
(iii) Study the instance complexity of non-r.e, sets, e.g., is there a set A such

that ic(x "A) >_ C(x)- O(1) for all x?

Acknowledgments. I would like to thank Lance Fortnow, William I. Gasarch,
Carl Jockusch, Paul Vitnyi, and the two referees for comments and corrections.

REFERENCES

[1] J. BARZDIN, Complexity of programs to determine whether natural numbers not greater than
n belong to a recurs@ely enumerable set, Soviet Math. Dokl., 9 (1968), pp. 1251-1254.

[2] H. BUHRMAN AND P. ORPONEN, Random strings make hard instances, in Proc. 9th Annual Con-
ference on Structure in Complexity Theory, IEEE Computer Society Press, Los Alamitos,
CA, 1994, pp. 217-222.

[3] C. CALUDE, Information and Randomness, Springer-Verlag, Berlin, 1994.

KOLMOGOROV COMPLEXITY AND INSTANCE COMPLEXITY 1143

[4] G. J. CHAITIN, Information-theoretic characterizations of recursive infinite strings, Theo-
ret. Comput. Sci., 2 (1976), pp. 45-48.

[5] R. DOWNEY, C. G. JOCKUSCH, AND M. STOB, Array nonrecursive sets and multiple permit-
ting arguments, in Proc. Recursion Theory Week, K. Ambos-Spies, G. H. Miiller, and
G. E. Sacks, eds., Lecture Notes in Math. 1432, Springer-Verlag, Berlin, 1990, pp. 141-174.

[6] R. DOWNEY, C. (. JOCKUSCH, AND M. Swos, Array nonrecursive sets and genericity, in Direc-
tions in Computability Theory, Cambridge University Press, Cambridge, UK, to appear.

[7] L. FORTNOW AND M. KUMMER, On resource-bounded instance complexity, Theoret. Corn-
put. Sci., to appear.

[8] K. Ko, A note on the instance complexity of pseudorandom sets, in Proc. 7th Annual Con-
ference on Structure in Complexity Theory, IEEE Computer Society Press, Los Alamitos,
CA, 1992, pp. 327-337.

[9] K. Ko, P. ORPONEN, U. SCHSNING, AND O. WATANABE, What is a hard instance of a com-
putational problem?, in Structure in Complexity Theory, A. Selman, ed., Lecture Notes in
Comput. Sci. 223, Springer-Verlag, Berlin, 1986, pp. 197-217.

[10] M. L AND P. VITNYI, An Introduction to Kolmogorov Complexity and Its Applications,
Springer-Verlag, Berlin, 1993.

[11] D. W. LOVELAND, A variant of the Kolmogorov concept of complexity, Inform. and Control,
15 (1969), pp. 510-526.

[12] P. ODIFREDDI, Classical Recursion Theory, North-Holland, Amsterdam, 1989.
[13] P. ORPONEN, On the instance complexity of NP-hard problems, in Proc. 5th Annual Conference

on Structure in Complexity Theory, IEEE Computer Society Press, Los Alamitos, CA,
1990, pp. 20-27.

[14] P. ORPONEN, K. KO, U. SCHSNING, AND O. WATANABE, Instance complexity, J. Assoc. Com-
put. Mach., 41 (1994), pp. 96-121.

[15] R. I. SOARE, Recursively Enumerable Sets and Degrees, Springer-Verlag, Berlin, 1987.
[16] J. TROMP, On a conjecture by Orponen + 3, in Descriptive Complexity, R. V. Book, E. Ped-

nault, and D. Wotschke, eds., Dagstuhl-Seminar-Report, vol. 63, IBFI GmbH, Wadern,
Germany, 1993, p. 20.

SIAM J. COMPUT.
Vol. 25, No. 6, pp. 1144-1170, December 1996

() 1996 Society for Industrial and Applied Mathematics
OO2

AN o(n3)-TIME MAXIMUM-FLOW ALGORITHM*

JOSEPH CHERIYAN*, TORBEN HAGERUP$, AND KURT MEHLHORN$

Abstract. We show that a maximum flow in a network with n vertices can be computed de-
terministically in O(n3/logn) time on a uniform-cost RAM. For dense graphs, this improves the
previous best bound of O(n3).

The bottleneck in our algorithm is a combinatorial problem on (unweighted) graphs. The number
of operations executed on flow variables is O(n8/3 (log n)4/3), in contrast with gt(nm) flow operations
for all previous algorithms, where m denotes the number of edges in the network. A randomized ver-
sion of our algorithm executes O(n3/2m1/2 log n + n2 (log n)2 / log(2 + n(log n)2/m)) flow operations
with high probability.

For the special case in which all capacities are integers bounded by U, we show that a maximum
flow can be computed deterministically using O(n3/2m1/2 + n2(log U) 1/2 + log U) flow operations
and O(min{nm, n3/logn} + n2(log U) 1/2 + log U) time. We finally argue that several of our results
yield parallel algorithms with optimal speedup.

Key words, network flow, maximum flow, graph algorithm, scaling, preflow-push algorithm,
current-edge problem, dynamic tree

AMS subject classifications, 68P05, 68Q20, 68Q22, 68Q25, 68R05, 90B10, 90C35

1. Introduction. The fastest algorithm predating this paper for computing a
maximum flow in a network with n vertices and rn edges, even allowing randomization,
has an expected running time of O(min{nrn logn, nrn + n2(logn)2}) [CH95]. Despite
intensive research for over three decades, no algorithm with a running time of o(nrn)
has ever been reported for any combination of n and rn. This is true even for networks
with integer capacities, provided that the maximum capacity U is moderately large,
say U ft(n) [AOT89].

Our main result i8 a mximum-flow Mgorithm that runs in O(n3/logn) time.
For dense networks with m w(n2/logn) this is o(nrn). We also slightly im-
prove the best previous results for sparse networks with rn o(n(log n)2) and rn
w(n log n/log log n) and match the best previous results for other ranges of m through
simpler algorithms. Our algorithms are strongly polynomial; this means, roughly
speaking, that the running time is bounded by a polynomial in the number of vertices
in the network independently of the capacities of the edges (see [GLS88] for a more
careful definition). Table 1 below summarizes the running times of our algorithms for
different combinations of n and m.

Subsequently to our work, King, Rao, and Tarjan [KRT94] extended the range of
network densities for which the performance of randomized maximum-flow algorithms
can be matched by deterministic algorithms. Their deterministic algorithm runs in

O(nmlogm/(nlogn) n) time on networks with n vertices and rn > nlogn edges. This
running time is O(nm) when rn > n1+ for some fixed e > 0, while it is strictly larger
than our running time for all other network densities.

Received by the editors November 20, 1991; accepted for publication (in revised form) February
8, 1995. This research was partially supported by EC ESPRIT II Basic Research Actions Program
contract 3075 (project ALCOM). A preliminary version of this paper was presented at the 17th
International Colloquium on Automata, Languages and Programming (ICALP) in July 1990.

*Department of Combinatorics and Optimization, University of Waterloo, Waterloo, ON
N2L 3G1, Canada.

$Max-Planck-Institut fiir Informatik, D-66123 Saarbriicken, Germany (torben@mpi-sb.mpg.de).

1144

AN o(n3)-TIME MAXIMUM-FLOW ALGORITHM 1145

TABLE
Strongly polynomial maximum-flow algorithms for different combinations of n, the number of

vertices, and me the number of edges. The first column gives the order of the bound on the running
time of each algorithm, the second column indicates the range of network densities for which the
algorithm is superior to the other algorithms, the third column states whether the algorithm is deter-
ministic or randomized, and the last column gives the source of the algorithm and a corresponding
theorem in the present paper. The new results appear in lines 2 and 5 of the body of the table.

Running Time Range

log nnm log n rn _<:: n log log

n,, (!9g,n) log < m < n(log n) 2
iog(2+n(log’n)9-/m nloglogn

nm n(logn)2

_
m

_
n5/3 log n

nrn n5/3 log n _< m _<: log

n---3 n2 < m <: n2
log log

Model Source

deterministic [ST83] and this paper,

Theorem 8.1(a)

randomized this paper, Theorem 8.1(c)

randomized [CH95] and this paper,

Theorem 8.1(c)

deterministic

deterministic

[A190] and this paper,

Theorem 8.1 (b)

this paper, Theorem 8.2

Our algorithm is based on earlier work in [CH89], [GT88], and [AO89], all of which
in turn use the generic maximum-flow algorithm of Goldberg and Tarjan [GT88],
which works by manipulating a so-called preflow [Ka74] in the given network. We
design an extension of the generic algorithm, called the incremental generic algorithm,
which uses a new operation called add edge. The new algorithm manipulates a preflow
in a subnetwork and, as the execution progresses, gradually adds the remaining edges
to the current subnetwork.

Adding the edges in the order of decreasing capacities allows instances of the
incremental generic algorithm to save on the number of operations on flow vari-
ables. In particular, the number of flow operations executed by our main algorithm
is O(nS/3(logn)4/3). To the best of our knowledge, all previous algorithms execute
(nrn) flow operations. Using randomization, we can do even better: a maximum
flow can be computed using O(n3/2rn1/2 log n + n2 (log n)2/log(2 + n(log n)2/m)) flow
operations with high probability. In fact, our deterministic algorithm is obtained
from the randomized algorithm by applying a derandomization technique due to Alon
[A190]. Our analysis of flow operations is based on a novel potential argument.

The bottleneck in our algorithms turns out to be a simple combinatorial problem
on a dynamically changing (unweighted) graph, that of repeatedly identifying the so-
called current edge of a given vertex. Indeed, given a sufficiently efficient solution to
the current-edge problem, the running time of each of our algorithms would match the
number of flow operations. A straightforward solution to the current-edge problem
contributes O(nrn) time to the running time of the maximum-flow algorithms. The
idea behind our improvement of this bound for dense networks, by a factor of O(log
is to represent the graph by its adjacency matrix and to partition the matrix into
1 [log nJ submatrices. A submatrix can be processed in constant time by table
look-up during the search for a current edge.

Our ideas also apply to networks with integer capacities. For networks with
integer capacities bounded by U, one of the fastest algorithms known is the wave
scaling algorithm of [AOT89], which runs in time O(nm + n2(logU)/2 + log U).

1146 JOSEPH CHERIYAN, TORBEN HAGERUP, AND KURT MEHLHORN

This algorithm refines the excess scaling algorithm of [AO89], whose running time
is O(nm / n2 log U). For neither algorithm is a better bound than the running
time known for the number of flow operations. We give incremental versions of
both algorithms and show how to replace the term nrn by min{nm, n3/logn} in
the bound for the running time and by n3/2rn1/2 in the bound for the number of flow
operations.

The paper is organized as follows. Basic definitions are given in 2. The incre-
mental generic algorithm and the current-edge problem are introduced in 3. The
incremental excess scaling and wave scaling algorithms for networks with integer ca-
pacities are described in 4 and 5, respectively. Section 6 discusses solutions to the
current-edge problem. The strongly polynomial algorithm is presented in 7 and an-
alyzed in 7 and 8. Section 9 discusses parallel versions of our algorithms, and 10
states a number of open problems. Readers with an exclusive interest in the strongly
polynomial algorithm can skip 4 and 5 almost entirely. The only material in these
sections needed later is the definition of --fooling height and its properties (F1)-(F5),
given after the proof of Lemma 4.1.

2. Definitions and notation. For every set V and every e- (v, w) E V V,
let tail(e) v, head(e) w, and ray(e) (w, v). v and w are the tail of e and the
head of e, respectively. A network is a tuple G (V, E, cap, s, t), where (V, E, cap)
is an edge-weighted directed graph, cap maps each edge in E to a nonnegative real
number called its capacity, and s and t are distinct vertices in V called the source and
the sink, respectively. We assume that E is symmetric (i.e., rev(e) E for all e E)
and without self loops (i.e., v = w for all (v, w) E). In order to make the notation
less cumbersome, we omit one pair of brackets from expressions such as "cap((v, w))."

A preflow in G is a function f" E -- with the following properties"
(1) f(rev(e)) -f(e) for all e e E (antisymmetry constraint),
(2) f(e) <_ cap(e) for all e E (capacity constraint),
(3) -eeE:head(e)=v f(e) >_ 0 for all v e Y\{s} (nonnegativity constraint).

A preflow f in G is a flow if eeE:head()=vf(e) 0 for all v e Y\{s,t} (flow
conservation constraint). The value of f is ’]-eE:head()=t f(e), i.e., the net flow into
t, and a maximum flow in G is a flow in G of maximum value. An edge e E is residual
(with respect to f) if f(e) < cap(e). A push on e of value c e I is an increase in f(e) by
c. The push is saturating iff f(e) cap(e) afterwards. A push on an edge (v, w) is also
called a push out ofv and a push into w. A labeling of G is a function d V -. NU{0}.
The labeling is valid for G and a preflow f in G exactly if d(v) <_ d(w) + 1 for every
edge (v, w) E that is residual with respect to f. Our algorithms operate with the
concept of an undirected edge, i.e., a pair {v, w}, where (v, w) E E, which intuitively
we identify with the pair {(v, w), (w, v)} of two antiparallel directed edges. For all
symmetric subsets E’ of E, let E’ {{v,w} (v,w) e E’} be the corresponding
set of undirected edges. A push on an undirected edge {v, w} E is a push on one
of the edges (v, w) or (w, v). The capacity of an undirected edge {v, w} is defined
as cap({v, w}) cap(v, w)+ cap(w, v). We assume without loss of generality that

> 0 e E.
Our algorithms are formulated in the traditional model for the study of problems

on networks. They use two data types for numerical values: integer and flow value.
Capacities and flow values are represented by objects of type flow value, on which
the only allowed arithmetical operations are addition and subtraction, and all other
quantities are represented by objects of type integer, on which we allow addition,
subtraction, multiplication, and integer division. In addition, we assume for both data

AN o(n3)-TIME MAXIMUM-FLOW ALGORITHM 1147

types standard operations for comparison, data movement, the constant I, etc. For n-
vertex input networks, we allow integers of absolute value n(1); i.e., we allow a word
size of O(log n) bits. We charge constant time for each basic operation on either type
(uniform cost measure). In keeping with common usage, we employ the term "flow
operation" to mean any operation on objects of type flow value. In our randomized
algorithms we assume in addition that generating a random integer takes constant
time. More precisely, we assume that for every given integer k with 1 < k <_ n, a
random integer drawn from the uniform distribution over {1,..., k} and independent
of all other such random integers can be obtained in constant time.

We use "log" to denote the logarithm to base 2, and we assume lists to be imple-
mented as a data type with operations first and pop (among others). Given a list L,
first(L) returns the first element of L, and pop(L) removes the first element of L and
returns it.

3. The incremental generic algorithm. In this section, we generalize the
generic maximum-flow algorithm of [GT88] by extending it to include one additional
operation, add edge.

The goal of the algorithm is to compute a maximum flow in a network G
(V, E, cap, s, t). Let n IVI and m IE. In order to avoid trivialities, we assume
that rn >_ n >_ 3. Let V+ V\{s, t}. The main variables used by the incremental
generic algorithm are the following"

(1) A network G* (V, E*, cap*, s, t), where E*

_
E is symmetric and cap* is the

restriction of cap to E*. G* is the current network, on which the algorithm operates.
E* initially, and the edges in E are gradually added to E*.

(2) A preflow f" E* --. R, which gradually evolves into a maximum flow in G.
(3) 1 labeling d" V --+ N U {0}, valid for f and G*.

An edge (v, w) E* is called eligible exactly if it is residual with respect to f
and d(v) d(w) + 1. For all e E E*, the residual capacity of e is defined as

rescap(e) cap(e) f(e), and for all v E V, the ezcess of v is defined as ezcess(v)
EeE* :ad(c)=, f(e).

We now briefly review the generic maximum-flow algorithm of [GT88], which
works on the complete network throughout the execution. The labeling d and the
preflow f are initialized as follows: d(s) n, d(v) 0 for all v V\{s}, f(e) cap(e)
for all edges e with tail s, f(e) -cap(rev(e)) for all edges e with head s, and f(e) 0
for all other edges e. Note that the initial labeling is valid for the initial preflow. The
algorithm repeatedly picks some vertex v V+ with positive excess and performs
either a push out of v or a relabeling of v. More precisely, if there is an eligible edge
with tail v then a push is performed on one such edge, and if there is no eligible edge
with tail v then d(v) is increased by one. This maintains the validity of d, which
is crucial for the analysis; cf. Lemmas 3.3 and 3.6 below. The algorithm terminates
when there is no vertex in V+ with positive excess.

in the incremental generic algorithm, we start with d(s) n, d(v) 0 for all
v V\{s}, and E* 0, and we gradually add the edges in E to E*. This creates
a problem, however. The validity of d is endangered whenever an edge (v, w) with
d(v) > d(w) + 1 is added to E*. We overcome this difficulty by adopting a more
conservative rule than that of [GT88] for sending flow out of a vertex. Namely, define
the visible excess, excess*(v), of a vertex v V by

eE\E*’tail(e)=v

1148 JOSEPH CHERIYAN, TORBEN HAGERUP, AND KURT MEHLHORN

and relabel a vertex or send flow out of it only if its visible excess is positive and
remains nonnegative (this use of visible excess is in some ways similar to the use
of "available excess" in [AOT89]). We will show below (Lemma 3.1) that this rule
guarantees that excess* (v) >_ 0 whenever d(v) > 0. In particular, when an edge (v, w)
with d(v) > d(w) is added to E*, it can be saturated immediately using the excess
available at v, so that d remains valid. We now give the details.

The algorithm maintains the current network G*, the prellow f, the labeling d,
and the functions excess(v) and excess* (v). Although the functions excess and excess*
in principle can be computed from f and E*, efficiency dictates that they must be
represented explicitly. In the description of the algorithm, however, we omit this
trivial elaboration.

Since f is by definition antisymmetric, low-level flow manipulation is carried out
by the procedure

PROCEDURE setflow(e" edge; c: real);
f(e) c; f(rev(e)) -c;

with the special case

PROCEDURE saturate(e: edge);
setflow(e, cap(e));

The main routines of the incremental generic algorithm and the algorithm itself follow.

PROCEDURE push(e" edge; c: real);
Precondition: e (v, w) E E*,vE V+, e is eligible, and 0 < c <_ min{excess*(v),
scap(e)}.

setflow(e, f(e) + c);
PROCEDURE relabel(v" vertex);
Precondition’ v V+, excess*(v) > 0, and no edge in E* with tail v is eligible.

d(v) := d(v) + 1;

PROCEDURE add edge({v, w}" undirected edge);
Precondition: { (v, w), (w, v)} C_ E\E*.
E* E*
if d(v) > d(w) then saturate(v, w) fi;
if d(w) > d(v) then saturate(w, v) fi;

PROCEDURE generic initialize;
for all e E do setflow(e, 0) od; (, zero flow is default for new edges ,)
for all v e V\{s} do d(v)’= 0 od; d(s):= n;
E* :=0;

INCREMENTAL GENERIC ALGORITHM:
generic initialize;
while max{ excess* (v) v V+ } > 0 or E* E
do

Execute some push, relabel, or add edge operation whose precondition is satisfied;
(, there always is one ,)

od.

An execution of relabel(v) is called a relabeling of v. Define a push to be regular if it
does not take place during a call of add edge; there are at most rn nonregular pushes.

AN o(na)-TIME MAXIMUM-FLOW ALGORITHM 1149

Note the special status of the source and the sink: no regular pushes are performed
out of s or t, nor are they ever relabeled.

We next show the partial correctness of the algorithm (i.e., if it terminates, it
will do so with the correct result) and give a few additional properties. Our proof
is similar to the correctness proof of the generic algorithm of [GT88]. In stating
invariants for the algorithm, we consider push, relabel, and add edge to be atomic
operations; i.e., we ignore possible violations of the invariants while these routines are
being executed. We also implicitly restrict attention to the part of the execution that
follows the initialization.

LEMMA 3.1. At all times during an execution of the incremental generic algorithm
and for all v V+ if d(v) > 0 then excess* (v) >_ O.

Proof. We use induction on the number of steps executed by the algorithm. The
claim is clearly true immediately after the initialization and after a relabeling of v
(by the precondition of the relabel operation). A push into v does not decrease the
visible excess of v, and a regular push out of v does not decrease it below zero (by
the precondition of the push operation). Finally, observe that the execution of an add
edge operation cannot decrease the visible excess of any vertex. [:]

LEMMA 3.2. At all times during the execution,
(a) f is a preflow,
(b) d is a valid labeling.

Proof. (a) and (b) hold initially, and they are not invalidated by calls of push or
relabel (cf. [GT88, Lem. 3.1]). Furthermore calls of add edge are easily seen to preserve
(b). The only remaining issue is that for some v E V\{s}, a saturating push on an
edge (v, w) performed during a call of add edge might invalidate the nonnegativity
constraint excess(v) >_ O. However, when the push takes place, d(v) > d(w) >_ 0, and
it follows from Lemma 3.1 that excess (v) >_ 0 after the push. [:]

LEMMA 3.3. Suppose that the algorithm terminates. Then, at termination, f is
a maximum flow in G.

Proof. At termination, G* G and excess(v) excess*(v) 0 for all v E V+.
Thus f is a flow in G. If f is not maximum, then, by a classical theorem of Ford
and Fulkerson [FF62, Cor. 5.2], there exists an augmenting path with respect to f,
i.e., a simple path in G from s to t all of whose edges are residual with respect to f.
Since d(s) n, d(t) 0, and the length of a simple path in G is at most n- 1, this
contradicts the validity of d.

LEMMA 3.4. An ineligible edge (v, w) E* can become eligible only during a
relabeling of v.

Proof. An edge e (v, w) is ineligible exactly if either rescap(e) 0 or d(v)
d(w). The residual capacity of e can increase from zero to a positive value only during
a push on rev(e). But d(w) > d(v) at the time of such a push on rev(e); i.e., e is
ineligible after the push. Thus only a relabeling of v can make e eligible.

Lemmas 3.5 and 3.6 below are analogous to Lemmas 3.5 and 3.7 of [GT88],
respectively. We include them for the sake of completeness.

LEMMA 3.5. For all v V+ and at all times during the execution, if excess(v) > O,
then there is a simple path in G* from v to s all of whose edges are residual with respect
to f.

Proof. Let S be the set of vertices reachable from v in G* by a path all of
whose edges are residual with respect to f. We need to show that s G S. As-
sume otherwise. The choice of S implies that f(u, w) <_ 0 for all edges (u, w) G E*
with u S and w E S. Using the antisymmetry of f, we obtain -es excess(w)

1150 JOSEPH CHERIYAN, TORBEN HAGERUP, AND KURT MEHLHORN

Y(u,)eE*:uev,wes f(u, w) (u,w)eE*:ey\s,wes f(u, w) + ..(,w)eE*:ues,wes
f (u, w) <_ O. Since excess(w) > 0 for all w e Y\{s}, we conclude that excess(v) 0,
a contradiction.

LEMMA 3.6. For all v E V and at all times during the execution, d(v) <_ 2n- 1.
In particular, the total number of relabelings executed by the algorithm is < 2n2.

Proof. Let v 6 V+ with excess(v) > 0 be arbitrary. By Lemma 3.5 there is
simple path from v to s in G* all of whose edges are residual with respect to f. Since
d(s) n, d is valid, and a simple path consists of at most n- 1 edges, this implies
that d(v) <: 2n- 1. Thus no vertex v with d(v) 2n- 1 can ever be relabeled.

We discuss instances of the incremental generic algorithm in 4, 5, and 7. For
all instances an efficient implementation of the following current-edge abstract data
type is important: the task is to maintain two functions, r:E {0, 1} and h: V --{0,..., 2n- 1}, under the operations specified below. An edge (v, w) 6 E is called
admissible if r(v, w) 1 and h(v)= h(w)+ 1. For v e V, let E(v)= {(v, w) 6 E:
(v, w) is admissible}.

init;
Sets h(v):= 0 for all v e Y\{s}, h(s)"= n, and r(v, w)’= 0 for all (v, w) e E;

Spush(v, w);
Precondition: v V and (v, w) e E(v).
Sets r(v, w)"= 0 and r(w, v)"= 1;

Npush(v, w);
Precondition" v V and (v, w) E(v).
Sets r(v, w) := r(w, v) "= 1;

Relabel(v);
Precondition: v V, E(v) 0, and h(v) < 2n- 1.
Executes h(v) h(v) + 1;

Add edge({v, w});
Precondition: {v, w} e E and r(v, w) r(w, v) O.
Sets r(v, w)’= 1 if either h(v) < h(w) or (h(v) h(w) and cap(v, w) > 0);
Sets r(w, v)’= 1 if either h(w) < h(v) or (h(v) h(w) and cap(w, v) > 0);

Precondition: v V.
Returns some (v, w) E(v) if E(v) 7 , nil otherwise;

For q N, denote by Tee(n, m, q) the time needed to execute any legal sequence of
one Init operation followed by q Spush, Npush, Relabel, Add edge, and ce operations.
Note that such a sequence contains at most rn Add edge operations, since at all times
after a call Add edge({v, w}) we have r(v, w) 1 or r(w, v) 1. Implementations of
the current-edge data type are discussed in 6 and 8. The algorithms of4 and 5 use
the current-edge data type as follows: generic initialize calls Init; a saturating and
a nonsaturating regular push on an edge e call Spush(e) and Npush(e), respectively;
relabel(v) calls Relabel(v); and add edge({v, w}) calls Add edge({v, w}). For the sake of
simplicity we do not explicitly mention these calls in the description of the algorithms,
and we consider them to form atomic entities with the calling operations.

With this interface, it is easy to verify that the following holds throughout the
execution: h(v) d(v) for all v E V, and r(v, w) 1 if and only if (v, w) is residual,
for all (v, w) e E*. To see that the latter condition holds after a call add edge({v, w}),

AN o(n3)-TIME MAXIMUM-FLOW ALGORITHM 1151

recall that the call saturates (v, w) if d(v) > d(w), saturates (w, v) if d(w) :> d(v),
and leaves the flow on (v, w) at zero if d(v) d(w). Thus an edge (v, w) e E* is
eligible if and only if it is admissible, and for all v E V a call ce(v) returns an eligible
edge with tail v if there is one and nil otherwise. The function ce is used by the flow
algorithms to find eligible edges on which to push flow and to test whether a vertex
can be relabeled.

4. The incremental excess scaling algorithm. In this section, we describe
an incremental excess scaling algorithm for the case in which all edge capacities are
integers bounded by U :> 1. The algorithm is an adaptation of the excess scaling
algorithm of Ahuja and Orlin [AO89] to the incremental paradigm.

The execution of the algorithm is divided into phases parameterized by the value
of a scaling parameter A (of type flow value). The algorithm repeatedly chooses
a vertex v E V+ with excess*(v) :> A and minimal d(v) and either pushes flow
on an edge (v, w) or relabels v. When there are no more vertices v V+ with
excess* (v) >_ A, the current phase ends, A is replaced by A/2, all edges (v, w) E\E*
with cap({v, w}) >_ A//3 are added to E*, and the next phase begins. Here is a
positive integer, which we will later fix at [(m/n)l/2J _> 1. The complete program
follows.

INCREMENTAL EXCESS SCALING ALGORITHM"
generic initialize;
L := list of all undirected edges in E ordered by decreasing capacities;
A :-- 2 [lgUj"

while A > 1
do
while n = 0 and cap(first(L)) >_ A/Z do add edge(pop(L)) od;
while max{ excess* (v) v e Y+ } >_ A
do
Among the vertices v V+ with excess* (v) :> A, choose v as one with minimal

d(v);
if ce(v) nil
then relabel(v)
else e ce(v); push(e, min{A, rescap(e)})fi;

od;

od,

If and when the algorithm terminates, we have E* E (since/3 _> 1) and ex-

cess*(v) <: 1 for all v E V+. Since all flow values computed by the algorithm are
integral, this implies that excess*(v) 0 for all v V+ at that point. Thus the
algorithm is an instance of the incremental generic algorithm and hence is partially
correct. The algorithm refines the excess scaling algorithm of Ahuja and Orlin [AO89];
in fact, for/ oe, i.e., if all edges are added before the first phase, the two algorithms
are identical.

Denote by pushes, relabels, add edge, and ce the total number of regular pushes,
relabelings, calls to add edge, and calls to ce, respectively, executed by the algorithm.
We first analyze pushes using a potential argument inspired by that of [CH89, Lem. 2].
Although part of this argument appears identically in [CH95], we repeat it in full for
the reader’s convenience. The argument is used to bound the number of regular
saturating as well as the number of nonsaturating pushes. The analysis of the excess

1152 JOSEPH CHERIYAN, TORBEN HAGERUP, AND KURT MEHLHORN

scaling algorithm by Ahuja and Orlin [AO89] also uses a potential argument. Their
argument, however, applies only to nonsaturating pushes.

For v E V and 1, 2,..., denote by deg(v) the number of edges with head
v added to E* between phase i- 1 and phase (for 1" before the first phase).
Further, for 1, 2,..., let m vv deg(v).

Fact 4.1. At the time of a regular push on an edge e (v, w), e is eligible, the
value of the push is _< A, and if w E V+ then excess* (w) < A immediately before the
push.

LEMMA 4.1. For all v V+, excess*(v) 2A at the beginning of phase 1, and
excess*(v) 2A + 2 deg(v)A// at the beginning of phase for >_ 2.

Proof. Consider first the case 1. A call add edge({s, v}) increases excess*(v)
by at most U < 2A, and there is at most one such call for each vertex v V+.
All other calls of add edge before phase 1 leave the flow unchanged since all vertices
v except s have d(v) 0. This completes the case 1. For _> 2 observe that
excess*(v) < 2A for all v V+ before the calls of add edge between phases i- 1
and and that each call add edge({u, v}) between these phases adds at most 2A/ to
excess*(v). Thus excess*(v) < 2A + 2 deg(v)A// at the beginning of phase for all
i>2.

For 7 >- 1, call a regular push on an edge (u,v) a 7-push if I{w e V" d(w)
d(v)}l -> 7 at the time of the push, and define the 7-fooling height dr(v of a vertex
v E V as follows: if V- {vl,...,vn}, then

maxd(v)
>() >()

I{k Z 0 <_ k < d(v) and I{j ij k}l >_ 7}1.

Intuitively, dr(v counts the maximum number of "dense virtual distance levels" be-
tween v and t, where a vertex vj is allowed to occupy any one virtual distance level
numbered at least d(vj) and where a dense virtual distance level is one that contains
at least 7 vertices.

dr has the following properties, named for future reference"
(F1) Vv V O

_
dr(v <_n/y;

W e V. 0 0;
(F3) W, e > >
(F4) Vu, v e V" (d(u) > d(v) and [{w e V d(w) d(v)}] _> 7) => dr(u) >

(Fh) A relabeling of a vertex v E V+ increases dr(v by at most 1 and does not
increase dr(w for any w e Y\{v}.

Define the normalized value of a push as the value of the push divided by A.
LEMMA 4.2.
(a) For all 7 >- 1 the total normalized value of all y-pushes is at most (2n2 log U+

+
(b) there are O(nm// + n2(log V + 1)) nonsaturating pushes;
(c) there are O(nm/ + n2 + n log U) saturating pushes.
Proof.
(a) Define the potential function

+= A A 7"

At the start of phase 1, (I) 0 (by Lemma 4.1, property (F2), and the fact that
d(v) 0 for all v V+ at the start of phase 1), and _> 0 always (by Lemma 3.1 and

AN o(n3)-TIME MAXIMUM-FLOW ALGORITHM 1153

property (F2)). does not increase due to regular pushes (by Fact 4.1 and properties
(F1} and (F3)), and a relabeling increases (I) by at most 2 (by property (F5)}. For
_> 2, the change of A and the addition of edges between phases i- 1 and increase

by at most (2n + 2rni/3).n/’ (by Lemma 4.1 and property (F1)). Consequently, and
by Lemma 3.6, the total increase, and hence also the total decrease, in is at most
(2n2 log V + 2nrn//)/’ + 4n. Finally, note that each /-push of normalized value c
causes (I) to decrease by at least c (by Fact 4.1 and property (F4)).

(b) Every push is a l-push and every nonsaturating push has normalized value 1.
The bound now follows from part (a), applied with -- 1.

(c) Call a regular push on an edge (u, v) small if its value is less than A//, call
it terminal if I{w E V’d(w) d(v)} </3 at the time of the push, and partition the
regular saturating pushes into three classes: (1) small pushes, (2) nonsmall terminal
pushes, and (3) nonsmall nonterminal pushes. We bound the number of pushes in
each class separately.

(1) We have cap({v, w}) _> A//3 for each {v, w} E E*. Hence between any two
small saturating pushes on a fixed undirected edge there is a nonsaturating push on
that edge. Therefore the number of small saturating pushes is at most rn plus the
number of nonsaturating pushes, and the bound follows from part (b).

(2) By Lemma 3.4, each terminal push out of a vertex v V is followed by fewer
than/3 saturating pushes out of v before the next relabeling of v. Summing over all
v V and all possible values of d(v), this gives at most 2n terminal saturating
pushes.

(3) The normalized value of a nonsmall push is at least 1//3, and each nonterminal
push is a/3-push. An application of part (a) with 7 -/ now shows that there are at
most 2n log U + 2nm/3 + 4n/3 regular nonsmall nonterminal pushes.

We sum up the findings in the following theorem.
THEOREM 4.1. A maximum flow in a network with n vertices, rn edges, and

integer capacities bounded by U >_ 1 can be computed deterministically using O(ql
flow operations and O(q) + Tc(n, m, q) time, where q O(n3/m1/ + n log U).

Proof. Put/ [(rn/n)l/] and note that 3 can be computed within the stated
resources. Sorting the undirected edges by their capacities takes O(rnlogrn)
O(n3/rn1/) time, the execution of generic initialize is no more expensive, and the
initial value of A can be computed in O(rn + log U} time. There are [log UJ + 1
phases, in each of which a number of undirected edges is added to E*. This takes
O(log/3) O(log n) time per undirected edge (for the multiplication of its capacity by
3} and hence O(rn log n) time altogether. Using simple data structures described in
[AO89], the selection of v in the second inner while loop of the algorithm can be imple-
mented to run in constant time per vertex selection plus O(n} time per phase. Over
the whole algorithm, this adds up to O(pushes+ relabels + n(log V + 1)) time. Since
pushes O(na/2m1/ +n log U} (by Lemma 4.2), relabels O(n) (by Lemma 3.6),
ce O(pushes + relabels), and add edge <_ m, both the total number of operations
executed on the current-edge data structure and the total time spent outside this data
structure are O(n/2m/ + n log U). The claim follows.

In the next section, we show how the wave scaling technique of [AOT89] can be
combined with the incremental approach to reduce the value of q in Theorem 4.1 to
O(/n1/ + (og U)1/ + o U).

5. The incremental wave scaling algorithm. The incremental wave scaling
algorithm is an adaptation of the wave scaling algorithm of [AOT89] to the incremental
paradigm. As in the previous section all edge capacities are integers bounded by

1154 JOSEPH CHERIYAN, TORBEN HAGERUP, AND KURT MEHLHORN

U _> I, and the execution is divided into phases parameterized by A, with edge
additions taking place between phases.

The incremental wave scaling algorithm makes use of the procedures stack push
relabel and wave. A call stack push relabel(v) pushes flow out of v until either the
visible excess of v is zero or there are no eligible edges with tail v, in which case v is
relabeled. Also, when stack push relabel(v) considers an eligible edge (v, w) and w has
visible excess A or more, stack push relabel is first called recursively with argument
w in order to "clear the way" for the push on (v, w). The procedure wave orders
the vertices in V+ by decreasing values of the functions d and then steps through the
ordered list of vertices, calling stack push relabel for each vertex in turn. An important
property of processing the vertices in this order is that once a call stack push relabel(v)
in wave has terminated, the visible excess of v remains unchanged until the end of
the call of wave. The algorithm employs the two procedures as follows: in each phase,
it first uses stack push relabel to reduce the individual visible excess of each vertex in
V+ below A and then wave to reduce E* below nail, where > 0 is a parameter to
be chosen later and E* .ev+ max{ excess* (v), 0}. Although not strictly accurate,
it is helpful to think of E* as the total visible excess.

PROCEDURE stack push relabel(v: vertex);
while excess*(v) > 0 and ce(v) nil
do
w := head(ce(v));
if w # t and excess* (w) >_ A
then stack push relabel(w)
else (, w t or excess*(w) < A ,)

push((v, w), min{ excess*(v), A, rescap(v, w)});
fi;

od;
if excess*(v) > 0 then relabel(v) fi;

PROCEDURE wave;
J := list of all vertices v E V+ ordered by decreasing values of d(v);
while J #
do stack push relabel(pop(J)) od;

INCREMENTAL WAVE SCALING ALGORITHM"
generic initialize;
L "= list of the undirected edges in E ordered by decreasing capacities;
z "-= 2 [lg UJ.
while A > 1
do
while L and cap(first(L)) _> A// do add edge(pop(L)) od;
(, A ,)
while max{ excess* (v) v e Y+ } >_ A
do
Choose v V+ with excess*(v) >_ A;
stack push relabel(v);

od;
(, B ,)
while E* :> nail do wave od;
(, C ,)

AN o(n3)-TIME MAXIMUM-FLOW ALGORITHM 1155

A :=
od.

The parameters and will be chosen later. The incremental wave scaling al-
gorithm differs in two respects from the wave scaling algorithm of [AOT89]" (I) it is
incremental; and (2) instead of beginning each phase with a sequence of waves, i.e.,
calls of wave, we first reduce the visible excess of every vertex below A before exe-
cuting the waves. This is necessary because the addition of edges at the beginning of
a phase may cause individual excesses to be very large. In return, it is not necessary
to reduce individual excesses after the waves as in [AOT89]--this is taken care of by
the next phase.

We next elucidate the relationship between the incremental excess scaling algo-
rithm of 4 and the incremental wave scaling algorithm of this section. Without the
"wave loop," i.e., the loop between labels B and C, the two algorithms are basically
the same. The wave loop reduces E* below nA/l. This allows us to replace the
n2 log U term in Lemma 4.2 by n2 log U/l and thus yields an improved bound on the
number of nonsaturating pushes. On the other hand, the wave loop brings about
additional cost proportional to n21 (since each wave has cost O(n) that cannot be ac-
counted for by the techniques of the previous section, and since the number of waves
is essentially proportional to nl; cf. Lemma 5.2). Choosing (log U) 1/2 balances
the two contributions and reduces the n2 log U term in Theorem 4.1 to n2(log U) I/2

in Theorem 5.1.
We now analyze the incremental wave scaling algorithm. If and when the algo-

rithm terminates, we have E* E (since/ _> I) and excess*(v) <: 1 for all v E V+.
Thus the algorithm is an instance of the incremental generic algorithm and therefore
partially correct. Also, Fact 4.1 holds for it. Lemma 4.1 can be sharpened to the
following.

Fact 5.1. For :> I, the following bounds on total and individual visible excesses
hold during phase i’

(a) at label A, excess*(v) < 2A for 1 and for all v E V+, and E* < 2nA/l +
2mA/ for i > 1;

(b) at label B and until the end of the phase, excess* (v) < 2,5 for all v V+.
Denote by stack push relabels and by waves the number of calls of stack push

relabel and of wave, respectively, and by pushes the number of regular pushes exe-
cured by the algorithm. We first show the following refinement of Lemma 4.2.

LEMMA 5.1.
(a) For all " >_ 1, the total normalized value of all "-pushes is at most

2n2 log U/(l/)+ 2nm/(/)+ 4n2;
(b) stack push relabels O(nm/ + n2 + n2 log U/1 + n. waves);
(c) pushes O(nm/ + n2 + n2 log U/1 + n. waves).
Proof.
(a) We use the same potential function (I) as in the proof of Lemma 4.2(a). At

the start of phase 1, (I) 0 (by Fact 5.1(a), property (F2) of /-fooling height, and
the fact that d(v) 0 for all v V+ at the beginning of phase 1). By the same
argument as in the proof of Lemma 4.2(a), (I) _> 0 always, (I) does not increase due
to regular pushes, and a relabeling increases (I) by at most 2. For >_ 2, the change
of A and the addition of edges between phases i- 1 and increase (I) by at most
(2n/l + 2mi/). n// (by Fact 5.1(a) and property (El)). Consequently, the total
decrease in (I) is at most 2(n/1). (n//). log U + 2(m/). (n/) + 4n2. Finally, note

1156 JOSEPH CHERIYAN, TORBEN HAGERUP, AND KURT MEHLHORN

that each 7-push of normalized value c causes (I) to decrease by at least c (by property
(S4)).

(b) Define a call stack push relabel() to be potent if excess* () >_ A at the time of
the call. Since each nonpotent call of stack push relabel is made directly by wave, there
can be at most n. waves such calls. Also at most 2n2 calls stack push relabel(v) end
with a relabeling of v (by Lemma 3.6). A potent call stack push relabel(v) that does
not end with a relabeling of v, finally, carries out pushes out of v of total normalized
value at least 1. Since every push is a l-push, an application of part (a) with 7 1
now shows the number of such calls to be O(nm/ + n + n2 log U/l).

(c) There is at most one nonsaturating push of value < A per call of stack push
relabel, and the number of pushes of value >_ A is easily bounded by another ap-
plication of part (a) with 7 1. This shows the bound for nonsaturating pushes.
As for saturating pushes, we define the concepts of small and terminal pushes as in
the proof of Lemma 4.2(c) and argue as was done there. The number of small sat-
urating pushes is bounded by m plus the number of nonsaturating pushes, there
are O(n) terminal pushes, and the number of nonsmall nonterminal pushes is

+ +
The following lemma was essentially proved in [AOT89] (Lemma 4.2).
LEMMA 5.2. waves O(min{n, nl + log V}).
Proof. We first show the O(n) bound and then the O(nl + log U) bound.
For the O(n) bound, observe first that at most 2n2 waves execute a relabeling

(Lemma 3.6). On the other hand, a wave that does not execute at least one relabeling
reduces E* to zero and hence is either the last wave or is separated from the next wave
by the addition to E* of at least one edge. Thus there are at most 2n +m+ 1 O(n)
waves.

For the O(nl + log U) bound, consider any wave that is not the last in its phase.
At the end of such a wave E*

_
nA/l. Also, no vertex has visible excess exceeding

2A (by Fact 5.1(b)), and every vertex with positive visible excess at the end of the
wave was relabeled during the wave. Thus at least /(2/) relabelings occurred during
the wave and hence the number of waves is bounded by log UJ / 1 + 2n2/(n/(2l))
O(nl + log U).

THEOREM 5.1. A maximum flow in a network with n vertices, m edges, and
integer capacities bounded by U >_ 1 can be computed deterministically using O(q +
log U) flow operations and O(q + log U) + Tc,(n, m, q) time, where q O(n3/2m1/ +
n2 (log V)l/2).

Proof. Replace U by max{U, 2} and choose/ such that O(v/logU) and
such that the sequence a0, al,..., a[loUJ can be computed in O(log U) time, where

ai [2in/ll for _> 0. We show below how to do this. Also take 3 [(m/n) 1/] (as
in the previous section) and note that 3 can be computed within the stated resources.
As in the proof of Theorem 4.1, a component in the running time of O(m log n+log U)
accounts for initialization, maintenance of A, and multiplication of the capacities of all
undirected edges by 3. By the conditions placed on above, each execution of the test
between labels B and C can be carried out in constant time (maintain E* explicitly).
The total number of operations executed on the current-edge data structure as well
as the remaining running time can be seen to be at most proportional to pushes +
stack push relabels + m; in particular, note that the list J employed by wave can be
constructed in O(n) time by bucket sorting. Since waves O(min{n2, nl + log U})
O(n(log U)l/2), Lemma 5.1 implies that pushes+stack push relabels O(n3/2ml/+
n2(log U)I/), from which the desired result follows.

AN o(na)-TIME MAXIMUM-FLOW ALGORITHM 1157

In the remainder of the proof, we show how to choose to satisfy the conditions
stated above. This material can be skipped in a first reading, and it is of little
relevance to readers with no interest in the details of our model of computation.

What makes the problem nontrivial is the insistence of our model on a neat
separation between the types integer and flow value and the very restricted operations
applicable to values of type flow value. For example, the condition U > n cannot be
tested directly because of a type mismatch" U is of type flow value, while n is of type
integer, and we have not provided for comparisons between values of different types.
The available operations do, however, allow the computation of the flow value n from
the integer n in O(n) time (and, in fact, in O(logn) time), so that the test can be
executed after all. We use this idea below.

Begin by computing [log U min{i >_ 1 2 _> U} in O(logV) time using
repeated doubling. Then determine Iv/log U min{i > 1" j=l (2j 1) > [log U }
in O(x/logU) time. Finally compute i0 min{i Z" 2n k Iv/logU} and take

2n. The numbers i0 and 2tot can be found in O(1i01+1) O(log(n+log U)) time
via repeated doubling, starting from min{n, v/log U}, and clearly l- O(v/log U).
Furthermore, a I2i- for k 0. Hence a0 can be computed in constant time, and
a can be computed from a-I in constant time for all

6. Solutions to the current-edge problem. In this section we describe two
solutions to the current-edge problem, i.e., implementations of the current-edge data
type, both of which are based on the fact that if an edge (v, w) E E* is inadmissible
at some time then it remains inadmissible until the next execution of Relabel(v) (cf.
Lemma 3.4).

LEMMA 6.1. Tc(n, m, q) O(nm + q) O(n3 + q).
Proof. Maintain for each vertex v a list Lv containing those edges (v, w) for which

Add edge({v, w}) has been executed. If the functions r and h are represented by tables
in the obvious way, Init can be executed in O(m) time, while each of Spush, Npush,
Relabel, and Add edge takes constant time. In order to implement the final operation
ce, additionally maintain for each vertex v a pointer z[v] into Lv which is initialized
to point to the beginning of L and is reset to this position in each call of Relabel(v).
Each call ce(v) advances z[v] (possibly a distance of zero) until an admissible edge
is encountered, or until the end of L is reached, in which case the value nil is
returned. The correctness of this implementation follows from the fact cited above,
which guarantees that no edge behind z[v] is ever admissible; in particular, note
that an edge (v, w) is always inadmissible at the time of its insertion in L. Since
each pointer z[v] makes at most 2n scans over its list L, the total time spent is

O(nm + q). [

Lemma 6.1 describes the standard solution to the current-edge problem intro-
duced in [GT88] and also used in [AO89], [AOT89], and [CH95]. We now give a faster
solution. First, identify V with the set {0,..., n- 1} and extend r to a function from
V x V to {0, 1} by taking r(v,w) 0 for (v,w) E.

THEOREM 6.1. Tc(n, m, q) O(n3/log n + q).
Pro@ We represent the function h not only directly but also through an array

H" {0,...,2n- 1} x V -+ {0, 1} such that for all integers k with 0 _< k _< 2n- 1
and all v V, H[k,v] 1if and only ifh(v) k. Then for all (v,w) E with
h(v) > O, r(v, w). H[h(v) 1, w] 0 iff the edge (v, w) is admissible. We combine this
observation with the "four Russians’ trick" (see [AHU74, 6.6]); i.e., we partition each
row of the arrays r and H into blocks of size x and represent the x bits of each block
by a single integer. Here x is a positive integer, which for simplicity we assume to be a

1158 JOSEPH CHERIYAN, TORBEN HAGERUP, AND KURT MEHLHORN

divisor of n. More precisely, let X {0,..., 2x- 1}. Instead of r and H, we maintain
arrays r’" V x {0,...,n/x-1} - X and H"{O,...,2n-1} x {0,...,n/x-1} --. X
defined as follows" for all v E V and all integers k and with 0 <_ k _< 2n- 1 and
0 <_ i < n/z- 1, let

x-1 x--i

r’[v, i] E r(v, ix + j) 2x-l-J and H’[k, i] E H[k, ix + j] 2-i-j.
j=0 j=o

a() EFor a X let a(-) a() denote the individual bits of a, i.e., a(-l),- (J) 2J Fora, a{0, 1} nd j=0 a a. b X let A b be the bitwise AND of a and b;
x- (a(j b(j) 2ji.e., a A b j=0).. Then for ll v V with h(v) > 0 and for all integers

with 0 <_ < nix- 1, we hve r’[v, i] A H’[h(v)- 1, i] 7 0 iff one of the edges in
{(v, ix + j) 0 < j < x} is admissible. This leads to the implementation of ce given
below; the remaining operations re left to the reader. In order to understand the
last line of the code, note that for each nonzero a X, [log a] is the position of the
leftmost nonzero bit in a, the rightmost bit position counted as zero.

FUNCTION ce(v" vertex)" edge;
if h(v) 0 then return nil fi
while r’[v, z[v]] A H’[h(v) 1, z[v]] 0 and z[v] < nix 1
do z[v] "= z[v] + 1 od;
if r’[v, z[v]] A H’[h(v) 1, z[v]] 0
then return nil
else return (v, z[v]. x + x 1 [log(r’[v, z[v]] A H’[h(v) 1, z[v]])J) fi;

In the execution of any legal sequence of q operations following Init, the total number
of changes to z[v] is O(n/x) for arbitrary v E V. Hence such a sequence can be
executed in O(n3/x + q) time, provided that the operations of testing and setting
individual bits of numbers in X and of computing [log aj and a A b for arbitrary
a, b X take constant time.

For x [log nJ, tables implementing the operations a - [log aJ and (a, b) -, a A b
for a, b X can be constructed in O(n2) time, and individual bits of numbers in X
can be inspected and modified in constant time via appropriate multiplications and
integer divisions by powers of two. This completes the proof of Theorem 6.1. []

Remark. On many real computers, the operation of bitwise AND is built in, i.e.,
takes constant time. It is easy to improve Theorem 6.1 for such a machine with
a nonstandard word length of x w(log n) bits. Although the remaining bit-level
operations discussed above may not be available at unit cost, they can trivially be
executed in O(x) time; hence on a machine with a word length of x bits and unit-time
bitwise AND, Tce(n, m, q) O(n3/x + qx + n), where the term n accounts for the
cost of initialization.

7. The incremental strongly polynomial algorithm. In addition to the
data structures of the generic algorithm, the incremental strongly polynomial al-
gorithm uses, as do several previous algorithms, an edge-weighted directed graph
F (V, EF, val), where EF C_ E* and val is a function from EF to N. F at all times
is a directed forest, i.e., an acyclic directed graph with maximum outdegree at most
one, and val(e) rescap(e) for all e EF. A vertex v V is called a root exactly if
its outdegree in F is zero. The following operations are applied to F"

InitF;
Sets EF 0;

AN o(na)-TIME MAXIMUM-FLOW ALGORITHM 1159

Find value(e);
Precondition: e E EF.
Returns val(e);
Find root(v);
Precondition: v E V.
Returns the root of the tree in F containing v;

Find min(v);
Precondition: v V and v is not a root.
Returns an edge e of minimal value val(e) on the maximal path in F starting at v; in
the case of ties the last such edge is returned;

Add value(v, c);
Precondition: v V and c R.
Replaces val(e) by val(e) + c for each edge e on the maximal path in F starting at v;

Link(e,c);
Precondition: e E*, c E N, and (V, EF U {e}) is a directed forest.
Replaces EF by EF U {e} and sets val(e):= c;

Precondition: e EF.
Replaces E by EF\{e};
The dynamic trees data structure of Sleator and Tarjan [ST85] supports the seven op-
erations defined above in O(log n) amortized time each; i.e., a sequence of q operations
on F, starting with InitF, can be executed in O(q log n) time.

The preflow f is represented in one of two ways: for e E*, while e EF
and rev(e)

_
EF, f(e) is stored directly as g[e], where g E - R is an array.

While e EF, f(e) is given implicitly as cap(e)- val(e) and f(rev(e)) as -f(e).
Accordingly, we redefine the basic procedure setflow and incorporate the conventions
for the representation of f into new versions of Link and Cut.

PROCEDURE setflow(e: edge; c: real);
:=

PROCEDURE link(e: edge);

PROCEDURE cut(e: edge);
setflow(e, cap(e)- Find value(e));
Cut(e);
The procedure tree push defined below works as follows: a call tree push(v) first

inserts an eligible edge with tail v into EF if v is a root, and then determines the
minimal residual capacity c of any edge on the maximal path in EF starting at v. It
finally increases the flow along that path by min{c, excess*(v)} and deletes all edges
from EF that become saturated.

PROCEDURE tree push(v: vertex);
if Find root(v) v (, v is a root ,) then link(ce(v)) fi;
c := Find value(Find min(v));
Add value(v, min{c, excess* (v) });
while Find root(v) v and Find value(Find min(v))= 0

1160 JOSEPH CHERIYAN, TORBEN HAGERUP, AND KURT MEHLHORN

do cut(Find min(v)) od;

We finally extend the routine relabel and give the main program.

PROCEDURE relabel(v" vertex);
for all u E V with (u, v) E EF do cut(u, v) od;

.=

INCREMENTAL STRONGLY POLYNOMIAL ALGORITHM:

generic initialize;
InitF;
L list of the undirected edges in E ordered by decreasing capacities;
while L
do
A cap(first(L)); (, A is used only by the analysis ,)
add edge(pop(L));
while max{ excess* (v) v e V+ } > 0
do
Choose v V+ with excess*(v) > 0;
if ce(v) nil
then relabel(v)
else tree push(v);
fi;

od;
od.

The algorithm uses the current-edge data type as follows: generic initialize calls
Init, relabel(v) calls Relabel(v), add edge({v, w)) calls Add edge({v, w)), link(e)calls
Npush(e), and each call cut(e) within tree push calls Spush(e). As will be seen below,
the latter conventions regarding calls of Npush and Spush guarantee the invariant that
each edge in E* is eligible iff it is admissible, which in turn ensures the correctness
of the values returned by calls of ce. The argument given in 3 for the equivalence
of eligibility and admissibility no longer suffices. While clearly h(v) d(v) continues
to hold for all v V, the fact that an edge (v, w) E* is residual iff r(v, w) 1 is
demonstrated in part (b) of Lemm 7.1.

LEMMA 7.1. At all times of the execution after the initialization and except during
calls of add edge, tree push, and relabel, the following invariants hold:

(a) every edge in EF is eligible;
(b) for all (v, w) E*, (v, w) is residual iff r(v, w)= 1.

Proof. (a) and (b) hold vacuously immediately after the initialization (at which
point EF E* 0). Let us therefore assume, by way of induction, that they hold
prior to a call of add edge, tree push, or relabel. We show that they hold after the call.

Invariant (a) can only be violated by a step that inserts an edge in EF or
that makes an edge in EF ineligible. When an edge is inserted in EF (in the call
link(ce(v))), it was returned by ce immediately prior to the operation and hence is
admissible at the time of the insertion. By invariant (b), it is also eligible at that time,
so that invariant (a) is preserved. Note also that since traversing an eligible edge is
always accompanied by a decrease in d value, the new edge does not form a cycle with
the edges lready in EF; i.e., the precondition of the call of Link is satisfied. An edge
in EF becomes ineligible either because it is saturated, in which case it is removed
from EF in a call of tree push, or because of a relabeling, in which case it is removed

AN o(na)-TIME MAXIMUM-FLOW ALGORITHM 1161

from EF in a call of relabel. In either case, since the edge no longer belongs to EF,
invariant (a) is preserved.

We now turn to invariant (b). Recall first from 3 that a call Add edge({v, w})
initializes r(v, w) and r(w, v) correctly, i.e., in accordance with the invariant. When
an edge (v, w) is inserted in EF, a call Npush(v, w) sets r(v, w) 1, and r(v, w) 1
remains true until the call Spush(v, w), executed when (v, w) is saturated and removed
from EF (if this ever happens), which sets r(v, w) 0. Thus, by invariant (a),
invariant (b) holds for all edges in EF. When an edge (w, v) is inserted in EF in
call of tree push, r(v, w) is also set to 1. Furthermore, by invariant (a), the value of c
computed by the call of tree push is strictly positive, so that a positive amount of flow
is sent over (w, v) in the same call, making (v, w) residual if it were not so already.
It is easy to see that as long as (w, v) remains in EF, r(v, w) remains equal to 1, and
(v, w) remains residual. Invariant (b) therefore holds also for edges (v, w) such that
(w, v) is in EF. Since flow is pushed only over edges in E, while only insertions into
and deletions from EF change values of r, invariant (b) clearly holds for the remaining
edges as well.

As an instance of the incremental generic algorithm, the incremental strongly
polynomial algorithm is partially correct. The following fact is obvious.

Fact 7.1. At all times during the execution, ezcess* (v) <_ A for all vertices v E V+.
Define a PTR (premature target relabeling) event on an edge e to be a relabeling

of the head of e while e is in E, and denote by ptr the total number of PTR
events during the execution. PTR events were introduced in [CH89], although with
somewhat different meaning. Their number depends on the exact edges returned by
calls of ce; this dependence will be discussed in 8. A PTR event on an undirected
edge {v, w} is a PTR event on one of the edges (v, w) or (w, v). Denote by sat cuts
the number of calls of cut within tree push, by cuts the sum of sat cuts and ptr
(observe that ptr is the number of calls of cut within relabel), by tree pushes the
number of calls of tree push, and by links the number of calls of link. A call of cut
or link is also called a cut or a link, respectively.

The analysis of our strongly polynomial algorithm centers around the following
ideas. We first show that the running time is determined by the search for current
edges, tree pushes, and cuts and then relate tree pushes to cuts. In order to bound
sat cuts, we use a potential function similar to the one used in the proof of Lemma
4.2, and in order to bound ptr, we use the analysis of [CH89].

LEMMA 7.2. The algorithm uses O(q log n) flow operations and O((tree pushes+
cuts).log n+n2+m log n)+Tc(n, m, q) time, where q O(tree pushes+cuts+n2).

Proof. It takes time O(m log n) to sort the undirected edges by capacity. If we
maintain for each vertex v the set of edges in EF with head v, then a relabeling takes
O(1) time plus O(log n) time for each cut caused by the relabeling. A call of tree
push takes O(log n) time plus O(log n) time for each cut caused by tree push. Finally,
the time spent on the current-edge task is T(n, m, q), where q O(tree pushes +
cuts + n2), since the number of calls of ae is bounded by the number of relabelings
plus twice the number of calls of tree push, the numbers of calls of Npush and Spush
are bounded by tree pushes and cuts, respectively, and there are O(n) calls of Add
edge and Relabel.

LEMMA 7.3.

(a) tree pushes O(links + sat cuts + m);
(b) links <_ cuts + n.

1162 JOSEPH CHElZlYAN, TORBEN HAGERUP, AND KURT MEHLHOIZN

Proof. (a) We use a potential function (I) defined as the number of nonroot vertices
with positive visible excess. When tree push(v) is called, we have ezcess*(v) > 0. If
a call tree push(v) performs neither a link nor a cut, then v was not a root before
the call and excess*(v) 0 after the call; i.e., (I) is reduced by one. No call of tree
push increases by more than one, the addition of an undirected edge increases
by at most two, and a relabeling does not change (I). Hence the total increase in (I) is

O(links + sat cuts + m), o 0 initially, and (I) >_ 0 always, and, with the exception
of at most links + sat cuts calls, every call of tree push decreases by one.

(b) Since F is a forest at all times during the execution, it never contains more
than n- 1 edges. Vl

LEMMA 7.4. sat cuts O(na/2ml/2 + ptr).
Proof. Define a push bundle for an edge e E* to be the sequence of all regular

pushes on e in a maximal period of time in which e belongs to EF. A push bundle
for an undirected edge {v, w} is a push bundle for one of the edges (v, w) or (w, v).
The number of push bundles clearly bounds sat cuts. A push bundle for an edge
e (v, w) E* is called complete if its pushes increase f(e) by cap({v, w}), i.e., from
-cap(w, v) to cap(v, w), and incomplete otherwise.

CLAIM 1. The number of incomplete push bundles is O(m + ptr).
Proof. A maximal period of time in which an edge e belongs to EF is terminated

by a PTR event on e, by a saturating push on e, or by the end of the execution.
Hence an incomplete push bundle for an undirected edge {v, w} that is neither the
first nor the last push bundle for {v, w} is either immediately preceded or immediately
followed by a PTR event on {v, w}.

CLAIM 2. The number of complete push bundles is O(n3/2m/2).
Proof. Define the level of a push on an edge (u, v) E* to be the value of d(u)

at the time of the push. Two pushes on a fixed edge (u, v) have the same level if
and only if they belong to the same push bundle. Hence for all (u, v) E and all
integers k with 1 < k _< 2n- 1, we can denote by (u, v, k} the push bundle for (u, v)
(if any) whose pushes are of level k. Let be a positive integer, to be chosen below,
and call a push bundle <u, v, k) terminal if it is followed by fewer than/ push bundles
of the form <u, w, k}, where (u, w) E. Clearly, there are at most 2n2 terminal
push bundles. In order to count the number of nonterminal push bundles, we use a
potential argument similar to those used in the proofs of Lemmas 4.2 and 5.1.

Consider the potential function

vEV+

where d denotes the/-fooling height introduced in 4. 0 initially and (I) _> 0
always (by Lemma 3.1 and property (F2) of/3-fooling height), (I) does not increase
due to changes of A (since ezcess*(v) <_ 0 for all v E V+ at each change of A),
does not increase due to regular pushes (by property (F3)), the total increase due to
relabelings is at most 2n2 (by Fact 7.1 and property (F5)), and the increase due to the
addition of an undirected edge is at most n// (by property (F1)). The total decrease
of (I) is therefore bounded by nrn/3 + 2n. Finally, note that the pushes in a complete
nonterminal push bundle decrease q) by at least one. This can be seen as follows.
Consider a complete nonterminal push bundle/u, v, k). Since (u, v, k} is nonterminal,
it is followed by bundles (u, w, k},..., (u, w, k}. Lemma 3.4 now implies that the
edges (u, w),..., (u, w) are eligible whenever a push in the bundle @, v,k} occurs.
Thus, by property (F4), d(u) > d(v) at the time of each such push. Also, the total

AN o(n3)-TIME MAXIMUM-FLOW ALGORITHM 1163

value of the pushes in the push bundle is cap({u, v}) and A <: cap({u, v}) whenever
a push in the bundle occurs since the undirected edges are added in the order of
decreasing capacities. Summing up, the total number of complete push bundles is
O(nm/Z + n2/3). Claim 2 follows with/ [(m/n)l/2J, and this ends the proof of
Lemma 7.4. [:]

LEMMA 7.5. The algorithm uses O(q log n)]tow operations and O(q log n) +
Tcc(n, m, q) time, where q O(n3/2m/9 + ptr).

Proof. Combine Lemmas 7.2, 7.3, and 7.4.

8. The extended current-edge problem and PTR events. In the definition
of the current-edge data type in 3, we allowed a call ce(v) to return an arbitrary
admissible edge (if any) with tail v. Given so much freedom, however, an adversary
might be able to "score" a high number of PTR events, leading to a bad running
time. Our defense against the adversary will be randomness: we force the choice
among several admissible edges to be made according to a fixed but random ordering;
then we can prove that the number of PTR events is usually much lower than the
naive upper bound. In this section, we adapt the specification of the current-edge
data type and extend the results of 6 to the more restrictive definition of ce, review
and slightly extend the bounds on the number of PTR events shown in [CH89], and
finally prove our main theorem.

For every finite set A, denote by Perm(A) the set of all permutations of A, i.e., of
all bijections from {0,..., IAI-1 } to A. As in 6, identify V with the set {0,..., n-l}.
The extended current-edge data type is initialized with n permutations 0, ,..., n-
of V. Its task is to maintain two functions r" E -- {0, 1} and h’ V - {0,..., 2n- 1}
under the operations Init, Spush, Npush, Relabel, Add edge, and ce. The operations
Spush, Npush, Relabel, and Add edge are defined as in 3, and Init and ce are redefined
as follows:

Init(o, n-);
Precondition: 0,..., n- are permutations of V.
Records 0,..., n-1 and sets h(v) := 0 for v e V\{s}, h(s) n, and r(v, w) := 0 for
all (v, w) E E.

Precondition: v E V.
Returns the first admissible edge with tail v in the order induced by v if E(v) ,
nil otherwise.
if E(v) 0, the first admissible edge with tail v in the order induced by v is (v, v(io)),
where i0 min{i" 0 <: <: n- 1 and (v,(i)) e E(v)}.

For q N, denote by Tc(n, m, q) the time needed to execute any legal sequence
of one Init operation followed by q Spush, Npush, Relabel, Add edge, and ce operations
of the extended current-edge data type.

LEMMA 8.1. Tc(n, m, q) O(nm + q) O(n3 + q).
Proof. The proof is identical to that of Lemma 6.1, except that the list Lv

is kept sorted according to the order induced by . for all v G V. This makes
Add edge operations more time-consuming. Since there are at most rn calls of Add
edge, however, ech of which can be executed in O(n) time, the total time is still
O(nm + q).

We now extend the faster solution of 6, but only for a restricted class of per-
mutations 0,..., n-. Let x =[log nJ, which, as in 6, we assume to be a divisor

1164 JOSEPH CHERIYAN, TORBEN HAGERUP, AND KURT MEHLHORN

ofn. Also, take M {0,...,n/x-i} and let Bi {ix, ix+l,...,(i+l)x-1},
for 0,...,n/x- 1. A permutation of M is called a block permutation. For
every block permutation .=. E Perm(M), define the induced block-preserving permu-
tation as the permutation E Perm(V) obtained by first arranging the blocks ac-
cording to ,=. and then replacing each block by the sorted sequence of its elements
(i.e., for v e Bi and w e Bj, -l(v) < -l(w) === (..-1(i) < ..-l(j) or (i j and
<
LEMMA 8.2. For all q N and for n arbitrary block permutations .=.0,..., ’=’n-1

Perm(M) with induced block-preserving permutations 0,...,n-1 e Perm(V), the
operation Init(o,... ,_) and any legal sequence of q Spush, Npush, Relabel, Add
edge, and ce operations following it can be executed in O(n3/ log n + q) time.

Proof. The proof of Theorem 6.1 carries over with only two minor changes: a
relabeling of a vertex v resets z[v] to v(0) instead of to 0, and in the implementation
of ce the pointer z[v] steps through the blocks in the order given by .=.v instead of in
increasing order; i.e., lines 3 and 4 of the code of ce are replaced by

while r’[v,z[v]] A H’[h(v) 1, z[v]] 0 and .=.-l(z[v]) < nix 1

do z[v] .=,v(,=.-(z[v]) + 1)od; V1

The incremental strongly polynomial algorithm uses the extended current-edge data
type essentially as described in 7 (in the paragraph preceding Lemma 7.1). The only
modification is that generic initialize now chooses n permutations 0,..-, n- of V
and calls Init(o,... ,-1). In this situation, we say that the algorithm is executed
with the adjacency lists ordered according to 0,..., -1.

We now turn to the discussion of PTR events. We need the following defini-
tions. Given finite sets A and B and permutations # Perm(A) and cr Perm(B),
let A(#,cr), called the coascent of # and or, be the length of a longest (not neces-
sarily contiguous) common subsequence of the sequences #(0),... , (IAI- 1) and
a(0),..., cr(IB 1). Given permutations #0,..., #- of subsets of a finite set A,

1-1for some N, let A(#0,...,#-l) maxePerm(A)=0 A(#i,cr); note that this
quantity does not depend on A. We call A(tt0,...,#-) the ezternal coascent of
#0 #l-1"

For all u V, denote by F the set of neighbors of u; i.e., F0 {v E V (u, v)
E}. For Perm(V) and u V, call # Perm(F) the restriction of to r if the
vertices in F are ordered identically by # and by , i.e., if #-(v) < #-(w) 4==

-(v) < -(w) for all v, w E Fu.
LEMMA 8.3 (see [CH89]). Let o,... ,n- Perm(V). If the strongly polyno-

mial algorithm is ezecuted with the adjacency lists ordered according to o,... ,-,
then ptr <_ 2n. A(#0,...,#n-), where # is the restriction of to F for all
vV.

Proof. For a0,..., agn- Perm(V), let us say that an execution of the algorithm
relabels according to a0,..., cre_e if the following holds for k 0,..., 2n 2 and for
all v, w V" if d(v) is set to k + 1 at some point of the execution and d(w) is set
to k + 1 at some later point, then cr-l(v) < cr-(w). Except for the fact that some
vertices may not be relabeled k + 1 times, crk simply orders the vertices in V by the
time of their (k + 1)st relabeling.

Consider an execution of the algorithm with the adjacency lists ordered ac-
cording to 0,... ,-1 that relabels according to or0,..., cr_2 and fix v E V and
k {0,...,2n- 2}. We will count the number ptr,, of PTR events on edges
with tail v while d(v) k. Suppose that wl,..., wt are vertices in V such that the

AN o(n3)-TIME MAXIMUM-FLOW ALGORITHM 1165

algorithm incurs PTR events on the edges (v, wl),..., (v, wz), in that order, while

d(v) k. Then clearly #-l(wl) <... < #-(wz) and (-s(w,) <... < a-l(wz); i.e.,
the sequences #v(1),..., (Irl) and crk(1),..., crk(n) have a (not necessarily contigu-
ous) subsequence of length l, namely w,..., wt. Thus ptrv, <_ A(#,). Summing
over all values of v and k yields

As is clear from Lemma 8.3, our next task is to analyze A(#0,..., #-1), where
#0,..., #-1 are obtained in various different ways.

LEMMA 8.4.
(a) For all v V, let # be a permutation of F. Then A(#0,..., #-1) _< rn.

(b) (See [ADO].) For every two integers n and h with 1 <_ h <_ n and every set W
with IWI h, n permutations #o,..., #- of W with A(#0,..., #-) O(nh2/a)
can be constructed in O(nh) time.

(c) Suppose that # is drawn randomly from the uniform distribution over

Perm(Fv) for all v V and that #o,...,#-1 are independent. Take log(2 +
(o)/.). fo o. o o(, .) th o O(v- + o/) fo
r>O,

Pr(A(#0,...,#_) >_ 0 + r) _< 2-.
Remark. The proof of part (c) is based on the proofs of Lemma 10 in [CH89] and

of Lemma 6.3 in [CH95]. For rn- o(n(log n)2), it strengthens those lemmas.

Proof.
(a) This is obvious since It01 +... + Ir-l- -.
(b) This is Theorem 2 in [A190].

E=0 a(,).(c) Recall that A(#0,.. #-1) maxcrPerm(V) qS(Cr), where qS(a) -1

We will show the probability that qS(cr) is large to be very small for each fixed
cr Perm(V). Multiplying that probability by the number of choices for or, i.e.,
by n!, we obtain an upper bound on the probability that A(#0,..., #n-) is large.

Hence let cr Perm(V) be arbitrary but fixed. For all v V, let A A(#,
and take S qS(o-) ’-1=0 A, the quantity of interest. For all v V, let d be the
degree of v; i.e., d

For arbitrary integers d and k with 0 _< k _< d _< n, the number of permutations
of an arbitrary subset of V of cardinality d with (#, () > k is at most ()2(d- k)!. To
see this, note that if (#, or) > k, then the elements of a (not necessarily contiguous)
subsequence of #(0),..., #(d- 1) of length k appear in the same order in the sequence
or(0),..., cr(n- 1). The elements of the subsequence can be chosen in () ways, and

the positions in which they appear in #(0),... ,#(d- 1) can also be chosen in ()
ways, while the remainder of the sequence #(0),..., #(d- 1) can be chosen in (d-
ways. It follows that for all v V and all integers k with 1 _< k < d,

Pr(A >k)< () 2
(d k)I. < d < (e2dv)a! -(!)-

where in the last step we used (a very crude) Stirling’s approximation k! >_ (k/e).

1166 JOSEPH CHERIYAN, TORBEN HAGERUP, AND KURT MEHLHORN

It can be seen that Av is unlikely to exceed by very much. Applying the
Cauchy-Schwarz inequality In. v _< I111 to the vectors u (1,..., 1) and v
(v/-0,..., v/dn_l), we obtain

v=0 v=0

n--1S 2v=0 A is hence unlikely to exceed nx/h-- by very much. In order to ob-
tain precise bounds, we use a method based on the moment-generating functions of
A0,... ,An-1 and akin to the usual proof of the well-known Chernoff bounds (see,
e.g., [CLR90] or [HR90]).

First, observe that for arbitrary real numbers 0, r, and t with t >_ i,

Pr(S >_ 0 / r) e-t(+r)et(+r)Pr(ets; >_ et(+)) <_ e-t(+r)E(etS),
where the simple Markov inequality was used in the last step. Second, since #0,...,

#n-1 and hence also etA, etan- are independent,

\v=0 v=0

We next bound the quantities E(etA"). Let v E V and let a _> 0 be an arbitrary
integer. Then

E(eras) 2 etPr(A k) _< 2 etkPr(A k)+
k=0 k=0

E etkpr(Av >- k)
k=a+l

et+dv for k > a + 1" i.e. take a [v/2et+2d]. ThenChoose av to make _<

E(etA")
_

eta" -t-- E 2-k eta if- 2-a - 2etv/2et+4d - 2etet+3v/-d--"
k=a+l

Putting everything together yields

n--1 n--1

Pr(S >_ 0 + r) <_ e-t(+) E(ets) e-t(+) H/(etA) e-t(O+r) H (2etet+ax/--")
v=0 v=0

e-t(o+r) 2netet+a -2-1 2net(et+s nv---(O+r))

Recalling that cr can be chosen in n! ways, we find

Pr(A(#0,..., #n-l) 0 + r) <_ n! 2hetet+a nx/---tO-tr

22nlognetet+3--tOe--tr e2nlogn+tet+3-tO 2--r.

Choose 0 so as to make 2n log n + tet+3nv/- tO 0; i.e., take

2n log n + tet+a v/-nm

AN o(n3)-TIME MAXIMUM-FLOW ALGORITHM 1167

Then Pr(A(#0,..., #n-l) > 0 4-r) _< 2 -T, as desired. All that remains is to show
that for all combinations of n and rn, it is possible to choose t >_ 1 such that 0
O(nv + n log r/). Consider two cases:

Case 1" e4 nv/-ff > n log n. In this case, take t 1 and observe that 0 O(nv/h--),
as required. This is essentially the analysis of [CH89].

Case 2:e4 nx/-ff- <_ n log n. Now choose t > 1 to make tet+a nv/5--n log n; i.e.,

tet+3 /n(lnn)2
This is clearly possible, and t ft(). But then 0 O(n log n/). fl

THEOREM 8.1. A mazirnum flow in a network with n vertices and rn edges can
be computed with the following bounds on flow operations and time"

(a) deterministically using O(nm log n) flow operations and O(nm log n) time;
(b) deterministically using O(q log n) flow operations and O(nm + q log n) time,

where q ns/3.
(c) probabilistically using O(cq log n) flow operations and O(nm + cq log n) time

with probability at least 1- 2 4-a-, for arbitrary c >_ 1, where q n3/2m1/ +
+

Remark. The bounds of part (a) were previously obtained by [ST83]. The time
bound of part (b) was previously obtained by [A190], although with a weaker bound
on the number of flow operations. For m f(n(log n)), the time bound of part (c)
was previously obtained by [Ta89] and [CH95], although with a weaker bound on the
number of flow operations. For m o(n(log n)), the result is new.

Proof.
(a) Combine Lemmas 7.5, 8.3, 8.4(a), and 6.1.
(b) Combine Lemmas 7.5, 8.3, 8.4(b) (used with h n), and 8.1. (Note that with

Tee(n, m, q) replaced by Te(n, m, q), Lemma 7.5 holds for the modified algorithm that
works with the extended current-edge data type.)

(c) Initialize the current-edge data structure with n independent random permu-
tations 0,..., n-1 of V. Since random permutations can be computed in linear time

(see, e.g., [Se77]), this can be done in O(n) time. Taking r anV-- in Lemma 8.4(c)
and using also Lemma 8.3, conclude that except with probability at most 2-’,
we have ptr O(aq). The claim now follows from Lemmas 7.5 and 8.1. rl

Remark. If, as in [CH89], a new random permutation of F is computed at
each relabeling of v for all v E V then the failure probability of part (c) can be reduced
even further to 2-q.

Remark. Following [AOT89], we can combine the incremental wave scaling al-
gorithm of 5 with the use of dynamic trees. Since this requires few new ideas,
we omit the details and only state the following result: for every a >_ 1, a maxi-
mum flow in a network with n vertices, rn edges, and integer capacities bounded by
U >_ 1 can be computed using O(aq log(2 + n log U/m) + log U) flow operations and
O(nrn + aq log(2 + n log U/m) + log U) time with probability at least 1 2-,

q + +
In order to use the faster solution to the extended current-edge problem provided

by Lemma 8.2, we first need to demonstrate that random block-preserving permu-
tations are almost as "good" as unrestricted random permutations. We do this by
relating the external coascent of a set of block-preserving permutations to that of the
set of block permutations that induces it. Recall that z [log hA.

1168 JOSEPH CHERIYAN, TORBEN HAGERUP, AND KURT MEHLHORN

LEMMA 8.5. For all o,..., En-1 C Perm(M) with induced block-preserving per-
mutations o,..., -1 Perm(V), A((0,..., (_1) < x. A(E0,..., E-I).

Proof. Fix cr Perm(V) arbitrarily and let R Perm(M) be the multiset ob-
tained as follows: for each tuple (r0,... ,r/x_) Bo x... B/_, where r for

0..., nix- 1 is called a representative of its block B, add to R (one copy of) the
block permutation that arranges the blocks in the order in which their represents-
tives occur in (i.e., for 0 i,j n/x- 1, -1(i) < -l(j) -l(ri) < -l(rj)).
We call ro,..., r/_ the definin9 vertices of (that copy of) . Now, for every block
permutation E Perm(M) with induced block-preserving permutation ,

x

To see this, note that each element of a fixed longest common subsequence of (0),...,
(n- 1) and (0),..., (n- 1) contributes 1 to A(,) if it is a defining vertex of

and that each v V is a defining vertex of exactly Rl/x permutations R.
Summing the inequality above for equal to 0,...,- produces

n--1 n--1 n--1

v=0R Rv=0

We can now state the main result of our paper and finally justify its title.
THEOREM 8.2. A mazimnm flow in a network with n vertices can be computed

deterministically using O(nS/a(log n)n/a) flow operations and O(na/ log n) time.

Pro@ According to Lemma 8.4(b), used with h n/z, n block permuta-
tions 0,..., E- Perm(M) with A(E0,..., E-) O(n(n/logn)/) can be con-
structed in O(n/log n) time. By Lemmas 8.3 and 8.5, if the algorithm is executed
with the adjacency lists ordered according to the block-preserving permutations in-

by Z0,... ,Z-, t t O(/(og)/*). h im ow onow fom
Lemmas 7.5 and 8.2. S

9. Parallel algorithms. Since our solution to the current-edge problem paral-
lelizes trivially on most parallel machines and since the current-edge problem is the
only bottleneck in our algorithms on dense graphs, it is possible to crank out a vari-
ety of parallel algorithms for the maximum-flow problem that have optimal speedup,
as compared with their sequential counterparts. We give one example in Theorem
9.1 below. Since we parallelize only the current-edge data structure and execute all
other parts of the algorithms sequentially as before, optimal speedup can be attained
only for a moderately small number of processors, as is to be expected in view of the
P-completeness of the maximum-flow problem [GSS82]. Previous work on parallel
algorithms for computing maximum flows is described in [SV82], [GT88], [GT89], and
[Go91]. No parallel algorithm for the maximum-flow problem with optimal speedup
(using more than a constant number of processors) was previously known.

THEOREM 9.1. For p O(n/a(logn)-7/a), a mazimnm flow in a network with

processors interconnected to form a complete binary tree.
Proof. The processor at the root of the tree stores a copy of all variables. In

addition, each of the p leaf processors has a copy of the vector z, and a copy of

AN o(n3)-TIME MAXIMUM-FLOW ALGORITHM 1169

the arrays r and H is distributed among the leaf processors, the ith leaf processor,
for 1,...,p, storing the columns of r’ and H’ numbered (i- 1), (i- 1)+ p,
(i 1) + 2p, etc. The root processor essentially carries out the algorithm of Theorem
8.2 sequentially. Each update of r and H is broadcast to the leaf processors and
recorded by the relevant leaf processor. A call of ce(v) (originating at the root) is
also broadcast to the leaf processors and causes each of them to advance its copy
of z[v], looking only at the columns stored locally, until it encounters an admissible
edge, runs out of edges, or is interrupted. A successful processor sends the admissible
edge found up the tree towards the root. Whenever two edges meet in the tree, the
one coming from the right is discarded. The root, upon receipt of the surviving edge,
which is ce(v), broadcasts it to the leaves. This signal interrupts the leaf processors
and allows them to reset z[v] to the correct value.

This implementation allows a sequence of q operations on the current-edge data
structure to be processed in O(q logp+ n3/(p log n)) time. The algorithm of Theorem
8.2 uses q O(nS/3 (log n) 1/3) operations, giving a total time of O(nS/3 (log n)4/3 +
n3 / (p log n)). For p O(nl/3(logn)-7/3), this is O(n3/ (p log n)).

10. Open problems. (1) Does the current-edge problem have an o(nrn)-time
solution for rn o(n2/log n)? A positive answer to this question would extend the
range of o(nrn) algorithms below rn t2(n2/log n).

(2) Can the OIn2 log n log(2 + n(log n)2/rn)) term be dropped in the analysis
of the number of PTR events? A positive answer to this question would extend the
range of O(nrn) algorithms below rn ft(n(log n)).

(3) Is there an o(nrn log n) maximum-flow algorithm for rn o(n logn log log n)?

[AHU74]

[AO89]

[AOT89]

[A1901

[CH89]

[CH951

[CLRg0]

[FF62]

[Go91]

[GT88]

[GT89]

[css8]

[GLS88]

REFERENCES

A. V. AHO, J. E. HOPCROFT, AND J. D. ULLMAN, The Design and Analysis of Computer
Algorithms, Addison-Wesley, Reading, MA, 1974.

R. K. AHUJA AND J. B. OPLIN, A fast and simple algorithm for the maximum flow
problem, Oper. Res., 37 (1989), pp. 748-759.

R. K. AHUJA, J. B. ORLIN, AND l. E. TARJAN, Improved time bounds for the maximum

flow problem, SIAM J. Comput., 18 (1989), pp. 939-954.
N. ALON, Generating pseudo-random permutations and maximum flow algorithms,

Inform. Process. Lett., 35 (1990), pp. 201-204.
J. CHERIYAN AND T. HAGERUP, A randomized maximum-flow algorithm, in Proc. 30th

Annual Symposium on Foundations of Computer Science, IEEE Computer Society
Press, Los Alamitos, CA, 1989, pp. 118-123.
, A randomized maximum-flow algorithm, SIAM J. Comput., 24 (1995),

pp. 203-226.
T. H. CORMEN, C. E. LEISERSON, AND R. L. RIVEST, Introduction to Algorithms, MIT

Press, Cambridge, MA, and McGraw-Hill, New York, 1990.
L. R. FORD, JR., AND D. R. FULKERSON, Flows in Networks, Princeton University Press,

Princeton, NJ, 1962.
A. V. GOLDBERG, Processor-efficient implementation of a maximum flow algorithm,

Inform. Process. Lett., 38 (1991), pp. 179-185.
n. V. GOLDBERG AND R. E. TARJAN, A new approach to the maximum-flow problem,

J. Assoc. Comput. Mach., 35 (1988), pp. 921-940.
, A parallel algorithm for finding a blocking flow in an acyclic network, Inform.

Process. Lett., 31 (1989), pp. 265-271.
L. M. GOLDSCHLAGER, R. A. SHAW, AND J. STAPLES, The maximum flow problem is

log space complete for P, Theoret. Comput. Sci., 21 (1982), pp. 105-111.
M. GR6TSCHEL, L. LOVASZ, AND A. SCHRIJVER, Geometric A19orithms and Combina-

torial Optimization, Springer-Verlag, Berlin, 1988.

1170 JOSEPH CHERIYAN, TORBEN HAGERUP, AND KURT MEHLHORN

[HR90]

[Ka74]

[KRT94]

[Se77]

[sv8]

[ST83]

[ST8]

[Ta89]

T. HAGERUP AND C. ROB, A guided tour of Chernoff bounds, Inform. Process. Lett.,
33 (1990), pp. 305-308.

A. V. KARZANOV, Determining the maximal flow in a network by the method of preflows,
Soviet Math. Dokl., 15 (1974), pp. 434-437.

V. KING, S. RAO, AND R. TARJAN, A faster deterministic maximum flow algorithm,
J. Algorithms, 17 (1994), pp. 447-474.

R. SEDGEWICK, Permutation generation methods, Comput. Surveys, 9 (1977), pp. 137-
164.

Y. SHILOACH AND W. VISHKIN, An O(n2 log n) parallel MAX-FLOW algorithm, J. Algo-
rithms, 3 (1982), pp. 128-146.

D. D. SLEATOR AND R. E. TARJAN, A data structure for dynamic trees, J. Comput.
System Sci., 26 (1983), pp. 362-391.

--, Self-adjusting binary search trees, J. Assoc. Comput. Mach., 32 (1985), pp. 652-
686.

R. E. TARJAN, personal communication, September 1989.

SIAM J. COMPUT. @ 1996 Society for Industrial and Applied Mathematics
Vol. 25, No. 6, pp. 1171-1195, December 1996 003

A DETERMINISTIC POLY(LOGLOGN)-TIME N-PROCESSOR
ALGORITHM FOR LINEAR PROGRAMMING IN FIXED

DIMENSION*

MIKLOS AJTAI AND NIMROD MEGIDDO$

Abstract. It is shown that for any fixed number of variables, linear-programming problems
with n linear inequalities can be solved deterministically by n parallel processors in sublogarithmic
time. The parallel time bound (counting only the arithmetic operations) is O((loglogn)d), where
d is the number of variables. In the one-dimensional case, this bound is optimal. If we take into
account the operations needed for processor allocation, the time bound is O((log log n)d+c), where c
is an absolute constant.

Key words, parallel computation, expander graph, parallel random-access machine (PRAM),
linear programming

AMS subject classifications. 68U05, 90C05

1. Introduction. The general linear-programming problem is known to be P-
complete [6], so it is interesting to investigate the parallel complexity of special cases.
One important case is when the number of variables (the dimension) d is fixed while
the number of inequalities n grows. Megiddo [11] showed that this problem can be
solved in O(n) time for any fixed d. Clarkson [4] and Dyer [8] improved the depen-
dence of the constant on d. The general search technique proposed in [11] provides
poly-logarithmic algorithms with n processors for any fixed d (see [12]). Deng [5] gave
an O(log n) algorithm with n/log n processors for the case where d 2. It was not
previously known whether the problem could be solved in o(log n) time with n pro-
cessors for any d > 1. However, Alon and Megiddo [3] showed that on a probabilistic
concurrent-read/concurrect-write parallel random-access machine (CRCW PRAM)
with n processors, the problem can be solved by a Las Vegas algorithm almost surely
in constant time. In this paper, we show for the first time that for any d, the problem
can be deterministically solved in O((log log n)d) time on n processors, if we count
only the arithmetic operations. If we take into account the steps necessary for pro-
cessor allocation, then our time bound is O((loglogn)d+c), where c is an absolute
constant. We describe our model of computation in 3. We note that the simple case
of d 1 is equivalent to the problem of finding the maximum of n elements, which
requires ft(log log n) time on n processors.

2. Preliminaries. We first review some known facts about expander graphs.
Let G (V, E) be any graph. For any nonnegative integer r, denote by G (V, E)
a graph where (u, v) E E if and only if there exists in G a path of length less than or
equal to r from u to v. For any S C V, the r-neighborhood of S, N(S) N(S; G),
is defined to be the set of all vertices v such that either v E S or there exists a u E S
with (u, v) E E.

DEFINITION 2.1. A graph G (V,E) is called an expander with expansion
coefficient c if for every S c V such that ISI <_ -IVI, we have INI(S)I >_ alSI.

Received by the editors July 27, 1992; accepted for publication (in revised form) February 13,
1995. This research was supported in part by ONR contracts N00014-91-C-0026 and N00014-94-C-
0007.

IBM Almaden Research Center, 650 Harry Road, San Jose, CA 95120-6099.
IBM Almaden Research Center, 650 Harry Road, San Jose, CA 95120-6099 and School of

Mathematical Sciences, Tel Aviv University, Tel Aviv, Israel.

1171

1172 MIKLOS AJTAI AND NIMROD MEGIDDO

The work of Gabber and Galil [9] provides for every n rn2, rn 1, 2,..., an

explicit construction of a 6-regular graph which is a 1.03-expander. For any sufficiently
large n we can get a 1.02-expander graph on n vertices with maximum degree less
than 7 by first taking a 6-regular 1.03-expander on n’ vertices, where n’ is the smallest
square greater than n, and then discarding n’-n arbitrary vertices from it. Let
e 0.02

PROPOSITION 2.2. For every sufficiently large positive integer n and every pos-
itive integer r, there ezists a graph G (V, E) on rt vertices with rnazirnurn degree
less than 7 such that for every S c V,

INI(S; G)I > win{(1 + e)lSI, n/2}.

Pro@ Let Go be a graph on n vertices with a maximum degree of 6 with expansion
coefficient a > 1.1. As we have already noted, an explicit construction for such a graph
is given in [9]. In 6, we describe how the construction can be carried out on a CRCW
PRAM with n processors in a constant number of steps, where each processor can
perform arithmetic operations on numbers not greater than n. Let G (G0). The

6 7maximum degree d in G is not greater than i=1 < Moreover for every j,
if INj(S; G)I <_ n/2, then Nj+I(X; G) > (1 + e)lXj(S; G)I and the proof follows by
induction.

Coaoaa 2.3. In the graph (G0), if A and B are sets of vertices with cardi-
nalities greater than n/(1 +)/2, then there ezists an edge between them.

Proof. It follows from Corollary 2.2 that

IN/2(A; G0)l > win{(1 + e)/lAI, n/2} win{n, n/2}

and, similarly, N/(B; Go) > n/2. This implies that N/.(A; Go) C N/2(B; Go)
and hence in Go, there is a path of length less than or equal to r between A and
or, equivalently, an edge of (G0).

Let c- 2 log1+ 7 so that (1 + e)c/ 7.
PROPOSITION 2.4. For every sufficiently large n and every positive integer r,

there ezists a graph G of degree less than d 7 with the following property: if t d,
then every two disjoint sets A and B of vertices of G such that IAI IBI nit are

connected by an edge.
Proof. The proof follows directly from Corollary 2.3 since t d1/c 7/

(+)/.
COROLLARY 2.5. In the expander of Proposition 2.4, for every two disjoint sets

of vertices A and B of vertices such that IAI IBI 2n/t, there ezist more than
edges between A and t3.

Proof. Suppose to the contrary that the number of edges between A and B is less
than or equal to nit. Let A1 be the subset of A that consists of those vertices that
are not adjacent to any vertex in B. Since IAll _> n/t, by Proposition 2.4, there is an
edge between A1 and B--a contradiction.

3. Linear programming in the plane. Consider the linear-programming prob-
lem with two variables in the form

Minimize y

(p2)
subject to y>_aiz+b (iN+),

y <_ ax + b (i N_),
g<x<_h,

POLY(LOGLOGN) ALGORITHM FOR LINEAR PROGRAMMING 1173

n/f n/fJ n/f

FIG. 1.

where IN+I + IN-I n and {g, h} C [-c, c]. Any two-variable linear-programming
problem can be reduced to this form in O(loglogn) time with n processors. The
algorithm proposed by Dyer [7] and Megiddo [10] provides a method of discarding
of the set of constraints with an effort of computing one median and two maxima in
sets of at most n elements. It was shown by Ajtai, Koml6s, Steiger, and Szemer6di [2]
that selection can be done in O(loglogn) time in Valiant’s parallel-comparison-tree
model with n processors. The selection steps of our algorithm are implemented in this
model. All of the other steps can be implemented on a CRCW PRAM. Deng [5] gave
a parallel algorithm which runs in O(log n) time using O(n/log n) processors. In fact,
his algorithm applies the procedure of [7, 10] until the number of remaining constraints
allows for computation of the entire convex hull in O(logn) time with O(n/logn)
processors. Such an approach cannot yield an o(logn)-time bound. Our approach
discards increasing proportions of the set of remaining constraints without resorting
to the computation of the entire convex hull of the remaining set at a relatively early
stage.

Suppose we are left with the lines

Li {(x,y) Y aix + bi} (i E N U N_),

where N N+ CN+ and cN_. Letn= IN+I+IN_] denote the revised number of
constraints, and we continue to employ p processors (where p is the initial number of
constraints). We now describe how a large number of constraints can be further dis-
carded. Denote q pin (where p is the initial number of processors). The treatment
of the two classes of constraints is very similar, so we describe only the case of N_.

Let d be the largest power of 7 that is smaller than qC/(c+l). Let t be defined by
tc d. Consider an expander graph G (V, E) of degree smaller than d, with vertices
corresponding to the lines in N_, and that has the properties asserted in Proposition
2.4 and Corollary 2.5.

For every edge (i, j) E (i,j N), if Li and Lj are not parallel, consider
the intersection coordinate j -(b bj)/(a aj). Denote by C the set of these
intersection points. Obviously, ICI <_ 1/2rid < p, so all the points in C can be computed
in constant time with our p processors. Partition C into intervals by points -cx

ao < x < x2 <’" < x so that each interval [X_l,X] (i 1,...,s) contains
less than nit points. (See Figure 1.) This can be achieved with s < nd/(n/t)
tc+ q.

PROPOSITION 3.1. If A and B are disjoint sets of lines, each containing at least
2nit elements, then there does not exist a k (1 <_ k <_ s) such that ij [xk-l,xk] for

1174 MIKLOS AJTAI AND NIMROD MEGIDDO

all Li E A and Lj E B.
Proof. The proof follows from the fact that the number of such intersection points

that are also in C is at least n/t by Corollary 2.5, while each interval contains less
than n/t points of C. [:1

Given the set C, we wish to determine in which of the intervals [Xk-l,Xk] an
optimal solution x* might lie. Denote

f+ (x) max{aix + bi N_},
f_(x) min{aix + bi N_}.

Note that an optimal solution must satisfy the following: x* [g, hi, f+ (x*) _< f_ (x*),
and f+(x*) is minimal. Since f+(x) and f+(x)- f_(x) are convex, we can test any
value of x with at most three computations of a maximum in a set of cardinality n

(see [10]) and conclude with one of the following possibilities: (i) the problem has no
feasible solution; (ii) x is an optimal solution; (iii) if x* is an optimal solution, then
x* > x; (iv) if x* is an optimal solution, then x* < x. Since p/s > n, we have at least
n processors per point xk, so in O(log log n) time, we can locate the optimum in one
of our intervals.

Suppose we have identified an interval [u, v] where the minimum is attained, and
there are less than nit intersection points of C over [u, v]. Consider the orders induced
on the set of lines by their intersections with the lines {x u} and {x v}. Call
them the u-order and the v-order, respectively. For every k (k 1,..., n), denote by
Uk the set of the k lowest lines in the u-order and denote by Vk the set of the k lowest
lines in the v-order.

PROPOSITION 3.2. For every k (k 1,..., n), the symmetric difference

e \ \

contains at most 4nit lines.

Proof. Since IU\VaI IVk\UI, it follows that if, to the contrary, IUk(VkI > 4n/t,
then

\ \ >

Note that all the intersections ij of a line L Uk \ Vk with a line L E Vk \ Uk must
be in [u, v]--a contradiction to Proposition 3.1. []

Let Uk and Vk be the complements of Uk and Vk, respectively, in the set of all n
lines. (See Figure 2.)

PROPOSITION 3.3. For k n 4n/t, there exists at least one line in k N ?.
Proof. The claim is trivial if Uk Vk; otherwise, since Uk 0 Vk Fk (R) ?k, by

Proposition 3.2,

IUk
PROPOSITION 3.4. Let k n- 4nit. If L is any line in N ?, then over the

interval [u, v], the line L lies above at least n- 8nit lines.

Proof. The line L lies above every other line, except possibly for some lines in
]k U , but

COROLLARY 3.5. The number of lines can be reduced from n to no more than
8n/t in O(log log n) time.

Proof. A line L U N V (k n- 4n/t) can be found as follows. Compute the
set U by selecting the kth smallest element relative to the u-order and then find the

POLY(LOGLOGN) ALGORITHM FOR LINEAR PROGRAMMING 1175

Uk

Uk <

lOkt3kl (n-k)-4n/f

FIG. 2.

line L which is the maximum in k relative to the v-order. Given L, we can compare
it with all of the other lines and discard those lines which are smaller in both orders.
The number of remaining lines will be at most 8nit.

THEOREM 3.6. The linear-programming problem with two variables can be solved
in O((log log n)2) time.

Proof. The scheme we have described so far reduces the number of constraints
from n to 8nit(n), so it works only when 8nit(n) < n. In order to satisfy the latter
condition, we start the algorithm by running a constant number of iterations of the
algorithm of [7, 10], where 1/4 of the set of constraints is discarded in each iteration.

This constant number is determined from t(n) (p/n) 1/(c+1) > 8, i.e., nip < 8-c-l,
and the number is log3/4 8-c-1.

Recall that t= t(n) (p/n) so the value of n is reduced in one iteration
to

n’ 8nl+l/(l+C)p-1/(c+1),

so the next value of t is

t’ (1 1+1/(c+1)
1/(c+1)

8-i/(c+i)ti+i/(i+c)

Thus, after k iterations, the value of t is

t(k) l+’+’"+Tk-lt?k

where 3 8-1/(c+1) and - 1 + 1/(c + 1), and this implies that the number of
iterations is O(log log n). l-I

1176 MIKLOS AjTAI AND NIMROD MEGIDDO

4. The three-dimensional case. The linear-programming problem with three
variables is formulated as follows:

(p3)

Minimize z

subject to z >_ ax + by + c
z <_ ax + biy + ci

0 <_ ax + by + c

(e N+),

(Y0),

where IN+I + IN_I + IN01 n.

FIG. 3.

As in the two-dimensional case, we proceed by discarding increasing proportions of
the set of constraints. The three sets N+, N_, and No can be handled independently.
We describe only the processing of N+. Suppose we are currently left with n planes

P = {(, ,) z = a,x + + } (e N’+ c Y+
and there are p processors.
parallel, let

For every pair of planes (P, Pj), if the planes are not

Lj {(x, y) ax + by + c ajx + bjy + cj},

i.e., Lij is the projection of the line of intersection of P and Pj into the (x, y)-plane.
(See Figure 3.)

We now use an expander graph G (N, E) of maximum degree less than t
(the dependence of tl on n and p will be explained later) whose vertices represent
the planes and with the property that if A and B are disjoint subsets of N_, each of
cardinality of at least 2n/tl, then the number of edges between A and B is at least

nits. Let

D {L](i,j) e E}.

Note that the number of pairs (i, j) such that Lj E D is less than nt.
We now use an expander graph G’ (D,Et) (i.e., the vertices correspond to

the lines in D) with maximum degree less than t (the dependence of t2 on n and p

POLY(LOGLOGN) ALGORITHM FOR LINEAR PROGRAMMING 1177

will be explained later) so that between any two sets, each of cardinality of at least
21DI/t2 the number of edges is at least IDI/t2. In view of Corollary 2.5, this is true
if t2 <_ (p/(nt)) 1/(c+1) since IDI <_ nt.

Denote by C the set of intersection points of pairs of lines corresponding to the
edges of G. We proceed as in the two-dimensional case (as if D were the total set
of lines). We partition the x-axis into t+1 intervals in the same way and find one
interval [u, v] of the partition such that, without loss of generality, the given instance
of (p3) may be restricted to the stripe {(x, y) u x <: v}. The testing algorithm
that we use to select the required stripe is described in detail in [11, 4, pp. 123-126].
We can decide with this testing algorithm wherethe solution of (pd) is relative to
a given hyperplane, that is, whether there is a solution on the hyperplane and, if
not, then which of the two hMf-spaces determined by .the hyperplane contains the
solution. The algorithm uses only the solution of three instances of the (d- 1)-
dimensional problem if the hyperplane is in the (d- 1)-dimensional space. (We will
use this algorithm for the solution of the d-dimensional problem as well). We may now
conclude that the required stripe can be selected by solving at most three instances
of the two-dimensional problem. We also know that the two orders on D (induced by
the intersection points with {(x, y) Ix = u} and {(x, y) Ix = v}) are almost the same
in the sense that for every k (k = 1,..., IDI),

IUk 0 Vkl <_ 41DI/t2

(see Proposition 3.2).
Consider the following two partitions of D into r

81DI/t2: (i) intervals I,...,Ir relative to the u-order and (ii) intervals J,..., Jr
relative to the v-order.

PROPOSITION 4.1. For every k (k
Proof. Since

it follows that

IIk (Jal <:- I(Uk5 (Vks) U (U(k-)5 (V(k-))l <_ 2(41DI/t2) < 5,

so

I& n -> I& u J, l- IZ, e > o. u

it follows that for each k (k 1,..., r), there exists a line ik E Ik N Jk so that
the members of M {ll,... ,tr} do not intersect in the stripe {(x, y) u _< x

_
v}.

These lines partition the stripe into "trapezoids." (See Figure 4,)
Remark 4.2. A suitable set M can be constructed on a CRCW PRAM in

O(loglogn) time. First, the intervals are constructed by solving r selection prob-
lems. Suppose each member of D knows the intervals that it belongs to relative to
the two orders. Each member of Ik N Jk now attempts to write its name in a cell
representing gk, and one succeeds.

PROPOSITION 4.3. There are at most 55 pairs (i, j) (not necessarily in E) such
that the trapezoid bordered by the gk and gk+ is intersected by Lij.

Note that we may have u

1178 MIKLOS AJTAI AND NIMROD MEGIDDO

FIG. 4.

Proof. The proof follows from the fact that this trapezoid may intersect only the
lines in the set

-k [-J Ik+l [-J Jk [-J Jk+l [-J (U(k+l)5 0 g(k+l)5) [.J (U(k-1)5 g(k-1)5)

whose cardinality is at most 45 + 2(41DI/t2
Next, we identify one trapezoid to which problem (p3) may be restricted without

loss of generality. Furthermore, we can divide this trapezoid into two triangles and
restrict our attention to one of them, which we denote by T.

PROPOSITION 4.4. If 55 < n/t1, then for every pair (A, B) of disjoint sets of
planes such that IAI, IBI > 2n/tl, there is at least one line Lj such that P E A and
Pj B, and Lij does not intersect T.

Proof. We know that for such an A and B, there are at least n/t lines Lij in D
such that Pi A and Pj B. On the other hand, by Proposition 4.3, T is intersected
by at most 55 lines Lj. El

Thus we need to choose t and t2 so that 40[DI/t2 < nits. Hence we require
40t/t2 < 1/t, i.e., 40t+1 < t2, and since t2 < (p/IDI) /(c+), it suffices that

and
(c+2)

At each of the three vertices2 of T, there is a natural linear order on the set of
hyperplanes induced by the z-coordinate. We may apply the argument that we used
in the two-dimensional case to any pair of orders as we did with the u-order and the
v-order. For every k (k 1,..., n), let Uk, Vk, and Wk denote the sets of k lowest
planes relative to these three orders.

PROPOSITION 4.5. For every k (k 1,..., n), the set

(u v) u (u w) u (v w)

contains at most 12n/t1 elements.

2 The case of an infinite triangle can be easily handled as well.

POLY(LOGLOGN) ALGORITHM FOR LINEAR PROGRAMMING 1179

Proof. Each member of Uk \ Vk intersects each member of Vk \ Uk in T, each
member of V \ W intersects each member of Wk \ V in T, and each member of
Wk \ Uk intersects each member of Uk \ Wk in T. Since IUk \ Vkl IVk \ Ukl,
IVk \ WI IW \ Vkl, and IW \ UkI IUk \ Wkl, it follows from our choice of tl that
the cardinality of each of these six sets is not greater than 2n/t1. El

PROPOSITION 4.6. For k n- 12n/tl, A ? N 1/ O.
Proof. If U V Wk, the claim is trivial; otherwise,

PROPOSITION 4.7. Ilk n-12n/t and P E ?n?nW, then over the triangle
T, the plane P lies above at least n- 36n/tl planes.

Proof. The plane P lies above every plane in Uk Vk Wk, but

IUk n Vk r Wk n- lUg, U Vk U Wtl >_ n- 3(12n/t1).

(See Figure 5.) El

FIG. 5.

COROLLARY 4.8. The number of planes can be reduced from n to no more than
3n/t , 0((oon))

Proof. The sets Uk, Vk, and Wk can be computed with a selection algorithm, and
then it can be decided separately (and simultaneously) for each member of the union
of these sets whether it satisfies the conditions of Proposition 4.7. Since we need to
solve linear-programming problems with two variables and we have enough processors
for solving all of these problems in parallel, Theorem 3.6 applies, so the effort for one
iteration is O((log log n)2). E!

THEOREM 4.9. The linear-programming problem with three variables can be solved
o(n)

1180 MIKLOS AJTAI AND NIMROD MEGIDDO

Proof. The value of n is reduced in one iteration to 36n/t1, where tl
(p/n) 1/((c+1)(c+2)). As in the proof of Theorem 3.6, the next value of tl is

fil 36-1/((c+1)(c+2))t1+1/((c+1)(c+2))

so the number of iterations is O(log log n). This implies our claim.

5. The general d-dimensional case. We now consider the general linear-
programming problem with d variables, which we formulate as follows.

(pd)

Minimize y

subject to ykaTx+bi (iEN+),
y <_ aTi x + bi (i E N_),
O

_
aTi x + b (i No),

where aie Rd- (i e N+ U N_ U No and]N+I + IN-I + IN0l- n).
5.1. Hyperplane queries. In general, our algorithm works recursively in the

dimension. First, as explained in [11], a linear-programming algorithm for problems
with d- 1 variables can be used as an oracle for deciding the position of the set of
optimal solutions, if any, relative to any given hyperplane. More precisely, it can be
used to solve the following problem.

Problem 5.1. Given an instance of (pd) and a hyperplane H {x Rd-1 aTx
b}, decide whether (i) the optimal solutions of (pd), if any, may be assumed to

lie in H+ {x E Rd- aTx > b}, (iN) the optimal solutions of (pd), if any, may
be assumed to lie in H_ { e Rd-1 aTm < b}, or (iii) a final conclusion can
be reached that either H contains an optimal solution, the problem is unbounded on
H, or the problem is infeasible. The conclusion in (iii) is reached when the solution
of (pd) with the additional constraint m H yields a solution of (pd) or when the
problem is infeasible and the "amount of infeasibility" is minimized on H.

5.2. Locating the solution in a "small" simplex. We now introduce a prob-
lem that plays the key role in the algorithm, but we first need to define an oracle for
minimizing a function.

DEFINITION 5.2. Consider a function f Rd- -- R U {-x}. By an oracle for
f, we mean a mechanism that, when presented with a hyperplane H in Rd-, returns
information in one of the following forms: (i) either the minimum of f lies in H+
or f is unbounded from below on H+; (iN) either the minimum of f lies in H_ or

f is unbounded from below on H_; (iii) either the minimum of f lies in H or f is
unbounded from below on H. (See Figure 6.)

Problem 5.3. The following are given: an oracle for a function f as in Definition
T5.2, a number p (of processors), and hyperplanes Hk {(x, y) Rd Y ak x + bk }

(k 1,..., n). Find either some hyperplane H in Rd- such that the minimum of f
lies in H (or f is unbounded on H) or d half-spaces Fk {x Rd-1

akxT +dk >_ 0}
(k 1,...,d) such that

1. either the minimum of f lies in the "simplex’’3 A F1 N... Fd or f is
unbounded from below on A, and

2. at most nit (t t(p/n;d)) pairs (Hi, Hj) of hyperplanes intersect over A.
(The value of t(p/n; d) will be derived later.)

3 In general, this intersection may be unbounded.

POLY(LOGLOGN) ALGORITHM FOR LINEAR PROGRAMMING 1181

FIG. 6.

Remark 5.4. When d 2, the polyhedron is an interval which may extend to
infinity in one direction. In higher dimensions, the polyhedron can be either a simplex
or a simplicial cone. In any case, there will be at most d linear orders on the set of
Hk’s such that if Hi is above Hj in each of these linear orders, then Hi lies above
Hj at every point of A. Recall that in the case where d- 2, we located an interval
with tl (p/n) I/(c+), and in the case where d 3, we located a "triangle" T such
that the number of pairs of planes that intersected over T was at most nits, where
tl (p/n) /((c+)(c+2)).

Denote

If Hi and Hj are not parallel, then Lij is a hyperplane in Rd-.
Let G (V, E) be an expander graph with maximum degree less than -f (the

value of T will be determined later) whose vertices correspond to the hyperplanes Hk
and with the property that every two disjoint subsets A, B C V of cardinality n/T1
are connected by an edge. Hence if A and B are subsets of V of cardinality at least
2n/7, then the number of edges between A and B is at least n/7l. Let

D {Lj I(i,j) e E}.

We have ID[< n-. Consider the function f’’ Rd-2 -- R 3 {-oc}, defined by

f’(x,...,Xd-.)- inf f(x,...,Xd-).
Xd--1

An oracle for f (in the sense of Definition 5.2) provides an oracle for ft when we extend
any hyperplane H in Rd-2 into a hyperplane in Rd- described by the same equation.
Thus, recursively, we can either (i) find a hyperplane H C Rd-2 which contains
the minimum of if, and hence its extension into a hyperplane in Rd- contains the
minimum of f, or (ii) find d 1 half-spaces Fa {x E Rd-2 ekxT nt_ dk >_ 0}
(k 1,... ,d- 1) with the properties described in Problem 5.3 with respect to the
hyperplanes Lij in D:

1182 MIKLOS AJTAI AND NIMROD MEGIDDO

1. either the minimum of f lies in A F1 r... r Fd-1 or f is unbounded from
below on A, and

2. at most IDI/r2 (r2 t(p/ID I, d- 1)) pairs of Lij’s from D intersect over A.
For k 1,... ,d- 1, let F be the half-space in Rd-1 parallel to the (xg_l)-

axis, obtained by extending the half-space Fk into Rd-1. Thus the polyhedron
is extended into a polyhedral "cylinder" A in Rd-1 which contains the minimum
of f. Furthermore, the number of pairs of Lj’s intersecting A is at most
Consider the d- 1 linear orders induced on the set of Lij’s by their Xd- values at
the d- 1 vertices of A (or at infinity, as explained above). For j 1,..., d- 1 and
k 1,..., IDI, denote by U the set of the k lowest hyperplanes relative to the jth
order.

PROPOSITION 5.5. For any and j (1 _< < j _< d- 1) and for every k
IDI),

Proof. As in Proposition 3.2,

so if, on the contrary,

then

e > 41Dl/r.,

IU/ \ IU \ > 2IDI/T..

Since all the intersections of members of U \ U with members of U \ U intersect
A, we reach a contradiction. El

We now consider d- 1 partitions of D into r < r2/(n(d- 1)(d- 2)) intervals
of length 5 > 4(d- 1)(d- 2)]D]/T2: for 1,..., d- 1, a partition into intervals
Ii,..., I relative to the ith order.

PROPOSITION 5.6. For every k (k 1,..., r),

Proo We have

]U U[4]D[/T2 and I U5 U{k_l)5.
Since

and

it follows that

i<j

Ii (I (U#6 (U5)U (Uk_l)5 (

< <

_> 6- 2(d- I) "4]D,/T2 > rl

POLY(LOGLOGN) ALGORITHM FOR LINEAR PROGRAMMING 1183

It follows that for each k (k 1,..., r), there exists a hyperplane L E I r... r
I-1 such that the members of M {L,..., L* } do not intersect in the cylinder A.
These hyperplanes partition A into "prisms."

PROPOSITION 5.7. There are at most (2d- 1)5 pairs (i,j) such that the prism
bordered by L and L+I is intersected by Lij.

Proof. The prism may be intersected only by hyperplanes in the set

d-1u u u u u
j=_ i<j

)1)5) Vk-1)5

whose cardinality is at most

2(d-1)5+ 2/d-1)"2 41DI/7 < (2d- 1). U

We now find one prism that may be assumed to contain the minimum of f. In this
process, we might find a hyperplane which contains the minimum. We then divide
the prism into d- 1 "simplices" and restrict our attention to one of them, which we
now denote by A’.

PROPOSITION 5.8. If 2d31DI/-2 < n/T1, then for every pair (A,B) of disjoint
sets of hyperplanes Hk such that IAI, IBI > 2n/T, there exists at least one Lij such
that Hi A and Hj 6 B, and Lj does not intersect A’.

Proof. We choose > 4(d- 1)(d- 2)IDI/T2 such that (2d- 1) < 2n/T. For A
and B that satisfy our conditions, there are at least n/T Lij’s in D such that Hi 6 A
and Hj B. On the other hand, A’ is intersected by at most (2d- 1)5 Liy’s. Under
the assumption of the proposition, the latter is less than n/T1. []

Thus we will choose - so that 2d31DI/’2 < n/. On the other hand, IDI nF,
so it suffices that

Ti<(’T2

We are thus led to the expression for T(d) t(p/n, d) as follows. First, T(1)
q/(c+) (where q p/n)). Next,

It follows that

T(d)=(T(d’:l)-2d3)

2e+...+ed-1 d k3d+l-k

where e 1/(c + 1) (not the e of 3).
5.3. Discarding constraints. After we have located the solution of our linear-

programming problem in a small simplex, we can discard a large number of constraints
as follows. As in the previous sections, we consider members of the three sets N+, N_,
and No separately. Suppose we are left with a set N_ c_ N+ of n hyperplnes, nd we
have now found a "simplex" A in Rd-1 which is known to contain the solution and
over which at most (p/n)(d) pairs of hyperplanes intersect. We also know d linear
orders over N at "vertices" of A such that if a hyperplane H lies above another

1184 MIKLOS AJTAI AND NIMROD MEGIDDO

hyperplane H’ in all these orders, then H lies above H over the entire set A. For
j = 1,..., d and k 1,..., n, denote by U the set of the k lowest hyperplanes relative
to the jth order.

PROPOSITION 5.9. For every k (k = 1,... ,n), the set

<j

contains at most d(d- 1)n/v(d) elements.
Proof. The proof is similar to that of Proposition 4.5; each of the sets U @ Ukj

contains at most 2n/T(d) elements.
PROPOSITION 5,10, For k = n d(d 1)niT(d),
Proof. The proof is similar to that of Proposition 4,6"

-ISl >_ n- k- d(d- 1)n/’(d). U

PROPOSITION 5.11. If k = n d(d- 1)n/’(d) and H E u{, then over the
simplex Di, the hyperplane H lies above at least n- d2(d- 1)niT(d) hyperplanes.

d jProof. The hyperplane H lies above every member of Nj=i Uk, but

>_ n- d2(d- 1)niT(d). El

COROLLARY 5.12. The number of planes can be reduced from n to no more than
d2(d- 1)n/T(d) in one phase, where (d, 1)-variable linear-programs are solved in
parallel, each with a linear number of processors.

THEOREM 5.13. For any fixed d, the linear-programming problem with d variables
and n inequalities can be solved with n processors in O((loglogn)d) time.

Proof. Denote

1

It follows from what we have proven that the value of n can be reduced in one iteration
to nit(d), where

After one iteration the new value of t t(d) is t tl+e, so after k iterations,
t(k) t(i+). El

Remark 5.14. We note that the algorithm has to start with a constant number of
iterations that reduce the number of constraints by discarding constant proportions

--d

until we get t > 1, i.e., if initially n = p m, we need to reduce n until n < mC In
terms of d, the constant proportion is O(3’d); hence the constant number iterations
is O(- log C(d)3d2), i.e., O(3d2dlogd). Then the variable number of iterations is
O(log log n/(log(1 + Q), i.e., O((c + l)d log log n).

POLY(LOGLOGN) ALGORITHM FOR LINEAR PROGRAMMING 1185

6. The problem of processor allocation. To describe our computational
model, first we recall Valiant’s comparison-tree model used for measuring the com-
plexity of sorting or selection problems. We formulate it in a way which is suitable for
further generalizations. Assume that we have an ordered set with n abstract elements
and n/2 processors (n is even). At each step, each processor receives two elements,
compares them, and reports the result to a central processor. The central processor
receives the results and, based on all the information received, decides which compar-
ison should be made and by whom during the next round of comparisons. There is
no restriction on the computing ability of the central processor. The sorting/selection
problem is solved in k rounds of comparison if after k rounds the central processor
knows the answer to the question. For example, if al,,.., an are the elements of the
ordered set (not necessarily ordered in this way), then the computation may start by
sending a2i-l,a2i, to processor (i 1,... ,n), and after the first round of compar-
isons, the central processor may decide that processor 1 gets aT, a0, processor 2 gets
a3, ag, etc. The motivation of this model is that we want to count only the number
of comparisons and not the amount of computation necessary to decide which set of
comparisons will be made in the next round.

We may generalize this model for the solution of linearprogramming problems.
Assume that the coefficients of the constraints in the problem are elements of an
abstract ordered field. Each constraint contains a constant number of these abstract
elements as coefficients. At the beginning, the coefficients of each constraint are stored
at a single processor. Different constraints are stored at different processors. We also
assume that at the beginning of each step, each processor holds a constant number
of these abstract elements. During a single step, the processor may perform a con-
stant number of arithmetic operations on them, compare the resulting elements, and
report the results of the comparisons to the central processor. The central proces-
sor, using the reported results of the comparisons, redistributes the elements among
the processors and decides which arithmetic operations and comparisons are done in
the next step. (The central processor never gets the abstract elements themselves,
only the results of the comparisons.) Again, this model measures only the number
of arithmetic operations and comparisons necessary for the solution of the linear pro-
gramming problem and not the amount of computation necessary to decide which
arithmetic operations and comparisons must be performed. (Later, we will give a
more realistic model which measures this as well.) We get a clearer picture if we
separate the arithmetic operations and the comparisons, that is, we assume that in
each round either only arithmetic operations or only comparisons are performed. This
way, we can measure separately both the number of arithmetic operations and the
number of comparisons required for a solution.

Our result in this computational model is that the d-dimensional linearprogram-
ming problem can be solved in a way that the number of rounds where we perform
only arithmetic operations is O((log log n)d) and the number of rounds where only
comparisons are performed is O((log log n)d+).

To be able to measure the amount of computation needed to decide which arith-
metic operations or comparisons to perform, we will use a CRCW PRAM. We will
not, however, describe every step of our computation in this model. We will assume
that the selection steps are done in Valiant’s comparison tree model. Our algorithm
in the CRCW model described below can be performed in O((loglogn)d+c) steps,
where c is an absolute constant.

The CRCW PRAM model that we use in this paper consists of processors that

1186 MIKLOS AJTAI AND NIMROD MEGIDDO

communicate with each other according to the following rules. If there are m pro-
cessors, then the processors are numbered from 1 to m. The number assigned to a
processor will be called its address. Each processor has a constant number of regis-
ters, which may contain positive integers not greater than m. In each step, processors
may (simultaneously) read the contents of the first register of any processor. We
assume that when processor reads the contents of the first register of processor j,
then the number j is contained in the second register of processor i. Alternatively,
the processors may simultaneously try to write into the first register of any processor.
(If more than one processor attempts to write in the same register, the one with the
smallest address succeeds.) These kinds of steps will be the read/write steps of the
processors. Between these steps, the processors can perform a constant number of
arithmetic operations on the contents of their own registers.

To handle the real numbers given in the constraints of the linear-programming
problem, we assume that each processor also has a constant number of registers, each
containing a real number. Here we consider real numbers as elements of an abstract
ordered field, so the processors may only perform the arithmetic operation on them
and compare them, but the binary bits of the real numbers are not directly available
for the processors. We assume that the same rules of reading and writing are valid for
these types of registers as for the ones containing integers. Between two read/write
steps, each processor is allowed to perform a constant number of operations on the
real numbers contained in its registers. We now describe how can we handle certain
specific problems in this model.

Expander graphs. The expander graphs that we use were constructed by Gabber
and Galil and are described in [9]. If n m2, then the vertices of the graph are
ordered pairs of positive integers (i, j), where 0

_
i,j m. The neighbors of the

vertex (i, j) can be computed in a constant number of arithmetic operations modulo
m starting from the numbers and j. We will represent such a graph in the following
way. Each vertex will be associated with a processor and the neighbors of that vertex
will be listed in the registers of the processor. Therefore, if the number of vertices is
not greater than the number of processors, this expander graph can be computed in
a constant number of steps on our CRCW PRAM.

Power of a graph. For certain steps of the algorithm, we will need a family of
graphs where the maximum degree is not bounded by a constant. In the following, we
may assume that graphs may have multiple edges. This makes their representation
easier in our model, and it is suitable also for our applications. The graphs will be
represented in the following way. If the maximum degree is d, then each vertex v will
be associated with a set Tv of processors of size d. (We assume that the addresses
of these processors form an interval of length d.) Therefore, each vertex v has an
address--the address of the first processor in Tv. The addresses of the neighbors are
stored in the processors contained in Tv (the same address may occur several times).
If G1 and G2 are graphs with the same set of vertices, then their product GIG2 is
a graph where the edges between x and y are defined in the following way: for each
vertex z and each pair of edges e and f such that e connects x and z and f connects z
and y, there is a separate edge Ez,e,f connecting x and y. It is easy to see that if two
graphs GI and G2 are represented this way, then in a constant number of steps, we
may compute a representation of their product provided that the number of processors
is large enough for the representation of the product. Consequently, if G is a graph,
then we may compute the representation of Gk in poly(log k) steps. We will always
have k <_ log n (where n is the total number of processors), so we will have that G

POLY(LOGLOGN) ALGORITHM FOR LINEAR PROGRAMMING 1187

can be always constructed in poly(log log n) steps.
Prime numbers. For certain steps of our algorithm, we will need prime numbers.

If we have n processors, all of these prime numbers are smaller than v/-. We may
actually compute all of the prime numbers up to x/ in a constant number of steps
in our model in the following way. We divide the processors into x/ intervals, each
of length v/. The ith interval has to decide whether the number is a prime or not.
Since there are at least processors in the interval, they can decide this in a constant
number of steps: the jth processor checks whether j is a divisor of i. After this, we
may assume that if k _< v/-, then the kth processor knows whether k is a prime or

not, and if necessary, other processors may read this information from its register. If
processor j needs a prime from an interval I contained in [0, v/], then each processor
whose address is a prime in this interval tries to write its address in the first register
of processor i. If there is a prime in I, then the smallest one will appear in the register
of j.

All of the steps of the algorithm except the selection procedures can be imple-
mented on a CRCW PRAM. Apart from the specific problems mentioned above
(expander graphs, powers of graphs, primes), there is only one step, namely, dis-
carding constraints, whose implementation is not immediate. We solved the linear-
programming problem by discarding an increasing proportion of the remaining con-
straints. In a typical step of the iteration, we assume that the remaining n constraints
are stored in an array of n cells RIll,... ,R[n], and we discard at least n(1- l/s)
(1 <_ s <_ n) of them. In order to continue with the algorithm, we need the remaining
n/s constraints to be stored in an array whose size is essentially not larger than n/s.
More precisely, we need an algorithm for the following problem.

Problem 6.1. Given an array R[1],...,R[n] and a subset H C {1,2,...,n} such
that IHI n/s, move the contents of each R[i] (i e H) to some R[j(i)] so that
j(i) <_ n/s1- and j(i) j(i’) for all i, i’ e H (i : i’).

PROPOSITION 6.2. For every fixed > O, there exists an algorithm for Problem
6.1 which runs in O(log log n) time on an n-processor CRCW PRAM.

Proposition 6.2 implies that wherever we originally reduced the number of con-
straints from n to n/s, we will be able to reduce it on a CRCW PRAM from n to
n/s-. This does not affect the upper bounds given in previous sections.

In the following, we will assume that each processor has a register which may
contain a single element of a set A. We will say that this element is handled by the
processor. We suppose that throughout the computation, each element of A is handled
by a single processor (which may be different from step to step) and each processor
handles at most one element. We also assume that the processors are ordered in some
arbitrary way. The rank of a processor is its position relative to the given ordering.
According to this definition, if we say that we took the elements of A to the first k
processors, then we mean that after executing the algorithm, each element of A will
be handled by a processor whose rank is at most k and distinct elements of A will be
handled by distinct processors.

DEFINITION 6.3. For any > 0 and any positive integers c, n, and s, let v,c(n, s)
denote the following proposition: There exists an algorithm that runs in c time units
so that if there are n processors and IA] <_ n/s, then after running the algorithm,
the number of those elements of A which are not handled by one of the first n/s1-
processors is smaller than n/s+.

PROPOSITION 6.4. For every sufficiently small > O, there exists a positive
integer c such that for all n and s, v,c(n, s) is true.

1188 MIKLOS AJTAI AND NIMROD MEGIDDO

The proof will be given later.
PROPOSITION 6.5. Proposition 6.4 implies Proposition 6.2.

Proof. It suffices to prove Proposition 6.2 for every sufficiently small e > 0 since
for smaller e’s, the statement of the proposition is stronger. Given a suificiently
small e > 0, let e/2. Assuming that Proposition 6.4 is true, (I),c(n, s) is true.
Therefore, there exists an algorithm as explained in Definition 6.3. When we iterate
this algorithm, then after each iteration, the number of those elements of A which are
not handled by one of the first n/s1- processors decreases from nit to nit1+. After
O(log log n) iterations, every element of A will be at the place claimed in Proposition
6.2. Note that at the first step, t s.

Remark 6.6. It suffices to prove Proposition 6.4 for every s > so, where so is an
arbitrary constant. Indeed, it is possible to simulate nso processors with n processors
in a constant number of steps, so we may always assume that the number of processors
is at least solAI. We use the following proposition in the proof of Proposition 6.4.

PROPOSITION 6.7. For every > O, there exist > 0 and c > 0 such that for
all positive integers s, if we have s processors and IAI <_ s-, then in c steps we can
move all of the elements of A to the first s1-’ processors.

Our goal is to show that Proposition 6.7 implies Proposition 6.4.
Let e > 0 be any small constant. (Later, we will give an upper bound on e.) We

now assume that IAI n/s, and the elements of A are stored at processors with rank
not greater than n. For the sake of simplicity, we assume that s is an integer and n
is divisible by s, but the proof remains valid in general with minor modifications. We
partition the set of processors into n/s intervals of length s. Let A be the set of all
elements of A which occur in an interval where the number of elements from A is less
then 81-e. It follows from Proposition 6.7 that there exist e > 0 and c > 0 such that
for each interval of this type, we can move the elements of the interval to the first
s- processors of this interval in time c. In this way, all of the elements of A can
be taken to processors with ranks smaller than (t/s)s1-’ 7z8-’.

Remark 6.8. We note that in order to perform the described step (with regard
to moving the elements of A), we do not have to count the number of elements in
the intervals. We simply attempt to apply the algorithm of Proposition 6.7, and we
succeed in the intervals that contain the elements of A. Let X denote the set of the
remaining intervals and let A" denote the set of those elements of A which are at
processors belonging to an interval from X (after we have performed the steps based
on Proposition 6.7). The set A" may have essentially the same size as A.

For the next step of the algorithm, we need the following proposition, which is a
consequence of the existence of explicitly constructible expander graphs.

PROPOSITION 6.9. There exist a positive integer r, a 5, E (0, 1), and an al-
gorithm that constructs for any positive integers k and rn a symmetric nonnegative
rn x rn matrix B of integer entries such that the following hold:

1. The largest eigenvalue ofr-kB is 1, and the only eigenvector with this eigen-
value is (1/V/-)e (where e (1,..., 1)T).

2. All the other eigenvalues of r-kB lie in the interval [0,
3. If k is sujficiently large relative to r and and if v (vi,...,vm)T is a

(0, 1)-vector such that e v <_ m/r2, then IIr-Bvll2 <_
Proof. The results of Gabber and Galil [9] imply that there is an integer d > 1

and that there exists an explicit construction (for every m) of an rn x rn symmetric
matrix D with nonnegative-integer entries such that

1. d is an eigenvalue of D, and the only eigenvector with eigenvalue d is (1/x/)e;

POLY(LOGLOGN) ALGORITHM FOR LINEAR PROGRAMMING 1189

2. all the eigenvalues of D lie between -d and d.
Let F D + dI, where I is the identity matrix. We get the eigenvalues of F by
adding d to the eigenvalues of D. If r 2d and 3"/2d is the second-largest eigenvalue
of F, then it is easy to see that matrix B Fk, as stated in parts 1 and 2 of the
proposition. We will show that part 3 is a consequence of the above.

Let v be a (0, 1)-vector such that e. v <_ m/rk. Denote by W the linear subspace
of all the vectors orthogonal to e. Represent v as

where w E W. Let V2,..., VTM be orthogonal eigenvectors of r-kB, all orthogonal
to e, with eigenvalues 2,..., Am, respectively (0

_
hi <_ 3’k for 2,... ,m), and

represent w O2v2 -- "+- Cmvm. Obviously,

Now

Since

m m

IIr-"Bwll= Eair-kBvi= EaiAiv
i=2 i=2

it follows that

IIr-"Bvil < #v + "llvll.
Now v is a (0, 1) vector, so Ilvll 2 e. v. On the other hand, e. w 0, so

v 2 e. (e) #m,

and we have

Consequently,

II’-Bvll _< m-l/llll + ")’llvil <_ (m-l/:llvll + ")’)llvll.

Sinc v i (0.1)-cto" .d ,. ,, _< /,’’, wh I1"11-< (..-2,<)1/
that

This implies

II’-’Bvll <_ (m-ll(mr-2)il2 + ")’)llvll (’- + ")’)llvll _< -11’-’11
if k is sufficiently large, where 5 > 0 depends only on 3’ and r. 13

In the intervals of X, there are at least s1- elements from A". We apply Propo-
sition 6.9 with m n/s]XI. We pick k so that sI/s < r < s/4; this is possible
since s > so. We take a graph G on the vertex set X whose matrix is B. This graph
may contain both loops and multiple edges. We try to move the elements of A" along

1190 MIKLOS AJTAI AND NIMROD MEGIDDO

the edges. More precisely, an element of At which is at a processor in an interval I
will be moved to a processor of an interval which is connected to I by an edge of the
graph. Distinct elements from the same interval I may move to distinct intervals.

Let h be the number of intervals which contain more than s1- elements from
Later, we will prove the following.

PROPOSITION 6.10. It is possible to move the elements of A" in a constant
number of steps so that the new arrangement has the following property: if K is the
set of intervals which contain more than s1- elements from A’, then IKI < s-5/Sh,
where 5 is the constant defined in Proposition 6.9.

We first show that, assuming Proposition 6.7 is true, Proposition 6.10 implies
Proposition 6.4.

Proof of Proposition 6.4. Let A0 be the set of those elements from A" which are
in an interval belonging to K. Let A 5/5. By Proposition 6.10, there exists e > 0
such that

[Aol < [AIs-(1-)s-s IAIs- <_ IAI-/.
Therefore, if we pick 0 < </k/2, then all the elements of A0 can be included among
the exceptional n/s+ elements of Proposition 6.4.

All the remaining elements, i.e., the elements of A’\Ao, are now in intervals where
the number of elements is smaller than s-. Thus, again applying the algorithm based
on Proposition 6.7, we put every element of A in the required place. (We assume that
U < e/2.) To complete the proof, we must show that the elements of A" can be moved
in the manner described.

Let E be the set of edges of the graph G on the vertex set X associated with
matrix B in Proposition 6.9. Property 1 of matrix B implies that the degrees of all
the vertices are equal to g rk. We partition E into t 1-factors and each interval I
into s/g classes of equal sizes. We associate each edge e E E connecting the intervals
I and J with a pair of classes I E I and J J. Using the partition orE into
l-factors, we may define the pairs (I, Je) so that each class occurs in exactly one pair
associated with some edge e. Let be a one-to-one correspondence between the sets
I and J. In each step, we swap the contents of the processors x and (x) for all
e E and x I. This can be done in a single step since each processor takes part
in a single swap. The essential change is as follows. If exactly one processor in a pair
(x, (x)) contained an element of A, then this remains true, but the element from A
will be in the other processor. (If either both or none of them contained an element
of A, then this situation prevails.)

Originally, we only had intervals where the processors containing elements from
A" had either density at least s or density 0. Suppose that after performing a step
described above, the set A will have density u in the interval I (0 < u < 1). Let
w (WZ)leX be the vector consisting of the original densities, and let u (uz)zex
be the vector of densities after one step has been performed. Our definitions imply
that u r-kBw. Let v (v)+/-ex be the "characteristic" vector of w, i.e.,

1 ifw-0,v= 0 ifwr =0.

By the nonnegativity of B, u, v, and w, we have Ilull <_ Ilr-Bvll. To give an upper
bound on Ilul], we want to use property 3. The condition "k is sufficiently large"
holds because of the assumptions rk > s/8 and s > so. Also,

POLY(LOGLOGN) ALGORITHM FOR LINEAR PROGRAMMING 1191

Since m IX[and r2k < 81/2 < 8l-e, the requirements of property 3 in Proposition
6.9 are met. According to the conclusion there, we have][ull _< r-ek][v[I _< r-5kh/2,
where h is the number of nonzero components of v. On the other hand,]]u[[>_
s-[KI /2. Therefore, s-]K] /2 <_ r-kh/. Since r >_ s/8, we conclude that
[I

_
82-5/4h

_
s-5/hh. (Here we assumed that e < 5/20.) E!

We will need the following in the proof of Proposition 6.7.
PROPOSITION 6.11. There is a positive c such that for every integer s > O, if we

have s processors, s1/s > IAI, and the elements of A are at the first s/2 processors,
then all the elements of A can be moved to the first s/4 processors in c steps.

We will use the following well-known concepts in the proof. If K is a field, then the
aJfine plane over K, K K, consists of all the ordered pairs of elements of K. A subset
L C_ K K is a line if there exist a, b, c E K such that L { (x, y} lax + by + c 0}.
We say that two lines have the same direction if they are parallel, that is, they do not
intersect. A direction is a maximal set of parallel lines.

Proof of Proposition 6.11. Suppose p s/4 is a prime. (If p s/4 is not a
s/4 and s/4prime, then let p be an arbitrary prime between .) We associate with

each of the first s/2 processors a point in the affine plane with p2 elements. There
are p s/4 directions (maximal sets of parallel lines) on the plane but less than
(s/8)2 s/4 pairs formed from the elements of A. Therefore, there is a direction
such that each line of this direction contains at most one element from A. Since
the number of processors is s, we can actually find such a direction in a constant
number of steps. Indeed, we associate with each line e a processor P, and with each
pair of points (p,p2} (pl P2) a processor O,p,pg.. If both points p and p2 contain
an element of A, then the processor Q(p,p2) attempts to write in the register of
processor P, where e is the line determined by the points p and p2. After this step,
each processor Pe knows whether the line e contains more than one element of A, and
in the next step, it will try in a similar way to transmit this information to processors
associated with directions. Using the direction where each line contains at most one
point from A, we may easily move A to the first s/4 processors. El

Proof of Proposition 6.7. If e, d, and c are positive, then denote by (e, d, c) the
following statement" for all positive integers s, if the elements of A (IAI <_ s-) are
given on s processors, then in c steps we can move all the elements to the first s-’
processors.

Proposition 6.7 is the following assertion"

(w > 0) > 0) > 0)

Let O(e) be the statement

> 0) > 0)

We have to prove that for all e e (0, 1), O(e).
We will present a strictly increasing continuous function f (0, 1) -+ (0, 1) so that

for each e (0, 1), we have O(f(e)) = O(e). Moreover, we will give an e0 (0, 1) with
O(e0). The existence of these objects implies Proposition 6.7 since the properties of
the function f guarantee that for every e > 0 there is a positive integer such that
f(i) (e) > e0, where f(i) is the ith iterate of f. Therefore (using the fact that if a </,
then O(a) = O(/)), we have

e(0) e(f()()) o(f(-)()) ... e().

1192 MIKLOS AJTAI AND NIMROD MEGIDDO

Now we prove O(0) with e0 }. More precisely, we prove (}, 1/4, c) for some c.

Assume that IAI _< s1- s1/s. Let Z be a set of s/2 elements. We associate each
processor with an element of Z Z. Let

Y {y E Z l(gz e Z) (processor (y, z) stores an element of A)}.

We can actually find the elements of Y in a constant number of steps. Note that Y is
represented as the set Y x {z0} for an arbitrary z0 e Z. Also, IYI <_ IAI <_ s/s. Let fi
be a new set (disjoint from A) whose elements have to be handled by the processors.
Suppose that the elements of 7i are st the processors belonging to Y. We may assume
that Z x {z0} are the first s/2 processors, so the elements of 7i are at the first s/2

processors. Applying Proposition 6.11, we may move the elements of A to the first
s/4 processors. We may also assume that at the end, each processor containing an
a e fi also contains the address of the processor where a was initially. This implies
that, coming back to the original set A, we may simultaneously move all the elements
of A inside the sets Z x {z} (for each z Z) so that each element of A will move
to a processor (v, z}, where v is among the first s1/4 elements of Z. Consequently,
A is on the first s3/4 processors, which concludes the proof of O(e0). Thus we have
reduced the proof of Proposition 6.7 to the question of existence of a function f with
properties given in the following proposition.

PROPOSITION 6.12. There is a strictly increasing continuous function f (0, 1) -*

(0, 1) such that for every e (0, 1), O(f(e)) = O(e).
For the proof of this proposition, we will need the following.
PROPOSITION 6.13. If a > 0 is sufficiently small, then for every > O, there is

a positive c such that for all s, if IAI s and the elements of A are on s processors,
then they can be moved in c steps to the first sc+ processors.

Remark 6.14. We will use the following consequence of the proof of O(e0)" if
c > 0 is sufficiently small and IA <_ sa, then we can move IAI to the first sa/4

processors in a constant number of steps. Iterating this step, we get the following:
for all > 0, if c > 0 is sufficiently small, IAI <_ sa, and the set A is given on s
processors, then we can move A to the first s processors in a constant number of
steps.

Assume now that a sufficiently small N > 0 is fixed and a > 0 is sufficiently small
with respect to N. According to the previous remark, we may assume that A is on the
first s processors. Let m s. We now have the following situation: the elements
of A are given on m processors, but we have m/ extra processors that we can use
for the computation. Therefore, we can simulate an unlimited-fan-in constant-depth
Boolean circuit of size m/ with rn inputs. We associate the input nodes with the m
processors. The value of the input will be 1 if there is an element of A at the processor
and 0 otherwise. Using the following theorem (see [1]), we are able to approximately
count the number of elements of A in a constant number of steps.

THEOREM 6.15. There ezist positive c and d such that for all positive integers
n and a <_ n, there is an (explicitly constructed) unlimited-fan-in Boolean circuit C
with n inputs and depth d and of size at most nc so that for each input sequence x, if
Ixl denotes the number of 1 ’s in the sequence, then we have the following:

1. if I1 <_ (1 (logn)-l)a, then C() O, and
>_ +

We will also use the following easy proposition from [1] about rood p polynomials.

POLY(LOGLOGN) ALGORITHM FOR LINEAR PROGRAMMING 1193

DEFINITION 6.16. Let p be a prime number and let Kp be a field with p elements.
Assume that f is a polynomial of degree k with coefficients in Kp. We define a map

as follows. If (u, v} E Kp Kp, then hP((u, v}) u- f(v).
PROPOSITION 6.17. If X C_ Kp Kp and IXI <_ pl-2/(k+l), then there exists a

polynomial f of degree k with coefficients in Kp such that for all y Kp,

We use this proposition with k 4, nd we assume that Kp Kp is the set
of processors and X is the subset of processors where the elements of A are sitting.
Proposition 6.17 for k 4 implies that if IA < p/5 and the elements of A are located
in the first p2 processor, then using pl0 processors, we can move the elements of A to
the first 4p processors in constant number of steps. Since we have enough processors,
we may check all of the polynomials of degree 4 simultaneously and find a polynomial
f that satisfies the conclusions of the proposition. Using this polynomial, we can
move the points in A to the first 4p processors. Iterating this step and using Remark
6.14, we get the following.

PROPOSITION 6.18. If C > 0 is sufficiently small and IAI <_ sa, then using s
processors, the elements of A can be moved to the first sa processors.

Proof of Proposition 6.13. Assume now that IAI <_ sa, where a > 0 is sufficiently
small. According to Proposition 6.18, we may assume that A is already in the first

IAI processors, and we may continue in the following way" assume that p is a prime
with IA[< p < 21AI. Since we are able to count approximately, we can find such
a prime in a constant number of steps. (Since we can count approximately, we can
find in a constant number of steps an interval which is contained in (IAI, 21AI) and
is of length at least IAI/2. By the prime-number theorem, if IAI is sufficiently large,
such an interval always contains a prime.) We put the first p: processors on the affine
plane with p2 elements. There are only p2 ordered pairs formed from the elements of
A, and there are p directions (maximal set of parallel lines) on the plane. Therefore,
there must be a direction such that the number of ordered pairs from A contained in
the lines of this direction is at most p. Since a :> 0 is sufficiently small and A is on the
first s2a processors, we may actually find a direction (using approximate counting)
where the number of ordered pairs is less than--say 2p. Let al,..., ap be the numbers
of elements of A on the lines with this direction. We have P 2 < 2p.Ei--1 ai

Let # > 0 be sufficiently small. First, we consider the lines with a _< p. Accord-
ing to Proposition 6.18, within each line of this type, all of the elements of A can be
moved to the first p2 processors. Therefore, every element of A contained in a line
of this type can be moved to an array of size pp2 4s+2 _< s+3.

We claim that the number of elements of A on lines with a > p is at most pl-t.
Indeed, the minimum of E’ 2 (where E’ E’a stands for Ea>p.) subject to a
constant is attained when all the a’s are equal, and in this case, we get the claimed
result.

Thus in one step, we decreased the number of elements of A not in our array by a
factor of p. Continuing this process, in a constant number of steps, we will have all
but s/2 elements of A in an array of the required size. According to Proposition 6.18,
the remaining s/2 elements can be moved to an array of size s, which completes
the proof of Proposition 6.13. [:]

1194 MIKLOS AJTAI AND NIMROD MEGIDDO

Proof of Proposition 6.12. We first define f. Let a E (0, 1) so that Proposition
6.13 holds for a. For the remainder of the proof, we consider c as fixed. Let f(e)
e(1 + c(1- e)). Clearly, f(e) E (0, 1) for all e (0, 1). Moreover, f is continuous and
strictly increasing in this interval. Apart from these conditions, we will need only the
following property of f: for all e (0, 1),

Indeed,

1-e-(1-o)(1-f(e))=o-e+e(l+o(1-e))(1-a)
_o-e+e(l+o)(1-o) =o-

Suppose e (0, 1) is fixed and O(f(e)). We wish to show that O(e) holds. We
divide the set of s processors into intervals of size s1-. Let R be the set of all
intervals of this type, and for all > 0, let S c_ R be the set of those intervals
where the number of elements from A is at most (sl-a)1-. O(f(e)) implies that
for each I Sf(), the elements of A can be moved to the first (sl-) 1-el processors
in Cl steps, where el and Cl depend only on f(e) (and thus only on e.) Therefore,
all of the elements of A contained in intervals of Sf() can be moved to the first

s(si-)1-1 s1-(e1-1) processors in a constant number of steps. Thus we have
to consider only those elements of A that are contained in processors outside Sf().
(We first apply the algorithm described here to all the intervals and later work only
with those elements of A that are in intervals where the algorithm did not work.)

Since each interval of R \ Sf contains at least (s-a)-f() elements of A and

IAI < s1-, we have that]R \ Sf()l <_ sl-/s(-)(-()). This and the inequality

proved after the definition of f imply that [R\ Sf()] <_ sa-2 (s)1-e. According
to Proposition 6.13, using all of the s processors, we can construct a one-to-one
mapping of R \ Sf() into the set of the first (s)1-(/2) intervals of R. Moving all
the elements of A from an interval I to the processors of the interval -(I), we are able
to move all of the elements of A to processors in the first (sa)-(/) intervals. Thus
we have moved the elements of A to the first s-(s)-(/) =s1-(/) processors,
and so O(e) holds with e ae/2. This completes the proof of Proposition 6.12, which
was the last step in the proof of Proposition 6.2. E]

REFERENCES

[1] M. AJTAI, Approximate counting with uniform constant depth circuits, in Advances in Compu-
rational Complexity Theory, J.-Y. Cai, ed., DIMACS Series in Discrete Mathematics and
Theoretical Computer Science 13, American Mathematical Society, Providence, RI, 1993,
pp. 1-20.

[2] M. AJTAI, J. KOMLdS, W. L. STEIGER, AND E. SZEMEPDI, Optimal parallel selection has
complexity O(log log N) J. Comput. System Sci., 38 (1989), pp. 125-133.

[3] N. ALON AND N. MEGIDDO, Parallel linear programming in fixed dimension almost surely in
constant time, J. Assoc. Comput. Mach., 41 (1994), pp. 422-434.

[4] K. L. CLARKSON, Linear programming in O(n x 3d) time, Inform. Process. LeAr., 22 (1986),
pp. 21-27.

[5] X. DENG, An optimal parallel algorithm for linear programming in the plane, Inform. Process.
LeAr., 35 (1990), pp. 213-217.

[6] D. DOBKIN, R. J. LIPTON, AND S. REISS, Linear programming is log space hard for P, Inform.
Process. LeAr., 8 (1979), pp. 96-97.

POLY(LOGLOGN) ALGORITHM FOR LINEAR PROGRAMMING 1195

[7] M. E. DYER, Linear time algorithms for two- and three-variable linear programs, SIAM J.
Comput., 13 (1984), pp. 31-45.

[8] On a multidimensional search technique and its application to the Euclidean one-center
problem, SIAM J. Comput., 15 (1986), pp. 725-738.

[9] O. GABBER AND Z. GALIL, Explicit construction of linear-sized superconcentrators, J. Com-
put. System Sci., 22 (1981), pp. 407-420.

[10] N. MEGIDDO, Linear-time algorithms for linear programming in R3 and related problems, SIAM
J. Comput., 12 (1983), pp. 759-776.

[11] , Linear programming in linear time when the dimension is fixed, J. Assoc. Comput.
Mach., 31 (1984), pp. 114-127.

[12] , Dynamic location problems, Ann. Oper. Res., 6 (1986), pp. 313-319.
[13] R. M. TANNER, Explicit concentrators from generalized N-gons, SIAM J. Algebraic Discrete

Meth., 5 (1984), pp. 287-293.

SIAM J. COMPUT.
Vol. 25, No. 6, pp. 1196-1230, December 1996

() 1996 Society for Industrial and Applied Mathematics
004

FEASIBLE TIME-OPTIMAL ALGORITHMS FOR
BOOLEAN FUNCTIONS ON EXCLUSIVE-WRITE

PARALLEL RANDOM-ACCESS MACHINES*

MARTIN DIETZFELBINGERt, MIROSLAW KUTYLOWSKI$, AND RDIGER REISCHUK

Abstract. It was shown some years ago that the computation time for many important Boolean
functions of n arguments on concurrent-read exclusive-write parallel random-access machines (CREW
PRAMs) of unlimited size is at least (n) 0.72 log2 n. On the other hand, it is known that every
Boolean function of n arguments can be computed in (n)+ 1 steps on a CREW PRAM with n.2n-1

processors and memory cells. In the case of the OR of n bits, n processors and cells are sufficient. In
this paper, it is shown that for many important functions, there are CREW PRAM algorithms that
almost meet the lower bound in that they take (n) + o(log n) steps but use only a small number
of processors and memory cells (in most cases, n). In addition, the cells only have to store binary
words of bounded length (in most cases, length 1). We call such algorithms "feasible." The functions
concerned include the following: the PARITY function and, more generally, all symmetric functions;
a large class of Boolean formulas; some functions over non-Boolean domains {0,..., k 1} for small
k, in particular, parallel-prefix sums; addition of n-bit numbers; and sorting nil binary numbers
of length 1. Further, it is shown that Boolean circuits with fan-in 2, depth d, and size s can be
evaluated by CREW PRAMs with fewer than s processors in qo(2d) + o(d) 0.72d + o(d) steps.
For the exclusive-read exclusive-write (EREW) PRAM model, a feasible algorithm is described that
computes PARITY of n bits in 0.86 log2 n steps.

Key words, parallel random-access machine, exclusive-write, concurrent-read, exclusive-read,
parallel time complexity, Boolean functions, Boolean formulas, Boolean circuits, symmetric functions,
parallel prefix, parity, addition, sorting

AMS subject classifications. 68Q10, 68Q05, 68Q25

1. Introduction.

1.1. Motivation. The parallel random-access machine (PRAM) is a powerful
machine model that is often used for the design of parallel algorithms. Several variants
of this model have been studied which differ in the rules that regulate concurrent access
to memory cells in shared memory. In this paper, we concentrate on exclusive-write
machines (CREW and EREW PRAMs), which do not allow concurrent-write access
to shared memory cells. CREW PRAMs allow concurrent reading of one cell; EREW
PRAMs do not. (Precise definitions of the models used will be given in 2. For a
survey of PRAM models and algorithms for such models, see [15, 26].)

Received by the editors December 30, 1991; accepted for publication (in revised form) February
14, 1995. A preliminary version of these results was presented at the 2nd Annual ACM Symposium
on Parallel Algorithms and Architectures, July 1990 [11].

Fachbereich Informatik, Universit/it Dortmund, D-44221 Dortmund, Germany (dietzf@ls2.
informatik.uni-dortmund.de). The research of this author was partially supported by DFG grant
ME 872/1-4 and the DFG-Forschergruppe "Effiziente Nutzung paralleler Systeme, Teilprojekt 4."
This author was affiliated with the Universitgt-GH-Paderborn while this paper was written.

Heinz Nixdorf Institut and Fachbereich Mathematik-Informatik, Universitgt-Gesamthoch-

schule-Paderborn, D-33095 Paderborn, Germany (mirekk@uni-paderborn.de). The research of this
author was partially supported by the Alexander von Humboldt-Stiftung (while visiting TH Darm-
stadt), Polish government program RP.I.09, DFG grant ME 872/1-4 (while visiting Paderborn), and
KBN grants 2 1197 9101 and 8 $503 002 07. This author was affiliated with the University of Wroctaw
while this paper was written.

Institut fiir Theoretische Informatik, Medizinische Universitgt zu Liibeck, WallstraBe 40, D-
23560 Liibeck, Germany (reischuk@informatik.mu-luebeck.de). The research of this author was par-
tially supported by the International Computer Science Institute, Berkeley, California. This author
was affiliated with the Technische Hochschule Darmstadt while this paper was written.

1196

TIME-OPTIMAL ALGORITHMS ON CREW PRAMS 1197

The time complexity of Boolean functions on CREW PRAMs is quite well under-
stood: using certain parameters corresponding to structural properties of such func-
tions ("block-critical complexity" or "degree"; see below), it is possible to characterize
their time complexity on CREW PRAMs up to a constant factor [22]. Methods were
developed that allow proving lower bounds for the time complexity of many functions
that are exact up to a small additive constant [9, 12, 17, 24].

In this context, for both upper and lower bounds, we use the standard defini-
tion of the "abstract CREW PRAM" from [9]. Each computation step consists of
three phases, a READ, a COMPUTE, and a WRITE phase, which are executed syn-
chronously by all processors. (For details, see 2. This machine model abstracts
from the cost of internal computations of the processors; the bounds hold regardless
of the number of processors and the wordsize of the common memory cells. Such a
strong model is perfectly acceptable for lower-bound proofs. Also, however, the gen-
eral upper bounds that hold for Boolean functions on such machines are formulated
with respect to the abstract PRAM. We consider two examples of such statements.

FACT 1.1. Every Boolean function of n arguments can be computed in [log n + 1
steps by an EREW PRAM with n processors and n memory cells of wordsize n.

The algorithm behind this fact (in a binary-tree fashion, collect the whole input
in one processor, which then computes and writes the output bit) is of limited value
for concrete functions since it requires that the PRAM has a wordsize of n, i.e., the
common memory cells store numbers of binary length up to n.

Before describing the second example, we introduce a function that plays a central
role in the exact upper and lower bounds for computing Boolean functions on abstract
CREW PRAMs. Let

(n} min{j F2j+I >_ n} for n >_ 1,

where Fi denotes the ith Fibonacci number, i.e., F0 0, and F1 1, and Fi+2
Fi+l + Fi for E 51. Note that from the well-known formula F ()/v/ for

()2 1(3+V/) we(I) (1 + v/) and (1 V), it easily follows that for b
have

(1.1) logbn<_(n)_<logbn+1.34 for alln>_l.

Also, note that logb 2 0.72 and hence (n) 0.72 log n.
Consider the function ORn(xl,... ,xn) Xl V x V... V xn. It is known [9] that

ORn can be computed by an EREW PRAM with n processors and n memory cells of
wordsize 1 in (n) steps. Using this algorithm, it is easy to observe that all Boolean
functions of n variables can be computed on CREW PRAMs almost as fast as

(see [9]; also see [17]).
FACT 1.2. Every Boolean function f of n arguments can be computed in (n) + 1

steps by a CREWPRAM with n.2n- processors and n.2n- memory cells of wordsize
1. Moreover, after step (n) + 1, there is a processor that knows all input bits.

For many Boolean functions f, this fact corresponds to an algorithm with an
optimal running time [12]. Again, however, this algorithm (essentially, for every
possible input vector a (al,... ,an) E f-(1), there is a team of n processors that
checks whether the actual input (xl,...,xn) equals a and, if so, writes the result
1 to the output cell) is practically worthless because of the exponential number of
processors required. Moreover, the algorithms to be carried out by the processors

Throughout the paper, log stands for the logarithm with respect to base 2.

1198 M. DIETZFELBINGER, M. KUTYLOWSKI, AND R. REISCHUK

completely ignore any structure present in the function f: they simply represent the
list of inputs in f-l(1). Algorithms of a similar kind are used in the general upper-
bound proofs of [22].

Our focus in this paper is on algorithms for computing specific functions on
exclusive-write PRAMs that are time optimal up to small additive terms and whose
implementation is "feasible" in a sense discussed in the following. Specifically, we are
interested in methods that do not use more than n processors and n common mem-
ory cells for computing functions of n arguments. For many interesting functions,
there are "critical inputs" (see [9] and 1.2) for which each input bit must be read by
some processor; this implies that (n/log n) processors are necessary if logarithmic
computation time is to be achieved.

How strongly the hardware size may influence the parallel time complexity is
shown, for example, by the PARITY function:

PARITYn(xl,... ,xn) := x x2 0.." Xn for n >_ 1.

On a concurrent-read concurrent-write (CRCW) PRAM with exponentially many
processors and a common memory of exponential size, this function can be computed
in two steps. However, with only n processors, the time complexity increases to
O(log n/log log n) [2]. A similar tradeoff holds with respect to the memory size. In
general, we require that an n-processor machine has a common memory of size at least
n. Otherwise, separate read-only input cells are necessary and the time complexity
increases significantly due to the small communication bandwidth [31].

We may assume that the memory cells of a PRAM can store only binary numbers.
Following [4], a PRAM is said to have wordsize w if the cells of its common memory
can only hold binary words of length at most w. Although bounded wordsize may
seem to be a reasonable requirement in combination with a processor bound of n, it is
a severe restriction since for most Boolean functions of n arguments, the computation
time is at least n/w- o(n/w) on PRAMs with n processors and wordsize w [4].
The algorithms for special Boolean functions that will be presented in this paper
require only constant wordsize; in most cases, wordsize 1 suffices. Note that in case
the algorithms were implemented on a "concrete" PRAM with processors with local
memories, this restriction on the wordsize would not apply to the memory cells or
registers used by each processor in its local memory, which, e.g., have to hold addresses
of common memory cells. These have to have wordsize at least logarithmic in the
number of processors and global memory cells; this will also be sufficient for our
algorithms.

Finally, we aim at simple programs for each processor. There seems to be no
general agreement on what exactly this should mean, and we do not attempt to
formalize this criterion; for a possible approach, see, for example, [29]. Nonetheless,
we feel that the PRAM algorithms presented in this paper fulfill this condition for
any reasonable definition of "simple program."

The fundamental example of a feasible, time-optimal CREW algorithm is the
method for computing ORn in (n) steps mentioned above [9], which even works
on an EREW PRAM. It is feasible since only n processors and n memory cells are

used, all cells have wordsize 1, and the processors execute a very simple program.
At first glance, it may seem that at least log n steps are necessary for computing
ORn. The essential observation that makes it possible to achieve the speedup from
log n to (n) is that in certain situations, a processor can transfer information into
a common memory cell without destroying the information of that cell. This cannot

TIME-OPTIMAL ALGORITHMS ON CREW PRAMS 1199

be done by a direct WRITE to the cell since its prior contents would be overwritten;
however, it can be achieved by not writing. This idea is exploited as follows in the
algorithm for computing ORn [9]: Assume that a processor P knows Yl E {0,1}
and a cell C stores a value y2 E {0, 1}. By a single WRITE operation, C can be
set to the value of Yl V y2. Namely, if yl 0, then P does not have to write since

Yl V y. y. If Yl 1, then P writes a 1 into C. Again, this gives the correct result
since yl V y 1 V y2 1. Using this trick, in one computation step (consisting of a
READ, a COMPUTE, and a WRITE phase), the processors of a CREW PRAM can
increase the amount of information stored in common memory cells by more than a
factor of 2. As a consequence, it is possible to compute ORn in fewer than log n steps.

1.2. Lower and upper bounds. Essentially, two general methods are known
for proving lower bounds for the time complexity of Boolean functions on CREW
PRAMs. The first is based on the concept of critical complexity. The critical com-
plexity c(f) of a function f" {0, 1}n --+ {0, 1} is defined as the maximal number k for
which there is an input a (al, a2,..., an) and a set J

_
{1, 2,..., n} of cardinality

k such that

f(a) f (al, ai_, i, ai+, an) for allieJ.

A "critical input" a is one for which this condition is true with J {1,..., n}. A
lower bound for CREW PRAMs on the basis of c(f) has been proved in [9] (and
improved in [24]).

FACT 1.3. The time for a CREW PRAM to compute a function f is at least
1_ log c(f) no matter how many processors and cells are used. Furthermore, the word-2
size may be arbitrarily large, and the computational power of the processors may be
unlimited.

A generalization of the critical complexity, the so-called block-critical complexity
(or "block sensitivity"), bc(f), was considered in [22], where it was shown that the

log bc(f) and that the time complexitylower bound of Fact 1.3 can be improved to
of f on abstract CREW PRAMs is O(bc(f)).

The second general lower-bound method is based on an approach proposed in
[17]. The idea is to consider the degree of a Boolean function when it is regarded as
a polynomial over the integers. This useful complexity measure and variants thereof
have applications far beyond complexity analysis of the CREW model; see, for ex-
ample, [6, 23, 27, 30]. (The notion of "degree" of a Boolean function used in the
lower-bound proof for CRCW PRAMs of [2] is different.) Each Boolean function f
can be represented by a polynomial over x,...,xn with coefficients from Z. This

d for d > land 1 < < his reduced toxi Therepresentation is unique if each xi
degree of the polynomial representing f is called the degree of f and is denoted by
deg(f). In [12], the authors have shown the following.

FACT 1.4. At least (deg(f)) steps are required for computing a Boolean function
f on an arbitrarily large and powerful CREW PRAM.

For the function ORn, this gives the lower time bound a(n), which, in view of the
upper bound obtained in [9], is the best possible. The lower bounds bsed on critical
complexity and on degree complexity are not identical in the sense that there are

log(bc(f)) is smaller by a constant factor than a(deg(f))functions f such that
0.72 log(deg(f)) and vice versa. However, deg(f) and bc(f) are polynomially related
[12, 22, 30]; hence these two lower bounds differ from each other and from the CREW
complexity of f at most by a constant factor.

1200 M. DIETZFELBINGER, M. KUTYLOWSKI, AND R. REISCHUK

There are Boolean functions that nontrivially depend on n arguments and can still
be computed in o(log n) steps on a CREW PRAM. However, for almost all functions

log(n- I).of n arguments, we have c(f) _> n- 1 [7], which implies a lower bound g
One can even show that almost all functions of n arguments have degree n [12] and
hence cannot be computed in fewer than q(n) steps. On the other hand, we have the
upper bound (n) + 1 noted in Fact 1.2, which holds for all Boolean functions.

1.3. Results. In this paper, we will consider the following general problem:
Let a Boolean function f of n arguments with deg(f) f(n) be given. Design

a feasible CREW PRAM algorithm that computes f in)(n) + o(log n) steps, i.e., in
almost optimal time.

In general, by the results in [4], such algorithms do not exist. For most Boolean
functions of n arguments, if the number of processors is polynomially bounded in
n and the wordsize is bounded by o(n/logn), then the CREW complexity becomes
much larger than log n. Nonetheless, we will construct feasible algorithms for many
important and natural functions.

First, we consider a variant of the aforementioned task for EREW PRAMs, which
seems to be substantially harder than for CREW PRAMs, due to the following obser-
vations. No lower bounds for EREW PRAMs are known that would not be valid for
CREW PRAMs as well. On the other hand, most known CREW PRAM algorithms
use the concurrent-read operation in a substantial way. Moreover, no fast simulation
of the concurrent-read operation on EREW PRAMs is possible [3], which makes it nec-
essary to design efficient EREW algorithms by completely different techniques than
for CREW algorithms. There are some results elaborating on what EREW PRAMs
can do less efficiently than CREW PRAMs [3, 14, 28], but a deep understanding of
the EREW PRAM model is still missing. We will construct a feasible algorithm for
the EREW PRAM that computes PARITYn in approximately 0.86 log n steps (The-
orem 3.1). This is the second example--after the algorithm for ORnmof an EREW
algorithm with time complexity below log n for a function of degree n.

For the CREW PRAM model we will obtain the following results with respect to
PARITYn"

PARITY can be computed in (n) / 1 steps with 2O(lgn) processors and
cells of wordsize 1, i.e., with significantly less than exponential hardware size (Theo-
rem 4.1).

PARITY can be computed in time (n) / O(v 10g n with n processors and
n cells of wordsize 1 (Theorem 5.1).

Computing OR or PARITY amounts to evaluating a formula built with an
associative operator over a 2-valued domain. We may generalize the results for these
special functions to Boolean functions that are described by formulas or circuits:

Any Boolean circuit of depth d and size s (with ga.tes of fan-in 2) can be
evaluated in (2d) / O(d/log log d) 0.72...d / o(d) steps by a CREW PRAM with
o(s) processors (Theorem 5.5); if the circuit is a formula (i.e., the gates have fan-out
1), then 24/log d processors can evaluate it in time (2d) /O(d/log d) (Theorem 5.6).

The results just mentioned can further be generalized to formulas F(xl,,.., xn)
x (R)... (R) xn, where (R) is an associative binary operator over a k-valued domain, say,
{0, 1,..., k- 1} for some k _> 2:

Any such F can be computed in (n) + 1 steps on a CREW PRAM with
2(g’) processors and cells of wordsize 1, with the obvious exception of the cells
storing the input and the output (Theorem 6.1).

TIME-OPTIMAL ALGORITHMS ON CREW PRAMS 1201

Any such F can be computed in (n) + O(v/i0g n log k steps on a CREW
PRAM with n processors and n cells of wordsize Ilk- 111 where Ilrll denotes the
number of digits in the binary representation of r, i.e., Ilrll [log(r + 1)] for integers
r :> 0 (Theorem 6.4).

The results concerning Boolean circuits and formulas may also be generalized to
arbitrary circuits and formulas over k-valued domains (Theorems 6.5 and 6.6).

Further, we develop a method for computing in parallel all prefix products xl (R)

(R) xi of xl (R) x2 (R)... (R) Xn for an arbitrary associative operator (R) over a k-valued
domain. The complexity bounds are the same as those for computing only the product
(Theorem 7.3). The parallel-prefix operation has many applications; we consider just
one of the most important ones:

An n-processor CREW PRAM with a common memory of size n and wordsize
2 can add two binary numbers of length n in time (n) + O(v/"l0gn).

In 8, we will present feasible algorithms with almost optimal running time for
symmetric functions:

Every symmetric Boolean function of n variables can be computed in (n) +
O(log2/3n log log n) steps by an n-processor CREW PRAM with n memory cells of
wordsize 1 (Corollary 8.9).

The methods developed for symmetric functions can be used to show that also
the problem of sorting bits or numbers can be solved by feasible algorithms in almost
optimal time:

n bits can be sorted in time (n) + O(log2/3n log log n) by an n-processor
CREW PRAM with n memory cells of wordsize 1 (Theorem 9.1).

A CREW PRAM with m2. k processors can sort m binary numbers of length
k in time (m. k) + O(log2/3m. log log m) using m. (m+ 1). k memory cells of wordsize
1 (Theorem 9.3).

Remark 1.5. Theorem 5.5 (mentioned above) provides a general way for obtaining
a fast, feasible CREW PRAM algorithm for a Boolean function f of n variables as
follows’

1. Design a circuit (with gates of fan-in 2) for f with depth d as small as possible
and size s O(n);

2. evaluate the circuit via the algorithm given in Theorem 5.5.
(Recall that if f is nondegenerate, i.e., f depends on all n variables, we must have
d :> log n.) in some cases, it will even be possible to describe f by a formula of
small depth over a 2-valued or a k-valued domain for small k and thus benefit from
Theorem 5.6 or 6.6 (mentioned above). Note that step 1 has already been carried
out for many functions, so results from the literature can be used. This approach
will yield close-to-optimal time bounds ((n)/ o(logn)) with a small number of
processors (o(n)) for some functions treated in this paper, such as ORn, PARITYn,
or the addition of two binary numbers of n bits. However, in all of these cases, the
additional o(log n) term is much smaller in the direct approach than in the algorithm
resulting from the general method. For some other functions, e.g., the symmetric
functions or the sorting function, no circuits are known whose simulation would yield
a feasible algorithm with a running time of (n) + o(log n) since the best linear-size
circuits known have depth (1 / (1))log n. The most drastic example of the failure
of this approach to constructing fast CREW PRAM algorithms is provided by the
well-known storage-access function

1202 M. DIETZFELBINGER, M. KUTYLOWSKI, AND R. REISCHUK

where (yk-l"" y0)2 E N is the number with binary representation yk-l""yo. The
minimum depth of a circuit for this function is k / log k + O(1) [33, p. 78], but there is
a CREW PRAM algorithm for this function that uses 2k processors, i.e., fewer than
the number of variables, and has running time (k) + O(1), i.e., only logarithmic in
the depth of the circuit (use Lemma 8.8 below).

2. Preliminaries. We recall the definition of abstract CREW and EREW
PRAMs (cf. [9]). A PRAM consists of some number of processors PI,P2,... and
common memory cells C, C2,... which can be read from and written to by each of
the processors. The computation proceeds in steps; each step consists of three phases.
During the first phase, a processor may read from a memory cell (the READ phase);
during the second phase, a processor changes its internal state according to the infor-
mation read; during the third phase, a processor may write into one memory cell (the
WRITE phase). More precisely, we can describe the way in which a PRAM M works
as follows. Let Q be the set of internal states of the processors of M and E be the set
of symbols that can be written into the memory cells. Associated with each processor
P of M, there are an initial state q0 E Q, a read-address function p Q -- N, a
state-transition function 5i’Q x (E U {$}) --. Q for $ E, a write-address function
-i’Q N, and a write-value function cri’Q E.

During a single step, if processor Pi is in state q, then it reads from cell Cj, where
j p(q) >_ 1; it does not read ifp(q)- O. IfP readsasymbolu E, then the
state of P changes to q 5i(q, u). If Pi has decided not to read, then Pi changes its
state to q’ 5(q, $). During the third phase, P writes a symbol v a(q’) into cell
Cj,, where j’ -i(q’) if -i(q’) > 0, and does not write if 7i(q’) 0.

A PRAM M is a CREW PRAM if for no admissible initial set of values stored
in the memory cells it happens that during some step in the computation of M, two
or more processors of M write into the same memory cell. In other words, M is a
CREW PRAM if no write conflicts occur during a computation of M. A CREW
PRAM M is an EREW PRAM if, additionally, two processors never read from the
same cell during any step.

We say that a PRAM M computes a function f in T steps if the following holds.
Initially, the arguments of f are stored in some fixed memory cells of M, each argument
in a separate cell. After executing at most T steps, the value of f on the given
arguments is stored in one or several dedicated memory cells and all processors have
stopped their computations. Here we are mainly interested in computing Boolean
functions, that is, functions f of the form f {0, 1}n --. {0, 1}" for n, m N. A
PRAM is said to have wordsize bounded by w for some w _> 1 if IEI _< 2.

3. Fast computation of PARITY on EREW PRAMs. This section deals
with the EREW model. Our goal is to show that, like the OR, the PARITY of n
bits can be computed in fewer than log n steps. The key to the method is a way
for computing the PARITY of five bits in just two steps. Two technical tricks are
necessary to achieve this goal. The first one is useful for CREW PRAMs, too, and will
be exploited again in later sections. The second one is specific for EREW PRAMs and
is one of the basic elements of a time-optimal feasible broadcasting EREW algorithm
presented in [3].

The first trick. If an algorithm wants to compute the PARITY of n bits in fewer
than log n steps, it must in a single writing phase combine information known to a
processor with some other information stored in a memory cell. This is not possible
by direct writing since the old content of the memory cell would be overwritten. As in
the fast OR algorithm of [9], processors will transmit the information by not writing.

TIME-OPTIMAL ALGORITHMS ON CREW PRAMS 1203

The details are as follows. Let processors P0 and P know a Boolean value yl and
cells Co and C store a Boolean value y.. (We say a processor Pi knows a value y at
the end of step t if this value is a function of the state q of processor Pi at the end
of step t. One may imagine that part of the state of Pi is a register that explicitly
contains y.) in order to leave information in some cell that is sutficient to determine
y (R) ye, the following instruction is executed in parallel for 0, 1 (see Figure 3.1):

Pi writes into cell Ci if and only if Yl i.

P0 P1
writes writes
if y1=1 if yl--0

0 C1

FIC. 3.1. The first trick: combining information by not writing.

Afterwards, one memory cell contains while the other remains unchanged. Sup-
pose that y 0. Then C is set to and Co still contains y. If a processor reads Co,
it encounters a symbol z different from., and can conclude that y must be equal to
0. Hence, it can deduce that y (R) y is equal to z. If yl 1, then Co is set to while
y remains in C. If a processor reads z in C, it can deduce that y (R) y 1 (R) z. In
both cases, the processor that has read (Co or C1, respectively) knows y (R) y.

The second trick. In order to use the first trick, two different memory cells are
needed that store the same value. We show how in one step a single processor can
"write" a single value into two different cells (see Figure 3.2). Suppose that a processor
P has to write y {0, 1} into cells Co and C1. The cells Co and C are prepared in
advance so that Ci contains i. If y 0, then it suffices to change the contents of C
from 1 to 0; otherwise, Co has to be corrected. Hence in each case, it sutfices that
processor P writes y into the cell C_. In the algorithm below, the preparation of
Co and C will be done by free processors immediately before the writing of P occurs.
Thus no additional time is needed for the preprocessing.

writes 1 / writes 0
ify=l / ify=0

/ \
,/

FIG. 3.2. The second trick: writing two identical bits in one step.

THEOREM 3.1. For each n, the function PARITYn can be computed by an n-

1204 M. DIETZFELBINGER, M. KUTYLOWSKI, AND R. REISCHUK

processor EREW PRAM with 2n memory cells of wordsize 1 in time

2 + 2 [log5 (n/2)l ,- 0.86. log n.

Proof. For the sake of simplicity, we assume that n 2.5k for some k E N.
In the first step of the EREW algorithm and the READ phase of its second step,
each input xt, 1 _< < n, is copied to an additional cell (say xt from input cell Ct
to Cn+) and for each j, 1 <_ j <_ n/2, two processors (say P2j-1 and P2j) compute
PARITY(x2j_I, x2j).

After this preprocessing, the main procedure starts. It consists of k stages, where
each stage comprises four phases of alternating WRITEs and READs, starting with
a WRITE. Thus a stage is made up of the last part of an EREW step (a WRITE), a
complete step, and the first part of another step (a READ).

The input for stage for 1,..., k is described by a sequence of Boolean values
Y, Y, Y/ni, where n n/5-1, such that

PARITY(xl,..., Xn) PARITY(yl, y,..., Yni)"

The following properties are demanded at the beginning of each stage i:
For each 1 _< < n, there exist two cells that contain the value y.
For every 1 <_ j <_ nil2, two processors know PARITY(yj_I, yj).

Assume that these properties hold at the beginning of stage i. Divide yl, y,..., Yn
into groups of ten elements each:

{yi yi1,’’’,Y]0}, { l,’’’,Y0},

+1 and yl and the processors that knowFor each j, to get the cells that store Y2j-1
+1 the machine uses only the cells and processors associated withPARITY(yll_ "g2j),

the jth group. Since the computation for each group is essentially the same, we
describe only how y+l 1 (y+l y+ly+ and PARITY are computed. To simplify the
description, processors and cells are named as follows. At the beginning of stage i,
let

processors P1 and P2 know PARITY(y, y),
processors P3 and P4 know PARITY(y, y),
processors P7 and P8 know PARITY(y, y),
processors P9 and Plo know PARITY(y, Yo),

cells C5 and C contain y, and

cells C6 .and C contain y.
During stage i, processors P1 through Po act as follows (see Figure 3.3).

First WRITE. During the first WRITE, the information known to processors
P1 and P2 is combined with the information stored by cells C5 and C (and the
information known by P7 and Ps with that stored in C6 and C) using the first trick
described above:

If PARITY(y, y) 1, then P1 writes into C5.
If PARITY(y, y) 0, then P2 writes into C.
If PARITY(y, y)= 1, then P7 writes, into C6.
If PARITY(y, y) 0, then Ps writes into C.

TIME-OPTIMAL ALGORITHMS ON CREW PRAMS 1205

WRITE: i/0first @
first READ:

second WRITE:

secon

FIG. 3.3. Flow of information within a stage.

First READ. Since the other processors do not know which of the cells C5 and
C contain the full information about PARITY(y, y, y), we use two processors to
read both cells in parallel:

Processor P3 reads C5 and processor P4 reads C.
One of them encounters and terminates its work. The other one--call it P’--using
the information read and its own knowledge of PARITY(y, y), determines

PARITY(y, y, y, y, y) y+l.

Processor P9 reads C6 and processor Plo reads cell C.
Similarly, one of them halts while the other one--call it P"--computes

PARITY(y, y, y, y, Y0) Y.+I.
Second WRITE. The purpose of this writing round is that P’ writes y+l into

some cells C1 and C and P" writes y+l into some cells C2 and C. For this, we
apply the second trick described above. Thus the cells C1, C, C2, and C must be
prepared so that C1 and C2 contain 0 and C and C contain 1 (this can be done by
processors P3, P4, P9, and Plo during the first WRITE). Then

P’ writes 1 into cell C1 if y+l 1 and writes 0 into C if y+l 0,
P" writes 1 into cell C2 if y+l 1 and writes 0 into C if y+l 0.

Second READ. Processor P reads cell C2 and processor P" reads cell C1.
Now, knowing y+l and y+l, both can compute PARITY(y+I, y+l).
After performing stage i, there will be two cells containing y+l (cells C1 and C),

two cells containing y+l (cells C2 and C), and two processors (P’ and P") knowing
PARITY(y+l, y+l), as required.

Note that during this procedure, concurrent READ or WRITE operations do not
occur as long as each pair of processors (P1, P2), (P3, P4), (PT, Ps), and (P9, Plo) agree
on their specific roles. Assuming that this is guaranteed for stage i, it can also be
achieved for the next stage by declaring P’ (the unique "survivor" of P3 and P4) as

1206 M. DIETZFELBINGER, M. KUTYLOWSKI, AND R. REISCHUK

first. Also, stages can easily be lined up since the communication between stages is
through fixed memory cells.

For n 2. 5k, the algorithm uses k stages to compute PARITY(y,y)
PARITY(xl,... ,xn). In an extra writing phase, the first processor of the two pro-
cessors knowing PARITY(yl,y) writes the result into the output cell. The total
number of steps is equal to

3 / 2k + 1/2 2 + 2. Flog (n/2)] 0.86. log n. F1

Remark 3.2. The upper time bound for computing PARITY on EREW PRAMs
presented above is not optimal. One can modify the algorithm to get a slightly smaller
computation time. However, the construction is much more complicated and therefore
will be omitted.

4. A time-optimal CREW algorithm for PARITY with subexponen-
tially many processors. Time bounds for computing the PARITY function on ma-
chines with a bounded number of processors have been studied extensively. For the
most powerful PRAM model, the CRCW PRAM, in [2], an optimal lower bound of
order log n/log log n is proved for the case where the number of processors is bounded
by a polynomial. In [12], it has been shown that computing PARITYn on a CREW
PRAM takes at least (n) steps (and, for some n, even (n)+ 1; see [18]) regardless of
the number of processors. In this section, we will prove that the time bound (n) + 1
can be achieved for PARITYn with much less than exponential hardware size. The
algorithm described in this section is not feasible in the sense discussed in 1 because
it uses too many processors and cells and hence too large addresses as well. However,
in the next section, the algorithm will be used as a component of a feasible algorithm
for PARITY that is almost time optimal.

THEOREM 4.1. Let n F2t-1. Then PARITYn can be computed by a p-processor
CREW PRAM M with rn common memory cells of wordsize 1 in t 1 + 99(n) steps,
where p n 2(t+l)t/2 t. 2(0.26 lgn) and m n (2t-1 / 1) t1"72.

Proof. The only property of PARITYn used in the construction below is that
this function can be computed by an iteration of an associative binary operator. This
makes it possible to generalize the construction for PARITY to any associative op-
erator (see Theorem 6.1), but here we will describe only the simple case of PARITYn.

The CREW PRAM M constructed below combines the method used in [9] to
compute the logical OR with the technique used by the fast EREW PRAM algorithm
of 3. Since the algorithm is quite involved, we will describe it incrementally, each
time giving more technical details. In order to achieve computation time (n) / 1,
during each WRITE, the processors must combine their knowledge with the informa-
tion stored in the memory cells. This is not possible by direct writing, that is, by
overwriting; instead, we will use a variation of the first trick from the previous section.

There are n groups of 2(t+l)t/2 processors and n groups of 2t-1 memory cells.
(Each group corresponds to a single processor or a cell from the algorithm of [9] for
computing ORn.) During the computation, each processor and each cell is either
active or dead. (Dead cells are those that contain the symbol ..) Initially, all pro-
cessors and cells are active. Once a cell or a processor becomes dead, it remains in
this state until the end of the computation. At any moment, all active processors of a
group have the same knowledge and all active memory cells of a group code the same
information about the input string. Which processors and cells are active depends on
the current time step and on the input. A processor changes from the active to the
dead state if it reads a dead cell; a cell changes to the dead state when is written

TIME-OPTIMAL ALGORITHMS ON CREW PRAMS 1207

into it. During the computation, more and more processors and cells die, but for each
group, there is always a processor or a cell that is still active.

Each of the 2t-1 memory cells in a group has a name, which is a binary string
of length t- 1. The information carried by an active cell is not its content, but its
name: the names of all active cells of a group agree in a prefix of a certain length,
and this prefix codes all information that the cells have about the input string. We
briefly explain how this works. Let C be one of the groups of cells. During the first
WRITE, there is a group of processors that has to send a value yl E {0, 1} to the
memory cells of group C.

If y 0, then each cell of C with a name starting with 1 receives .; the cells
with names starting with 0 remain unchanged.

If y 1, then the roles are reversed: the cells in C with names starting with
0 are "killed"; the other cells remain active.

During the second WRITE, a different group of processors has to send a value
y. E {0, 1} to the cells of C.

If y. 0, all cells in C whose names have a 1 in the second position receive

If y2 1, all cells in C whose names have a 0 in the second position receive

Obviously, the names of those cells in C that "survive" both WRITEs start with
bits y and y2. Similarly, during step s, all cells of group C are killed that have
names whose sth bit differs from some Ys. In that way, after step s, all active cells
of C have names that agree in a prefix of length s. Thus if a cell of C with a name

uu2...ut- does not contain after step s, then it carries the information that y
Ul, y2 u2,..., ys us, where y, Y2,..., Ys are the bits representing the information
transmitted to C by the processors. In that sense, at each step, information "written"
by processors does not overwrite information carried by cells.

Why do we need so many processors in each group? During a single READ, the
active processors of one group read the memory cells of some other group. It would
be best to read only the active cells, but since it is impossible to foresee which of the
cells are active, the active processors are distributed evenly among the cells of the
group and read all of them. Most of the processors die because they read dead cells,
but a small fraction always survives. Because this fraction gets smaller with each
step, the number of processors in each group has to be much larger than the number
of memory cells.

We now describe the basic properties of the flow of information during the com-
putation of M. For each <_ n, during the first step, M writes into each cell of
group whose name has the bit 2i in its first position. In this way, xi is coded by the
memory cells of group i. Afterwards, the cell contents are not changed except that
more and more cells die (receive a .). For each i, j _< n, after step k,

all active memory cells of group code PARITY(x, x+,..., X+F2k-1),
all active processors of group j know PARITY(xj,xj+,...

(compare with the algorithm in [9] for ORn). It may happen that / F2k 1 > n
or j + F2k- 1 > n. Therefore, for > n, by xt we mean xt,, where mod n.
Similarly, when we talk about a group of processors (cells) and {1,..., n}, then
we mean a group for mod n.

Now let us describe what happens during step k / 1. The active processors of
group j read from the cells of group j + F2-. A lot of processors encounter dead

1208 M. DIETZFELBINGER, M. KUTYLOWSKI, AND R. REISCHUK

cells and terminate their work. Each of the active processors can deduce the value

PARITY(xj+F2k_I,..., Xj+F2k_ +F2k--1) PARITY(xj+F2_,..., Xj+F2+--1)

from the address of the cell it reads; hence it can compute

PARITY(xj,..., Xj+F_-I) @ PARITY(x+F_,..., X+F2k+i-
PARITY(xj, xj+,..., xj+F.+-)

= PARITY(xjxj+,..., xy+F.(+)_l-1),
which is the value that the processors of group j have to know after step k + 1. During
the WRITE phase of step k + 1, the active processors of group j write into some cells
of group j F2k. The way of writing depends on the value

s = PARITY(xj.,xj+,... ,Xj+Fk+-l)

known to the processors. The symbol is written into each cell of group j F2k with
a name whose (k + 1)st bit differs from. s. Recall that the first k bits of the name of
each cell that are still active before step k + 1 code

PARITY(xj-F2k, xy-F2+, Xj-F+F-)
PARITY(xj_Fk,Xj_F+,..., xj_).

On the other hand, bit k + i of the name of the cells that are active after step k + 1
is equal to s, hence each such cell now codes

PARITY(xj-F,Xj-Fk+I,...,xy-1) s

= PARITY(xj_F,...,xj_) @ PARITY(xj, ,xj+F+_l)
PARITY(xj_F,... ,x(j-F2)+(lZ2+F+-))
PARITY(xj_Fk,... ,x(-F)+F(+)-).

Note that this is the value that must be coded by the active cells of group j Fk
after step k + 1. After step t- 1, the remaining active processors of the first group
know

PARITY(x1, x2, .., xF_).

They try to determine the value

PARITY(xF_+,..., xFt-3+F2t-2) = PARITY(xF_+,..., XFt_)

by reading from the remaining active cell of group F2t-3 + 1. One of them survives
the reading a.nd computes

PARITY(x1, x2,,. , x._ @ PARITY(xF_ +1, .., xF._
PARITY(x1, x2,... ,XF2_),

which it then writes into the output cell. Since F2t- n, this is the correct output.
in order to finish the description of the algorithm, we need to solve two problems:

how to assign the processors to the cells for reading and how to choose the processors
for writing to avoid a write conflict. There are 2(t+)t/2 processors in each group
named by binary strings of length (t + 1)t/2. Let s(0) 0 and define s(k) =1
for k > 0. The memory cells and processors are assigned for reading and writing in
such a way that after step k,

TIME-OPTIMAL ALGORITHMS ON CREW PRAMS 1209

in each group, the first k bits of the names of the active cells are identical
and the remaining bits are arbitrary’,

in each group, the first s(k- i) bits of the names of the active processors are
identical and the remaining bits are arbitrary.
We show how the cells and processors are assigned for reading and writing during
step k -l- 1 to preserve these properties. During step k + I, each active processor of
group j reads that memory cell of group j + F2k-1 whose name agrees with the name
of the processor from positions s(k- i) + 1 through s(k- I) + (t- i). After step
k, the names of the active memory cells of group j + F2k- have identical prefixes of
length k. Hence after the READ operation, the names of active processors in group
j have the same prefix rk+i of length s(k I) + k s(k); the remaining bits of their
names may be arbitrary.

Now we must select processors for the WRITE operation. The processors of group
j have to write into cells of group j F2k. For a cell with a name ulu2...ut-, we
select the processor with the name 7rk+ulu2... ut_O0... 0 (this is the unique active
processor that has a name with suffix ulu2.., ut-O0... 0). This processor sends the
symbol into the chosen cell if and only if uk/ PARITY(xj,xj+,... ,Xj+Fk+1-).
Note that after this WRITE operation, the names of the active cells of group j F2k
have the same bit k + I, so together all bits from 1 through k + 1 are fixed.

After the last READ, for the names of active processors, a prefix of length s(t)
(t+ l)t/2 is fixed, that is, a complete name. Thus exactly one active processor remains
in each group. The active processor of the first group writes the result into the output
cell.

Remark 4.2. Simple but tedious modifications in the bove algorithm make it
possible to remove the ssumption that n is a Fibonacci number from Theorem 4.1.

Remark 4.3. Let O(y) = ((y) + 2). ((y)+ 1)/2 (hence p p(n) := n. 2(n)

in Theorem 4.1). Knowing that lOgbX _< (x) _< lOgbX + 1.34 for b 1/2(3 + /-)
(equation (1.1)2), one can easily derive that O(n) :> 0.251og2n for all n and that
(n) 0.261og n for sufficiently large n. For n :> 16, we already have O(n) <: 41og2n.

Hence n. 20.251g2n <:: p(n) <_ n. 241g2n for n :> 16.

5. Fast formula and circuit evaluation by CREW PRAMs with a lin-
ear number of processors. In the previous section, we proved that the function
PARITYn can be computed in time (n) + 1 with subexponentially many processors.
In this section, we show that PARITYn can also be computed with a linear number
of processors, while the computation time can be kept close to (n). In a second step,
the proof of this result is varied to obtain a method for evaluating Boolean circuits
of depth d in (2d) + o(d) 0.72...d + o(d) steps on CREW PRAMs with a linear
number of processors.

THEOREM 5. l. There is an n-processor CREWPRAMM with n cells of wordsize
1 that computes PARITYn in (n) + O(v/10g: steps.

Proof. We may assume that n 2d for some integer d. The computation of M on
input x,..., Xn proceeds in stages = 1,..., m, where m is determined below. The
input for stage i are n binary values y, y,..., Yn stored in n fixed cells so that the
invariant

PARITY(x,..., xn) PARITY(y, y,...,y
is maintained. A preprocessing phase in which groups of eight processors each compute
the PARITY of eight bits in four steps (in the obvious binary-tree fashion) allows

1210 M. DIETZFELBINGER, M. KUTYLOWSKI, AND R. REISCHUK

us to assume that we can start with nl n/8 2d-3 values yl Ynl" The

output of stage i, 1 < < rn is the input sequence y+l y+l 1+1 for the
ni+l

next stage; the output of stage re is a single bit yn+1 PARITY(xl,... ,xn), the
desired result. We now describe stage i, i >_ I. We split the values y,y,...,yn

of equal size s and compute PARITY withininto disjoint groups Y}8+,..., Y(j+)s
each group by the optimal algorithm of Theorem 4.1, which takes (s) / 1 steps and
needs s. (2(8) + 1) < s. 2e() cells and s. 2e() processors for each group, where
(I)(s) ((s)+ 2). ((s)+ 1)/2 (cf. Remark 4.3). The ni+l ni/s output bits of
the groups are y+ y+ +1 Since n processors are available for a total of ni,.v?%i+

bits, we can use sn/n processors for each group. If we define wi :- 1og(n/n), i.e.,
n 2d-w then s. 2v processors are available for each group. Thus any s with
s. 2(s) <_ s. 2w, or (s) <_ w, is suitable. Since it is convenient to have groups
of size a power of 2, we let u be the maximal integer u such that (2u) _< w, and
we define the group size si for stage by s 2u. (Note that w >_ wl 3 since

n <_ nl n/8 and (2I) 3 by inspection; hence u >_ 1 for >_ i.) The only
exception to this rule occurs in the last stage. Let re min{i 2u _> n}, i.e., re is
the minimal with wi + u _> d. In stage re, we form one group of size s n and
use n. 2(2) _< 2d-. 2w 2d n processors to compute PARITY of all si bits
left.

The correctness of the algorithm is obvious, as is the fact that only n processors
and memory cells are used. We analyze the computation time. Note first that the
equalities si n/n+ for 1 _< < re and Sm nm imply yIm__ s n < n. Using
the inequalities 1ogb(z _< (z) _< IOgb(Z + 1.34, valid for a11 z, by equation (I.i), we
may estimate the total number T of steps as follows:

E((si) + 1) <_ E(lOgb(s)+ 2.34)= log6 s
i----1 i--1 i--1

_< lOgb(n + 2.34re _< (n) + 2.34rn.

+ 2.34re

In order to prove Theorem 5.1, it remains to estimate re. We may conclude from
the equality 2d-w+ n+ n/s 2d-- that w+l w + u for 1 <_ < re.

This implies w w + j=l uj for 1 _< _< re. The number re is characterized as the

smallest that satisfies w + u >_ d; thus re min{i w + E= uj >_ d}. Now the

desired estimate re O(v/log n is given by the following lemma (choose parameters
A 2, q 0, r 0, and c 1).

For later use, we formulate and prove the technical lemma missing in the previous
proof in a slightly more general way than is needed here.

LEMMA 5.2. Let integers A >_ 2 and q >_ 0 and some constant {0, 1} be fixed,
let d >_ 1 be an integer, and let c [1, d] be arbitrary. If the integer sequence v, >_ 1,
is defined recursively by

i--1

and re re(c, d) is defined by re min{i + c. (A) + E= vj >_ d}, then

re O((dq-t-1 c)l/(q-t-2)).

(The constant factor in this bound depends on A and q.)

TIME-OPTIMAL ALGORITHMS ON CREW PRAMS 1211

Proof. Obviously, V 1 and vi, >_ 1, is a nondecreasing sequence. For _> 1,
let it denote the largest such that vi _< (the fact that vi _> 1 implies that it is
well-defined integer). Further, let i0 0. Let St it it-l, the number of indices
with vi I. Obviously,

Vl -’’" - Vi $1 -t- 2S2 nt-’’" -- 1Sl for _> 1.

Let

lo min{/ r/+ c. (A) + S - 2S2 +... + 1St >_ d}.

l0It is immediate from our definitions that m _< 2t=l Sl. The following two claims are
sufficient to prove the lemma.

CLAIM 1. St O(c" q) for > 1.
CLAIM 2. l0 O((d/c)l/(q+2)).
Namely, using the two claims, we have

m

_
E Sl E O(c’lq) O(c’l+l) 0 " C
/=1 /=1

(q+l)/(q+2)) O((dq+l"e) 1/(q+2))

as desired.
Proof of Claim 1. Fix >_ 1 and assume that St _> 1. (if St 0, there is nothing

to show.) From our definitions, we have that

/. + c. q. (At) < q + c. (A) + $1 + 2S2 +... + (l- l)St-1

and

l+C.O(A) + Sl + 2S2 +’" "+ (l 1)S/-1 +l(Sl- I) < /. (l + 1)+c. (l + I) q (I)(A/+I).

Adding these inequalities yields l(St- 1) < 1 + c. ((1 + 1)q. (At+l) -1q. (At)), or

1 (At+ lqSt <l+T +c’7"((1+1)q.(I))- .(I)(At)).

Since 1 +]/1 <_ 2, to prove Claim 1, it suffices to show that

(5.1) (1 + 1)q. O(At+l) -1q. O(At) O(/+1).

Recall that for u _> 1, we have (I)(A) ((Au)+ 1)((A)+2)/2 and (cf. Remark 1.1)

#u logb A _< (A) < logb A + 1.34 #u + 1.34,

where # logb A log(A)/log((3 + x/r)/2). Thus we may estimate

2. ((1 + 1)q. (At+l) -1q. (At))
_< (1 + 1)q(/(/+ 1) + 2.34)(/(/+ 1) + 3.34) -lq(#l + 1)(#/+ 2)

/2(/ + 1)q+2 #2/q+2 n O(lq+l)
--O(lq+l).

This proves (5.1) and Claim 1.

1212 M. DIETZFELBINGER, M. KUTYLOWSKI, AND R. REISCHUK

Proof of Claim 2. The definition of/0, respectively, l0 1, implies that

$I --1

/" lo + c. lo" ff)(At) _< r/+ c. O(A) + E v < d.
j=l

Substituting the inequality (At) > (At)/2 _>/321/2 for/3 logb A, we conclude
that c. loq./21/2 < d, which implies that l0 O((d/c)l/(q+2)). Thus Claim 2 and
Lemma 5.2 are proved. [:]

Computing PARITYn with n 2d may be viewed as the problem of evaluating
a certain Boolean formula that has the form of a complete binary tree of depth d
with all operators equal to (R). A more general question is how fast Boolean formulas
built from arbitrary binary operators may be evaluated or, even more generally, how
fast Boolean circuits of depth d with gates of fan-in 2 may be evaluated. Of course,
the best one can hope for is (2d) 0.72d steps since, for example, ORn for n 2d

variables requires (n) steps and has a circuit of depth d. In the following, we show
that circuits of depth d can indeed be evaluated in (2d) / o(d) steps on CREW
PRAMs with quite small hardware expenditure. Subsequently, we shall see that the
special case of Boolean formulas (all gates have fan-out 1) allows a further reduction
of the additive term o(d).

For Boolean circuits, we use the standard notation as introduced, e.g., in [33,
p. 9]. We assume that all gates have fan-in 1 or 2; there are no restrictions on the
types of gates or on the fan-out. The depth of the circuit (i.e., the length of the
longest path from an input to an output gate) is denoted by d and its size (i.e., the
number of gates not counting the inputs) by s. In order to compute functions with
several outputs, some of the gates are marked as output gates. Since our algorithms
will determine the values at all gates, the positions of the output gates are irrelevant.

We will need to subdivide the gates of a circuit into levels of a certain size (the
width) in the following (slightly unusual) sense. We say that a circuit C can be
arranged in levels of width up to w if the set of gates of C can be partitioned into
levels L1,..., L with ILtl _< w for 1 _< _< A such that a wire may only connect an
output of a gate on level L with an input of a gate on level Lj if < j. The n inputs
for C form a separate level L0, which is not subject to the width condition.

Trivially, every circuit C of depth d and size s can be arranged in d levels of
width up to s. Using a simple variant of Brent’s scheduling principle [5], we obtain
arrangements with smaller width.

LEMMA 5.3. Let C be a Boolean circuit of size s and depth d, and let w >_ 1 be
arbitrary. Then C can be arranged in d + Ls/wJ levels of width up to w.

Proof. As noted above, C can be arranged in d levels L,..., Ld of width up to
s. For 1 <_ <_ d, level L is further subdivided into [IL[/w] sublevels" [IL[/wj of
these consist of w gates and at most one consists of fewer than w gates. An order
for the sublevels within one level is fixed arbitrarily. Clearly, there are overall at
most Ls/wJ sublevels with exactly w gates and at most d sublevels with fewer than w
gates. [:]

The following technical lemma is the basis for our fast evaluation results for
circuits and formulas.

LEMMA 5.4. Let C be a Boolean circuit of size s that can be arranged in A levels
of width up to w. Let > 1 be arbitrary. Then there is a CREW PRAM with w. 22+
processors and s + w 22+ memory cells of wordsize 1 that for arbitrary inputs for

TIME-OPTIMAL ALGORITHMS ON CREW PRAMS 1213

C computes the values of all s gates of C in

)=0.72 A+O(A)-/2
steps.

Proof. The computation proceeds in stages t 1, 2,..., [A//2. For simplicity, we
assume that/2 divides A; to cover the general case, only slight changes are necessary.
During stage t, the gates in levels Lt for (t- 1)/2 + 1 < < t/2 are evaluated simulta-
neously by groups of processors working independently. The values of the gates are
stored permanently in s designated cells. Consider one gate g at level Lt. By the fan-in
restriction and the fact that wires run only from lower-numbered to higher-numbered
levels, we know that the value of g is a function of the values of at most 2/-(t-l)"
gates in levels L0 (the inputs), L1,..., Ll-(t-1),, which are available at the beginning
of stage t. By Fact 1.2, the value of g can be obtained in 9(2/-(t-I)") A- 1 <_ 9(2") -F 1
steps by

2/-(t-1).+2t-(t-)’-1 < 22+/-(t-I).-1

processors using the same number of memory cells. Summing over the (up to w) gates
on level Lz and summing over (t- 1)/2 + 1 < < t/2, we see that stage t is finished in

9(2") + 1 steps and requires

w 22+r-1 < W 22+"

processors and memory cells besides the memory cells for (permanently) storing the
newly computed values of the gates in Lt, (t- 1)/2 + 1 < < t/2. Since the same
processors and memory cells can be used in all stages, the claimed bounds for these
resources are proved. It remains to estimate the running time. Using equation (1.1),
we see that the total number of steps made in all stages is bounded by

A
((2")+ 1)

_
(1Ogb(2") + 2.34) 1ogb(2’) + O (A) [1

It is now only a matter of adjusting the parameters w and/2 to obtain a CREW
PRAM with fewer than s processors that can evaluate a circuit C of size s and depth
d in time 0.72.... d + o(d).

THEOREM 5.5. Let f" {0, 1}n -- {0, 1} be a .Boolean function that is computed
by a circuit C of depth d and size s.

(a) Let/2

_
1 and p be arbitrary. Then f can be computed by a CREW PRAM

+ s of 1 + 0
+ o

(b) If p is such that log log(pd/s) > 3, then there is a CREW PRAM with
p processors and p + s memory cells of wordsize 1 that computes f in (2a) +
O(d/ log log(pd/s)) steps.

(c) Assume that log log(palls) > 3. If p > s/x/-, the running time in (b) is

(2d) + O(d/log log d); if p >_ s/(d/log d), it is (2d) / O(d/log log log d).
Proof. (a) If 2 +" > p/2, there is nothing to show since C can then be evaluated

in O(s) O(p. (s/p)) O(22+". (s/p)) steps by one processor. Thus assume that
p > 22"+"+1. Let w [p/2e+J >_ 2, and apply Lemma 5.3 to see that C can be

1214 M. DIETZFELBINGER, M. KUTYLOWSKI, AND R. REISCHUK

arranged in A d + [s/wJ levels of width w. By Lemma 5.4, C can be evaluated by
w. 22+ _< p processors in time

Now it suffices to observe that

and

=lOgb(2a)+O +0 +0

_lOgb(2a)/o(d)(s)+0
12 W

s s 2s s +u

(b) We use (a) with u "= [loglog(pd/s)-2J >_ 1. Then d/u 0 (d/(loglog(pd/s)))

p p p v/pd/s loglog(pd/s)

(c) This follows immediately from (b). rl

For the special case of formulas, i.e., circuits in which all gates have fan-out 1, a
better additive error term can be achieved, as noted in the following.

THEOREM 5.6. Let n 2d. If the Boolean function f: {0, 1}n --+ {0, 1} can be
represented by a formula F of depth d, then f can be evaluated by a CREW PRAM
with p processors and p + n memory cells in

Il (lg)(n)+ +O
log logn

steps.
Proof. We may assume without loss of generality that p _< n and that p is a

power of 2. Assume first that p n. In a first phase, the 2d-rye] subformulas of F
are evaluated that correspond to the 2a-Ivy] subtrees of depth [x/- at the bottom
of F. Clearly, each such subformula can be evaluated in [v/] + 1 steps by 2
processors in the same number of memory cells of wordsize 1, even in an EREW
fashion. Overall, n processors and cells are sufficient. We are left with the problem of
evaluating a formula of depth d d- [x/]. Trivially, this formula is a circuit that
can be arranged in levels of width at most w "= 2a’. By Lemma 5.4, for arbitrary u,
this circuit can be evaluated by p w. 29.+ processors and n / w. 29.v+ memory

log log nj [1/2 log dJ and obtaincells in lOgb(2d’) + O(d’/u) steps. We choose u [g
that w. 29.’+ <_ 2a-[/] 2al/a+(1/a)lga _< 2a n (for d sufficiently large) and, of
course, lOgb(d’ <_ (2a) and O(d’/u) O(d/log d). In the case where p < n, we first
reduce the size of the formula to p leaves by having each of the p subformulas of F of
depth d- logp evaluated by one processor in nip steps. Afterwards, we proceed as
before.

6. Many-valued formulas and circuits. Some of the previous results can
be extended to k-valued formulas and circuits, i.e., devices that compute functions
{0,...,k- 1}n {0,...,/- 1}m for some k >_ 3 and are built from gates that
compute functions

(R)’{0,...,k- 1} 9.
--+ {0,...,k- 1}.

TIME-OPTIMAL ALGORITHMS ON CREW PRAMS 1215

For CREW PRAMs that compute such functions, the n arguments are stored in input
memory cells of wordsize Ilk 1 II, each argument in a separate cell. A component of
the result is either given as a single value in an output cell of wordsize k- 111 or coded
in binary in Ilk- 111 cells of wordsize 1. We start with considering simple k-valued
formulas, that is, functions F(xl,...,x,) xl (R) x2 (R) (R) xn for an associative
operator (R) over {0,..., k- 1} with values in {0,..., k- 1}. Such functions are direct
generalizations of the functions ANDn, OR, and PARITY from the case where
k 2. Theorem 4.1 may be generalized as follows.

THEOREM 6.1. A simple k-valued formula F of size n can be evaluated by a

CREW PRAM M with p n. k(t+l)t/2 processors and n. (kt-1 4. 1) memory cells
in t 9(n) + 1 steps, where each of the common memory cells of M, except the cells
used for input and output, are of wordsize 1.

The proof of this theorem is almost identical to that of Theorem 4.1. The only
difference is that instead of binary strings, we use strings over the alphabet {0,..., k-
1} as names for cells and processors. During the ith WRITE, if a group of processors
wants to send a number s E {0,..., k- 1} to a group of cells C, the symbol is written
to all cells in C with a name whose ith position differs from s, thus changing the state
of these cells to "dead."

Remark 6.2. We note that the result of such a computation can be written in
binary in Ilk- 111 memory cells in one extra step. Indeed, we can prepare k different
cells, all storing the same symbol. The processor that knows F(x) after the READ
of step p(n)4- 1 marks one of these cells, namely the jth cell, where j F(x) + 1.
During step (n)+ 2, another k. Ilk- 111 processors read these cells in parallel (Ilk- 111
processors for each cell/; during the following WRITE, the Ilk- 111 processors that
encountered the marked cell in parallel write the binary code of F(x). In this way,
the algorithm uses only memory cells of wordsize 1 (except for the input cells).

Remark 6.3. It is interesting to note that, in many cases, a Boolean formula
that is not nicely balanced like the formulas of Theorem 5.6 can be considered as the
restriction of a simple formula over a k-valued domain. (The well-known fact that any
unbalanced Boolean formula of, say, size n can be restructured to get an equivalent
one of depth O(log n) does not help in constructing a fast CREW algorithm for the
formula because the constant factor in front of the logarithm in the depth bound (a
factor of about 3) outweighs the saving from log n down to 9(n).) As an example,
consider the Horner-type formula

F(x,...,xn) (... ((((x A xz) V xa) A xi) V)... A

of size n 2rn and depth n- 1, which is extremely unbalanced. We define an
associative operator (R) on the 3-valued domain {k,p,g} by u (R) k k, u (R) g g,
and u (R) p u for u E {k, p, g}. Furthermore, we define the functions G" {0, 1}2

__
{k,p,g} and H" {0,1} x {k,p,g} -- {0,1} by G(x, 1) g, G(1, O) p, G(O,O) k,
H(x,k) O, H(x,p) x, and H(x,g) 1 for x e {0, 1}. Then it is easy to see that

F(x, ,xn) H(x, G(x2,x3) (R) G(x4, xh) (R)... (R) G(x-2,xn-) (R) G(x, 0)).
Therefore, by Theorem 6.1, one can evaluate F(xl,... ,Xn) in 99(n)+ 4 steps on a
CREW PRAM with subexponentially many processors and cells. The degree of F is
n; hence at least 99(n) steps are necessary to compute F by Fact 1.4.

We generalize Theorem 5.1 to k-valued domains.
THEOREM 6.4. Let F(Xl,... ,x) x (R)... (R) x, be a simple k-valued formula.

Then there is an n-processor CREW PRAM M with n memory cells of wordsize

Ilk 111 that evaluates F in 9(n) + O(v/logn logk) steps.

1216 M. DIETZFELBINGER, M. KUTYLOWSKI, AND R. REISCHUK

Proof. We may assume that k <__ n since log n + 1 steps are certainly sufficient,
which is o(v/Iog-n :idgk) for k > n. We proceed essentially as in the proof of
Theorem 5.1. The input for stage consists of n 2d-w values y,...,y in

is{0,...,k-i} so that F(xl,...,Xn) = y(R)’’’(R)yn. In stagei, theyj 1 _< j _<
n, are subdivided into n+l := n/s blocks, or groups, of s 2 consecutive
values; the operation (R) is applied within each group to yield one new value y+l.
This computation takes time (s)+ 1 according to Theorem 6.1. The maximal
group size that we can afford without exceeding the processor bound can be easily
calculated. Let u be the largest u such that [log k. (2u) _< w. Then for each
group, s. 2[lgk]’(2) >_ s. k(s) processors are available, which is sufficient for
applying Theorem 6.1. For this to work, we need u _> 1, or [logk]. (2) <_ w.
In order to reach such a situation, we start with a preprocessing phase of 3[log k]
O(v/I0gi0gk steps in each of which simply adjacent pairs of values yt_ and yt re

+ 2d- values y Yncombined to form yt Thus the first stage starts with n
with 3[log k] __< wl. Stage is the last stage if n

2u; in this case, there is only

one group of size s = n. The number of stages is denoted by m. The analysis now
is very similar to the proof of Theorem 5.1. Let T be the computation time (without
preprocessing). Then T <_ (nl) + 2.34m _<: (n) / 2.34m. To estimate m, we prove
just as in Theorem 5.1 that

for 1 _< i _< m,

and

Lemma 5.2, applied with parameters A 2, q 0, r# 0, and c log k], yields
m 0(x/diOgk) O(x/isg-n:iSg k), as desired.

The last algorithm can be modified so that it uses only memory cells of wordsize 1.
The simple idea is to store the intermediate results y,..., Yn passed from stage 1
to stage in binary encoding. For (sequentially) reading and writing these codes, in
each stage 2ilk- 11[O(log k) extra steps re sufficient. In this way, the computation
time increases to o(n)+

Finally, we generalize Theorems 5.5 and 5.6 to k-valued domains. The notion of
a circuit consisting of gates with fan-in 2 that compute functions {0,..., k- 1}2

{0,..., k- 1} is an easy generalization of the binary case. (The prime example here
is an arithmetic circuit over a ring or a field with k elements.) The definitions of the
depth of such a circuit and of arranging the circuit in A levels of width up to w (cf.
5) carry over directly, as does Lemma 5.3.

THEOREM 6.5. Let C be a circuit of depth d consisting of s gates over the domain

(a) Let >_ 1 and p be arbitrary. Then C can be evaluated by a CREW PRAM
with p processors and s + p memory cells of wordsize Ilk 1 II in

p(2d) + o (2u+l k2) + 0 ()
steps.

TIME-OPTIMAL ALGORITHMS ON CREW PRAMS 1217

(b) Ifp satisfies log log(pd/s) log log k >_ 3, then there is a CREW PRAM with
p processors and memory cells of wordsize Ilk- 111 that evaluates C in

(d
(2d) + 0 log iog(pd/s)-iOglog k

steps. (Note that this is go(2d) + o(d) whenever k is fixed and p w(s/d).)
Proof. We may assume that 2+1 k2" <_ p/2 since otherwise even one processor.

can evaluate C in 2s O (2+1. k2". s/p) steps, Let w .’= [p/(2+1. k2)J >__ 2,
and arrange C in A d + [s/wJ levels of width w (cf. Lemma 5.3). As in the
proof of Lemma 5,4, the s gates are evaluated in stages t = 1, 2,..., A/u. Evaluating
gate g at level l, (t- 1)u + 1 __. <_ tu, with the values of all the gates in levels
L0, L1,..., Lz-(t-1) already available amounts to computing the value of a function
with 2z-(t-1) inputs from {0,... ,k- 1} and an output in {0,... ,k- 1}. This can
be done in go(2t-(t-1)) + 1 <_ go(2") + 1 steps by k2t-(-1)" 2t-(t-l)" processors. (The
method is practically the same as in the binary case. For each of the at most k2t-(-1)"

possible inputs, a team of 2t-(t-1) processors checks whether the actual input equals
the input associated with the team. This is done by computing the OR of 2t-(t-1)

bits. The unique successful team writes the result into the output cell.) The total
number of processors used is bounded by w. 2.2. k2 w. 2+1, k2"

_
p. Proceeding

exactly as in the proofs of Lemma 5.4 and Theorem 5.5, we may estimate the running
time by go(2d) + O (2+. k2". s/p) + 0

(b) Define u := [log log(pd/s) log log k- 2J __. 1. Clearly, d/u is bounded as
required. Moreover,

8

Thus both O terms in (a) can be bounded as claimed.
In the case of k-valued formulas of depth d and size n 2d (e.g., balanced

arithmetic expressions over finite fields), the last result may be somewhat sharpened,
in analogy to Theorem 5.6.

THEOREM 6.6. Letn 2d and let k <_ 2v/4. If the function f" {0,... ,k-l}n --*

{0,... ,k- 1} can be represented by a formula F of depth d (with arbitrary binary
operators over {0,..., k- 1}), then f can be evaluated by a CREWPRAM with p <_ n
processors and p + n memory cells of wordsize Ilk- 1[[in

go(n) + + 0 i0gl0gn, 2 log logk

steps. (If log k o(v/iogn and p w(n/log n), the number of steps is bounded by
p(n) + o(log n).)

Proof. We follow the proof of Theorem 5.6 and consider here only the case p n.
Subformulas of depth [v/] may be evaluated in [v/-d] + 1 steps in the k-valued case
as well. The remaining formula F can be arranged in d d- [v# levels of width
at most w ’= 2d’, Let u "= [1/2 log d- log log k- lJ. Then u __. 1 by the assumption

1218 M. DIETZFELBINGER, M. KUTYLOWSKI, AND R. REISCHUK

k <_ 2v/4. By the proof of Theorem 6.5, w. 2+1 k2 processors can evaluate F in
(2d’) + O(d’/) (n) + O(d/(log log n 2 log log k)) steps. It remains to note that

w. 2"+1 k2" < 2d-[v/-] k2+1 < 2d-Ivy] kv/-/log k 2d n. Cl

The algorithms described in Theorems 6.4, 6.5, and 6.6 are unsatisfying in that
they lead to computation times of (n)+ o(log n) only if k is sufficiently small relative
to n. Designing feasible algorithms that run in almost optimal time for arbitrary k
seems to be difficult. However, in 8, we present a feasible algorithm for computing
an important (n + 1)-valued function, namely the sum of n bits, in almost optimal
time.

7. Parallel prefix and addition. Let (R) be an associative operator over some
domain. We say that a PRAM computes the parallel prefix for the product Xl (R) x2 (R)

"(R)Xn if on input Xl,X2,... ,x,, the PRAM computation results in the values of the
n products

xl, xl (R) x2, x (R) x2 (R) x3,..., x (R)... (R) xn

being stored in n fixed memory cells. Parallel-prefix computation is a fundamental
problem which has been studied extensively for different computational models. Op-
timal realizations for the circuit model can be found in [19] and [13]. For unbounded
fan-in circuits, which relate to the CRCW PRAM model, see for example [I0].

In this section, we show that a parallel prefix for k-valued domains can be com-
puted on a CREW PRAM within practically the same complexity bounds as the single
product x (R) x2 (R)... (R) Xn (Theorem 6.4).

Remark 7. I. In the construction of an adder for two n-bit numbers by Ladner
and Fischer [19], a k-valued circuit for the parallel-prefix problem is described that
has depth log n and size 4n. We could apply the general Theorem 6.5 to obtain
a CREW PRAM algorithm for parallel prefix with n processors that runs in time
99(n) + o(n) if log log log n log log k w(1), which means that k o(log log n). The
direct construction presented in the following works for k with log k o(log n).

We start with a simple lemma.
LEMMA 7.2. Let (R) be an associative operator {0,... ,k- 1}2 -- {0,... ,k- 1}

over a k-valued domain. Then there is an EREW PRAMM with n processors and n
memory cells of wordsize k 111 that computes the parallel prefix for Xl (R) x2 (R)... (R) Xn
in [log n] + 1 steps.

Proof. Without loss of generality, we assume that n 2d. During the com-
putation, the arguments x,..., xn are divided into blocks; after step t, these blocks
consist of 2t- variables. Namely, for each i <_ n, let B {xi}, and for t > 1, B+1

Bti_x J B. Thus B {x(-1).2t-l+l, x(i-1)..t-l+2,..., x.-l}. Let rI B denote
the product of the elements of Bti, that is, x(_1).2t- q-1 (R) X(i-- 1).2t-l-}-2 (R)’’" (R) Xi.2t-1
By prefix(s, B) for x8 E B, we denote x(-1).2,-+1 (R) x(_l).-+ (R)... (R) xs. The
algorithm maintains the following invariant:

After step t, for each s <_ n, processor P knows l-I B and prefix(s, B),
where B is the block that contains x. Moreover, cell Cs stores rI B.

The first step is simple" each processor Ps for s _< n reads from cell Cs. To
describe step t / 1, assume that the property above holds up to step t. Let s _< n and
xs E B+1 Bti_l U Bti. If xs Bt_l, then during step t + 1, processor P reads
from cell C+2,-, which stores rI Bt (since x+2t- Bt). If xs Bt, then P reads
from cell C8_.,-, which stores rI Bti-1 It is easy to check that this does not lead to a
read conflict. Note that in both cases, after the READ operation, processor P knows

TIME-OPTIMAL ALGORITHMS ON CREW PRAMS 1219

rI Bt as well as I-I Bt-I Then Ps computes l-I B{+1 and writes it into cell Cs. Also,
P, computes prefix(s, B), knowing that prefix(s,B{
B_ and prefix(s,B{+1) B_x prefix(s, B)if x, B. The computation
stops when B {x1,..., x}; hence t log n + 1. During the WRITE phase of step
t, each processor Ps writes prefix(s, B) into C, instead of B. Therefore, after step
t, we get the correct output.

THEOREM 7.3. Let be an associative operator over a k-valued domain. The
parallel prefix for xx x2 . x can be computed by an n-processor CREW PRAM
in (n) + O(fflog k log n) steps using 2n memory cells of wordsize Ilk 111.

Proof. We may assume that k n nd n 2d. (If k > n, use the lgorithm
of Lemma 7.2. If n is not a power of 2, take n 2 [gJ and compute the parallel
prefix for y @ y2 "" @ y,, where y x2- x for n n and y x+(n-n’)
for n-n < n. Then the productsx@...@xj, I j n, cn be obtained
in two dditional steps.) The idea of the algorithm is to divide the input vriables
into disjoint blocks and to compute the parallel prefix of each block. Then the input
variables are partitioned into lrger blocks nd the parallel prefix of ech block is
computed using the previous results. The second step is repeated until there is only
one block consisting of 11 variables. At ech time during the computation, cell C for
r n stores the vlue of the product xz xz+ ... x, where xz is the beginning
of the block that currently contains x. The remaining n memory cells are used for
auxiliary dta. After the lst step, since there is a single block containing 11 vriables,
cell C stores the vMue of x x2 ... x, which is the correct result.

The computation consists of a preprocessing phase and stages 1,..., m. At
the beginning of stage i, the following situation is given. The input variables re
divided into blocks B,, B,2,..., B, of the same sizesay 2w; hence 2 n n,
or n 2d-. For each block B,p {xj.,xj.,+,..., xy,,+_}, there is a memory
cell that stores

Bi,p xji,p xji,p+l xji,p+l-1.

Let yp Bi,p, for p n. Further, cell Cr stores xj,, xj,+ ... x, where
Bi,p is the block that contains xr. Stage consists of the following computation:
M splits y, y,...,y into blocks Yp {Y(p-).s+, Y(p-).+2,..., Yp.} of some
size s, where 1 p n+ n/s, nd computes the parMlel prefix of the vMues
Y,Y2,...,Y within each block Yp (details are given below). Ech block B+l,p
consists of s blocks of the form Bi,j, namely,

Bi+l,p Bi,(p-1).s+l Bi,(p-1).s+2 Bi,p.s.

Of course, there re n+ such blocks Bi+l,p. Assume that x is in B,q Bi+l,p. At
the beginning of stage + 1, cell C must store the vMue of xj+,, xj+,,+ ...x.
Note that

xj+,, (R) xj+,,+l (R) (R) xr

(7.1) (H B,(p-X).,+x (R) H B,(p-X).,+2 (R)’"(R) B,_)
(Xj,,q Xj,,q+I ’’" Xr)

(Y(p-1).s,+ Y(p-1).s,+2 "" Yq-) (xj,,q xj,,q+l ... Xr).

The value of xj, xj,+ ... xr is stored in cell C. The product Y(p-1).s+l
Y(p-1).s+2 ’’" Yq-1 is computed during stage as one of the prefixes of block Yp

1220 M. DIETZFELBINGER, M. KUTYLOWSKI, AND R. REISCHUK

and stored in some fixed memory cell. Some processor reads this cell as well as cell
Cr, computes the product xj+l,p (R) xj+l.p+l (R)... (R) Xr according to equation (7.1),
and stores the result in Cr.

It remains to fix the sizes of the blocks and the algorithm used within the stage
and to analyze the running time.

We start with a preprocessing phase in which the parallel prefix is computed
within blocks of length 2w where wl 1 + 3 log k], by the algorithm of Lemma 7.2.
This takes 2 + 3[log k O(v logn log k steps.

During stage i, _> 1, we must compute the parallel prefix within each block Yp
for 1 _< p _< n+. Each single prefix product Y(p-).8+ (R) Y(-).8+2 (R)"" (R) Yq-
is computed by a separate group of processors and memory cells by the algorithm of
Theorem 6.1. For each such group, we employ p(s) s. k(s) processors (and fewer
than p(s) memory cells), where (I)(s) ((s)+ 2). ((s)+ 1)/2, as before. Since
n products are to be computed, n. s. k(s) processors are required overall. If we
let u be the largest integer u that satisfies

n 2 2 [lg k].O(2) _< n,

which means that u + [log k (2) <_ w, then we may choose s 2. By the
preprocessing stage, we have u >_ 1 for all i. The last stage, m, is characterized as the
minimal with n < 2. Here we choose s ni. The analysis of the running time
(disregarding the preprocessing phase) is now practically the same as in Theorem 6.4.
Stage takes ((s) + 1) + 2 (si) + 3 <_ lOgb(si + 4.34 steps, and the overall time
T can be estimated by T

_
(n) + 4.34m. In order to estimate m, we note that ui is

given by the recursion

i--1

u=max{u u + [log k] (I) (2u)_<l+3[logk]+juj}.= fore<_i<_m

and

rn=min{i l+3[logk]+Euj>_d}.
j--1

In this situation, Lemma 5.2 is applicable (with A 2, 1, c [log k], and q 0);
it yields m= O(v/-.d) O(x/lognlogk).

A CREW PRAM M adding two n-bit numbers gets the input bits in separate
cells and has to generate the binary representation of the sum of these numbers, each
bit in a separate cell.

COPOLLARY 7.4. For each n, there is an (n + 1)-processor CREW PRAM with
2(n + 1) memory cells of wordsize 2 that adds two n-bit numbers in (n) + O(v iog
steps.

Proof. When computing in parallel a sum of two binary numbers, the main
problem is to compute the carry bits. Once all carry bits are known, the sum can be
computed in a few parallel steps. Let the carry propagation operator (R) {0, 1, p}2

_
{0, 1, p} be defined by

p(R)x=x, 0(R)x=0, l(R)x= 1.

It is well known that this operator is associative and that the ith carry bit ci equals
xi (R) xi-1 (R)... (R) Xo where x0 0 and, for > 0, xi 1 if both added numbers have

TIME-OPTIMAL ALGORITHMS ON CREW PRAMS 1221

l’s in position i, x 0 if there are two O’s in position i, and x p if there is a 0 and
a I in position i. If we define x(R) y y(R)x, then c x0(R)pxl (R)...(R) x. Therefore, to
compute the carry bits, we have to compute the parallel prefix of x0 (R) X (R)... (R) xn.
By Theorem 7.3, this can be done in (n) + O(v/i0gn) steps by a CREW PRAM
with n + 1 processors and 2(n + 1) memory cells of wordsize 2. In a few additional
steps, this machine computes each bit of the sum. Cl

Remark 7.5. The best currently known construction of a circuit for adding two
n-bit numbers was given by Krapchenko (see [33, p. 42]). This circuit has depth
log n+O(v/logn) and size O(n). Applying Theorem 5.5 to this circuit yields a CREW
PRAM algorithm with running time (n) + O(logn log log log n). Comparing with
Theorem 7.4, we see that the time bound is slightly better and that the structure of
the algorithm is clearer for our direct construction.

8. Symmetric functions. A Boolean function is called symmetric if it depends
only on the number of l’s in the input. In this section, we describe feasible algorithms
with an almost optimal running time for computing symmetric functions. An obvious
way to compute such a function is to count the l’s in the input and then to determine
the function value depending on the count. Thus we start by studying the following
task.

"Sum of n bits": For an input consisting of n bits x,..., Xn stored in n differ-
ent memory cells, compute the binary representation ofi xi and store it in Ilnll
memory cells (each bit in a separate cell).

We will describe a feasible algorithm for summing n bits and apply it to the task
of evaluating symmetric functions in time (n) + o(log n) with n processors.

Remark 8.1. For the bit-summation problem, no circuits (with fan-in 2) of depth
log n+ o(log n) are known. Thus the CREW PRAM algorithm described here is faster
by a constant factor than what can be obtained by simulating the best known circuits
for this problem. The same applies to the problem of computing arbitrary symmetric
functions.

Let us first discuss two well-known methods, one for adding a sequence of bits
and another for adding a sequence of binary numbers. Although these methods are

not good enough for our purpose, we will need them as subroutines; moreover, our
main algorithm is a generalization of the second method described. The first method
that we will describe is based on a well-known very large-scale integration (VLSI)
algorithm [21, 1.1.4]. It yields an algorithm for adding n bits that takes O(logn)
steps on an EREW PRAM with n processors and n memory cells of wordsize 1.

LEMMA 8.2. There is an n-processor EREW PRAM with n memory cells of
wordsize 1 that computes the sum of n 2d bits in 4d steps.

Proof. We may assume that each READ phase consists of reading from two
different cells. Such a machine, which we call a 2-READ PRAM, can be simulated by
a usual EREW PRAM that makes twice as many steps. We prove the following by
induction on k.

CLAIM. There is a 2-READ PRAM Mk with 2 1 processors and memory cells
Co,..., C2k_l of wordsize 1 that for an input x,... ,x2k writes the binary represen-

2
ration bkb_l.., bo of= xi, starting at step k with the least significant bit bo and
writing bi into cell Ci at step k + i. The cell Ci is not used by M after step k + i.

(The total number of steps is 2k.)
M1 reads the two input bits in step 1 and writes the two output bits in steps 1

and 2. Now we assume that M exists and use it to construct Mk+l. We split the
2k+l input bits into two groups of 2 bits each and use two copies M and M of

1222 M. DIETZFELBINGER, M. KUTYLOWSKI, AND R. REISCHUK

Mk, one for each group. Let C,..., Ck_l and Ct,..., C_1 be the cells used by

M and M respectively. By Ci we mean the cell C if < 2k or the cell C"i_2
if _> 2k. In steps t k, k + 1,..., 2k, the machines M and M produce the bits
b, b,..., b and bg, b,..., b of their (partial) sums. In addition, there is another
processor P whose task it is to add up the two sums produced by M and M by using
the standard "paper-and-pencil" method. Processor P keeps an internal variable c
("carry") initialized with 0; it is idle for the first k steps. In steps t k + 1,..., 2k + 1,
processor P reads b and b’ for t-(k + 1), the values written by M and M
in step t- 1 into cells C and C’, and adds b, b’, and c, which results in a two-bit
number ss.. Then P writes s as the next output bit into cell Ci (the same cell as

C) and sets c s (s is the next carry bit). In step t 2k + 2, processor P writes
2c. Obviously, P outputs the bits of yi= xi in the proper order and with the required

timing. Altogether, 2(2 1) + 1 2+ 1 processors are used. Cl

The second method that we describe is an adaptation of the "Wallace-tree" con-
struction for a circuit of depth O(log u + log k) for adding u k-bit numbers. This
construction is based on the idea of "carry-save addition" [32, 33].

LEMMA 8.3.
(a) If bi bi,d-lbi,d-2"" bi,o for 1, 2, 3 are three binary numbers with bl +

b2 + b3 < 2a, then there are two binary numbers gj gj,d-lgj,d-’’’gj,o for j 1, 2
such that b + bu + b3 g + g and such that there is an EREW PRAM of wordsize
1 with d processors that computes the bits gj,e from the bits bi,f in four steps.

(b) If u numbers bi are given by their binary representations bi,d-l’"bi,o for
u-1 2d0 <_ < u and if s i=0 bi < then the binary representation Sd-1 ""So of s can

be computed in O(logu + log d) steps by an EREW PRAM with d. u processors and
d. u cells of wordsize 1.

Proof. (a) Let the sum b,2 /b2,t / b3,1 for 0 _< < d have the binary representation
ClSl. Define gl,t := st for 0 <_ < d, g2,t := Ct_l for 1 _< < d, and g2,0 := 0. (Note
that cd-1 0.) Obviously, gl / g2 bl + b + b3. The method for calculating the
numbers gj,t on an EREW PRAM is obvious.

(b) The computation proceeds in stages. At the beginning of each stage, we have
a collection of binary numbers with sum s. During a stage, we split these numbers
into groups of three each, and then these three numbers are replaced by two new ones
that have the same sum, as described in part (a). In that way, each stage reduces

Further, each stage needs atthe number of the remaining numbers by a factor of 5"
most d-u processors and d. u cells and takes four steps. These stages are performed
until only two numbers are left. It is not hard to see that the number of stages does
not exceed 1 + log3/ u. Finally, to add up the two d-bit numbers that remain after
the last stage, we use the algorithm of Corollary 7.4. The whole computation takes
no more than 4. (1 + loga/ u) + O(log d) O(log u + log d) steps. Cl

Now we turn to the key result of this section.
THEOREM 8.4. The sum of n bits can be computed by an n-processor CREW

2/3Pn M 1) +
Proof. Let x1,..., xn be the input bits, where, without loss of generality, n 2d.

Our aim is to compute the binary representation of the sum s i=1 xi consisting
of Ilnll bits. The central idea of the algorithm is to generalize the addition metkod
presented in Lemma 8.3 by using groups of more than three elements. Again, the
algorithm proceeds in stages. The result of stage 1 is a sequence yi,1,..., yi,n of
binary numbers, each represented by Ilnll bits, such that yj=" y,i s. The numbers
yi,i are split into groups of a suitably chosen size ai (as opposed to size three in

TIME-OPTIMAL ALGORITHMS ON CREW PRAMS 1223

Lemma 8.3), and from the ai numbers in each group a set of Ilaill new numbers is
computed that has the same sum. By collecting the new numbers from all groups,
we obtain numbers y+l,i,..., Yi+l,n+x, where n+l is substantially smaller than n.
We have to show how to perform one such stage efficiently, i.e., in almost optimal
time, and how to choose the parameters a and ni in such a way that the numbers
decrease so fast that not too many stages are necessary.

In addition, the algorithm has a preprocessing phase and a postprocessing phase.
The preprocessing phase is necessary to get nl numbers y1,1,..., Y1,1 with sum s,
where n/nl, the number of processors per cell, exceeds a minimal value necessary
to start the main procedure. The postprocessing phase begins after stage m if
is sufficiently small. Then we add the remaining numbers using the procedure of
Lemma 8.3(b). (We could also let the main procedure run until the end; however,
this would unnecessarily complicate the analysis.) For the sake of simplicity, assume
throughout the proof that n is a sufficiently large number. (For small n, the algorithm
from Lemma 8.2 is used.) We start by describing an efficient method for transforming
a numbers given in binary into IIall new numbers that have the same sum.

LEMMA 8.5. Let a >_ 3 and n 2d >_ 1 be integers. Then there is a CREW
PRAM with Ilnll.a. a(a) processors and memory cells of wordsize 1 that, when

a--1presented with the binary representations of numbers v0,..., va-1 with j=0 vj < n,
computes in (a) + 3 steps the binary representations of numbers z0,..., Zllall-1 -that
satisfy

(8.1) E zt E vj.
1=0 j=0

Proof. Let Vj,d...Vj,o be the binary representation of v for j 0,..., a- 1. For
each bit position c E {0,..., d}, consider the binary representation bc,llall-1 be,0 of

a--1bc j=o vj,. We may rearrange these Ilall. (d + 1) bits so as to form Ilall numbers
of length Ilnll d / 1 (see Figure 8.1 for an example). Namely, let zt be the number
with binary representation bd-l,lbd-l-l,l’’" bo,lOI. Then

a-1

EE "2 E vj, .2= be.2Vj,c
j--0 c--0 c--0 \j--0 c=0

b,. + b,. + z.
c=O /=0 /=0 c=O /=0

(For the last equality, recall that be. 2c
_

2_j=0 vj n, an(] hence bc,t 0 for l+c > d,
i.e., for c > d- l.) Thus the numbers zt satisfy equation (8.1).

By our definition, the binary representation of the numbers z0,... ,Zllall-1 can
be obtained by rearranging the bits of the binary representations of b0,..., bd. By
Theorem 6.1 and Remark 6.2, each bc can be computed in (a) + 2 steps by a CREW
PRAM with a. a() processors and cells of wordsize 1. Thus for d+ 1 Ilnll numbers
be, we need Ilnll.a. a() processors (cells) altogether. In one additional step, the
bits are rearranged so that we get binary representations of the numbers z0,...,

Zllall_
We now describe and analyze the algorithm for summing n bits. It consists of a

preprocessing phase, a main procedure (in m stages), and a postprocessing phase.

1224 M. DIETZFELBINGER, M. KUTYLOWSKI, AND R. REISCHUK

v05 v04 V03 v02 vOl Voo Vo

v45 v44 v43 v42 v41 v40 v4

bo2 bol boo Sum of last column

bl2 bll blo Sum of next to last column

b22 b2 b20

ba b31 b30

b42 b41 b40

bb

=0

55o

Rearrange

Sum of first column

b32 b22 b2 b02 0 0 z2

541 b31 b21 bl bo 0 z

bbo b4o b3o b2o blo boo zo

FIG. 8.1, Forming I]all 3 numbers from a 5 many by the procedure of Lemma 8.5 for d 5.

Preprocessing phase. The input bits are split into groups of 2wl elements with
w := [log Ilnll + 4. (16). The sum of the bits in each group is computed using
the algorithm of Lemma 8.2. As a result, we get n := 2d-wl numbers y1,1,..., Yl,n
of binary length IInI[(filling up with leading zeroes) such that 1 y,i s. For the
preprocessing phase, n processors, n cells, and 4wl O(log log n) steps are sufficient.

Next, we describe stage of the main procedure for _> 1. The number m of
stages as well as the parameters ai 2TM and n 2d-w (where ui, wi E N) will be
defined by recursion in the course of the description.

Stage i.

Input. The numbers y,l yi,n with nj= y,j s. Each y,j is given by a
binary representation with Ilnll bits.

Computation. The numbers y,j are split into ni/a groups of ai elements each.
Using the method of Lemma 8.5, each group is replaced by I]a]l new numbers with
the same sum.

Output, Let n+l 2 [lgllalll n/a. Output the numbers Yi+,,...,Y+,n+
obtained by collecting the Ilall results from each group padded with O’s to obtain

ni+ numbers.

TIME-OPTIMAL ALGORITHMS ON CREW PRAMS 1225

LEMMA 8.6.
< lla ll

(b) Stage can be performed by hi. Ilnll a(a’) processors and cells in (ai) + 3
steps.

Proof. (a) The proof of (a) is obvious. (b) Each of the ni/ai groups uses

ai. a(a) processors (cells). Hence hi. IIn]l. aei(a) processors (cells) are used al-
together.

We now define the numbers ni and ai for > 1 (hence also wi since ni 2a-).
Assume that n has been determined already. By Lemma 8.6, hi. Ilnll .aF(a) processors

(cells) are needed for performing stage i; thus we must have n 2d _> hi.]lull. a(a).
Define u as the largest number u E N that satisfies n >_ n. Ilnl[. 2’(2"), and

let ai 2u. Note that ui >_ 4 since n/ni 2 >_ 2wl >_ 2g IIn11+4’(24). The number
rn of stages of the main procedure is defined to be the minimal such that ai _> hi,

i.e., 2" >_ 2d-w, or ui + wi >_ d. In stage m, only one group of size n, is formed;
since am _> n,, the stage can be performed by the n processors. The result of the
last stage is a set of Ilnm+lll -< IIn[I numbers that have sum s.

Postprocessing phase. The algorithm of Lemma 8.3 is applied to the up to
numbers of Ilnll bits with sum s that result from the main procedure. This algorithm
outputs the binary representation of s after O(log Ilnll) O(loglogn) steps using

Ilntl Ilnl[o(n) processors and cells.
It remains to analyze the main procedure. It is clear that n processors and

memory cells are sufficient. The crucial step is to estimate m.

LEMMA 8.7. The number rn of stages of the main procedure is O((log n)/a).
Proof. From the construction, it is easily seen that the numbers ui and wi for

i _> 1 obey the following recursive definition:

wi Flog IIll] / 4. (16);
ui max{u Flog

Wi+l wi -t- ui Flog 2’ II] for >_ 1.

for/>_ 1;

Since wi _> w Flog Ilnll] + 4. (16), we have ui >_ 4 for all i; hence wi+ _> wi + 1/4ui
for all since Flog ll2IIB <_ -u for >_ 4. It is not clear how to analyze the exact
behavior of the sequence ui, >_ 1. Instead, we use a lower bound that is easier to
handle. We recursively define a sequence vi, >_ 1, by

i-1

v=max{v 4v.(24v)<_4.(16)+1v}.= for > 1.

A straightforward induction on shows that vi _< ui and ’W + ’V +’’’ + Vi--1 __< 2/)i for
all i. Since rn is the minimal such that wi + ui >_ d, it follows that

rn _. min{i 1%01 -")1 -1-"""-t")i d }.

We apply Lemma 5.2 with q 1, A 16, r/= 0, and c 4 to the last expression,
which yields the bound rn O((d. 4) /a) O((log n)2/3).

We may now finish the time analysis. For <_ m, stage of the main proce-
dure takes (a) + 3 steps by Lemma 8.6(b). Altogether, then, stages 1 through rn
take m=((a) + 3) steps. Both the preprocessing and postprocessing phases take

1226 M. DIETZFELBINGER, M. KUTYLOWSKI, AND R. REISCHUK

O(log log n) steps. Thus the total computation time T can be estimated as follows
using Lemmas 8.7 and 8.6(a)"

m

T _< Z(99(a) + 3) + O(log log n)
i--1

-< E]gb a; + O(rn) + O(]og log n)
i=1

_< E(lOgb ni logb ni+) + ’. lOgb(2lla[I) + O(log:/3 n)
i=1 i=1

<_ logb ftl -t- TFb" logb(2llnll) / O(log2/a n)
_< + O(]og log log

This completes the proof of Theorem 8.4. El
Theorem 8.4 is the key for computing symmetric functions with n processors fast.

We need another auxiliary result.
LEMMA 8.8. An arbitrary Boolean function F of k arguments can be computed

by a CREW PRAM with 2 processors and 2 memory cells of wordsize 1 in time

(k) + 3. Moreover, after the READ phase of step (k) + 3, there is a processor that
knows the whole input string.

Recall that a CREW PRAM with k. 2-1 processors can compute F in time
(k) + 1. On the other hand, with only k processors for almost all Boolean functions,
the computation takes ft(k) steps provided that memory cells of wordsize 1 are used
[].

Proof. Let hi [//2J and kz n- k. We split the input string Zl,..., z into
substrings v Xl,...,z and w xka+l,...,z of length k and kz, respectively.
Apply the algorithm of Fact 1.2 to v and w so that after the READ phase of step
V)(k2) + 1, there is a processor P that knows v and a processor Po that knows w.
Note that kl. 21-1 + k. 2k-I k-2= < 2 processors (memory cells) have been
used. We may assume that there are two sets A0,...,A=_ and B0,...,B_I
of memory cells, all initialized with 0. These cells may be used to code v and w:
processor P writes a 1 into cell A, where s is the number with binary representation
v, and processor P writes a 1 into cell Br, where r is the number with binary
representation w. (This is done during the WRITE phase of step (k) + 1.) Since
we have 2k 2kl. 2k processors, we may assume that they are labeled Pi, for
0 < 21 0 j < 2. For each and j, during the next two steps, processor
reads cells Ai and Bj. Only processor P, reads a 1 both times. Then P, knows
that the input string is vw Zl,... ,z and may write the value F(Xl,... ,z) into
the output cell during the WRITE phase of step (k2) + 3 p(k) + 3.

THEOREM 8.9. An arbitrary symmetric function of n arguments can be computed
by an n-processor CREW PRAM with n memory cells (of wordsize 1) in time

+ O(og

Proof. Let F be a symmetric function of n arguments. There is a function G of
k lnl arguments such that if Yl""yk is the binary representation of= z, then
F(Zl,... ,x) G(yz,... ,W). The machine that computes F first finds the sum of
the input bits using the algorithm of Theorem 8.4. Thus it obtains k bits yl,...,

such that F(Xl,... ,x) G(U,... ,Uk). During the next two steps, all processors

TIME-OPTIMAL ALGORITHMS ON CREW PRAMS 1227

read the cells storing yl and y2. Then the machine uses the algorithm of Lemma 8.8
for a function Gy1,y., where G,j (ya, y4,. yk) G(i, j, ya, y4,. yk). The number
of processors that we need for this phase is 2k-2 2 [g(n+l)]-2 <_ 2lg(n+l)-I

(n + 1)/2. Obviously, the total computation time is bounded by (n) + O(log/an
log log n) + O(log log n) (n) + O(log2/3n log log n). 1

9. Sorting algorithms. In this section, we present algorithms for sorting n
bits and sorting n binary numbers on small CREW PRAMs. In comparison to other
sorting algorithms of logarithmic time complexity for networks and PRAMs [1, 8, 25],
which sort arbitrary numbers but have a running time bound C. log n with a constant
C much larger than 1, the method below achieves optimal time up to a lower-order
term for sorting bits. Finally, this method is extended to sorting arbitrary numbers
given in binary representation.

THEOREM 9.1. An n-processor CREW PRAM with n memory cells (of wordsize

1) + O(log log
Proof. The computation consists of three phases. During the first phase, the sum

of the input bits is computed and written in binary. By Theorem 8.4, this can be done
in (n)+O(log/an.log log n) steps. During the second phase, the algorithm of Lemma
8.8 is applied in order to get a processor that knows the sum of the input bitsnsay
a number s < n. This phase takes (llnll) + 3 O(log log n) steps. During the third
phase, in O(loglogn) steps, the number 1 is written into the cells C1,..., C8, and
the number 0 is written into the cells C8+1,..., C,, thus getting the correct output.
We describe the third phase in detail below. Given the time bounds claimed for the
phases, it is clear that the whole computation takes at most (n)+O(log/3n.log log n)
steps.

The third phase consists of several stages. After each stage, we get the correct
output values written into all cells except for a small block of decreasing size. If at the
beginning of a stage, we start with an "unresolved" block B of size rn, then during
the stage the correct values are written into all cells of B except for some subblock of
a size approximately equal to v/.

At the beginning of each stage, we have the following situation:
There is a block of adjacent memory cells B and a number z E N such that

in order to get the correct output, the number 1 should be written into the first z
cells of B and the number 0 into the rest of them.

There are IBI processors that know that B is an "unresolved" block, one
processor associated with each cell of the block. There is one processor that knows
the number z.

All memory cells except for those in B already contain the correct output
values.

We will describe only the first stage. The other stages are essentially the same,
except for the last one, when the unresolved block has constant size and the output
values are written sequentially by one processor. Without loss of generality, we may
assume that n 2d. At the beginning of the first stage, the "unresolved block"
consists of all cells. Let D1 2 [d/], D 2 [a/2j, and s (r- 1). D1 + s, where
0 < s <_ D (hence also r _< D since s <_ n DD). We divide the memory cells
C1,..., Cn into blocks of size D1; namely, for <_ D., block Bi consists of the cells
C(i--1).D-[-1, C(i-1).Dl-[-2,...,

Let P be the processor that knows s. In order to get Dz processors that know r,
the cells C1,..., CD. are cleared so that they contain 0’s. Then processor P writes
a 1 into cell Cr. Next, cells C,..., CD. are read by the n processors, each cell by

1228 M. DIETZFELBINGER, M. KUTYLOWSKI, AND R. REISCHUK

exactly D1 of them. The processors that encounter a 1 know r. Then the blocks
BI,... ,Br- are marked for filling with l’s and the blocks Br+l,... ,BD2 for filling
with O’s. Only block B might contain both O’s and l’s, so B cannot be filled at this
stage of the computation. The marking of the blocks can be done in such a way that
the symbol j is written into the first two cells of a block if this block should be filled
with symbol j. The first two cells of block Br receive 0 and 1 to indicate that this
block should not be filled now. The marking can be done in two steps since we have
D1 >_ D2 processors knowing r.

Then all n processors will be used again. For _< n, processor Pi reads the marked
cells of the block containing cell C and, according to the situation, writes 0 or 1 into
cell C or does not write if Ci lies in the block marked with 0 and 1.

This is the end of the first stage. Note that Br is the "unresolved" block, that
there are D processors that know that B is the "unresolved" block (namely, the
processors knowing r), and that processor P knows s and hence also sl. To obtain
the correct output, a I is to be written into the first s cells of B and a 0 is to be
written into the remaining cells of B. Hence we are in the correct situation for the
beginning of the next stage.

Let 7(m) be the time required by the procedure of the third phase for a block of
m cells. By our construction, (2d) (2 Vd/2]) + 6. It follows that -),(2d) O(log d),
i.e., /(n) O(log log n), as required. [:l

Next, we show that binary numbers of arbitrary fixed length can be sorted in
almost optimal time with small resources. As a preliminary step, we consider the
problem of comparing two binary numbers.

FACT 9.2. For each k, there is an EREW PRAM with k processors and 2k
memory cells of wordsize 2 that compares two k-bit binary numbers in (k) + 2 steps.

Essentially, the algorithm for comparing two numbers is the same as for computing
the logical OR. We briefly sketch the idea. Let a ak-l".ao and b ba_.., b0 be
two binary numbers. Define operators (R) and as follows. For x,y {0, 1},

g ifx > y,
x(R)y= e ifx=y,

s ifx < y.

For z,z’ e {g,e,s},

zQz={ z ifz=e,
z otherwise.

Clearly, comparing a and b can be done by computing the product zk-(zk-2...z0,
where z a (R) b for i 0,...,k 1.

After computing the symbols z in two parallel steps, the product Zk- (’’’) Zo
is computed using the same method as that for the logical OR [9]. This is possible
since the only properties of the OR used are the associativity of the operator /and
that

x/y= {Y ifx=0,
x otherwise.

(The difference is that the operator Q is defined over a domain of three elements.)
We leave the details to the reader.

THEOREM 9.3. There is a CREWPRAM with m2. k processors and m. (m+ 1). k
memory cells of wordsize 1 that sorts m binary numbers of length k in time

99(m. k) + O(log2/3m. log log m).

TIME-OPTIMAL ALGORITHMS ON CREW PRAMS 1229

Proof. Let k-bit numbers al,..., am be given. With each number aj for 1 <_ j <_
m, we associate a group Gj of rn. k processors and m. k cells Cj,1,..., Cj,,.k. The
processors of Gj determine the position that is to be taken by aj in the sorted string
and copy aj to this place. This works as follows:

1. The processors of Gj copy the numbers al,..., am into the cells of Gj.
2. For each i <_ m, the number aj is compared with ai in (k) + 2 steps by k

processors. Let

1bj,i
0

if aj < ai or (aj ai and j _> i),
otherwise.

For each _< m, the number bj,i is written into cell Cj,i. (Note that the number of l’s
in the string bj,l,..., bj,m determines the position of aj in the sorted string.)

3. The bits bj,l,..., bj,, are sorted in (rn) + O(log2/3rn log log rn) steps; the
resulting vector is written into cells Cj,1,..., Cj,m.

4. For each < m, there are k processors that read the cells Cj,i and Cj#+I. In
that way, some k processors detect the last cell Cj,s containing a 1. These processors
copy the binary representation of aj into cells Cs,1,..., C,k.

Clearly, the cells C,1,. Cl,k; C2,,..., C2,k;... Cm,1,..., Cm,k contain the cor-
rect output after phase 4. Phases 1 and 4 require a constant number of steps, so
the whole computation takes (k) + (m) + O(log2/3m. log log rn) steps. However,
(k) + (rn) logb k + logb rn + O(1) lOgb(rn, k) + O(1) (m. k) + O(1). Hence
the computation time is bounded as claimed.

Acknowledgments. We thank Marcin Kik for many discussions and for pointing
out that the algorithm of Theorem 6.1 can be used as a subroutine by the algorithm of
Lemma 8.5. The constructive comments of two anonymous referees are gratefully ac-
knowledged. The results on the simulation of circuits were found following a question
of one of the referees.

[10]

[11]

REFERENCES

[1] M. AJTAI, J. KOML)S, AND E. SZEMERIDI, Sorting in c logn parallel steps, Combinatorica, 3
(1983), pp. 1-19.

[2] P. BEAME AND J. H/STAD, Optimal bounds for decision problems on the CRCW PRAM, J. As-
soc. Comput. Mach., 36 (1989), pp. 643-670.

[3] P. BEAME, M. KIK, AND M. KUTYLOWSKI, Information broadcasting by exclusive-read PRAMs,
Parallel Process. Lett., 4 (1994), pp. 159-169.

[4] S. J. BELLANTONI, Parallel random access machines with bounded memory wordsize, Inform.
and Comput., 91 (1991), pp. 259-273.

[5] R. P. BRENT, The parallel evaluation of general arithmetic expressions, J. Assoc. Comput.
Mach., 21 (1974), pp. 201-208.

[6] J. BPUCK, Harmonic analysis of polynomial threshold functions, SIAM J. Discrete Math., 3
(1990), pp. 168-177.

[7] S. BUBLITZ, U. SCHIRFELD, B. VOIGT, AND I. WEGENER, Properties of complexity measures

for PRAMs and WRAMs, Theoret. Comput. Sci., 48 (1986), pp. 53-73.
[8] R. COLE, Parallel merge sort, SIAM J. Comput., 17 (1988), pp. 770-785.
[9] S. COOK, C. DWORK, AND R. REISCHUK, Upper and lower time bounds for parallel random

access machines without simultaneous writes, SIAM J. Comput., 15 (1986), pp. 87-97.
A. CHANDRA, S. FORTUNE, AND R. LIPTON, Unbounded fan-in circuits and associative func-

tions, J. Comput. System Sci., 30 (1985), pp. 222-234.
M. DIETZFELBINGER, M. KUTYLOWSKI, AND R. REISCHUK, Exact time bounds for computing

Boolean functions on PRAMs without simultaneous writes, in Proc. 2nd ACM Symposium
on Parallel Algorithms and Architectures, Association for Computing Machinery, New
York, 1990, pp. 125-135.

1230 M. DIETZFELBINGER, M. KUTYLOWSKI, AND R. REISCHUK

[12] Exact lower bounds for computing Boolean functions on CREW PRAMs, J. Comput.
System Sci., 48 (1994), pp. 231-254.

[13] F. FICH, New bounds for parallel prefix circuits, in Proc. 15th Annual ACM Symposium on

Theory of Computing, Association for Computing Machinery, New York, 1983, pp. 100-
109.

[14] F. FICH AND A. WIGDERSON, Towards understanding exclusive write, SIAM J. Comput., 19
(0), . s-.

[15] R. M. KAPP AND V. RAMACHANDRAN, Parallel algorithms for shared-memory machines, in
Handbook of Theoretical Computer Science, Vol. A, Algorithms and Complexity, J. van
Leeuwen, ed., Elsevier, Amsterdam, 1990, pp. 869-941.

[16] M. KUTYLOWSKI, Fast algorithms for threshold functions on CREW PRAMs, Technical Report,
University of Wrociaw, Wrociaw, Poland, 1991.

[17] , Time complexity of Boolean functions on CREW PRAMs, SIAM J. Comput., 20 (1991),
pp. 824-833.

[18] M. KUTYLOWSKI AND R. REISCHUK, Evaluating formulas on parallel machines without si-
multaneous writes, Technical Report, Institut fiir Theoretische Informatik, Technische
Hochschule Darmstadt, Darmstadt, Germany, 1990.

[19] R. E. LADNER AND M. J. FISCHER, Parallel prefix computation, J. Assoc. Comput. Mach., 27
(1980), pp. 831-838.

[20] K. LANGE, Unambiguity of circuits, Theoret. Comput. Sci., 107 (1993), pp. 77-94.
[21] F. T. LEIGHTON, Introduction to Parallel Algorithms and Architectures: Arrays, Trees, Hyper-

cubes, Morgan Kaufmann Publishers, San Marco, CA, 1991.
[22] N. NISAN, CREW PRAMs and decision trees, SIAM J. Comput., 20 (1991), pp. 999-1007.
[23] N. NISAN AND M. SZE(EDY, On the degree of Boolean functions as real polynomials, Comput.

Complexity, 4 (1994), pp. 301-313.
[24] I. PARBERRY AND P. Y. YAN, improved upper and lower time bounds for parallel random access

machines without simultaneous writes, SIAM J. Comput., 20 (1991), pp. 88-99.
[25] M. PATERSON, Improved sorting networks with O(logn) depth, Algorithmica, 5 (1990), pp. 75-

92.
[26] J.H. REIF, ED., Synthesis of Parallel Algorithms, Morgan Kaufmann Publishers, San Marco,

CA, 1993.
[27] R. SMOLENSKY, Algebraic methods in the theory of lower bounds for Boolean circuit complex-

ity, in Proc. 19th Annual ACM Symposium on Theory of Computing, Association for
Computing Machinery, New York, 1987, pp. 77-82.

[28] M. SNm, On parallel searching, SIAM J. Comput., 14 (1985), pp. 688-708.
[29] L. STOCKMEYER AND W. VISHKIN, Simulation of parallel random access machines by circuits,

SIAM J. Comput., 13 (1984), pp. 402-422.
[30] M. SZEGEDY, Algebraic Methods in Lower Bounds for Computational Models with Limited

Communication, Ph.D. thesis, Department of Computer Science, University of Chicago,
Chicago, 1989.

[31] U. VISHKIN AND t. WIGDERSON, Trade-offs between depth and width in parallel computation,
SIAM J. Comput., 14 (1985), pp. 303-314.

[32] C. S. WALLACE, A suggestion for a fast multiplier, IEEE Trans. Comput., 13 (1964), pp. 14-17.
[33] I. WEGENER, The Complexity of Boolean Functions, Wiley-Teubner, Stuttgart, 1987.

SIAM J. COMPUT.
Vol. 25, No. 6, pp. 1231-1253, December 1996

() 1996 Society for Industrial and Applied Mathematics
OO5

LOWER BOUNDS FOR GEOMETRICAL AND PHYSICAL
PROBLEMS*

JRGEN SELLENt

Abstract. Motion planning involving arbitrarily many degrees of freedom is known to be
PSPACE-hard. In this paper, we examine the complexity of generalized motion-planning problems
for planar mechanisms consisting of independently movable objects.

Our constructions constitute a general framework for reducing problems in information processing
to motion planning, leading to easy proofs of known PSPACE-hardness results and to exponential
lower bounds for geometrical problems related to motion planning. Particulalrly, we show that
the problem of deciding whether a given mechanism A can always avoid a collision with another
mechanism B is EXPSPACE-hard.

New lower bounds are also obtained for the problem of planning under given physical side condi-
tions. We consider the case that certain motions require forces, e.g., to subdue friction, and ask for
motions that stay under a given energy limit. Within our framework, we show that such shortest-
path problems are EXPTIME-hard if we use number representations by mantissa and exponent, and
even undecidable if we allow that some motions require no force or an infinite amount. The proof
consists of a simulation of Turing machines with infinite tape and shows that the notion of Turing
computability can be interpreted in purely geometrical terms. The geometrical model obtained is
capable of expressing a variety of physical-planning problems.

Key words, motion planning, lower bounds, kinematic problems, dynamic problems, geomet-
rical problems, collision-avoidability problem

AMS subject classifications. 68Q05, 03D10, 68Q25, 03D15, 68U05, 65Y25

1. Introduction. This paper is concerned with motion-planning and related
problems with and without physical (resp., dynamic) constraints. In our terminology,
we use the notion kinematic scene to describe the physical world which constitutes the
input of a kinematic problem. A kinematic scene is a collection of rigid objects, each
object being a semialgebraic, connected subset of the Euclidean space Rd (d 2, 3),
described by a Boolean expression of polynomial inequalities of the form p(x) > 0
or p(x)

_
0 with integer coecients. Each object is specified as either an obstacle,

which has no freedom of motion, or a movable object, the possible motions of which
correspond to the Euclidean group of rigid transformations. The complexity of a
kinematic scene is the length of this description with the integers coded in binary if
not further specified.

With this definition, the classical motion-planning problem can be stated as fol-
lows: given a kinematic scene and the initial and final placements of the objects, find
a motion connecting these placements or decide that no such motion exists.

A standard formalism for specifying positions and motions is based on the no-
tions configuration space and free space. By configuration space CS, we denote the
topological space which is spanned by all of the parameters that uniquely determine
the positions of the movable objects. The subspace consisting of the physically legal
configurations is called the free space FS of the kinematic scene. We define the legal
configurations to be those in which the transformed objects, considered as point sets
in Rd, have a pairwise-empty intersection. An allowed motion in a scene corresponds
to a path in its free space, i.e., a continuous function w [0, 1] - FS. For motion

Received by the editors January 26, 1993; accepted for publication (in revised form) Febru-
ary 14, 1995. This research was supported by a Graduiertenkolleg-fellowship of the Deutsche
Forschungsgemeinschaft.

Fachbereich 14 Informatik, Universitt des Saarlandes, Postfach 151150, 66041 Saarbriicken,
Germany (sellen@cs.uni-sb.de).

1231

1232 J. SELLEN

planning, we are only interested in the connected (short for "path-connected") com-
ponent of the free space of a given scene S that contains an initial configuration Co,
and we shall further denote this subspace by FSco (S).

General solutions to the motion-planning problem are based on the fact that the
free space can be described as a semialgebraic subset of a k-dimensional Euclidean
space, where k is proportional to the total number of the degrees of freedom (i.e.,
summarized over all independently movable objects). By decomposing the free space
into connected cells and interpreting these cells as nodes of an adjacency graph, mo-
tion planning can be reduced to a simple path search in a graph. Using Collins’s
algorithm of cylindrical algebraic cell decomposition, Schwartz and Sharir developed
an algorithm whose running time is doubly exponential in dimension k [1, 2]. This
was improved by Canny, who proposed a single exponential algorithm based on a
retraction technique [3]. In [4], Canny showed that the motion-planning problem can
be solved in polynomial space.

These algorithms seem to be worst-case optimal since there are kinematic scenes
of complexity n with k movable objects whose free space consists of nk connected
components. It should be noted that nk also forms an upper bound for the com-
plexity of the free space: combinatorial arguments show that the number of all faces
comprising the boundary of the free space is at most n high [5].

In fact, the decision problem for motion planning involving arbitrarily many de-
grees of freedom can be shown to be PSPACE-hard for even very restricted subclasses
of the problem.

Reif showed that motion planning is PSPACE-hard if we restrict our considera-
tions to the motion of one object consisting of many linked parts in a three-dimensional
tunnel system [6]. Hopcroft, Joseph, and Whitesides investigated planar linkages as a
simple model for robots, i.e., systems of rods whose endpoints are connected by joints
or attached to the plane. Using the classical result that any multivariate polynomial
p(xl,... ,x,) can be "represented" by a planar linkage, they showed that it is possi-
ble to construct for any space-bounded Turing machine T a planar linkage capable
of simulating T [7]. Searching for a moving system whose geometry is as simple as
possible but for which motion planning is still intractable, Hopcroft, Schwartz, and
Sharir proved that motion planning for multiple independent rectangular boxes sliding
inside a rectangular box is PSPACE-hard [8]. However, the slightly easier problem
of moving many discs inside a planar polygonal world could only be proven to be
strongly NP-hard [9].

In this paper, we present a general framework for performing sound and trans-
parent translations of known problems in information processing to motion planning,
which will provide us with exponential lower bounds for some geometrical problems
related to motion planning as well as for planning problems in extended models in-
volving physical side conditions.

This framework is based on the construction of mechanisms that are able to
process information in the context of motion planning. Planar kinematic scenes that
consist of polygonal objects with purely translational freedom of motion turn out to be
powerful enough to provide us with most of the necessary tools, in 2, we construct
scenes for elementary tasks such as storage of information, Boolean operations, or
arithmetic on real numbers and show how these "basic mechanisms" can be combined
to obtain "devices" for more complicated tasks, e.g., binary counters.

The generality of this framework and the clarity of reductions follows from the
close relationship to circuit design. Nevertheless, we do not build "mechanical com-

LOWER BOUNDS FOR GEOMETRICAL AND PHYSICAL PROBLEMS 1233

puters" as Zuse did in the first half of this century. To express information processing
as motion planning, the existence of some motion has to correspond to some condi-

tion but we do not consider static states or acting forces to generate these motions
deterministically.

In 3, we prove exponential lower bounds for some kinematic problems in the
field of motion planning. These problems also possess interesting geometrical inter-
pretations. We show that the problem of deciding whether a quantified query for
allowed configurations has a positive or negative answer is EXPTIME-hard and that
the problem of deciding if a given mechanism A can always avoid a collision with an-
other given mechanism B is EXPSPACE-hard. The proof of the first result is based
on the fact that a restricted arithmetic on real numbers can be simulated by motion
planning.

In practical applications, motions usually have to fulfill criteria other than simply
being free of collisions. Since such restrictions seem to add a new quality to the prob-
lem, the robotics community pays increasing attention to problems involving physical
side conditions. These problems belong to the general framework of nonholonomic
motion planning. In [I0], Fortune and Wilfong describe an algorithm for planning mo-
tions such that the corresponding path in free space is continuously differentiable and
of bounded curvature (see also Jacobs and Canny [II]). In [12], motions are required
to be time optimal and to have bounded velocity and acceleration ("kinodynamic mo-
tion planning"). For both cases, only exponential, exact solutions are known, though
the hardness is still open. However, the problem of finding a shortest path between
two points in a three-dimensional polygonal environment is already NP-hard [13]. A
survey of nonholonomic motion planning can be found in [14].

In 4, we examine the fact that motions consume energy and that some motions
may be more expensive in this sense than others (e.g., due to friction). We use the
notion dynamic scene for a kinematic scene in which a cost function is associated with
the possible motions of each object depending on its contact situation. To obtain a
sound definition of the input of our problems, we shall further assume that the cost
functions are given implicitly by assigning integer friction coefficients to the sides of
the objects. The interesting problem here is to find motions with minimal cost or to
decide if there exists a motion that stays under a given cost limit. For these problems,
we prove exponential lower bounds, if we allow that some motions are forbidden or
cost nothing, we even get undecidability. (This was first discovered by Reif; see [6].)
Undecidability is also obtained for the similar problem of deciding if there exists a
specific motion in a kinematic scene during which not more than a given constant
number of objects is moved simultaneously.

These results follow from a simulation of Turing machines with unbounded or
exponentially bounded tape by motion planning in dynamic scenes. The inferences
of this simulation technique are of interest from both a complexity-theoretic and a
practical point of view. A translation of the dynamic scenes underlying the simulation
into the formalism of configuration space provides us with a geometrical interpretation
of Turing computability. At the same time, we obtain a geometrical model in which
a variety of physical problems can be expressed.

Although the lower bounds that we obtain are valid only for problem instances
that involve arbitrarily many degrees of freedom, our work should cast some light
on the common structure and complexity of physical and geometrical problems and
should provide a framework for further research.

1234 J. SELLEN

’1

direction changer

la

symbol: la: l I,,a:?l

FIG. 1. A variable cell. The position of the vertical rod at the left corresponds to the value of
the variable a. By moving this rod up, the horizontal rod is pulled to the left, and the vertical rod
in the middle, which represents 1- a, is pushed downward.

2. Information processing by planar mechanisms. In this section, we con-
struct tools for processing information in planar kinematic scenes. We show how
information can be coded, stored, and transported and explore which operations can
be realized.

Our constructions are illustrated by Figures 1-9. The filled boxes correspond
to obstacles. All other objects are movable. For clarity, rigid connections between
rods are sometimes marked by fat points. We recall that the sides of our objects
may be "closed" or "open" depending on whether they are described by an inequality
p(x) > 0 or p(x) >_ O. Although this is not marked in the figures, we make use of both
possibilities and leave it to the reader to complete the drafts.

2.1. Coding of information. To represent logical and numerical information,
we code a number a E [0, 1] as the vertical position of a rod whose freedom of motion
is restricted by obstacles to an interval of length 1 in the vertical direction. The logical
values true and false correspond to the values 1 and 0.

For processing purposes, it is useful to have a second rod attached to the first
representing the inverse value 1- a and, to obtain symmetry, a third rod again
representing a. Thus we get a small mechanism whose configuration corresponds
to the value of a variable a and which we shall denote as variable cell, symbolized
by a box with label a (see Figure 1). The coupling of the three rods is realized
by subassemblies transforming vertical movements to horizontal movements and vice
versa. These subassemblies constitute a basic element of our constructions, and we
shall denote them as direction changers.

2.2. Transportation of information. In order to perform operations on vari-
ables, we need the possibility of transporting the actual value of a variable from any
place in the plane to any other place. Figure 2 shows how this can be achieved by
a mechanism that forces equality between the values of two arbitrarily positioned
variable cells a and a: the cells are connected by a sequence of rods and direction
changers. Analogous to circuit design, we denote such sequences as wires, but we
remark that they consist of movable rods carrying information by their position.

In order to obtain planar constructions, we need the possibility of crossing wires.
This can be achieved by exploiting the fact that in planar scenes, objects have two

LOWER BOUNDS FOR GEOMETRICAL AND PHYSICAL PROBLEMS 1235

II

transportation "wires"

crossing mechanism

Fie,. 2. Wires and crossings. If, in the crossing mechanism, b is increased, then the two
left boxes are pulled upward, and simultaneously the two right boxes are pushed downward (and
analogously for variable a, whose cells are rotated by 90).

CLOCK

AND-gate c a A b NOT-gate b g

FIG. 3. Mechanisms that realize the Boolean operations NOT and AND. In the AND-gate, the
position of P shown corresponds to CLOCK 1.

degrees of translational freedom and thus can carry two independent information
values at the same time. Figure 2 shows how two horizontal wires that represent a
and 1 -a can be crossed with two vertical wires that represent b and 1 -b. This is
done by four boxes that carry both informations: the horizontal positions of the boxes
are uniquely determined by the value of a and the vertical positions by the value of b.
Changes in the value of variable a (resp., b) affect only the horizontal (resp., vertical)
positions of the boxes and thus leave the value of variable b (resp., a) unchanged.

2.3. Logical operations. Planar kinematic scenes are capable of evaluating ar-
bitrary Boolean expressions in the sense that, given an expression b(xl,... ,xn), there

1236 J. SELLEN

FIG. 4. A binary memory cell. If the comb is in its leftmost position, corresponding to DH 1,
the value of a is fixed at either 0 or 1.

is a scene with variable cells for Xl,. ;;On and z in which some specified motion forces
the value of z to be b(xl,..., xn) if x1,..., xn carry fixed logical values. We obtain
this by constructing mechanical gates, shown in Figure 3, for the Boolean operations
NOT and AND.

The negation a b can be achieved by connecting a rod coding a with a rod
coding 1- b. To realize c := a A b, we need a clock signal, i.e., a motion of an
additional object that forces c to be a A b. The position of this object, a vertically
movable "plunger" P, is further denoted as CLOCK.

To check the correctness of the construction in Figure 3, let us assume that the
plunger is in its upmost position, corresponding to CLOCK 1. The arrows over the
rods that code c are connected to the rods that code a and b and may press the rods
that code c downward. If a 1 and b 1, then these arrows impose no restriction
on the value of c, but the small box B must be in a middle position, forcing c to be
1. If a 0 or b 0, then the box B can be on the left or right side of the "tub" T
and hence does not affect c, but at least one of the arrows forces c to be 0.

We need the CLOCK since the values of a and b can not be changed while the
plunger stays in its upmost position. Only if the plunger is in its downmost position,
corresponding to CLOCK 0, can the variables a and b be "adjusted" arbitrarily.

2.4. Storage and copying of information. The constructions of the previ-
ous subsections show that combinational logic circuits can be simulated by motion-
planning problems in kinematic scenes. However, to simulate sequential circuits, we
still have to introduce the possibility of storing information.

Figure 4 shows how a memory cell that is able to store the logical values 0 and
1 can be realized. We again use a clock signal, denoted as DATA HOLD (DH), to
force the cell to keep its information. The value of DH corresponds to the position
of a horizontally movable "comb" that can hold a rod of a variable cell in a position
that codes 0 or 1.

It is possible to construct cells of polynomial complexity that are able to store
a single exponential number of different values. Nevertheless, the upper bound on
the combinatorial complexity of free space shows that storing a doubly exponential
amount of information cannot be achieved in the model of kinematic scenes.

We are now able to store information. To process information as in sequential
circuits, we still need to realize loops or feedbacks. We need the possibility of copying
information, i.e., forcing equality between the values of two variable cells according
to some clock signal.

A possible realization of such a copy operation is shown in Figure 5. By moving
two rods between the rods that code a / 1-a and b / l-b, the values of variables a and
b are coupled. The two rods are connected in the horizontal direction such that their

LOWER BOUNDS FOR GEOMETRICAL AND PHYSICAL PROBLEMS 1237

a and b are independent a and b are coupled
(a b)

COPY
signal

FIG. 5. A copy mechanism. The COPY signal determines the horizontal position of three parts
which can be vertically shifted independently of each other.

relative position is constant but such that they are free to slide independently from
each other in the vertical direction. Their absolute horizontal position is determined
by the value of the clock, which we shall further denote as the COPY signal.

2.5. Sequential circuits and control sequences. The constructions of the
previous subsections provide us with most of the tools that are necessary to simulate
sequential circuits. The only problem that remains to be solved is the generation of
adequate sequences of clock signals.

We demonstrate the construction of a scene simulating a sequential circuit with
the example of a binary counter. The mechanism is illustrated in Figure 6 and consists
of (i) two chains of binary memory cells for storing the numbers a and b according
to the DH signals DHa and DHD, (ii) a logic circuit that forces b to be a + 1 if the
CLOCK signal is set to 1, and (iii) a chain of copy mechanisms that force a and b to
be equal if the COPY signal is set to 1. Counting can then be forced by cyclically
repeating the listed signal sequence.

Figure 7 shows how a cyclic repetition of a signal sequence can be generated. A
box can be moved cyclically inside a "ring" that consists of eight rectangular "cham-
bers." Each chamber can be individually forced to be empty ("closed") by pressing
a plunger inside. To achieve the situation where only two chambers are open at the
same time, there are mechanisms connecting the plungers which, if one chamber is
open, force all other chambers except the two neighboring ones to be closed. Each
chamber corresponds to a row in the signal table: the plunger for opening and clos-
ing chamber is connected with the signal wires of the signals that are registered in
row as 1 such that these signals are set to 1 by opening the chamber. By moving
circularly inside the ring, the box thus generates a cyclical repetition of the signal
sequence. (Since two chambers may be open at the same time, the "active" signals of
the two corresponding rows may be forced to be 1 simultaneously, but this does not
affect the simulation process for the chosen signal table.)

We conclude that planar kinematic scenes are capable of simulating arbitrary
sequential circuits in the context of motion planning. Particularly, we can simulate
PSPACE-bounded Turing machines by realizing the tape and state as chains of binary
memory cells. Since the construction of the adequate kinematic scene can obviously
be performed in polynomial time, we obtain a new proof of the PSPACE-hardness of

1238 J. SELLEN

COPY

al - 6.) -l_.i i I biniry ncrement

! !!_HbIII

iI
3 i
4 o
5 o
6 1
z 1
8 1

0 1 0
0 1 1
0 1 1
0 o 0
0 o 0

FIG. 6. A binary counter. Counting is forced by cyclically repeating the given signal sequence.

6 7:8

4 3:2

row #2 :
FIG. 7. A mechanism for producing a cyclical repetition of a given signal sequence. The dashed

lines represent the mechanisms connected to the plungers that open or close the chambers. (Only
the mechanisms connected to plungers 1 and 2 are indicated.)

LOWER BOUNDS FOR GEOMETRICAL AND PHYSICAL PROBLEMS 1239

1

b 1-b

II
t 1 a l_--- -__ 1- a

a

multiplication
-]- -with constants b 1 b

b:=c.a addition c := a + b

FIG. 8. Mechanisms that realize the arithmetic operations multiplication with constants and
addition.

the classical motion-planning problem.
The reader should note that it is only possible to simulate symmetric Turing

machines. Since motions can always be reversed (in our construction, the "direction"
of the cyclical signal sequence can always change), the operations of the simulated
machines can also be carried out in reverse order. This is captured by the notion of
symmetric Turing machines and does not affect our complexity results [15].

2.6. Arithmetic on real numbers. Although we are able to code real numbers,
we introduced only mechanisms for dealing with logical values. In this subsection, we
construct kinematic scenes that are able to perform arithmetic operations, providing
us with the possibility of describing problems in the theory of real numbers with
motion-planning problems.

In Figure 8, mechanisms that realize the operations of multiplication with con-
stants (b := c. a) and addition (c := a + b) are shown. Multiplication with constants
can be achieved by using specially designed direction changers: the slope in the notch
of the changer corresponds to the constant c. The mechanism for the addition of the
two numbers a and b is based on our mechanism for realizing crossings. We again
cross the wires that carry the values of a / 1- a and b / 1- b by four boxes. The box
whose horizontal position corresponds to a and whose vertical position corresponds to
b (i.e., box G) contains a notch in which a rod that codes the result c grips. This rod
is pulled horizontally to the left both if the wire for a is moved to the left (i.e., a is
increased) and if the wire for b is moved upward (i.e., b is increased). The position of
this rod thus corresponds to the value of the addition result. Obviously, subtraction
can also be realized by this mechanism if we render the notch of G.

The free spaces of kinematic scenes that consist of polygonal objects with only
translational freedom of motion are multidimensional polyhedra. Thus it is not pos-
sible to realize "nonlinear" operations like multiplication of two real numbers by such
scenes. However, we remark without proof that multiplication can be realized by
planar linkages and thus by scenes in three-dimensional space that consist of objects
with rotational degrees of freedom [7, 16].

1240 J. SELLEN

comparison mechanism a (x < c)?

FIc. 9. A mechanism that realizes the comparison a := (x < c)?.

To combine the capabilities for dealing with logical and real values, e.g., for
evaluating Boolean expressions of polynomial inequalities, we must be able to perform
comparisons with costants. Figure 9 shows a clocked mechanism that realizes the
comparison a "= (x <: c)?. If cell x carries a fixed real value from the domain [0, 1],
then the value of cell a is forced to be 1 if x < c and 0 if x :> c by moving the
object that corresponds to the CLOCK signal into the position for CLOCK 1.
The adjustment of a is forced by boxes L and R, whose shape is determined by the
constant c. If CLOCK = 1 and x :> c, then box L must be in the left area of tub
TL, which forces a to be 0. If x <: c, then 1 x > 1 c and box R must be in the
left area of tub TR, which forces a to be 1. The CLOCK is again needed to have the
possibility of readjusting x.

3. Exponential lower bounds for kinematic problems. In this section, we
present two decision problems within the model of kinematic scenes for which we can
prove exponential lower bounds using the constructions of the previous section.

The first problem concerns the avoidability of collisions between two given mech-
anisms A and B. For any possible motion of B (the "attacker") decide if there exists a
simultaneous motion of A (the "defender") such that both mechanisms do not collide.
A practical application is to decide whether the motions of two given autonomous
robot systems can always be coordinated such that one system can perform all its
tasks in the presence of the other. We formulate the problem more geometrically as
a path-lifting problem in the configuration space of a kinematic scene.

PROBLEM 1 (collision-avoidability problem (CAP)). Given a planar kinematic
scene S that consists of two disjoint subscenes SA and SB (i.e., the object set of S
is the disjoint union of the object sets of SA and SB) and an initial configuration
C0 E FS(S), decide if, for any path w in the free space FS(S/) that starts at ColsB,
there exists a path w’ in FS(S) that starts at Co whose projection to FS(SB) is equal
to w.

We shall prove that this problem cannot be solved in polynomial time or space

LOWER BOUNDS FOR GEOMETRICAL AND PHYSICAL PROBLEMS 1241

evaluation of transition

DH’

COPY scene SA

SIGSEQ- scene SB

FIG. 10. Assembly of a scene for the CAP, Control signals are indicated by dashed lines.

by reducing to it the following problem Lrex, which is known to be EXPSPACE-hard

Given a regular expression r with exponentiation (exponents are coded in binary),
decide if the generated language L(r) is equal to X*, where X denotes the alphabet.
(An example is L((alb3)2) {aa,abbb,bbba,bbbbbb}.)

THEOREM 3.1. The CAP is EXPSPACE-hard.
Proof (Lrex <: CAP). For any given regular expression r with exponentiation, we

construct in polynomial time a kinematic scene S consisting of two subscenes SA and
SB such that SA simulates an automaton that accepts L(r) and SB produces arbitrary
input words for SA. The structure of S is drafted in Figure 10.

Step 1: Construction of an automaton .4 that accepts L(r). The number of states
of a finite automaton accepting L(r) may grow exponentially in the length of r and
even double exponentially if we require the automaton to be deterministic. However,
we can construct a nondeterministic automaton of polynomial size that accepts L(r)
by providing the state set with a finite memory that consists of counters, one for each
exponent. We obtain an automaton with state set Q Z x C1 x x Cm, where Z
denotes a usual finite state set and Ci {0, 1,..., Hi} the domain of the ith counter.
The only operations that are carried out on the counter values are the increments
ci++, the resets ci := 0 and ci := Hi, and the comparisons ci = Hi? and ci Hi?.

This automaton can be described by a transition graph whose nodes correspond
to the states of Z and each of whose edges are labeled with an input symbol (possibly
e) or with input e and one of the allowed counter actions. The transition graph can
be obtained from a given regular expression r by recursively applying the rules shown
in Figure 11. The resulting graph representing A has a description of size polynomial
in the length of r.

Additionally, we require that jt has the following properties:
(i) There exists a special final state Frev which has a transition to each state of

4 for each input symbol (including e) but which cannot be reached from any other
state.

(ii) There are e-transitions from each state of 4 to itself.
(iii) There exists a bound c(r) that is polynomial in the size of r such that the

following holds: if there exists a sequence of e-transitions from a state Z1 to a state
Z2, then Z2 can be reached from Z1 by <: c(r) e-transitions.

1242 J. SELLEN

FI(. 11. A recursive construction technique for transition graphs of automata with counters.
For each occurrence of an exponent in the underlying regular expression, a new counter must be
introduced. Initially, all counters are set to O. After a successful test cr n, the counter cr has to
be reset to O. (This is omitted in the figure.)

To obtain property (iii), we may render the construction of the automaton for
r r in Figure 11 as follows: if E L(rl) (which can be decided in polynomial
time), then we add an C-transition from S to Z1, during which the counter c is set
to n. This allows to "exit" an e-loop by a constant (i.e., independent on n) number
of transitions. (This property holds for the other construction elements by default.)

Step 2: Construction of a scene SA that simulates A. By using additional inputs to
code the possible nondeterministic choices of A, it is possible to build a combinational
logic circuit with O(log(IZ[.n.. "nm)) inputs and outputs which "evaluates" the
transition diagram of A and whose size is polynomial in the size of A. This circuit
can be extended to a sequential logic circuit with binary registers for storing the state
(z, c,..., c,) of A and with external inputs for the next input symbol x E X 2 {}
and the actual choice such that .4 is simulated step by step according to the chosen
inputs when the circuit is clocked.

Using the constructions of the previous section, we can transform this circuit to
a kinematic scene SA which is able to simulate the work of A if a specific sequence of
DH, COPY, DH, and CLOCK is provided.

Nondeterminism can be captured by imposing no restriction on the value of the
input that codes the choice of A. We provide this input with a chain of binary memory
cells to store its value such that it can be adjusted arbitrarily when the adequate DH
signal is set to 0.

Step 3: Construction of a scene SB that produces arbitrary inputs for SA. The
scene SB is assembled in three parts:

(i) a chain of binary memory cells for storing the value of the actual input x;
(ii) a mechanism SIGSEQ, similar to the mechanism in Figure 7, which produces

a cyclical signal sequence that forces SA to simulate the working of ,4;
(iii) a mechanism TEST which can be forced to test at any time if the actual

state z of SA is a final state and which allows SA to return to its initial configuration
after this test process.

In order to simulate the work of ,4, we have to ensure that SA can make "ar-
bitrary" C-transitions between two "real" inputs generated by SB. To achieve this,
SIGSEQ produces a sequence of c(r) + 1 + c(r) repetitions of the signal sequence that

LOWER BOUNDS FOR GEOMETRICAL AND PHYSICAL PROBLEMS 1243

is necessary to simulate a single transition. For the first c(r) transitions, the input x
is forced to code . For the next transition, the input x may be arbitrary (i.e., the
value of x is not restricted). For the final c(r) transitions, the input x is again forced
to code .

in order to test if z is a final state, we simultaneously have to test if z contains
an actual state (i.e., the test can only be performed if we are at the end of a clock
sequence with DH 1). If z is an actual state but is not final, then there will be a
collision during the test. In the last phase of the test, SA is allowed to return to its
initial configuration, e.g., by "decoupling" the DH signal from SIGSEQ with the help
of a copy mechanism.

The scene SB can produce any input w Xl’"Xn of arbitrary length and can
simultaneously force SA by the generated signal sequence to simulate some computa-
tion of the nondeterministic automaton A on w. By the TEST mechanism, we can
ask if the simulated computation accepts w. If L(r) X*, then, given any motion
of SB containing a test, there always exists a motion of SA such that SA does not
collide with SB during the test. (SA has to simulate an accepting computation of A
for the input word generated by SB before the test is performed.)

On the other hand, if there is a word w (L(r) and we force SA to simulate
A, then we get a collision by producing w as input and then performing the test,
regardless of which nondeterministic computation is chosen by SA.

We also have to take care of motions of SB which do not generate a valid compu-
tation of the automaton jr. The only way to produce such "irregular" motions is by
reversing the clock sequence. By the construction of the automaton, however, we can
always get to the final state Frev by a reversed transition and then stay there. Thus
SA can avoid a collision during a test after any irregular motion of SB.

Finally, SA can avoid a collision with SB for any given (i.e., predefined) motion
of SB if and only if Lrex X*. This completes the proof. [:]

Since the TEST mechanism resets scene SA to an initial state after testing, this
proof also shows that the following problem is EXPSPACE-hard: decide if SA can
avoid the collision with one recursively predefined infinite motion of SB.

The second problem that we investigate in this section concerns quantified queries
on allowed configurations and can be stated as follows.

PROBLEM 2 (quantified query problem (QQP)). Given a kinematic scene S with
configuration space CS(S) c_ Rk, initial configuration Co E FS(S), and quantifiers
Q E {3, V}, 1 <_ <_ k, decide if the formula

(1) e e e FSco(S)

is true.
This problem is similar to the EXPTIME-hard problem of deciding if a given

formula in the theory of the real numbers (R, +,., =, <, 0, 1) is true. However, in the
QQP, we are restricted to formulas that describe the free space of some kinematic
scene. Further, we require that the given formula must be satisfied by values that
belong to a specific connected component of free space.

Our goal is to obtain a reduction of the decision problem in the theory of the real
numbers to the QQP by constructing for any given formula a scene that evaluates this
formula. By the planar mechanisms introduced in the previous section, we cannot
realize the arithmetic operation of multiplication, but the decision problem in the
theory of the reals (R, +,=, <, 0, 1) without multiplication is already known to be
EXPTIME-hard [17]. We thus base our considerations on this theory and denote the

1244 J. SELLEN

evaluation of arithmetic expressions

CL(

FIG. 12. A scene for evaluating expressions in the theory of real numbers.
generating small numbers by squaring is illustrated on the left.

)CK

The method of

corresponding satisfiability problem of quantified formulas as TH(R,+). To model
this problem in the context of kinematic scenes, we have to solve the following: in our
constructions, we can represent only real numbers in the interval [0, 1], or at least in
a bounded interval, since all objects have a bounded size. Here we can use the fact
that there exists a general decision algorithm for the satisfiability problem considered
which is based on the fact that it is sufficient to test the correctness of the formula for
a finite subset of some domain D [-22c, 22c], where n corresponds to the length
of the formula and c denotes a fixed constant.

Thus we can confine our investigations to a bounded domain, but there still
remains the problem of how to code this domain. It is not possible to use mechanisms
of size 22 since this would lead to scenes with descriptions of exponential size. We
shall code the domain D by compressing it to [-1/2, 1/2] and then shift this interval
to [0, 1]. However, this leads to the problem of how to represent the numbers 0
and 1, i.e., the allowed coefficients in the input formulas, which then correspond to
} 1/2 and i 1/2 + 1/2.1/22. To obtain the small offset 1/22c, or, more
generally, to get a coding of the large domain D, we have to use multiplications and
thus planar linkages (i.e., arbitrary scenes with rotational degrees of freedom). We
build a mechanism that squares a given number x E [0, 1] cn times, specified in a
configuration that corresponds to x 1 (i.e., with a polynomial description). Then
we have access to the number 1/22n in the context of a motion-planning problem by
requiring x to move to a position that codes 1/2 (see Figure 12). By multiplying the
result with 1/2 and then adding 1/2, we can construct a mechanism that generates
the number 1 1/2 + 1/2.1/22 if some clock signal is set to 1.

Because of the necessity of multiplications to code the domain D, we can prove
the following theorem only for arbitrary kinematic scenes with rotational degrees of
freedom.

THEOREM 3.2. The QQP is EXPTIME-hard.

LOWER BOUNDS FOR GEOMETRICAL AND PHYSICAL PROBLEMS 1245

Proof (TH(R,+) <_ QQP). For any given formula F’ of length n in the theory of
(R, +, =,<, 0, 1), we construct a kinematic scene S with an initial configuration Co
such that formula (1) holds if and only if the given formula is true.

Without loss of generality, we can assume that formula F is given in prenex
normal form F’ Qx.. .Q,xr (xl,... ,x), where E’ denotes a Boolean
expression with linear inequalities as atoms.

By the tools presented in the previous section, it is easy to construct a scene S
with rn variable cells that code x (1/21+2Cn)x + 1/2,.. .,Xm) (1/21+2c)xm+1/2’
which evaluates E to a logical variable a if a CLOCK signal is set to 1 (see Figure
12).

The atomic inequalities in E can be written as additions and subtractions of
variables and the number 1, followed by a comparison with 0. Thus we need the value
i only as a constant which we can add to or substract from a variable. For each
occurrence of 1 in E, scene S contains a mechanism which generates as adequate
input if the CLOCK signal is set to 1. Since we are interested in values that satisfy
the expression E, we fix the evaluation result a in the position that codes the logical
value 1.

Scene S and some initial configuration Co with CLOCK 0 can be constructed
in polynomial time. We assume (a) that the parameters Xl,...,xk that span the
configuration space begin with the positions of the rods used to code x,..
and (b) that the last parameter xk corresponds to the value of the CLOCK. The
quantifiers QI,..., Qm in formula (1) are defined by Q1 1,..., Qm Qm, Qm+l
,...,Q_ , Q =v.

We define E(x,... ,xk) to be the formula Q,+x,+... Qkxk (x,... ,xk)
FSco(S). Then (1) can be written as Qxz... Q,x," E(x,...,xk).

Since EAssume the expression E is true for specific values of x,..., x, can be
evaluated to 1, there exists a motion in S starting at the initial configuration during
which first the objects that code ,...,x are set to the corresponding values and
then all other objects are positioned such that the CLOCK can switch from 0 to 1.
Thus the expression E is also true for the corresponding values (i.e., the same values
respective to the linear transformation of the domain).

If, on the other hand, E is true for specific values of x,...,Xm, then there
exists a motion in S during which E is evaluated to 1. Thus E is also true for the
corresponding values.

Since all values in [0, 1] can be adjusted in S respective to the given initial config-
uration, we get that (1) is true if and only if F is true. (Recall that the satisfiability
of F is determined by its satisfiability in D.) This completes the reduction.

We remark that the CAP and QQP are both problems that concern classes of
motions or configurations. Exponential lower bounds for problems that concern the
existence of single motions seem to be impossible to prove within the framework of
kinematic scenes. Coding computations of exponentially time-bounded Turing ma-
chines by motions requires the possibility of distinguishing between double exponen-
tially many configurations. However, this is impossible in a free space of roughly
single exponential combinatorial complexity.

In the next section, we investigate extended models of scenes that involve physical
constraints, in which we have the possibility of procesing more information than in
kinematic scenes, and return to the classical existence problem of motions.

1246 J. SELLEN

FIG. 13. A memory cell in the dynamic model.

4. Motion planning under physical constraints.

4.1. Undecidability results. We first investigate motion planning in the model
of dynamic scenes for the idealized case where motions may be forbidden (i.e., have
infinite costs) if specific sides of two objects are sliding along each other tangentially
during this motion. According to the model of dynamic scenes introduced, we assume
that this effect occurs due to friction and code it in the input by marking adequate
sides of the objects with the symbol "x". We consider tangential movements of two
objects along touching sides as illegal if both sides concerned are marked with

The essential difference between this model and the model of kinematic scenes is
that we now have the possibility of fixing objects in arbitrarily many positions and
thus storing an infinite amount of information in the position of one object. Figure
13 shows a memory cell that is able to store any real number x E [0, 1] by setting
the value of a DH signal to 1. The storage state is established by "pressing" a side
of a triangle against the rod of a variable cell x, where the position of this triangle
corresponds to the value of DH. (The touching sides of the triangle and of the rod are
marked with "c").

Since the constraints considered concern only the existence of motions, the allowed
configurations of a dynamic scene are the same as the allowed configurations of the
underlying kinematic scene. Thus motion planning in this model cannot be expressed
as a simple path search in some semialgebraic subspace of the Euclidean space. In fact,
the dynamic motion-planning problem as stated below is undecidable since it opens
the possibility of processing an infinite amount of information and thus simulating
arbitrary Turing machines with infinite tape.

PROBLEM 3 (dynamic motion-planning problem (DMPP)). Given a dynamic
scene S with forbidden movements and initial and final configurations Ci and CI,
decide if there exists an allowed motion that connects these configurations.

THEOREM 4.1. The DMPP is undecidable.

Proof (simulation of arbitrary Turing machines). We show that we can construct
a dynamic scene S for any given, deterministic Turing machine M and an initial
configuration Ci E FS(S) for any input w of M such that there exists a motion in S
connecting Ci with some final configuration Cf if and only if M accepts w.

We assume that M has only one tape and an alphabet with p symbols, including
the blank. Obviously, M can be simulated by a push-down automaton with two stacks,
one that corresponds to the part of the tape to the left of the actual position of the
head and one that corresponds to the part below and to the right of the head. The
actions of M, especially movements of the head, can be expressed by stack operations.
We interpret the contents of these stacks as p-adic numbers x O.xlx2x3... and
y O.yly2y3... in [0, 1], as shown in Figure 14, stored in adequate memory cells. The
actions of the Turing machine M can now be realized by the logical and arithmetic
operations that we introduced in 2.

LOWER BOUNDS FOR GEOMETRICAL AND PHYSICAL PROBLEMS 1247

tape head

stack 2 stack 1

O.yyy3 O.xlxx3

FIG. 14. Coding of the tape of a Turing machine by real numbers.

COP

L DH-- transition
valuation

CLOCK

-J DH

FIG. 15. Assembly of a scene for simulating arbitrary Turing machines. The cells labeled with
x, y, x, and y denote memory cells for real values; z and z can be stored in chains of binary
memory cells.

The transition table of M with binary coded inputs and outputs can be "evalu-
ated" by a combinational logic circuit and thus by a kinematic scene. Since the actual
state can be stored in a chain of binary memory cells, it remains only to obtain a bi-
nary representation of the actual input symbol xl from x, to write a new symbol x
given by a binary representation to x, and then to simulate the movement of the head.
In order to get access to xl, we can use our comparison mechanism to simultaneously
test for each integer 0

_
_< p- 1 if i/p

_
x < (i + 1)/p and calculate a binary

representation of x from the results. In the opposite direction, the construction of
the real number 0.x from a binary representation of x can trivially be attained by
additions and multiplications with constants. The substitution of x by x is done
by adding 0.x -0.x to x. To realize a movement of the head to the right, we have
to "pop" x from x and to "push" it to y. This translates to x := (x- O.x).p and
y ((l/p). y)/ O.x. Movements to the left also require analysis of y by comparisons
in order to calculate a logical representation of y.

The simulation principle is shown in Figure 15. We need three memory elements
x, y, and z for the actual configuration of M and three elements xt, yt, and z to
store the transition result until it is copied to the actual configuration. The whole
mechanism is controlled by the signals DH, COPY, DH, and CLOCK, which are
generated analogously to the case of the binary counter (see Figures 6 and 7).

We remark that motions in the constructed scene need not correspond to regular
computations of M since transitions of M can also be carried out in reverse order.
Nevertheless, there exists a motion from a given initial configuration that corresponds

1248 J. SELLEN

tCOPY, tCOPY2

FIG. 16. A memory cell for storing the real value x in the context of passive motion planning.

to an input w to some final configuration that corresponds to the (without loss of
generality, unique) accepting state of M if and only if M accepts w. D

The essential fact that makes this proof work is that we can fix objects in arbitrary
positions, achieved by restricting the set of allowed motions. Dynamic scenes are a
powerful tool for defining such restrictions, and there are other practical problems in
which we have weaker possibilities of defining restrictions on motions but in which we
nevertheless get a similar situation. We introduce one such problem, which we call
passive motion planning, and show that this problem is also undecidable.

In the standard formulation of motion planning, we assume that the objects can
move independently on their own, as if by a magic hand. However, in practical
applications, the objects often have to be moved by an external robot system that
is able to move only a bounded number of objects at the same time. We thus allow
only motions during which not more than a given number m of objects are moved
simultaneously. Further idealized by considering only translational movements in one
direction and translated into the formalism of configuration space, we define passive
motion planning as follows.

PROBLEM 4 (passive motion-planning problem (PMPP)). Given a kinematic
scene S, initial and final configurations Ci and Cf, and an integer m, decide if there
exists a path in FS(S) C_ Rk that connects Ci with Cf which consists of a finite num-
ber of straight line segments, where each segment is orthogonal to at least k- m of
the k coordinate axes of Rk.

THEOREM 4.2. The PMPP is undecidable.

Proof. Passive motion planning allows us to fix the contents of a variable cell
according to a DH signal by connecting the cell to rn other variable cells via m copy
mechanisms (see Figure 16). Since we must be able to move at most rn objects at the
same time to establish the connection, we force all copy mechanisms to get to their
connecting position by setting a DH signal to 1, but we do not rigidly connect them
to this signal.

Given an arbitrary Turing machine M and an input w, we first construct a dy-
namic scene S that is able to simulate M, as in the proof of Theorem 4.1. Let m
be the number of movable objects in S. We substitute the memory cells for real-
valued variables by the mechanisms described above with m rn. The input for the
PMPP consists of the resulting kinematic scene S, an initial configuration C that
corresponds to w, a final configuration Cy that corresponds to the accepting state of
M, and the bound m--mI.

Since any two configurations in FSc(S’) that can be connected by some finite

LOWER BOUNDS FOR GEOMETRICAL AND PHYSICAL PROBLEMS 1249

motion can also be connected by a motion that consists of a finite sequence of transla-
tions of the m movable objects, the restrictions that are imposed on allowed motions
by passive motion planning only affect the memory cells in S. These are forced to
store information by setting the DH signals to I. Thus the allowed motions in S and
S are essentially the same.

In this subsection, we have investigated motion-planning problems involving con-
straints by which motions could be forbidden. In the next subsection, we weaken this
restriction by assigning costs to motions such that we only have the possibility of
making some motions more expensive than others.

4.2. Exponential lower bounds. In this subsection, we investigate arbitrary
dynamic scenes in which finite costs are implicitly defined for motions by assigning
integers, denoted as friction coefficients, to the sides of the objects. We do not need
to specify a sound physical model of how to define friction. (In such a model, we
would also have to deal with forces or masses.) We shall need only the fact that some
motions can be made expensive in comparison to others. The goal. in dynamic motion
planning is to find a motion which stays under a given cost limit.

If we allow that some motions cost nothing (i.e., consume no energy), we have a
situation that is symmetric to the idealization that some motions have infinite costs.
To translate a given problem that involves infinite cost to an equivalent problem that
involves cost 0, we only have to assign to all motions with infinite cost (i.e., forbidden
motions) some finite cost and to all other motions cost 0. The existence of an allowed
motion then corresponds to the existence of a motion with cost 0, making it possible
to carry the undecidability results of the previous subsection over to this problem.

We thus require that during any motion, some sides tangentially slide along each
other. For the case of planar scenes, this can be achieved by assuming that all objects
are sliding on some ground floor. For the sake of completeness, we define the cost of
a path (resp., motion) as follows: if two sides with friction coefficients a and b slide
along each other during parts of the motion and if denotes the Euclidean length of
the relative movement of the two objects involved, then this pair of sides causes the
cost a. b. I. The cost of the entire path results from summarizing these costs.

PROBLEM 5 (cheapest motion-planning problem (CMPP)). Given a dynamic
scene S with friction coefficients E N such that any motion of positive length has
some cost > O, initial and final configurations C and Cf, and a cost limit m N,
decide if there exists a motion with cost < m that connects these configurations.

THEOREM 4.3. The CMPP is EXPTIME-hard if the friction.coeJficients are
coded by mantissa and exponent.

Proof. Based on the construction introduced in the proof of Theorem 4.1, we
build dynamic scenes that are able to simulate exponentially time-bounded Turing
machines in the context of cheapest motion planning. Since we cannot fix objects like
in this proof, we lose the capability of storing arbitrary information. However we still
keep the possibility of coding a finite amount of information which depends not only
on the underlying kinematic scene but also on the friction coefficients and the cost
limit m.

Assume that we are given a c2n time-bounded, deterministic Turing machine M
and an input string w of length n. Let S be the dynamic scene constructed for M
in the proof of Theorem 4.1, and let C and Cf be the initial and final configurations
that correspond to the initial state of M with input w and the accepting state of M.

We first assign the friction coefficient 1 to all object sides of S with the exception
of those sides that are marked with "". Then, if there exists an allowed motion in S

1250 J. SELLEN

that connects Ci and Cf, there also exists an adequate motion in the resulting scene
with cost cc2n, where c is a constant only depending on S (or M, respectively).
We set the cost limit to n cc2n and define S by substituting the "" marks by
the friction coefficient cf mp2c2n where p denotes the size of the alphabet.

The cost limit has been chosen such that if M accepts w, there exists a motion
in S that connects Ci and Cy with cost n. It remains to show that there exists no
such motion if M rejects w. In this case, there exists no allowed motion in S that
connects Ci with , though the underlying kinematic scenes are the same. Thus a
connecting motion in S must include some movements which are forbidden in St, i.e.,
movements of the rods of the memory cells that code the tape while their DH signal
is I. However, these movements are expensive in S, and in order to stay under the
given limit m, such a movement cannot change the position of a rod by a distance of
more than /c2 lip2c2 Hence the only "actions" which can be "performed" by
a connecting motion in S, in addition to what is possible by allowed motions in
correspond to changes of the tape at positions, which are more than 2c2n tape cells
away from the actual head position. These positions can never be reached during a
computation of M that is started with input v. (M uses at most c2n cells of the
tape!) Since the possible changes in the contents of a memory cell during a storage
state are so small that they do not affect the simulation process, we can translate a
motion in S that connects C and Cy with cost n to an accepting computation
of M (or, more strictly, of the symmetric Turing machine corresponding to M)--a
contradiction to the presupposition that M rejects w.

The size of the underlying kinematic scene does not depend on n. C, Cy, and
the cost limit n have a binary description of size polynomial in n, and the friction
coecients (especially cf) can be coded in a length polynomial in n by a number rep-
resentation using mantissa and exponent. The input of the CMPP can be computed
for a given M and w in time polynomial in n. This completes the proof.

In the proofs of Theorems 4.1-4.3, we used planar scenes consisting of polygonal
objects with purely translational freedom of motion. Thus the motion-planning prob-
lems considered correspond to path-search problems in multidimensional polyhedra,
specified by Boolean expressions of linear inequalities of size polynomial in the size of
the scenes.

The CMPP can be interpreted as the problem of finding a path with cost < rn in
a polyhedron in which specific cost functions are associated with the sides. We shall
focus on this aspect in the next subsection.

4.3. A geometrical formulation of Turing computability. In the proof of
Theorem 4.1, we introduced a technique for simulating Turing machines by dynamic
motion-planning problems. Translated into the formalism of configuration space, our
constructions also provide us with an interesting geometrical interpretation of the
notion of Turing computability.

We again consider dynamic scenes with forbidden motions, defined by marking
some sides in a kinematic scene with the friction coefficient oc. To capture the restric-
tions on motions in dynamic motion planning, we define the free space of a dynamic
scene as the free space FS(S) c_ Rk of the underlying kinematic scene S supplemented
by a function f: FS(S) - Power(Rk), which assigns to each point p E FS(S) a set of
vectors such that a path w: [0, 1] --, FS(S) corresponds to an allowed motion in the
dynamic scene if and only if the tangent vector at any point p E w([0, 1]) is in the set
f(p). Since f defines a structure on FS(S) which no legal path is allowed to "leave,"
we shall further denote the tuple (FS(S), f) as a structured space.

LOWER BOUNDS FOR GEOMETRICAL AND PHYSICAL PROBLEMS 1251

cture

vertical
structure

I\+/-

diagonal structure
horizontal structure

FIc. 17. A structured polyhedron. The polyhedron consists of four structured sides. For exam-
ple, the triangle on the right can be crossed only in the diagonal direction.

This notion provides us with a powerful tool for describing physical problems.
By allowing only vectors of specific lengths or directions as tangents of allowed
paths, problems involving constraints on object velocities or path curvature can
be represented. To plan "smooth motions" of a rectangular object (e.g., a car)
with translational and rotational freedom in some given planar environment, the al-
lowed tangent vectors at each point p (x, y, 0) of free space may be defined as
f(p) {(csin(0),cos(0),0’); E [a,b], 0’ E [-5,+5]} with given constants a, b,
and 5.

Compared to the general model, the structured spaces that occured in this section
constitute a very restricted subclass. The free space of a kinematic scene is a semi-
algebraic space which can be decomposed into disjoint, open, semiMgebraic cells,
where each cell is homeomorphic to the Euclidean space R" for some rn No [1].
In the special case of polygonal objects with purely translational freedom of motion,
the free space is a polyhedron and the cells can be triangulated into simplices. The
function f which defines the structure of the free space of the scenes constructed in
the proof of Theorem 4.1 is constant on each open simplex s of the triangulation, i.e.,
f(p) f(p’) Vp, p’ s. Since the constraints force tangent vectors to be zero only in
some coordinates, the value of f corresponds to some linear subspace, or hyperplane,
of the Euclidean space Rk. We refer to linearly structured polyhedra if the set of
allowed vectors f(p) for p s, where s is an open simplex of the polyhedron, is
defined as the space spanned by a given set of vectors.

Since the dynamic scenes constructed in the proof of Theorem 4.1 for given Turing
machines and input strings depend only on the transition functions, we can interpret
Turing machines as linearly structured polyhedra. The points of a linearly structured
polyhedron can thus be compared with machine configurations and the allowed paths
with computations.

Figure 17 provides us with some intuition about structured polyhedra. There are
situations such that there exist paths starting at a given initial configuration which
come arbitrarily close to a given final configuration, though there is no allowed path
of finite length connecting these configurations. The situation described corresponds
to a Turing machine which interprets the contents of its tape as the real number 1,
successively divides this number by 2, and thus approaches but never reaches 0.

We conclude with the following theorem, which provides an alternative, geomet-
rical definition of Turing computability.

THEOREM 4.4. A language L C_ {0, 1}* is Turing computable if and only if there
exist a linearly structured polyhedron P, an edge e C_ P, a linear function h that

1252 J. SELLEN

embeds {0, 1}* as binary number O.w in e, and a point q E P such that

w E L : 3 allowed path from h(w) to q in P.

Proof. The construction of dynamic scenes for arbitrary Turing machines shows
that a structured polyhedron P (together with e, h, and q) that satisfies condition
(2) exists if L is Turing computable.

The opposite direction--i.e., for any given P, e, h, and q, the language L that sat-
isfies (2) is Turing computable--follows from the fact that we can enumerate all points
of P that are reachable from a given point e. (The algorithm has to follow the struc-
ture of P inductively, simplex for simplex, by marking the already detected reachable
areas).

5. Future work. We think that the ideas which we developed in this paper are
interesting from both a complexity-theoretic and a physical point of view.

Because of the intuitive power of geometrical reasoning and also because of the
close relationship to physical problems, it seems to be a challenging subject of research
to develop a complexity theory based on the geometrical machine model introduced
in Theorem 4.4.

Interesting questions in this context are how known characteristics of Turing
machines (number of tapes, nondeterminism, etc.) are reflected in the geometrical
model and how characteristics of the geometrical model could help to classify problems
in complexity theory. We state the following concrete problems:

I. The number of tapes of a Turing machine corresponds to the number of
different structures on the simplices of P. Which restrictions on the possible structures
lead to interesting subclasses of the class of Turing-computable languages?

2. Can two structured polyhedra that accept the same language be transformed
to each other by some reasonable set of given transformation rules?

3. The dimension of the polyhedron that we get by taking the roundabout way
via dynamic scenes depends on the Turing machine J. Is it possible to find for each
structured polyhedron an "equivalent" three-dimensional polyhedron?

The latter of these problems is related to probably the most interesting question
in practice, namely, to detect the complexity of motion planning under constraints for
lower-dimensional problem instances, especially instances involving only one movable
object.

Acknowledgments. The author would like to thank Gfinter Hotz for his sup-
port, helpful discussions, and suggestions.

REFERENCES

[1] J. T. SCHWARTZ AND M. SHARIR, On the piano movers problem II: General techniques for
computing topological properties of real algebraic manifolds, Adv. Appl. Math., 4 (1983),
pp. 298-351.

[2] C.-K. YAP, Algorithmic Motion Planning, J. T. Schwartz and C.-K. Yap, eds., Algorithmic
and Geometric Aspects of Robotics 1, Lawrence Erlbaum Associates, Hillsdale, NJ, 1987,
pp. 95-143.

[3] J. CANNY, A new algebraic method for Robot motion planning and real geometry, in Proc. 28th
IEEE Symposium on Foundations of Computer Science, IEEE Computer Society Press,
Los Alamitos, CA, 1987, pp. 39-48.

[4] Some algebraic and geometric computations in PSPACE, in Proc. 20th ACM Sympo-
sium on the Theory of Computing, Association for Computing Machinery, New York, 1988,
pp. 460-467.

LOWER BOUNDS FOR GEOMETRICAL AND PHYSICAL PROBLEMS 1253

[5] M. SHARIP, Algorithmic motion planning in robotics, Technical Report 392, New York Univer-
sity, New York, 1988.

[6] J. REIF, Complexity of the mover’s problem and generalizations, in Proc. 20th IEEE Sympo-
sium on Foundations of Computer Science, IEEE Computer Society Press, Los Alamitos,
CA, 1979, pp. 421-427.

[7] J. E. HOPCROFT, D. A. JOSEPH, AND S. H. WHITESIDES, Movement problems for 2-dimensional
linkages, SIAM J. Comput., 13 (1984), pp. 610-629.

[8] J. E. HOPCIOFT, J. T. SCHWAPTZ, AND M. SHARIR, On the complexity of motion planning for
multiple independant objects: PSPA CE-hardness of the warehouseman’s problem, Internat.
J. Robotics Res., 3 (1984), pp. 76-88.

[9] P. SPIPAKIS AND C.-K. YAP, Strong NP-hardness of moving many discs, Inform. Process. Lett.,
(1s4), pp. -.

[10] S. FORTUNE AND G. WILFONG, Planning constrained motion, in Proc. 20th ACM Symposium
on the Theory of Computing, Association for Computing Machinery, New York, 1988,
pp. 445-459.

[11] P. JACOBS AND J. CANNY, Planning Smooth Paths for Mobile Robots, in Proc. IEEE Inter-
national Conference on Robotics and Automation, IEEE Computer Society Press, Los
Alamitos, CA, 1989, pp. 2--7.

[12] J. CANNY, A. REGE, AND J. IEIF, An exact algorithm for linodynamic planning in the plane,
in Proc. 6th Annual ACM Symposium on Computational Geometry, Association for Com-
puting Machinery, New York, 1990, pp. 271-280.

[13] J. CANNY AND J. REIF, New lower bound techniques for robot motion planning, 28th IEEE Sym-
posium on Foundations of Computer Science, IEEE Computer Society Press, Los Alamitos,
CA, 1988, pp. 306-318.

[14] J.-C. LATOMBE, Robot Motion Planning, Kluwer Academic Publishers, Norwell, MA, 1991.
[15] H. R. LEWIS AND C. H. PAPADIMITRIOU, Symmetric space-bounded computation, Theoret. Com-

put. Sci., 19 (1982), pp. 161-187.
[16] A. B. KEMPE, On a general method of describing plane curves of the nth degree by linkwork,

Proc. London Math. Soc., 7 (1876), pp. 213-216.
[17] J. E. HOPCPOFT AND D. ULLMAN, Introduction to Automata Theory, Languages and Compu-

tation, Addison-Wesley, Reading, MA, 1979.

SIAM J. COMPUT.
Vol. 25, No. 6, pp. 1254-1267, December 1996

1996 Society for Industrial end Applied Mathemetics
OO6

AVERAGE AND RANDOMIZED COMPLEXITY OF DISTRIBUTED
PROBLEMS*

NECHAMA ALLENBERG-NAVONYt, ALON ITAI, AND SHLOMO MORAN$

Abstract. Yao proved that in the decision-tree model, the average complexity of the best
deterministic algorithm is a lower bound on the complexity of randomized algorithms that solve the
same problem. Here it is shown that a similar result does not always hold in the common model of
distributed computation, the model in which all the processors run the same program (which may
depend on the processors’ input).

We therefore construct a new technique that together with Yao’s method enables us to show that
in many cases, a similar relationship does hold in the distributed model. This relationship enables
us to carry over known lower bounds on the complexity of deterministic computations to the realm
of randomized computations, thus obtaining new results.

The new technique can also be used for obtaining results concerning algorithms with bounded
error.

Key words, distributed computing, randomized algorithms, average complexity, message com-
plexity, bit complexity, lower bounds, Yao’s lemma

AMS subject classifications. 68Q22, 68Q25

1. Introduction. In 1977, Yao presented results relating the average determin-
istic complexity and the randomized complexity of the same problem in the decision-
tree model [9]. In particular, he introduced "Yao’s inequality", which states that the
average complexity of the best deterministic algorithm is a lower bound on the com-
plexity of randomized algorithms that solve the same problem. As Yao pointed out,
this inequality may be applied to derive lower bounds on the randomized complexity
from known lower bounds on the average complexity.

Yao’s lemma can be immediately applied to additional computational models.
For example, the parallel random-access machine (PRAM) model (see [5]). However,
the following example shows that Yao’s technique cannot be applied directly to the
common distributed model.

The counterexample. Consider computing the AND function on an asynchronous
ring. Every processor has its own private bit xi E {0, 1}. Every deterministic algo-
rithm for this problem has bit complexity t(n2) [2]. Moreover, Attiya et al. showed
that the worse case occurs for the input 1 (1, 1,..., 1) (i.e., every algorithm that is
correct for all inputs (xl,... ,xn) E {0, 1}n requires (n2) communication bits for
under the same schedule So). Consider the distribution P"

1, : 1,P(2) 0 otherwise.

Under this distribution, the worst case occurs with probability 1; hence the average
number of communication bits is also t(n).

However, by using a randomized algorithm to choose a leader (O(n log n) bits [7])
and then have the leader send a message that computes the cumulative AND, the
problem can be solved in O(n log n bits by a randomized algorithm.

Received by the editors July 22, 1993; accepted for publication (in revised form) February
14, 1995. Part of this work was conducted while the second and third authors visited AT&T Bell
Laboratories, Murray Hill, NJ 07974.

Computer Science Department, Hebrew University, Jerusalem 91904, Israel.
Computer Science Department, Technion-Israel Institute of Technology, Haifa 32000, Israel.

1254

COMPLEXITY OF DISTRIBUTED PROBLEMS 1255

Thus the upper bound on the complexity of randomized algorithms is strictly less
than the lower bound on the average cost of deterministic algorithms.

We cannot directly apply Yao’s inequality for two reasons:
1. There is a basic (though somewhat implicit) assumption underlying Yao’s

inequality. This assumption is that randomized algorithms can be represented as
a probability distribution over a set of deterministic algorithms. It turns out that
this assumption depends on the model of computation studied, and we will see that
this assumption does not hold for the common model of distributed algorithms, in
which all the processors run the same program. Thus this technique cannot be used
indiscriminately.

2. Even when the above assumption holds, we have to investigate the depen-
dency on the schedule.

We consider a new technique that enables us to extend Yao’s inequality to a very
widely considered case of distributed models--the case in which each processor is
guaranteed in advance to have a distinct private input (or, as is sometimes phrased
in the literature, each processor is given a unique id).

This result is achieved in two steps. First, we "encapsulate" the relevant parts of
Yao’s technique by restating the lemma to meet our needs. Using this formulation, it
is observed that Yao’s inequality is not valid for the distributed model. Then we add
a new technique to show that this inequality can be carried on to the model in which
the processors have distinct ids.

These new results enable us to carry over several known lower bounds, from
deterministic computations to randomized ones. Some of the lower bounds obtained
by our technique are new, while others had been known before. However, we are
able to extend the known lower bounds to more general settings, such as allowing
algorithms that may make mistakes (with small probability).

Note that a lower bound on the restricted problem when the processors are as-
sumed to have distinct ids also holds for the general problem. Thus the lower bounds
we obtain are satisfied in the more general setup.

Like Yao’s lemma and unlike most lower-bound proofs, our technique is indepen-
dent of the topology of the network and holds for many complexity measures and
different distributed models.

Yao has generalized his inequality to algorithms with bounded error. Using our
technique, we carry this result to the distributed model and show that in some cases,
the cost of distributed randomized algorithms with bounded error is bounded by the
cost of error-free distributed deterministic algorithms.

Independently, Bodlaender [3] proved a result similar to our Corollary 3.3 and
Theorem 4.1. However, there seems to be no direct way to extend his results to deal
with randomized algorithms that can make errors (even when the error probability is
0). Thus the lower bounds obtained by our methods are stronger in the sense that
they hold in more general settings.

2. Preliminaries.

2.1. Distributed systems. A distributed network of size n consists of a strongly
connected directed graph of n vertices. Each vertex corresponds to a processor, which
is our basic computing unit.

Every edge of the graph represents a directed communication channel. These
edges are the only means of communication between processors. We associate with
each channel an unbounded first-in first-out (FIFO) queue of pending messages.

1256 N. ALLENBERG-NAVONY, A. ITAI, AND S. MORAN

Each such processor has its own internal memory, program, program counter,
in-buffer, and out-ports. The in-buffer of the processor--not to be confused with the
queue of the edges--contains the messages that have arrived but have not yet been
processed by the processor. Each out-port corresponds to a distinct outgoing edge.
Since we are not concerned with computation time, we consider each processor as a
(possibly infinite) state machine represented by its transition table, In other words,
each configuration of the processor (memory content, program counter, step counter,
and buffer state) will be represented by a different state. (Since the step counter
strictly increases, a processor never returns to a previous state.)

Every step of the computation corresponds to a transition of the state of the
processor. A single transition of a processor consists of receiving (zero or more)
messages from some of its incoming channels (i.e., moving a message from the queue
of pending messages of the incoming edge to the in-buffer), removing messages from
its in-buffer, changing its state, and sending (zero or more) messages (i.e., placing
messages on queues of its outgoing channels). The new state depends on the previous
state and the message just received.

A distributed algorithm is the n-tuple of the state diagrams of the processors. The
distributed algorithm is uniform if all the processors have the same state diagram.
In this case, the processors are identical. We are interested in uniform distributed
algorithms. (Since the processors may differ with respect to the incoming and outgoing
degree of the corresponding nodes, we assume that all the processors have the same
number of out-ports. However, for vertex , only the first out_deg(v) ports correspond
to edges of the network. Any attempt to write to an unassigned port results in an
improper termination of the algorithm.)

Let X and Y be two sets, called the private input set and private output set,
respectively. In our distributed model, a processor’s actions may depend on its private
input x E X. In other words, each private input x corresponds to a different initial
state. We also assume that each processor vi has a write-once register, on which it
writes its priate output,

We require X to be a countable set. However, this restriction is not severe; it is
implied when each private input can be represented by a finite number of bits. (There
need not be a bound on the length of all the private inputs of the processors.)

The order by which the various processors are activated and the delays on the
channels are governed by the schedule. The validity and eificiency of distributed
algorithms often depend on the class of schedules allowed. We give below a definition
of an oblivious schedule class. However, our technique is also valid for other schedule
classes.

A schedule S (el, e2,...) is an infinite sequence of edges.
We now describe the ith step. Let ei (u, v) be the ith component of S, If there

are any pending messages in the queue of e, the first message is moved from the queue
of pending messages of ei to the in-buffer of v. Processor v is then enabled: it reads
and removes some of the messages from its in-buffer and makes a state transition.

Example 2.1. A possible execution of the schedule S (el,e, e4, es, es,...) as
applied to the following network. (See Figure I and Table 1.)

An execution is a sequence (1, .,...), where i (v, IN, OUT, s) such that
v is the processor enabled at step i, IN is the set of messages received by v at that
step, OUT is the set of messages v sent, and s is the new state of

Let us note that given a distributed deterministic algorithm A, an input E Xn,
and a schedule S, the execution is uniquely determined.

COMPLEXITY OF DISTRIBUTED PROBLEMS 1257

el

FIG. I. The network after executing the fourth step.

TABLE

IS Vertex] el e2 1 e3 e4 e5

ele3 v2Vl
e4 Vl

e5 vo

e5 vo

_ ,
rnl m2
rnl m3 rn4

ml, m5 m4
m5 rn3

legend

Initially, all buffers are empty.
Vl sends messages ml,rn2.

v2 receives rn2, sends m3, m4.
Vl receives m3, sends m5.
vo receives m4,

sends no messages.
vo receives and

sends no messages.

Our formulation does not require special wakeup messages since processors may
be enabled even when none of their incoming edges contain any messages.

2.2. Distributed tasks. A distributed task for n processors is defined as a re-
lation T on Xn yn. For example, the task of finding the maximum is the relation
{((x0,... ,Xn-1), (y,... ,y)) y max=0{x}}. Let XT C_ Xn be the set of inputs
for which there exists an output E yn such that (, 7) E T.

Let $ be an arbitrary schedule class. A distributed algorithm A is correct for
input 2 XT and schedule S $ if in the execution of A on 2 according to S, all
processors terminate and the output satisfies (2,) T. A distributed algorithm A
solves a distributed task T if A is correct for every input 2 XT and schedule S E 8.

Correctness depends on the task T, the set of private inputs XT, and the schedule
class 8. Sometimes, restricting the set XT drastically changes its complexity. A
difficult task might become trivial by severely restricting the inputs. For example, if
T is leader election (only one private output is 1 and all the rest are 0), then the task
is trivial if XT is restricted to contain only tuples which have exactly one component
with the value 1 and all the rest with 0. The algorithm that writes its private input
on its private output without any communication is correct. However, if XT contains
private inputs for which all components are equal, the task becomes impossible [1].

A cost function is a mapping from the set of all executions to the natural num-
bers. Given a distributed algorithm A, an input 2 XT, and a schedule S $, let
cost(A, 2, S) denote the cost of the corresponding execution.

We will mainly consider communication costs: message complexity--the number
of messages sent; and bit complexity--the total number of bits sent by all the proces-
sors during the execution. However, our discussion is valid for other cost measures as

1258 N. ALLENBERG-NAVONY, A. ITAI, AND S. MORAN

well.

2.3. Average cost of deterministic algorithms. Let T be a distributed task
and P be a probability distribution over the input set XT. The average cost of a
deterministic algorithm A with respect to distribution P and a schedule S E $ is

distribution-cost(A, S, P) Ee(cost(A, , S), P) E P()" cost (A, 2", S).
YEXT

The average cost of algorithm A with respect to distribution P, distribution-cost(A, P),
is the average cost of the algorithm under the worst possible schedule. However, since
the maximum need not exist, we define it to be the supremum over $ of the average
cost of the deterministic algorithm A under schedule S E $.

The average cost of a task T with respect to distribution P and schedule S,
distribution-costT(S,P), is the cost of the best algorithm that solves T under S.
Again, since when the set of algorithms is infinite, there may not be a best algorithm,
it is defined to be the infimum of the average cost of A with respect to distribution
P taken over all uniform distributed algorithms A that solve T.

The average cost of a task T with respect to distribution P is the supremum of the
average cost of T with respect to distribution P and S taken over all schedules S $

and is denoted distribution-costT(P). Note that only algorithms that are correct with
respect to every schedule S ff $ are considered in this definition.

2.4. Randomized algorithms. While the transitions of a deterministic algo-
rithm depend solely on the current state and the messages received, the transitions of
a randomized algorithm may also depend on the outcome of coin tosses. To simplify
notation, we assume that the number of coin tosses performed by each processor of
a randomized program in an execution is exactly L. However, the validity of our
technique and results does not depend on this assumption.

The Boolean L-tuple pi of results of the L coin tosses of a processor vi in the
execution is called the private random input of v, and fi- (pl, Pn) { {0, 1 }L }n,
the n-tuple of private random inputs, is called the random input of the execution.

As is customary, we view each processor that runs a randomized algorithm as

having access to an additional input tape, called the random tape. In addition to the
input, each processor is given its own random tape. In each run, the random inputs are
chosen uniformly at random so that every one of the 2L n-tuples of random tapes has
the same probability. The "coin-toss" operation of processor v is viewed as accessing
the next bit of v’s random tape. A random algorithm can thus be "derandomized"
by fixing the content of the random tapes. We view this process as follows: for every
processor, we replace the random tape by a read-only work tape that contains a fixed
binary string (of length L). The operation of reading the next bit of the random tape
is replaced by the operation of reading the next bit of this constant tape.

For a randomized algorithm R and fi {{0, 1}L}, let R[p- denote the determin-
istic algorithm resulting from R when for every processor vi, the operation of reading
the next bit from the random tape is replaced by the operation of reading the next
bit of fi.

Let OUTPUT(R[p-,,S) denote the private outputs that result from applying
R[p- under schedule S and input . Then R is correct for T if for every E XT,
fi {{0, 1}L}, and S G $,

(:g, OUTPUT(R[p-, :g, S)) T.

COMPLEXITY OF DISTRIBUTED PROBLEMS 1259

In 3.3, the definition of correctness is weakened to include correctness with prob-
ability 1 and, in 5, to include algorithms that are correct only with probability a < 1.
First, we prove our results for the stronger correctness requirement given above and
then generalize it to the weaker definitions.

Since we assume that 0 and 1 are equally likely in each coin toss, each of the 2nL

random inputs has equal probability. Therefore, we define the expected randomized
cost of algorithm R for input under schedule S to be

randomized-cost(R, 2, S) Ez(cost(R[p-, , S)) 2-L

The randomized cost of algorithm R under schedule S is

E cost(R[p-],2, S).

randomized-cost(R, S) sup randomized-cost(R, , S),
,XT

and the randomized cost of algorithm R is

randomized-cost(R) sup randomized-cost(R, S).

Finally, let randomized-costT, the randomized cost of the task T under schedule class
$, be the infimum of randomized-cost(R) over all randomized algorithms R that solve
T. Note that in the definitions of this subsection, the expectations are taken over the
coin tosses with respect to the worst possible input 2 E XT.

2.5. Relationship to other models. Since we are interested in lower bounds,
we have allowed the computational capabilities of the processors to be as strong as
possible and restricted the schedule class. The schedule classes we allowed are limited
in that they allow only FIFO discipline on the edges and the reception of only one

message at a time. Since a lower bound exhibits the existence of a schedule on which
the algorithm behaves badly, this schedule belongs to any schedule class that contains
ours; therefore, the lower bound holds also for the more general classes.

However, lower bounds would not necessarily hold for more restricted schedule
classes. To prove a lower bound on randomized algorithms under such a schedule
class, one should explicitly restrict the discussion to the same schedule class.

Some examples of schedule classes are the following:
1. synchronous schedules: the processors are enabled in lock step;
2. fair schedules: the schedules in which in a every infinite execution each edge

occurs infinitely often.
The situation is reversed when considering the computational power of the proces-

sors. A lower bound that holds for processors with strong computational power also
holds for more restricted processors. Additional models can be simulated by restrict-
ing the class of allowable transition tables. For example, to model a message-driven
setup, it suffices that the state remains unchanged unless the in-buffer is nonempty.
In order to simulate wakeup messages, we allow a state transition from the initial
state even when the buffers are empty.

3. Yao’s lemma.

3.1. Restating Yao’s lemma. In this subsection, we restate Yao’s lemma to
fit our needs. For this, we need the following definition:

We may view a (uniform) randomized algorithm R as a mapping of each pair
(, S) of input and schedule to a probability distribution over the executions of R on

1260 N. ALLENBERG-NAVONY, A. ITAI, AND S. MORAN

input 2 under schedule S. A canonical representation ofR is a probability distribution
over a set of deterministic algorithms J[such that

(a) each algorithm A E 4 is uniform;
(b) for each input , each schedule S, and each execution , the probability that

R on input performs execution is equal to the probability that on the same input
and schedule S, an algorithm A chosen at random from 4 performs execution
We restate Yao’s lemma to include an appropriate consideration of the schedule

and an explicit stating of the assumption that a model must fulfill in order to make
the lemma valid.

LEMMA 3.1 (Yao). Let 8 be a schedule class, S q a schedule, T a distributed
task over the inputs XT C_ Xn, R a randomized algorithm that solves T, and j[a
canonical representation of R. Then for every probability distribution P over XT,
there is a deterministic algorithm A 4 such that

distribution-cost(A, S, P) _< randomized-cost(R,

3.2. Main results. The counterexample in 1 demonstrated that, in general,
Yao’s inequality need not hold. However, we now show that if we restrict ourselves to
componentwise-distinct inputs, Yao’s lemma can be extended to the distributed case.

First, let us examine the representation of random algorithms that is traditionally
used (for example in the PRAM model for implementing Yao’s inequality, sometimes
implicitly. Recall that for fi {[0, 1}L}n, R[p- is the deterministic algorithm which
results from R if in every processor vi, every coin-toss operation is replaced by reading
the next bit of pi. The traditional technique represents a random algorithm R by the
set

T {R[p- fi {{0, 1}L}"}
under the uniform distribution on {0, 1}Ln.

The problem of using 7 in our distributed model is that it does not consist only
of uniform algorithms since for nearly all fi (pl,..., Pn) G {{0, 1}L }n, j implies
that p - pj and therefore R[pi], the transition table of v, is different from that
of vj. Thus we cannot apply Yao’s lemma using this representation since the first
requirement of a canonical representation--that of uniformity--is violated.

THEOREM 3.2. Let 8 be a schedule class, S q, T a distributed task over an
input set XT C_ X consisting of only componentwise-distinct inputs, P a probability
distribution over XT, and R a randomized distributed algorithm that solves T. Then
there exists a deterministic algorithm D that solves T such that

distribution-cost(D, S, P) <_ randomized-cost(R, S) _< randomized-cost(R).

Proof. First, we show that for every randomized algorithm R, there exists
canonical representation

Let f be a bijection from X Iq to Iq. (For example, ifX][q, f(x,i)
+ i)(x + + 1) + i.)2
Let {0, 1} denote the set of all infinite sequences over {0, 1}). For each

{0, 1}, let Rf[cr] be the deterministic algorithm in which the state diagram of each
processor is identical to R’s, except for the following changes"

1. the string cr is a constant of the program of Rf
2. every read operation from the random tape is replaced by a read operation of

or, i.e., when in R a processor reads the ith bit from its random tape, in Rf[a], the
processor reads bit f(x, i) of a, where x is the private input of the processor.

COMPLEXITY OF DISTRIBUTED PROBLEMS 1261

Let

We now show that A with the uniform distribution on {0, 1} is a canonical repre-
sentation of R.

To show (a), for each r, Rf [r] is a uniform algorithm since all the processors have
the same state diagram. In the random algorithm, two processors may have acted
differently on the same inputs because their random tapes were different. However,
in Rf[a], there is no random tape--it was replaced by or. The sequence of bits of
cr considered by each processor is a function of the processor’s private input--not
its index. However, the private input is not part of the program. If, for example,
processor were given the private input of processor j, processor i would consider the
same bits previously considered by processor j, and thus its actions would be exactly
identical to those of processor j, i.e., both processors have the same state diagram,
i.e., the algorithm is uniform.

To show (b), fix the input (al,..., an) E XT and a schedule S. The execution
now depends only on the random inputs. We say that a coin toss fi E {{0, 1}L}n
implies execution e if e occurs when R is run with random input ft. Since each of the
2nL random sequences is equally likely, the probability of execution e is equal to the
number of tosses that imply e divided by 2c. Define an equivalence relation e on

{0, 1} such that g<r if for 1,...,L and j 1,...,n,

Tf(xy ,i 7f(x,i

Under the uniform distribution on {0, 1}, each of the equivalence classes has proba-
bility 2-nL.

For each input as above, we define a 1-1 correspondence between the equivalence
classes above and random inputs fi e {{0, 1}L}: a random input
corresponds to a if for 1,..., L and j 1,..., n, pj,i f(xj, i). If a belongs to an

equivalence class that corresponds to fi, then the execution of R [a] is equal to that
of R with random inputs ft. Given an equivalence class C C_ {0, 1}, the probability
of choosing a C is equal to 2-nL, and that is equal to the probability of choosing
any random input. In particular, it is equal to choosing the random input which
corresponds to C. Consequently, the probability of choosing an algorithm RI[a]
whose execution is e equals the probability that the execution of the randomized
algorithm R is e.

We still need to show that each algorithm R[a] 4 solves T. Since R is correct
for T, for every input and every schedule S E S, every execution of R on under
S produces a correct result. Since every execution of//[] corresponds to some
execution of R, we must have that every execution of Rf[a] must produce a correct
result; hence Rf[(] solves T.

We may now apply Lemma 3.1 to prove the theorem. [:]

As a corollary of Theorem 3.2, we have the following.
COROLLARY 3.3. Let T be a distributed task over an input set XT C_ X con-

sisting of only componentwise-distinct inputs, $ a schedule class, and P a probability
distribution over XT. Then for every S $,

distribution-costT(S, P) _< randomized-costT(S, P) _< randomized-costT.

Note that Corollary 3.3 can be used to obtain lower bounds on the random-
ized complexity of a distributed task even if its input set does not consist solely of

1262 N. ALLENBERG-NAVONY, A. ITAI, AND S. MORAN

componentwise-distinct inputs because a lower bound for a restricted set of inputs
implies a lower bound for a superset.

3.3. Randomized algorithms that are correct with probability 1. We
can generalize Theorem 3.2 and Corollary 3.3 to also hold for randomized algorithms
that are correct with probability 1 (i.e., for every (x,S), there is probability 0 that
the randomized algorithm errs). This can occur only if the number of coin tosses is
unbounded. Hence we abandon our methodological assumption that this number is
finite.

An additional effort is needed only to show that if 4 is our canonical representa-
tion of a randomized algorithm R that is correct with probability 1, then there exists
a canonical representation jt for R such that all A E Jt solve T. Since the number of
possible schedules might be uncountable, this last result is not immediate. However,
this result can be proved for all of the cost functions that we considered. We sketch
below the proof for the case where the cost function is the number of messages sent.

This result will follow from the next two lemmas. Lemma 3.4 implies that for every
randomized algorithm R that is correct with probability 1, there exists a randomized
algorithm R that is also correct with probability 1, has the same complexity, and,
for some finite M > 0, never sends more than M messages.

This implies that the complexity of a task cannot be affected by considering
algorithms that do not have a finite bound on the number of messages they send.
Thus, without loss of generality, such algorithms may be ignored.

LEMMA 3.4. Let R be a randomized algorithm that solves T with probability 1.
Then for every 5 > O, there is a randomized algorithm Re that solves T with probability
1 such that

(a) every execution of Re terminates after at most rt4(1-+-6-1) messages are sent,
and

(b) distribution-cost(Re) <_ (1 + 5)randomized-cost(R).
Proof (outline). For 2 E XT and I C_ {1,... ,n}, z (y,... ,y) is a partial

output if there exists yn for which (,) T, y Yi for G I and y] _1_ Y
otherwise. Let g be a function that maps every input and partial output to a
full output ’ such that (2, ’) G T and x and ’ agree on I. (If yx is not a partial
output of , i.e., there exists no such ’, then g(2,) is arbitrary.)

Given a randomized algorithm R and 5 > 0, Re is defined as follows. Every
processor vi simulates R until vi sends rta/5 messages and then, if vi did not terminate
the algorithm, it stops executing R and broadcasts its private input. Also, upon first
receiving a broadcast message, a processor stops its regular execution and broadcasts
its private input (and its private output if it had already been computed). Let I
consist of the processors which computed their private output before participating in
the broadcast. Upon receiving the broadcasts from all other processors, processor vi

(i I) computes ’- g(,) and outputs y.
To implement the broadcast, each time a processor gets new information, it sends

it to all its adjacent vertices. Thus each edge is traversed at most 2(n- 1) times, and
the message complexity is at most 2(n- 1)IE < na. (If the network contains parallel
edges between two vertices vi and vj, then each message from vi to vj is sent on only
one of these parallel edges.)

Since R is correct with probability 1, with probability 1, y is a partial solution,
and Re extends it to a full solution . Thus Re also solves T with probability 1.

The lemma follows since in every execution of Re, every processor sends at most

hal5 messages before switching to algorithm A. If, during an execution of Re, a

COMPLEXITY OF DISTRIBUTED PROBLEMS 1263

processor switched to algorithm A, then the number of messages sent by R during
that execution, m, was at least n3/5. (b) follows since the number of messages sent
by algorithm Az is at most

LEMMA 3.5. Let M > O. Let R be a randomized algorithm that solves T with
probability 1 and sends no more than M messages, and let A be a canonical represen-
tation of R. Then with probability 1, an algorithm A E .A solves T. Also, there exists
a canonical representation A of R such that every A A solves T.

Proof (sketch). The bound M on the number of messages allows us to assume
that the schedule class $ is countable.

For input and schedule S, let
under schedule S. Since for each and S, the probability that an algorithm chosen
at random from A errs is 0, for each (, S), the probability of 774,s is 0. Let
747 [.J,s 7742,s. Since both XT and $ are countable, the probability of choosing
an algorithm A 7474 is P(77) < 2,z P(77,s) 0 (a countable sum of
zeroes). Thus the probability that an algorithm chosen at random from A errs on
some for some schedule S is 0.

The canonical representation .A is obtained from jt by removing all the algorithms
of g77.

4. Applications. Like Yao’s original method, our results suggest the following
technique for proving lower bounds on the randomized complexity of distributed tasks
with componentwise-distinct inputs:

1. Find a probability distribution P over the set of componentwise-distinct
inputs, and find a schedule S for which a lower bound can be shown on

distribution-cost(T, S, P), the average (with respect to distribution P) cost of de-
terministic distributed algorithms that solve T under schedule S. (Note that this
lower bound has to hold only for deterministic algorithms that are correct for every
S $. This property is important for proving deterministic lower bounds.)

2. Apply Corollary 3.3 to conclude that this lower bound holds also for the
randomized complexity of the same task.

Our technique can sometimes be used even if we only have a lower bound on the
worst case. When there is a single componentwise-distinct input X for which
every deterministic algorithm satisfies the lower bound, choose a distribution P that
gives e probability (close to) 1 (and probability (almost) 0 to Xr- {2-}). (This
technique is used in Theorem 4.2 below.)

In 1988, Bodlaender [3] proved an ft(n log n) lower bound on the average message
complexity for finding the maximum id in an asynchronous ring of processors that
holds even if the ring is bidirectional and even if the ring size n is known to the
processors in advance, provided that the set of possible ids is at least 2na. The same
lower bound with different parameters was also published by P. Duris and Z. Galil [4]
in 1987.

Bodlaender’s proof satisfies both the requirements of 1"
(a) In Bodlaender’s task, the input is an n-tuple of id’s, i.e., the private inputs

are distinct.
(b) Bodlaender stated his lower bound for the class of asynchronous schedules.

However, in the proof, he showed a specific schedule on which this lower bound holds.
Thus we may apply Corollary 3.3 to Bodlaender’s result to show the following

lower bound.
THEOREM 4.1. Let T be the task of finding the mazimum id in a bidirectional

asynchronous ring of n processors, where there are at least 2n3 possible ids. Then the

1264 N. ALLENBERG-NAVONY, A. ITAI, AND S. MORAN

randomized message complexity of T is at least f(n log n). This lower bound holds
even if the ring size n is known to the processors in advance.

in 1985, Frederickson and Lynch [6] showed that the problem of finding the max-
imum id in a synchronous bidirectional ring of n processors has an ft(n log n) lower
bound on the worst-case message complexity when the algorithms are assumed to
use comparison only. Their proof constructs a permutation r of {1,...,n} such
that if the id of processor is r then every correct algorithm (which uses com-
parisons only) requires f(nlogn) messages. As in the counterexample to Yao’s
lemma, we construct a distribution P that gives probability i to the input r
and probability 0 to all other inputs. Frederickson and Lynch’s proof shows that
distribution-cost(T, S, P) gt(n log n) messages. Since the inputs are a permutation,
they are componentwise distinct. Hence we get the following theorem.

THEOREM 4.2. The problem offinding the maximum id in a synchronous bidirec-
tional ring of n processors has an f(n log n) lower bound on the randomized message
complexity when the algorithms are assumed to use comparison only.

Note that the last two lower bounds hold even if the randomized algorithms are
allowed to err with probability 0.

5. Bounded error. In his paper, Yao also presented an inequality for the prob-
abilistic complexities when a bounded error is allowed. With our technique, this
inequality can also be extended to the distributed model.

Let A be a deterministic distributed algorithm that solves task T, E XT, and
S E be a schedule. Define

1 OUTPUT(A,,)) ,
ERR(A, T, 2, S) 0 otherwise,

where OUTPUT(A, 2, S) is the output of A on input 2. under schedule S.
Let P be a probability distribution over XT and let 5 >_ 0. We overcome mea-

surability problems by using the assumption that XT is countable. A solves a task T
with error 5 under schedule S if the expected error satisfies

E (RR(A, T, P) ERR(A, T, S) <_ 5.
EXT

Let distribution-cost(S, P), the average cost of task T with error 5 with respect to
distribution P and schedule S, be the infimum of distribution-cost(A, S, P) taken over
all the deterministic algorithms A that solve T for schedule S with error 5.

Consider a randomized algorithm R. If we fix the input 2, then ERR(R[p, T, 2, S)
is a function of fi ({0, 1})n. Moreover, we show the following.

LEMMA 5.1. For every 2 XT, ERR(RIp-I, T, ., S) is a measurable function of fi
over({0,1})n.

Proof. Consider a vector of finite sequences T e ({0, 1}k)n. Let CONT(-) consist
of all the infinite continuations of -, i.e.,

CONT@) {or ({0, 1}) -i[j] cri[j],i= 1,...,n, j 1,...,k}.

Obviously, for every such 7, CONT(7) is measurable.
For 2. E XT, fi ({0, 1}w)n, let g(R, fi,,S) <_ oc denote the largest number of

random bits accessed by any processor running R with random tapes t7 and input
under schedule S. Let

HALT {fie ({0, 1}")n t(R, fi, :, S) k}.

COMPLEXITY OF DISTRIBUTED PROBLEMS 1265

if fi and fi E CONT(’) and t7 E HALTk, then
1. fi’ E HALTk, and. ERR([, T, ,) RR([’], T, ,)..... 7q} such that HALTThus there exists a finite set of sequences I {_1

reIk CONT(’J). Since HALTk is a finite union of measurable sets, HALT is
measurable.

Let CORRECTk C_ HALTk be the set of all sequences fi HALTk for which
R[is correct for (i.e., ERR(R[p-, T, , S) 0). ERR(R[p-, T, , S) is constant on
every .i E Ik. Let I c_ Ik consist of the sequences of Ik for which R is correct.
CORRECTk [.Jr i and is measurable since it is a finite union of a measurable
sets. CORRECT [-Jk>0 CORRECTk is also measurable.

ERR(RIp-I, T, , S) i-s a measurable function since 1 ERR(RIp-I, T, , S) is the
characteristic function of the measurable set CORRECT. [:]

Since ERR(R[p’,T,,S) is measurable, we may define its expectation
E(ERR(R[p-,T, 2, S)) over the coin tosses (fi ({0,1})n). A randomized dis-
tributed algorithm solves a task T with error 5 under schedule S if for every input
X

Ez(ERR(R[p-], T, , S) <_ .
A randomized algorithm R solves T with error 5 if for every S , R solves

T with error 5 under S. randomized-costbT(S), the randomized cost of task T with
error 5, is the infimum of randomized-costT(R[, S) taken over all the randomized
algorithms that solve T under schedule S with error 5.

Using Yao’s result concerning Monte Carlo algorithms and the same technique
that was used to prove Theorem 3.2, we obtain the following.

THEOREM 5.2. Let T be a distributed task over a countable input set XT Xn

consisting of only componentwise distinct inputs, S a schedule, and P a probability
distribution over XT. Then for every 0 <_ 5 <_ ,

ldistribution-cost5 (S, P) < randomized-cost(S).
2

Proof. Let R be a randomized algorithm that solves the task T within error
5 under schedule S. For every infinite binary sequence a {0, 1}, let Rf[a] be
the deterministic algorithm which results if processor j uses the f(xj, i)th bit of a

as the outcome of the ith coin toss. As before, {Rf[cr] a {0, 1}} is a canonical
representation and Ea(cost(Ri[a], , S)) E(cost(R[p-, , S)).

Since R solves T within error 5, for every 2 XT,

EtT({0,1})n (ERR(/[, T, ,,)) .
Given a distribution P on the inputs, the error probability of R][,

E(ERR(R[p"], T, , S), P) exr P()" ERR(R[, T, , S), is measurable since
it is an infinite sum of mesurable functions [8, Thm. 1.27, p. 22]. Its expectation
over ({0, 1})n satisfies

Ee({0,)) (E(ERR(R[, T, 2, S), P)) E(EZe({0,)) (ERR(R[p, T, 2, S), P))
E(E({o,))(ERR(Rf[a], T, , S), P))

(1) E(5) 5.

(The measurability of ERR(R[a], T, 2, S) over a {0, 1} is similar to Lemma 5.1.)

1266 N. ALLENBERG-NAVONY, A. ITAI, AND S. MORAN

Let C c_ {0, 1} denote the set of sequences for which E2(ERR(Rf[cr],T,,S)) <_
25. Since ERR(Rf[a],T,,S) is measurable, so is E(ERR(Rf[cr],T, 2, S))
}-eXT P()" ERR(Ry[a],T,,S) (a sum of measurable functions). Hence by [8,
Exercise 5, p. 32], C is measurable.

Equation (1) implies that P(C) . Hence there exists a sequence a* C such
that

distribution-cost(R [a*], S, P) 2randomized-cost(R, S).
Since a* C, E(ERR(Rf[a*],T,,S),P) 25. Thus if R has expected cost

randomized-cost(S), we have exhibited a deterministic algorithm R [a*] which
errs with probability at most 25 and its expected cost is at most 2randomized-
cost(R,

Another result by Yao connects the randomized cost with small error to the
average cost with no error. Combining our techniques with those of Yao, we can
extend these ideas to the distributed model.

THEOREM 5.3. Let T be a distributed task over a finite input set XT X
consisting only of componentwise distinct inputs, S a schedule, and P a probability
distribution over XT. Then for every 0 5 1,

(1 5)distribution-cost(S, P) randomized-cost/xl) (S)
randomized-cost/lXrl)

As an application, we can extend a result by ederickson and Lynch [6] concern-
ing deterministic worst-case complexity of synchronous algorithms.

COROLLARY 5.4. Let T be the task of electing a leader in a synchronous ring of
size n, t be a positive integer, and 0 < 5 < 1. If the set of inputs XT is a suciently
large finite set, then the expected number of messages required by any randomized
algorithm that solves T within t rounds with bounded error 5/XTI requires (n log n)
messages.

6. An open problem. We have shown that in the distributed model for every
schedule

distribution-costT(S, P) randomized-costT(S) randomized-costT,

provided the inputs are componentwise distinct.
Note that we can only state that for every schedule S, there exists a deterministic

algorithm A(S) such that distribution-cost(A(S), S,P) randomized-costT(S). It
remains an open question whether there exists a single deterministic algorithm for
which for all schedules S the inequality holds. In other words, while we have shown
that

distribution-costT(P) sup inf distribution-cost(A, S, P) randomized-costT,
s A

it remains open whether

inf sup distribution-cost(A, S, P) randomized-costT.
A S

For the special case where the system can be modeled by a single schedule (i.e.,
the set $ of schedules is a singleton), Corollary 3.3 indeed implies the last inequality.
This happens, for example, when modeling a synchronous system.

However, as we have seen in 4, our results are sufficient to show nontrivial optimal
lower bounds for randomized complexity even for the general asynchronous case.

COMPLEXITY OF DISTRIBUTED PROBLEMS 1267

Acknowledgments. It is a pleasure to thank A. Herzberg for his helpful advice
and S. Ben-David and A. Fiat for helpful discussions.

REFERENCES

[1] D. ANGLUIN, Local and global properties in networks of processes, in Proc. 12th ACM Symposium
on the Theory of Computing (STOC), Association for Computing Machinery, New York,
1980, pp. 82-93.

[2] g. ATTIA, M. SNIR, AND M. WARMUTH, Computing on the anonymous ring, in Proc. 4th An-
nual ACM Symposium on Principles of Distributed Computing (PODC), Association for
Computing Machinery, New York, 1985, pp. 196-203.

[3] H. L. BODLAENDER, New lower bound techniques for distributed leader finding and other prob-
lems on rings of processors, Theoret. Comput. Sci., 81 (1991), pp. 237-256.

[4] P. DURIS AND Z. GALIL, Two lower bounds in asynchronous distribute computation, in Proc.
28th IEEE Symposium on the Foundations of Computer Science (FOCS), IEEE Computer
Society Press, Los Alamitos, CA, 1987, pp. 326-330.

[5] F. E. FICH, F. MEYER AUF DER HEIDE, P. RAGDE, AND A. WIGDERSON, One, two,
three...infinity: Lower bounds for parallel computation, in Proc. 17th ACM Symposium
on the Theory of Computing (STOC), Association for CoInputing Machinery, New York,
1985, pp. 48-58.

[6] a. N. FREDERICKSON AND N. A. LYNCH, Electing a leader in a synchronous ring, J. Assoc.
Comput. Mach., 34 (1987), pp. 98-115.

[7] A. ITAI AND M. RODEH, Probabilistic methods for breaking symmetry in distributed networks,
Inform. and Comput., 88 (1990), pp. 60-87.

[8] W. RUDIN, Real and Complex Analysis, 3rd ed., McGraw-Hill, New York, 1966.
[9] A. C. YAO, Probabilistic computations: Towards a unified measure of complexity, in Proc. 18th

IEEE Symposium on the Foundations of Computer Science (FOCS), IEEE Computer Society
Press, Los Alamitos, CA, 1977, pp. 222-227.

SIAM J. COMPUT.
Vol. 25, No. 6, pp. 1268-1280, December 1996

() 1996 Society for Industrial and Applied Mathematics
OO7

LEARNING BEHAVIORS OF AUTOMATA FROM MULTIPLICITY
AND EQUIVALENCE QUERIES*

FRANCESCO BERGADANOi AND STEFANO VARRICCHIO$

Abstract. We consider the problem of identifying the behavior of an unknown automaton
with multiplicity in the field Q of rational numbers (Q-automaton) from multiplicity and equivalence
queries. We provide an algorithm which is polynomial in the size of the Q-automaton and in the max-
imum length of the given counterexamples. As a consequence, we have that Q-automata are probably
approximately correctly learnable (PAC-learnable) in polynomial time when multiplicity queries are
allowed. A corollary of this result is that regular languages are polynomially predictable using mem-
bership queries with respect to the representation of unambiguous nondeterministic automata. This
is important since there are unambiguous automata such that the equivalent deterministic automaton
has an exponentially larger number of states.

Key words. PAC-learning, exact ientification, learning from examples, learning from queries,
equivalence queries, multiplicity queries, membership queries, multiplicity automata, probabilistic
automata, unambiguous nondeterministic automata

AMS subject classifications. 68Q68, 68Q70, 68Q75, 68T05

1. Introduction. Learning automata from examples and from queries has been
extensively investigated in the past, and important results have been obtained re-
cently. Early on, it was noticed that the problem of exactly identifying a minimum
automaton consistent with given data is NP-complete [10]. Similar results may be
proved for regular expressions [1]. Even simply approximating the minimum con-
sistent deterministic finite automaton (DFA) problem is not feasible [14]. Gold [10]
proves that polynomial identification in the limit is still possible in the sense that an
inductive inference machine will take polynomial time when processing a new exam-

ple. However, this may seem unsatisfactory since the number of examples needed may
be arbitrarily large. A natural direction generally followed in machine learning (see
Chapter 2.3 in [6] and references therein) was to consider a learner who did not just
passively receive data but who was able to ask queries.

Some questions--called membership queries--may consist of asking an oracle
whether a particular string belongs to the target language. Angluin [2] proved that if
we start from a set of strings that lead to every reachable state in the target automa-
ton, a polynomial number of membership queries is sufficient for exact identification.
However, if such a set of strings is not available, even if we know the size n of the
target automaton, the number of queries needed is exponential in n.

Another possibility is found in equivalence queries: asking an oracle whether a

guess is correct and obtaining a counterexample if it is not. We shall also assume that
the counterexamples have a maximum length m. It may be shown [5] that there is
no polynomial-time algorithm to exactly identify automata from equivalence queries
only. However, there is a polynomial algorithm if both equivalence and membership
queries are used [3].

Received by the editors November 1, 1993; accepted for publication (in revised form) February
14, 1995.

Dimartimento di Informatica, Universit di Torino, 185 Corso Svizzera, 10149 Torino, Italy
(bergadandi.unito.it). The research of this author was supported by the European Union under IV
Framework ESPRIT, Long Term Research Project "ILP2" (contract 20237).

Dipartimento di Matematica Pura ed Applicata, Universit dell’Aquila, Via Vetoio, 67010
L’Aquila, Italy (varricch@univaq.it). The research of this author was partly supported by the Italian
Minister of Universities and by ESPRIT-EBRA project ASMICS (contract 6317).

1268

LEARNING BEHAVIORS OF AUTOMATA FROM QUERIES 1269

Equivalence and membership queries then seem to be a necessary requirement
for learning deterministic finite-state automata. It remains to be seen if stronger for-
malisms may be learned under the same framework. Following preliminary results
reported in [7], this paper gives a positive answer in the direction of behaviors of
nondeterministic finite-state automata, i.e., functions that assign to every string the
number of its accepting paths in a nondeterministic finite-state acceptor. Such func-
tions, as defined in the next section, will be described in the more general framework
of automata with multiplicity.

We introduce the notion of a multiplicity query. In the case of a nondetermin-
istic automaton, a multiplicity query returns the number of accepting paths for a
given string. We show that behaviors of automata with multiplicity may be identi-
fled in polynomial time with multiplicity and equivalence queries. This implies that
they are probably approximately correctly learnable (PAC-learnable) with multiplicity
queries. If we restrict the result to unambiguous nondeterministic automata, multi-
plicity queries must return either 0 or 1 and reduce to membership queries. As a
consequence of our main result, we may then PAC-learn with membership queries a
representation of a regular language L in polynomial time with respect to the size
of an unambiguous nondeterministic automaton that accepts L. This is an improve-
ment over the result of Angluin [3] because there are unambiguous automata such
that the equivalent DFA has an exponentially larger number of states [16]. However,
it must be noted that the learned representation of the regular language is not an
unambiguous nondeterministic automaton. Therefore, unambiguous nondeterminis-
tic finite automata (NFAs) are only shown to be PAC-predictable with membership
queries. Our main result also applies to probabilistic automata. In that case, the mul-
tiplicity of a given string represents the probability of accepting that string. Again,
our main result implies the PAC-predictability of probabilistic automata with mul-
tiplicity queries of this kind. This is an improvement over the results of Tzeng [17],
where stronger queries are needed, giving the probability of reaching a given state
with a given string.

2. Multiplicity automata. Automata with multiplicity, also called multiplic-
ity automata, are the most important generalizations of classical automata theory. In
recent years, their significant development has helped in solving old problems in au-
tomata theory. In [11], using multiplicity automata, the decidability of the equivalence
problem for deterministic multitape automata has been solved; in [18], a similar result
has been shown for unambiguous regular languages in a free partially commutative
monoid.

Let M be an NFA. We can consider the so-called behavior of M, which is the
map that associates with any word the number of its different accepting paths. More
generally, we can assign a multiplicity to the initial states, the final states, and the
edges of the automaton so that the corresponding behavior must take into account the
assigned multiplicities. In this way, we can construct a theory which is general enough
to contain classical and probabilistic automata as particular objects. Multiplicity
automata have been extensively studied in theoretical computer science, and we refer
to [8], [9], and [15]; here we recall some notation and definitions.

Let K be a field and A* be the free monoid over a finite alphabet A; we consider
the set KA* of all the applications S A* K. An element S E KA* will be called
a K-subset of A* or simply a K-set. Following the standard notation on K-sets, for
any S E K* and u A*, we will denote S(u) by (S, u). In what follows, we shall
consider (-sets, where (denotes the field of rational numbers.

1270 F. BERGADANO AND S. VARRICCHIO

We denote by nxn the set of all square n x n matrices with entries in Q. We
shall consider Qnxn to be equipped with the row-by-column product; the identity
matrix is denoted by Id. A map #" A* (@nxn is a morphism if #(e) Id and for
any w e A+, w ala2.. "an, a e A, we have it(w)= it(al)it(a2).., it(an). A Q-set
S E QA* is called recognizable or representable if there exists a positive integer n, A,
1’ E Qn and a morphism #" A* -, Q,xn such that for any w A*

(s,

where and - are to be considered row and column vectors, respectively. The triple
(A, it,-) is called a linear representation of S of dimension n or a Q-automaton for S.

A nondeterrninistic automaton is a 5-tuple M (A, Q, E,I, F), where A is the
input alphabet, Q is a finite set of states, E c_ Q x A x Q is a set of edges, and I, F C_ Q
are, respectively, the sets of the initial and final states. Let w ala2...an A*.
An accepting path for w is any sequence (pl,al,p2)(p2, a2,P3)’"(p,an,Pn+)
with pl I, Pn+ F and (p, a, p+) E E for 1 _< _< n. The language accepted
by M is the set L(M) of all the words which have at least one accepting path; M
is unambiguous if for any word w L(M), there exists only one accepting path for
w. We can associate with M a <}-set SM QA*, also called the behavior of M,
defined as follows: for any w A*, (SM, w) is the number of different paths which are
accepting for w. Let Q 1, 2,..., n and let A, - e Qn be the characteristic vectors,
respectively, of I and F; consider the morphism # A* -- <n, defined by #(a)j 1
if (i, a, j) E and #(a)ij 0 otherwise. Then we can easily prove (el. [9, p. 137])
that for any w A*

(S,) ().

In particular, SM is representable and, when M is unambiguous, SM corresponds to
the characteristic function of L(M).

In general, a linear representation (A, #, 7) of dimension n can be regarded as
an "automaton" whose set of states is Q {1, 2,... n}; initial and final states are
defined as Q-subsets of Q, while edges are a <-subset of Q x A x Q. Indeed, A
(resp. 7i) represents the multiplicity of as an initial state (resp. final state) and
#(a),j represents the multiplicity of the edge (i, a, j). Probabilistic automata are
particular Q-automata [13]. A probabilistic automaton P can be represented by
means of a linear representation (A it 7) with the following constraints: -n A 1i=1

nand j=it(a),j 1 for any a A and 6 {1,2,...,n}; moreover, 0 < A < 1,
7 6 {0, 1}, and 0 <_ it(a)i,j <_ 1 for any a E A and i,j {1,2,...,n}. InformallY, A
represents the probability of being an initial state, / is 1 iff is an accepting state,
and it(a),j represents the probability of arriving in state j, starting from state i, and
reading the input symbol a. Then the probability that P accepts when started with
the distribution probability A on Q and reading w is exactly Ait(w)7. Finally, we shall
need the following definitions.

DEFINITION 2.1. For any string u A* and a Q-set S, the Q-set Su is defined
by (Vw e A*)(S, w) (S, uw).

DEFINITION 2.2. For any set of strings E C_ A*,

S------E T iff (Vw 6 E)(S, w): (T, w).
S-- T stands for S ----A* T.

We shll use an oracle for answering multiplicity queries for any string w, i.e., for
providing the value of (S, w), where S is the trget Q-set.

LEARNING BEHAVIORS OF AUTOMATA FROM QUERIES 1271

3. Observation tables. Based on previous work by Angluin on deterministic
finite-state automata [3], we now introduce the concept of an observation table for a
Q-set S.

DEFINITION 3.1. Let S E (A*; an observation table is a triple 2/" (P, E,T),
where P and E are sets of strings, P is prefix-closed, E is suffix-closed, and T
(PLJPA)E - gives observed values of S, i.e., for all strings w E (P3PA)E, T(w)

Consequently, an observation table provides particular values for the target Q-set
S. Such values are obtained by means of multiplicity queries once the sets P and E
are fixed. In Angluin’s method for the exact identification of regular languages, the
set P corresponds to states in an accepting DFA and the table contains some of the
transitions. Here P determines a set {Slu E P} that will be useful in defining the
target Q-set S via linear dependencies. We then have the corresponding notions of
closed and consistent observation tables.

DEFINITION 3.2. An observation table (P, E,T) is closed iff Vu E P, Va E A,
there exists a coefficient a E Q for each v E P such that

(1) Sa ----E E aS.
vEP

DEFINITION 3.3. An observation table (P, E,T) is consistent iff for any choice

of coefficients/v E Q for each v E P,

E/S ----E 0 =V (Va E A) ESa =--E O.
vEP vEP

In Angluin’s work (see also [2]), a natural notion of completeness was defined for
P that required that all states in the target DFA have a representative in P. Here we
have an analogous notion that requires that {Slu E P} be sufficient to establish all
of the linear dependencies needed.

DEFINITION 3.4. P is a complete set of strings for S iff Vu E P, Va E A, there
exists a coefficient)v E Q for each v E P such that

=_

vEP

When a table (P, E, T) is consistent and P is complete, the linear dependencies
that are observed on E are valid for any string in A*, as proved in the following.

THEOREM 3.5. Let (P,E,T) be a consistent observation table, where P is a
complete set of strings for S; then

(4) E/S =--E 0 E/3vS =- O.
vP vP

Proof. We shall prove the theorem by induction on lYl by showing that for any
yEA*,

}2 o o.
vEP vEP

Base. y e and the thesis is trivially true.
Inductive step. Let y wb with b E A.

1272 F. BERGADANO AND S. VARRICCHIO

By using the completeness, of P a sufficient number of times, given v E P, we may
find coefficients A,v, u E P, such that

(6) & ,s.
uEP

Then for x e E,

vP vP vP uP

() z,(&,x)= (s, x),
uPvP uP

where u vAu,..
vP

By the inductive hypothesis, veP vSvw E 0; then, using (6),

vP uP uP

Again using the consistency of the table, we have

(s) s 0,
uP

and, using this in (7), veP vSwb E O.
This completes the proof of (5). The theorem then follows from the fact that,

since e E,

Consequently, the linear dependencies that show the gable is cloed are also valid
in A*.

CoaoaaY a.6. et (P, E,T) be consistent observation tble, where P is
complete set of strings for S; then for a A,

(10 s s s s.
vP vP

Pro@ Since P is complete, S evS for some v Q. Therefore, if
Su vvSv, then ve(- v)Sv. O. By Theorem a., ve(-
v)Sv 0, and

vP vP. he learning algorghm, As is explained in what follows, there are stages
in which the learning process builds a consistent and closed table. Here we only want
to show how from such a table (P, N, T), we can guess a Q-set M(P, E, T) by basing
its representation upon the existing linear dependencies:

Let P {1,..., k}, with 1 e.

LEARNING BEHAVIORS OF AUTOMATA FROM QUERIES 1273

For all a E A, compute (a) that satisfies

(11) Su,a =--E

Such a matrix exists because the table is closed. Moreover, the values of
can be computed by solving the system of linear equations (Sua, v) = j x,j(S,, v)
with v E E in the unknowns xi,j.

Let (1,0,...,0) and ((Sul,e), (Su,e),..., (Su,e)). The value of
(Su, e) is found in the table since uj P and e E E. Obviously, ft(a)u,,u is the value
at row and columnj of the matrix (a). Let t(ala2,..ar) ft(al)ft(a2)...ft(ar),
ai A. Define the constructed Q-set M with (M, w) t(w)/.

THEOREM 4.1. if P is a complete set of strings for S and (.P, E, T) is a closed
and consistent table, then M(P, E, T) S.

Proof. Again, let P {u,..., uk} with u e. Since the table is closed, for any
a e A Sua =--E j ft(a),S and by Corollary 3.6, Su,a - (a),Su, This
may be easily generalized to any string t in A by induction on Iti, we derive

f(t)u, Su. In fact let t = sb with b E A. By the induction hypothesis, we have

Sus =- k ft(S)u,uSu, which implies that Su,sa k (S)u,u Sua. On the other
hand, from Sua --- f(a),uSuj we derive Su =- ’. ft(s)u,,uft(a)u,uSu
j f(sa)u,,Su. Then

(12) t) (s,,,,,

Since u=e, we have

(S, t) = E(t)l, (s, e) (t)/= (M, t).
J

We are now left with three problems: (i) closing a table; (ii) making a table con-
sistent; (iii) making P complete. However, we will obtain completeness only indirectly
and will return to it later.

4.1. Closing a table. Given a table (P E,T) and u P, suppose that Su is
linearly independent of {Svlv P} with respect to E in the sense that there are no
coefficients Au,v such that Su -E EvP)u,vSv. In this case ua is added to P, and
the table is again checked for closure.

This procedure must terminate; more precisely, if the correct Q-set S is repre-
sentable with (S, x) A#(x),. where A, E Qn and # A* Qnn is a morphism,
then at most n strings can be added to P when closing the table.

In fact, it should be noted that when ua is added to P as indicated above, the
dimension of {Att(v)lv e P} as a subset of the vector space Qn is increased by one.
Otherwise, i#(ua) would be equal to veP vi#(v) for some coefficients v and

(Su, x) = (S, uax) = i#(ua)#(x) = EA#(v)#(x)/ E flv(Sv, x),

i.e., Sua would depend linearly on {S, lv e P}. Since the dimension of {.#(v)lv e P}
is at most n, we cannot close the table more than n times. The above discussion does
not depend on E.

1274 F. BERGADANO AND S. VARRICCHIO

4.2. Making tables consistent. Given a table (P, E, T) and a symbol a E A,
consider the systems of linear equations

vEP vEP

with/v as unknowns. Check if every solution of system (a) is also a solution of system
(b). In this case, the table is consistent. Otherwise, let/, v E P, be some solutions
of (a) that are not solutions of (b) and let x E such that -vEP/.(S., x) 0. Add
ax to E. A method for checking whether every solution of (a) is also a solution of (b)
is outlined in 4.4.

Suppose that S has a linear representation (A, #, 7) of dimension n; there cannot
be more than n such additions to E because every time a new string ax is added, the
dimension of {#(w)/Iw E} is increased by one. In fact, if #(ax)’7 EwEE
then

E (Sva, x) E

vEP wEE

wE vP

wE vP

i.e., ax would not have been added to E.

4.3. The algorithm. We may now describe the procedure for exactly identifying
from multiplicity queries and counterexamples.

T ,- ({e},{e},T), where
Repeat

make the table closed and consistent (P and E are extended and the en-
tries of T are filled in by multiplicity queries); while closing the table, the
hypothesized Q-set M is obtained;
ask for a counterexample t to M(P, E, T) by means of an equivalence query;
add t and its prefixes to P

until M is correct.

The main loop makes the table closed and consistent as described in 4.1 and 4.2
and then constructs a guess M which is based on the observed linear dependencies.
We shall now prove that if S has a linear representation (/k, #, 7) of dimension n, after
at most n equivalence queries, we will have a correct guess, i.e., M S. We need the
following result.

LEMMA 4.2. Let u P and t uA*, and suppose that for every x A* such
that t uxz, Sx depends linearly on {Svlv P}. Then for every prefix ux of t, after
the table has been made closed and consistent during the execution of the algorithm,
we have

(13)
vEP

LEARNING BEHAVIORS OF AUTOMATA FROM QUERIES 1275

where re" A* --, Qak is the morphism that corresponds to the observed linear depen-
dencies as computed in (11), which is obtained when closing the table.

Proof (by induction on Ixl).
Base. x and Su =--E -veP [t(e)u,vSv since/t(e) is the identity matrix.
Inductive step. Let x yb and assume that Suy =--E -veP [t(y),Sv.
Since uy is a prefix of t, Sy must depend linearly on (S, lv E P}, i.e.,

This along with the inductive hypothesis gives

(15) E(a (y),v)S ----E 0.
vP

Then, since the table is consistent,

(16) E(a f(y),)Sb =--E O, i.e., E avS,b =--E E f(Y),Svb.
vP vP vP

Using (14) again, we have

(17) Su =--E E [t(y)u,vSb.
vP

Since v E P, we may substitute Sb EweP (b)v,S, in the previous equation,
which yields

THEOREM 4.3. Let (S, t) : (M, t). Then there is a prefix to of t such that Sto is
linearly independent of {Slv P}.

Proof. If all prefixes to of t would make Sto depend linearly on {Slv P},
then, by setting u e in the previous lemma and because e E, (S, t) (St,)
Ep f(t),v(Sv, e) t(t). Then, however, (M, t) J(t)/would not be different
from (S, t). [:]

COROLLARY 4.4. If S has a linear representation of dimension n, then after at
most n iterations, the algorithm stops.

Proof. Again suppose that the correct Q-set S is representable with (S,x)
Att(x)y, where A, y Qn and tt A* -- Qnn. The algorithm will ask for a coun-
terexample t and will add t and all of its prefixes to P. By Theorem 4.3, at each
iteration, some prefix to of the counterexample t is such that Sto is linearly inde-
pendent of {Slu P}. However, (Sto,X) (S, fox) #(to)#(x)’y and for u P,
(S,x) (S, ux) A#(u)#(x)/. Consequently, the dimension of {A#(u)lu P}
is increased by one when to is added to P. In fact, if by way of contradiction,
i#(to) -epSA#(u) before t and its prefixes were added to P, then for all
x e A*, (Sto,X) Att(to)tt(x)/ EupSu)(u)(x), EupSu(Su,x), i.e.,
Sto would depend linearly on {Sulu P}. However, the dimension of {A#(u)lu E P}
cannot be larger than n. [:]

1276 F. BERGADANO AND S. VARRICCHIO

4.4. Complexity analysis. All we need to do is reorganize some of the previous
results and determine the complexity of computing the linear dependencies. Let n be
the dimension of a linear representation of S. We have the following:

The main loop in the algorithm is repeated at most n times (Corollary 4.4).
IEI _< (4.2).
For the cardinality of P, the discussion is slightly more involved. From the

discussions of 4.1 and 4.3, we see that every time either (i) a string is added to
P while closing the table or (ii) a counterexample is processed, the dimension of
{A#(v)lv E P} is increased by at least one. The worst case is when this always
happens with the counterexamples and the main loop in the algorithm is repeated
exactly n times, because the prefixes of the counterexamples also need to be added
to P. If m is the maximum length of a counterexample, then IP[_< nm.

For every a E A and for every u P, the table needs to be closed. This
amounts to solving at most knm systems of IEI equations in [PI unknowns--in the
worst case, n simultaneous equations in nm unknowns. This can be done with Gauss’s
method with complexity O(nam). Consequently, the complexity of closing the table
is O(kn4m2). We assume that the entries of the table are rational numbers of limited
size; otherwise, the basic arithmetic operations involved in solving the systems of
equations would be of arbitrary complexity. In general, it will be sufficient to require
the entries of the table to be polynomial in n.

Checking for consistency was described in 4.2 and requires the algorithm to
confront the two systems of equations

with/v as unknowns. The table is consistent if every solution of (a) is also a solution
of (b). This is the same as checking whether the IEI equations of system (b) do not
add additional constraints, i.e., if the corresponding vectors of coefficients depend
linearly on those of system (a). In the worst case, this operation requires checking
whether there exists a solution for n systems of nm equations in n unknowns with
complexity O(n4m). Since the operation must be performed for every a A, the
overall complexity of checking for consistency is O(kn4m). The reason why we have
at most n systems of nm equations in n unknowns is as follows. As explained above, in
the worst case, IEI n and IPI nm. Let P {ul,..., Unm} and E {el,..., en}.
Then system (a) is of the following type:

/1 (Su C1) -- -t- inm (Unm, el) 0

/1 (-Ul, en)Jl-""" Jr-/nrn (unm, en)---0.
For each of the n equations of system (b) of the type

1 (S1, aei +... + nm S,r aei 0,

we have to check whether the coefficients (Sk, aei) depend linearly on those of system
(a), i.e., we have to check whether there exists a solution for the following system of
nm equations in n unknowns:

l(Ul,el)Jr-...nt-n(u,en) (ul,aci)

LEARNING BEHAVIORS OF AUTOMATA FROM QUERIES 1277

Filling the table is a task of lower complexity with respect to those considered
above and does not influence the final result. In fact, in the worst case, the table is
of size IEIIPI n2m. Each multiplicity query for filling one entry of the table will
be for a string of length at most m + 2n + 1. In fact, strings in P get as long as m
when a counterexample is found, and one character may be added to them at most
n times when closing the table. Strings in E are obtained by adding a one-character
prefix to strings previously added to E, and this may be done at most n times. An
extra character a E E is added at the time of the multiplicity query between a string
in P and a string in E. This is done for all a E E. The overall complexity of filling
the table is O(kn2m(n + m)).

Since the main loop is repeated at most n times, the overall complexity of the
algorithm is O(kn5m2). Together with the fact that when the main loop terminates,
M S, this establishes our main result.

THEOREM 4.5. Recognizable Q-sets may be exactly identified in polynomial time

from queries and counterexamples.
This may be seen as a generalization of Angluin’s result for finite-state automata

[3]. It should be noted that Theorem 4.1 was the inspiration behind the algorithm
but has not been used to obtain the above result. In particular, the completeness of
P was not directly verified in the algorithm nor used in the proofs. However, when
the algorithm terminates, the set P must be complete, as shown below.

5. Complete sets of strings. If u P, because tables are kept closed during
the execution of the learning algorithm, for any a A,

(18) S = E/(a),vS.
vEP

In order to proceed with our discussion, we need an assumption that is quite obvious:
if also ua P, then the linear dependencies for Sa are chosen in the easiest way, i.e.,
with

(19) t(a)u,ua 1 and t(a)u,v 0 for v = ua.

Equation (19) is acceptable without loss of generality because it provides a hypothe-
sized value that satisfies (18). If ua P, then any choice of is acceptable as long
as it satisfies (18). If this choice is made, the following holds.

LEMMA 5.1. Let u P, and suppose that when ua P, (a)u,v is chosen as in
equation (19), then for any v P, ft(u), 1 if v u ft(u), 0 otherwise.

Proof (by induction on]ul).
Base. Since/ is a morphism, (e) must be the identity matrix, i.e.,/(e), 1

when v e and is 0 elsewhere, which is what we need to prove.
Inductive step. Let u xa, where x P as u P and P is prefix-closed.

(20) t(xa), E t(x).,wt(a),v.

By the inductive hypothesis, /(x), 0 except when w x, where it is equal
to 1. Then the right-hand side of the previous equation reduces to

(21) t(x)e,xt(a)x,v 1 (a)x,v.

1278 F. BERGADANO AND S. VARRICCHIO

By (19) and because xa u c P, this is equal to 1 when v xa and is 0
elsewhere. []

LEMMA 5.2. Under the same assumptions as in Lemma 5.1, for u P,

Proof.

zGP

By the previous lemma, the right-hand side is equal to

(23) (u),uft(W)u,v 1 ft(W)u,v.
THEOREM 5.3. Suppose that when ua P, f(a), is chosen as in equation (19).

Then when M =_ S,

(24) Sua E fz(a),,S.
vEP

Consequently, when the guess M is correct, P must be complete.
Proof. We shall show that both sides of (24), when applied to any string x A*

produce the same value.

(25)

(ua, X) (S, ?.tax) (M, uax)

E fz(uax),(S,e)
vEP

E ft(aX)u,v(Sv,) (by Lemma 5.2).
v6P

E f(a)u,v(S, vx) E ft(a)u,v(M, vx)
v6P vP

v6P w6P

(a), (z),(Sw,e) (by Lemma
vP wP

wPvP

P

This is equal to (25) after substituting v for w. [3

Therefore, the completeness of P may be seen as a characterization of success
when we learn that S, at least when [t(ua) for ua P, is chosen as to verify (19).
Moreover, it may be noted that if we start with a prefix-closed set P which is already
complete, by virtue of Theorem 4.1, S may be exactly identified in polynomial time
by means of multiplicity queries only. The algorithm is as follows:

1. 7" +-- (P, {e}, T), where T is filled in with multiplicity queries.
2. Make the table 7" consistent, and fill in missing values with queries.
3. Output M(T).
The table will certainly be closed since P is complete, and by Theorem 4.1, the

final guess M must be correct. This result should be compared with [2], where a
similar framework is described for finite-state automata: a regular language may be
exactly identified in polynomial time using only membership queries, if we are given
a complete set of representatives for Nerode’s equivalence classes.

LEARNING BEHAVIORS OF AUTOMATA FROM QUERIES 1279

6. PAC-learnability and extensions. The learning method above also leads
to some PAC-learnability results. If we do not require exact identification of the
target @-set but are only interested in PAC-learnability, equivalence queries may be
eliminated. Instead of asking an equivalence query, the algorithm will sample example
strings and check whether the Q-set learned at some stage is correct for these strings.
The technique follows strictly from that used for DFAs in [3]. Consequently, Q-
automata are polynomially PAC-learnable when multiplicity queries are allowed. As a
further consequence, nondeterministic automata may be PAC-predicted in polynomial
time with multiplicity queries. It should be noted that negative results have been
proved if only membership queries are available [4]. We do not have the proper
PAC-learnability of NFAs with multiplicity queries because the representation that is
learned is a Q-automaton, not an NFA.

If a nondeterministic automaton is unambiguous, the corresponding Q-set S will
be such that for any string w, (S, w) is either 0 or 1. In this case, then, multiplicity
queries reduce to ordinary membership queries. Now suppose that a regular language
L is recognized by an unambiguous NFA M with a corresponding Q-set S. This
paper gives an algorithm for PAC-learning a representation of S in polynomial time
with respect to the number of states of M if membership queries are allowed. In
other words, regular languages are polynomially predictable using membership queries
with respect to the representation of unambiguous nondeterministic automata. The
importance of this lies in the fact that there are unambiguous NFAs such that the
equivalent DFA has an exponentially larger number of states [16]. We then have
a substantial improvement over previous results that established predictability with
respect to a deterministic representation. It should be emphasized that the result only
holds for unambiguous NFAs, and general NFAs are not predictable with membership
queries, as shown in [4].

PAC-predictability is also established for probabilistic automata if multiplicity
queries are allowed. As explained in 2, probabilistic automata may be represented
by particular Q-automata, and therefore they may be PAC-predicted with multiplic-
ity queries. Again, we do not prove proper PAC-learnability because the learned
representation is not a probabilistic automaton. In this case, multiplicity queries
correspond to asking for the exact probability of accepting a given string. Previous
results [17] required stronger types of queries. An interesting open problem is whether
the present algorithm can be extended to the case where the oracle only provides an
approximate probability of accepting some string. This would be more natural since
one could think of estimating the probability by reading the string with the target
probabilistic automaton several times.

Acknowledgments. We would like to thank the anonymous referees for the
many remarks that helped us improve upon the initial version of this article.

REFERENCES

[1] D. ANGLUIN, On the complexity of minimum inference of regular sets, Inform. and Control, 39
(1978), pp. 337-350.

[2] , A note on the number of queries needed to identify regular languages, Inform. and
Control, 51 (1981), pp. 76-87.

[3] , Learning regular sets from queries and counterexamples, Inform. and Comput., 75
(1987), pp. 87-106.

[4] D. ANGLUIN AND M. KHARITONOV, When won’t membership queries help?, in Proc. 23rd Sym-
posium on the Theory of Computing, Association for Computing Machinery, New York,
1991, pp. 444-454.

1280 F. BERGADANO AND S. VARRICCHIO

[5] D. ANGLUIN, Negative results for equivalence queries, Mach. Learning, 5 (1990), pp. 121-150.
[6]. F. BERGADANO ’AND D. GUNETTI, Inductive Logic Programming: From Machine Learning to

Software Engineering, MIT Press, Cambridge, MA, 1996.
[7] F, BERGADANO AND S, VARRICCHIO, Learning behaviours of automata from multiplicity and

equivalence queries, in Proc, 1994 Italian Conference on Algorithms and Complexity, Lec-
ture Notes in Comput. Sci., 778, Springer-Verlag, Berlin, New York, Heidelberg, 1994,. 4-.

[8] J. BERSTEL AND C. REUTENAUER, Rational Series and Their Languages, Springer-Verlag,
Berlin, 1988.

[9] S. EILENBERG, Automata, Languages and Machines, Vol. A, Academic Press, New York, 1974.
[10] M, E. GOLD, Complexity of automaton identification from given data, Inform. and Control, 37

(1978), pp. 302-320.
[11] T. HARJU AND J. KARHUMAKI, Decidability of the multiplicity equivalence problem of multitape

finite automata, Proc. 22nd Symposium on the Theory of Computing, Association for
Computing Machinery, New York, 1990, pp. 477-481.

[12] B. K. NATARAJAN, Machine Learning: A Theoretical Approach, Morgan Kaufmann, San Mateo,
CA, 1991.

[13] A. PAZ, Introduction to Probabilistic Automata, Academic Press, New York, 1991.
[14] L. PTT AND M. K. WARMUTH, The minimum consistent DFA problem cannot be approximated

within any polynomial, J. Assoc. Comput. Mach., 40 (1993), pp. 95-142.
[15] A. SALOMAA AND M. SOITTOLA, Automata Theoretic Aspects of Formal Power Series, Springer-

Verlag, New York, 1978.
[16] R. E. STEARNS AND H, B. HUNT, On the equivalence and containment problems for unam.

biguous regular expressions, regular grammars, and finite automata, SIAM J. Comput., 14
(1985), pp. 598-611.

[17] W. TZENG, Learning probabilistic automata and markov chains via queries, Mach. Learning, 8
(1992), pp. 151-166.

[18] S. VARRICCHIO, On the decidability of the equivalence problem for partially commutative ratio-
nal power series, Theoret. Comput. Sci,, 99 (1992), pp. 291-299.

SIAM J. COMPUT.
Vol. 25, No. 6, pp. 1281-1292, December 1996

() 1996 Society for Industrial and Applied Mathematics
008

PREFIX CODES: EQUIPROBABLE WORDS, UNEQUAL LETTER
COSTS*

MORDECAI J. GOLIN AND NEAL YOUNG

Abstract. We consider the following variant of Huffman coding in which the costs of the
letters, rather than the probabilities of the words, are nonuniform: "Given an alphabet of r letters of
nonuniform length, find a minimum-average.length prefix-free set of n codewords over the alphabet";
equivalently, "Find an optimal r-ary search tree with n leaves, where each leaf is accessed with
equal probability but the cost to descend from a parent to its ith child depends on i." We show
new structural properties of such codes, leading to an O(n log2 r)-time algorithm for finding them.
This new algorithm is simpler and faster than the best previously known O(nr min{log n, r})-time
algorithm, due to Perl, Garey, and Even [J, Assoc. Comput. Mach,, 22 (1975), pp. 202--214],

Key words, algorithms, Huffman codes, prefix codes, trees

AMS subject classification. 68Q25

1. Introduction. The well-known Huffman coding problem [3] is the following:
given a sequence of access probabilities (pl, p2,..., Pnl, construct a binary prefix code
(wl, w2,..., Wn) minimizing the expected length iPi’ length(wi). A binary prefix
code is a set of binary strings, none of which is a prefix of another.

A natural generalization of the problem is to allow the words of the code to be
strings over an arbitrary alphabet of r _> 2 letters and to allow each letter to have
an arbitrary nonnegative length. The length of a codeword is then the sum of the
lengths of its letters. For instance, the "dots and dashes" of Morse code are a variable-
length alphabet with length corresponding to transmission time, (See Figure 1.) This
generalization of Huffman coding to a variable-length alphabet has been considered
by many authors, including Altenkamp and Mehlhorn [1] and Karp [5]. Apparently,
no polynomial-time algorithm for it is known, nor is it known to be NP-hard.

A prefix code in which the codewords (wl, w2,..., w) are in alphabetical order is
called alphabetic [1], In this case, the underlying tree represents an r-ary search tree.
The length of the ith letter corresponds to the time required to descend from a node
into its ith subtree. This time is often a function of in search-tree algorithms, for
instance, when the subtree to descend into is chosen by sequential search. An optimal
alphabetic code thus corresponds to a minimum-expected-cost search tree.

In this paper, we consider the special case in which the codewords occur with
equal probability, i.e., .each p equals 1In. With this restriction, the alphabetic and
nonalphabetic problems are equivalent. The problem may be viewed as a variant
of Huffman coding in which the lengths of the letters, rather than the codeword
probabilities, are nonuniform. Alternatively, it may viewed as the problem of finding
an optimal r-ary search tree, where the search queries are uniformly distributed but
the time to descend from a parent to its ith child depends on i. For the complexity
results stated in this paper, the algorithms return a tree representing an optimal code.

Received by the editors May 25, 1994; accepted for publication (in revised form) March 1, 1995.
Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong

(golin@cs.ust.hk). The research of this author was partially supported by HK RGC Competitive
Research grant HKUST 181/93E.

UMIACS, University of Maryland, College Park, MD 20742. Current address: Department of
Computer Science, Dartmouth College, Hanover, NH 0375573510 (neal.young@dartmouth.edu). The
research of this author was partially supported by NSF grants CCR-8906949 and CCR-9111348.

1281

1282 MORDECAI J. GOLIN AND NEAL YOUNG

Depth

1 e f

a b c d

FI(. 1. Two trees for the six symbols a, b, c, d, e, and f, each occurring with probability 1/6.
The tree on the left is the optimal tree that uses the alphabet {0, 1}, with length(O) length(I) 1,
while the tree on the right is for the alphabet {.,_} with length(.) 1 and length(_) 2. The
corresponding sets of codewords are

a=000, b=001, c=011, d=011, e=10, f=11
and

a= b= c d= e= f

In 1989, Kapoor and Reingold [4] described a simple O(n)-time algorithm for the
binary case r 2. In 1975, Perl, Garey, and Even [7] gave an O(rn min{r, log n})-time
algorithm (though due to a typographical error, their abstract incorrectly claims an

O(rn)-time algorithm). In the same year, Cot [2] described an O(r2n)-time algorithm.
In 1971, Varn [8] gave an algorithm without analyzing its complexity. It appears
Varn’s algorithm requires t2(rn) time.

In this paper, we describe an O(n log2 r)-time algorithm based on new insights
into the structure of optimal trees. In 2, we define shallow and proper trees and
prove that some proper shallow tree is optimal. In 3, we develop the algorithm,
which efficiently constructs all proper shallow trees and returns one representing an
optimal prefix code.

2. Shallow trees. Fix an instance of the problem, given by the respective lengths
{cl <_ c2 < <_ cr) of the r letters in the alphabet and the number n of (equiprobable
and prefix-free) codewords required. We assume the standard tree representation of
prefix codes, as described in the following definition.

DEFINITION 2.1. The infinite r-ary tree is the infinite, rooted, r-ary tree. Each
tree edge has a length and a label--an edge going from a node to its i th child has length
ci and is labeled with the th letter in the alphabet.

A node is a node of the infinite r-ary tree. The finite words over the alphabet
of r letters correspond to the nodes. The labels along the path from the root to any
node spell the corresponding word and the length of the path is the length of this
word. A prefix code corresponds to a set of nodes none of which is a descendant of
another. (See Figure 1.)

DEFINITION 2.2. A tree is any subtree T of the infinite r-ary tree containing
the root. In any tree, n of the leaves will be identified as terminals; their correspond-
ing words form a prefix code. The remaining nodes in the tree are referred to as
nonterminals.

PREFIX CODES 1283

Given a node u, the notation childi(u) denotes u’s ith child; depth(u) denotes the
depth (the length of the corresponding codeword); parent(u) denotes the parent.

The cost c(T) of such a tree is the sum of the depths of the terminals--also called
the external weighted path length of the tree.

A proper tree is a tree in which every nonterminal has at least two children.
The goal is to find an optimal tree with n terminals. It is easy to see that some

optimal tree is proper; thus we restrict our attention to proper trees.
Our basic tool for understanding the structure of optimal trees is a swapping

argument. For example, in any proper optimal tree, no nonterminal is deeper than
any terminal. Otherwise, the terminal and the subtree rooted at the nonterminM
could be swapped, decreasing the average depth of the terminals.

We use a swapping argument to prove that an optimal proper tree has the follow-
ing form for some m. The nonterminals are the rn shallowest (i.e., least-depth) nodes
of the infinite tree, while the terminals are the n shallowest available children of these
nodes in the infinite tree. We call such a tree shallow; here is the precise definition.

DEFINITION 2.3. A tree T is shallow provided that
(i) for any nonterminal u E T and any node w (not necessarily in T) that is

not a nonterminal, depth(u) <_ depth(w) and
(ii) for any terminal u T and any node w that is not in T but is a child of a

nonterminal, depth(u)<_ depth(w).
Note that a nonterminal of an (improper) shallow tree might have no children in

the tree. This is why we refer to "terminal" and "nonterminal" nodes in place of the
more common "internal nodes" and "leaves."

As a simple example, consider the basic binary tree; r 2, cl c2 1. A
proper binary tree T will be shallow if and only if there is some depth such that
(a) every node u in the infinite tree with depth(u) < is a nonterminM in T and (b)
all terminals of T are on levels and + 1. Conditions (a) and (b) are necessary and
sufficient conditions for T to have minimum external path length among all binary
trees with the same number of leaves; see, e.g., [6, 5.3.1]. So, a binary tree has
minimum external path length for its number of leaves if and only if it is shallow.
For example, the binary tree on the left-hand side of Figure 1 has minimum external
path length among all trees with six leaves because it fulfills conditions (a) and (b)
with 2. As we will see later, though, for most values of r and c, shallowness
alone does not imply optimality. However, if a shallow tree has the right number of
nonterminals, then it is optimal.

LEMMA 2.4. Let m* be the minimum number of nonterminals in any optimal
tree. Then any shallow tree with m* nonterminals is optimal and proper.

Proof. Fix a shallow tree T with m* nonterminals. We will show the existence of
an optimal tree with the same nonterminals as T. Since T is shallow, by property (ii),
this will imply that T is optimal. By the choice of m*, T is also proper (otherwise
there would be an optimal proper tree with fewer nonterminals).

It remains to show the existence of an optimal tree with the same nonterminMs
as T. Let T* be an optimal (and therefore proper) tree with m* nonterminals. Let
N and N* be the sets of nonterminals of T and T*, respectively. If N N*, we are
done. Otherwise, let u be a minimum-depth node in N- N*, so that u’s parent is in
N*. Let u* be a node in N* -N. Note that, since T is shallow, depth(u*) >_ depth(u)
but that, in T*, u* is a nonterminal (with at least two terminal descendants) while u
is either a terminal or not present.

In T*, swap the subtrees rooted at u and u*. Specifically, make u a nonterminM

1284 MORDECAI J. GOLIN AND NEAL YOUNG

11

I2

FI. 2. The top of a labeled infinite tree with r 3, cl 2, c2 2, and C3 5.

and, for each descendant v* of u*, delete it and add the corresponding descendant v
of u. If v* was a terminal, make v a terminal; otherwise, make v a nonterminal. If u
was a terminal, make u* a terminal; otherwise, delete u*. Call the resulting tree T.

From depth(u*) >_ depth(u), it follows that c(T’) <_ c(T*). Thus T’ is also optimal.
Note that T shares one more nonterminal with T than does T*. Thus repeated
swapping produces an optimal tree with the same nonterminals as T.

Note that m* _> (n- 1)/(r- 1) since each node has degree at most r.
COROLLARY 2.5. Let mmin [(n--1)/(r--1). Let (rmmin,rrnmin_t_l,rrnmin_t_2,

be any sequence of shallow trees such that for each m, Tm has rn nonterminals. Then
one of the Tm is proper and optimal.

The algorithm generates a sequence of shallow trees as above and returns the one
which has minimum cost. The lemma guarantees that this tree will be optimal. The
rest of the paper is devoted to examining the properties of shallow trees which enable
the enumeration of the proper shallow trees in O(n log2 r) time.

PREFIX CODES 1285

2.1. Defining the trees.
Ordering the nodes. Label the nodes of the infinite tree as 1, 2, 3,... in order of

increasing depth. Break ties arbitrarily, except that if two nodes u and w are of equal
depth, both are ith children of their respective parents, and parent(u) < parent(w),
then let u < w (this is needed for Lemma 3.2). For the sake of notation, identify each
node with its label so that 1 is the root, 2 is a minimum-depth child of the root, etc.
Figure 2 illustrates the top section of such a labeling for r 3, Cl 2, c2 2, and
c3 5. These values of r and cj are the ones we use in all later examples.

DEFINITION 2.6. For each m >_ mmin, define T, to be the tree whose nontermi-
nals are {1,..., m} and whose terminals are the minimum n nodes among the children

of {1,...,m} in {m + l,m + 2,...}.
Thus Tm is the "shallowest" tree with m nonterminals with respect to the ordering

of the nodes. Since the ordering of the nodes respects depth, each Tm is shallow.
Figure 3 presents T5, T6, TT, and Ts for n 10 using the labeling of Figure 2.

2.2. Relation of successive trees. Next, we turn our attention to the relation
of Tm+l to T,.

LEMMA 2.7. For m >_ mmin, the new nonterminal (node rn + 1) in Tm+l is the
minimum terminal of Tin.

Proof. The parent of rn + 1 is in {1,..., m}, so m + 1 is the minimum child of
{1,..., m} in {m + 1, m + 2,...}. The result follows from the definition of T,.

LEMMA 2.8. For m >_ mmin, provided the new nonterminal (node rn + 1) in
has at least one child, each terminal of Tn+l is either a child of m + 1 or a terminal

of T..
Proof. Let node m + 1 have d children in T,+I. Let C denote the set of children

of nodes {1,... ,m} in {m + 1, m + 2,...}. The terminals of tree T,+I consist of
the minimum d children of node m / 1 together with the minimum n d nodes in
C {m + 1}. These n d nodes together with node m + 1 (the minimum node in
are the n d + 1 minimum nodes in C. If d >_ 1, then by the definition of T,, each
such node is a terminal in Tm.

The main significance of Lemmas 2.7 and 2.8 is that they will allow an efficient
construction of Tn+l. Moreover, they imply that if T, is not proper, then neither is
any subsequent tree.

LEMMA 2.9. One of the trees {Tmmin,Tmmin+l,...,Tmmax is optimal and proper,
where mmax min{m T,+I is improper}.

Proof. By Lemma 2.8, if T, is improper, then so is T,+l--either node m + 1 has
no children in T,+I or the nonterminal in T, that had less than two children also
has less than two children in T,+I. Hence, for each m > mmax, tree T, is improper.
Thus Corollary 2.5 implies that one of the trees (Trnmi., Trnmin-}-l,. Trnmax is proper
and optimal. [l

For n 10 mmin 10--1-]
-5:-i- 5 and (as shown in Figure 3) Ts is improper.

The lemma then implies that one of T5, T6, or T7 must have minimum external path
length. Calculation shows that T with c(T6) 59 is the optimal one.

3. Computing the trees. The algorithm uses the following two operations to
compute the trees.

To SPROUT & tree is to make its minimum terminal a nonterminal and to add the
minimum child of this nonterminal as a terminal.

To LEVEL a tree is to add c children of the maximum nonterminal to the tree as
terminals and to remove the c largest terminals in the tree. The c children are the

1286 MORDECAI J. GOLIN AND NEAL YOUNG

Depth

32456
1 2 3

u[i] 3 3 1
w[i] 5 5 4

1 2 3
4 3 1
6 6 3

Depth Depth1

69

1 2 3
4 4 1 u[i]
7 7 e

1 2 3
4 4 2
8 7 2

FIG. 3. The trees T5, T6, TT, and Ts for r 3, cl 2, c2 2, C3 5, and n 10. The
node numbering is that of the previous figure. Calculating the external path lengths, we find that
c(T5) 60, c(T6) 59, c(TT) 60, and c(Ts) 62.

minimum c children not yet in the tree, where c is maximum such that all children
added are less than all terminals deleted.

The algorithm computes the initial tree Tmmin and then repeatedly SPROUTS and
LEVELS to obtain successive trees until the tree so obtained is not proper. Lemmas
2.7 and 2.8 imply that, as long as node m + 1 has at least one child in Tm+l (it will if

Tm+l is proper), SPROUTing and LEVELing Tm yields Tm+l. Figure 4 illustrates this
operation.

OBSERVATION 3.1. Let m rnmax. If node m + 1 has at least one child in Tm.+l
then SPROUTing and LEVELing Tm yields tree Tm+. If node m + 1 has no children
in Tm+, then the maximum terminal in Tm is less than the minimum child of node
m + 1 and SPROUTing and LEVELing Tm yields a tree in which nonterminal m + 1
has one child. Hence the algorithm always correctly identifies Ttmax and terminates

PREFIX CODES 1287

Depth

32456
Depth

Depth
T6 LEVEL(SPROUT(T5))

FIG. 4. SPROUTing and LEVELing T5 yields T6.

correctly, having considered all relevant trees.
To SPROUT requires identification and conversion of the minimum terminal of the

current tree, whereas to LEVEL requires identification and replacement of (no more
than r) maximum terminals by children of the new nonterminal. One could identify
the maximum and minimum terminals in O(logn) time by storing all terminals in
two standard priority queues (one to detect the minimum, the other to detect the
maximum). At most r terminals would be replaced in computing each tree and,
because mmax <_ n- 1, only O(n) trees would be computed. This approach yields an
O(rn log n)-time algorithm.

By a more careful use of the structure of the trees, we improve this in two ways.
First, we give an amortized analysis showing that in total, only O(n log r), rather
than O(rn), terminals are replaced. Second, we show how to reduce the number of
nonterminals in each priority queue to at most r. This yields an O(n log2 r)-time
algorithm.

Both improvements follow from the tie-breaking condition on the ordering of the
nodes, which guarantees that T, must have the following structure.

LEMMA 3.2. In any Tin, if u and w are nonterminals with u < w and the ith child
of w is in the tree, then so is the th child of u. If the th child of w is a nonterminal,
then so is the th child of u.

1288 MORDECAI J. GOLIN AND NEAL YOUNG

Proof. The proof is straightforward from the definition of Tm and the condition
on breaking ties in ordering the nodes (in 2.1).

COROLLARY 3.3. Node m has a minimum number of children among all nonter-
minals in Tin.

3.1. Only O(n log r) replacements total. The number of terminals replaced
while obtaining Tm from Tin-1 is at most the number of children of nonterminal m
in T,. Although this might be r for many m, the sum of the numbers of children is
O(nlogr).

LEMMA 3.4. Let dm be the number of children of nonterminal m in tree Tm.
Then r dm is O(n log r).

Proof. By Corollary 3.3, within Tin, node m has the fewest children. The total
number of children of the m nonterminals is m+n- 1. Thus dm is at most the average
(rn + n- 1)/m 1 + (n- 1)(1/m).

mmx

n--1 n 1.The result follows from mmin r--’L--fl and mmax

3.2. Limiting the relevant terminals. To reduce the number of terminals
that must be considered in finding the-minimum and maximum terminals, we partition
the terminals into r groups. The ith group consists of the terminals that are ith
children (i 1,..., r).

LEMMA 3.5. If any Tin, for any i, the set of nonterminals whose ith children
are terminals is of the form {u, u + 1,..., w} for some u and w. The minimum
among terminals that are ith children is child(u) (the ith child ofu). The maximum
among these terminals is child(w).

Proof. This is a straightforward consequence of Lemma 3.2. E]
Figure 3 presents ui and wi for the trees T5, T6, TT, and Ts when n 10.
This lemma implies that the minimum terminal in Tm is the minimum among

{child(u) 1,...,r}. Our algorithm finds the minimum terminal in T by
maintaining these r particular children (rather than all n terminals) in a priority
queue. This reduces the cost of finding the minimum from O(log n) to O(log r). Sim-
ilarly, the algorithm finds the maximum terminal in O(logr) time by maintaining
{child(w) :i 1,..., r} in an additional priority queue.

OBSERVATION 3.6.1 As an aside, one can prove using Lemma 3.5 that, for any
m such that mmin < m < mmax, c(Tm+l)- c(Tm) >_ c(Tm)- c(Tm_l).. That is,
the sequence of tree costs is unimodal. To prove this, consider building Tm+l from
Tin. SPROUTing increases the cost by cl; LEVELing decreases the cost with each swap.
For each swap in building Tm+l from Tin, one can show there was a corresponding
swap in building Tm from Tin-1 and that the decrease in cost (from Tm to Tin+!)
due to the former is bounded by the decrease in cost (from Tin-1 to Tin) due to the
latter. Thus, in practice, the algorithm could be modified to stop and return Tr-I
when c(Tm) >_ c(T,_I).

This observation is due to R. Fleischer.

PREFIX CODES 1289

3.3. The algorithm in detail. The full algorithm has two distinct phases. The
first phase constructs the base tree Tmmin. The second phase starts with Tmmin and,
by SPROUTing and LEVELing, iteratively constructs the sequence of shallow trees

(Tmmin,Tmin-l,Tmmin22,’’", Tmax
and returns one which has smallest external path length. Tmmx is the last proper tree
in the sequence, i.e., Tmmx+1 is improper. Lemma 2.9 guarantees that the algorithm
returns an optimal tree. We now describe how to implement the first part of the
algorithm in O(n log r) time and the second in O(n log2 r) time; the full algorithm
therefore runs in O(n log2 r) time.

The skeleton of the final algorithm is shown in Figure 5. Procedure CREATE-Tmmin
creates tree Tmmi,, the variable C contains the external path length of current tree
Tin, and mDeg contains the number of children of node m in tree Tin. As presented,
the algorithm computes only the cost of an optimal tree. It can easily be modified
to compute the actual tree. Note that to check that the current tree Tm is proper,
by Observation 3.1 and Corollary 3.3, it suffices to check that nonterminal m has at
least two children.

COMPUTE-TREES(<Cl, C2,... Cr>)
I. CREATE-Tmmin
2. WHILE (mDeg :> 2) DO

Compute Tin+ from Tm--
3. SPROUT(T)
4. LEVEL(T)
5. Cmin - min{C, Cmin }
6. RETURN Cmin

FIG. 5. Algorithm to find an optimal variable-length prefix code.

The routines SPROUT and LEVEL are shown in Figure 6.
Recall that the nodes of the infinite tree are labeled in order of increasing depth

with ties broken arbitrarily except for the requirement that if u and v are both of
equal depth and both are ith children of their respective parents, then u < v if and
only if parent(u) < parent(v). Depending upon c, c2,..., cr, there may be many such
labelings. The algorithm we present breaks ties lexicographically--suppose u and v
have the same depth and let u child(u’) and v childj(v’); then u < v if and only
if u’ < v’ (or u v and < j). Figure 2 illustrates this labeling for r 3, cl 2,
c2 2, and c3 5. The sequence of shallow trees is fully determined by this labelling.
Figure 3 illustrates the shallow trees with 10 nonterminals for these r and c values.

The algorithm represents the current tree Tm with the following data structures:
N is the number of terminals.
m is the number of nonterminals. It is also the rank of the maximum nonterminal.
C is the sum of the depths of the terminals.
mDeg is the number of children of nonterminal m.

D[u] is the depth of each nonterminal u.

u[i] is the rank of the minimum nonterminal (if any) whose ith child is a terminal
(<_i <_r).

w[i] is the rank of the maximum nonterminal (if any) whose ith child is a terminal
(1

_
i <_ r). If no nonterminal has a terminal ith child, then u[i] > w[i].

1290 MORDECAI J. GOLIN AND NEAL YOUNG

Spaou(T)
--Make the minimum terminal a nonterrninat--

1. na +-- m + 1;
2. Let childi(u[i]) be the minimum terminal in low-queue.
3. Dim] +-- D[u[i]] + ci; u[i] u[i] + 1; UPDITE-QS(T, i)
4. C +- C- Dim]; mDeg +- 0;

--Add smallest child as a terminal--
5. ADD-TEPMINAL(T)

LEVEL(T)
1. WHILE (mDeg < r and childmDeg+l(m) is less than

the max. terminal childi (w [i] in high-queue) DO
2. ADD-TERMINAL(T)

--Delete the maximum terminal--
3. C C- (D[w[i]] + ci)
4. w[i] - w[i]- 1; UPDATE-Qs(T, i)

ADD-TERMINAL(T)
1. mDeg +- mDeg + 1; C C + Dim] + CmDeg;
2. w[mDeg] - m; UPDATE-Qs(T, mDeg)

FIG. 6. Operations SPROUT and LEVEL.

low-queue is a priority queue for finding the minimum terminal. It contains

{childi(u[i]) u[i] < w[i]}.
high-queue is a priority queue for finding the maximum terminal. It contains

{childi(w[i]) u[i] < w[i]}.
For an example, refer back to Figure 3. Tree Ta has

N 10, C 59, mDeg 2,

D[1] 0, D[2] 2, D[3] 3, D[4] 4, D[5] 4, D[6] 4,

u[1] 4, u[2] 3, u[3] 1, will 6, w[2] 6, w[3] 3,

low-queue {child1 (4), child2(3), child3(1)},

high-queue {child (6), child,.(6), child3(3)}.
The priority queues are maintained as follows. In general, a terminal in T, can

have rank (label) arbitrarily larger than m. The algorithm explicitly maintains the
ranks and depths of the m nonterminals in the current tree; the algorithm compares
the ranks of terminals in the priority queues via the ranks and depths of their (non-
terminal) parents. When u[i] or w[i] changes to reflect a new current tree, the queues
are updated by the following routine:

UPDATE-Qs(T, i)
1. IF (u[i] <_ w[i])THEN
2. Update childi(u[i]) in low-queue and childi(w[i]) in high-queue

to maintain the queues’ invariants.
3. ELSE Delete both nodes from their respective queues.

Line 2 replaces the old childi(u[i]) in low-queue (childi(w[i]) in high-queue)

PREFIX CODES 1291

by the new one when u[i] (w[i]) changes. Line 3 will only be executed if childi(u[i]) >
childi(w[i]), which will only happen if the tree no longer contains any ith child as
a terminal. Note that Lemmas 2.8 and 3.2 imply that if, for some and Tin, no
nonterminM has an ith child in T,, then no nonterminal has an ith child in T,+I.

Construction of the first tree. Tree Tmmin has a simple-structure. Its nonterminals
are the nodes (1,2,..., mmin/. Its terminals are the n shallowest children of nodes
(1,2,..., ?Ttmin).

TO construct Tmi, we assume that n > r; otherwise, Tmi is simply the root
and its first n children. For 1 m < mmin, define T to be the tree with nonterminMs
{1,..., m} and all of the (r 1)m + 1 children of {1,..., m} as terminals. The proof
of Lemma 2.7 generMizes easily to these trees; node m + 1 is the minimum terminM
of T.

CREATE-Tmmin (T)
Create T1--

1. ?Ttmin [n--l___] D[1] - 0; C-- Emin{r’n}i__l
2. CREATE low-queue; CREATE high-queue;
3. FOR 1 to rain{r, n} DO

6.
7.
8.
9.
10.

11.
12.
13.
14.
15.
16.
17.
18.

--Create (T2, T3,..., Tmmi }-
FOR m 2 to (retain 1) DO

Let child(u[i]) be the minimum terminal in low-queue.
Dim] - D[u[i]] + c; u[i] - u[i] + 1; UPDATE-Qs(T, i);
FOR j 1 to r DO

w[j] - m; UPDATE-QS(T,j);
C - C Dim] + Ej=I (Dim] + cj);

--Create Tmmin
m ?7min; / T- (r 1)(mmin 1);
Let childi(u[i]) be the minimum terminal in low-queue.
Dim] +-- D[u[i]] + ci; u[i] +-- u[i] + 1; UPDATE-QS(T, i)
FORj=lto A DO

w[j] +-- m; UPDATE-QS(T, j);
C C Dim] + (Dim] + cj);
mDeg A;
LEVEL(T);

FIG. 7. Operation CREATE-Tnmi

The tree T1 is easy to construct. It is the tree with 1 root and r children. In-
ductively construct the tree T, from the tree T,-I, rn < mmin, aS follows: find the
minimum terminal in Tn by taking the minimum terminal out of low-queue. Label
this node rn, make it a nonterminal, and add all of its children to T, as terminals.
The details are shown in Figure 7.

Finally, construct T?Ttmin from Tmmin__ by making the lowest terminal of T,min_l
into node mmin. Add the n- (r- 1)(mmin 1) minimum children of node mmin aS

terminals, bringing the total number of terminals in the current tree to n. Level the
resulting tree.

Since only O(n/r) trees are constructed while computing Tmin and each tree

1292 MORDECAI J. GOLIN AND NEAL YOUNG

can be constructed from the previous tree in O(r log r) time, the time required to
compute T?Ttrni is O(n log r). (If desired, the time for each tree Tm with rn < mmin can
be reduced to O(log r) because maximum terminals are not replaced in constructing
such a tree.)

Construction of the remaining trees. The algorithm constructs the sequence of
trees

(TTl’min,Tmin+[,T%min+2,’’’, T’tmax
as described previously. Tree T, is found by SPROUTing and then LEVELing its
predecessor Tin-1. The cost is O(dm log r) time, where dm is the number of children
of the new nonterminM rn in T,. By Lemma 3.4, this part of the algorithm runs in
0 ((Era din) log r) O(n log2 r) time.

Acknowledgments. The authors would like to thank Dr. Jacob Ecco for intro-
ducing us to the Morse code puzzle, which sparked this investigation. They would also
like to thank Siu Ngan Choi and Rudolf Fleischer (who made Observation 3.6the
unimodality of the tree costs) for their careful reading of an earlier manuscript and
subsequent comments.

REFERENCES

[1] D. ALTENKAMP AND K. MELHORN, Codes: Unequal probabilies, unequal letter costs, J. Assoc.
Comput. Mach., 27 (1980), pp. 412-427.

[2] N. COT, Complexity of the variable-length encoding problem, in Proc. 6th Southeast Conference
on Combinatorics, Graph Theory, and Computing, Congressus Numerantium XIV, Utilitas
Mathematic Publishing, Winnepeg, MB, Canada, 1975, pp. 211-244.

[3] D. A. HUFFMAN, A method for the construction of minimum redundancy codes, Proc. IRE, 40
(1952), pp. 1098-1101.

[4] S. KAPOOR AND E. M. REINGOLD, Optimum lopsided binary trees, J. Assoc. Comput. Mach., 36
(1989), pp. 573-590.

[5] R. KARP, Minimum-redundancy coding for the discrete noiseless channel, IRE Trans. Inform.
Theory, IT-7 (1961), pp. 27-39.

[6] D. E. KNUTH, The Art of Computer Programming, Volume III: Sorting and Searching, Addison-
Wesley, Reading, MA, 1973.

[7] Y. PEPL, M. R. GAREY, AND S. EVEN, Efficient generation of optimal prefix code: Equiprobable
words using unequal cost letters, J. Assoc. Comput. Mach., 22 (1975), pp. 202-214.

[8] B. VAtN, Optimal variable length codes (arbitrary symbol cost and equal code word probability),
Inform. Control, 19 (1971), pp. 289-301.

SIAM J. COMPUT.
Vol. 25, No. 6, pp. 1293-1304, December 1996

() 1996 Society for Industrial and Applied Mathematics
O09

ON UNAPPROXIMABLE VERSIONS OF NP-COMPLETE
PROBLEMS*

DAVID ZUCKERMANt

Abstract. We prove that all of Karp’s 21 original NP-complete problems have a version that is
hard to approximate. These versions are obtained from the original problems by adding essentially the
same simple constraint. We further show that these problems are absurdly hard to approximate. In
fact, no polynomial-time algorithm can even approximate log(k) of the magnitude of these problems
to within any constant factor, where log(k) denotes the logarithm iterated k times, unless NP is
recognized by slightly superpolynomial randomized machines. We use the same technique to improve
the constant such that MAX CLIQUE is hard to approximate to within a factor of n. Finally, we
show that it is even harder to approximate two counting problems: counting the number of satisfying
assignments to a monotone 2SAT formula and computing the permanent of -1, 0, 1 matrices.

Key words. NP-complete, unapproximable, randomized reduction, clique, counting problems,
permanent, 2SAT

AMS subject classifications. 68Q15, 68Q25, 68Q99

1. Introduction.

1.1. Previous work. The theory of NP-completeness was developed in order
to explain why certain computational problems appeared intractable [10, 14, 12]. Yet
certain optimization problems, such as MAX KNAPSACK, while being NP-complete
to compute exactly, can be approximated very accurately. It is therefore vital to
ascertain how difficult various optimization problems are to approximate.

One problem that eluded attempts at accurate approximation is MAX CLIQUE.
This is the problem of finding w(G), the size of a largest clique in the graph G.
There was no explanation for this until Feige et M. [11] showed that for all > 0,
no polynomiM-time algorithm can approximate w(G) to within a factor of 2(lgn)l-

unless N/5 /5, where/5 denotes quasi-polynomial time, or TIME(2PlYg). This
was based on the proof that MIP NEXP [5]. Recently, there have been several
improvements, culminating in the result that approximating (G) to within a factor
of n1/4-(1) is NP-complete [4, 3, 7].

1.2. A new role for old reductions. It is natural and important to identify
other NP-complete problems that are hard to approximate. In the original theory
of NP-completeness, polynomial-time reductions were used. Yet these reductions
might not preserve the quality of an approximation well, so researchers focused on
reductions that preserved the quality of approximation very closely [18, 17]. Us-
ing such reductions, Panconesi and Ranjan [17] defined a class RMAX(2) of opti-
mization problems, of which MAX CLIQUE is one natural complete problem. The
intractability of approximating MAX CLIQUE implies that the other RMAX(2)-
complete problems are intractable to approximate. Recently, Lund and Yannakakis

Received by the editors April 21, 1994; accepted for publication (in revised form) March 14,
1995. A preliminary version of this paper, entitled "NP-complete problems have a version that’s
hard to approximate," appeared in Proc. 8th IEEE Conference on Structure in Complexity Theory,
IEEE Press, Piscataway, NJ, 1993, pp. 305-312. Most of this research was done while the author
was supported by an NSF Postdoctoral Fellowship at MIT. At UT Austin, the author was partially
supported by NSF NYI grant CCR-9457799.

Department of Computer Sciences, University of Texas at Austin, Austin, TX 78712
(diz@cs.utexas.edu).

1293

1294 DAVID ZUCKERMAN

[16] used an approximation-preserving reduction to show the intractability of approx-
imating CHROMATIC NUMBER.

Here we show that the reductions can have a much more general form and still
yield unapproximability results. This is essentially because the factors are huge,
namely ne, so polynomial blow-ups will only change this to ne’ We show that Karp’s
original reductions can be modified to have this general form, and hence the original 21
NP-complete problems presented in [14] all have a version that is hard to approximate.
This gives evidence that all NP-complete problems have a version that is hard to
approximate.

1.3. The small jump to unapproximability. What does it mean that an NP-
complete problem has a version that’s hard to approximate? Indeed, an NP-complete
problem is a language-recognition problem and may not even have a corresponding
optimization problem; moreover, many corresponding optimization problems are easy
to approximate. Intuitively, however, it seems reasonable that by adding suiiciently
many constraints to an optimization problem, it becomes "harder," i.e., hard to ap-
proximate. Quite surprisingly, we show that by adding one simple constraint that
is essentially the same for every NP-complete problem, all of Karp’s original NP-
complete problems become unapproximable.

What is this constraint? Usually, we can only form maximization problems when
our NP language L is of the form (x,k) E L == (3y, f(y) >_ k)p(x, y) for some
polynomial-time predicate p and function f. The corresponding optimization problem
is then taken to be maxy..p(x,y)f(y). Of course, if L is of the same form except
with f(y) <_ k, then we end up with the minimization problem miny:p(x,)f(y). For
example, for the NP-complete language VERTEX COVER, x is a graph and y is a
set of vertices; p is the predicate that y forms a vertex cover in x and f(y) is the
size of y. Thus the language is "Does there exist a vertex cover of size k?" while the
optimization problem is to find the size of a minimum vertex cover.

Although we do not prove a general theorem for all NP-complete languages, the
constraint we add makes sense for any NP language. This is because we use the basic
representation of an NP language L as x E L == (3y {0, 1})p(x,y), where m
is polynomial in the length of x. Note that for languages that can be expressed as in
the previous paragraph, the x here is what was previously the ordered pair (x, k) and
the p here is what was previously p(x, y)A (f(y) >_ k) (or, for minimization problems,
f(y) <_ k). The constraint we add is as follows. Using the natural correspondence
between {0, 1}n and subsets of {1,...,m}, we view y as a subset of {1,...,m}.
We have as an additional input a subset S c_ {1,..., m}, and the output should be
maxy{0,1}.:(,) ISNyl. We also insist that there be a y such that p(x, y); otherwise,
by taking S {1,..., m}, deciding whether the maximum is 0 or not is equivalent to
deciding whether there exists a y such that p(x, y). We even give such a y for free as
an additional input.

Thus, from the easily approximable minimization problem VERTEX COVER,
we obtain the unapproximable constrained maximization version: given a graph G
(V, E), S C_ V, a positive integer k, and a vertex cover of size at most k, find the
maximum of IS N C over vertex covers C of size at most k. This can be interpreted
as follows" the set S represents the important vertices; we can only afford a vertex
cover of size at most k but wish to use as many important vertices as possible.

For HAMILTONIAN CIRCUIT, this constrained version becomes the following:
given a graph G (V, E), a Hamiltonian circuit in G, and S c_ E, find the maximum
of IS C over Hamiltonian circuits C. This has a natural interpretation: a salesman

UNAPPROXIMABLE VERSIONS OF NP-COMPLETE PROBLEMS 1295

has to visit all cities, and certain trips between cities are scenic or free, so he wants
to maximize the number of such trips.

1.4. Hyperunapproximability results. Not only are these versions hard to
approximate to within a factor of nc, but it is also hard to have any idea about the
order of magnitude of the solutions to these optimization problems. More specifically,
we show that any iterated logarithm of any of the above versions is hard to approx-
imate within a constant factor unless NP is recognized by slightly superpolynomial
randomized machines. (Slightly superpolynomial will be made precise in the next
paragraph.) The proof also does not rely on the fact that the iterated logarithm may
become 0 (or negative/; we can assume the iterated logarithm is at least 1. This result
extends the result in [22] that the logarithm of a(G is hard to approximate to within
any constant factor unless N/5 -/5.1

In order to state our results precisely, we define

log(e) n log log.., log n,

log(k))
p,k(n) 22 / k 2’s,

Pe U
with analagous definitions for NPe, RPe, co-RPe, and ZPPe RPe A co-RPe. Note
that P1 P is polynomial time, P2 =/5 is quasi-polynomial time, and Pe for k > 2 are
other measures of slightly superpolynomial time. Also, let Fd denote the functional
version of the complexity class d. In particular, FZPPe corresponds to functions
computable by zero-error (Las Vegas) randomized algorithms that run in the appro-
priate expected time. For a function f, the notation (MAX CLIQUE) denotes the
problem of finding f(w(g)), and similarly for other optimization problems. We show
that if NPe : ZPPe, then no function in FZPPe approximates log(L) of any of
the above versions of NP-complete problems (e.g., MAX CLIQUE) to within any
constant factor.

These techniques can also be used to improve the constant e such that MAX
CLIQUE cannot be approximated to within a factor nc. Suppose c answer bits are
required by a PCP protocol to achieve error 1/2. We show that if NP : ZPP, then
for all e < 1/(c + 1), there is no Las Vegas algorithm running in expected polynomial
time which approximates MAX CLIQUE to within a factor n. Recently, much effort
has been devoted towards improving the constant (see, e.g., [6, 7]), and they all use
this lemma or an extension of it.

We point out that similar results may be obtained by using the randomized graph
product method of Berman and Schnitger [8]. However, such results would be under
the stronger assumption that NPe BPPe. The reason for this is that we look at the
proof-theoretic construction of the graphs in question, while Berman and Schnitger
use a straight reduction. We therefore need only deal with the error in the "easy" di-
rection, while Berman and Schnitger need to worry about the error in both directions.

This does not entirely improve upon [22]; here we show that logw(G) is hard to approximate
unless NP ZPP, a condition which, as far as we know, does not imply N/5 =/5.

1296 DAVID ZUCKERMAN

This difference also manifests itself in the derandomization: more work is needed to
derandomize the randomized graph product construction [2] than the basic tool used
to derandomize the proof-theoretic construction [1].

1.5. Implications for counting problems. We further show that under the
same assumption that NPk 7 ZPPk, log(k+l) of the number of satisfying assign-
ments to a monotone 2SAT formula is hard to approximate to within any constant
factor. That this is hard to approximate may seem surprising because finding a sat-
isfying assignment is trivial. In the case of a DNF formula, where finding a satisfying
assignment is also easy, approximating the number of satisfying assignments is in
randomized polynomial time [15].

As a corollary, we use Valiant’s reduction [21] to observe that approximating
log(k+l) of the permanent of a matrix with entries in {-1,0, 1} is hard under the
same assumption as above. We can assume the matrix has positive permanent be-
cause, conceivably, the problem of deciding if the permanent is 0 is NP-hard, which
would make the corollary uninteresting. This result should be contrasted with the
subexponential algorithm to approximate the permanent of 0,1-matrices [13].

2. The iterated log of max clique is hard to approximate. In this section,
we show that it is hard to approximate any iterated logarithm of the size of the
maximum clique. We first present the following definition.

DEFINITION 2.1. Approximating g(x) to within a factor a(n) is in FZTIME(t(n))
if there is a zero-error (Las Vegas) randomized algorithm which, on input x, runs
in expected time t(Ix[) and outputs such that g(x) is in the half-open interval
I [, a(Ix])). Here Ix denotes the length of x.

Thus the algorithm can distinguish between x and y, Ixl lYl n, if g(x) >_
a(n)g(y) or g(y) >_ a(n)g(x). 2

Our proofs closely follow the proofs of [11, 4, 3], building on the work of [5]. First,
here are some definitions from [4].

A verifier is a probabilistic polynomial-time probabilistic Turing machine M given
access to the input x, random bits y, and a proof H. The verifier’s goal is to decide
whether H is a valid proof that x is in some language L. We define the predicate
MI(x, y) to be true iff M accepts x given the proof II and random bits y.

DEFINITION 2.2. A verifier is (r(n), c(n))-restricted if on an input of size n it
uses at most r(n) random bits and queries at most c(n) bits of the proof.

DEFINITION 2.3. A language L is in the complexity class PCP(r(n),c(n)) iff
there is an (r(n), c(n))-restricted verifier such that

x e L (H)Pry[Mr(x, y)] 1,
x L (VH)Pry[MrI(x, y)] <: 1/2.

Arora et al. [3] give the following improvement of [5].
THEOREM 2.4 (see [3]). NP PCP(O(logn), O(1)).
Using this, they follow [11] and construct a graph Gx which has a large clique iff

x E L. In order to do this, they define transcripts and a notion of consistency among

2 Of course, our definition is also equivalent to the algorithm always outputting a number such
that g(x)/b([x[)

_
< b(Ix[)g(x), where b(n) . One might think it is natural to define

this as approximating to within a factor b(n); however, we want the property that the algorithm can
distinguish between g values that differ by an a(n) factor. Otherwise, we will get b(n)2 terms instead
of a(n) terms. Our definition is also like the ones used in [11, 3].

UNAPPROXIMABLE VERSIONS OF NP-COMPLETE PROBLEMS 1297

them. A transcript is basically a set of queries to locations of the proof and the bits
that are found in these locations. Two transcripts are consistent if there is one proof
that can correspond to both transcripts.

DEFINITION 2.5 (see [11]). We say that (y, ql, al,..., qc, ac} is an (r, c)-transcript
for verifier M on x if lY] r, and on input x and random string y, for every i, M
queries bit location qi after receiving the answers aj to queries qj for j < i. The
transcript is accepting if on input x, random string y, and history of communication
(questions and answers) (ql, a,..., q, a), M accepts x.

DEFINITION 2.6 (see [11]). We say that two transcripts (y, q, a,..., q, a and
($, ql, all,..., [, de} are consistent if for every i, qi implies a d.

To decide whether x is in some NP language L, we construct a graph Gx based
on the (r(n) O(log n), c(n) O(1))-restricted verifier M for L. The vertices of Gx
are all accepting (r(n), c(n))-transcripts of M on x, and two nodes are connected iff
the corresponding transcripts are consistent. Thus Gx has at most 2r(n)+c(n) vertices.
The following result is also not hard to see.

LEMMA 2.7 (see [11]). w(Gx) maxn Pry[Mn(x, y)]. 2r(n).
In other words, (Gx) is the maximum over all proofs II of the number of random

strings on which M accepts x. Thus if x E L, then w(G) 2r(n), and if x

_
L, then

<
In order to get a wider separation in the clique sizes, Feige et al. constructed the

graph G corresponding to a protocol M. M runs log(1) n independent iterations
of M on x. This reduces the error probability if x L and therefore produces a wider
separation in the clique sizes.

Yet once we fix a proof II, MIx basically corresponds to a co-RP machine: always
accepting when x E L and usually rejecting if x L. Thus it is natural to use pseudo-
random strings that efficiently amplify the success probability of an RP (or co-RP)
algorithm. Indeed, this was the idea used in [22] to show that approximating log w is
hard. Arora et al. [3] later used this idea to achieve their result as well.

But since we will cycle through all possibilities of the random seeds, the pseudo-
random strings do not have to be constructible in the usual sense. In fact, the best
amplification schemes are given by random graphs, which are so-called "dispersers"
with high probability. Thus our plan will be to use a random amplification scheme.

DEFINITION 2.8. An (R,r,d)-amplification scheme is a bipartite graph H
({0, 1}R U {0, 1}r, E), where {0, 1}R and {0, 1 } are independent sets and the degree
of every node in {0, 1}R is d.

An (R, r, d)-amplification scheme defines a pseudorandom generator that takes as
input an R-bit string z and outputs the d r-bit neighbors of z. A good amplification
scheme has been called a disperser [9].

DEFINITION 2.9. An (m, n, d, a, b)-disperser is a bipartite graph with m nodes on
the left side, each with degree d, and n nodes on the right side such that every subset
of a nodes on the left side has at least b neighbors on the right.

We pick an (R, r, d)-amplification scheme uniformly at random by choosing in-
dependently, for each u {0, 1}R, d uniformly random elements from {0, 1}r as the
neighbors of u. Santha [19] and Sipser [20] have shown that a random amplification
scheme is a disperser. In order to get the optimal e in the n results, we use an
extremely minor modification of their arguments.

LEMMA 2.10. The probability that a uniformly random (R, r, R+ 2)-amplification
scheme is a (2R, 2, R + 2, 2r, 2-l)-disperser is greater than 1 2-2

Proof. We basically follow [20]. For S C_ {0, 1}R, T C_ {0, 1}r, let A,T be the

1298 DAVID ZUCKERMAN

event that all neighbors of S are in T. Then the probability that the amplification
scheme is not the desired disperser equals

Pr
(R+2)2

The unapproximability of the iterated log will follow from the following lemma.
LEMMA 2.11. Let L E PCP(r(n) O(logn),c). Let R R(n) be a function

of n, and let N N(n) 2R+(R+2)c. If there is a Las Vegas algorithm running in
expected time t(N) which can correctly determine whether a graph with at most N
nodes has a clique of size at least 2R or at most 2, then L co-RTIME(t(N(n)) +

Proof. We describe a randomized algorithm A to recognize L. Let x be the
input. Let M be the (r r(n), c)-restricted verifier accepting L. A picks a uniformly
random (R, r, R + 2)-amplification scheme H. Define the verifier V as the machine
which picks a uniformly random R-bit string, determines its neighbors Yl,..., YR+2
in H, and simulates M on x with the random strings yl,..., YR+2. V accepts iff all
R + 2 runs of M accept. Note that V uses R random bits and dc (R + 2)c answer
bits. A constructs G corresponding to V. Then G has at most N 2R+(R+2)c

vertices. Observe that if x L, then co co(G) 2R. Now consider if x L. Let
H be an arbitrary proof. With overwhelming probability (in particular, at least 5/6),
H is a (2R,2,d, 2,2-)-disperser. Since less than 2- r-bit strings cause M to
accept, by the disperser property of H, at most 2 R-bit strings cause V to accept.
Thus w < 2.

Let B be a Las Vegas algorithm running in expected time t(N) which correctly
determines whether co >_ 2R or co <_ 2r. A simulates B for 3t(N) steps (in which time
B fails to halt with probability at most 1/3). If B doesn’t halt or determines that
co >_ 2R, then A accepts. Otherwise, A rejects. Thus A always accepts if x L and
with probability >_ 5/6- 1/3 rejects if x L. A runs in time O(t(N)+ p(N)), where
p is a polynomial depending on the running time of M.

We also make use of a complexity-theoretic lemma.
LEMMA 2.12. For any positive integer k, NP C_ co-RPk iff NPk ZPPk.
Proof. One direction is easy: if NPk ZPPk, then NP

co-RPk. Now assume NP c_ co-RPk. Since Pd,k(Pe,k(n)) <_ Pdc,k(n), this implies that
NPk C_ co-RPk. Taking complements, we get co-NPk C_ RPk. But then NPk
co-RPk c_ co-NPk C_ RPk c_ NPk. Thus all containments are equalities and NPk
RPk co-RPk; hence NPk ZPPk.

We can now show the following.
THEOREM 2.13. If for any constant a approximating log(k) co to within a factor a

is in FZPPk, then NPk ZPPk.
Proof Let L e PCP(r(n) O(logn),c) be NP-complete. Set R p,k-(r)

and apply Lemma 2.11. Suppose there is an algorithm A approximating log(k) w to
within a factor a. Since log(k) 2R a. log(k) 2r, A can determine whether co > 2R or
co <_ 2 in a graph on N 2R+(R+2)c vertices. For n large enough so that R >_ 2c,
N <_ 2(c+2)R 2(c+2)p,-(r) 2(c+2)p,-(lgn) P@+2),k(n). Thus, for some
constant e, A runs in time pe,k(N) <_ Pe(+2),k(n) on inputs of length n. Lemma

UNAPPROXIMABLE VERSIONS OF NP-COMPLETE PROBLEMS 1299

2.11 now implies the theorem, except that the conclusion is NP C_ co-RPk instead of
NPk ZPPk. Lemma 2.12 shows that these conclusions are equivalent. [:l

Similarly, we improve the constant e in the n of the MAX CLIQUE unapprox-
imability results of [3].

THEOREM 2.14. Let c be a constant such that some NP-complete language is in
PCP(O(logn), c) (which exists by Theorem 2.4). Then for any constant e < 1/(c+ 1),
there is no Las Vegas algorithm running in expected polynomial time that approximates
MAX CLIQUE to within a factor n unless NP-- ZPP.

Proof. Choose k large enough so that (k- 1)/(k + (k + 2)c) :> e, and let R kr.
By Lemma 2.11, w cannot be approximated to within a factor of 2R-r in a graph
with N 2R+(R+2)c vertices unless NP C_ co-PP. By our choice of R, this factor
is at least N. Moreover, by Lemma 2.12, NP C_ co-RP is equivalent to NP
ZPP. D

3. Unapproximable versions of NP-complete problems. We now modify
Karp’s list of 21 NP-complete problems to obtain versions that are hard to approxi-
mate. Problems 4 and 11 had previously been shown to be as difficult to approximate
as MAX SAT [17].

THEOREM 3.1. For each of the following maximization problems A, there exists a
constant > 0 such that A cannot be approximated to within a factor n in polynomial
time unless P NP. For any positive constant c, any positive integral k, and any of
the following maximization problems A, approximating log(k) (A) to within a factor of
c is not in FZPP unless NPk ZPP.

1. CONSTRAINED MAX SAT
See MAX 2ANLSAT.

2. MAX 0-1 INTEGER PROGRAMMING
Input: integer matrix C and integer vector d
Output: the maximum, over all 0-1 vectors x such that Cx >_ d, of the
number of l’s in x.

3. MAX CLIQUE
Input: undirected graph G
Output: the maximum number of vertices in a clique.

4. MAX SET PACKING
Input: family of finite sets {Sj}, j e (1,..., n}
Output: the maximum, over all I c_ {1,... ,n} such that the Si,i E I are
disjoint, of

5. CONSTRAINED MAX VERTEX COVER
Input: undirected graph G (V, E), S c_ V, and a vertex cover of size k
Output: the maximum, over vertex covers C of size k, of IC

6. CONSTRAINED MAX SET COVERING
Input: family of finite sets {Si}, 1,..., n, T C_ {1,..., n}, and a subcover
of size k (i.e., J c_ {1,...,n}, IJI k, such that UjjSj
Output: the maximum, over subcovers C of size k, of

7. CONSTRAINED MAX FEEDBACK NODE SET
Input: digraph G (V, E), S C_ V, and a feedback node set of size k (i.e., a
subset R c_ V of size k that contains a vertex of every directed cycle)
Output: the maximum, over feedback node sets C of size k, of

1300 DAVID ZUCKERMAN

10.

11.

12.

13.

14.

15.

16.

17.

18.

CONSTRAINED MAX FEEDBACK ARC SET
Input: digraph G (V, E), S

_
E, and a feedback arc set of size

subset R C_ E of size k that contains an edge of every directed cycle)
Output: the maximum, over feedback arc sets C of size k, of

CONSTRAINED MAX DIRECTED HAMILTONIAN CIRCUIT
Input: digraph G (V, E), S C_ E, and a Hamiltonian circuit in G
Output: the maximum, over Hamiltonian circuits C
CONSTRAINED MAX HAMILTONIAN CIRCUIT
Input: undirected graph G- (V, E), S c_ E, and a Hamiltonian circuit in G
Output" the maximum, over Hamiltonian circuits C
MAX 2ANLSAT
Input: 2CNF formula F with all variables negated
Output: the maximum, over all satisfying assignment x, of the number of
variables set to "true" in x.

CONSTRAINED MAX CHROMATIC NUMBER
Input: graph G (V, E), v E V, S

_
V, and a k-coloring of G

Output: the maximum, over all k-colorings C of G, of IC SI, where C is
the set of vertices in the same color class as v in C.
CONSTRAINED MAX CLIQUE COVER
Input: graph G (V, E), v0 E V, S c_ V, and a clique cover of G of size at
most k, i.e., a representation of G as the union of at most k cliques
Output: the maximum, over all clique covers C of G of size at most k, of

IC SI, where C is the clique containing v in C.
CONSTRAINED MAX EXACT COVER
Input: family of finite sets {S}, 1,...,n, T C_ {1,...,n}, and an exact
cover (i.e., J c_ {1,..., n} such that the Sj, j J are disjoint, and UjjSj
u_S)
Output: the maximum, over exact covers C, of

CONSTRAINED MAX HITTING SET
Input: family of subsets {Si} of {i- 1,..., n}, T C_ {1,..., n}, and a hitting
set (i.e., W C_ {1,...,n} such that for all i, [W N {1,...,n}l 1)
Output: the maximum, over hitting sets C, of IC TI.
CONSTRAINED MAX STEINER TREE
Input: undirected graph G- (V, E), S c_ E, and a Steiner tree of weight
at most k with respect to R c_ V and weighting function w" E
subtree of weight at most k containing the set of nodes in R)
Output: the maximum, over Steiner trees T C_ E of weight at most k with
respect to/7 and w, of IT A S I.
CONSTRAINED MAX THREE-DIMENSIONAL MATCHING
Input: hypergraph H (V,F), F C_ V V V, S c_ F, and a three-
dimensional matching (i.e., M c_ F, IMI IVI, and no two elements of M
agree in any coordinate)
Output: the maximum, over three-dimensional matchings N, of IN
CONSTRAINED MAX KNAPSACK
Input: (a.,a2,...,an) Zn, T c_ {1,...,n}, and a knapsack of size b (i.e.,
an S c_ {1,...,n}, Eyes ay b)
Output: the maximum, over knapsacks C of size b, of

UNAPPROXIMABLE VERSIONS OF NP-COMPLETE PROBLEMS 1301

19. CONSTRAINED MAX JOB SEQUENCING
Input: "execution time vector" (T1,..., Tn) E Zn

"deadline vector" (D1,..., Dn) E Z
"penalty vector" (P1,..., P) Zn

S c_ {1,..., n} and a schedule (permutation) r with penalty at most
k, i.e.,

E[if Tr(1 --’’’ - T(j) > D(j) then PT(j) else 0]

_
k

J

20.

21.

Output: the maximum, over schedules with penalties of at most k, of the
number of jobs in S completed by the deadline.

CONSTRAINED MAX PARTITION
Input: (a,a2,...,an) Z, k {1,...,n}, T C_ {1,...,n}, and an equal
partition (i.e., an S
Output: the maximum, over equal partitions C with k

CONSTRAINED MAX CUT
Input: undirected graph G (V, E), v E V, T C_ V, and a cut of weight at
least W with respect to the weighting function w V Z (i.e., a set S c_ V
such that

w)

Output: the maximum, over cuts C of weight at least W with v C, of

Note that the above languages are all of the following similar form. Let p be
a polynomial-time predicate corresponding to an NP language L so that x L iff
(3y {0, 1})p(x,y), where m is polynomial in n. Let S c_ {1,... ,m}, and view
y as a subset of {1,..., m}. Then the maximization problems above correspond to
maximizing IS c Yl over y such that p(x, y), given such a y.

We now consider when reductions between two such maximization problems pre-
serve the difficulty of approximation.

LEMMA 3.2. Suppose L is a language of the above form, where approximating
/ max{IS Yl}, given some y such that p(x, y), to within a factor n is hard for
some e > 0, and approximating log(k)/ to within any constant factor is hard. Let q
be a polynomial-time reduction such that x L iff x q(x) LI; moreover, given y
such that p(x, y) in polynomial time, one can compute y’ such that p’(x’, y’). Suppose
that there is an S c_ {1,...,rn} such that

Then approximating/’ max{IS’ Vy’l} given some y’ such that p’(x’, y’), to within a

factor n’ is hard for some > O, and approximating log(k)/ to within any constant
factor is hard.

Proof. The lemma follows because ’=/ and Ix’l poly(Ix]). V1

We can now prove the theorem. We first observe as in [17] that approximating
MAX 2ANLSAT is as hard as approximating MAX CLIQUE.

1302 DAVID ZUCKERMAN

LEMMA 3.3 (see [17]). For any functions f and g, approximating f(MAX CLIQUE)
to within a factor g(n) is polynomial-time reducible to approximating f(MAX 2ANLSAT)
to within a factor g(n).

Proof. The proof is contained in the proof of Theorem 4.1.

Proof of Theorem 3.1. We basically use the sequence of reductions given by
Karp [14] that the unconstrained versions of the above problems are NP-complete.
Lemma 3.3 tells us that the constrained version of 2SAT is hard to approximate.
Moreover, for 2SAT, we can easily compute a satisfying assignment if one exists.
Next, for most of the problems above, we can look at the reductions in [14] and verify
that they satisfy the conditions of Lemma 3.2. There are some reductions, however,
for which the reductions in [14] will not work. For example, Karp reduces CLIQUE to
VERTEX COVER by taking complements. This would yield a minimization problem.
Instead, we use the reduction given in [12] which goes directly from 3SAT, and we
can let S be the subset of vertices which Garey and Johnson call u.

To show the result for HAMILTONIAN CIRCUIT requires some care. We modify
the reduction given in [12] reducing VERTEX COVER to HAMILTONIAN CIRCUIT.
We briefly outline their reduction. Say we have an instance of VERTEX COVER:
a graph G (V, E) and an integer k. They construct G’= (V’, E’) as follows. V’
consists of k "selector vertices" A {al,..., ak} plus other vertices corresponding to
edges in G. E is constructed in such a way that G has a Hamiltonian circuit if[G
has a vertex cover of size k. Each a has the same adjacency list, and there are no
edges between any two a.

Our reduction is from MAX INDEPENDENT SET to CONSTRAINED MAX
HAMILTONIAN CIRCUIT. Given an instance G (V, E), IVI n, of MAX IN-
DEPENDENT SET, construct G using the reduction from VERTEX COVER above
with the parameter k n. Form G" by adding the edges {a, aj} for each pair of
selector vertices (a, aj), < j. Let S be the edges {a, aj} of this clique A. Since there
is always a vertex cover of size n in G, there will always be a Hamiltonian circuit C in
G and hence in G’. The construction of [12] ensures that C can be found efficiently.
The input to CONSTRAINED MAX HAMILTONIAN CIRCUIT is G", S, and C.

We show that the output of CONSTRAINED MAX HAMILTONIAN CIRCUIT
is (, the size of a maximum independent set in G. That is, we show that there is a
Hamiltonian circuit passing through a edges of S and no Hamiltonian circuit passing
through a + 1 edges of S. We use the fact that the size of a minimum vertex cover
is n- a. Since there is a vertex cover of size n- a in G, there is a Hamiltonian
circuit in G" which passes through a edges in S. Namely, this is the Hamiltonian
circuit in [12] with an- replaced by the path an-, an-+l,..., an. Note that we
can make this replacement since each a is connected to the same vertices outside A.
Conversely, suppose there is a Hamiltonian circuit in G" passing through a + 1 edges
in S. Since each a has the same adjacency list outside A, by contracting these edges,
we see that there is a Hamiltonian circuit passing through n-c- 1 selector vertices
in the original construction of [12], and hence there is a vertex cover of size n-a- 1,
a contradiction.

4. Two unapproximable counting problems. In this section, we show how
difficult it is to approximate the number of satisfying assignments to a monotone
2CNF formula or, equivalently, a 2CNF formula where all variables are negated. As
a corollary, we deduce the hardness of approximating the permanent of a matrix with
{- 1, 0, 1} entries.

UNAPPROXIMABLE VERSIONS OF NP-COMPLETE PROBLEMS 1303

THEOREM 4.1. There exists > 0 such that if the log of the number of satisfying
assignments to a monotone 2CNF can be approximated to within a factor of n, then
NP P. If, for some constant a, approximating log(k+l) of the number of satisfying
assignments to a monotone 2CNF to within a factor a is in FZPPk, then NP
ZPP

Proof. The proof extends the reduction in [17]. Let G ({1,..., n}, E) be a graph
with maximum clique size co > 1, and consider the formula F A{i,j}E(2i V aj).
Viewing an assignment x as a subset Sx of {1,..., n}, we see that x satisfies F iff Sx
forms a clique in G. Thus the number N of satisfying assignments to F is equal to
the number of cliques in G. Since any subset of the max clique is a clique, N >_ 2.
Since each clique has size at most co,

N< + +...+

Therefore, co _< lg N < co lg n, so lgN lg n _< co <_ lg N. Thus if lg N can be approx-
imated to within a factor a, then co can be approximated to within a factor a lg n.
Observing that the additional lg n factor is negligible in the proof of Theorem 2.13
completes the proof. Cl

As a corollary, using Valiant’s reduction [21], we can show that computing the
permanent of matrices with entries in {-1, 0, 1} is hard.

COROLLARY 4.2. If the log of the permanent of a matrix having positive per-
manent and entries in {-1, 0, 1} can be approximated to within a factor of n, then
NP P. If, for some constant a, approximating log(+1) of the permanent of a
matrix having positive permanent and entries in {-1, 0, 1} to within a factor a is in
FZPP, then NPk ZPP.

Proof. Valiant [21] showed that the number of satisfying assignments to a 3CNF
formula, and hence a 2CNF formula, can be expressed as the permanent of a -1, 0,
1 matrix. El

Acknowledgments. I am grateful to Silvio Micali for several extremely useful
discussions and to Laci Babai for observing that the conclusion NP C BPP appearing
in the preliminary version could be strengthened to NP- ZPP. I also thank Shaft
Goldwasser and Mario Szegedy for helpful discussions and the anonymous referees for
a careful reading and many valuable comments.

REFERENCES

[1] M. AJTAI, J. KOMLOS, AND E. SZEMEREDI, Deterministic simulation in Logspace, in Proc. 19th
Annual ACM Symposium on Theory of Computing, Association for Computing Machinery,
New York, 1987, pp. 132-140.

[2] N. ALON, U. FEIGE, A. WIGDERSON, AND D. ZUCKERMAN, Derandomized graph products, Com-
put. Complexity, 5 (1995), pp. 60-75.

[3] S. ARORA, C. LUND, R. MOTWANI, M. SUDAN, AND M. SZEGEDY, Proof verification and in-
tractibility of approximation problems, in Proc. 33rd Annual IEEE Symposium on Foun-
dations of Computer Science, IEEE Computer Society Press, Los Alamitos, CA, 1992, pp.
14-23.

[4] S. APOPA AND S. SAFRA, Approximating clique is NP-complete, in Proc. 33rd Annual IEEE
Symposium on Foundations of Computer Science, IEEE Computer Society Press, Los
Alamitos, CA, 1992, pp. 2-13.

[5] L. BABAI, L. FORTNOW, AND C. LUND, Non-deterministic exponential time has two-prover
interactive protocols, Comput. Complexity, 1 (1991), pp. 16-25.

1304 DAVID ZUCKERMAN

[6] M. BELLARE, S. GOLDWASSER, C. LUND, AND A. RUSSELL, EJficient probabilistically checkable
proofs and applications to approximation, in Proc. 25th Annual ACM Symposium on The-
ory of Computing, Association for Computing Machinery, New York, 1993, pp. 294-304.

[7] M. BELLARE AND M. SUDAN, Improved non-approximability results, in Proc. 26th Annual ACM
Symposium on Theory of Computing, Association for Computing Machinery, New York,
1994 pp. 184-193.

[8] P. BERMAN AND G. SCHNITGER, On the complexity of approximating the independent set prob-
lem, Inform. and Comput., 96 (1992), pp. 77-94.

[9] A. COHEN AND A. WIGDERSON, Dispersers, deterministic amplification, and weak random
sources, in Proc. 30th Annual IEEE Symposium on Foundations of Computer Science,
IEEE Computer Society Press, Los Alamitos, CA, 1989, pp. 14-19.

[10] S. A. COOK, The complexity of theorem-proving procedures, in Proc. 3rd Annual ACM Sym-
posium on Theory of Computing, Association for Computing Machinery New York, 1971,
pp. 151-158.

[11] U. FEIGE, S. GOLDWASSER, L. LOVASZ, S. SAFRA, AND M. SZEGEDY, Approximating clique is
almost NP-complete, in Proc. 32nd Annual IEEE Symposium on Foundations of Computer
Science, IEEE Computer Society Press, Los Alamitos, CA, 1991, pp. 2-12.

[12] M. R. GAREY AND D. S. JOHNSON, Computers and Intractability: A Guide to the Theory of
NP-Completeness. W. H. Freeman, San Francisco, CA, 1979.

[13] M. JERRUM AND U. VAZIRANI, A mildly exponential approximation algorithm for the perma-
nent in Proc. 33rd Annual IEEE Symposium on Foundations of Computer Science, IEEE
Computer Society Press, Los Alamitos, CA, 1992, pp. 320-326.

[14] R, M. KARP, Reducibility among combinatorial problems, in Complexity of Computer Compu-
tations, R. E. Miller and J. W. Thatcher, eds., Plenum Press, New York, 1972, pp. 85-103.

[15] R. M. KARP, M, LUBY, AND N. MADRAS, Monte-Carlo approximation algorithms for enumer-
ation problems, J. Algorithms, 10 (1989), pp. 429-448.

[16] C. LUND AND M. YANNAKAKIS, On the hardness of approximating minimization problems, in
Proc. 25th Annual ACM Symposium on Theory of Computing, Association for Computing
Machinery, New York, 1993, pp. 286-293.

[17] A. PANCONESI AND D. RANJAN, Quantifiers and Approximation, in Proc. 22nd Annual ACM
Symposium on Theory of Computing, Association for Computing Machinery, New York,
1990, pp. 446-456,

[18] C. H. PAPADIMITRIOU AND M. YANNAKAKIS, Optimization, approximation, and complexity
classes, J. Comput. System Sci. 43 (1991), pp. 425-440.

[19] M. SANTHA, On using deterministic functions to reduce randomness in probabilistic algorithms,
Inform. and Comput., 74 (1987), pp. 241-249.

[20] M. SIPSER, Expanders, randomness, or time versus space, J, Comput. System Sci., 36 (1988),
pp. 379-383.

[21] L. G. VALIANT, The complexity of computing the permanent, Theoret. Comput. Sci., 8 (1979),
pp. 189-201.

[22] D. ZUCKERMAN, Simulating BPP using a general weak random source, Algorithmica, to appear;
preliminary version in Proc. 32nd Annual IEEE Symposium on Foundations of Computer
Science, IEEE Computer Society Press, Los Alamitos, CA, 1991, pp. 79-89.

SIAM J. COMPUT.
Vol. 25, No. 6, pp. 1305-1317, December 1996

1996 Society for Industrial and Applied Mathematics
010

A LINEAR-TIME ALGORITHM FOR FINDING
TREE-DECOMPOSITIONS OF SMALL TREEWIDTH*

HANS L. BODLAENDERt

Abstract. In this paper, we give for constant k a linear-time algorithm that, given a graph
G (V, E), determines whether the treewidth of G is at most k and, if so, finds a tree-decomposition
of G with treewidth at most k. A consequence is that every minor-closed class of graphs that does
not contain all planar graphs has a linear-time recognition algorithm. Another consequence is that
a similar result holds when we look instead for path-decompositions with pathwidth at most some
constant k.

Key words, graph algorithms, treewidth, pathwidth, partial k-trees, graph minors

AMS subject classifications. 68R10, 05C85, 05C05

1. Introduction.

1.1. Background. The notions of "tree-decomposition" and "treewidth" have
received much attention recently, not in the least due to the important role they
play in the deep results on graph minors by Robertson and Seymour (see, e.g., [27,
28, 29, 30, 31] and many other papers in this series). (See also [21].) Also, many
graph problems, including a very large number of well-known NP-hard problems,
have been shown to be linear-time solvable on graphs that are given together with a
tree-decomposition of treewidth at most k for constant k. (See, among other sources,
[2, 5, 6, 7, 8, 12, 14, 15, 16, 33, 35].)

The first step of algorithms that exploit the small treewidth of input graphs is to
find a tree-decomposition with treewidth bounded by a constant--although possibly
not optimal. Thus far, this step has dominated the running time of most algorithms
since the second step (some kind of "dynamic-programming" algorithm using the tree-
decomposition) usually costs only linear time. The best algorithm known so far for
this "first step" was an algorithm by Reed [26], which costs O(n log n). In this paper,
we improve on this result and give a linear-time algorithm.

The problem "Given a graph G (V, E) and an integer k, is the treewidth of G at
most k?" is NP-complete [3]. Much work has been done on this problem for constant
k. For k 1, 2, 3, linear-time algorithms exist [25]. Recently, Sanders [32] established
a complex linear-time algorithm for the case where k 4. Arnborg et al. [3] showed
that the problem is solvable in O(n+2) time for constant k. Then Robertson and
Seymour gave a nonconstructive proof of the existence of O(n2) decision algorithms
[31]. Actually, this algorithm is of a "two-step" form, as described above. The first
step is to apply an O(n) algorithm that either outputs that the treewidth of G is
larger than k or outputs a tree-decomposition with width at most 4k. (Actually,
the result is stated in [31] in terms of "branchwidth," but this is an unimportant
technical difference.) The second step uses the notion of graph minors. A graph G is
a minor of a graph H if G can be obtained from H by a series of vertex deletions, edge
deletions, and edge contractions. Robertson and Seymour have shown that every class
of graphs G that is closed under the taking of minors has a finite set of graphs, called

Received by the editors June 28, 1993; accepted for publication (in revised form) March 15
1995. This research was partially supported by the EC ESPRIT Basic Research Actions contract
7141 (project ALCOM II).

Department of Computer Science, Utrecht University, P. O. Box 80.089, 3508 TB Utrecht, the
Netherlands (hansb@cs.ruu.nl).

1305

1306 H.L. BODLAENDER

the obstruction set, with the property that a graph belongs to if and only if it has
no graph from the obstruction set as a minor. Since the class of graphs with treewidth
at most k is closed under minors for every fixed value k, a finite characterization in
terms of forbidden minors exists for this class. Hence the second step of the algorithm
checks whether this characterization holds for the input graph. This step can be done
in linear time using dynamic-programming techniques as used, e.g., in [5, 6, 14]. In
[9] (using results from [20]), it was shown that the nonconstructive elements can
be avoided using self-reduction without increasing the running time by more than a

(huge) constant factor.
Both Lagergren [23] and Reed [26] improved on the "first step." Lagergren gave

a sequential algorithm that uses O(n log n) time and a parallel algorithm that uses

O(n) processors and O(log3 n) time. Reed gave a sequential O(nlogn) algorithm
that has a parallel implementation with O(n/log n) processors and O(log2 n) time.
A related probabilistic result (with running time O(nlogn + n log pl), where p is
the probability of error) was found by Matousk and Thomas [25]. Each of these
algorithms either determines that the input graph G has treewidth greater than k
or finds a tree-decomposition of G with treewidth bounded by some constant (linear
in k). They all are based upon finding "balanced separators" in some clever way.
Our algorithm uses a different approach: we reduce the problem in linear time to a
problem on a smaller graph by edge contraction or by removing "simplicial vertices."

Independently, Lagergren and Arnborg [24] and Bodlaender and Kloks [12, 22]
showed that the "second step" can be done without the use of graph minors and
gave explicit algorithms to test in linear time whether G has treewidth at most k
once a tree-decomposition of G with bounded treewidth is available. Moreover, from
these results, it follows that a technique of Fellows and Langston [19] can be used to
compute the obstruction set of the class of graphs with treewidth < k. Bodlaender
and Kloks also showed how, if it exists, a tree-decomposition with width at most k
can be computed in the same time bounds. Results of a similar flavor were obtained
independently by Abrahamson and Fellows [1].

Recognition algorithms for graphs with treewidth < k (k constant) have been
designed by Arnborg et al. [4]. These algorithms use linear time but polynomial--not
linear--memory. (It is allowed that the algorithm consults the contents of memory
that is never written to.) A disadvantage of this approach is that it is not known how
to construct tree-decompositions with small treewidth by the method.

1.2. Main idea of algorithm. The main result in this paper is the following.
THEOREM 1.1. For all k N, there exists a linear-time algorithm that tests

whether a given graph G (V, E) has treewidth at most k and, if so, outputs a tree-
decomposition of G with treewidth at most k.

We now give an outline of how this result is obtained.
We begin by introducing some notation. For a value d to be fixed later, we define

low-degree vertices as vertices of degree at most d and high-degree vertices as vertices
of degree greater than d. A vertex is friendly if it is a low-degree vertex and adjacent
to another low-degree vertex. A vertex is simplicial if its neighbors form a clique. The
improved graph of a graph G is obtained by adding edges between all vertices that
have at least k + 1 common neighbors of degree at most k. A vertex is I-simplicial in
a graph G if it is simplicial in the improved graph of G and has degree at most k in
G.

The algorithm distinguishes between two cases"

1 There are "many" friendly vertices. As shown in 3, any maximal matching

FINDING TREE-DECOMPOSITIONS OF SMALL TREEWIDTH 1307

in G contains in this case "sufficiently many" ((n)) edges. We compute the graph G’
obtained by contracting all edges in a maximal matching. Recursively, we compute
a tree-decomposition of treewidth at most k of G or conclude that the treewidth of
G and hence the treewidth of G is larger than k. From this tree-decomposition, we
can easily build a tree-decomposition of G with treewidth at most 2k + 1. This latter
tree-decomposition is used to solve the problem using the algorithm of Bodlaender
and Kloks [12, 22]: using the tree-decomposition of G with treewidth at most 2k+ 1, it
decides whether the treewidth of G is at most k and, if so, finds a tree-decomposition
of G with treewidth at most k.

2. G has "only few" friendly vertices. In this case, the algorithm starts by
computing the improved graph of G. In 4, it is shown that this improved graph
has treewidth at most k if and only if G has treewidth at most k. Also, in 4, it
is shown that in this case, the improved graph of G has "sufficiently many" (ft(n))
vertices that are I-simplicial (unless the treewidth of G is more than k). Recursively, a

tree-decomposition with treewidth at most k is computed of the graph G obtained by
removing all I-simplicial vertices from the improved graph of G, or we conclude that
the treewidth of G and hence of G is larger than k. Given such a tree-decomposition
of G, a tree-decomposition of G with treewidth at most k is computed as follows:
since the neighbors of an I-simplicial vertex v form a clique in G, a well-known lemma
tells us that there is one node in the tree-decomposition of G with Xi containing
all neighbors of v. Then we add a new node to the tree-decomposition, adjacent to
i, containing v and its neighbors. In this way, we obtain a tree-decomposition of
with treewidth at most k.

In each case, the amount of work of the nonrecursive steps is linear, and each G
has size at most a constant fraction of the size of G. It follows that the algorithm
uses linear time.

The basic algorithm will be given in 5. Some implementation details will be
discussed in 6. Finally, some consequences of the result will be discussed in 7.

2. Definitions and preliminary results. The notion of treewidth was intro-
duced by Robertson and Seymour [27].

DEFINITION. A tree-decomposition of a graph G (V, E) is a pair (X, T), where
T- a and X- a fa n@ of of V,
node of T, such that

(i) U Xi V,
(iN) for all edges (v, w) E E, there exists an I with v Xi and w Xi, and
(iii) for all i, j, k I, if j is on the path from to k in T, then X r-1Xk c_ Xj.

The treewidth of a tree-decomposition ({Xi I},T- (I, F)) is maxix IXil- 1.
The treewidth of a graph G is the minimum treewidth over all possible tree-
decompositions of G.

There are several equivalent notations, e.g., a graph is a partial k-tree if and only
if its treewidth is at most k [34].

LEMMA 2.1. (See, e.g., [13].) Suppose ({Xi I},T (I,F)) is a tree-
decomposition of G (V, E).

(i) If W c_ V forms a clique in G, then there exists an I with W c_ X.
(iN) If each vertex in W1 C_ V is adjacent to each vertex in W2 c_ V, then there

exists an I with W1 c_ Xi or W2 c Xi.
The contraction operation removes two adjacent vertices v and w and replaces

them with one new vertex that is made adjacent to all vertices that were adjacent to
v and w.

1308 H.L. BODLAENDER

We say that a tree-decomposition (X, T) of treewidth k is smooth if for all
I, IXil k+ 1 and for all (i,j) F, IXiOXjl k. Any tree-decomposition of a graph
G can be transformed to a smooth tree-decomposition of G with the same treewidth.
Apply the following operations until none is possible:

(i) If for (i, j) F, Xi

_
Xj, then contract the edge (i, j) in T and take as the

new node Xj, Xj.
(ii) If for (i, j) F, X.i Xj and IXjl < k + 1, then choose a vertex v Xi-Xj

and add v to Xj.
(iii) If for (i,j) F, Ixil- Ixjl- + 1 and IXi Xjl > 1, then subdivide the

edge (i, j) in T; let i’ be the new node; choose a vertex v E X-X. and a vertex

LEMMA 2.2. If (X, T) is a smooth tree-decomposition ofG (V, E) with treewidth
k, then III IvI- k.

Proof. The proof is by induction on I l. If III 1, th n clearly IvI / 1.
Suppose that the lemma holds for II] r- 1. Consider a smooth tree-decomposition
(X,T) ofagraph G (V,E) with treewidth k and III r. Let be aleafofT.
There is a unique vertex v that belongs to X but not to any set XO, j I- {i}. If
we remove node from T, we get a smooth tree-decomposition of G[V {v}] with
treewidth k and with III- 1 nodes. The result now follows by induction.

The following well-known lemma can be easily proved by induction on the number
of vertices, removing vertices as in Lemma 2.2.

LEMMA 2.3. If the treewidth of G (V,E) is at most k, then IEI <_ klV

The set of neighbors of a vertex v in G (V, E) is denoted by Na(v) {w
v

THEOREM 2.4. (See Bodlaender and Kloks [12, 22].) For all k and l, there ezists
a linear-time algorithm that, when given a graph G (V, E) together with a tree-
decomposition (X, T) of G with treewidth at most l, determines whether the treewidth

of G is at most k and, if so, finds a tree-decomposition of G with treewidth at most
k.

Analysis of this algorithm shows that its constant factor is at most -2 ((2/+
3)t+3 (. 2+)t+3)2t-1, i.e., when O(k), exponential in k3. The analysis
leading to this constant is rather crude, however, and a precise analysis should give a
much better and smaller estimate.

3. Friendly, high-degree, and low-degree vertices. In this section, we in-
troduce the concepts of the "friendly," "high-degree," and "low-degree" vertex. We
show that a graph with treewidth at most k has "few" high-degree vertices, and when
it has "many" friendly vertices, then it has a "large" maximal matching.

In the remainder, we assume that k is a given fixed constant. Let

1
C1]2. (It -- 1). (4k2 + 12k + 16)

Note that

1
c2= 8k+24k+32

1
c= 4k+12k+16

Cl]C2 (k-] 1)
2

FINDING TREE-DECOMPOSITIONS OF SMALL TREEWIDTH 1309

Let d 2k3. (k + 1). (4k2 + 12k + 16). Note that d- 2k/cl. We say that a vertex
with degree at most d is a low-degree vertex and a vertex with degree larger than d is
a high-degree vertex. A vertex is said to be friendly if it is a low-degree vertex and is
adjacent to at least one other low-degree vertex.

We show below that cl is an upper bound on the fraction of high-degree vertices.
In this section and the next, we show that c2 is a lower bound on the fraction of
vertices that can be removed in one of the two cases, as mentioned in 1.2.

LEMMA 3.1. There are fewer than c. IVI high-degree vertices in a graph with
treewidth k.

Proof. If there are nt high-degree vertices, then G must contain at least nt. d/2
edges. By Lemma 2.3, nt. d/2 < kIvI.

A maximal matching of a graph G (V, E) is a set of edges M c_ E such that no
two edges in M share an endpoint and every e E E- M shares an endpoint with an

edge in M. We can easily find a maximal matching in O(IV / IEI) time with a greedy
algorithm. Note that by Lemma 2.3, O(IV + IEI) O(IVI) for graphs G (V, E)
with their treewidth bounded by a constant.

LEMMA 3.2. If there are nf friendly vertices in G (V, E), then any maximal
matching of G contains at least nf /(2d) edges.

Proof. Consider a maximal matching M. Any friendly vertex must be endpoint
of an edge in M or adjacent to a friendly vertex that is an endpoint of an edge in
M. With each edge e of M, we associate the at most 2d friendly vertices that are

endpoints of e or adjacent to friendly (and hence low-degree) endpoints of e. If a

friendly vertex has not been associated with at least one edge in M, then M is not
maximal. Hence IMI >_ nf/(2d). D

Let M be a maximal matching in G (V, E), and let G’ (V’, E’) be the graph
obtained by contracting all edges in M. Define fM V --. V by fM(v) v if v is
not an endpoint of an edge in M, and let fM(v) fM(W) be the vertex that the
contraction of the edge (v, w) E M results in.

LEMMA 3.3. Let M, G, G, and fM be as above. If (X, T) is a tree-decomposition
of G’ with treewidth k, then (Y, T) defined by Y {v V fM(v) Xi} is a tree-
decomposition of G with treewidth at most 2k + 1.

Proof. This easily follows from the definitions. D
LEMMA 3.4. (See, e.g., [27].) If G’ is a minor of G, then the treewidth of G’ is

at most the treewidth of G.

4. Sirnplicial vertices. In this section, we introduce the improved graph of a

graph G. We show that a graph G has treewidth at most k if and only if its improved
graph has treewidth at most k. The main result of this section is Theorem 4.3, which
states that every graph of treewidth at most k contains "many" friendly vertices or
"many" I-simplicial vertices.

For a graph G (V, E), let the improved graph G’ (V, E’) of G be the graph
obtained by adding an edge (v, w) to E for all pairs v, w V such that v and w have
at least k + 1 common neighbors of degree at most k in G.

LEMMA 4.1. If the treewidth of G is at most k, then the treewidth of the improved
graph of G is at most k. Moreover, any tree-decomposition of G with treewidth at most
k is also a tree-decomposition of the improved graph with treewidth at most k, and vice
versa.

Proof. Suppose that (X, T) is a tree-decomposition of G (V, E) with treewidth
at most k. Consider vertices v and w with at least k + 1 common neighbors. By
Lemma 2.1(ii), there exists either an I with v,w E X or an I with X

1310 H.L. BODLAENDER

containing the set W of all common neighbors of v and w. In the latter case, (X, T) is
also a tree-decomposition of the graph G" obtained from G by adding edges between
all vertices in W. However, G" contains a clique with at least k + 2 vertices (namely,
W O {v}) and has treewidth at most k. This contradicts Lemma 2.1(i).

Therefore, for all v and w that have k + 1 common neighbors, there exists an E I
with v, w E Xi. Hence (X, T) is also a tree-decomposition of the improved graph of
G. The lemma now follows directly.

We say that a vertex v is simplicial in G if its neighbors form a clique in G. We
say that v is I-simplicial if it is simplicial in the improved graph of G and is of degree
at most k in G.

We now derive via a series of lemmas the following result, which states that if
we have "few" friendly vertices and the treewidth of G is at most k, then we have
"many" I-simplicial vertices.

THEOREM 4.2. For every graph G (V, E) with treewidth at most k, at least one

of the following properties holds:
(i) G contains at least IVl/(4k2 + 12k + 16) friendly vertices.
(ii) The improved graph of G contains at least c2lVI I-simplicial vertices.

Proof. The proof of Theorem 4.2 will be given with help of several lemmas.
A vertex v V is said to be T-simplicial with respect to some tree-decomposition

(X, T) if it is not friendly and there exists a node I such that all neighbors of v
belong to Xi. A T-simplicial vertex has degree at most k since all of its neighbors
belong to a set Xi, Ixil _< k + 1.

LEMMA 4.3. For a smooth tree-decompositions (X,T) of G (V,E) with
treewidth k, the following conditions hold:

(i) We can associate with every leaf of T a low-degree vertex v Xi that is
friendly or T-sirnplicial with respect to (X, T), and there does not exist a j I, j i,
with v

(ii) We can associate with every path io, il, ik+ak+a in T with il,
nodes of degree 2 in T at least one vertex v Xil U... U Xik+3k+ that is friendly or

T-simplicial with respect to (X, T) such that v does not belong to a set Xj with j I
a node not on this path.

Proof. (i) Let j be the neighbor of leaf in T. Let v be the unique vertex in

Xi Xj. v is adjacent to only vertices in X. Either all neighbors of v are of high
degree, in which case v is T-simplicial with respect to (X, T), or a neighbor of v is of
low degree, in which case v is friendly.

(ii) Note that IXo U..-t2 Xik+ak+al k’ + 4k + 4 < d. Hence all vertices in

Xil t2... t2 Xi.+a+ (Xio t2 X.+3+a) are of low degree. Suppose that neither of
them is friendly, i.e., they are adjacent to only high-degree vertices in Xi t2 Xi+a+a.
Suppose that Xi contains r high degree vertices, say Wl,..., w. Clearly, r < IXiol
k + 1. For each s, where 1 _< s <_ r, assume that w belongs to successive sets
Xio, Xi,..., Xi. Suppose w.l.o.g, i _< iw <_-.. _< i. If some low-degree vertex
v belongs to exactly one set Xi, 1 < j < k2 + 3k + 2, then it must be T-simplicial
with respect to (X, T). If some low-degree vertex v belongs only to (a subset of) sets

Xiw+,... Xiw+l, then all neighbors of v belong to Xiw+ hence v is T-simplicial
with respect to (X,T). All vertices in Xi U.-. U Xik.+a+. that are not of one of
these two types must belong to at least one of the sets Xio, Xi,..., Xi, Xi+a+3.
These are, in total, at most (k + 1)(k + 3) k + 4k + 3 vertices. Therefore, at least
one vertex in Xi t2... U Xi.+a+ Xi Xik.+a+a must be T-simplicial with respect
to (X, T).

FINDING TREE-DECOMPOSITIONS OF SMALL TREEWIDTH 1311

A leaf-path collection of a tree T is a collection of leaves in T plus a collection of
paths of length k2 + 3k + 4 in T where all nodes on a path that are not endpoints of
a path have degree 2 in T and do not belong to any other path in the collection. The
size of the collection is the total number of leaves plus the total number of paths in
the collection.

LEMMA 4.4. Each tree with r nodes contains a leaf-path collection of size at least
+ + s).

proofLet rb be the number of nodes of degree at least 3, r be the number of leaves,
and r2 be the number of nodes of degree 2. Clearly, rb < rt. All nodes of degree 2
belong to < rt +rb connected components of the forest, obtained by removing all leaves
and all nodes with degree 3 or larger from the tree. Each such component contains at
most k2 + 3k + 3 nodes that are not part of a leaf-path collection of maximum size.
Therefore, there are fewer than (rb + rz)(k + 3k + 3) nodes of degree 2 that are not
on a path in the collection. Hence there are at least

r2 (rb -t- r/)(]2 - 3] -- 3)
k + 3k + 4

paths in a leaf-path collection of maximum size. It follows that the maximum size of
a leaf-path collection is at least

(r (rb + r)(k2 + 3k + 3)) l r
max r,

k+3k+4 +r _>-2" k+3k+4"

COROLLARY 4.5. If (X, T) is a smooth tree-decomposition of G (V, T) with
treewidth k, then G contains at least IVI/(2k + 6k + 8) 1 vertices that are friendly
or T-simplicial with respect to (X, T).

Proof. T contains IVI- k nodes (Lemma 2.2). Now apply Lemmas 4.3 and
4.4.

A set Y

_
V of high-degree vertices is said to be serniimportant with respect to

the tree-decomposition (X, T) of G (V, E) if there exists an E I with Y C_ Xi. A
set Y is said to be important if it is semiimportant with respect to (X, T) and not
contained in any larger semiimportant set with respect to (X, T).

LEMMA 4.6. Let (X, T) be a tree-decomposition of G- (V, E) with treewidth k.
The number of different important sets with respect to (X, T) is at most the number
of high-degree vertices in G.

Proof. Let L be the set of high-degree vertices in G. ({XiNLli I},T) is a tree-
decomposition of GILl. Each important set Y is a set Xi C L that is not contained in
another set Xi, C L. Repeatedly contract edges (i, t) in T with Xi C? L _D Xi, L with
the newly formed node containing all vertices in Xi. The resulting tree-decomposition
of GILl contains the same maximal sets X and will have at most [LI nodes.

A function f that maps each T-simplicial (with respect to some tree-decom-
position (X,T)) vertex v to an important (with respect to (X,T)) set Y with
Nc(v) C_ Y is called a T-simplicial-to-important function for (X, T). By definition, a
T-simplicial-to-important function always exists.

LEMMA 4.7. Let f be a T-simplicial-to-important function for a smooth tree-
decomposition (X, T) of G- (V, E) with treewidth k. Let Y be an important set with

k(k + 1) T-simplicial vertices with respect to (X, T)respect to (X, T). Then at most -(a e
Proof. Assign each non-I-simplicial T-simplicial vertex v to a pair of neighbors

of v, that are nonadjacent in the improved graph. To each pair of vertices, there

1312 H.L. BODLAENDER

cannot be assigned more than k vertices since otherwise they would have at least
k + 1 common neighbors of degree at most k and there would be an edge between
them in the improved graph.

It follows that the number of non-I-simplicil T-simplicil vertices v with f(v) Y
is at most 1/2]Y[-([YI- 1) _< 1/2k2(k + 1). [:l

We can now prove Theorem 4.2. Suppose that G contains fewer than
12k + 16) friendly vertices and that the treewidth of G is at most k. By Lemma
3.1, there are at most cl. IV[high-degree vertices in G, and hence, by Lemma 4.6,
the number of important sets with respect to an arbitrary smooth tree-decomposition
(X, T) of G with treewidth <_ k is at most cl. IV I. Using both the fact that a T-
simplicial-to-important function always exists and Lemma 4.7, it follows that at most
1/2k2(k+ 1). (c. IV[-1) W-simplicial vertices with respect to (X, T) are not I-simplicial.
Using Corollary 4.5, it follows that [Y[/(2k2 + 6k + 8) 1 -IYl/(4k2 + 12k + 16)
-k2(k + 1). (c. IV[- 1) > c2. IVI vertices are I-simplicial. This completes the proof2
of Theorem 4.2.

LEMMA 4.8. Let (X,T) be a tree-decomposition of treewidth at most k of the
graph G obtained by removing all I-simplicial vertices (and adjacent edges) from the
improved graph of graph G (V, E). Then for all I-simplicial vertices v, there exists
an E I with Na(v) C_ Xi.

Proof. Note that, by definition, I-simplicial vertices are nonadjacent in G, and
their neighborhood forms a clique in the improved graph of G. The result now follows
directly from Lemma 2.1(i).

5. Main algorithm. We now give a recursive description of our main algorithm.
Some details will be discussed in 6. Our algorithm, when given a graph G (V, E),
either

(i) outputs that the treewidth of G is larger than k or
(ii) outputs a tree-decomposition of G with treewidth at most k.

For "very small graphs" (i.e., with at most some constant number of vertices),
any other finite algorithm is used to solve the problem. Otherwise, the following
algorithm is used:

First, check whether IEI <_ k. IV 1/2k(k / 1). If this is not the case, we know by
Lemma 2.3 that the treewidth of G is larger than k: stop.

Now count the number of friendly vertices. If there are at least IVI/(4k2 /12k+ 16)
friendly vertices, do the following:

(i) Find a maximal matching M C_ E in G.
(ii) Compute the graph G’ -- (V’, E’) obtained by contracting every edge in M.
(iii) Recursively apply the algorithm to G.
(iv) If G has treewidth larger than k, stop. The treewidth of G is also larger

than k. (See Lemma 3.4.)
(v) Suppose that the recursive call yielded a tree-decomposition (X, T) of

with treewidth k. Construct a tree-decomposition (Y, T) of G with treewidth at most
2k + 1, as in Lemma 3.3.

(vi) Use the algorithm of Theorem 2.4 to compute whether the treewidth of G
is at most k and, if so, compute a tree-decomposition of G of treewidth at most k.
If there are fewer than IVI/(4k2 + 12k + 16) friendly vertices, do the following:

(i) Compute the improved graph of G. (See 6.)
(ii) If there exists an I-simplicial vertex with degree at least k / 1, then stop:

the improved graph of G contains a clique with k + 2 vertices; hence the treewidth of
G is more than k.

FINDING TREE-DECOMPOSITIONS OF SMALL TREEWIDTH 1313

(iii) Put all I-simplicial vertices in some set SL. Compute the graph G obtained
by removing all I-simplicial vertices and adjacent edges from G.

(iv) If ISLI < c21VI, then stop: the treewidth of G is larger than k. (See
Theorem 4.2.)

(v) (Now ISLI >_ c21Yl.) Recursively apply the algorithm on G’.
(vi) If the treewidth of G is larger than k, then stop: since G is a subgraph of

G, we also have that the treewidth of G is larger than k.
(vii) Suppose that the recursive call yielded a tree-decomposition (X, T) of G’

with treewidth k. For all v E SL, find an iv V with No(v) C_ X,, add a new node
jv to T with Xj. {v} t No(v), and make Jv adjacent to iv in T. (Such a node iv
exists by Lemma 4.8.) The result is a tree-decomposition of G with treewidth at most
k.

The correctness of the algorithm follows from results given in 2 and 4,

The running time of the algorithm can be estimated as follows. We recursively
apply the algorithm on either a graph with (1 1/(2d(4k + 12k + 6))). IVI vertices
(Lemma 3.2) or a graph with (1 -c2)lVI vertices. Write

c3= 8k6+32ka+56k3+32k3
=max 1-c2, 1-

2d. (4k2 + 12k + 16)

Since all nonrecursive steps have a linear-time implementation (see also 6), we have
that if the algorithm takes T(n) time on a graph with n vertices in the worst case,
then T(n) <_ T(c3. n) + O(n); hence T(n) O(n). It also follows that the algorithm
uses linear memory.

6. Some details of the algorithm. In this section, we show that the steps
of the algorithm given in 5 can be implemented in linear time and linear memory.
Most steps are either rather straightforward and thus left to the reader or follow from
earlier results. Note that we may always assume that the number of edges that we
are working with is linear in the number of vertices. All graphs that we work with
will be represented by their adjacency lists.

When we contract the edges in a matching M, we directly get an implicit rep-
resentation of G by a bag of edges, where some edges of G may appear twice. By
bucket sorting this bag of edges twice, we can remove all multiple copies of edges and
easily obtain an adjacency list representation of G.

Computing the improved graph and the I-simpliciaI vertices. Number the vertices
vl, v2,..., Vn. We use a queue Q that contains triples of the form ((v, w), x) with
v, w,x V or of the form ((v, w),--), v, w V. Also, we use an array S with, for
each v V,.a list Siva] containing pairs of vertices. For all (v, vj) E with i <: j,
put ((vi, vj),--) on Q. For all vertices v E V with degree at most k, for all pairs
of neighbors vi, vy NG(v) with <: j, put ((vi, vj), v) on Q. Now "bucket sort" Q
twice, once to the first-vertex entries and once to the second-vertex entries. After
this double bucket sort, all pairs of the form.((vi, vj),...) for fixed vi and vj will be
in consecutive positions in Q. By inspecting Q, we can directly see what pairs of
vertices have at least k + 1 common neighbors of degree at most k. (If at least k + 1
entries ((vi, vj), v) are adjacent in Q for some pair vi, vj, (vi, vj) must be present in
the improved graph.) For each such pair (vi, vj) and if a triple ((vi, vj),--) is in Q,
add the pair (vi, vy) to all lists S[v] for vertices v with ((vi, vy), v) in Q. This all can
be done in linear time using the consecutiveness of the pairs of the form ((vi, vy),...).

1314 H.L. BODLAENDER

Checking whether a vertex v of degree at most k is I-simplicial can be done by
inspecting Sly]. S[v] will consist precisely of all edges between neighbors of v. Since
v has degree at most k, S[v] is of size, bounded by a constant.

Addin9 I-simplicial vertices back in the tree-decomposition. Suppose that we have
a tree-decomposition (X, T) of G[V- SL] and we want to add all I-simplicial vertices
in SL. For all _< k, we take a queue Qz, in which we place all pairs ((vii,..., vi), i)
for vi,...,vi E Xi, E I, il < i2 <... < iz, and all pairs ((vil,...,vi),v) with v
I-simplicial and No(v)= {Vil,...,viz, il < i2 <." < iz}.

For each l, 1 _< _< k, bucket sort Q times, once for each of the positions in the
/-tuple. All entries of the form ((vii,..., vi,),...) will be at successive positions in Q
after this operation. By a simple scan of Qz, we can find for each entry ((vii, vii), v)
an entry of the form ((Vie,..., %), i) for some I. This node is a node that the
new node j. with Xjv {v} t2 No(v) can be made adjacent to.

Analysis of the constant factor. We now analyze the constant factor of the algo-
rithm somewhat more precisely. (In the following analysis, k is no longer considered
a constant.) There are two nonrecursive steps that take time with a constant fac-
tor that is not polynomial in k" the application of the algorithm of Theorem 2.4
and the addition of I-simplicial vertices back in the tree-decomposition. One di-
rectly sees that the former constant is largest. Note that Theorem 2.4 is applied
with 2k+l. Now, since 1-ca O(k-5), T(n) <_ T(can)+(2k+l)2k+1-2.
((2(2k + 1) + 3)2(2k+l)+a (22+2)2(2+1)+a)2(+)-1 .n, we have that T(n)
O(k. (2k + 1) (e+i)- ((2(2k + 1)+ 3)(+l)+a (-. 22k+2)2(2k+l)+3) 2(2k+1)-1"
i.e., linear with a constant factor that is exponential in/ca.

7. Final remarks. A consequence of the result in this paper is that all results
that state that certain problems are solvable in linear time for graphs that are given
together with a tree-decomposition of width bounded by a constant are turned into
results that state that these problems can be solved in linear time on graphs with
treewidth bounded by a constant. One of the most notable of such results is the
following.

THEOREM 7.1. Every class of graphs that does not contain all planar graphs and
is closed under the taking of minors has a linear-time recognition algorithm.

Proof. See, e.g., [31]. Use the algorithm described in this paper to find a tree-
decomposition of the input graph with treewidth bounded by a constant, and use this
tree-decomposition to test for minor inclusion for all graphs in the obstruction set of
the class. D

Note that the result of Theorem 7.1 is nonconstructive: it relies on the non-
constructively proven fact that every minor-closed class of graphs has a finite charac-
terization in terms of an obstruction set (see [31]). Thus we know that an algorithm
exists, but the algorithm itself is not known. Even worse, even if an obstruction set
and hence the algorithm were known for a certain class of graphs, the algorithm ob-
tained with this method would only produce "yes" and "no" answers and would not
construct any additional desired information. (For example, the result states that
the class of graphs which are subgraphs of a planar graph with diameter at most d is
linear-time recognizable for fixed d. However, such an algorithm would not produce
such planar supergraphs of diameter at most d for "yes" instances.) In [17, 18], several
classes of graphs to which Theorem 7.1 can be applied can be found. For several of
these classes, we expect that constructive linear-time algorithms for recognition and
construction of solutions can be found. Recent research [10] shows that linear-time
algorithms can be constructed that solve minimum-cut linear arrangement, search

FINDING TREE-DECOMPOSITIONS OF SMALL TREEWIDTH 1315

number, and some related problems for constant k and, for "yes" instances, output
the required linear arrangement.

Note that the result shown in this paper is equivalent to stating that (for fixed
partial k-trees can be recognized and embedded in a k-tree (or a chordal graph with
maximum clique size k / I) in linear time. Also, a direct consequence is the following.

THEOREM 7.2. For all k E N, there exists a linear-time algorithm that tests
whether a given graph G (V, E) has pathwidth at most k and, if so, outputs a path-
decomposition of G with pathwidth at most k.

Proof. First, use the algorithm described in this paper. When the treewidth of G
is larger than k, then clearly we also have that the pathwidth of G is larger than k.
Otherwise, use the result from [12, 22] that states that for all constants k and l, there
exists a linear-time algorithm that, when given a graph G and a tree-decomposition
of G with treewidth at most l, decides whether G has pathwidth at most k and, if so,
outputs a path-decomposition of G with pathwidth at most k.

The constant factor of the algorithm as derived above is very large--much too
large for practical purposes. We remark that the analysis used some crude arguments,
and it can be expected that the real constant factor of the algorithm is much smaller.
However, the algorithm in its present form is probably not practical, even for k 4.
An interesting topic for further research is the development of a practical algorithm
for the "treewidth _< k" problem. Ideas and techniques in this paper may help to
develop such algorithms. For instance, finding I-simplicial vertices is done quite fast
and may be a good heuristic.

It is also possible to modify the algorithm such that it uses the algorithm in [12, 22]
only on tree-decompositions with treewidth at most k / 1 at the cost of increasing the
running time to O(n log n). Provided that the algorithm in [12, 22] can be made fast
enough, this modification may well be quite practical for small values of k (like k 4
or k 5). The idea is as follows" instead of using the construction of Lemma 3.3,
first find a set M’ of at least IMI/(k + 1) edges in M such that no two vertices that
are the result of contracting an edge in M belong to a common set X. (Such a set
can be quickly found in O(n) time: the graph H obtained by adding an edge between
every pair of vertices in G that share a common set X is a graph with treewidth k
and hence is (k + 1)-colorable. Hence the set of vertices that are a result of an edge
contraction contains an independent set in H of size at least IMI/(k + 1). Take M’,
the set of edges corresponding to the vertices in this independent set.) Define fM’
as in 2. Now (Y, T) defined by Y {v v fM, X} is a tree-decomposition
of the graph obtained from G by contracting all edges in M with treewidth at most
k + 1. Use the algorithm from [12, 22] to find a tree-decomposition of treewidth at
most k of this graph. Repeat the process with this last tree-decomposition and edge
set M- M until the edge set is empty. These are at most O(log n) iterations. (This
observation was also made by Jens Lagergren.)

It is possible to implement the algorithm such that it runs on a pointer machine
(a correct use of pointers is necessary such that the addressing in the bucket-sort
algorithms can be done) and still uses linear time. We omit the (easy) details.

Very recently, using modifications of the techniques of this paper, parallel algo-
rithms with a linear time-processor product were obtained for the "treewidth _< k"
problem [11].

Acknowledgments. The presentation of these results was improved considably
by comments from Jens Gustedt, Torben Hagerup, Ton Kloks, Dieter Kratsch, Bruce
Reed, and an anonymous referee.

1316 H.L. BODLAENDER

REFERENCES

[1] K. R. ABRAHAMSON AND M. R. FELLOWS, Finite automata, bounded treewidth and well-
quasiordering, in Proc. AMS Summer Workshop on Graph Minors, Graph Structure The-
ory, Contemporary Mathematics, Vol. 147, American Mathematical Society, Providence,
RI, 1993, pp. 539-564.

[2] S. ARNBORG, Efficient algorithms for combinatorial problems on graphs with bounded decom-
posability: A survey, BIT, 25 (1985), pp. 2-23.

[3] S. ARNBORG, D. (. CORNEIL, AND A. PROSKUROWSKI, Complexity of finding embeddings in a

k-tree, SIAM J. Algebraic Discrete Meth., 8 (1987), pp. 277-284.
[4] S. ARNBOPG, B. COUPCELLE, A. PROSKUROWSKI, AND D. SEESE, An algebraic theory of graph

reduction, J. Assoc. Comput. Mach., 40 (1993), pp. 1134-1164.
[5] S. ARNBORG, J. LAGERGREN, AND D. SEESE, Easy problems for tree-decomposable graphs, J.

Algorithms, 12 (1991), pp. 308-340.
[6] S. ARNBORG AND A. PROSKUROWSKI, Linear time algorithms for NP-hard problems restricted

to partial k-trees, Discrete Appl. Math., 23 (1989), pp. 11-24.

[7] H. L. BODLAENDER, Dynamic programming algorithms on graphs with bounded tree-width, in
Proc. 15th International Colloquium on Automata, Languages, and Programming, Lecture
Notes in Comput. Sci. 317, Springer-Verlag, Berlin, 1988, pp. 105-119.

[8] , A tourist guide through treewidth, Acta Cybernetica, 11 (1993), pp. 1-23.

[9] , Improved self-reduction algorithms for graphs with bounded treewidth, Discrete Appl.
Math., 54 (1994), pp. 101-115.

[10] H. L. BODLAENDER, M. R. FELLOWS, AND M. HALLETT, Beyond NP-compIeteness for problems
of bounded width: Hardness for the W hierarchy, in Proc. 26th Annual Symposium on

Theory of Computing, IEEE Computer Society Press, Los Alamitos, CA, New York, 1994,
pp. 449-458.

[11] H. L. BODLAENDER AND T. HAGERUP, Parallel algorithms with optimal speedup for bounded
treewidth, in Proc. 22nd International Colloquium on Automata, Languages, and Program-
ming, Z. FiilSp and F. Gcseg, eds., Lecture Notes in Comput. Sci. 944, Springer-Verlag,
Berlin, 1995, pp. 268-279; SIAM J. Comput., to appear.

[12] H. L. BODLAENDER AND T. KLOKS, Efficient and constructive algorithms for the pathwidth and
treewidth of graphs, J. Algorithms, 1996, to appear.

[13] H. L. BODLAENDER AND R. H. M6HPdNG, The pathwidth and treewidth of cographs, SIAM J.
Discrete Math., 6 (1993), pp. 181-188.

[14] R. B. BOPdE, R. G. PARKER, AND C. A. TOVEY, Automatic generation of linear-time algorithms
from predicate calculus descriptions of problems on recursively constructed graph families,
Algorithmica, 7 (1992), pp. 555-581.

[15] B. COURCELLE, The monadic second-order logic of graphs I: Recognizable sets of finite graphs,
Inform. and Comput., 85 (1990), pp. 12-75.

[16] B. COURCELLE AND M. MOSBAH, Monadic second-order evaluations on tree-decomposable
graphs, Theoret. Comput. Sci., 109 (1993), pp. 49-82.

[17] M. R. FELLOWS AND M. A. LANGSTON, Nonconstructive advances in polynomial-time complex-
ity, Inform. Process. Lett., 26 (1987), pp. 157-162.

[18] , Nonconstructive tools for proving polynomial-time decidability, J. Assoc. Comput.
Mach., 35 (1988), pp. 727-739.

[19] , An analogue of the Myhill-Nerode theorem and its use in computing finite-basis charac-
terizations, in Proc. 30th Annual Symposium on Foundations of Computer Science, IEEE
Computer Society Press, Los Alamitos, CA, 1989, pp. 520-525.

[20] , On search, decision and the efficiency of polynomial-time algorithms, J. Comput. Sys-
tem Sci., 49 (1994), pp. 769-779.

[21] D. S. JOHNSON, The NP-completeness column: An ongoing guide, J. Algorithms, 8 (1987),
pp. 285-303.

[22] T. KLOKS, Treewidth: Computations and Approximations, Lecture Notes in Comput. Sci., 842,
Springer-Verlag, Berlin, 1994.

[23] J. LAGERGREN, Efficient parallel algorithms for graphs of bounded tree-width, J. Algorithms,
20 (1996), pp. 20-44.

[24] J. LAGERGREN AND S. ARNBORG, Finding minimal forbidden minors using a finite congru-
ence, in Proc. 18th International Colloquium on Automata, Languages, and Programming,
Lecture Notes in Comput. Sci. 510, Springer-Verlag, Berlin, 1991, pp. 532-543.

[25] J. MATOUSK AND R. THOMAS, Algorithms finding tree-decompositions of graphs, J. Algorithms,
12 (1991), pp. 1-22.

[26] B. REED, Finding approximate separators and computing tree-width quickly, in Proc. 24th

FINDING TREE-DECOMPOSITIONS OF SMALL TREEWIDTH 1317

Annual Symposium on Theory of Computing, Association for Computing Machinery, New
York, 1992, pp. 221-228.

[27] N. ROBERTSON AND P. D. SEYMOUR, Graph minors II: Algorithmic aspects of tree-width, J.
Algorithms, 7 (1986), pp. 309-322.

[28] , Graph minors V: Excluding a planar graph, J. Combin. Theory Ser. B, 41 (1986),
pp. 92-114.

[29] , Graph minors IV: Tree-width and well-quasi-ordering, J. Combin. Theory Ser. B, 48
(1990), pp. 227’-254.

[30] , Graph minors X: Obstructions to tree-decomposition, J. Combin. Theory Ser. B, 52
(1991), pp. 153-190.

[31] Graph minors XIII: The disjoint paths problem, J. Combin. Theory Ser. B, 63 (1995),
pp. 65-110.

[32] D. P. SANDERS, On linear recognition of tree-width at most four, SIAM J. Discrete Math., 9
(1996), pp. 101-117.

[33] P. SCHEFFLER, Die Baumweite von Graphen als ein Marl fiir die Kompliziertheit algorithmis-
chef Probleme, Ph.D. thesis, Akademie der Wissenschaften der DDR, Berlin, 1989.

[34] J. VAN LEEUWEN, Graph algorithms, in Handbook of Theoretical Computer Science A: Algo-
rithms and Complexity Theory, North-Holland, Amsterdam, 1990, pp. 527-631.

[35] T. V. WIMER, Linear Algorithms on k-Terminal Graphs, Ph.D. thesis, Department of Com-
puter Science, Clemson University, Clemson, SC, 1987.

SIAM J. COMPUT.
Vol. 25, No. 6, pp. 1318-1331, December 1996

1996 Society for Industrial and Applied Mathematics
011

AN OPTIMAL O(log log N)-TIME PARALLEL ALGORITHM FOR
DETECTING ALL SQUARES IN A STRING*

ALBERTO APOSTOLICOt AND DANY BRESLAUERt

Abstract. An optimal O(loglogn)-time concurrent-read concurrent-write parallel algorithm
for detecting all squares in a string is presented. A tight lower bound shows that over general
alphabets, this is the fastest possible optimal algorithm. When p processors are available, the bounds
become ([(n log n)/p + log lOg[l+p/n 2p). The algorithm uses an optimal parallel string-matching
algorithm together with periodicity properties to locate the squares within the input string.

Key words, squares, repititions, string matching, parallel algorithms, lower bounds

AMS subject classifications. 68Q10, 68Q20, 68Q25

1. Introduction. A nonempty string of the form xx is called a repetition. Some
strings, such as an aaa.., aa, contain 2(n2) repetitions since they have t(n) rep-
etitions starting at most positions. A square is defined as a repetition xx where x
is primitive. Strings that do not contain any repetition are called repetition-free or

square-free. For example, "aa," "abab," and "baba" are squares which are contained
in the string "baababa."

It is trivial to show that any string whose length is larger than three over alphabets
of two symbols contains a square. However, there exist strings of infinite length on
three-letter alphabets that are square-free, as shown by Thue [29, 30] at the beginning
of the century. Since then, numerous works have been published on the subject and
repetitions in strings have been found to be relevant to several fields, including coding
theory, formal language theory, data compression, and combinatorics [1, 6, 7, 14, 15,

The alphabet that the input symbols are chosen from has an important role in
the design of efficient string algorithms. The literature distinguishes between four
types of alphabets: constant-size alphabets that have a bounded number of symbols;
fixed alphabets, where the symbols are assumed to be integers from a restricted range;
ordered alphabets, where the alphabet is (arbitrarily) totally ordered and the only
access an algorithm has to the input symbols is by order comparisons; and general
alphabets, where the only access an algorithm has to the input symbols is by equality
comparisons.

Received by the editors December 21, 1993; accepted for publication (in revised form) March 17,
1995. The results presented in this paper were first reported at the 19th International Colloquium
on Automata, Languages, and Programming.

Department of Computer Science, Purdue University, West Lafayette, IN 47907 and Diparti-
mento di Elettronica e Informatica, Universit di Padova, 35100 Padova, Italy. The research of
this author was partially supported by NSF grants CCR-89-00305 and CCR-92-01078, NATO grant
CRG 900293, the National Research Council of Italy, and EC ESPRIT III Basic Research Program
contract 9072 (project GEPPCOM).

Basic Research in Computer Science (BRICS), Centre of the Danish National Research Foun-
dation, Department of Computer Science, University of Aarhus, DK-8000 Aarhus C, Denmark. The
research of this author was partially supported by EC ESPRIT Basic Research Action Program con-
tract 7141 (project ALCOM II). Parts of the research reported in this paper were carried out while
the author was supported by the IBM Graduate Fellowship while studying at Columbia University,
New York, NY, while visiting at the Istituto di Elaborazione dell’Informazione, Consiglio Nazionale
delle Ricerche, Pisa, Italy with the support of the European Research Consortium for Informatics
and Mathematics postdoctoral fellowship, and while visiting at the Universit del’Aquila, L’Aquila,
Italy.

A string x is primitive if x uk for some integer k implies that k 1 and x u.

1318

DETECTING SQUARES IN A STRING 1319

In the last decade, several sequential algorithms that find all squares in strings
have been published. Algorithms that were discovered by Apostolico and Preparata [4]
and by Crochemore [13, 15] find all squares in a string of length n over ordered alpha-
bets in O(n log n) time. Rabin [27] gave a randomized algorithm that takes O(n log n)
expected time over constant-size alphabets. Any sequential algorithm that lists all
squares in a string of length n must take at least Ft(n log n) time since there exist
strings, such as the Fibonacci strings [13], that contain (n log n) distinct squares.

Main and Lorentz [25] discovered an algorithm that finds all squares in strings over
general alphabets in O(n log n) time. They also proved that over general alphabets
Ft(n log n) comparisons are necessary even to decide if a string is square-free. In an-
other paper, Main and Lorentz [26] show that the problem of deciding whether a string
is square-free can be solved in O(n) time over constant-size alphabets. Crochemore
[15] also gave a linear-time algorithm for the latter problem.

In parallel, algorithms by Crochemore and Rytter [16, 17] test if strings over
ordered alphabets are square-free in O(log n) time using n processors. These algo-
rithms use O(nTM) space. Apostolico [2] designed an algorithm that tests if a string
is square-free and also detects all squares within the same time and processor bounds
using linear auxiliary space. Apostolico’s algorithm [2] assumes that the alphabet
is ordered, a restriction that is not necessary to solve this problem. Apostolico’s
algorithm for testing if a string is square-free is more efficient over constant-size al-
phabets and achieves the O(log n) time bound using only n/log n processors. All of
these parallel algorithms are designed for the concurrent-read concurrent-write paral-
lel random-access machine (CRCW PRAM) computation model.

A parallel algorithm is said to be optimal, or to achieve an optimal speedup, if its
time-processor product, which is the total number of operations performed, is equal
to the running time of the fastest sequential algorithm for the same problem. All of
the parallel algorithms that are mentioned above achieve an optimal speedup. Notice
that squares can be trivially detected in constant time using a polynomial number of
processors; our goal is to develop parallel algorithms that are efficient with respect to
both time and processor complexities.

In this paper, we develop an optimal parallel algorithm that finds all squares in
a string in O(log log n) time. The new algorithm not only improves on the previous
best bound of O(logn) time, but it is also the first efficient parallel algorithm for
this problem over general alphabets. We derive a lower bound that shows that over
general alphabets, this is the fastest possible optimal algorithm by a reduction to
a lower bound that was given by Breslauer and Galil [11] for the string-matching
problem. If p processors are available, then the bounds become

+ log log[l+p/n 2p,/P

The paper is organized as follows. Section 2 overviews some known parallel al-
gorithms and tools that are used by the new algorithm. Section 3 presents a simple
version of the algorithm that tests if a string is square-free and 4 develops a more
complicated version that finds all the squares. Section is devoted to the lower bound
and 6 gives tight bounds for any given number of processors. Concluding remarks
are given in 7.

2. The CRCW PRAM model. The algorithms described in this paper are
for the CRCW PRAM model. We use the weakest version of this model, called the
common CRCW PRAM. In this model, many processors have access to a shared

1320 ALBERTO APOSTOLICO AND DANY BRESLAUER

memory. Concurrent-read and -write operations are allowed at all memory locations.
If a few processors attempt to write simultaneously to the same memory location,
then they all write the same value.

The square-detection algorithm uses a string-matching algorithm. The input to
the string-matching algorithm consists of two strings, pattern[l..m] and text[l..n],
and the output is a Boolean array match[l..n] that has a "true" value at each po-
sition where an occurrence of the pattern starts in the text. We use Breslauer and
Galil’s [i0] parallel string-matching algorithm, which takes O(log log n) time using an
n/log log n-processor CRCW PRAM. This algorithm is the fastest optimal parallel
string-matching algorithm on general alphabets as shown by Breslauer and Galil [II].
If p processors are available, then the time bounds for the string-matching problem
are (In/p] -q- loglog[+p/n 2p).

The square-detection algorithm also uses an algorithm of Fich, Ragde, and Wigder-
son [19] to compute the minima of n integers in the range 1,..., n in constant time
using an n-processor CRCW PRAM. This minima algorithm, for example, can find
the first occurrence of a string in another string: after the occurrences are computed
by the string-matching algorithm mentioned above, look for the smallest i such that
mach[i] "true."

Finally, we use the following theorem.
THEOREM 2.1 (Brent [8]). Any parallel algorithm of time t that consists of a total

of x elementary operations can be implemented on p processors in [x/p] + t time.
If we return to the example above, which finds the first occurrence of one string

in another, we see that the second step of finding the smallest index of an occurrence
takes constant time using n processors, while the use of the string-matching procedure
takes O(log log n) time using n/log log n processors. By Theorem 2.1, the second step
can be slowed down to work in O(log log n) time using n/log log n processors.

3. Testing if a string is square-free. This section describes an algorithm that
tests if a string S[1..n] is square-free. The algorithm that finds all squares is more
involved and is given in 4.

THEOREM 3.1. There exists an algorithm that ests if a string S[1..n] over a
general alphabet is square-free in O(log log n) time using n log n/ log log n processors.

Proof. The algorithm consists of independent stages which are computed simul-
taneously. In stage number r], 0 _< _< Ilog: n] 1, the algorithm looks only for
repetitions xx such that 21v 1 _< [xl < 2/v+ 1 and v 2v. If some repetition
is found, then a global variable is set to indicate that the string is not square-free.
Notice that the complete range of possible lengths of x is covered, and if there exists
a repetition, it will be discovered.

We show how to implement stage number in Tv O(loglog lu) time and
O(n) operations. Since there are O(logn) stages, the total number of operations
is O(nlogn). By Theorem 2.1, the algorithm can be implemented in maxTv
O(log log n) time using n log n/log log n processors.

3.1. The stages. We describe stage number , 0 <_ <_ log2 n] 1, which
looks only for repetitions xx such that 21v- 1 <_ Ixl < 2/v+ 1. To simplify the
presentation, assume without loss of generality that the algorithm can access symbols
whose indices are out of the boundaries of the input string. Comparisons with such
symbols are answered as unequal.

Partition the input string S[1..n] into consecutive blocks of length lv. That is,
block number k for 1 <_ k < n/lvJ is S[(k- 1)/ + 1..kl]. Let B S[P..P + l 1] be
one of these blocks. A repetition xx is said to be hinged on B if 21v- 1 _< Ixl < 2/+ 1

DETECTING SQUARES IN A STRING 1321

and B is fully contained in the first copy of z. Stage number r] consists of substages
which are also computed simultaneously. There is a substage for each block of length

l. Each substage checks if there is any repetition which is hinged on the block that
it is assigned to.

P P + 21

P5
P4

P3
P2

1 P + 41
FIa. 1. The substage which is assigned to the block B S[P..P + v 1] finds all occurrences

of B that start between positions P + 21 and P + 41v 2.

The substage which is assigned to block B starts with a call to the string-matching
algorithm to find all occurrences of B in SIP + 21 I..P + 51 3]. Let Pl < P2 <

< Pr be the indices of these occurrences. Then P + 21v 1 _< pi < P + 41v I, for
l,...,r. See Figure I.
Notice that for each repetition xx that is hinged on B, there must be an occurrence

of B at position P + Ixl. This occurrence is included in the {pi} sequence.
LEMMA 3.2. For each p, we can test in constant time and O(l) operations if

there is any repetition xx that is hinged on B such that Ixl pi- P.
Proof. Let pi P. We are looking for repetitions xx such that Ixl 1. For

all ’s in the range P + l, 1 <_ _< p, check if S[-1] S[] and if S[] S[+ 1].
Let L be the largest index in this range such that SIP + lv..4L] SIP + lv + 1..4L + l]
and R be the smallest index such that S[4R..P 1] S[R -l..P- 1]. We can find
(L and R in constant time and O(lv) operations using the integer-minima algorithm
of Fich, Ragde, and Wigderson [19].

We show that there are repetitions zz that are hinged on B such that Ixl
if and only if R _< eL + 1. Moreover, these repetitions start at positions s for

R--I <_s<_L--I+I.
If there is a repetition xx that is hinged on B starting at position s such that

Ixl l, then S[-1] S[] for all ’s in the range s +l < < pi and S[] S[+ 1]
for all ’s in the range P+ v <_ < s + I. Then, however, L 8 nu 1 and R < s + l,
and thus (R- _< s _< L --1 / 1 and 4/ _< L -Jr- 1. See Figure 2.

P p
FIG. 2. If R > L + 1, then there is no repetition xx that is hinged on the block B such that

Po

On the other hand, if (R <_ (L + 1, then S[(R- 1..(L] S[(R..(L + 1]. (Recall that
there is an occurrence of S[P..P + lv 1] at position p and thus S[P..P + v 1]
S[pi..pi + lv 1].) The last equality means that there are repetitions xx such that

JxJ l, starting at positions s for (R <_ s _< (L + 1. rl

1322 ALBERTO APOSTOLICO AND DANY BRESLAUER

The algorithm can check if any of the pi’s corresponds to a repetition in. constant
time using Lemma 3.2, but it would make O(rlv) operations if the length of the {pi}
sequence is r. Luckily, for now, the algorithm has only to test if the string is square-
free and it does not have to check if all the pi’s correspond to repetitions; if r > 2,
then S[1..n] must contain a square, as the following lemma shows.

LEMMA 3.3. If the length of the {p} sequences is r > 2, then S[1..n] contains a

repetition. This repetition is shorter than the repetitions that are supposed to be found
in this stage.

Proof. Recall that P+21-1 < pi < P+41-1 for 1,...,r. Ifr > 3,
then either P2- pl < l or P3- P2 _< l. Then, however, there is a repetition zz
such that Izl p -pl or Ix p3 -p (respectively), starting at position p or p
(respectively). 1

The computation in each substage of stage r can be summarized as follows"
1. Compute the {pi} sequence.
2. If the {Pi} sequence has more than two elements, then by Lemma 3.3, the

string S[1..n] contains a repetition. This repetition will also be found by some stage
number #, # < r.

3. If the {pi} sequence has at most two elements, check if these elements corre-

spond to repetitions using the procedure described in Lemma 3.2.
LEMMA 3.4. Stage number is correct. It takes O(loglog/v) time and makes

O(n) operations.

Pro@ For correctness, we have to show that if the string S[1..n] contains any
repetition zz such that 21 1 _< Izl < 2/+ 1, then some repetition will be found.
Assume that there is such a repetition. Since 21 1 _< Izl, there must be a block of
length l that is completely contained in the first z. The substage which is assigned
to that block will either find the repetition zz or conclude that there is a shorter
repetition by Lemma 3.3. In both cases, some repetition has been found. Notice that
some repetitions can be detected by several stages and substages simultaneously.

Stage number r consists of [n/lJ independent substages. In each substage, step
number 1 takes O(loglog/) time and O(l) operation using Breslauer and Galil’s
string-matching algorithm. Steps number 2 and 3 take constant time and make O(lv)
operations. Since all of the substages are computed in parallel, stage number takes
O(loglog l) time and makes O(n) operations. 1

4. Detecting all squares. In this section, we show how the algorithm that was

given in 3 can be generalized to find all squares in a string.
Beame and Hstad [5] proved a lower bound of ft(log n/log log n) time for com-

puting the parity of n input bits on CRCW PRAMs with any polynomial number of
processors. This lower bound implies that many "interesting" problems would require
at least that time. However, several string problems, including the problem of detect-
ing all squares in a string, have constant-time solutions using a polynomial number
of processors.

While the problem of testing if a string is square-free has only a single output
bit, the problem of finding all squares has a more complicated output structure. If
we wish to obtain algorithms that get around Beame and Hstad’s lower bound, we

cannot count the number of squares that are found and therefore we can not list them
contiguously in an array. Instead, we will represent the output of the algorithm in
a sparse array with O(n log n) entries. Notice that this problem did not exist in the
previous square-detection algorithms since their time bounds were at least O(log n).

Similarly to the testing algorithm, the square-detection algorithm proceeds in

DETECTING SQUARES IN A STRING 1323

independent stages which are computed within the same time and processor bounds
as before, only now, since the algorithm must find all the squares, the following
difficulties arise.

1. The detection algorithm cannot use Lemma 3.3 only to conclude that the
string is not square-free; it must find all the squares.

2. The algorithm has to verify which repetitions are squares. This was not
necessary before since a string is square-free if and only if it is repetition-free.

3. The squares have to be represented in a sparse array with O(n log n) entries.
The first two issues will be addressed in 4.1, which describes the stages of the

square-detection algorithm, while the third issue is discussed next.
The following lemma is used to justify the output representation used by the

algorithm.
LEMMA 4.1 (see, e.g., Crochemore and Rytter [18]). If there are three squares

xx, yy, and zz such that Ixl < lYl < Izl that start at the same position of some string,
then Ixl + Yl <-Izl

Recall that in stage number r], the algorithm looks only for squares xx such that
2/v-1 _< Ix] < 2/v+-I and v 2v. Therefore, by Lemma 4.1, there are no more than
two squares that start at each position of the input string and have to be discovered
in the same stage. Thus the output can be represented in an array that will for each
position of the input string and for each stage hold the two squares that might be
detected starting at the specific position in the specific stage. (For example, let u be
primitive and v be a nonempty proper prefix of u. Then the string uvu+vu, k >_ 1,
contains the two prefix squares uvuv and uvuuvu whose lengths differ by 21u I. If
k _> 2, then it contains also the prefix square uu, and if k 2, then the inequality in
Lemma 4.1 is tight. In the extreme case, by letting u "ab" and v "a," we get
arbitrary long pairs of squares whose lengths differ by 4.)

The complexity bounds of the square-detection algorithm are summarized in the
following theorem.

THEOREM 4.2. There exists an algorithm that finds all squares in a string S[1..n]
over a general alphabet in O(log log n) time using n log n/log log n processors.

4.1. The stages. Consider a single stage. As in 3.1, the input string S[1..n] is
partitioned into consecutive blocks of length v and there is a substage that is assigned
to each such block. To simplify the presentation, we allow squares to be discovered by
several substages simultaneously: the substage that is assigned to block B discovers all
the squares which are hinged on this block. Later, we make sure that the information
about each square is written only once into the output array by reporting only those
squares for which B is the leftmost block fully contained in the square. Thus stage
number finds all squares xx such that 21v 1 <_ Ix] < 2/v+ 1.

As already noted, each square that is hinged on B ties block B to a specific
replica. The substage that is assigned to B starts with a call to the string-matching
algorithm to find the viable replicas of B. Let p < < p denote their indices.

DEFINITION 4.3. A string x is a rotation of another string c (and vice versa) if
x uv and c vu for some strings u and v.

DEFINITION 4.4. A string S has a period u if S is a prefix of uk for some large
enough k. Alternatively, a string S[1..n] has a period of length 7c if S[i] S[i + r] for

1,..., n r. The shortest period of a string S is called the period of S.
LEMMA 4.5 (Lyndon and Sch/itzenberger [24]). If a string of length m has two

periods of lengths p and q and p+ q <_ m, then it also has a period of length gcd(p, q).
The task of the substage is to identify which of the pi’s corresponds to squares

1324 ALBERTO APOSTOLICO AND DANY BRESLAUER

that are hinged on B. In Lemma 3.2, we have shown that it is possible to efficiently
verify that some specific Pi corresponds to repetitions xx that are hinged on B such
that Ixl pi P. The proof of Lemma 3.2 reveals that those differences pi P that
pass the repetition-detection test actually expose an entire sequence of repetitions
which are consecutive rotations of the same repetition. Such a sequence will be called
a family of repetitions.

LEMMA 4.6. A family of repetitions contains a square if and only if all the
repetitions in the family are squares.

Proof. Let xx be a repetition but not a square. Thus x z and > 1. If 2 is
a rotation of x, then 2 v(uv)j (uv)l-J-lu (vu) t, where z uv, and thus 2 is not
primitive.

The last lemma means that if we wish to certify that repetitions are actually
squares, it is enough to certify one repetition in each family. The next lemma shows
how to efficiently test that a given repetition is indeed a square by solving a sin-
gle string-matching problem. (The technique for primitive certification proposed by
Apostolico [2] uses information about shorter squares which are discovered in other
stages. We use a different method that keeps the stages in the algorithm completely
independent.)

LEMMA 4.7. Given a repetition xx, let be the index of the first occurrence of x
in xx other than the trivial occurrence at the beginning of xx. Then, xx is a square

if and only ill=
Proof. Clearly, _< Ixl. If x zj, then xx z2j and x occurs at position Izl of

xx. On the other hand, if < Ixl, then xx has periods of lengths and Ixl and by
Lemma 4.5, divides Ix]. Then, however, x zlxl/1 is not primitive, i-1

2_J

ab c ab c ab c ab c a

P pl p.

FIG. 3. Repetitions must be certified to be squares. In this example, the repetitions in the family
that corresponds to p. -P are not squares.

Given a replica of B at position pi, we can find the family of repetitions xx such
that Ixl pi P using Lemma 3.2, and then we can certify that these, repetitions are
actually squares using Lemma 4.7. See Figure 3.

However, if the length of the {pi} sequence is large, then repeating the process
above for each pi can be costly. Moreover, it is a problem even to find and manip-
ulate the {pi} sequence efficiently. The following lemmas will help to overcome this
difficulty.

LEMMA 4.8. Assume that the period length of a string W[1../] is p. If W[1../]
occurs only at positions pl < p < < pk of a string V and pk -pl <_ [//2], then
the pi’s form an arithmetic progression with difference p.

Proof. Assume k >_ 2. We prove that p pi+l -pi for 1,... ,k- 1. The
string W has periods of lengths p and q pi+ pi. Since p _< q _< [//2, by Lemma
4.5, it also has a period of length gcd(p, q). However, p is the length of the shortest
period, so p gcd(p, q) and p must divide q. The string V9..p+ +l- 1] has period
of length p. If q > p, then there must be another occurrence of W at position pi / p
of Va contradiction.

DETECTING SQUARES IN A STRING 1325

Recall that P+21v- 1 <_ pi < P+41v- 1. To utilize the last lemma, it is
convenient to partition the sequence {pi} and to regard the substage as consisting of
four consecutive phases. Each phase handles viable replicas of B in a subblock of size

1/2 (hereafter, an/v/2-block). We describe a generic phase involving the occurrences
of B at positions ql < < qk, where {q} is a subsequence of {p} that lists all the
occurrences that fall within a/v/2-block. (In the first stages, there are fewer phases.)

LEMMA 4.9. The sequence {q} of occurrences of B in an 1,/2-block is an arith-
metic progression with difference q, where q is the period length of B.

Proof. Lemma 4.9 is an immediate consequence of Lemma 4.8. D
The sequence {qi} can be represented using three integers: the. start, the dif-

ference, and the sequence length. This representation can be easily computed from
the output of the string-matching algorithm (which is a Boolean vector) using Fich,
Ragde, and Wigderson’s integer-minima algorithm [19] in constant time using O(Iv)
operations. This idea has also been successfully applied in efficient parallel algorithms
for other string problems [3, 9, 12].

If the {qi} sequence does not contain any elements, then the phase does not need
to do anything. If there is one element ql, then the algorithm finds the family of
repetitions that are associated with the difference ql P and certifies them to be
squares as described above. The next lemmas are used in phases that have longer
{qi } sequences.

Assume that the length of the arithmetic progression {q} is k >_ 2 and let q be
the difference of the progression. By Lemmas 4.8 and 4.9, the block B S[P..P +
lv 1] and the substring covered by the occurrences of this block at positions qi,

S[q..qk + Iv 1], have period length q. The algorithm proceeds by checking how far
this periodicity extends on both sides of these substrings.

Let CL and cR be the positions where the periodicity of length q terminates on
the left and on the right of B, respectively, and let 7L and 7R be the positions where
the periodicity of length q terminates on the left and on the right of the substring
S[ql..qk + lv 1], respectively. We are interested in these indices only if P- (qk P) +
lv _< OL, O/R < ql -t- lr, P _< L, and 3’R < 2qk P, and these indices are undefined
otherwise. Namely, if all indices are defined, then S[CL + 1..cR- 1] has period length
q, S[aL] :/: S[aL + q], S[a] :/: S[aR- q],

P (qk P) + lv < aL < P and P +

S["/L + 1..7R- 1] has period length q, S[TL] =fi S[3’L + q], S[TR] =fi S[7- q], and

P _< L < ql and qk + lv _< 3’ < 2q P.

It is possible to compute the indices OZL, OR, L, and /R or to decide which indices are
undefined in constant time and O(lv) operations using Fich, Ragde, and Wigderson’s
integer-minima algorithm [19].

The following lemmas classify the possible interactions between CL, CR, YL, and

3’R and their effect on the squares that are hinged on B.
LEMMA 4.10. If one of CR and L i8 defined, then so is the other one, and

cR--yL < q.

Proof. By the definition of cR and "/L, S[P..c 1] and S[TL + 1..q + lv 1]
have period length q, S[cR] = S[c- q] and S[TL] S[TL + q].

If q < cR- 7L, then by the periodicity of S[P..cR- 1] and since /L + q < cR, we
get that S[L] S[L + q], in contradiction to the definition of cR and 3’L- Therefore,
OZR --L q or at least one of c/ and /L is undefined.

1326 ALBERTO APOSTOLICO AND DANY BRESLAUER

If cR is undefined, then S[P..ql + lv 1] has period length q and the argument
above shows that /c can not be defined. The proof of the symmetric case is identi-
cal.

The following lemma identifies certain repetitions that can never be squares.
LEMMA 4.11. If both cR and 7c are undefined, then none of the repetitions

possibly hinged on t? is a square.

Proof. If c and /L are undefined, then S[P..qk + lv 1] has period length q.
Consider any qi and let qi-P. By the periodicity above and since S[P..P+Iv-1]
S[qi..qi + l 1], we get that S[P..P + qk q + v 1] S[q..qk + lv 1]. Thus the
substring S[P..q + l- 1] has a period of length 1. However, q <_ 1/2 < and by
Lemma 4.5, q divides 1.

Let zx be a repetition that is hinged on B starting at position s such that Ixl 1.
Then x S[s..s +l- 1] Sis + 1..P +l- 1]S[P..s +l- 1] has period length q and
therefore z is not primitive.

c c c babab c c c b ababab c c c b ab

P ql q2

OL

FIG. 4. There can be at most two families of synchronized squares. In this example, one family
corresponds to L OZL ql P and the other to /R aR q2 P.

If both c and L are defined, then certain repetitions, which are characterized
in the next lemma, must align cR with /u and CL with 3’L. These repetitions are
called synchronized repetitions. See Figure 4.

It is convenient to state the next lemmas in terms of the positions where the
repetitions are centered; a repetition xx that starts at position s is centered at position

LEMMA 4.12. If both and 7L are defined, then we have the following:
1. Repetitions that are hinged on B and centered at positions h such that h YL

may exist only if aL is defined. These repetitions constitute a family of repetitions
that corresponds to the difference qi P provided that there exists some qi such that
7L --aL qi P.

2. Repetitions that are hinged on B and centered at positions h such that aR < h
may exist only if is defined. These repetitions constitute a family of repetitions
that corresponds to the difference qj P provided that there exists some qj such that

qj P.
Notice that if < L, then repetitions whose center h satisfies < h L

may exist only if both L and are defined and if YR R L L.
Proof. Let xx S[h-l..h +l- 1] be a repetition that is hinged on B and centered

at position h such that]xl- qi- P, and let l=]xl.
Assume P + lv h L. The proof distinguishes between two cases. If L is

undefined or if L < L (see Figure 5), then by the periodicity in the definition
of L and L, S[L --l + q] S[TL + q] and S[L --1] S[L --1 + q]. Since there is
the repetition xx, we also have that S[TL- 1] S[?L]. Thus S[L] S[L + q], in
contradiction to the fact that S[TL] S[L + q] by the definition of L.

Similarly, if L > L l, then by the periodicity in the definition of L and L,
S[L + q] S[L + + q] and S[L + 1] S[L + + q]. Since there is the repetition

DETECTING SQUARES IN A STRING 1327

xx, we also have that SIAL] SIaL + 1]. Thus SIAL] SIaL + q], in contradiction to
the fact that S[aL] S[aL + q] by the definition of aL.

Therefore, such a repetition xx may exist only if aL YL or, in other words,
if 7L aL qi P for some qi. Since CL, 7L, and P are given, there is at most one
such q.

The proof of the second part, where aR < h, is similar. C]

3C

babab abab ab c c c b abab ab c c c bab

P ql q2

FIG. 5. Illustrating one of the cases in Lemma 4.12: an undefined OL is incompatible with any
repetition hinged on B and centered at a position h <_ /Lo

As a consequence of the last lemma, there can be at most two repetition families
(in each phase) that have to be verified and certified to be squares. However, there are

squares which might have been missed since Lemma 4.12 did not cover all eventualities.
If 7L < aR, then there might exist repetitions whose center h satisfies 7L < h <_ a.
These repetitions are called unsynchronized repetitions. We classify these repetitions
next and show that if such repetitions exist, then they must be squares.

LEMMA 4.13. Ifa and 7L are defined and 7L < aR, then there might be a family
of repetitions associated with each of the differences q-P with centers at positions
h such that 7L < h <_ a. The repetitions in each such family are all squares, and
they are centered at positions h such that max(aL + l, /L} < h <_ min(aR,/- l).
Notice that such a family is not empty if and only if < min(a aL, 7R 7L).

Proof. Consider repetitions S[h- 1..h- 1] S[h..h +l- 1] that are associated
with the difference q P and whose centers h satisfy 7L < h _< a. We show
that such repetitions exist if and only if aL +l < h and h _< 7R- (ignoring the
constraints involving undefined indices).

If h < OZL --l, then S[OZL] S[OL -]-1]. Since 7L < h, we know that SIaL --1]
SIaL +l+ q]. Then, however, SiaL]- SIaL + q], in contradiction to the definition of
an. Similarly, it is impossible that 7- < h.

On the other hand, if max(aL + l, 7L) < h < min(a,7 -1), then S[h- 1..h- 1]
and S[h..h + 1] have period length q. Since S[P..P + v 1] S[qi..qi + v 1], we
get that S[h- 1..h- 1] S[h..h +l- 1]. (The same reasoning also holds if aL or y
are not defined.)

It remains to show that these repetitions are actually squares. If S[h-1..h-1] zj

for some j > 1, then S[h- l..h- 1] has periods of length q and Izt and by Lemma 4.5,
q divides Izl. Then, however, S[h- q..h- 1]- S[h..h + q- 1] and a- 7L > 2q, in
contradiction to Lemma 4.10. C]

The computation in each substage of the square-detection algorithm can be sum-
marized as follows:

1. Compute the {p} sequence and proceed in four phases.
2. In each phase, find the arithmetic progression {q}.
3. If the {q} sequence has a single element ql, then find the repetition family

that corresponds to ql using Lemma 3.2 and certify that these repetitions are squares
using Lemma 4.7.

4. If the {q} sequence has at least two elements, then do the following:

1328 ALBERTO APOSTOLICO AND DANY BRESLAUER

(a) Find the synchronized repetition families using Lemma 4.12 and certify
that these repetitions are squares using Lemma 4.7.

(b) Find the unsynchronized squares using Lemma 4.13.
LEMMA 4.14. Stage number r is correct. It takes O(loglog/) time and males

0(n) operations.

Proof. It is clear that if the string S[1..n] contains any square xx such that

21- 1 _< Ixl 2/+1 1, then there must be a block B of length l that is the
leftmost block completely contained in the square. We have seen that the substage
that is assigned to the block B will find

Stage number r/consists of [n/lJ independent substages. Each substage might
make at most nine calls to Breslauer and Galil’s string-matching algorithm: one to
find the {p} sequence and at most two in each phase to certify squares using Lemma
4.7. These calls take O(log log l, time and make O(1,) operations. The rest of the
work in each substage takes constant time and O(l) operations. Since all of the sub-
stages are computed in parallel, stage number r takes O(loglog l) time and makes
O(n) operations.

Remark. Assume that the sequence {qi} has k > 1 elements and difference q. If
cR and 7L are defined, then some synchronizing repetitions might have to be certified
to be squares. It easy to check that for the repetitions zz that arise in this case, if
z zJ, then j < e for some small positive constant e. Thus it is sufficient to verify
that z zJ for j 2,...,e in order to certify that x is primitive. This is more
efficient than the general square-certification method suggested in Lemma 4.7.

5. The lower bound. We prove a lower bound for testing if a string is square-
free by a reduction to Breslauer and Galil’s [11] lower bound for string matching.
Breslauer and Galil show that an adversary can fool any algorithm which claims to
check if a string has a period that is shorter than half of its length in fewer than
ft([n/p + log log [l+p/n 2p) rounds with p comparisons in each round. The lower
bound holds for the CRCW PRAM model in the case of general alphabets, where the
only access an algorithm has to the input string is by pairwise symbol comparisons.

We will not report the details of that lower bound. We only use the fact that the
adversary generates a string S[1..n] that has the following property" if S[i] S[j],
then S[k] S[i] for any integer k such that k =- (rood IJ il) and 1 < k _< n.

LEMMA 5.1. The string generated by Breslauer and Galil’s adversary has a period
that is shorter than half of its length if and only if it contains a square.

Proof. If the string generated by the adversary has a period which is shorter than
half of its length, then it contains a square that starts at the beginning of the string.

On the other hand, assume that a square zx starts at position s of S[1..n]. Namely,
Sis+k] S[s+lxl+k] for k 0,...,Ixl-1. Then, however, by the property
mentioned above, the string generated by the adversary has a period of length Ixl,
which is smaller than half of the string length. [I

We are now ready to prove the lower bound.
THEOREM 5.2. At] parallel algorithm that tests if a string S[1..n] over general

alphabets is square-free must take f([(nlogn)/p] + loglog[l+p/n 2p) rounds with p
comparisons in each round.

Proof. Main and Lorentz [26] show that any sequential algorithm that tests if a
string over general alphabets is square-free must make ft(n log n) comparisons. This
gives an immediate lower bound of ft([(n log n)/p]) rounds with p comparisons in
each round.

By Lemma 5.1, the string that is generated by the adversary of Breslauer and

DETECTING SQUARES IN A STRING 1329

Galil has a period that is shorter than half of its length if and only if it contains a
square. Breslauer and Galil show that after (log log[1+p/n 2p) rounds, the adversary
still has the choice of forcing the string to have a period that is shorter than half of its
length or not to have any such period. Therefore, any algorithm that tries to decide in
fewer rounds if a string is square-free can be fooled. By combining these two bounds,
we get the claimed lower bound. []

COROLLARY 5.3. Any optimal parallel algorithm that tests if a string S[1..n] is
square-free must take (log log n) rounds.

Proof. By Theorem 5.2, the lower bound is t(log log n) even with n log n com-
parisons in each round. [:]

6. The number of processors. This section derives tight bounds for any given
number of available processors.

THEOREM 6.1. If p processors are available, then the lower and upper bounds for
testing if a string is square-free and for detecting all squares are

Proof. The lower bound was given in Theorem 15.2. it remains to prove the upper
bound.

1. If p n log n/log log n, then by Theorem 2.1, the optimal algorithms of g
and 4 can be slowed down to run in O((n log n)/p) time, matching the lower bound.

2. if n log n/log log n < p <_ n log n, then the lower bound is f(log log n), match-
ing the time bound of the algorithms with only n log n/log log n processors.

If p > n log n, then we must go back to the algorithms given in 3 and 4. The
processors are distributed equally among the stages. In stage number r/, the processors
are distributed equally among the substages, giving (pin log n)lv processors to each
substage.

Since substages that handle strings of length O(lv) have more than v processors
available, the substages take constant time except for the calls to Breslauer and Galil’s
string-matching algorithm. These calls take Tv O(loglog[l+p/nlogn] 2(pin log n)lv)
time. Therefore, the whole algorithm takes maxTv O(log log [l+p/n log n] (2p/log n))
time.

3. If p > n log n, then we can verify that log log[l+p/n log nl (2p/log n) E

O(loglog[+p/n] 2p), establishing that the lower and upper bounds are the same.

4. If p > n+ for some fixed > 0, then the upper bound is O(1). D

7. Concluding remarks. The algorithm described in this paper uses a string-
matching procedure as a "black box" that has a specific input-output functionality
without going into its implementation details. Breslauer and Galil’s string-matching
algorithm is the fastest possible over general alphabets; however, it is unknown at the
moment if a faster algorithm exists over constant-size alphabets. If such an algorithm
exists, it could be used in a faster algorithm for finding squares. Notice that a fast
CRCW PRAM implementation requires the computation of certain functions such as
the log function and integral powers within the time and processor bounds. Regardless
of the feasibility of such a computation, the algorithm that was described in this paper
is valid in the parallel comparison decision-tree model.

Our parallel square-detection algorithm resembles the sequential algorithms of
Main and Lorentz [25, 26]. (The testing algorithm is, in fact, a parallel implemen-
tation of the testing algorithm in [26].) Still, the sequential implementation of our

1330 ALBERTO APOSTOLICO AND DANY BRESLAUER

parallel algorithm is interesting on its own. By using a time-space-optimal string-
matching algorithm, such as the algorithm of Galil and Seiferas [21], we obtain a
time-space-optimal algorithm for detecting squares. By using a real-time string-
matching algorithm, such as the algorithm of Galil [20], and a careful treatment of
periods within the input string, we obtain an on-line square-detection algorithm that
reports squares as soon as they are formed, while the input string is extended even
on both sides, spending O(logn) time per symbol. No such algorithms were known
before.

Acknowledgments. We thank Zvi Galil, Roberto Grossi, and Kunsoo Park for
their valuable comments.

REFERENCES

[1] A. APOSTOLICO, On context constrained squares and repetitions in a string, RAIRO Inform.
Thor. Appl., 18 (1984), pp. 147-159.

[2] , Optimal parallel detection of squares in strings, Algorithmica, 8 (1992), pp. 285-319.
[3] A. APOSTOLICO, D. BRESLAUER, AND Z. GALIL, Optimal parallel algorithms for periods, palin-

dromes and squares, in Proc. 19th International Colloquium on Automata, Languages,
and Programming, Lecture Notes in Comput. Sci. 623, Springer-Verlag, Berlin, 1992, pp.
296-307.

[4] A. APOSTOLICO AND F. P. PREPARATA, Optimal off-line detection of repetitions in a string,
Theoret. Comput. Sci., 22 (1983), pp. 297-315.

[5] P. BEAME AND J. HSTAD, Optimal bound for decision problems on the CRCW-PRAM, J.
Assoc. Comput. Mach., 36 (1989), pp. 643-670.

[6] D. R. BEAN, A. EHRENFEUCHT, AND G. F. MCNULTY, Avoidable patterns in strings of symbols,
Pacific J. Math., 85 (1979), pp. 261-294.

[7] J. BERSTEL, Sur les roots sans carrd ddfinis par un rnorphisrn, in Proc. 6th International
Colloquium on Automata, Languages, and Programming, Lecture Notes in Comput. Sci.
71, Springer-Verlag, Berlin, 1979, pp. 16-25.

[8] R. P. BRENT, Evaluation of general arithmetic expressions, J. Assoc. Comput. Mach., 21
(1974), pp. 201-206.

[9] D. BRESLAUER, Efficient string algorithmics, Ph.D. thesis, Department of Computer Science,
Columbia University, New York, 1992.

D. BRESLAUER AND Z. CALIL, An optimal O(log log n) time parallel string matching algorithm,
SIAM J. Comput., 19 (1990), pp. 1051-1058.
, A lower bound for parallel string matching, SIAM J. Comput., 21 (1992), pp. 856-862.
, Finding all periods and initial palindromes of a string in parallel, Algorithmica, 14

(1995), pp. 355-366.
M. CROCHEMORE, An optimal algorithm for computing the repetitions in a word, Inform.

Process. Lett., 12 (1981), pp. 244-250.
, Sharp characterizations of squarefree rnorphisms, Inform. Process. Lett., 18 (1982),

pp. 221-226.
Transducers and repetitions, Theoret. Comput. Sci., 12 (1986), pp. 63-86.

M. CROCHEMORE AND W. RYTTER, Efficient parallel algorithms to test quare-freeness and
factorize strings, Inform. Process. Lett., 38 (1991), pp. 57-60.
, Usefulness of the Karp-Miller-Rosenberg algorithm in parallel computations on strings

and arrays, Theoret. Comput. Sci., 88 (1991), pp. 59-82.
[18] , Periodic prefixes in texts, in Proc. 1991 Sequences Workshop: Sequences II: Meth-

ods in Communication, Security and Computer Science, R. Capocelli, A. De Santis, and
U. Vaccaro, eds., Springer-Verlag, Berlin, 1993, pp. 153-165.

[19] F. E. FICH, R. L. RAGDE, AND A. WI(DEPSON, Relations between concurrent-write models of
parallel computation, SIAM J. Comput., 17 (1988), pp. 606-627.

[20] Z. GALIL, String matching in real time, J. Assoc. Comput. Mach., 28 (1981), pp. 134-149.
[21] Z. GALIL AND J. SEIFERAS, Time-space-optimal string matching, J. Comput. System Sci., 26

(1983), pp. 280-294.
[22] M. HAPPdSON, Introduction to Formal Language Theory, Addison-Wesley, Reading, MA, 1978.
[23] M. LOTHAIaE, Combinatorics on Words, Addison-Wesley, Reading, MA, 1983.

[10]

[13]

[14]

[15]

[17]

DETECTING SQUARES IN A STRING 1331

[24] R. C. LYNDON AND M. P. SCtt/TZENBERGER, The equation a bncp in a free group, Michigan
Math. J., 9 (1962), pp. 289-298.

[25] G. M. MAIN AND R. J. LORENTZ, An O(n log n) algorithm for finding all repetitions in a string,
J. Algorithms, 5 (1984), pp. 422-432.

[26] , Linear time recognition of squarefree strings, in Combinatorial Algorithms on Words,
A. Apostolico and Z. Galil, eds., NATO ASI Ser. F 12, Springer-Verlag, Berlin, 1985, pp.
271-278.

[27] M. O. RABIN, Discovering repetitions in strings, in Combinatorial Algorithms on Words,
A. Apostolico and Z. Galil, eds., NATO ASI Ser. F 12, Springer-Verlag, Berlin, 1985, pp.
271-278.

[28] I:. ROSS AND R. WINKLMANN, Repetitive strings are not context-free, Technical report CS-81-
070, W.a.shington State University, Pullman, WA, 1981.

[29] A. THUE, Uber unendliche zeichenreihen, Norske Vid. Selsk. Skr. Mat. Nat. K1. (Cristiania),

[30] , Uber die gegenseitige lage gleicher teile gewisser zeichenreihen, Norske Vid. Selsk. Skr.
Mat. Nat. K1. (Cristiania), 1912 (1), pp. 1-67.

SIAM J. COMPUT.
Vol. 25, No. 6, pp. 1332-1357, December 1996

() 1996 Society for Industrial and Applied Mathematics
012

THE WAKEUP PROBLEM*

MICHAEL J. FISCHERt, SHLOMO MORANt, STEVEN RUDICH, AND

GADI TAUBENFELD

Abstract. We study a new problem---the wakeup problem--that seems to be fundamental in
distributed computing. We present eicient solutions to the problem and show how these solutions
can be used to solve the consensus problem, the leader-election problem, and other related problems.
The main question we try to answer is "How much memory is needed to solve the wakeup problem?"
We assume a model that captures important properties of real systems that have been largely ignored
by previous work on cooperative problems.

Key words, fault tolerance, shared memory, concurrency, algorithms

AMS subject classifications. 68M99, 68Q10, 68Q25

1. Introduction.

1.1. The wakeup problem. The wakeup problem is a deceptively simple new
problem that seems to be fundamental in distributed computing. The goal is to design
a t-resilient protocol for n asynchronous processes in a shared-memory environment
such that at least p processes eventually learn that at least - processes have waked up
and begun participating in the protocol. Put another way, the wakeup problem with
parameters n, t, -, and p is to find a protocol such that in any fair run of n processes
with at most t failures, at least p processes eventually know that at least 7 processes
have taken at least one step in the past. The only kind of failures we consider are
crash failures, in which a process may become faulty at any time during its execution,
and when it fails, it simply stops participating in the protocol.

In the wakeup problem, it is known a priori by all processes that at least n- t
processes will eventually wake up. The goal is simply to have a point in time at which
the fact that at least - processes have already woken up is known to p processes. It is
not required that this time be the earliest possible, and faulty processes are included
in the counts of processes that have woken up and that know about that fact. Note
that in a solution to the wakeup problem, at least p- t correct processes eventually
learn that at least -- t correct processes are awake and participating in the protocol.

The significance of this problem is twofold. First, it seems generally useful to have
a protocol such that after a crash of the network or a malicious attack, the remaining
correct processes can figure out if sufficiently many other processes remain active to
carry out a given task. Second, a solution to this problem is a useful building block
for solving other important problems such as the consensus [Abr88, Fis83, PSLS0],
leader-election [FL87, Pet82], memory-initialization [Hem89], phase-synchronization
[Mis91], and processor-identity [LP90] problems.

Received by the editors September 7, 1993; accepted for publication (in revised form) March 30,
1995. A preliminary version of this work appeared in Proc. 22rid Annual Symposium on Theory of
Computing, Association for Computing Machinery, New York, 1990. This research was supported in
part by ONR contract N00014-89-J-1980, NSF grant CCR-8405478, the Hebrew Technical Institute
scholarship, the Technion V.P.R. Funds-Wellner Research Fund, and the Foundation for Research
in Electronics, Computers, and Communications, administrated by the Israel Academy of Sciences
and Humanities.

Computer Science Department, Yale University, New Haven, CT 06520.
Computer Science Department, Technion, Haifa 32000, Israel.
Computer Science Department, Carnegie Mellon University, Pittsburgh, PA 15213.
AT&T Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07974 and Open University

of Israel, Tel Aviv 61392, Israel.

1332

THE WAKEUP PROBLEM 1333

1.2. A new model. Much work to date on fault-tolerant parallel and distributed
systems has been generous in the class of faults considered but rather strict in the re-
quirements on the system itself. Problems are usually studied in an underlying model
that is fully synchronous, provides each process with a unique name that is known to
all other processes, and is initialized to a known state at time zero. We argue that
none of these assumptions is realistic in today’s computer networks, and achieving
them even within a single parallel computer is becoming increasingly difficult and
costly. Large systems do not run off of a single clock and hence are not synchronous.
Providing processes with unique id’s is costly and difficult and greatly complicates
reconfiguring the system. Finally, simultaneously resetting all of the computers and
communication channels in a large network to a known initial state is virtually impos-
sible and would rarely be done even if it were possible because of the large destructive
effects it would have on ongoing activities.

Our new model of computation makes none of these assumptions. It consists of
a fully asynchronous collection of n identical anonymous processes that .communicate
via a single finite-sized shared register which is initially in an arbitrary unknown
state. Access to the shared register is via atomic "read-modify-write" instructions
which, in a single indivisible step, read the value in the register and then write a
new value that can depend on the value just read. (When only atomic read and
atomic write instructions are assumed, the wakeup problem cannot be solved even
when t 0, r 2, and p 1 since no process can ever learn that the others are
awake if the processes are scheduled in a round-robin fashion.)

Assuming an arbitrary unknown initial state relates to the notion of self-stabilizing
systems defined by Dijkstra [Dij74]. However, Dijkstra considers only nonterminating
control problems such as the mutual-exclusion problem, whereas we show how to
solve decision problems such as the wakeup, consensus, and leader-election problems,
in which a process makes an irrevocable decision after a finite number of steps.

Before proceeding, we should address two possible criticisms of shared-memory
models in general and our model in particular. First, most computers implement
only reads and writes to memory, so why do we consider atomic read-modify-write
instructions? One answer is that large parallel systems access shared memory through
a communication network which may well possess independent processing power that
enables it to implement more powerful primitives than just simple reads and writes.
Indeed, such machines have been seriously proposed [GGK+83, Pea85]. Another
answer is that part of our interest is in exploring the boundary between what can
and cannot be done, and a proof of impossibility for a machine with read-modify-
write access to memory shows afortiori the corresponding impossibility for the weaker
read/write model.

A second possible criticism is that real distributed systems are built around the
message-passing paradigm and that shared-memory models are unrealistic for large
systems. Again, we have several possible answers. First, the premise may not be
correct. Experience is showing that message-passing systems are difficult to program,
so increasing attention is being paid. to implementing shared-memory models, either
in hardware (e.g., the Fluent machine [RBJ88]) or in software (e.g., the Linda system
[CG89]). Second, message-passing systems are themselves an abstraction that may
not accurately reflect the realities of the underlying hardware. For example, message-
passing systems typically assume infinite buffers for incoming messages, yet nothing
is infinite in a real system, and indeed overflow of the message buffer is one kind of
fault to which real systems are subject. It is difficult to see how to study a kind of
fault which is assumed away by the model. Finally, at the lowest level, communication

1334 M.J. FISCHER, S. MORAN, S. RUDICH, AND G. TAUBENFELD

hardware looks very much like shared memory. For example, a wire from one process
to another can be thought of as a binary shared register which the first process can
write (by injecting a voltage) and the second process can read (by sensing the voltage).

1.3. Space-complexity results. The main question we try to answer is "How
many values v for the shared register are necessary and suicient to solve the wakeup
problem?" The answer both gives a measure of the communication-space complexity
of the problem and also provides a way of assessing the cost of achieving reliability.
We give a brief overview of our results below.

1.3.1. Fault-free solutions. First, we examine what can be done in the absence
of faults (i.e., t 0). We present a solution to the wakeup problem in which one
process learns that all other processes are awake (i.e., p- 1 and r n), and it uses
a single 4-valued register (i.e., v 4). The protocol for achieving this is quite subtle
and surprising. It can also be modified to solve the leader-election problem. Based on
this protocol, we construct a fault-free protocol that reaches consensus on one out of
k possible values using a 5-valued register. Finally, we show that there is no fault-free
solution to the wakeup problem with only two values (i.e., one bit) when r >_ 3.

1.3.2. Fault-tolerant solutions: Upper bounds. We start by showing that
the fault-free solution which uses a single 4-valued register, mentioned in the previous
section, can actually tolerate t failures for any r

_
((2n 2) / (2t + 1) + 1)/2. Using

many copies of this protocol, we construct a protocol with v 8t+l that tolerates t
faults when r _< n- t. Thus, if t is a constant, then a constant-sized shared memory
is suicient, independent of n. However, the constant grows exponentially with t. An
easy protocol exists with v n that works for any t and r

_
n- t. This means

that the above exponential result is only of interest for t << log n. Finally, we show
that for any t < n/2, there is a t-resilient solution to the wakeup problem for any

<_ /J + 1 .si. i.e O(t)-.d istr.

1.3.3. Fault-tolerant solutions: A lower bound. We prove that for any
protocol P that solves the wakeup problem for parameters n, t, and r, where 1 <
t <_ 2n/3 and r > In/31, and for every 0 < c _< 1/2, the number of shared-
memory values used by P is at least (W + 1), where W ct/(2(n t)) and
c 1/(log2((n t)/((1 e)t) + 2)). The proof is quite intricate and involves showing
that for any protocol with too few memory values, there is a run in which n- t pro-
cesses wake up and do not fail, yet no process can distinguish that run from another
in which fewer than r wake up; hence no process knows that r are awake.

When we take t to be a constant fraction of n, we get the following immediate
corollary. Let P be a protocol that solves the wakeup problem for parameters n, t,
and r, where t >_ n/c and r > Vn/3. Let V be the set of shared-memory values used
by P. Let -y 1/(log2(c + 1)) and 5 > 0. Then IVI- (n-e). The corollary gives
the bound that we obtain in the case where t= (n). However, when t= O(n) for
a constant { < 1 we get that our lower bound (W + 1)a O(1) and hence is not
interesting.

1.4. Relation to other problems. We establish connections between the
wakeup problem and two fundamental problems in distributed computing: the con-
sensus problem and the leader-election problem. These two problems lie at the core
of many problems for fault-tolerant distributed applications [Abr88, AG85, CR79,
DDS87, DKR82, DLS88, Fis83, FL87, FLM86, FLP85, HSS0, KKM, KMZ84, Pet82,
PKR84, PSLS0, TKM89a, Tau91].

THE WAKEUP PROBLEM 1335

We show that (1) any protocol that uses v values and solves the wakeup problem
for t < n/2, - > n/2, and p 1 can be transformed into t-resilient consensus
and leader-election protocols which use 8v values and (2) any t-resilient consensus
or leader-election protocol that uses v values can be transformed into a t-resilient
protocol which uses 4v values and solves the wakeup problem for any - _< [n/2J + 1
andp= 1.

Using the first result above, we can construct efficient solutions to both the con-
sensus and leader-election problems from solutions for the wakeup problem. The
second result implies that the lower bound proved for the wakeup problem holds for
these other two problems. As a consequence, the consensus and the leader-election
problems are space equivalent in our model.

2. Definitions and notations.

2.1. Protocols and knowledge. An n-process protocol P (C, N, R) consists
of a nonempty set C of runs, an n-tuple N (ql,..., qn) of process id’s (or processes
for short), and an n-tuple R (RI,..., Rn) of sets of registers. Informally, R includes
all the registers that process q can access. We assume throughout this paper that
n>2.

A run is a pair (f, S) where f is a function which assigns initial values to the
registers in R1 U... U Rn and S is a finite or infinite sequence of events. (When S is
finite, we also say that the run is finite.) An event e (q, v, r, v) means that process
q in one atomic step first reads a value v from register r and then writes a value v
into register r. We say that the event e involves process q and register r and that
process q performs a read-modify-write operation on register r.

The value of a register at a finite run is the last value that was written into that
register or is its initial value if no process wrote into the register. We use value(r, p)
to denote the value of r at a finite run p.

A register r is said to be local if there exists an such that r E R and for
any j i, r Rj. A register is shared if it is not local. In this paper, we restrict
our attention to protocols which have exactly one register which is shared by all the
processes (i.e., IR1 N... C Rn 1) and all other registers are local. We assume that
all local registers of process qi (1 _< _< n) have names of the form r.i. Furthermore,
we assume that for any two processes qi and qj, the (local) register r.i exists iff the
register r.j exists.

If S’ is a prefix of S, then the run (f,S’) is a prefix of (f,S) and (f,S) is
an extension of (f,S’). Let {S; S’} be the sequence obtained by concatenating the
sequences S and S’. For a run p (f, S), let (p; S’} be an abbreviation for (f, {S; S’}).
For any sequence S, let Si be the subsequence of S containing all events in S which
involve qi. Runs (f,S) and (f’,S’) are equivalent with respect to qi, denoted by

(f, S) (f’, S’), iff Si S. Let null denote the empty sequence.
The set of runs of each protocol considered in this paper is assumed to satisfy the

following five properties.
p is a run iff every prefix of p is a run.

Let p and p’ be finite runs such that p p’ and value(r, p) value(r, p’).
Then {p; (qi, v, r, v’)} is a run iff {p’; (qi, v, r, v’)} is a run. That is, if some event can
happen at a process qi at some point in a run, then the same event can happen at
any run that is equivalent to that run w.r.t, qi provided that the register qi accesses
in that event has the same value in both run.

Let {p; (qi, v, r, v’)} be a run. Then v value(r, p). That is, it is possible to

1336 M.j. FISCHER, S. MORAN, S. RUDICH, AND G. TAUBENFELD

read only the last value that is written into a register.
Let r be the single shared register. For any run p, there exists a run (g, null),

where g(r) = value(r, p). That is, nothing can be assumed about the initial values.
Let r be a permutation of {l,...,n}, let S be the sequence of events S

where for every I <: <: n every appearance of q in S is replaced by q(), and let
f be.a function where f(r) f(r) for the shared register r and f(r.7(i)) f(r)
for any local register r.i. Then if (f, S) is a run then (fr, S) is also a run for every
permutation . That is, the processes are anonymous and identically programmed.

Notice that the above properties allow nondeterministic processes. However, for
convenience, we will assume that processes are deterministic.

We are now ready to define the notion of knowledge in a shared-memory environ-
ment. In the following, we use predicate to mean a set of runs.

DEFINITION. For a process qi, predicate b, and finite run p, process qi knows b

at p iff for all pt such that p pt, it is the case that p E b.
We say that a process p learns a predicate b in a run p if p knows b in p but it

does not know b in any proper prefix of p.
For simplicity, we assume that a process always takes a step whenever it is sched-

uled. A process that takes infinitely many steps in a run is said to be correct in that
run; otherwise, it is faulty. We say that an infinite run is 1-fair iff at least processes
are correct in it.

2.2. Wakeup consensus and leader-election protocols. In this subsec-
tion, we formally define the notions of t-resilient wakeup, consensus, and leader-
election protocols (0 <: t <: n). We say that a process q is awake in a run if the
run contains an event that involves q. The predicate "at least T processes are awake"
is the set of all runs for which there exist - different processes which are awake in the
run. Note that a process that fails after taking a step is nevertheless considered to be
awake in the run.

A wakeup protocol with parameters n, t, 7, and p is a protocol for n processes
such that for any (n- t)-fair run p, there exists a finite prefix of p in which at least
p processes know that at least - processes are awake in p.

It is easy to see that a wakeup protocol exists only if max(p, -) <: n- t, and
hence, from now on, we assume that this is always the case. We also assume that
min(p, ’) :> 1.

In the following, whenever we speak about a solution to the wakeup problem
without mentioning p, we are assuming that p 1.

A t-resilient k-consensus protocol is a protocol for n processes where each
process has a local read-only input register and a local write-once output register.
For any (n- t)-fair run, there exists a finite prefix in which all the correct processes
decide on some value from a set of size k (i.e., each correct process writes a decision
value into its local output register), the decision values written by all processes are
the same, and the decision value is equal to the input value of some process.

In the following, whenever we say "consensus" (without mentioning specific k),
we mean "binary consensus," where the possible decision values are 0 and 1.

Let P be a protocol for n processes, where each process has a local write-once
output register, and let p be a finite run of P. We say that a process q commits to
a value v E {0, 1} in p if q either has already written or eventually writes v to its
output register in any (n- t)-fair extension of p in which q is correct. A process q
is elected in p if q knows that it is committed to 1 in p. P is said to be a t-resilient
leader-election protocol if in any (n- t)-fair run of P, there exists a finite prefix in

THE WAKEUP PROBLEM 1337

which exactly one process is elected and all other processes (correct or faulty) commit
to the value 0. The elected process is called the leader.

Notice that here we need to use the notions "commits" and "elected" rather
than "decides" since the elected leader might fail just before it writes to its output
register (at which point it knows that it is committed). Also, we observe that because
processes are identical and anonymous, there can be an a priori leader (if one process
is elected without taking any steps, then all processes do so). Thus a process is elected
in a run only if it participates in this runma fact which is used in the sequel.

3. Fault-free solutions. In this section, we develop the seesaw protocol, which
solves the fault-free wakeup problem using a single 4-valued shared register. Then we
show how the seesaw protocol can be used to solve the k-valued consensus problem.
Finally, we show that it is impossible to solve the wakeup problem using only one
shared bit.

To understand the seesaw protocol, the reader should imagine a playground with
a seesaw in it. The processes will play the protocol on the seesaw, adhering to strict
rules. When each process enters the playground (wakes up), it sits on the up side of
the seesaw, causing it to swing to the ground. Only a process on the ground (or down
side) can get off, and when it does, the seesaw must swing to the opposite orientation.
These rules enforce a balance invariant which says that the number of processes on
each side of the seesaw differs by at most one (the heavier side always being down).

Each process enters the playground with two tokens. The protocol will force the
processes on the bottom of the seesaw to give away tokens to the processes on the top
of the seesaw. Thus token flow will change direction depending on the orientation of
the seesaw. Tokens can be neither created nor destroyed. The idea of the protocol
is to cause tokens to concentrate in the hands of a single process. A process that
sees 2k tokens knows that at least k processes are awake. Hence if it is guaranteed
that eventually some process will see at least 2" tokens, the protocol is by definition
a wakeup protocol with parameter -, even if the process does not know the value of
7 and hence does not know when the goal has been achieved.

Following is the complete description of the seesaw protocol. The 4-valued shared
register is easily interpreted as two bits which we call the "token bit" and the "seesaw"
bit. The two states of the token bit are called "token present" and "no token present."
We think of a public token slot which either contains a token or is empty, according to
the value of the token bit. The two states of the seesaw bit are called "left side down"
and "right side down." The "seesaw" bit describes a virtual seesaw which has a left
and a right side. The bit indicates which side is down (implying that the opposite
side is up).

Each process remembers in private memory the number of tokens it currently
possesses and which of four states it is currently in with respect to the seesaw: "never
been on," "on left side," "on right side," and "got off." A process is said to be on
the up side of the seesaw if it is currently "on left side" and the seesaw bit is in state
"right side down" or if it is currently "on right side" and the seesaw bit is in state
"left side down." A process initially possesses two tokens and is in state "never been
on."

We define the protocol by a list of rules. When a process is scheduled, it looks at
the shared register and at its own internal state and carries out the first applicable
rule, if any. If no rule is applicable, it takes a null step which leaves its internal state
and the value in the shared register unchanged.

Rule 1 (start of protocol). This rule is applicable if the scheduled process is in

1338 M.J. FISCHER, S. MORAN, S. RUDICH, AND G. TAUBENFELD

state "never been on." The process gets on the up side of the seesaw and then flips
the seesaw bit. By "get on," we mean that the process changes its state to "on left
side" or "on right side" according to whichever side is up. Since flipping the seesaw
bit causes that side to go down, the process ends up on the down side of the seesaw.

_Rule 2 (emitter). This rule is applicable if the scheduled process is on the down
side of the seesaw and has one or more tokens and the token slot is empty. The
process flips the token bit (to indicate that a token is present) and decrements by one
the count of tokens it possesses. If its token count thereby becomes zero, the process
flips the seesaw bit and gets off the seesaw by setting its state to "got off."

Rule 3 (absorber). This rule is applicable if the scheduled process is on the up
side of the seesaw and a token is present in the token slot. The process flips the token
bit (to indicate that a token is no longer present) and increments by one the count of
tokens it possesses.

Note that if a scheduled process is on the down side and has 2k- i tokens and
a token is present in the token slot, then, although no rule is applicable, the process
nevertheless sees a total of 2k tokens and hence knows that k processes have woken
up.

The two main ideas behind the protocol can be stated as invariants.
Token invariant. The number of tokens in the system is either 2n or 2n + 1

and does not change at any time during the protocol. (The number of tokens in the
system is the total number of tokens possessed by all of the processes plus 1 if a token
is present in the token bit slot.)

Proof. The number of tokens in the starting configuration is 2n with the possible
addition of one token present in the token bit slot. The rules that effect tokens are
Rules 2 and 3, both of which maintain the token invariant.

Balance invariant. The number of processes on the left and right sides of the
seesaw is either perfectly balanced or favors the down side of the seesaw by one
process.

Proof. The seesaw starts empty, zero on either side. Rule 1 preserves the invariant
because a process gets on the up side and then flips the seesaw. If a process runs out
of tokens, it must be on the down side of the seesaw; hence when Rule 2 is applied,
the invariant is maintained.

THEOREM 3.1. Let t O. The seesaw protocol uses a 4-valued shared register
and is a wakeup protocol for rt, t, and - (and p 1), where n and - are arbitrary and
t O. (Note that the rules for the protocol do not mention n or -.)

Proof. By the token invariant, there are no more than 2n+ 1 tokens in the system.
At most two come from each player; at most one comes from the initialized state of
the token bit. Hence if a process sees 27 tokens, it has to be the case that at least -processes are awake.

Next, we argue that the protocol comes to a state where everybody has awakened
and there is only one process remaining on the seesaw. We know there will be a
time when everybody is awake. Furthermore, for any number of processes rn _> 2 still
active on the seesaw, there will be a future time when there are only rn- 1 processes
on the seesaw. By the balance invariant, there are some processes on both sides and
hence eventually either Rule 2 or Rule 3 is applicable (i.e., there is no deadlock). Each
process has awakened; hence Rule 1 will no longer apply. Applying Rules 2 and 3 will
cause tokens to flow from the down side to the up side; eventually, the token count of
a down-side process will become zero and the process will get off the seesaw. Hence
there will eventually be only one process remaining on the seesaw. This process will
see 2n tokens and will know that all other processes are awake.

THE WAKEUP PROBLEM 1339

In applications of wakeup protocols, it is often desirable for the processes to know
the value of - so that a process learning that - processes are awake can stop partic-
ipating in the wakeup protocol and take some action based on that knowledge. The
seesaw protocol can be easily modified to have this property by adding a termination
rule immediately after Rule 1.

Rule la (end of protocol). This rule is applicable if the scheduled process is on the
seesaw and sees at least 2" tokens, where the number of tokens that the process sees
is the number it possesses plus one if a token is present in the token slot. The process
thus knows that - processes have woken up. It gets off the seesaw (i.e., terminates}
by setting its state to "got off."

The seesaw protocol can also be used to solve the leader-election problem by
electing the first process that sees 2n tokens. By adding a fifth value, everyone can be
informed that the leader was elected, and the leader can know that everyone knows.
Now the leader can transmit an arbitrary messagefor example, a consensus value--
to all the other processes without using any more new values through a kind of serial
protocol. This leads to our next theorem.

THEOREM 3.2. In the absence of faults, it is possible to reach consensus on one

of k values using a single 5-valued shared register.
Proof. Assume that the processes have been running the seesaw protocol in which

each process initially has two tokens. A process becomes leader when it accumulates
2n tokens, at which time possibly one more token remains elsewhere in the system.

Let end be a fifth value. The leader now puts end in the shared register. Any
process that sees end for the first time replaces it with (no token present, left side
downI. The leader repeats this n- 1 times, waiting each time for end to be removed
from the register, after which time each other process knows of the existence of the
leader. When the leader notices the last end disappear, it knows that everyone knows.

Note that at the start of these exchanges, all other processes save one are out of
tokens and will ignore all messages except end. Any nonleader process possessing a
single token will either ignore the message (no token present, left side down) or will
change it to (token present, right side down), depending on its type bit, and thereafter
ignore all messages except end. Thus from the time the leader is elected until the time
that everyone knows of its election, the only possible shared register values are end,
(no token present, left side down}, and (token present, right side down}. Hence the
remaining two values, (no token present, right side down) and (token present, left side
down), can be reused to initiate sending the message because they will not appear
until after the leader knows that everyone knows. Call these values data1 and ackl,
respectively. Call values (no token present, left side down) and (token present, right
side down) data2 and ack2, respectively.

Let 1 _< m _< k be the consensus value, which we take to be the leader’s initial
value. Here is the protocol that the leader now uses to send rn to all other processes.
The leader executes rn data phases. Each process counts the number of data phases
executed. At the end of the rn phases, the leader terminates the protocol by putting
end back in the register. Each process terminates when it sees end, in which case it
also knows the number of phases and hence the consensus value.

The first data phase involves the leader putting data1 into memory n- 1 times.
Each follower process, upon seeing data1, replaces it with ackl, increments its phase
counter, and enters the next phase, where it waits for data2 or end. The second phase
uses data2 and ack2, and subsequent phases alternate between the two versions of the
values, odd-numbered phases using data1 and ackl and even-numbered phases using
data2 and ack2.

1340 M.J. FISCHER, S. MORAN, S. RUDICH, AND G. TAUBENFELD

Finally, we claim that the seesaw protocol cannot be improved to use only a single
binary register. A slightly weaker result than Theorem 3.3 was also proved by Joe
Halpern [Hall. The question of whether three values suffice was settled affirmatively
by Valois in [Va95].

THEOREM 3.3. There does not exist a solution to the wakeup problem which uses
only a single binary register when - >_ 3.

In order to prove Theorem 3.3, we first prove a simple lemma. We say that a
process writes the value ao if the process writes a and at the infinite extension in
which this process is the only one that is activated, a appears infinitely many times.
We notice that when the memory is bounded, for any run p and any process p, if p is
run alone from p, then p must eventually write ao for some a.

LEMMA 3.1. In any wakeup protocol where - >_ 2, if the initial value is a and
only one process wakes up and it is activated alone forever, then it will never write

acx:.
Proof. Assume to the contrary that the lemma does not hold. We show that

this leads to a contradiction by constructing an n-fair run in which the initial value
of that shared register is a, the value a appears infinitely many times, and yet no
process knows that any other process is awake. We construct the run p by activating
the processes in a round-robin fashion infinitely many times, starting with a as the
initial value. Each time a process is scheduled, we let it run until it writes ao. Each
process cannot distinguish p from the run constructed similarly in which it is the
only process that is activated. Hence no process ever knows that any other process is
awake.

Proof of Theorem 3.3. We first assume that rt is even and construct an n-fair run
called p such that in each prefix of that run, each process only knows that one other
process is awake.

Assume that the initial value is b E {0, 1}, let q be an arbitrary process, and
consider the following scenario. First, q runs alone until it writes a (by Lemma 3.1,
a b). At that point, we interfere and flip the shared bit so that its value is again b.
Afterwards, we let q continue until it writes ao again and then we flip the bit and so
on. Let flip(b) be the number of times that q writes ao at such an infinite run. We
consider the two possible cases.

The first case is when both flip(O) and flip(l) are infinite. We construct the run
p by activating the processes in a round-robin fashion infinitely many times, starting
with 0 as the initial value. Each time a process is scheduled, if the value of the shared
bit is a (b), we let it run until it writes b (ao). Each process cannot distinguish p
from the run constructed similarly in which only two processes participate. Hence no
process ever knows that more than one other process is awake.

The other case is the negation of the previous one. Assume w.l.o.g, that flip(O)
k for some positive number k and that flip(O) < flip(l). We construct the run p
by first activating the processes in a round-robin fashion exactly as in the previous
construction but only for k rounds, starting with 0 as the initial value. After k
rounds, the value of the shared bit is 0. We extend this run to an n-fair run by
continuing activating the processes in a round-robin fashion, letting each process
make one or more steps whenever it is scheduled until it writes 0. (Note that this
is always possible since flip(O) <_ flip(i).) As in the previous case, no process can
distinguish this run from the run constructed similarly in which only two processes
participate. Hence no process ever knows that more than one other process is awake.
This completes the proof when n is even.

Assume that n is odd. Let rn n- 1. Since rn is even, we can construct exactly

THE WAKEUP PROBLEM 1341

as before an m-fair run called p in which no process ever knows that more than one
other process is awake. Let q be the remaining process. We now construct p’ as

follows. We start with 1 as the initial value and let q run until it writes 0 (as is
assured by Lemma 3.1). Then, alternately, we let the other m processes run as in p
until 0 appears; then we let q take one or more steps until 0 appears (this is assured
since previously q wrote 0o) and so on. Clearly, q cannot distinguish p’ from a run
where it is the only process that is activated, and hence it never knows that any of
the other processes is awake. The other processes cannot distinguish p’ from p and
hence never know (as in p) that more than one other process is awake.

4. Fault-tolerant solutions. In this section, we explore solutions to the wakeup
problem which can tolerate t > 0 process failures. The seesaw protocol, presented in
the previous section, cannot tolerate even a single crash failure for any 7 > n/3. The
reason is that the faulty process may fail after accumulating 2n/3 tokens, trapping
two other processes on one side of the seesaw, each with 2n/3 tokens. When 7 _<
the seesaw protocol can tolerate at least one failure. As the parameter 7 decreases,
the number of failures that the protocol can tolerate increases. This fact is captured
by the following theorem.

THEOREM 4.1. The seesaw protocol is a wakeup protocol br n, t, and 7, where

7<
(2n- 1)/(2t + 1)+ 1

Proof. Failures affect the protocol in two ways. First, tokens possessed by a failed
process are lost to the system. Second, failures can disrupt the balance condition on
the number of active processes of each type. Thus, after t failures, up to t(27- 1)
tokens can be lost, and the number of active processes of each type can differ by up to
t + 1. (If a faulty process accumulates 27 tokens, it knows that at least 7 processes are

awake, and the goal of the protocol is achieved.) This implies that when one reaches
stage in which there are either no emitters or no absorbers, there can remain as many
as t + 1 active processes. In order to guarantee termination, we must be assured that
at least one of these remaining processes holds at least 27 tokens. Since the other t
active processes can each hold 27- 1 tokens, the total number of tokens remaining
after t failures must be at least 27 + t(27- 1). (Notice that at the point when one
process accumulates 27 tokens, there is no token in the shared register.) Hence we
must have 2n-t(27-1) >_ (t +1) (27 -1) +1. Solving, we get 2n _> (2t+1)(27-1)+1,
so 7 <_ ((2n- 1)/(2t + 1)+ 1)/2.

If one insists that some nonfailing process learns that 7 nonfailing processes have
woken up, then a process terminates when it collects 2(7 + t) tokens, and each failing
process can take at most 2(7 + t) tokens with it (since it stops accumulating tokens
when it has that number). Hence we get the inequality 2n-t(2(7+t)) > (t+ 1)(2(7+
t)-1)+1. Solving, we get 2n > 2(2t+1)(7+t)-t, so 7 < (2n+t)/(2(2t+l))-t. We note
that the seesaw protocol can tolerate up to n/2- 1 initial failures [FLP85, TKM89b].

As we can see, the seesaw protocol needs only four values but is very sensitive to
failures. Let us define p 7/(n-t) as the sensitivity parameter’ of a wakeup protocol.
Clearly, in the seesaw protocol, when t is
goes to infinity is zero. In the rest of this section, we present three t-resilient wakeup
protocols. In the first two protocols, p 1, but they need n and 8t+l values. In the
third protocol, p > 1/2, but it needs only O(t) values.

THEOREM 4.2. For any t < n/6, there is a wakeup protocol which uses a single
8t+l-valued register and works for any 7 <_ n- t.

1342 M. J. FISCHER, S. MORAN, S. RUDICH, AND G. TAUBENFELD

Proof. The solution is constructed using t+ 1 copies of the seesaw protocol. Before
going into details, let us first reexamine the seesaw protocol. Consider the following
situation. There are only three processes, and initially there is a token in the shared
variable. Let each process make one move. Now there are two emitters and one
absorber. If at that point the absorber fails, the other two processes are captured
forever in the protocol.

It is not diificult to see that t faulty processes can trap at most t+ 1 other processes
in an execution of the seesaw protocol (i.e., if there is a deadlock, then at most t + 1
correct processes have not yet terminated). The proof of that fact follows from the
invariant that the difference between emitters and absorbers is at most one.

Also, we observe that if we have a leader which is guaranteed not to fail, then
one bit is sufficient in order for the leader to learn that n- t processes are awake,
assuming up to t failures. This goes as follows. When the leader reads 1, it writes
0; otherwise, it waits. When a slave reads 0, it writes 1; otherwise, it waits. Each
slave changes the bit exactly two times. When the leader learns that the bit has been
changed 2(n- t) 3 times from 0 to 1, it knows that n- t processes (including itself)
are awake. Call this trivial protocol the leader protocol.

Using these observations, we are ready to present, for any t n/6, a t-resilient
wakeup protocol for - n- t, which uses a single 8t+l-valued register. In this
protocol, the processes participate in t / 1 seesaw protocols in a sequential manner.
That is, processes get on the ith protocol only after they get off the (i- lst protocol.
In addition, all processes participate in t / 1 leader protocols in parallel. That is, each
process participates in one seesaw protocol and in t / 1 leader protocols at the same
time. Each process behaves according to the following rules.

For all 1

_ _
t + 1, we have the following.

A process that accumulates n + 1 tokens in the ith seesaw protocol becomes
the leader of that protocol and takes the role of the leader in the ith leader protocol
(and participate as a slave in all other leader protocols).

At any time, a process that is not a leader at the ith seesaw protocol partic-
ipates as a slave in the ith leader protocol.

Once a leader is elected in the ith seesaw protocol, it immediately stops
participating in this protocol and participates only in all the t + 1 leader protocols.
(The justification for that is that if the leader never fails, then it will eventually learn
that n- t processes are awake. If it does fail, then we can assume w.l.o.g, that it
always fails immediately after it is elected.)

This completes the description of the protocol.
The correctness proof is as follows. Since once a process accumulates n + 1 tokens

in the ith seesaw protocol, it stops participating in it, no other process will ever
accumulate n + 1 tokens in this seesaw protocol. Hence at each seesaw protocol, at
most one leader is elected, and at each leader protocol, at most one process participates
as a leader. The next observation is that if no reliable leader is elected in one of the
first t seesaw protocols, then eventually a reliable leader is elected at the (t + 1)st
seesaw protocol. The reason for this is as follows. Assuming that no reliable leader is
elected in the first t seesaw protocols implies that t processes already fail, and hence
any process that participates in the (t + 1)st protocol has to be reliable. The total
number of processes that can either fail or be trapped in the first t seesaw protocols
is at most 3t. Hence, since t < n/6, it follows that more than n/2 processes will
eventually participate in the (t + 1)st seesaw protocol and one of them will eventually
be elected. Thus eventually a reliable leader is elected and it will learn that n- t
processes are awake by participating as a leader in one of the leader protocols.

THE WAKEUP PROBLEM 1343

We notice that instead of using a single 8t+l-valued shared register, it is possible
to use t + 1 4-valued registers and t + 1 binary registers where a process can read-
modify-write only one such register at a time. Although the protocol-sensitivity
parameter is optimal, its space complexity grows exponentially with t. Notice that
when the number of failures t is a constant, one process can learn that n- t processes
are awake with a constant number of values.

THEOREM 4.3. For any t < n, there is a wakeup protocol which uses a single
n-valued register and works for any - <_ n- t.

Proof. The solution uses a single register called the counter, whose values are

{0,..., n- 1}. Each process initially records the value of the counter and increments
it by 1 (mod n). Thereafter, it reads the value of the counter until it finds out that
the counter has advanced by at least r, which implies that at least - processes are

awake. Clearly, at least one reliable process must see this.
For later reference, we call the above protocol the counter protocol. Although the

counter-protocol-sensitivity parameter is optimal (i.e., 1), its space requirement
seem to be to big when t is small. Hence the protocol of Theorem 4.2 is better than
the counter protocol for t << log(n). In our next solution, is not optimal and ranges
from 1/2 to 1 depending on the value of t; however, its space complexity is linear in
t.

THEOREM 4.4. For any t < n/2, there is a wakeup protocol which uses a single
O(t)-aet ofo <_ [/J + .

Proof. Let t < n/lO. In what follows, we describe a wakeup protocol for -[n/2J + 1 which uses a single O(t)-valued register. The protocol is presented together
with its correctness proof. When t >_ n/lO, we may use the counter protocol mentioned
above. The protocol is obtain by using a counter and the seesaw protocol. The size
of the counter is n/k, where the value of k is defined later. Each process executes the
seesaw protocol and accesses the counter as follows.

Each process starts with only one token.
A process increments the counter iff the following hold"
it is an absorber (in the seesaw protocol),
it accumulates k tokens, and
if it is the second time the process tries to increment the counter, then it

must be the case that the counter has been incremented at least t times from the first
time the process has incremented the counter.

When a process increments the counter, it erases all the k tokens it holds
and continues to participate as an absorber in the seesaw protocol.

An absorber in the seesaw protocol never collects more than k tokens. (If it
has k tokens and cannot increment the counter, then it does nothing until it either
becomes an emitter or can increment the counter.)

Once a process learns that the counter has been incremented by more than n/(2k)
times, it knows that more than half of the processes are awake.

It remains to decide what the value of k is as a function of n and t. We consider
the following observations.

1. If there is a deadlock, then at most 4t + 1 processes are trapped in it (2t by
being faulty or absorbers with k tokens that do not fulfill the conditions to increment
the counter, and 2t + 1 emitters). Since each process may hold at most k tokens,
(4t + 1)k + 1 tokens may be lost. (The 1 is for the token in the shared register.)

2. At the time the first nonfaulty process reads (and remembers) the counter
value, the counter has been incremented at most t times from .the startup time of the
protocol. Hence the kt tokens that are used for these t increments may be lost.

1344 M.J. FISCHER, S. MORAN, S. RUDICH, AND G. TAUBENFELD

3. From 1 and 2, at most (ht + 1)k + 1 tokens may be lost.
4. To ensure that eventually one correct process will read the counter and will

learn that more than n/2 processes are awake, it is enough to require that (ht + 1)k +
1 < n/2.

5. In order that the number of values of the counter will be O(t), we should
choose k such that n/k O(t).

Hence, we end with three requirements for k" (1) k is a positive integer, (2)
k < (n- 2)/(10t + 2), and (3) n/k O(t). From (1), (2), and the fact that t is an
integer, it follows that t < n/lO. Taking k [(n- 3)/(10t + 2)J is the best choice for
k. For the seesaw protocol, we need four values, and for the counter protocol, we need
n/k values, which (for large n) is less then 12t. Hence a single 4St-valued register
suffices for the protocol that we just described.

In this last protocol, one process learns that n/2 other processes are awake. In
order for one process to learn that In processes are awake, we should replace "(ht +
1)k + 1 < n/2" in observation 4 with "(ht + 1)k + 1 < (1 -/)n" and get that a single
O(t/(1 -/))-valued register suffices for solving the wakeup problem for T ln.

5. A lower bound. In this section, we establish a lower bound on the number
of shared-memory values needed to solve the wakeup problem, where only one process
is required to learn that - processes are awake, assuming that t processes may crash
fail (i.e., p 1). To simplify exposition, we assume that 1 < t <_ 2n/3 and - > In/3].
Also, recall that we already assumed that - _< n- t. For the rest of this section, let
0 < _< 0.5 be fixed (but arbitrary) and let

t2 1
(1) W = a

2(n- t) lg2((l:e)t + 2)

THEOREM 5.1. Let P be a protocol that solves the wakeup problem for parameters
n, t, and T. Let V be the set of shared-memory values used by P. Then IV] >

When we take t to be a constant fraction of n, we get the following immediate
corollary.

COROLLARY 5.1, Let P be a protocol that solves the wakeup problem for parame-
ters n, t, and -, where t >_ n/c. Let V be the set of shared-memory values used by P.
Let y 1/(log2(c + 1)) and > O. Then IYl Ft(n-5).

Theorem 5.1 is immediate if V is infinite, so we assume throughout this section
that V is finite. The proof consists of several parts. First, we define a sequence of
directed graphs whose nodes are shared-memory values in V. Each component C of
each graphin the sequence has a cardinMity kc and a weight we. We establish by
induction that wc < ’c -1. Finally, we argue that in the last graph in the sequence,
every component C has weight wc > W. Hence IV >_ kc > (W + 1).

5.1. Reachability graphs and terminal graphs. Let V be the alphabet of
the shared register. We say that a value a E V appears m times in a given run if there
are (at least) m different prefixes of that run where the value of the shared register is
a.

a -- b denotes that there exists a run in which at most r processes participate,
the initial value of the shared register is a, and the value b appears at least once.

a ===> b denotes that there exists a run in which exactly r processes participate,
each process that participates takes infinitely many steps, the initial value of the
shared register is a, and the value b appears infinitely many times.

THE WAKEUP PROBLEM 1345

Clearly, a := b implies a - b but not vice versa. Also, for every a and for every
r _< n, there exists b such that a = b.

We use the following graph-theoretic notions. A directed multigraph G is weakly
connected if the underlying undirected multigraph of G is connected. A multigraph
G’(V’,E’) is a subgraph of G(V, E) if E’ C_ E and V’ C_ V. A multigraph G’ is a
component of a multigraph G if it is a weakly connected subgraph of G and for any
edge (a, b) in G, either both a and b are nodes of G or both a and b are not in G. A
node is a root of a multigraph if there is a directed path from every other node in the
multigraph to that node. A rooted graph (rooted component) is a graph (component)
with at least one root.

A labeled multigraph is a multigraph together with a label function that assigns
a weight in N to each edge of G. The weight of a labeled multigraph is the sum of
the weights of its edges. We now define the notion of a reachability graph of a given
protocol P.

DEFINITION. Let V be the set of shared-memory values of protocol P. The reach-
ability graph G of protocol P is the labeled directed multigraph with node set V and
which has an edge from node a to node b labeled with r iff a b holds. (Note that
there may be several edges with different labels between the same two nodes. Note also
that G is finite since a b implies that r <_ n.)

DEFINITION. A graph C is closed at node a w.r.t. G if a is in C and for every
node b in G, if (a, b) is an edge of G, then b is in C.

DEFINITION. A multigraph T is terminal w.r.t. G if T is a subgraph of G, all of
T’s components are rooted, and T has a component C with root a among its minimal-
weight components that is closed at node a w.r.t. G.

In the rest of the section we prove Theorem 5.1 by constructing a multigraph T
which is terminal w.r.t. G in which every component with weight w and size k satisfies
k1/a-1 >w > W.

5.2. Reachability graphs. The reachability graphs are defined for all proto-
cols. We now concentrate on such graphs constructed from wakeup protocols only.
We show that when the weight of a rooted subgraph--say C--is sufficiently small, an
edge exists with a label q from a root of C to a node not in C and we can bound the
size of q.

For later reference, we call the set of the following three inequalities,
(i) zq + (z -1)w n,
(ii) zq >_ n- t,
(iii) max(q, w)< T,

the zigzag inequalities. These inequalities play an important role in our exposition.
LEMMA 5.1. Let G be a reachability graph of a wakeup protocol with parameters

n, t, and T and let C be a rooted subgraph of G with root a and weight w. If there
exist positive integers z and q that satisfy the zigzag inequalities, then there exists a

node b of G such that a b, and every such node b is not in C.
Proof. Let z and q be positive integers that satisfy the zigzag inequalities. By (i),

q _< n, so there exists b such that a = b. We show that b C.
Assume to the contrary that b E C. Let p be a q-fair run starting from a in which

b is written infinitely often. Since b is in C, there is a path from b to a such that the
sum of all the labels of edges in that path is at most w and hence b -- a. This allows
us to construct a run with zq nonfaulty processes starting with a as follows:

multigraph can have several edges from a to b.

1346 M.J. FISCHER, S. MORAN, S. RUDICH, AND G. TAUBENFELD

Run q processes according to p until b is written. Run w processes until a is
written. (This must be possible since b - a.) Let these w processes fail. Run a
second group of q processes according to p until b is written. Run a second group
of w processes until a is written, and let them fail. Repeat the above until the zth
group of q processes have just been run and b has again been written. At this point,
zq processes belong to still-active groups and (z- 1)w processes have died. If any
processes remain, let them now die without taking any steps. Now an infinite run
p on the active processes can be constructed by continuing to run the first group
according to p until b is written again, then doing the same for the second through
zth groups, and repeating this cycle forever.

The result is a zq-fair run. Moreover, no reliable process can distinguish this run
from p, and hence no reliable process ever knows (in p) that more than q processes
are awake. Also, obviously, no faulty process knows that more than w processes are
awake. Since max(q, w) < - and zq >_ n- t >_ -, this leads to a contradiction to the
assumption that the protocol solves the wakeup problem. [-1

LEMMA 5.2. Assume that 1 < w < W, where w is an integer. Let

(2) q=
(1-e)t

z
q

+1.

Then z and q are positive integers that satisfy the zigzag inequalities.
Proof. From the assumptions that 1 <_ w, 0 < e <_ 0.5, and t <_ 2n/3, it follows

that q > [1/(2(1- e)) 1, and hence both z and q are positive integers.
To prove inequality (i), observe that from (2), it follows that z- 1 < (n- t)/q.

Thus

zq= (z-1)q/q <_n-t+q.

Also, since 1 < w _< W and e _< 0.5, it follows from (2) that

(4) q<[2(l-e)
_<[etl.

Hence, from (3) and (4), it follows that

zq <_ n- t + [etl n- Lt- et].

Next, we show that

_< Lt- etj.

Notice that

t) 1 t)(7) q
(1

As already mentioned, it follows from (2) that z- 1 <_ (n- t)/q; hence by using (7),
we get that z- 1 < (1- e)t/w. Since both z and w are integers, (z- 1)w _<
Thus using (5) and (6), we get that inequality (i) is satisfied.

Inequality (ii) is satisfied immediately since by (2), z > (n- t)/q.
Finally, we show that inequality (iii) is satisfied. Recall that we assume that

t < 2n/3 and - > In/3]. It follows from these assumptions that - > [t/2. Since
q < [et <_ [t/2, obviously, q < 7. Also, since w _< W and t <_ 2n/3, substituting in

(1) gives w < et <_ n/3, and hence w < -.

THE WAKEUP PROBLEM 1347

5.3. Main construction. In this subsection, we first prove that any rooted
component of any terminal graph w.r.t. G has weight > W. Then we use this to
construct a subgraph T of G, all of whose rooted components have size > (W + 1).

LEMMA 5.3. Let G be the teachability graph of a wakeup protocol with parameters
n, t, and - and let T be terminal w.r.t. G. Any rooted component of T has weight
W.

Proof. Assume that the lemma is false. Then T has a minimal-weight component
C with root a and weight 0 _< w <_ W such that C is closed at a. If w 0, then q 1
and z n- t satisfy the zigzag inequalities; otherwise, by Lemma 5.2, there exist
positive integers q and z that satisfy the zigzag inequalities. From Lemma 5.1, there
is a node b not in C and an edge a = b in G, contradicting the assumption that C
is closed at a.

LEMMA 5.4. Let G be the teachability graph of a wakeup protocol with parameters
n, t, and -. There exists a subgraph T of G, all of whose rooted components have size

> (W+I)
Proof. The following procedure constructs T by adding edges one at a time to

an initial subgraph To of G until Step 2 fails. The initial subgraph To consists of all

the nodes of G. First, for each node a, we place exactly one outgoing edge a b in
To, and then we delete one arbitrary edge from each cycle. We note two facts about

To" 1. for every edge a b, a = b; and 2. every component of To is a directed
rooted tree. Fact 1 is a simple variant of Lemma 5.1, while fact 2 follows from the
observation that every component of To has k vertices and k- 1 edges for some k >_ 2,
the out-degree of every vertex is at most one, and it contains no cycles.

At any stage of the construction, every component of the graph built so far will
be a directed rooted tree. Added edges always start at a root and end at a node
of a different component. After adding an edge (a,b), the components of a and b
are joined together into a single component whose root is the root of b’s component,
and the weight of the new component is the sum of the weights of the two original
components plus the label of the edge from a to b.

PROCEDURE FOR ADDING A NEW EDGE TO T.
Step 1. Select an arbitrary component C of minimal weight w with root a.

Step 2. If w _< W, then find the smallest integer q for which there is an edge
a = b in G such that b is not in C. This step fails if w > W.

Step 3. Place the edge a = b into T.

First note that by Lemma 5.3, if w _< W, then T is not terminal, and hence Step
2 cannot fail. Let Ti be a graph that is constructed after applications of the above
procedure, where To is an initial graph as defined above. Clearly, any such sequence
{To, TI,...} is finite. Let Tast be the last element in this sequence. Then the weight
of any component in Tast is greater than W.

Let / 1/c. We prove by induction on i, the number of applications of the
procedure, that for any graph Ti, all of the components of Ti are rooted, and for any
rooted component C, it is the case that w < kz 1, k >_ 2, and w >_ 1, where k is
the size of C and w is its weight. This together with the fact that eventually every
component C has weight greater than W completes the proof.

As discussed before, each component C of To has a root and has size k at least
2. The component C consists of at most k- 1 edges with label 1, so its weight is at
most k- 1. Hence the base case holds since/ > 1.

1348 M.J. FISCHER, S. MORAN, S. RUDICH, AND G. TAUBENFELD

Since To is a subgraph of Ti which also includes all nodes of r, it follows that
the size and weight of any rooted component of Ti are at least 2 and 1, respectively.
Now suppose the procedure adds an edge of label q from component C1 of size
and weight wl to component C2 of size k2 and weight w2. By Step 1, the new edge
emanates from a minimal-weight component, so Wl _< w2. The weight w of the newly
formed component is wl + w2 + q, and the number of nodes k is k + k2. We now
show that w < k 1.

By Step 2 of the procedure, wl < W. Hence it follows from Lemma 5.2 that
there exist positive integers z’ and q’ that satisfy the zigzag inequalities and q
[/31 (T/, /;) / (1-)t). Hence by Lemma 5.1, there is an edge of label q’ from a root of
C1 to C2. Thus by the minimality of q (the weight of the edge in Step 2), it follows that
q <_ q’, which implies that q _< w (n t)/((1 e)t) + 1. Let r (n t)/((1 e)t) + 1.
Then

(8) w--w +w2 +q < r wl +w2 + 1.

Let k and k be defined by the equalities

k < k. We claim that
-1 and w2 k-1.

rw+w+l=r (k-l)+(k;-l)+l-rk+k;z-r
(9) <r k+k[-l< (k+k;)z-1.

Then

Using the fact that r > 1, everything except the rightmost inequality in Equation (9)
is immediate. To prove this last inequality, observe that 2 r + 1, hence equality
holds for k k. As k is increased to be larger than k, the right side increases
more rapidly than the left side since /> 1; hence, the inequality holds. Finally, by
the induction hypothesis, k < k and k < k. Hence

Putting equations (8)-(10) together gives w < k# 1 or, equivalently, k > (w + 1) a.
This completes the proof of the lemma. V1

Theorem 5.1 follows immediately from Lemma 5.4.

5.4. Remarks. Corollary 5.1 gives the bound that we obtain in the case that
t Ft(n). However, when t O(n) for a constant < I, we get that our lower
bound (W / i)a O(i) and hence is not interesting. One might wonder whether this
defect results simply from the various approximations we made in proving Theorem
5.1. This seems not to be the case, but it is rather a limitation of our proof technique.
When t O(n), the length of the sequence of graphs {To, T1,...} is bounded by a

constant, so the size of the largest component of the last element T is also a constant.
This remains true even if one uses the least q that satisfies the zigzag inequalities
rather than the q that is guaranteed by Lemma 5.2. Hence to obtain a nontrivial
lower bound in these cases, we will require either a better bound on the value q in
Step 2 of the procedure than can be obtained from the zigzag inequalities or else a
whole new proof technique. This also leaves open the possibility that Theorem 4.4
can be substantially improved. Finally, observe that the only place where we used
the assumption - > In/3] is in the last paragraph of the proof of Lemma 5.2, where
it is used to prove that - > [t/2]. Thus our results remain correct under the weaker
restriction - > It/2].

THE WAKEUP PROBLEM 1349

6. Relation to other problems. In this section, we show that there are efficient
reductions between the wakeup problem for - n/2J + 1 and the consensus and
leader-election problems. Hence the wakeup problem can be viewed as a basic problem
that captures the inherent difficulty of these two problems.

LEMMA 6.1. In any t-resilient consensus (leader-election) protocol, a process
decides (is elected) only when at least t + 1 processes are awake.

Proof. We first prove the lemma for a consensus protocol. Assume to the contrary
that in some consensus protocol, there exist a process q and a run--say p--in which
q decides and yet no more than. t processes participate in p. Let us assume w.l.o.g.
that in p process q decides on 0 and that the value of the shared register is a. Let Q
be the set of processes that do not participate in p. Clearly, IQI > n- t.

We can now construct a new run in which all processes in Q are correct, the initial
value of the shared register is a, only processes in Q participate in it, and all processes
in Q read the input value 1. Since the protocol can tolerate up to t failures, this run
has a prefix--say pt--in which all processes decide. The processes that participate in
pt Inust decide on the value 1 since this prefix can be extended to a run where all the
n processes read the value 1 (and hence according to the definition of the consensus
problem must decide on 1). Since the sets of processes which participate in p and
p are disjoint and the value of the shared register at the end of p is the same as its
value at the beginning of p, the composition (p; p} is a run. However, this leads to
a contradiction since processes decide on both zero and one at the same run.

The proof for a leader-election protocol is similar. Assume to the contrary that
in some leader-election protocol, there exist a process q and a run--say p--in which
q is elected and yet no more than t processes participate in p. Let us assume w.l.o.g.
that the value of the shared register in p is a. Let Q be the set of processes that do
not participate in p. Clearly, IQI-> n- t.

We can now construct a run in which all processes in Q are correct, in which the
initial value of the shared register is a, and in which only processes in Q participate.
Since the protocol can tolerate up to t failures, this run has a prefix--say p--in which
some process qt q is elected and writes 1 in its output register. (Here we used the
fact that a process can be elected in a run only if it participates in this run.) Clearly,
the composition /P;P} is a run. However, this leads to a contradiction since two
processes are elected at the same run.

The following theorem shows that in order to decide on some value (to be elected)
in a t-resilient consensus (leader-election) protocol, it is necessary to first learn that
at least t + 1 processes are awake. It also shows that in certain cases, learning that
t + 1 processes are awake is sufficient for making a decision. The assumption that the
processes are symmetric is not used in the proof of that theorem.

THEOREM 6.1. (1) Any t-resilient consensus (leader-election) protocol is a t-
resilient wakeup protocol for any "r < t + l and p n- t (p 1). (2) For any
t < n,/2, there ezist t-resilient consensus and leader-election protocols that are not
t-resilient wakeup protocols for any - > t + 2.

Proof. We prove the first part of the theorem. Assume to the contrary that for
some consensus (leader-election) protocol, there exist a process q and a run in which
q decides (q is elected), and q does not know that at least t + 1 processes are awake.
Hence there exist a process q and a run--say p--in which q decides (q is elected) and
yet not more than t processes participate in p. However, this contradicts Lemma 6.1.

We now prove the second part of the theorem. We first prove the second part for
a consensus protocol and then explain why it also holds for a leader-election protocol.
We show a consensus protocol in which, in certain n-fair runs, all the processes decide

1350 M. J. FISCHER, S. MORAN, S. RUDICH, AND G. TAUBENFELD

on some value and yet no process ever knows (at this run) that more than t + 1
processors are awake. The protocol uses values (r, x, y, z), where r E {0,..., rn- 1},
m n2 2nt, and x, y, and z each belongs to {0, 1}. (Note that since t < n/2, we
have that m _> n.) For integers 0 _< i, j < m- 1, let [i, j] denote the cyclic interval
[i, (R) 1,..., j], where (R) denotes addition modulo m. For k 0,..., n- 1, the cyclic
intervals [k(n 2t), k(n 2t) (R) (t + 1)] are called critical intervals. (Note that critical
intervals may overlap.)

The three bits are used as follows: x is flipped exactly once when the decision is
made, y is used to hold the decision value, z is used to signal processes that wake up
after the decision is made that a decision has already been reached, and hence they
should decide on the value in y.

Each process initially records the value of r in a local variable init and then
increments r by 1. Also, it records the value of x and sets z 0. In alternate steps,
it polls r, x, and z to see if they have changed. If either x or z has changed, then
a decision has already been reached, and the decision value is in y, in which case
the process decides on y and thereafter sets z 1 on each step. Otherwise, if it
realizes that the cyclic interval [init, r] includes a critical interval, then it becomes
the "decider" process. It then stops running the wakeup protocol, chooses its input
as the consensus value, and simultaneously flips
and sets r 1. All of this is done with a single read-modify-write. Thereafter, it
sets z 1 on each step.

The proof that this works is as follows. Until some process becomes the "decider,"
every process runs the protocol and no process changes z or writes 1 to z. Since the
longest cyclic intervals which do not contain a critical interval are of length n-t-1, we
have that every cyclic interval [i, i(R)j], where n-t <_ j <_ n, contains a critical interval.
Therefore, some process eventually polls r such that the cyclic interval [init, r] of this
process includes a critical interval. This process becomes a decider. Every other
process that woke up before the decision was made will see on its next step that x has
changed and hence no such process will also become a decider. Since fewer than n- t
processes wake up after the decision has been made and since they are the only ones
now affecting r, r is incremented by less than n- t after a decision is made. Since r
is set to 1 by the decider, it must be incremented by at least n- t in order for any
of these late processes to become a decider. Thus none of these processes becomes a
decider, and hence there is a unique decider. It follows that x and y are written to
exactly once as desired, so every process that decides on something chooses the same
value.

It remains to show that every process decides. Each process that wakes up before
the consensus value has been chosen either is the decider or learns the consensus value
on its next step thereafter because it will see that x has changed. Since there are more
than t such processes, at least one nonfailing process learns the consensus value, and
that process writes 1 to z infinitely many times. Since 0 is written to z at most n
times, z eventually stabilizes to 1. Thereafter, every process that has not already
decided sees z 1 and decides on its next step.

Clearly, the above protocol also solves the leader-election problem since the pro-
cess called the "decider" is the elected leader and every other process, when it learns
that a decision has been made, knows that it cannot be elected. Finally, note that
when the initial value of r is k(n- 2t) for some k, it is possible to reach a decision
when only t + 1 processes are awake.

COROLLARY 6.1. There is no consensus or leader-election protocol that can tol-
erate In/2] failures.

THE WAKEUP PROBLEM 1351

Pro@ Consider a (n- t)-fair run in which only n- t processes are awake. By
the first part of Theorem 6.1, when a decision is made (a leader is elected) in this
run, at least t + 1 processes are awake. Hence n- t >_ t + 1, which implies the
corollary, rl

THEOREM 6.2. Any protocol that solves the wakeup problem for any t < n/2,- > n/2, and p- 1, using a single v-valued shared register, can be transformed
into a t-resilient consensus (leader-election) protocol which uses a single By-valued

(4v-valued) shared register.

Proof. First, we show a reduction from the consensus problem to the wakeup
problem. Suppose the wakeup solution uses values 1,..., v. The consensus protocol
uses values (r, z, y, z), where r {1,..., v} and z, y, and z each belong to {0, 1}. The
three bits are used as follows: z is flipped exactly once when the decision is made, y
is used to hold the decision value, z is used to to signal processes that wake up after
the decision is made that a decision has already been reached, and hence they should
decide on the value in y.

Each process initially stores the value of z and sets z 0. It then begins running
the wakeup protocol. On alternate steps, it polls x and z to see if they have changed.
If either has changed, then a decision has already been reached and the decision value
is in y, in which case the process abandons whatever else it was doing, decides on y,
and thereafter sets z 1 on each step. Otherwise, it continues running the wakeup
protocol. If it learns that more than n/2 processes have woken up, if x and z still
have not changed, then it becomes the "decider" process. It then stops running the
wakeup protocol, chooses its input as the consensus value, and simultaneously flips z
and writes the consensus value to y. All of this is done with a single read-modify-
write. Thereafter, it sets z 1 on each step.

The proof that this works is fairly straightforward and is similar to the proof of the
previous theorem. Until some process decides, every process runs the wakeup protocol
and no process changes x nor writes 1 to z. Hence some process will eventually learn
that more than n/2 processes have woken up, and that process will become a decider.
Every other process that woke up before the decision was made will see on its next
step that z has changed and will abandon the wakeup protocol; hence no such process
will become a decider. Since fewer than n/2 processes wake up after the decision has
been made and since they are the only ones now affecting r, none of them will learn
that more than n/2 processes have woken up until they see z 1. Hence none of
them will become a decider, so there is a unique decider. It follows that x and y are
written to exactly once as desired, so every process that decides on something chooses
the same value.

It remains to show that every process decides. Each process that wakes up before
the consensus value has been chosen either is the decider or learns the consensus value
upon seeing that x has changed. Since there are more than n/2 of such processes, at
least one nonfailing process learns the consensus value, and that process writes 1 to z
infinitely many times. Since 0 is written to z at most n times, z eventually stabilizes
to 1. Thereafter, every process that has not already decided sees that z 1 and
decides on its next step.

Clearly, the above reduction can be used, with minor modifications, as a reduction
from the leader-election problem to the wakeup problem. That is so since the process
that becomes the "decider" is the elected leader and every other process, when it
learns that a decision has been made, knows that it cannot be elected. Finally, the
bit y, which is used to hold the decision value, is not needed in this reduction, and
hence it is sufficient to have a single 4v-valued register, rl

1352 M.J. FISCHER, S. MORAN, S. RUDICH, AND G. TAUBENFELD

COPOLLARY 6.2. (1) There is a ([n/2] 1)-resilient consensus (leader-election)
protocol that uses a single 8n-valued (4n-valued) shared register. (2) For any t
n/2, there is a t-resilient consensus (leader-election) protocol that uses an O(t)-valued
shared register.

Proof. The proof follows from Theorems 6.2, 4.3, and 4.4.
The constants in Corollary 6.2 can be improved. In fact, we have designed an

([n/2 1)-resilient consensus (election) protocol that uses a single 3n-valued (2n-
valued) shared register. Next, we show that the converse of Theorem 6.2 also holds.
That is, the existence of a t-resilient consensus or leader-election protocol which uses
a single v-valued shared register implies the existence of a t.resilient wakeup protocol
for - [n/2J + 1 which uses a single O(v)-valued shared register. The idea of the
proof is based on the following observation.

LEMMA 6.2.
1. Let p and pt be two runs of the same consensus protocol, where at least one

process decides both in p and in pt; all the processes in p have the same input value--
say a--and when the first process decides (in p), it writes some value--say c--to the
shared register; all the processes in p have the same input value--say b awand
the run p starts such that c is the value of the shared register. Let no (resp. no,) be
the numbers of processes that are awake in p (resp. pt) when the first process decides.
Then no + no > n.

2. Let p and p be two runs of the same election protocol, where some process
is elected both in p and in p; when a process is elected in p, the shared register has
some value--say c; the run pt starts with c as the initial value of the shared register.
Let no (resp. no, be the number of processes that are awake in p (resp. p’) when a
process is elected. Then no + no, > n.

Proof. We start by proving the first part. Assume to the contrary that for some
p and pt as above, no + no, _< n. We can construct an n-fair run in which initially no
processes behave as in p until the first of them decides on a. (Note that according to
the definition of the consensus problem, it has to decide on a.) At this point, put long
delays on these processes and let different no, processes behave as in p until someone
decides on b. This leads to a contradiction since processes decide on different values
at the same run.

The proof of the second part is similar. Assume to the contrary that for some p
and p as above, no + no, _< n. We can construct a n-fair run in which initially no
processes behave as in p until a process is elected. At this point, put long delays on
these processes and let different no, processes behave as in p until another process
is elected. This leads to a contradiction since two processes are elected at the same
run.

THEOREM 6.3. Any t-resilient protocol that solves the consensus or leader.election
problem using a single v-valued shared register can be transformed into a t-resilient
protocol that solves the wakeup problem for any 7 <_ [n/2J + 1 which uses a single
4v-valued shared register.

Proof. We show only the reduction from the wakeup problem to the consensus
problem. The reduction from the wakeup problem to the leader-election problem is
almost the same, and the correctness proofs of the two reductions differ only by using
different parts of Lemma 6.2. Suppose the consensus solution uses values 1,..., v. The
wakeup solution based on it uses values (r, x), where r E {1,..., v} and x E {0, 1, 2, 3}.
Informally, this protocol works as follows. The processes run the consensus protocol
such that each process considers the value of x (rood 2) as its input. The first process
to decide (while simulating the consensus protocol) increments x by 1 (mod 4), and

THE WAKEUP PROBLEM 1353

each process that notices that x has been incremented by I restarts the simulation with
the new input (i.e., x (mod 2)). A process that notices that x has been incremented
twice or more realizes that at least two such simulations have been completed and,
by Lemma 6.2, knows that a majority of processes are awake.

The following is a detailed description. Each process initially stores the value of
the shared register (i.e., of r and x). It then begins running the consensus proto-
col using x (mod 2) as its input. In alternate steps, in a single read-modify-write
instruction, it polls r and x and behaves as follows.

If it notices that x has been incremented twice or more since the very be-
ginning of the simulation, then the process abandons whatever else it was doing and
terminates. As we prove later, at that point the process knows that a majority of
processes are awake and hence fulfills the requirements of the wakeup problem.

Otherwise, if x has not been changed since its previous step, then the process
continues running the consensus protocol (by taking one more step). Otherwise, it
restarts the simulation of the consensus protocol taking x (mod 2) as its input value.
In case that by simulating the consensus protocol, the process reaches a decision (in
the consensus protocol), then it increments x by I.

We now give a correctness proof of the reduction. The notion a round of a run
corresponds to a portion of a run between two successive changes of x. The first round
is the portion from the beginning of the run until the first time x is incremented. Note
that after the last round (if such a round exists), the processes may still continue
running forever but, by definition, the value x is never changed thereafter. A process
participates in a given round if, during this round, it simulates a step of the consensus
protocol.

It should be noted that it is not clear that each round in a given run (of the
simulation) corresponds to a possible execution of the consensus protocol since some
processes may participate in more than one round. In order for a round to correspond
to a possible execution of the consensus protocol, it is sufficient to show that each
process that participates in a round does not participate in any previous round in
which x (mod 2) had the same value. This clearly holds in the first two rounds. The
next two claims show that this holds in the first four rounds. All of the following
claims refer to some specific (but arbitrary) infinite run of the reduction in which at
least n- t processes are awake.

1. Let S be the set of processes participating in round i. Then S1 ’l $3 0 and
$2 N $4 0. A process that participates in round (i E {1,2}) will notice at round
+ 2 (if it is given a chance to precede) that x has been incremented twice and hence

will terminate without participating in round / 2.
2. Each of the first four rounds corresponds to a prefix of a run of the consensus

protocol. This claim follows from the previous one since no process participates in both
rounds 1 and 3 or in both rounds 2 and 4.

3. Once a process notices that x has been incremented twice or more, it knows
that a majority of processes are awake. By (2), we know that once x has been incre-
mented twice or more, a simulation of at least two prefixes of runs of the consensus
protocol, both satisfying the conditions of Lemma 6.2 have occurred, and hence by
Lemma 6.2, a majority of processes have woken up.

4. In every run, there are at least two rounds. A process terminates the simula-
tion of the consensus protocol only when it learns that x has been incremented twice
or more. Hence at least two rounds are guaranteed to be completed.

5. There are at most three rounds in each run. Assume that four rounds are
completed in some run. Let nl, n2, n3, and n4 be the number of processes partic-

1354 M. J. FISCHER, S. MORAN, S. RUDICH, AND G. TAUBENFELD

ipating in the first, second, third, and fourth rounds, respectively. By (2), all four
rounds correspond to possible runs of the consensus protocol in which some process
decides. By Lemma 6.2, this implies that 1 nt- 2) t and rt3 + n4 > n. Hence
nl + n2 + rt3 + n4 > 2n. On the other hand, by (1), nl + na < n and n2 + n4 < n.
However, this means that rtl + n. + rta + n4 _< 2n--a contradiction.

6. Eventually, a nonfaulty process learns that a majority of processes have woken
up. By Lemma 6.1 and (2), in each round, at least t + 1 processes participate, and,
in particular, a nonfaulty process participates in each round (that may be the same
process). We know by (4) and (5) that in each run, x is incremented either two or
three times. Hence the nonfaulty process that participates in the first round will
eventually notice that x has been incremented two or three times, and by (3), it will
know that a majority of processes are awake.

This completes the proof of the theorem, rl

We notice that with one additional bit, it is possible to inform everybody that a
majority of processes are awake. It follows from Theorem 6.3 that the lower bound
that we proved in the previous section for the wakeup problem when - > [n/2J + 1
also applies to the consensus problem.

COROLLARY 6.3. Let P be a t-resilient consensus or leader-election protocol and
let V be the set of shared memory values used by P. Let W and c be defined as in 5.

IVl >_ (+)/.
Proof. The proof follows immediately from Theorem 5.1 and Theorem 6.3.
COROLLARY 6.4. There is a t-resilient consensus protocol that uses O(v)-valued

shared register iff there is a t-resilient leader election protocol that uses O(v)-valued
shared register.

Proof. The proof follows immediately from Theorem 6.2 and Theorem 6.3. 1

7. Conclusions. We study the new wakeup problem in a new model where all
processes are programmed alike, there is no global synchronization, and it is not
possible to simultaneously reset all parts of the system to a known initial state.

Our results are interesting for several reasons:
They give a quantitative measure of the cost of fault tolerance in shared-

memory parallel machines in terms of communication bandwidth.
They apply to a model which more accurately reflects reality.
They relate recent results from three different active research areas in parallel

and distributed computing, namely the following:
results in shared-memory systems [Blo87, DGS88, FLBB89, Her91, Hem89,

Law86, LAB7, LF83, LP90, Mis91, Tau89a, TM89, VA86];
the theory of knowledge in distributed systems [CM86, DM86, FHV84,

FI86, FI87, FZ88, Hal86, Had87, HF89, HM90, HZ87, KT86, Leh84, Maz89, MT88,
MT91, PR85, Mic89, Tut90];

self-stabilizing protocols [BGW89, BP89, Dij74, Dij86, DIM90, Gou87,
Kru79, KK90, Tau89b].

They give a new point of view and enable a deeper understanding of some
classical problems and results in cooperative computing.

They are proved using techniques that will likely have applications to other
problems in distributed computing.

Acknowledgments. We thank Joe Halpern for helpful discussions and the anony-
mous referee for very constructive comments.

THE WAKEUP PROBLEM 1355

REFERENCES

[Abr88]

[AG85]

[BGW89]

[Blo87]

[BP89]

[CG89]

[CM86]

[CR791

[DDS87]

[DGS88]

[Dij74]

[Dij86]
[DIM90]

[DKR82]

[DLS88]

[DM86]

[FHV84]

[FI86]

[FI87]

[Fis83]

[FL87]

[FLBB89]

[FLM86]

[FLP85]

[FZ88]

Z. ABRAHAMSON, On achieving consensus using shared memory, in Proc. 7th ACM
Symposium on Principles of Distributed Computing, Association for Computing
Machinery, New York, 1988, pp. 291-302.

Y. AFEK AND t. GAFNI, Time and message bounds for election in synchronous and
asynchronous complete networks, in Proc. 4th ACM Symposium on Principles of
Distributed Computing, Association for Computing Machinery, New York, 1985,
pp. 186-195.

G. M. BROWN, M. G. GOUDA, AND C.-L. Wu, Token systems that self-stabilize, IEEE
Trans. Comput., 38 (1989), pp. 845-852.

B. BLOOM, Constructing two-writer atomic registers, in Proc. 6th ACM Symposium on
Principles of Distributed Computing, Association for Computing Machinery, New
York, 1987, pp. 249-259.

J. E. BURNS AND J. PACHL, Uniform self-stabilizing rings, ACM Trans. Programming
Lang. Systems, 11 (1989), pp. 330-344.

N. CARRIERO AND D. GELERNTER, Linda in context, Comm. Assoc. Comput. Mach.,
32 (1989), pp. 444-458.

M. CHANDY AND J. MISRA, How processes learn, J. Distrib. Comput., 1 (1986), pp. 40-
52.

E. CHANG AND R. ROBERTS, An improved algorithm for decentralized extrema-finding
in circular configuration of processes, Comm. Assoc. Comput. Mach., 22 (1979),
pp. 281-283.

D. DOLLY, C. DWORK, AND L. STOCKMEYER, On the minimal synchronism needed for
distributed consensus, J. Assoc. Comput. Mach., 34 (1987), pp. 77-97.

D. DOLEV, E. GAFNI, AND N. SHAVIT, Toward a non-atomic era: 1-exclusion as a test
case, in Proc. 20th ACM Symposium on Theory of Computing, Association for
Computing Machinery, New York, 1988, pp. 78-92.

E. W. DIJKSTRA, Self-stabilizing systems in spite of distributed control, Comm. Assoc.
Comput. Mach., 17 (1974), pp. 643-644.
, A belated proof of self-stabilization, J. Distrib. Comput., 1 (1986), pp. 5-6.
S. DOLEV, A. ISRAELI, AND S. MORAN, Self-stabilization of dynamic systems assuming

only read write atomicity, J. Distrib. Comput., 7 (1993), pp. 3-16.
D. DOLEV, M. KLAWE, AND M. RODEH, An O(nlogn) unidirectional distributed algo-

rithm for extrema finding in a circle, J. Algorithms, 3 (1982), pp. 245-260.
C. DWORK, N. LYNCH, AND L. STOCKMEYER, Consensus in the presence of partial

synchrony, J. Assoc. Comput. Mach., 35 (1988), pp. 288-323.
C. DWORK AND Y. MOSES, Knowledge and common knowledge in a Byzantine envi-

ronment i: Crash failures, in Theoretical Aspects of Reasoning about Knowledge:
Proc. 1986 Conference, Morgan Kaufmann, San Mateo, CA, 1986, pp. 149-169.

R. FAGIN, J. Y. HALPERN, AND M. VARDI, A model theoretic analysis of knowledge,
in Proc. 25th IEEE Symposium on Foundations of Computer Science, IEEE Com-
puter Society Press, Los Alamitos, CA, 1984, pp. 268-278.

M. J. FISCHER AND N. IMMERMAN, Foundations of knowledge for distributed systems,
in Theoretical Aspects of Reasoning about Knowledge: Proc. 1986 Conference,
Morgan Kaufmann, San Mateo, CA, 1986, pp. 171-185.
, Interpreting logics of knowledge in propositional dynamic logic with converse,

Inform. Process. Lett., 25 (1987), pp. 175-181.
M. J. FISCHER, The consensus problem in unreliable distributed systems (a brief

survey), in Foundations of Computation Theory, M. Karpinsky, ed., Lecture Notes
in Comput. Sci. 158, Springer-Verlag, Berlin, New York, Heidelberg, 1983, pp. 127-
140.

G. FREDRICKSON AND N. LYNCH, Electing a leader in a synchronous ring, J. Assoc.
Comput. Mach., 34 (1987), pp. 98-115.

M. J. FISCHER, N. A. LYNCH, J. E. BURNS, AND A. BORODIN, Distributed FIFO allo-
cation of identical resources using small shared space, ACM Trans. Programming
Lang. Systems, 11 (1989), pp. 90-114.

M. J. FISCHER, N. A. LYNCH, AND M. MERRITT, Easy impossibility proofs for dis-
tributed consensus problems, J. Distrib. Comput., 1 (1986), pp. 26-39.

M. J. FISCHER, N. A. LYNCH, AND M. S. PATERSON, Impossibility of distributed con-
sensus with one faulty process, J. Assoc. Comput. Mach., 32 (1985), pp. 374-382.

M. J. FISCHER AND L. D. ZUCK, Reasoning about uncertainty in fault-tolerant dis-

1356 M.J. FISCHER, S. MORAN, S. RUDICH, AND G. TAUBENFELD

[GGK+83]

[Gou87]

[Had87]

[Hall
[Ha186]

[Hem89]

[Her91]

[HF89]

[HM90]

[HSS0]

[HZS]

[KK90]

[KKM]

[KMZ84]

[Kru79]

[KT86]

[LA87]

[Lam86]

[Leh84]

[LF83]

[LP90]

[Maz89]

[Mic89]

[Mis91]
[MT88]

tributed systems, in Formal Techniques in Real-Time and Fault-Tolerant Systems,
M. Joseph, ed., Lecture Notes in Comput. Sci. 331, Springer-Verlag, Berlin, New
York, Heidelberg, 1988, pp. 142-158.

A. GOTTLIEB, R. GRISHMAN, C. P. KRUSKAL, K. P. MCAULIFFE, L. RUDOLPH, AND

M. SNIR, The NYU ultracomputer: Designing a MIMD parallel computer, IEEE
Trans. Comput., 32 (1983), pp. 175-189.

M. G. GOUDA, The stabilizing philosopher: Asymmetry by memory and by action,
Technical report CS-TR-87-12, Department of Computer Sciences, University of
Texas at Austin, Austin, TX, 1987.

V. HADZILACOS, A knowledge theoretic analysis of atomic commitment protocols, in
Proc. 6th ACM Symposium on Principles of Database Systems, Association for
Computing Machinery, New York, 1987, pp. 129-134.

J. Y. HALPERN, personal communication, 1990.
, Reasoning about knowledge: An overview, in Theoretical Aspects of Reasoning

about Knowledge: Proc. 1986 Conference, Morgan Kaufmann, San Mateo, CA,
1986, pp. 1-17.

D. HEMMENDINGER, Initializing memory shared by several processors, Internat. J. Par-
allel Programming, 18 (1989), pp. 241-253.

M. HERLIHY, Wait-free synchronization, ACM Trans. Programming Lang. Systems, 11
(1991), pp. 124-149.

J. Y. HALPERN AND R. FAGIN, Modelling knowledge and action in distributed systems,
Distrib. Comput., 3 (1989), pp. 159-177.

J. Y. HALPERN AND Y. MOSES, Knowledge and common knowledge in a distributed
environment, J. Assoc. Comput. Mach., 37 (1990), pp. 549-587.

D. S. HIRSCHBERG AND J. B. SINCLAIR, Decentralized extrema-finding in circular con-
figuration of processes, Comm. Assoc. Comput. Mach., 23 (1980), pp. 627-628.

J. Y. HALPERN AND L. D. ZUCK, A little knowledge goes a long way: Simple knowledge-
based derivations and correctness proofs for a family ofprotocols, in Proc. 6th ACM
Symposium on Principles of Distributed Computing, Association for Computing
Machinery, New York, 1987, pp. 269-280.

S. KATZ AND K. J. PERRY, Self-stabilizing extensions for message-passing systems, in
Proc. 9th ACM Symposium on Principles of Distributed Computing, Association
for Computing Machinery, New York, 1990, pp. 91-102.

E. KORACH, S. KUTTEN, AND S. MORAN, A modular technique for the design of eJcient
leader finding algorithms, ACM Trans. Programming Lang. Systems, 12 (1990),
pp. 84-101.

E. KORACH, S. MORAN, AND S. ZAKS, Tight lower and upper bounds for some dis-
tributed algorithms for a complete network of processors, in Proc. 3rd ACM Sym-
posium on Principles of Distributed Computing, 1984, pp. 199-207.

H. S. M. KRUIJER, Self-stabilization (in spite of distributed control) in tree-structured
systems, Inform. Process. Lett., 2 (1979), pp. 91-95.

S. KATZ AND G. TAUBENFELD, What processes know: Definitions and proof methods, in
Proc. 5th ACM Symposium on Principles of Distributed Computing, Association
for Computing Machinery, New York, 1986, pp. 249-262.

C. M. LouI AND H. ABU-AMARA, Memory requirements for agreement among unreli-
able asynchronous processes, Adv. Comput. Res., 4 (1987), pp. 163-183.

L. LAMPORT, The mutual exclusion problem: Statement and solutions, J. Assoc. Com-
put. Mach., 33 (1986), pp. 327-348.

D. LEHMANN, Knowledge, common knowledge and related puzzles, in Proc. 3rd ACM
Symposium on Principles of Distributed Computing, Association for Computing
Machinery, New York, 1984, pp. 62-67.

N. A. LYNCH AND M. J. FISCHER, A technique for decomposing algorithms which use
a single shared variable, J. Comput. System Sci., 27 (1983), pp. 350-377.

R. L. LIPTON AND t. PARK, The processor identity problem, Inform. Process. Lett., 36
(1990), pp. 91-94.

M. S. MAZER, A knowledge-theoretic account of negotiated commitment, Ph.D. thesis,
Technical report CSRI-237, Computer Systems Research Institute, University of
Toronto, Toronto, 1989.

R. MICHEL, A categorical approach to distributed systems expressibility and knowledge,
in Proc. 8th ACM Symposium on Principles of Distributed Computing, Association
for Computing Machinery, New York, 1989, pp. 129-143.

J. MSPA, Phase synchronization, Inform. Process. Lett., 38 (1991), pp. 101-105.
Y. MOSES AND M. R. TUTTLE, Programming simultaneous actions using common

THE WAKEUP PROBLEM 1357

[MT91]

[Pea85]

[Pet82]

[PKR84]

[PR85]

[PSL80]

[RBJ88]

[Tau89a]

[Tau89b]

[Tau91]

[TKM89a]

[TKM89b]

[TM89]

[Tut90]

[va95]
[VA86]

knowledge, Algorithmica, 3 (1988), pp. 121-169.
M. MERRITT AND G. TAUBENFELD, Knowledge in shared memory systems, in Proc.

10th ACM Symposium on Principles of Distributed Computing, Association for
Computing Machinery, New York, 1991, pp. 189-200.

G. H. PFISTER, W. BRANTLEY, D. GEORGE, S. HARVEY, W. KLEINFELDER, K.
MCAULIFFE, E. MELTON, V. NORTON, AND J. WEISS, The IBM research paral-
lel processor prototype (RP3): Introduction and architecture, in Proc. 1985 In-
ternational Parallel Processing Conference, IEEE Computer Society Press, Los
Alamitos, CA, 1985.

G. L. PETERSON, An O(n log n) unidirectional algorithm for the circular extrema prob-
lem, ACM Trans. Programming Lang. Systems, 4 (1982), pp. 758-762.

J. PACHL, E. KORACH, AND D. ROTEM, Lower bounds for distributed maximum-finding
algorithms, J. Assoc. Comput. Mach., 31 (1984), pp. 905-918.

R. PARIKH AND l. RAMANUJAM, Distributed processes and the logic of knowledge, in
Proc. Workshop on Logic of Programs, R. Parikh, ed., Lecture Notes in Com-
put. Sci. 193, Springer-Verlag, Berlin, New York, Heidelberg, 1985, pp. 256-268.

M. PEASE, R. SHOSTAK, AND L. LAMPORT, Reaching agreement in the presence of
faults, J. Assoc. Comput. Mach., 27 (1980), pp. 228-234.

A. G. RANADE, S. N. BHATT, AND S. L. JOHNSSON, The fluent abstract machine,
Technical report YALEU/DCS/TR-573, Department of Computer Science, Yale
University, New Haven, CT, 1988.

G. TAUBENFELD, Leader election in the presence of n- initial failures, Inform. Pro-
cess. Lett., 33 (1989), pp. 25-28.
, Self-stabilizing Petri nets, Technical report YALEU/DCS/TR-707, Department

of Computer Science, Yale University, New Haven, CT, 1989.
, On the nonexistence of resilient consensus protocols, Inform. Process. Lett., 37

(1991), pp. 285-289.
G. TAUBENFELD, S. KATZ, AND S. MORAN, Impossibility results in the presence of

multiple faulty processes, in Proc. 9th FCT-TCS Conference, C. E. Veni Madha-
van, ed., Lecture Notes in Comput. Sci. 405, Springer-Verlag, Berlin, New York,
Heidelberg, 1989, pp. 109-120.
, Initial failures in distributed computations, Internat. J. Parallel Programming,

18 (1989), pp. 255-276.
G. TAUBENFELD AND S. MORAN, Possibility and impossibility results in a shared mem-

ory environment, in Proc. 3rd International Workshop on Distributed Algorithms,
J. C. Bermond and M. Raynal, eds., Lecture Notes in Comput. Sci. 392, Springer-
Verlag, Berlin, New York, Heidelberg, 1989, pp. 254-267.

M. TUTTLE, Knowledge and distributed computation, Ph.D. thesis, Technical report
MIT/LCS/TR-477, Department of Computer Science, Massachusetts Institute of
Technology, Cambridge, MA, 1990.

J. VALOIS, A 3-valued wakeup protocol, Inform. Process. Lett., 55 (1996), pp. 89-93.
P. M. B. VITANYI AND B. AWERBUCH, Atomic shared register access by asynchronous

hardware, in Proc. 27th IEEE Symposium on Foundations of Computer Science,
IEEE Computer Society Press, Los Alamitos, CA, 1986, pp. 223-243; Erratum, in
Proc. 28th IEEE Symposium on Foundations of Computer Science, IEEE Com-
puter Science Press, Los Alamitos, CA, 1987, p. 487.

SIAM J. COMPUT.
Vol. 25, No. 6, p. 1358, December 1996

1996 Society for Industrial and Applied Mathematics

013

ERRATUM: FAST PARALLEL COMPUTATION OF THE
POLYNOMIAL REMAINDER SEQUENCE VIA BEZOUT AND

HANKEL MATRICES*

DARIO BINI AND LUCA GEMIGNANI$

Key words. Euclidean scheme, greatest common divisor, Hankel and Bezout matrices, com-

putational complexity, parallel algorithms

AMS subject classifications. 68Q25, 65Y05

Remark 2.1, as stated in [1], does not allow one to recover the coefficients of the
polynomials u(x) and v(x) which define the Bezoutian B(u, v). In order to overcome
this problem, Remark 2.1 should be modified in the following way.

Remark 2.1. Observe that B(u, v)=B(u + cv, v) for any constant c. Moreover,
the last row of B(u, v), i.e., un[v0,..., vn-1], provides the coefficients of the polynomial
v(x), up to the multiplicative factor Un, as well as its degree m. Now we assume for
simplicity that un 1 and show how we may recover the coefficients i, 0 _< <_ n, of
any polynomial (x) u(x) + cv(x) satisfying B(, v) B(u, v). First, observe that,
since a is an arbitrary constant, we may choose , arbitrarily. In the case where
m 0, the first row of B(u, v) immediately yields the coefficients i, 1,..., n.

Otherwise, if m > 0, then we consider the vector bT e(m-)TB(u, v) and (only in
the case m < n- 1) the vector cT e(’)TB(u, v). Here e(i), 0 _< _< n- 1, denotes
the (i + 1)st column of the n n identity matrix. From the last n- rn equations of
cT -e(’)TB(u, v), that is,

Vm

V2m--n+l
O)

where we assume vi 0 for < O, we obtain u,+,..., Un--1 by solving an (n-
rn- 1) x (n- rn- 1) triangular Toeplitz system From the first m equations of
bT e(r-)T B(u, v), i.e.,

VO Vm--
\

)"
0 vo

where we assume ui 0 for > n, we may recover u0,..., u,_ as functions of the
parameter u. Now, by substituting an arbitrary value 2m for u,, we determine the
values 2i of ui, 0,...,m- 1.

REFERENCES

[1] D. BNI AND L. GEMIGNANI, Fast parallel computation of the polynomial remainder sequence via
Bezout and Hankel matrices, SIAM J. Comput., 24 (1995), pp. 63-77.

*Received by the editors February 14, 1996; accepted for publication February 15, 1996.

[Dipartimento di Matematica, UniversitS di Pisa, 56127 Pisa, Italy (bini@dm.unipi.it).
:Dipartimento di Informatica, Universit di Pisa, 56127 Pisa, Italy (gemi@di.unipi.it).

1358

	SMJCAT_V25_i1_p0001
	SMJCAT_V25_i1_p0052
	SMJCAT_V25_i1_p0083
	SMJCAT_V25_i1_p0100
	SMJCAT_V25_i1_p0117
	SMJCAT_V25_i1_p0133
	SMJCAT_V25_i1_p0169
	SMJCAT_V25_i1_p0193
	SMJCAT_V25_i1_p0207
	SMJCAT_V25_i2_p0235
	SMJCAT_V25_i2_p0252
	SMJCAT_V25_i2_p0272
	SMJCAT_V25_i2_p0290
	SMJCAT_V25_i2_p0291
	SMJCAT_V25_i2_p0312
	SMJCAT_V25_i2_p0340
	SMJCAT_V25_i2_p0355
	SMJCAT_V25_i2_p0369
	SMJCAT_V25_i2_p0390
	SMJCAT_V25_i2_p0404
	SMJCAT_V25_i2_p0420
	SMJCAT_V25_i2_p0448
	SMJCAT_V25_i3_p0477
	SMJCAT_V25_i3_p0498
	SMJCAT_V25_i3_p0520
	SMJCAT_V25_i3_p0540
	SMJCAT_V25_i3_p0562
	SMJCAT_V25_i3_p0600
	SMJCAT_V25_i3_p0626
	SMJCAT_V25_i3_p0648
	SMJCAT_V25_i3_p0663
	SMJCAT_V25_i4_p0697
	SMJCAT_V25_i4_p0709
	SMJCAT_V25_i4_p0740
	SMJCAT_V25_i4_p0775
	SMJCAT_V25_i4_p0797
	SMJCAT_V25_i4_p0828
	SMJCAT_V25_i4_p0862
	SMJCAT_V25_i4_p0874
	SMJCAT_V25_i4_p0894
	SMJCAT_V25_i5_p0907
	SMJCAT_V25_i5_p0936
	SMJCAT_V25_i5_p0956
	SMJCAT_V25_i5_p0998
	SMJCAT_V25_i5_p1024
	SMJCAT_V25_i5_p1045
	SMJCAT_V25_i5_p1061
	SMJCAT_V25_i5_p1082
	SMJCAT_V25_i5_p1105
	SMJCAT_V25_i6_p1123
	SMJCAT_V25_i6_p1144
	SMJCAT_V25_i6_p1171
	SMJCAT_V25_i6_p1196
	SMJCAT_V25_i6_p1231
	SMJCAT_V25_i6_p1254
	SMJCAT_V25_i6_p1268
	SMJCAT_V25_i6_p1281
	SMJCAT_V25_i6_p1293
	SMJCAT_V25_i6_p1305
	SMJCAT_V25_i6_p1318
	SMJCAT_V25_i6_p1332
	SMJCAT_V25_i6_p1358

